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Abstract

This thesis establishes bounds (primarily upper bounds) on Waring’s number in finite

fields. Let p be a prime, q = pn, Fq be the finite field in q elements, k be a positive integer

with k|(q−1) and t = (q−1)/k. Let Ak denote the set of k-th powers in Fq and A′k = Ak∩Fp.

Waring’s number γ(k, q) is the smallest positive integer s such that every element of Fq can

be expressed as a sum of s k-th powers. For prime fields Fp we prove that for any positive

integer r there is a constant C(r) such that γ(k, p) ≤ C(r)k1/r provided that φ(t) ≥ r. We

also obtain the lower bound γ(k, p) ≥ (t−1)
e
k1/(t−1) − t + 1 for t prime. For general finite

fields we establish the following upper bounds whenever γ(k, q) exists:

γ(k, q) ≤ 7.3n

⌈
(2k)1/n

|A′k| − 1

⌉
log(k),

γ(k, q) ≤ 8n

⌈
(k + 1)1/n − 1

|A′k| − 1

⌉
,

and

γ(k, q)� n(k + 1)
log(4)

n log |A′
k
| log log(k).

We also establish the following versions of the Heilbronn conjectures for general finite fields.

For any ε > 0 there is a constant, c(ε), such that if |A′k| ≥ 4
2
εn , then γ(k, q) ≤ c(ε)kε. Next, if

n ≥ 3 and γ(k, q) exists, then γ(k, q) ≤ 10
√
k + 1. For n = 2, we have γ(k, p2) ≤ 16

√
k + 1.
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Chapter 1

Introduction

Waring’s problem asks the question: Given a positive integer k does there exist a positive

integer s such that every element in a given ring can be represented as a sum of at most

s k-th powers? This was originally posed in 1770 for positive integers and answered in the

affirmative for integers by Hilbert in 1909. The next obvious question once we know every

element can be represented is: What is the least number of summands needed? While these

two questions are essentially answered for the integers [28], in the finite field setting the

second question is far from settled.

Let p be a prime, n be a positive integer, q = pn and Fq be the field of q elements. The

smallest s (should it exist) such that

xk1 + xk2 + · · ·+ xks = α (1.1)

has a solution for all α ∈ Fq is called Waring’s number, denoted γ(k, q). Similarly we define

δ(k, q) to be the smallest s (should it exist) such that every element of Fq can be represented

as sums or differences of s k-th powers, that is, such that

±xk1 ± xk2 ± · · · ± xks = α

is solvable for all α ∈ Fq. We will assume throughout that k is such that Waring’s number

exists for Fq; see Theorem 6.1 below for necessary and sufficient conditions for the existence

of γ(k, q). It is also plain from this theorem that δ(k, q) exists if and only if γ(k, q) exists.
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It is easy to show that γ(k, q) = γ(gcd(k, q − 1), q) since the set of k-th powers in Fq is the

same as the set of `-th powers, where ` = gcd(k, q− 1). Thus we may assume k|(q− 1). Let

Ak denote the set of all k-th powers in Fq, and let A∗k denote the multiplicative subgroup of

nonzero k-th powers,

Ak := {xk : x ∈ Fq}, A∗k := Ak \ {0}.

Tornheim showed [30, Lemma 1] that the collection L of all possible sums of k-th powers

in Fq forms a subfield of Fq. To prove this, first note that L is obviously closed under

addition and multiplication. Also, for a nonzero element l ∈ L we have −l = (p − 1)l ∈ L

and 1/l = (1/l)klk−1 ∈ L. Bhaskaran showed [2, Theorem G] that this subfield is proper if

and only if there is a d|n, d 6= n such that pn−1
pd−1
|k. The work of Tornheim and Bhaskaran

can be stated more precisely as follows:

Theorem (6.1). The following are equivalent for any q = pn and k|(q − 1).

(i) γ(k, q) exists, that is, every element of Fq is a sum of k-th powers.

(ii) Ak is not contained in any proper subfield of Fq, that is, Ak contains a set of n

linearly independent points over Fp.

(iii) |A∗k| does not divide pj − 1 for any j|n, j < n, that is, pn−1
pj−1

does not divide k for

any j|n, j < n.

Note that throughout the Introduction, theorems are numbered according to where they

appear in the thesis together with proofs. Thus the complete proof of the preceding theorem

is given in Chapter 6.

1.1 Waring’s problem over Fp

The earliest result on Waring’s problem over a finite field is due to Cauchy [7] who showed

that γ(k, p) ≤ k for any prime p; see Theorem 6.2. The result was discovered again by Hardy

and Littlewood [19]. Clearly γ(p − 1, p) = p − 1 and γ(p−1
2
, p) = p−1

2
for any odd prime p,

since ap−1 = 1 for any a ∈ Fp and a
p−1
2 = ±1 for any a ∈ Fp. Thus the bound γ(k, p) ≤ k is
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optimal for arbitrary k. To make any improvement, we must restrict our attention to values

of k not divisible by (p− 1)/2. Under this assumption the Cauchy bound was refined by S.

Chowla, Mann and Straus [9] to

γ(k, p) ≤ [k/2] + 1. (1.2)

Let t denote the number of nonzero k-th powers,

t :=
p− 1

k
.

Then the bound (1.2) holds provided that t > 2. In the work of Cipra, Cochrane and Pinner

[10, Theorem 2] it is shown for t = 3, 4 or 6 that

√
2k − 1 ≤ γ(k, p) ≤ 2

√
k. (1.3)

Indeed, the exact value of γ(k, p) is given in these three cases.

Heilbronn [21], in his Cal Tech Lecture Notes, made the following conjectures:

I: For any ε > 0, there exists a constant tε such that γ(k, p)�ε k
ε for t > tε. (1.4)

II: For t > 2, γ(k, p)� k1/2. (1.5)

Where f(x) � g(x) means there is a constant c such that f(x) ≤ cg(x) for all x, and

f(x)�ε g(x) means given ε there is a constant c(ε) such that f(x) ≤ c(ε)g(x) for all x.

In view of the estimate (1.3) it is plain that the exponent 1
2

in the second Heilbronn

conjecture is best possible for arbitrary t > 2.

I. Chowla [8] proved γ(k, p)� k0.8771; Dodson [13], γ(k, p) ≤ k7/8, for k sufficiently large;

Tietäväinen [29], γ(k, p)�ε k
3
5
+ε ; Dodson and Tietäväinen [14],

γ(k, p) < 68(log k)2k1/2. (1.6)

Bovey [6] also obtained the similar but slightly weaker bound γ(k, p) �ε k
1
2
+ε. The latter

bounds fall just short of the second Heilbronn conjecture.
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From the classical estimate of Weil [31], and Hua and Vandiver [22], on the number of

solutions of (1.1) (see (3.2)) one obtains a very small value for γ(k, p) for p sufficiently large

relative to k:

γ(k, p) ≤ s for p > (k − 1)
2s
s−1 . (1.7)

In particular γ(k, p) ≤ 2 for p > k4, γ(k, p) ≤ 3 for p > k3 and γ(k, p) ≤ 1 + log(k)/ log(ε)

for p > (1 + ε)k2. Note that as p approaches k2 this bound tends to infinity. Dodson [13]

obtained a similar bound

γ(k, p) ≤ [32 log k] + 1 for p > k2. (1.8)

Exponential sums have proven to be a very valuable tool in the estimation of Waring’s

number. Let ep(·) denote the additive character on Fp,

ep(·) = e2πi·/p.

It is well known that a uniform bound on a Gauss sum of the type∣∣∣∣∣
p∑

x=1

ep(ax
k)

∣∣∣∣∣ ≤ Φ, (1.9)

for p - a, leads immediately to the estimate

γ(k, p) ≤ s for p > Φ
s
s−1 , (1.10)

and so we define

Φ = Φ(k) := max
p-a

∣∣∣∣∣
p∑

x=1

ep(ax
k)

∣∣∣∣∣ . (1.11)

We readily obtain,

γ(k, p) ≤
⌈

log p

log(p/Φ)

⌉
. (1.12)

A generalization of (1.12) to any finite field is given in Corollary 3.1; inequality (1.10)

corresponding to (3.4).

