Scalable safety verification of stochastic hybrid systems

by

Ratan Lal

M.Tech., Indian Statistical Institute, Kolkata, 2014

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR of PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2021

Abstract

Stochastic hybrid systems consist of software-controlled physical processes, where uncer-
tainties manifest due to either disturbance in the environment in which the physical systems
operate or the noise in sensors/actuators through which they interact with the software. The
safety analysis of such systems is challenging due to complex dynamics, uncertainties, and in-
finite state space. This thesis introduces fully automated methods for bounded /unbounded
safety analysis of certain subclasses of the stochastic hybrid systems against given safety
specifications.

Our first contribution is to compute the maximum/minimum bounded probability of
reachability of polyhedral probabilistic hybrid systems, where plant dynamics are expressed
as a set of linear constraints over the rate of state variables, and uncertainties are involved
in discrete transitions represented as discrete probability distributions over the set of loca-
tions/modes. Our broad approach is to encode all possible bounded probabilistic behaviors
into an appropriate logic along with the given safety specifications. Then, we perform op-
timization over all possible behaviors for the maximum/minimum probability via state-of-
the-art optimization solvers.

The second contribution is to present fully automatic unbounded safety analysis of the
polyhedral probabilistic hybrid systems (PHS). We present a novel counterexample guided
abstraction refinement (CEGAR) algorithm for polyhedral PHS. Developing a CEGAR algo-
rithm for the polyhedral PHS is complex owing to the uncertainties in the discrete transitions,
and the infinite state space due to the real-valued variables. We present a practical algorithm
by choosing a succinct representation for counterexamples, an efficient validation algorithm
and a constructive method for refinement that ensures progress towards the elimination of

a spurious abstract counterexample.

The third contribution is to extend unbounded safety analysis to the class of linear prob-
abilistic hybrid systems (PHS). Developing an abstraction for the linear PHS is a challenge
when the dynamics is linear, because the solutions are exponential and require solving ex-
ponential constraints to construct the finite state MDP. Hence, we consider a hierarchical
abstraction, where we first abstract a linear PHS to a polyhedral PHS using hybridization
and then apply predicate abstraction to construct the finite state MDP.

Finally, we consider uncertainties in plant dynamics, and develop an abstraction based
method for both bounded/unbounded safety analysis of linear stochastic systems. The
bounded safety analysis is similar to the encoding in bounded model checking, where we
encode bounded stochastic behaviors instead of continuous behaviors and solve the encoding
using a semi-definite program solver. For the unbounded safety analysis, we abstract the
linear stochastic system into a finite state system, and analyze its safety using graph search

algorithms.

Scalable safety verification of stochastic hybrid systems

by

Ratan Lal

M.Tech., Indian Statistical Institute, Kolkata, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR of PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Approved by:

Major Professor
Dr. Pavithra Prabhakar

Copyright

(© Ratan Lal 2021.

Abstract

Stochastic hybrid systems consist of software-controlled physical processes, where uncer-
tainties manifest due to either disturbance in the environment in which the physical systems
operate or the noise in sensors/actuators through which they interact with the software. The
safety analysis of such systems is challenging due to complex dynamics, uncertainties, and in-
finite state space. This thesis introduces fully automated methods for bounded /unbounded
safety analysis of certain subclasses of the stochastic hybrid systems against given safety
specifications.

Our first contribution is to compute the maximum/minimum bounded probability of
reachability of polyhedral probabilistic hybrid systems, where plant dynamics are expressed
as a set of linear constraints over the rate of state variables, and uncertainties are involved
in discrete transitions represented as discrete probability distributions over the set of loca-
tions/modes. Our broad approach is to encode all possible bounded probabilistic behaviors
into an appropriate logic along with the given safety specifications. Then, we perform op-
timization over all possible behaviors for the maximum/minimum probability via state-of-
the-art optimization solvers.

The second contribution is to present fully automatic unbounded safety analysis of the
polyhedral probabilistic hybrid systems (PHS). We present a novel counterexample guided
abstraction refinement (CEGAR) algorithm for polyhedral PHS. Developing a CEGAR algo-
rithm for the polyhedral PHS is complex owing to the uncertainties in the discrete transitions,
and the infinite state space due to the real-valued variables. We present a practical algorithm
by choosing a succinct representation for counterexamples, an efficient validation algorithm
and a constructive method for refinement that ensures progress towards the elimination of

a spurious abstract counterexample.

The third contribution is to extend unbounded safety analysis to the class of linear prob-
abilistic hybrid systems (PHS). Developing an abstraction for the linear PHS is a challenge
when the dynamics is linear, because the solutions are exponential and require solving ex-
ponential constraints to construct the finite state MDP. Hence, we consider a hierarchical
abstraction, where we first abstract a linear PHS to a polyhedral PHS using hybridization
and then apply predicate abstraction to construct the finite state MDP.

Finally, we consider uncertainties in plant dynamics, and develop an abstraction based
method for both bounded/unbounded safety analysis of linear stochastic systems. The
bounded safety analysis is similar to the encoding in bounded model checking, where we
encode bounded stochastic behaviors instead of continuous behaviors and solve the encoding
using a semi-definite program solver. For the unbounded safety analysis, we abstract the
linear stochastic system into a finite state system, and analyze its safety using graph search

algorithms.