From the bounds of Heath-Brown and Konyagin [20], Φ� k
5
8p

5
8 , Φ� k

3
8p

3
4 , one obtains

respectively,

γ(k, p) ≤ s for p� k
5s

3s−8 , p� k
3s

2s−8 . (1.13)
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Further estimates along these lines can be gleaned from Konyagin’s [24] refinement of his

joint work with Heath-Brown [20], in which he obtains a nontrivial estimate for Φ for

p > k
4
3
+ε.

Bourgain and Konyagin [5] and Bourgain, Glibichuk and Konyagin [4] introduced a new

kind of upper bound for Φ: Given ε > 0 there exists a δ > 0 such that if k < p1−ε then

Φ(k) ≤ p1−δ, (1.14)

for p sufficiently large. It follows that

γ(k, p) ≤ 1

δ
for p� k1+ε, (1.15)

for any ε > 0, where δ is the value given in (1.14). Although this bound is stronger than

what is asked for in the first Heilbronn conjecture, it requires t � kε rather than t larger

than a constant depending on ε.

Konyagin [23, Theorem 1] was the first to obtain a nontrivial estimate of Φ for values of

k very close to p in size, obtaining

Φ(k) ≤ p

(
1− cε

(log k)1+ε

)
, (1.16)

for k ≥ 2 and p ≥ k log k
(log(log k+1))1−ε

. Although this bound is very weak, it yields the estimate

γ(k, p)�ε (log k)2+ε for p ≥ k log k

(log(log k + 1))1−ε , (1.17)

which implies, in particular, that γ(k, p) � (log k)3 for t > log k. Combining this with

the work of Bovey [6], Konyagin was able to establish the validity of the first Heilbronn

conjecture. Improvements on (1.16) and (1.17) were made by Cochrane, Pinner and Rosen-

house [12]; see Lemma 3.4 and Lemma 3.2.

Finally we note the estimate of Garcia and Voloch [15],

γ(k, p) ≤ 170
k7/3

(p− 1)4/3
log p, for p ≤ k7/4 + 1, (1.18)

and, for historical interest, the result of Sister M. Anne Cathleen Real [27] : For any prime

p ≡ 1 (mod 22) with p ≥ 89 we have γ(11, p) = 2, 3 or 4.

5



1.2 Statement of results for Waring’s Number over Fp

In chapter 4 we establish the following results for the case of prime fields.

Theorem (4.1). Let r be a positive integer and φ(t) be the Euler φ-function. If φ(t) ≥ r

then γ(k, p) ≤ C(r) k1/r for some constant C(r).

Letting r = 2 we see that there is an absolute constant C(2) such that for t > 2, that is,

(k, p− 1) < (p− 1)/2, we have

γ(k, p) ≤ C(2)k1/2,

establishing the second Heilbronn conjecture. Letting r = φ(t) we get

γ(k, p) ≤ C ′(t) k1/φ(t),

for some constant C ′(t) = C(φ(t)) depending on t. We also establish the following lower

bound, showing that the exponent 1/φ(t) cannot be improved, at least for the case of prime

t.

Theorem (4.2). For t prime,

γ(k, p) ≥ (t− 1)

e
k1/(t−1) − t+ 1.

1.3 Waring’s problem over Fq

Let q = pn and Fq be the finite field in q elements. The earliest bound for γ(k, q) is just the

analogue of Cauchy’s bound γ(k, p) ≤ k, for prime fields.

Theorem (6.2). If γ(k, q) is defined then γ(k, q) ≤ k.

As noted for the case of Fp this bound is sharp if |A∗k| = 1 or 2. For |A∗k| > 2 it was

established by Tietäväinen [29, Theorem 1], for odd p, and Winterhof [32, Theorem 3], for

p = 2, that

γ(k, q) ≤ [k/2] + 1. (1.19)

6



Winterhof showed [33, Theorem 1] that provided γ(k, q) exists,

γ(k, q) ≤ 6.2n(2k)1/n log(k). (1.20)

Winterhof and Woestijne [34] proved that for p and r primes with p a primitive root

(mod r) we have γ
(
pr−1−1

r
, pr−1

)
= (r−1)(p−1)

2
. Thus with k = pr−1−1

r
and n = r − 1 one has

the estimate,
n

2
(k1/n − 1) ≤ γ(k, pn) ≤ n(k + 1)1/n. (1.21)

In light of inequality (1.21), we see that nk1/n is essentially the best possible order of

magnitude for Waring’s number without further restrictions. For Fp the usual restriction

to improve upper bounds on Waring’s number is to impose a lower bound on the number

of k-th powers. However Winterhof and Woestijne’s result indicates that such restrictions

pose problems for improving a bound of the form nk1/n for a general finite field. Under their

conditions, the number of k-th powers is equal to r+ 1, which can be made arbitrarily large

for an appropriately chosen p and r.

In the general finite field setting the restriction we use is thus more subtle. Instead

of placing constraints on the number of elements of Ak, we restrict the minimum size of

the intersection of k-th powers with the subfield of prime order: Ak ∩ Fp. In the case of

Winterhof and Woestijne, with r 6= 2, we have |Ak ∩ Fp| = (p − 1, r) + 1 = 2. Lemma 6.1

provides the first equality and conditions on p and r provide the second equality. This is

the smallest such intersection since 0 and 1 are always k-th powers. For r = 2 we have the

classic result γ(p−1
2
, p) = p−1

2
.

1.4 Statement of Results for Waring’s Number over Fq

Our first improvement of Winterhof’s work comes from just a modest refinement of his

method. Let A′k = Ak ∩Fp, the set of k-th powers of elements in Fq that belong to Fp. Note

that |A′k| ≥ 2, since 0 and 1 are always k-th powers.

7



Theorem (6.3). If γ(k, q) exists then we have

γ(k, q) ≤ 7.3n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉
log(k) = 7.3n

⌈
(2k)1/n

|A′k| − 1

⌉
log(k).

By combining Winterhof’s methods with results from additive combinatorics we are able

to remove the log k factor, giving the stronger result,

Theorem (6.4). If γ(k, q) exists, then

γ(k, q) ≤ 8n

⌈
(k + 1)1/n − 1

|A′k| − 1

⌉
.

Furthermore, if |A′k| ≥ 3, then

γ(k, q) ≤ 4n

(
(k + 1)1/n − 1

|A′k| − 1

)
+ 12n.

Next we show that the exponent 1/n can be improved if we impose extra constraints on

the size of A′k.

Theorem (6.5). If γ(k, q) exists, then

γ(k, q)� n(k + 1)
log(4)

n log |A′
k
| log log(k).

Furthermore, if |A′k|
‰

log( 8
3 (k+1)1/n)

log |A′
k
| +8/7

ı
≤ p−1

2
, then

γ(k, p)� n(k + 1)
log 4

n log |A′
k
| .

Finally, we address the analogues of the Heilbronn conjectures for general finite fields,

proving the following theorems.

Theorem (6.6). For any ε > 0, if |A′k| ≥ 4
2
εn , then γ(k, q)�ε k

ε.

Theorem (6.7). If n ≥ 3 and γ(k, q) exists, then γ(k, q) ≤ 10
√
k + 1.

For n = 2, we have γ(k, p2) ≤ 16
√
k + 1.

Theorem 6.6 establishes an analogue of the first Heilbronn conjecture (1.4), and Theo-

rem 6.7 establishes an analogue of the second Heilbronn conjecture (1.5).
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Chapter 2

Sum and Difference Sets

We begin with some notation. For any subsets A,B of a group (G,+), and positive integer

n we define

A+B := {a+ b : a ∈ A, b ∈ B},

A−B := {a− b : a ∈ A, b ∈ B},

and

nA := A+ A+ · · ·+ A, (n summands).

In particular, Waring’s number γ(k, q) can be defined as the minimal s such that sAk = Fq,

where Ak is the set of k-th powers in Fq.

For subsets A,B of a ring R and positive integers m,n we define

AB := {ab : a ∈ A, b ∈ B},

nAB := n(AB) =

{
n∑
i=1

aibi : ai ∈ A, bi ∈ B, 1 ≤ i ≤ n

}
,

Am := {a1a2 · · · am : ai ∈ A, 1 ≤ i ≤ m},

and consequently

nAm =

{
n∑
i=1

ai1ai2 · · · aim : aij ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

The following two lemmas have proven quite useful.

9



Lemma 2.1. If A and B are subsets of a finite abelian group (G,+), such that

|A|+ |B| > |G|, then A+B = G.

Proof. Let A and B be subsets of G with |A| + |B| > |G|. Let g ∈ G and consider the set

{g}−A = {g−a : a ∈ A}. Note that |A| = |{g}−A|, and so |{g}−A|+ |B| > |G|. Thus,

by the pigeonhole principle, ({g} − A) ∩ B 6= ∅, that is there exists a ∈ A and b ∈ B such

that a+ b = g.

Lemma 2.2 (Rusza). For A, B, and C finite subsets of an abelian group,

|A||B − C| ≤ |A+B||A+ C|.

Proof. For each element d ∈ B−C fix bd ∈ B and cd ∈ C such that d = bd− cd. Now define

f : A× (B − C)→ (A+B)× (A+ C) by f(a, d) = (a+ bd, a+ cd). We will now show this

map is injective thus establishing the required inequality. If f(a, d) = f(a′, d′), then

a+ bd = a′ + bd′ ,

a+ cd = a′ + cd′ .

Subtracting these equations, we have

bd − cd = bd′ − cd′ ,

or equivalently

d = d′.

Hence a = a′ and f is injective.

Applying Rusza’s Lemma with B = C gives the useful reformulation:

|A+B| ≥ |A|1/2|B −B|1/2. (2.1)

10



Lemma 2.3. [11, 2.2] For any subset S of an abelian group and any positive integer j,

|jS| ≥ |S − S|1−
1

2j .

The inequality is strict for |S| > 1.

Proof. The proof is by induction on j. The lemma is obvious for j = 1 and inequality (2.1)

with A = B = S establishes the lemma for j = 2.

Assume the lemma holds for j − 1. Applying inequality (2.1) with A = (j − 1)S and

B = S gives

|jS| = |(j − 1)S + S| ≥ |(j − 1)S|1/2|S − S|1/2.

The induction hypothesis on |(j − 1)S| gives

|jS| ≥ (|S − S|1−
1

2(j−1) )1/2|S − S|1/2 = |S − S|1−
1

2j .

Lemma 2.4 (Cauchy-Davenport Theorem). Let A and B be non-empty subsets of Fp. Then

|A+B| ≥ min{|A|+ |B| − 1, p}.

Proof. We follow the proof of Alon, Nathanson, and Ruzsa [1]. Let |A| = k, |B| = l and

|A + B| = n. If n ≥ k + l − 1, the assertion is true, and so we assume that n < k + l − 1.

Our goal is to prove that A+B = Fp in this case, that is, n = p.

Form the polynomial f ∈ Fp[x, y] by

f(x, y) =
∏

c∈A+B

(x+ y − c) =
∑
i+j≤n

fijx
iyj.

The sum is over i, j with i+ j ≤ n, because there are n factors in the product.

Since Fp is a field, there are polynomials gi ∈ Fp[x] of degree less than k and hj ∈ Fp[y]

of degree less than l such that gi(x) = xi for all x ∈ A and hj(y) = yj for all y ∈ B. Define

a polynomial p ∈ Fp[x, y] by

p(x, y) =
∑

i<k, j<l

fijx
iyj +

∑
i≥k, j≤n−i

fijgi(x)yj +
∑

j≥l, i≤n−j

fijx
ihj(y). (2.2)

11



This polynomial coincides with f(x, y) for all (x, y) ∈ A × B, but for such (x, y) we have,

however, f(x, y) = 0. Thus p(x, y) = 0 for all (x, y) ∈ A× B. The polynomial p(x, y) is of

degree < k in x and of degree < l in y. Let x ∈ A, then p(x, y) =
∑
pj(x)yj is zero for all

y ∈ B, and so all coefficients must be zero. Finally, since pj(x) is zero for all x ∈ A and of

degree less than k = |A|, all coefficients pij of p(x, y) =
∑
pijx

iyj must be zero.

Since n ≤ k + l − 2 = (k − 1) + (l − 1) there exist nonnegative integers u, v with u < k,

v < l and u + v = n. We claim that the monomial xuyv cannot appear in the second or

third sum of (2.2). To appear in the second sum we must have j = v, and so v ≤ n− i. But

then i ≤ n− v = u < k. To appear in the third sum we must have i = u, and so u ≤ n− j.

But then j ≤ n − u = v. Therefore this monomial can only appear in the first sum, and

so fuv = puv = 0. Since u + v = n, it is plain from the definition of f(x, y) that fuv =
(
n
v

)
.

Thus
(
n
v

)
≡ 0 (mod p) and we conclude that p|n, that is, to prove that n = p.

This next lemma is a special application of the Cauchy-Davenport Theorem.

Lemma 2.5. For any A ⊂ Fp,

|lA| ≥ min{l(|A| − 1) + 1, p}.

Proof. We use induction on l: For l = 1 the result is obvious. For l = 2 we use Cauchy-

Davenport with A = B. Now assume the lemma holds for l − 1, namely

|(l − 1)A| ≥ min{(l − 1)(|A| − 1) + 1, p}. (2.3)

Using Cauchy-Davenport (Lemma 2.4) with B = (l − 1)A, we have

|lA| = |A+ (l − 1)A| ≥ min{|A|+ |(l − 1)A| − 1, p} ≥ min{l(|A| − 1) + 1, p}.

The last inequality is due to the induction hypothesis (2.3).

The next few statements are useful for estimating the growth of additive sets in Fp.

The first is a sharpening of the Cauchy-Davenport Theorem for multiplicative groups from

Nathanson’s book, [26], and the second is a recent lemma due to Glibichuk and Konyagin

[17, Lemma 5.2 & 5.3].
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Lemma 2.6. [26, Theorem 2.8] For any k and l ∈ N and A := {xk|x ∈ Fp} ⊂ Fp with

1 < gcd(k, p− 1) < p−1
2

,

|lA| ≥ min{(2l − 1)(|A| − 1) + 1, p}.

Lemma 2.7. [17, Lemma 5.2 & 5.3] For l ∈ N, l ≥ 2, let Nl = 5
24

4l − 1
3
. If A ⊂ Fp, then

|NlA
l −NlA

l| ≥ 3

8
min{|A|l, (p− 1)/2}.

Furthermore, if 2 ≤ l ≤ 1 + log((p−1)/2)
log |A| , then

|NlA
l| ≥ 3

8
|A|l−8/7.

13



Chapter 3

Exponential Sums

Exponential sums are just examples of character sums and so we start with a general dis-

cussion of characters over finite groups.

Definition 3.1. Let G be a group with binary operation +. A function ψ : G→ C \ {0} is

called a character on G if ψ is a group homomorphism, that is, ψ(x+ y) = ψ(x)ψ(y) for all

x, y ∈ G. The character is called trivial if it is identically 1.

A fundamental character sum that we make frequent use of is the following.

Lemma 3.1. If ψ is a nontrivial character on a finite group G then
∑

x∈G ψ(x) = 0.

Proof. Since ψ is nontrivial, there exists a g ∈ G with ψ(g) 6= 1. Then

∑
x∈G

ψ(x) =
∑
x∈G

ψ(x+ g) = ψ(g)
∑
x∈G

ψ(x),

and since ψ(g) 6= 1 we conclude that
∑

x∈G ψ(x) = 0.

The exponential sums we make use of in our thesis are character sums on finite fields.

For prime fields Fp, the additive characters are functions of the type ep(λx) = e2πiλx/p with

λ ∈ Fp fixed, while for a more general finite field Fq they take the form Ψ(λx), where

λ ∈ Fq and Ψ(x) = ep(Tr(x)). Tr denotes the trace from Fq to Fp and is defined by

Tr(α) := α + αp + · · ·+ αp
n−1

, for α ∈ Fq. For these cases, Lemma 3.1 takes the form,

14



Lemma 3.2. For any prime p and integer λ,

p∑
x=1

ep(λx) =

{
0, if p - λ,

p, if p|λ.

Lemma 3.3. For any prime power q = pn and λ ∈ Fq,

∑
x∈Fq

Ψ(λx) =

{
0, if λ 6= 0,

q, if λ = 0.