Table of Contents

List of Figures e xi
List of Tables xiii
1 Introduction L 1
1.1 Motivation 1

1.2 Formal methods 2

1.3 Modeling of stochastic hybrid systems 3

1.4 Main results of the thesis 0 4

1.5 Thesisoutline D

2 Background 6
2.1 Markov Chains 6
2.2 Markov decision processes 8

2.3 Stochastic systemso 10

2.4 Stochastic hybrid systems 12

2.5 Probabilistic hybrid systemso 0oL 14

3 Probabilistic hybrid systems oo 16
3.1 Preliminaries L 16

3.2 Timed Markov decision processes 18
3.2.1 Probabilistic reachability 0oL 20

3.3 Case study: vehicle navigationo 22
3.4 Probabilistic hybrid systems and its subclasses 24

viii

4 Probabilistic reachability analysis L 0L 30

4.1 Problem definition 31
4.2 Computing probability of reachability 32
4.3 Experimental analysis oL L 39

5 Safety analysis of polyhedral probabilistic hybrid systems 44
5.1 Preliminarieso 46

5.2 Problem definition 49
5.3 Running exampleo 49
5.4 Counterexample guided abstraction refinement 50
5.4.1 Abstraction 52

5.4.2 Model checking and counterexample 54

5.4.3 Validation 57

54.4 Refinement 60

5.5 Computability 67
5.6 Experimental analysis Lo 70

6 Safety analysis of linear probabilistic hybrid systems 74
6.1 Abstractions 75
6.1.1 Hybridization 75

6.2 Experimental analysis oL oL 78

7 Parametric verification of linear discrete-time stochastic systems 81
7.1 Motivation L 83

7.2 Preliminaries 84
7.3 Stochastic systemso 85
7.4 Bounded PPV using semi-definite programming 89
7.5 Unbounded parametric properties verification 92
7.6 Experimental analysis o0 0oL 97

X

8 Conclusions and future work

Bibliography

1.1
1.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8
5.9

List of Figures

Formal methods 2
Stochastic hybrid systems 3
Vehicle navigation Lo 23
Linear PHS 27
Polyhedral PHS 29
[lustration of computation tree for k=2 33
Continuous transitiono 34
Discrete transitiono 35
Time variableso 37
Probability variables o o 37
Vehicle navigation L 40
Polyhedral PHS for the Navigation shown in Figure 4.6 41
Polyhedral Probabilistic Hybrid System 49
Markov Decision Process Abs(H,R)o i 54
LDAG D € Ezec(Abs(H, R)) violating Probg, 56
Point of refinement and spurious edge in D shown in Figure 5.3 59
Spurious Edgeo 61
Edge 1 . . . o o o 61
Edge 2 o 61
Edge 3 61
Edge 4 . . . o 61

x1

5.10 Tlustration of Algorithm 2 65

5.11 Markov Decision Process after Refinement 66
7.1 Expectation and Covariance Verification Problem 83
7.2 Specification Illustration for the Model shown in Example 9 87
7.3 Partitionof S, 94
74 Partitionof Sy, Lo 94
7.5 Partitionof Ss,o 94
7.6 Abstract Graph GE 95
7.7 Validation of the Abstract Edge (Vi1,Vi4) - . . . o o oo oo oo 95

xil

2.1
2.2
2.3
24

4.1
4.2
4.3

5.1
5.2

6.1
6.2

7.1
7.2
7.3
7.4

List of Tables

Background works on Markov chains 000000 8
Background works on Markov decision processes 10
Background works on stochastic systems 12
Background works on stochastic hybrid systems 13
Probabilistic reachability of the case-study for T'=5 42
Probabilistic reachability of the case-study for K =4 42
Probability of reaching F 0oL 43
Verification results for the Grid World (n =2, K=2) 71
Verification results for the oscillator-filter (K=1) 72
Probabilistic Reachability Analysis of Grid Navigation 79
Probabilistic Reachability Analysis of Benchmarks 79
Bounded PPV of the Model shown in Example 9 98
Computational Analysis for Bounded PPV of Random Models 99
Unbounded PPV of the Model shown in Equation 7.2 100
Computational Analysis for Unbounded Safety of random Models 101

xiil

Chapter 1

Introduction

1.1 Motivation

Embedded systems consist of software-controlled physical processes that are integral parts of

6-8)

automotive systems (cruise control'?, lane assistants®™®, self-driving cars®®), medical devices

11;12) 13;14 15;16)

(pacemakers®1?, infusion pumps , robotics (Roomba , surgery robots , aeronau-

1718 19;20) q21:22

tics (autopilo , collision avoidance modules , and smart gri , where stochastic
disturbances manifest due to either disturbance in the environment in which the physical sys-
tems operate or the noise in sensors/actuators through which they interact with the software.
These systems manifest uncertainties either in physical systems or digital controllers that
arise due to either noise in the environment, modeling errors, or sensors/actuators’ error. We
also refer such systems to “probabilistic/stochastic hybrid systems” which formally extend
finite state automaton with probabilistic transitions and continuous (stochastic) differential
equations. One of the grand challenges is to build safe and reliable stochastic hybrid sys-
tems that can be deployed in the real world with high confidence. Towards this end, we need

rigorous formal methods and accompanying software tools for the analysis to be automated

and scalable.

1.2 Formal methods

Formal methods 2324

are a special kind of mathematically rigorous techniques that have been
used for the modeling of complex systems, the specification development and its verification
for the systems. The goal of formal methods is to verify system’s properties in a more
thorough fashion than the empirical testing. While empirical testing increases confidence
about the performance of the system, formal methods provide strong guarantees about the
correctness of the systems. The formal techniques are mainly classified into two categories
Model Checking? 27 and Theorem Proving?3!.

Model Checking verifies specifications against a system model to prove that system’s
behaviors conform to the specification. More precisely, given a mathematical model of
the system, and a specification, it provides correctness of the system’s behaviors with re-
spect to the specification. This techniques suffer from the state space exploration due to
exponential growth in number of states with the number of variables. To overcome the
problem, researchers have developed techniques for the reduction of the state space; thus
allowing verification to the large scale systems. The popular available Model Checking tools
are UPPAAL??, NUSMV 3%, SPIN34, and probabilistic Model Checking tools are PRISM 37,
STORM?¢.

=S * Proof/
et | Ly Verification e

I Certificate
1- Model checker /
o Theorem prover <>

>

g < (®

Cofinterexample

Specifications

Figure 1.1: Formal methods

Theorem Proving is used for evaluating higher order logic that corresponds to the sys-

tem’s behaviors. It uses mathematical structure to build the logic. Theorem Proving does

not deal with the states, but with formulas. Although it does not take system’s model as
an input explicitly, it requires high degree of knowledge about the system under verifica-
tion. The popular available Theorem Proving tools are Theorem Proving: ACL23%7, Coq®®,
Isabelle/HOL??, STeP*° PVS*! and Z32.

A general framework for the verification is shown in Figure 1.1. This framework takes as
input either system model and a formal specification or a formal specification, and outputs
either proof/certificate for the correctness if the specification is true or a counterexample,
that is, a system’s behavior violating the specification, which supports the correction of bugs

if the specification is false.

1.3 Modeling of stochastic hybrid systems

Stochastic systems?3*° have received extensive attention in recent years toward modeling
and analyzing uncertain systems. In general, stochastic systems are modeled as a mixture

(iVVt

Environmentall disturbance
u(t) [Physical System | 2(t)

€ dz = f(z,u)dt+ ¢
a h(z, u)dwy ": S
—_—) +
Actuatorf . (Sensor
noise | 0(t Control Law _Z(t) noise

0(t) = g(2(t), zrer (t))
Reference [trajectory
Zref(t)

Figure 1.2: Stochastic hybrid systems

of continuous and discrete dynamics, where the continuous dynamics capture stochastic
behaviors, which is described by stochastic differential/difference equations as shown in
Figure 1.2, where wy is a zero mean Gaussian process, and the discrete dynamics capture

the control law, which is described by probabilistic systems, such as Markov chains, Markov

decision processes, where sensor/actuator noises are captured as probability distributions. In
this thesis, we develop methods/techniques for the safety analysis of probabilistic/stochastic

hybrid systems and its subclasses.

1.4 Main results of the thesis

We consider safety verification problems of probabilistic/stochastic hybrid systems that con-
sist of either stochastic processes or probabilistic discrete transitions. The safety problem
turns into probabilistic safety, that is, whether probability of reaching an unsafe region is
below a given probability threshold. Probabilistic bounded/unbounded safety analysis of
probabilistic/stochastic hybrid systems relies heavily on probabilistic reachability analysis.
In general, the reachability analysis of stochastic hybrid systems is undecidable, however,

46-48

it is decidable for certain subclass of the systems Probabilistic reachability problem

for the general class of probabilistic hybrid system has been solved using abstraction tech-

1950 applied in papers®'%, that give the bound on the maximum/minimum probability

niques
of reachability. However, it is challenging to compute a precise probability of reachability.
Hence, we have developed methods for the safety analysis of probabilistic/stochastic hybrid
systems. In this thesis, we first focus on polyhedral dynamical systems to model the physical
systems, and develop a method to compute the maximum/minimum probabilistic reacha-
bility, and counterexample guided abstraction refinement algorithm for the safety analysis
of polyhedral probabilistic hybrid systems. Then, we consider linear dynamical systems to
model the physical systems, and develop a hierarchical abstraction for the safety analysis of
linear probabilistic hybrid systems. Finally, we consider linear discrete-time stochastic sys-

tems for modeling the physical systems, and develop a method for its parametric property

verification.