Next we show how exponential sums can be used to count the number of solutions of an

equation over a finite field. As in (1.11) we define

Φ(k) = max
λ∈F∗q

∣∣∣∣∣∣
∑
x∈Fq

Ψ(λxk)

∣∣∣∣∣∣ . (3.1)

For α ∈ Fq we let N(α, s) denote the number of representations, counting multiplicity, of α

as a sum of s k-th powers in Fq,

N(α, s) = |{x ∈ Fsq : xk1 + xk2 + · · ·+ xks = α}|.

Theorem 3.1. For any α ∈ Fq we have

∣∣N(α, s)− qs−1
∣∣ ≤ (1− 1

q

)
Φ(k)s.

In comparison, the classical estimate of Hua and Vandiver [22], and Weil [31] for N(α, s)

is

|N(α, s)− qs−1| ≤ (k − 1)sq
s−1
2 . (3.2)

Note that if one inserts the classical bound for a Gauss sum Φ(k) ≤ (k − 1)
√
q into Theo-

rem 3.1, one obtains the slightly weaker bound |N(α, s)− qs−1| ≤ (k − 1)sq
s
2 . Thus, Theo-

rem 3.1 is only of interest when the classical bound can be beaten.
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Proof. By Lemma 3.3 we have

qN(α, s) =
∑
x∈Fsq

∑
λ∈Fq

Ψ(λ(xk1 + · · ·+ xks − α))

= qs +
∑
λ 6=0

Ψ(−λα)
∑
x∈Fsq

Ψ(λ(xk1 + · · ·+ xks))

= qs +
∑
λ 6=0

Ψ(−λα)
s∏
i=1

∑
xi∈Fq

Ψ(λxki ).

Thus by the triangle inequality,

|qN(α, s)− qs| ≤ (q − 1)Φ(k)s.

Dividing by q completes the proof.

Corollary 3.1. For any prime power q and positive integer k, we have

γ(k, q) ≤
⌈

log q

log(q/Φ(k))

⌉
.

Proof. By Theorem 3.1 we have N(α, s) > 0 provided that

qs−1 >

(
1− 1

q

)
Φ(k)s, (3.3)

that is, (q/Φ(k))s > q− 1. It suffices to have (q/Φ(k))s ≥ q. Thus γ(k, q) ≤ s provided that

q ≥ Φ(k)s/(s−1), (3.4)

or equivalently

s ≥ log q

log(q/Φ(k))
. (3.5)

In the Introduction we noted a number of established bounds for Φ(k) and the consequent

bounds for γ(k, p) for the case of prime fields. Many of these bounds extend to a general finite

field, including the Gauss bound Φ(k) ≤ (k− 1)
√
q and the Bourgain, Glibichuk, Konyagin

bound [4], Φ(k) ≤ q1−δ, provided k < q1−ε, and q is sufficiently large (see Bourgain and
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Chang [3, Theorem 1]). Here δ is a positive constant depending on ε. The latter bound

gives

γ(k, q) ≤ 1

δ
for q � k1+ε. (3.6)

For our purposes we need the Gauss sum estimate of Cochrane, Pinner and Rosen-

house [12, Theorem 1.1] for the case of prime fields.

Lemma 3.4. There exists an absolute constant p0 such that for p ≥ p0 and any integer a

with p - a, ∣∣∣∣∣
p∑

x=1

ep(ax
k)

∣∣∣∣∣ ≤ p

(
1− 1

p2/φ(t) log p (log log p)5

)
, (3.7)

where t = (p− 1)/k and φ(t) is the Euler φ-function.

One immediately deduces from Corollary 3.1 and the inequality | log(1 − x)| > x for

0 < x < 1,

Theorem 3.2. If p ≥ p0 then for any positive integer k we have,

γ(k, p) ≤ p2/φ(t)(log p)2(log log p)5.

A bound of this general type, namely γ(k, p) ≤ c(r)tp2/r log p for φ(t) ≥ r, also follows

from Theorem 4.2 of Konyagin and Shparlinski’s book [25], which gives the exponential sum

bound ∣∣∣∣∣
p∑

x=1

ep(ax
k)

∣∣∣∣∣ ≤ p

(
1− c(r)

tp2/r

)
.

This bound on γ(k, p) is better when the number of nonzero k-th powers t is very small.

3.1 Exponential Sums applied to Sum Sets

Cochrane and Pinner [11] established the following for Fp, but their result and proof can be

extended to Fq:

Theorem 3.3. Let A, B be subsets of Fq with 0 /∈ A and m be a positive integer. If

|B| |A|1−
2
m ≥ q, then mAB = Fq.

17



Proof. Let a ∈ Fq and N denote the number of 2m-tuples

(x1, . . . , xm, y1, . . . ym) ∈ F2m
q with x1y1 + · · ·+ xmym = a. We first note that

∑
λ∈Fq

∣∣∣∣∣∑
x∈A

∑
y∈B

Ψ (λ(xy))

∣∣∣∣∣
2

=
∑

x1,x2∈A

∑
y1,y2∈B

∑
λ∈Fq

Ψ (λ(x1y1 − x2y2))

= q|{(x1, x2, y1, y2) : x1, x2 ∈ A, y1, y2 ∈ B, x1y1 = x2y2}| ≤ q|A|2|B|. (3.8)

Then

qN = |A|m|B|m +
∑
λ 6=0

∑
xi∈A

∑
yi∈B

Ψ(λ(x1y1 + · · ·+ xmym − a))

= |A|m|B|m +
∑
λ 6=0

Ψ(−λa)

(∑
x∈A

∑
y∈B

Ψ(λxy)

)m

. (3.9)

To bound the inner sum we use the triangle inequality and then the Cauchy-Bunyakovskii-

Schwarz inequality to obtain (for λ 6= 0),∣∣∣∣∣ ∑
x∈A,y∈B

Ψ(λxy)

∣∣∣∣∣ ≤∑
y∈B

|
∑
x∈A

Ψ(λxy)|

≤ |B|1/2
(∑
y∈B

|
∑
x∈A

Ψ(λxy)|2
)1/2

≤ |B|1/2
∑
y∈Fq

|
∑
x∈A

Ψ(λxy)|2
1/2

= |B|1/2
∑
x1∈A

∑
x2∈A

∑
y∈Fq

Ψ(λy(x1 − x2))

1/2

= |B|1/2(q|A|)1/2,

the last equality following from Lemma 3.3. Therefore, by the triangle inequality, pulling

off m− 2 factors of
∣∣∣∑x∈A,y∈B Ψ(λxy)

∣∣∣ and using (3.8), we have∣∣∣∣∣∑
λ 6=0

Ψ(−λa)

(∑
x∈A

∑
y∈B

Ψ(λxy)

)m∣∣∣∣∣ < (q|B||A|)
m−2

2

∑
λ∈Fq

∣∣∣∣∣∑
x∈A

∑
y∈B

Ψ (λ(xy))

∣∣∣∣∣
2

≤ (q|B||A|)
m−2

2 q|A|2|B| = q
m
2 |A|

m
2

+1|B|
m
2 .
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We conclude from (3.9) that N is positive provided that

|A|m|B|m ≥ q
m
2 |A|

m
2

+1|B|
m
2 ,

yielding the result of the theorem.
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Chapter 4

Waring’s Number over Fp

Let p be an odd prime, k be a positive integer with k|(p− 1), t = (p− 1)/k, and φ(t) denote

the Euler φ-function.

We recall the Heilbronn conjectures stated in the Introduction:

I: For any ε > 0, there exists a constant tε such that γ(k, p)�ε k
ε for t > tε.

II: For t > 2, γ(k, p)� k1/2.

In this chapter we establish the validity of the second Heilbronn conjecture, proving in

fact a more general result.

Theorem 4.1. Let r be a positive integer. Then there exists a constant C(r) such that if

φ(t) ≥ r then γ(k, p) ≤ C(r)k1/r.

The second Heilbronn conjecture is implied by the case r = 2, since φ(t) ≥ 2 for t >

2. To prove the theorem we need the estimate of Cochrane, Pinner and Rosenhouse [12,

Theorem 1.1] given in Lemma 3.2 and the following result of Bovey [6, Theorem 1].

Lemma 4.1. For any positive integer r, there exist constants c(r) and t0(r) such that

i) γ(k, p) ≤ c(r)φ(t)k1/r for t > t0(r), and

ii) γ(k, p) ≤ c(r)k1/φ(t) for t ≤ t0(r).

Proof of Theorem 4.1. Let r be a positive integer and suppose φ(t) ≥ r. Dodson’s result
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(1.8),

γ(k, p) ≤ [32 log k] + 1 for p > k2,

lets us restrict our attention to k2 ≥ p. (Alternatively, we could use the improvement of

Glibichuk [16] which states in fact that γ(k, p) ≤ 8 for p > k2; see Corollary 5.1). For

φ(t) ≥ 2(2r + 1) we use Lemma 3.2: For p ≥ p0

γ(k, p) ≤ p
2
φ(t) (log p)2(log log p)5

≤ p
1

2r+1 (log p)2(log log p)5 � p
1
2r ≤ k1/r.

For p ≤ p0, we have trivially γ(k, p) ≤ p−1 < p0. In the remaining case, r ≤ φ(t) < 2(2r+1),

Lemma 4.1 immediately gives

γ(k, p) ≤ c(r)2(2r + 1)k1/r.

Taken together we see that γ(k, p) ≤ C(r)k1/r for some constant C(r).

In particular, taking r = φ(t), Theorem 4.1 gives the bound

γ(k, p) ≤ C(t)k1/φ(t),

for some constant C(t). The exponent 1/φ(t) on k is best possible in general as the following

lower bound makes clear. The lower bound also shows that the best order of magnitude one

can have for the constant C(t) is C(t) ∼ t. We are still a long way from obtaining such a

tight upper bound.

Theorem 4.2. For t prime,

γ(k, p) ≥ (t− 1)

e
k1/(t−1) − t+ 1.

Proof. Let R denote a primitive t-th root of 1 (mod p), so that the set A∗k of nonzero k-th

powers is just

A∗k = {1, R,R2, . . . , Rt−1}.
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Let sAk denote the set of all sums of s k-th powers. Using the fact that

Rt−1 = −1−R−R2 − · · · −Rt−2,

we have

sAk = {x1 + x2R + · · ·+ xtR
t−1 : xi ∈ Z, xi ≥ 0, 1 ≤ i ≤ t, 0 ≤ x1 + · · ·+ xt ≤ s}

= {(x1 − xt) + (x2 − xt)R + · · ·+ (xt−1 − xt)Rt−2 :

xi ∈ Z, xi ≥ 0, 1 ≤ i ≤ t, 0 ≤ x1 + · · ·+ xt ≤ s}

⊂ {y1 + y2R + · · ·+ yt−1R
t−2 :

yi ∈ Z, 1 ≤ i ≤ t− 1,
t−1∑
j=1

yj ≤ s,

(
t−1∑
j=1

yj

)
− tyk ≤ s, 1 ≤ k ≤ t− 1}.

The latter inclusion is seen by letting yi = xi − xt and noting that since xt ≥ 0,

t−1∑
i=1

yi =
t−1∑
i=1

(xi − xt) ≤
t−1∑
i=1

xi ≤ s,

and (
t−1∑
i=1

yi

)
− tyk =

(
t−1∑
i=1

(xi − xt)

)
− t(xk − xt)

=

(
t−1∑
i=1

xi

)
− (t− 1)xt − t(xk − xt) =

(
t∑
i=1

xi

)
− txk ≤ s.

Thus the cardinality of sAk is no more than the number of integer (t − 1)-tuples in the

pyramid

P :=

{
x ∈ Rt−1 :

t−1∑
i=1

xi ≤ s,

(
t−1∑
i=1

xi

)
− txk ≤ s, 1 ≤ k ≤ t− 1

}
.

Intersecting the faces of P , we see that P has vertices,

(s, 0, . . . , 0), . . . , (0, . . . , 0, s), (−s, . . . ,−s).

To estimate the number of integer points in P , we place a cube B(x) of volume 1 centered

about each integer point x ∈ P to obtain a new region⋃
x∈P∩Zt−1

B(x),
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whose volume equals the number of such points. We claim that this new region is contained

in the fatter pyramid

P̃ :=

{
x ∈ Rt−1 :

t−1∑
i=1

xi ≤ s+ t− 1,

(
t−1∑
i=1

xi

)
− txk ≤ s+ t− 1, 1 ≤ k ≤ t− 1

}
,

with vertices

(s+ t− 1, 0, . . . , 0), . . . , (0, . . . , 0, s+ t− 1), (−s− t+ 1, . . . ,−s− t+ 1).

Indeed, let x ∈ P ∩Zt−1 and y = x + ε with |εi| ≤ 1/2, 1 ≤ i ≤ t− 1, so that y represents

a typical element of P̃ . Then,

t−1∑
i=1

yi =
t−1∑
i=1

(xi + εi) ≤ s+ (t− 1)/2 ≤ s+ t− 1,

and for 1 ≤ k ≤ t− 1,(
t−1∑
i=1

yi

)
− tyk =

(
t−1∑
i=1

(xi + εi)

)
− t(xk + εk) =

(
t−1∑
i=1

xi

)
− txk +

(
t−1∑
i 6=k

εi

)
+ (1− t)εk

≤ s+
1

2
(t− 2) +

1

2
(t− 1) = s+ t− 3

2
< s+ t− 1.

Lemma 4.2. The volume of a pyramid in Rn with vertices at

(b, 0, . . . 0, 0), . . . , (0, 0, . . . 0, b), (−b,−b . . . ,−b,−b)

is bn(n+ 1)/n!.

Proof. The volume is just 1
n
BH where the B is the area of the base

∑n
i=1 xi = b, xi ≥ 0,

1 ≤ i ≤ n, and H is the distance from the base to the vertex (−b,−b, . . . ,−b). Plainly

H = d((−b, . . . ,−b), (b/n, . . . , b/n)) = b
(
1 + 1

n

)√
n,

where d(P,Q) denotes the Euclidean distance. To calculate the base area, we express the

base as the surface

xn = b− x1 − x2 − · · · − xn−1
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over the region R with xi ≥ 0,
∑n−1

i=1 xi ≤ b. The surface area is then given by

∫
. . .

∫
R

√
1 +

(
∂xn
∂x1

)2

+ · · ·+
(

∂xn
∂xn−1

)2

dx1...dxn−1 =
√
n

∫
. . .

∫
R

1dx1...dxn−1

=

√
nbn−1

(n− 1)!
.

Thus the volume is 1
n
· b(1 + 1

n
)
√
n ·
√
nbn−1/(n− 1)! = (n+ 1)bn/n!.

By the lemma, the volume of P̃ is (s + t − 1)t−1t/(t − 1)!, and consequently this is an

upper bound on |sAk|. Therefore if |sAk| = p, that is, if every point is a sum of s k-th

powers, we must have

(s+ t− 1)t−1t/(t− 1)! ≥ p,

and so, using p/t > k,

s ≥
(
p(t− 1)!

t

)1/(t−1)

− t+ 1 > (k(t− 1)!)1/(t−1) − t+ 1 > k1/(t−1) t− 1

e
− t+ 1,

the latter inequality using n! > (n/e)n.
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Chapter 5

Further Sum–Set Results for Fq

In this chapter we will extend some results of Glibichuk [16] from Fp to a general finite field

Fq. This was also done independently by Glibichuk and Rudnev in [18], although they do

not state Corollary 5.1 below. To state our main theorem we need the following definition.

Definition 5.1. A subset A ⊂ Fq is said to be symmetric if A = −A, where −A = {−a :

a ∈ A}, and antisymmetric if A ∩ (−A) = ∅.

Theorem 5.1. [16, Theorem 1&2] If A ⊂ Fq and B ⊂ Fq with B symmetric or antisym-

metric and |A||B| > q, then 8AB = Fq.

This result should be compared with Theorem 3.3 which obtained mAB = Fq provided

that A, B are subsets of Fq with 0 /∈ A and |B| |A|1−
2
m ≥ q. The latter result is thus obsolete

for values of m ≥ 8. An immediate application of the theorem yields the following:

Corollary 5.1. For any positive integer k with k ≤ √q we have γ(k, q) ≤ 8.