1.5 Thesis outline

In this section, we outline the thesis. In Chapter 2, we provide an overview of related works.
We present all the preliminary details in Chapter 3. In Chapter 4, we present the details
of computing the maximum/minimum probabilistic reachability of polyhedral probabilistic
hybrid systems(PHS). Then, we present a counterexample guided abstraction refinement
algorithm for the probabilistic safety of the polyhedral PHS in Chapter 5. Next, we present
a hierarchical abstraction for the probabilistic safety of linear PHS in Chapter 6. Then,
we present a bounded model checking and an abstraction based method for bounded and
unbounded parametric verification of stochastic systems, respectively, in Chapter 7. Finally,

we present the conclusion of the thesis in Chapter 8.

Chapter 2

Background

In this chapter, we provide a literature background of different classes of finite and infinite-
state probabilistic systems. Finite state probabilistic systems, such as Markov chains,
Markov decision processes are often used to model behaviors of discrete systems, such as
biological and power generator systems. Infinite-state probabilistic systems, such as stochas-
tic systems, stochastic hybrid systems, and probabilistic hybrid systems are used to model
software-controlled physical systems. The most popular problems for these classes of sys-
tems are reachability and safety analysis. Although efficient methods have been discovered
for the finite state systems, it is a challenge for infinite-state systems. One promising direc-
tion to deal with the infinite-state systems is an abstraction, where an infinite-state system
is abstracted into a finite state system. Next, we will discuss methods for different classes of

probabilistic systems for different related problems.

2.1 Markov Chains

Markov Chains®%%* are stochastic models. The model is a sequence of random events, where

the probability of the next event depends only on the current event and does not depend

55:56

on the past events. This property is referred to as Markovian property , and stochastic

information is stored in the form of transition probability. Markov Chains are widely used for

60

5758 power generator®, and financial systems®,

modeling the dynamics of biological systems
such as risk management, inventory control. Modeling of transition probabilities depends
on the type of systems, such as discrete/continuous-time and their parameters. This leads
to the investigation of different variants of Markov chains, such as discrete-time Markov
chains (DTMC)®%, where events occur in discrete time, continuous-time Markov chains®?,
where events occur in continuous time; interval (Int.) Markov chains®®, where transition
probabilities are modeled as intervals, parametric (Par.) Markov chains®, where transition
probabilities are expressed in the form of parameters. Different properties of the stochastic
models are often expressed in the form of probabilistic computation tree logic (PCTL)%,
continuous stochastic logic (CSL)%%%7 linear temporal logic (LTL)%, and temporal compu-
tation tree logic (TCTL)%. For each variation of Markov Chains, several techniques, have
been developed for the verification of the above properties.

For the verification of PCTL and CSL, three value abstraction method™ has been de-
veloped for DTMC, where an abstract state-space model is generated over the values true,
false, and unknown. The properties can then be evaluated on such three-valued models.
If the evaluation is unknown, then the abstract model is refined until the properties of
interest can be either proven or refuted. Traditionally, probabilistic model checkers, such
as PRISM?®® is time-consuming for large DTMC due to state-space exploration. Hence,
bi-simulation minimization™ is developed that reduces the state space (up to logarithmic
saving). Another approach is Statistical Model Checking (SMC) that infers the correct-
ness of the probabilistic systems by evaluating certain test statistics on random samples
(paths) generated from the probabilistic models. Different methods based on frequentist
and Bayesian approach have been developed for SMC. A frequentist based algorithm for
SMC of non-nested CSL on Discrete-time Markov chain (DTMC) has been presented in the
paper”? by conducting the sequential Wald Probability Ratio Test™. However, for nested

4

CSL, a Bayesian statistical model checking algorithm™ is developed that a correct answer

with a certain confidence. Also, a method™ based on run time model checking has been

Systems Problems Approaches
D(C)TMC PCTL®, CSL:¢7 Three-valued abstraction ™
- - Bisimulation minimization "t
- TCTL®, PCTL%, CSL%6:67 Statistical Model Checking”®
CTMC Synthesizing parameters for PTBR Discretization with refinement ™
- Counterexample for CSL %567 Heuristic guided search based®’*!
DTMC Reliability checking Run time model checking ™
- Counterexample for PCTL% Reducing into graph problem "
- w-regular event under condition w-regular Reducing into unconditional DTMC "
Int. MC max. prob. of w-regular Exp.-max. and LTL to unamb. automata®?
Par. MC | Rational fun. expressing prob. reachability Tightly interwining Reg. exp.%*

Table 2.1: Background works on Markov chains

developed for the reliability checking on DTMC. Other problems, such as counterexample of
PCTLY% and the conditional probability of w-regular events under w-regular condition, have
been solved by reducing PCTL property over DTMC into weighted graph problem ™ and
reducing conditional probability problem over DTMC into unconditional probability prob-
lem ", respectively. Also, Statistical model checking ™ has been developed for the verification
of temporal computation tree logic (TCTL).

For CTMC, synthesizing parameters for probabilistic time bounded reachability and

counterexample for CSL %57 problems have been solved by discretization of parameter ranges

79 80;81
t h ,

with refinement” and explicit state model checking based heuristic guided searc re-
spectively. For IMC, maximizing the probability of satisfying w-regular expressed as LTL%
has been solved by expectation-maximization procedure and reducing LTL% into unambigu-
ous automata®?. For PMC, computing rational function expressing probabilistic reachability
has been solved by reducing PMC into tightly interwining regular expression by its evalua-

tion%. The above works are summarized in Table 2.1.

2.2 Markov decision processes

Markov Decision Processes (MDP) is an extended version of Markov chains where multiple

probability distributions may be associated with each state. Different techniques have been

developed for the verification of different properties on MDP.

For safety property, the maximum/minimum probability of reaching a desired set of
states is required to compute. For this, policy resolving non-determinism methods, such as
value iteration, have been used to compute the bound on maximum/minimum probability of
reachability with some precision, but they do not have stopping criteria. However, stopping

criteria is straightforward in interval iteration algorithm®3.

Also, abstraction and refine-
ment based method®* has been developed for computing the upper and lower bound on the
probabilistic reachability. In addition, counterexample generation for bounded probabilistic
LTL property over MDP has been produced by reducing MDP into Acyclic Markov Chains
and generating counterexamples for reachability property over Acyclic Markov Chains®’.
Reachability property over infinite-state MDP has been proposed based on abstraction®0
and implemented in tool PASS®". Bounded MDP (BMDP) is a generalization of MDP
where the probability of each transition is uncertain. Reachability property over BMDP has
been solved using the Interval value iteration method®®. Reachability property for partially
information probabilistic systems (PIPS) is undecidable®, so an algorithm introduced in
the paper” checks whether a total information scheduler complies with the partial informa-
tion assumptions. If they do not comply with the assumptions, the model is modified using
refinement.

992 predicate ab-

For PCTL property, different methods, namely, game based abstraction
straction with SMT solver, counterexample guided abstraction refinement (CEGAR) with
predicate abstraction and interpolation based refinement*, linear programming®, successive
refinement”®, value iteration?”, decomposition of MDP into strongly connected components
(SCC) and application of policy iteration on each SCC®, probabilistic model checker*®, have
been developed. Also, conditional probability on CTL property over MDP has been solved
via reducing MDP into acyclic MDP%.

100

For qualitative property, a counterexample guided abstraction refinement (CEGAR)

has been developed over multiple MDPs, where simulation relation is first obtained for MDP

Systems Problems Approaches

MDP Reachability Interval iteration algorithm®3
- - Abstraction-refinement based®!
- PCTL Mutl-valued abs., CEGAR, and game based abs. 12

- - predicate abstraction and SMT %

- - CEGAR (Pred. abst. and iterpolation based refine.) %!
- - Linear programming

- - Decomposing into SCC and apply Policy iteration”

- reachability of PIPS CEGAR™
- PCTL, LTL, pSafe Model checker, Automata based techniques!"?
- cpCTL Reducing into Acyclic MDP %
- Counter. gen. for bounded pLTL Reducing into Acyclic MDP®
- PCTL, CSL, PTCTL Sampling and monte carlo approximation”
- CE for safety, liveness frag. of PCTL based on simulation relation !
- Counterexample for w regular Critical subsubsystem based on MILP %
MDPs Qualitative property CEGAR for simulation relation %
Infinite MDP Reachability Tool PASS®
BMDP Reachability Interval value iteration method®®

Table 2.2: Background works on Markov decision processes

with respect to the qualitative property, and then CEGAR is used to obtain the combined
simulation. A notion of a counterexample for the rich classes of specifications, such as safety,
liveness fragment of PCTL over MDP have been introduced as a lexicographic ordering of
a pair of MDP M and canonical simulation relation between M and M (original MDP) !0,
A method based on Mixed Integer Linear Programming (MILP)® has been developed for
finding a counter-example of w regular expression expressed in the form of a sub-DTMC of

a model. The above works are summarized in Table 2.2.

2.3 Stochastic systems

Stochastic systems 03104

are continuous systems, where randomness is involved in their be-
haviors. These systems are broadly classified into discrete/continuous-time stochastic sys-
tems. In the discrete-time stochastic systems, randomness appears at each discrete-time, and
they are often in the form of Gaussian noise. While in continuous-time stochastic systems,

they evolve over time.

Different subclasses of discrete-time stochastic systems, namely, discrete-time Max-plus

10

linear stochastic systems (DtMPLSS), Linear stochastic systems (DtLSS), non-linear stochas-
tic systems (DtNLSS), and Interconnected discrete-time linear stochastic systems (IDtLSS),
have been studied for time-difference and PCTL specifications, where the time-difference
specification is the difference between states with /without delay at some iteration k.

105 hag

For the Max-plus linear stochastic systems, a bounded model checking algorithm
been developed based on predicate abstraction for the time difference specifications. For
Discrete-time linear stochastic systems (DTLSS), where continuous dynamics is monotone,
a model checking algorithm!%® has been developed for the PCTL specification, where the
system is abstracted into a finite state interval Markov chain that over-approximates sys-
tem’s behavior, and state-space heuristic has been discussed when the specification is false
on the interval Markov chain. While a counterexample guided abstraction refinement al-
gorithm 197108 for the verification and synthesis of DTLSS for the PCTL specification have
been presented, where the system is abstracted into an interval Markov chain and a bounded
Markov decision process, respectively, and refinement schemes for both verification and syn-
thesis are discussed. An abstraction and aggregation method!? of DTLSS is developed,
where the system is abstracted as a finite state Markov chain via a finite partitioning of the
continuous state space. In the above methods, the error between DTLSS and its abstraction
has not been quantified. However, an approximate Markovian abstraction procedure!'’ is
developed by combining an existing approximate abstraction procedure with a bi-simulation
like a refinement algorithm, where adaptive refinement algorithm is employed to achieve a
given desired error bound. A set-theoretic approach!'! for the verification of robust ob-
stacle avoidance is discussed based on inner and outer convex approximation of the exact
non-convex capture set.