Proof. The statement is trivial for q ≤ 5, and so we may assume that q ≥ 6. We apply

Theorem 5.1 with A = Ak, B = A∗k where Ak is the set of k-th powers in Fq. Note that A∗k

is symmetric or antisymmetric depending on whether −1 is a k-th power or not. If k ≤ √q,

then |Ak||A∗k| > q provided that
(
q−1√
q

+ 1
)(

q−1√
q

)
> q, that is, q3/2 > 2q +

√
q − 1. The

latter holds for q ≥ 6. Thus by Theorem 5.1, 8AkA
∗
k = Fq. But, AkA

∗
k = Ak so we have

8Ak = Fq.
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We note that the hypothesis k ≤ √q is tight. Indeed, if k exceeds
√
q then γ(k, q) may

not exist. For instance if q = p2 and k = p + 1, then every k-th power is in Fp (since

(xp+1)p−1 = 1 for x ∈ Fq), and so any sum of k-th powers is in Fp. On the other hand, if

k = p−1 then the corollary asserts that every element of Fq is a sum of at most 8 (p−1)-th

powers.

The proof of Theorem 5.1 uses methods of additive combinatorics. We start with the

following definition.

Definition 5.2. (i) For any A ⊂ Fq and B ⊂ Fq, set

I(A;B) := {(b1 − b2)a1 + (a2 − a3)b3 : a1, a2, a3 ∈ A, b1, b2, b3 ∈ B}.

(ii) For any subset A ⊂ Fq, set

I(A) = I(A;A) = {(a1 − a2)a3 + (a4 − a5)a6 : a1, a2, a3, a4, a5, a6 ∈ A}.

The next 3 lemmas are extensions of results in [16] from prime fields to general finite

fields.

Lemma 5.1. [16, Lemma 1] Suppose that A,B are nonempty subsets of Fq and G is a

nonempty subset of F∗q. Then there exists a ξ ∈ G such that

|A+ {ξ}B| ≥ |A||B||G|
(|A| − 1)(|B| − 1) + |G|

,

and

|A− {ξ}B| ≥ |A||B||G|
(|A| − 1)(|B| − 1) + |G|

.

We note that in the statement of [16, Lemma 1], for Fp, the value (|A| − 1)(|B| − 1) in

Lemma 5.1 is replaced by the larger value |A||B|. The weaker bound this leads to would

suffice for our purposes below for the case of odd q, but for q = 2n we need the stronger

bound in our lemma.
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Proof. For any ξ ∈ G and s ∈ Fq, define the functions f+
ξ (s) and f−ξ (s) as follows:

f+
ξ (s) := |{(a, b) ∈ A×B : a+ bξ = s}|,

f−ξ (s) := |{(a, b) ∈ A×B : a− bξ = s}|.

Then∑
s∈Fq

(f+
ξ (s))2 = |{(a1, b1, a2, b2) ∈ A×B × A×B : a1 + b1ξ = a2 + b2ξ}|

= |A||B|+ |{(a1, b1, a2, b2) ∈ A×B × A×B : a1 6= a2, a1 + b1ξ = a2 + b2ξ},

∑
s∈Fq

(f−ξ (s))2 = |{(a1, b1, a2, b2) ∈ A×B × A×B : a1 − b1ξ = a2 − b2ξ}|

= |A||B|+ |{(a1, b1, a2, b2) ∈ A×B × A×B : a1 6= a2, a1 − b1ξ = a2 − b2ξ}|.

Hence, ∑
s∈Fq

(f+
ξ (s))2 =

∑
s∈Fq

(f−ξ (s))2.

Note that for all a1, a2 ∈ A and b1, b2 ∈ B such that a1 6= a2, there exists at most one ξ

satisfying a1 + b1ξ = a2 + b2ξ. Then the number N of 5-tuples (a1, a2, b1, b2, ξ) with ai ∈ A,

bi ∈ B and ξ ∈ G satisfies

N =
∑
ξ∈G

∑
s∈Fq

(f−ξ (s))2 ≤ |A||B||G|+ |A|(|A| − 1)|B|(|B| − 1).

In particular, there exists a ξ ∈ G such that∑
s∈Fq

(f−ξ (s))2 < |A||B|+ |A|(|A| − 1)|B|(|B| − 1)

|G|
.

For this value of ξ, we have f+
ξ (s) = 0 for s /∈ A + {ξ}B. Thus, the Cauchy-Bunyakovskii-

Schwarz inequality yields

(|A||B|)2 =

∑
s∈Fq

f+
ξ (s)

2

≤ |A+ {ξ}B|
∑
s∈Fq

(f+
ξ (s))2

≤ |A+ {ξ}B|
(
|A||B|+ |A|(|A| − 1)|B|(|B| − 1)

|G|

)
,

27



and

(|A||B|)2 =

∑
s∈Fq

f−ξ (s)

2

≤ |A− {ξ}B|
∑
s∈Fq

(f−ξ (s))2

≤ |A− {ξ}B|
(
|A||B|+ |A|(|A| − 1)|B|(|B| − 1)

|G|

)
.

Simple algebra gives the desired result.

Lemma 5.2. [16, Lemma 2] Suppose that A,B are nonempty subsets of Fq such that

|A||B| ≥ q. Then there exists ξ ∈ Fq such that

|A+ {ξ}B| > q

2
,

|A− {ξ}B| > q

2
.

Proof. Letting G = F∗q in Lemma 5.1 we see that there exists a ξ ∈ G such that

|A+ {ξ}B| ≥ |A||B|(q − 1)

(|A| − 1)(|B| − 1) + (q − 1)
,

and

|A− {ξ}B| ≥ |A||B|(q − 1)

(|A| − 1)(|B| − 1) + (q − 1)
.

The latter quantity is greater than q/2 provided that

|A||B|(q − 1) >
q

2
[(|A| − 1)(|B| − 1) + (q − 1)] ,

that is, provided that

|A||B|(q/2− 1) >
q

2
(q − |A| − |B|).

Inserting the hypothesized inequality |A||B| ≥ q into the left-hand side, we see that it

suffices to have

(|A|+ |B|)/2 > 1,

and this inequality is trivial since |A||B| ≥ 2.
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Lemma 5.3. [16, Lemma 3] Suppose A,B ⊂ Fq. For any ξ ∈ Fq with |A+ {ξ}B| < |A||B|,

we have |I(A;B)| ≥ |A+ {ξ}B|.

Proof. This is obvious for ξ = 0, so assume ξ 6= 0. The hypothesis |A + {ξ}B| < |A||B|

implies there are a1, a2 ∈ A and b1, b2 ∈ B with (a1, b1) 6= (a2, b2) such that a1+b1ξ = a2+b2ξ,

by the pigeon-hole principle. Since ξ 6= 0 we have b1 6= b2, else (a1, b1) = (a2, b2). Set S :=

{b1−b2}(A+{ξ}B). Note that |S| = |A+{ξ}B|. Given s ∈ S, there is an a ∈ A and a b ∈ B

with s = (b1−b2)(a+bξ). Since (b1−b2) = a2−a1

ξ
, we have s = (b1−b2)a+(a2−a1)b ∈ I(A;B).

Hence S ⊂ I(A;B) and |I(A;B)| ≥ |S| = |A+ {ξ}B|.

The main ingredient in the proof of Theorem 5.1 for symmetricB is the following estimate

first proven by Bourgain, Glibichuk and Konyagin [4] for I(A) in prime fields Fp. It is an

easy consequence of the preceding three lemmas.

Theorem 5.2. Let A and B be subsets of Fq such that |A||B| > q. Then |I(A;B)| > q/2.

Proof. Lemma 5.2 supplies ξ ∈ F∗q such that |A+ {ξ}B| > q/2 and by assumption

|A+ {ξ}B| ≤ q < |A||B|

. Hence by Lemma 5.3, we have

|I(A;B)| ≥ |A+ {ξ}B| > q/2.

Proof of Theorem 5.1. Let A ⊂ Fq and B ⊂ Fq with B symmetric or antisymmetric and

|A||B| > q.