For Discrete-time non-linear stochastic systems, a discrete abstraction method!!? is pre-
sented based on bi-simulation function and convex optimization. For interconnected discrete-

time linear systems, a composition approach!!® based on a stochastic simulation function,

which makes the relationship between the original and abstract system, is discussed. The

11

Systems Problems Approaches
DtMPLSS | Bounded model checking Predicate abstraction!%

DtLSS Model checking Approximate as IMC !0
- PCTL Counterexample guided abstraction refinement %1% abstraction '*”
- Abstract system Approximate abstraction '’
- Obstacle avoidance Set-theoretic approach 't

DtNLSS Abstract system Bi-simulation 2

IDtLSS Model checking Stochastic simulation!!3

CtSCSS Synthesis Discrete time abstraction!!*

Table 2.3: Background works on stochastic systems

stochastic simulation function can be used to quantify the error between the original and
abstract systems. The above works are summarized in Table 2.3.

However, there are limited works for continuous-time stochastic systems. A discrete
abstraction based approach!'* has been investigated for the synthesis of continuous-time
stochastic control stochastic systems (CtSCS), where the system is abstracted into a finite
Markov decision process, and their probabilistic distance is quantified based on stochastic

simulation function.

2.4 Stochastic hybrid systems

Stochastic hybrid systems (SHS)!'>1!® exhibit a combination of continuous and discrete
behaviors where randomness is involved in both the behaviors. Different methods have been
investigated, specifically for LTL and safety /reachability specification for different subclasses
of SHS, namely, discrete-time stochastic hybrid systems (DtSHS) where continuous behaviors
are evaluated at discrete time instant, controlled DtSHS where stochastic behaviors are
affected by control inputs.

For LTL verification on DtSHS, a product-construction based method!'” has been de-
veloped, where the system is abstracted via discrete abstraction, and product between the
abstract system and Buchi automata for LTL is construction. Safety verification problem

120

on controlled DtSHS is dealt via optimal control problem " of a certain controlled Markov

12

Systems Problems Approaches
DtSHS LTL Product construction and discrete time abstraction '
Controlled DTSHS Reachability Stochastic optimization prob.?°
- safety Optimal control problem !
SHS safety /reachability Testing based methods !

- safety finite abstraction®?
- reachability Numerical approximation '?*, Barrier certificate'?°
- Control Discrete abstraction !

Table 2.4: Background works on stochastic hybrid systems

process 2!, where safety verification problem is formulated as an optimal control problem.

Next, a testing based method '?? has been developed for the safety/reachability of SHS using
the notion of robustness for test runs. Safety property of SHS has been proposed based on
abstraction which is computed by a solver for reachability in a non-probabilistic version of
the hybrid systems in'?3. In addition, reachability analysis of large-scale SHS as a problem of
rare event estimation has been developed in'?” based on an aggregation of the discrete mode
process and important sampling approaches for the system. Reachability analysis of SHS!%4
has been presented based on numerical approximation by the discretization of the state
space and using an interpolated Markov chain to approximate the switching diffusion weakly.

125 which is

Also, reachability analysis of SHS has been presented based on barrier certificate
super-martingale (i.e, its expected value is non-increasing along time) under the given system
dynamics. They put the condition on the barrier certificate function that its value at the
initial state should be lower that its value at any point in the unsafe region. The probability
of reaching the unsafe region is then bounded from above using a Chebyshev-like inequality
for super- martingales. A discrete abstraction based method!'?¢ has been presented in based
on the notion of bounded bi-simulation, where the original system is transformed into a
finite state system by abstracting state space into finite states and continuous probability

distributions into discrete probability distributions. The above works are summarized in

Table 2.4.

13

2.5 Probabilistic hybrid systems

Probabilistic hybrid systems (PHS) are a special subclass of SHS, where randomness occurs
either in the initial state or on the discrete transitions. Safety/reachability analysis problems
have been studied via different methods.

A d-reachability based method!?® has been discovered for PHS, where randomness ap-
pears in the initial state. In the method, a weaker notion of d-reachability is used in which
the unsafe set is over-approximated by a user defined parameter §. A statistical testing based
method? has been developed for the reachability analysis. Also, a stochastic satisfiability
modulo theory (SSMT)? based method' has been discovered for probabilistic bounded
reachability problems of concurrent PHS. Safety verification of PHS'! has been solved by
lifting probabilities from PHS, abstraction on non-probabilistic systems, and introducing
probabilities in the abstracted system.