Case 1. Assume B is antisymmetric. Since |A||B| > q, Lemma 5.2 supplies ξ ∈ F∗q such

that |A + {ξ}B| > q/2 and |A − {ξ}B| > q/2. In particular, by the pigeon-hole principle,

(A + {ξ}B) ∩ (−A − {ξ}B) 6= ∅. Hence there exist a1, a2 ∈ A and b1, b2 ∈ B such that

(a1 + b1ξ) = −(a2 + b2ξ) or equivalently ξ = −a1+a2

b1+b2
. (Note, the denominator is nonzero

since B is antisymmetric.)
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The second inequality |A− {ξ}B| > q/2 yields

q/2 < |A− {ξ}B| =
∣∣∣∣{a3 +

(
a1 + a2

b1 + b2

)
b3 : a3 ∈ A, b3 ∈ B

}∣∣∣∣
= |{a3(b1 + b2) + b3(a1 + a2) : a3 ∈ A, b3 ∈ B}|.

Thus |4AB| > q/2 and by Lemma 2.1, 8AB = Fq.

Case 2. Assume B is symmetric. Theorem 5.2 establishes |I(A;B)| > q/2. Since B is

symmetric, I(A;B) ⊂ 4AB and applying Lemma 2.1 gives 8AB = Fq.
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Chapter 6

Waring’s Number over Fq

In this chapter we obtain new bounds on γ(k, q) for arbitrary finite fields Fq. In particular,

we show that if γ(k, q) exists, then

γ(k, q) < 7.3n

⌈
(2k)1/n

|A′k| − 1

⌉
log k,

where A′k = Ak ∩ Fq. We also get

γ(k, q) ≤ 8n

⌈
(k + 1)1/n − 1

|A′k| − 1

⌉
,

and

γ(k, q)� n(k + 1)
log(4)

n log |A′
k
| log log k.

Finally we establish the second Heilbronn conjecture in Theorem 6.7 and prove an analogue

of the first Heilbronn conjecture in Theorem 6.6.

6.1 Preliminaries

We begin with proofs of Theorems 6.1 and 6.2 stated in the Introduction. We recall that

Ak denotes the set of k-th powers in Fq and A∗k the set of nonzero k-th powers.

Theorem 6.1. The following are equivalent for any q = pn and k|(q − 1).

(i) γ(k, q) exists, that is, every element of Fq is a sum of k-th powers.

(ii) Ak is not contained in any proper subfield of Fq, that is, Ak contains a set of n

linearly independent points over Fp.
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(iii) |A∗k| does not divide pj − 1 for any j|n, j < n, that is, pn−1
pj−1

does not divide k for

any j|n, j < n.

Proof. (i) implies (ii): Suppose that γ(k, q) exists. Then Ak cannot be contained in a proper

subfield of Fq else every sum of k-th powers is contained in that subfield.

(ii) implies (i): Let {x1, . . . , xn} be a set of n linearly independent k-th powers. Then

since every element of Fq is of the form k1x1 + · · ·+ knxn with the ki nonnegative integers,

we see that every element is a sum of k-th powers.

(ii) implies (iii): If |A∗k| divides (pj − 1) for some j|n with j < n, then A∗k is contained in

the cyclic subgroup of F∗q of order pj − 1, which is F∗pj . Thus, every k-th power is contained

in the proper subfield Fpj .

(iii) implies (ii): If Ak is contained in a proper subfield Fpj , then A∗k is a subgroup of F∗pj

and so |A∗k| divides pj − 1.

Theorem 6.2. For any k, q such that γ(k, q) exists, we have γ(k, q) ≤ k.

Bounds of this type hold even without the assumption k|(q − 1), since

γ(k, q) = γ((k, q − 1), q) and (k, q − 1) ≤ k.

Proof. Let k|(q− 1) and Ak be the set of k-th powers in Fq. For any positive integer n, nAk

is closed under multiplication by elements in A∗k and so we can write

nAk = {0} ∪ A∗k{x1} · · · ∪ A∗k{xl},

for some distinct cosets A∗k{xi} of A∗k, 1 ≤ i ≤ l. Thus, if nAk 6= Fq, then

|(n+ 1)Ak| ≥ |nAk|+ |Ak|.

By induction we get a Cauchy-Davenport type inequality,

|nAk| ≥ min{q, 1 + n|A∗k|}, (6.1)

and see that nAk = Fq provided that 1 + n|A∗k| ≥ q, that is, n ≥ q−1
|A∗k|

= k. Thus

γ(k, q) ≤ k.
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Next we recall that A′k denotes the set of k-th powers of elements in Fq that belong to

Fp,

A′k = Ak ∩ Fp.

Lemma 6.1. For any q and k|(q − 1), |A′k| = (p− 1, q−1
k

) + 1.

Proof. The set of nonzero elements of A′k is just the intersection of the subgroups A∗k and

F∗p of F∗q. Since the latter group is cyclic, the order of the intersection is just

(|A∗k|, p− 1) = ((q − 1)/k, p− 1).

The next lemma, generalizing Cochrane and Pinner’s result [11, Theorem 4.1c] from Fp

to Fq, deals with the relationship between γ(k, q) and δ(k, q), where (as before) δ(k, q) is the

minimal s such that every element of Fq can be written in the manner ±xk1 ± · · · ± xks . One

trivially has δ(k, q) ≤ γ(k, q). It would be nice if the log log q factor in the lemma could be

replaced with an absolute constant, but it is an open question whether this is possible.

Lemma 6.2. For any k, q such that γ(k, q) is defined we have

γ(k, q) ≤ 2dlog2 log2 qeδ(k, q).

Proof. We start by noting that by definition of δ(k, q), δ(k, q)Ak − δ(k, q)Ak = Fq. Let

j ≥ log2 log2 q be an integer. By Lemma 2.3 with S = δ(k, q)Ak, we have

|jδ(k, q)Ak| > |δ(k, q)Ak − δ(k, q)Ak|1−
1

2j = q1− 1

2j ≥ q/2.

Hence by Lemma 2.1, 2jδ(k, q)Ak = Fq, that is, γ(k, q) ≤ 2jδ(k, q).

In our application of Lemma 6.2, we will actually use the less precise bound

γ(k, q)� (log log q)δ(k, q).
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6.2 Winterhof-Type Bounds for γ(k, q).

Winterhof showed [33, Theorem 1] that provided γ(k, q) exists,

γ(k, q) ≤ 6.2n(2k)1/n log k. (6.2)

The key lemma in his proof is the following result.

Lemma 6.3. [33, Lemma 4]. Suppose k|(q − 1). If |sAk| ≥ 2k, then

γ(k, q) ≤ s (1 + b(2 log q/ log 2c) .

Our first theorem is a mild improvement of Winterhof’s result (6.2). The proof follows

his original proof quite closely.

Theorem 6.3. If γ(k, q) exists, then we have

γ(k, pn) ≤ 7.3n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉
log k = 7.3n

⌈
(2k)1/n

|A′k| − 1

⌉
log k.

Proof. The result is trivial for k = q − 1, so we assume k < q/2. If k <
√
q, then Corollary

5.1 gives the result and so we may assume k ≥ √q. Since γ(k, q) exists, there is a basis

{b1, . . . , bn} ⊂ Ak of Fq over Fp. For a given positive integer r, examine elements of the

type (x1,1 + · · · + x1,r)b1 + · · · + (xn,1 + · · · + xn,r)bn, where the xi,j are k-th powers of

elements in Fq lying in Fp. These are sums of at most rn k-th powers with each coefficient

xi,1 + · · ·+xi,r representing at least min{p, r( q−1
k
, p− 1)} distinct elements in Fp, by Lemma

6.1 and the application of the Cauchy-Davenport Theorem, Lemma 2.5. Taking r ≥ (2k)1/n

( q−1
k
,p−1)

guarantees that each coefficient represents at least (2k)1/n elements in Fp and thus that such

sums represent at least 2k elements in Fq. Using Lemma 6.3 and the assumption k ≥ √q,
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we see that

γ(k, q) ≤ nr

(
1 +

2 log q

log 2

)
≤ n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉(
1 +

2 log q

log 2

)

≤ n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉(
1 +

4 log k

log 2

)
≤ n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉(
1

log k
+

4

log 2

)
log k

≤
(

5

log 2

)
n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉
log k ≤ 7.3n

⌈
(2k)1/n

( q−1
k
, p− 1)

⌉
log k.