In this thesis, we explore probabilistic hybrid systems, where continuous dynamics are
expressed in the form of linear/polyhedral dynamics, and randomness appear on discrete
transitions which we capture via non-deterministic probability distributions over the set
of discrete locations. We focus on developing efficient methods for the reachability/safety
analysis problems of PHS.

First, we consider bounded probabilistic reachability analysis of polyhedral PHS. Al-

132

though the paper™* has discovered to solve the bounded probabilistic reachability problem

133134 "it is only applicable for

using bounded reachability of non-probabilistic hybrid systems
deterministic probabilistic choices. However, we are interested in bounded reachability anal-
ysis of polyhedral PHS consisting of non-deterministic probabilistic choices. Since different
probabilistic choices will lead to different probability of reachability, we consider computing
exact maximum/minimum probabilistic reachability, which is an optimization problem.
Next, we consider probabilistic safety analysis of polyhedral PHS. The problem for the

linear probabilistic hybrid systems has been solved using abstraction techniques**°°, which

have been applied in papers®®? that give the bound on the maximum /minimum probability

14

of reachability, and the safety is concluded by comparing the probabilistic reachability with
the given probability threshold. However, this does not provide precise probabilistic safety
analysis.

Our broad approach for precise probabilistic safety analysis of polyhedral PHS is based on
counterexample guided abstraction refinement (CEGAR) framework. CEGARbased meth-

101;135 and non-

ods have been developed in the context of finite state probabilistic systems
probabilistic hybrid systems %13 that have shown promising results. However, to the best
of our knowledge, CEGARbased method has not been discovered for stochastic/probabilistic
hybrid systems. Hence, we have discovered first CEGAR algorithm for models that have both
probabilities and polyhedral continuous dynamics.

Next, we consider the probabilistic safety analysis of linear PHS. Developing an algorithm
like CEGAR is complex for linear PHS due to two reasons. First, constructing an abstract
system for the linear PHS is difficult because the solution of a linear dynamical system
consists of an exponential expression, and there is no known efficient solver for a formula
consisting of exponential expressions. Second, validating an abstract counterexample require
exact reachability analysis of linear dynamical systems, which is not known. Hence, we have
developed a hierarchical abstraction and compared it with the tool ProHVer®?.

Finally, several probabilistic properties have been investigated including probabilistic
safety, as well as those expressed using probabilistic computation tree logic (PCTL)% and
continuous stochastic logic (CSL)%%7. Here, we investigate the parametric property verifi-
cation of discrete-time linear stochastic systems, which is different from traditional predicate
abstract techniques for stochastic systems. We present a novel predicate abstraction based
method. In traditional predicate abstraction, a finite-state system is constructed based
on the partition of the continuous state-space; however, in our approach, we partition the
set of random states, which are random vectors defined over the continuous state-space.
Our approach provides a promising direction for the verification of parametric properties of

stochastic systems.

15

Chapter 3

Probabilistic hybrid systems

3.1 Preliminaries

In this section, we present basic notations and definitions that we use in the rest of this

thesis.

Numbers and sets: Let R,R>, Z, and N denote the set of real numbers, non-negative
real numbers, integer numbers, and natural numbers, respectively. Given a countable set S of
real numbers, Y S denotes the sum of all elements in the set, that is, > S = > s. We use [n]
and ((n) to denote the set {1,...,n} and the set of all subsets of R", respecieif/ely. Given an
element ¢ and a set S, we use (¢, S) for {¢} xS and (S, q) for Sx{q}. Given aset S, we use Sy
to denote the set S x N. Furthermore, relation Id C R™ x R™ expresses the identity relation.
3(f) denotes the set of restricted reverse onto functions of f as S(f) ={fi: B— A | B C
Sy, AC Sy, fiis an onto function and fof; = Id}. Given two sets S, Sz, C(S1, S2) denotes
the Cartesian product of the sets S; and S, that is, C(S1,Sa) = {(s1, $2) | 81 € S1, 2 € Sa}.
In addition, given a set S = C(S;,Sz), we use S|y, and SJy to denote the components Sy,

and S, respectively.

16

Vectors, tuples and matrices: Let R” denote the n-dimensional Euclidean space. Let
X = [z1, 29, ...,2,] € R" denote the n-dimensional vector. Also, we use (4, j) to express the
J™ projection of a tuple ¢ = (w1, za, ..., x,), that is, (;,j) = z;. We use x; to denote the i’
element of x, that is, x; = z;. Given a matrix A € R™ " Ali, j| denotes (i, j)!" entry of the
matrix A. A square matrix A € R™*" is called a symmetric matrix if A = AT, where AT
denotes the transpose of the matrix A. In addition, a square matrix A € R™*" is called a
positive semi-definite matrix if x*Ax > 0 for all x € R”. We use St to denote the set of all
real symmetric and positive semi-definite matrices of size n x n. Given an n? dimensional
real vector x, (x) denotes the matrix of size n X n corresponding to the vector x obtained

by splitting x into rows with n elements, that is,

X1 X9 e Xy

Xn2_n+1 Xp2_pt2 .. Xp2

Also, given a set S € ((n?), (S) denotes the set of all matrices of size n x n corresponding

to the set S that is, (S) = {(x) | x € S}.