Winterhof and Woestijne [34] prove that for p and r primes with p a primitive root

(mod r) we have γ
(
pr−1−1

r
, pr−1

)
= (r−1)(p−1)

2
. Thus with k = pr−1−1

r
and n = r − 1 one has

the estimate,
n

2
(k1/n − 1) ≤ γ(k, pn) ≤ n(k + 1)1/n. (6.3)

In light of inequality (6.3), we see that nk1/n is essentially the best possible order of

magnitude for Waring’s number without further restrictions. By combining Winterhof’s

methods with results from additive combinatorics we show that the log k factor in Winter-

hof’s bound (6.2) can be dropped.

Theorem 6.4. If γ(k, q) exists, then

γ(k, q) ≤ 8n

⌈
(k + 1)1/n − 1

|A′k| − 1

⌉
.

Furthermore, if |A′k| ≥ 3, then

γ(k, q) ≤ 4n

(
(k + 1)1/n − 1

|A′k| − 1

)
+ 12n.

(We note that A′k always contains 0 and 1, so |A′k| ≥ 2.)

The result from additive combinatorics that we need is the following:

Lemma 6.4. If γ(k, q) exists and |sAk| ≥ k + 1 for some s ∈ N, then γ(k, q) ≤ 8s.
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Proof. If k = q− 1, the result is trivial, so we assume k < q− 1. We use Theorem 5.1, with

A = sAk and B = A∗k. Recall that A∗k is symmetric or antisymmetric depending on whether

−1 is a k-th power or not. Also note:

(sAk)A
∗
k = sAk

and

|A∗k||sAk| ≥
q − 1

k
(k + 1) = q − 1 +

q − 1

k
> q.

Thus by Theorem 5.1, 8sAk = Fq, that is, γ(k, q) ≤ 8s.

Proof of Theorem 6.4. The proof again follows the line of argument in Winterhof’s original

proof [33, Theorem 1]. Namely, we look at the growth of sum sets formed from linear

combinations of a basis of k-th powers and carefully chosen coefficient sets. Let {b1, b2, ..., bn}

be a basis of Fq over Fp consisting of k-th powers of elements of Fq. For any positive integer

l the set

Bl := {a1b1 + · · ·+ anbn|aj ∈ lA′k}

is a subset of nlAk with |Bl| ≥ |lA′k|n (since the coefficients ai belong to Fp,) and so

|nlAk| ≥ |lA′k|n. (6.4)

If we take l ≥ (k+1)1/n−1
|A′k|−1

, then by the Cauchy-Davenport theorem, Lemma 2.5,

|lA′k| ≥ min {l(|A′k| − 1) + 1, p} ≥ min
{

(k + 1)1/n, p
}
.

If |lA′k| = p then Bl = Fq, that is, γ(k, q) ≤ nl. If |lA′k| ≥ (k + 1)1/n then by (6.4)

|nlAk| ≥ k + 1 and Lemma 6.4 yields the first result of the theorem.

Next, if we take l ≥ (k+1)1/n−1
2(|A′k|−1)

+ 1
2

then by Lemma 2.6,

|lA′k| ≥ min
{

(k + 1)1/n, p
}
.

Again, if |lA′k| = p, then γ(k, q) ≤ nl; while if |lA′k| ≥ (k + 1)1/n, then |nlAk| ≥ k + 1 and

Lemma 6.4 yields the second result of the theorem.
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Under more stringent conditions on the number of k-th powers falling in the base field

we can improve the exponent 1/n at the cost of increasing the constant.

Theorem 6.5. If γ(k, q) exists, then

γ(k, q)� n(k + 1)
log 4

n log |A′
k
| log log k.

Furthermore, if |A′k|
‰

log( 8
3 (k+1)1/n)

log |A′
k
| +8/7

ı
≤ p−1

2
, then

γ(k, p)� n(k + 1)
log 4

n log |A′
k
| .

Proof. Corollary 5.1 implies the theorem is trivial for k ≤ √q. Thus, we assume k >
√
q,

and for convenience let l =
⌈

log( 8
3
(k+1)1/n)

log |A′k|
+ 8/7

⌉
.

Case 1: If |A′k|l ≥
p−1
2

, then we use the first part of Lemma 2.7 with A = A′k and noting

that (A′k)
l = A′k, to establish |NlA

′
k − NlA

′
k| ≥ 3

8
min{|A′k|l, (p − 1)/2} ≥ 3

16
(p − 1). By

Lemma 2.5,

|48(NlA
′
k −NlA

′
k)| ≥ min{48(|NlA

′
k −NlA

′
k| − 1) + 1, p}

≥ min

{
48(

3

16
(p− 1)− 1) + 1, p

}
≥ 9p− 56 ≥ p,

for p ≥ 7. If p < 7 we use the facts that |A′k| ≥ 2 ≥ p−1
2

and

p ≥ |48(NlA
′
k −NlA

′
k)| ≥ |4A′k| = p

to establish |48(NlA
′
k −NlA

′
k)| = p. We now have an upper bound on δ(k, q) and hence on

γ(k, q) via Lemma 6.2.

γ(k, q)� (log log q)δ(k, q)� (log log q)nNl � n(k + 1)
log 4

n log |A′
k
| log log k.

Case 2: If |A′k|l ≤
p−1
2

, then we use the second part of Lemma 2.7 with the result that
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|NlA
′
k| ≥ (k + 1)1/n and so |nNlAk| ≥ k + 1. Hence by Lemma 6.4

γ(k, q) ≤ 8nNl = 8n

(
5

24
4l − 1

3

)
= 8n

(
5

24
4

‰
log( 8

3 (k+1)1/n)

log |A′
k
| +8/7

ı
− 1

3

)

≤ 8n

(
5

24
4

log( 8
3 (k+1)1/n)

log |A′
k
| +15/7

− 1

3

)
= 8n

(
5

3
2

9
7 4

log 8
3

log |A′
k
|4

log(k+1)

n log |A′
k
| − 1/3

)

= 8n

(
5

3
2

9
7 4

log 8
3

log |A′
k
| (k + 1)

log 4

n log |A′
k
| − 1/3

)
� n(k + 1)

log 4

n log |A′
k
| .

Alone, this case gives the second part of the theorem. Combined with case 1, we have the

first part of the theorem.

6.3 Proofs of Heilbronn-Type Results

In the case when q is prime, Heilbronn conjectured in [21] (and Konyagin proved in [23])

that for any ε > 0, γ(k, p) �ε k
ε if |Ak| > c(ε). It is interesting to note that in this

case Ak = A′k. By placing the size condition on A′k instead of Ak, we extend Heilbronn’s

conjecture to a general finite field, and obtain an explicit value for c(ε).

Theorem 6.6. For any ε > 0, if |A′k| ≥ 4
2
εn , then γ(k, q)�ε k

ε.

Proof. Again, we first note that Corollary 5.1 lets us restrict our attention to k >
√
q, or

equivalently n < 2 log(k)
log p

. We make the further assumption: |A′k| ≥ 42/nε. Using Theorem

6.5, we see that

γ(k, q)� n(k + 1)
log 4

n log |A′
k
| log log k � (log(k))2k

log 4

n log |A′
k
| � (log k)2kε/2.

Heilbronn further conjectured that for p−1
k
> 2, γ(k, p)� k1/2. This was established by

Cipra, Cochrane and Pinner [10, Theorem 1]. Furthermore, Cochrane and Pinner [11] give

an explicit constant: γ(k, p) ≤ 83k1/2. For n ≥ 2 we obtain here,

Theorem 6.7. If n ≥ 3 and γ(k, q) exists, then γ(k, q) ≤ 10
√
k + 1.

For n = 2, we have γ(k, p2) ≤ 16
√
k + 1.
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Proof. We first note that for k ≤ 396 the result follows from the bound, (1.19) γ(k, q) ≤

[k
2
] + 1. Thus we may assume k ≥ 396. Corollary 5.1 lets us also assume k >

√
q. In

particular, k > 2n/2. By Theorem 6.4, we have for n ≥ 18,

γ(k, q)√
k + 1

≤ 8n(k + 1)1/n−1/2 ≤ 8n2
n
2
( 1
n
− 1

2
) =

8
√

2n

2n/4
≤ 10.

For 2 ≤ n ≤ 17, we have

γ(k, q)√
k + 1

≤ 8n(k + 1)1/n−1/2 ≤ 8n

3961/2−1/n
≤

{
10, if n > 2,

16, if n = 2.
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