Polyhedra: A set S € ((n) is called an n-dimensional polyhedron if there exist a matrix
A € R™™ and a constant vector b € R™ for some m € N such that S = {x | Ax < b}. We

use Poly(n) to denote the set of all n-dimensional polyhedra.

Partition of a Set: A partition of a set S is a set of subsets {S1,Ss, ..., Sk} such that
0 0 0

Ule Si=Sand S$;NS; =0,1<14,j <k, i+# j, where S denotes the interior region of S.

In addition, a partition P is called a polyhedral partition if each set S € P is a polyhedron.

A partition element S; is adjacent to S; denoted as S; > S; if S;NS; is non empty and @ # j.

Probability distributions: We use Dist(S) to denote the set of all probability distribu-

tions over the set S, that is, Dist(S) = {7 : S — [0,1] | >_ 7(s) = 1}. We use support(r) to

seS

17

denote the set of elements s € S for which 7(s) # 0.

3.2 Timed Markov decision processes

In this section, we define timed Markov decision processes and its certain subclass.
Let Dist(S) denote the set of all probability distributions over the set S, that is, Dist(S) =
{p:8—=10,1] | D p(s) =1}. We use support(p) to denote the set of all elements s € S for
s€S

which p(s) # 0. We assume that for any probability distribution p € Dist(S), its support is

finite. Next, we formally define syntax and semantics of the timed Markov decision processes.

Definition 1 (Timed Markov Decision Process (TMDP)). A TMDP is a structure T =

(S, —>), where:
e S is a set of states;

o —C S xRy x Dist(S) is a transition relation capturing a set of timed probabilistic

edges.

We denote a timed probabilistic edge (s, t, p) €E— by s SN p. Note that a state may have
multiple timed probabilistic edges associated with it, that is, distinct edges (s, 1, p1), (8, t2, p2)
€—, where t, # ty or p; # ps. Thus, the transition relation allows non-determinism.

A path of TMDP T = (S, —) is a finite sequence of states and times, 0 = sgt;S1t2Ss . . . t, S,
such that there exists a sequence of probability distributions pipsps...p, which satisfy
S; Lt pit1 and pii1(sit1) > 0 for 0 < i < n — 1. ofi] denotes the i" state of the path
o, that is, o[i] = s;; len(o) represents length of the path o, that is, len(c) = n, and L(o)
represents the last state of the path o, that is, L(c) = o[len(o)].

Also, D(0) denotes the duration of the path o, that is, D(o) = lei(:a) t;. Paths(T) denotes
the set of all paths of T, and Paths, (T, s,F) = {o € Paths(T) | len(;)l =k, o[0] = s, olk] €

F, for 0 < i < k, oli] ¢ F}. Paths(T,s,F) represents the set of all paths that start at

18

state s and end at some state ¢t in ' and no states in between s and ¢ are in I, that is,
Paths(T, s,F) = |J Pathsy (T, s,T).
k
Furthermore, we define a special subclass of TMDP, where there will be a unique prob-

ability distribution associated with each state.

Definition 2 (Timed Markov Chain (TMC)). A TMC is « TMDP T = (S, —) where the

following condition holds:
o For each state s € S if there exist s — p1, s —2 p, then t, = to and p1 = po.

Since TMC allows only one timed probabilistic edge for each state, we can define a
probabilistic transition function Pr: S x & — [0, 1], where Pr(s,s’) = p(s’) if there exists
s — p.

Next, we explain how to resolve the non-determinism in a TMDP 7 = (S,—) and
obtain a TMC. First, we define a scheduling function to be a partial function vy : Paths(T) —
Rs¢ x Dist(S) such that if y(o) = (¢, p), then L(o) %5 p. Let T'(T) denote the set of all
scheduling functions for a TMDP T.

Definition 3. Given a TMDP T = (S, —) and a scheduling function v, we obtain a TMC
T, = (S,, —,), where S, = Paths(T); for each path s, € Paths(T), s, —= py if 3 p such

that L(s.) L pand foralls €S, p(s4ts) = p(s).

Markov decision processes

Markov decision processes are a special class of timed Markov decision processes, where time

is unconstrained on the probabilistic edges.

Definition 4 (Markov Decision Process (MDP)). An MDP is a structure M = (S, —),

where
e S is a finite (infinite) set of states;
o —C S X Dist(S) is a transition relation.

19

Next, we define discrete time Markov chains, which are MDPs, with at most one proba-

bilistic edge associated with each state.

Definition 5 (Discrete-Time Markov Chain (DTMC)). A DTMC is an MDP T = (S, —)

such that for each state s € S, if there exist s — p1 and s — ps, then p; = ps.

An execution of an MDP can be interpreted as a DTMC that is obtained by resolving
the non-determinism in each step with a particular state distribution. We use Fzec(M) to

denote the set of all DTMCs obtained by resolving the non-determinism.

3.2.1 Probabilistic reachability

Let us consider a TMC/DTMC T = (S, —). Let Pr(0) denote the probability associated
with a path ¢ in T; we will drop the subscript 7 when it is clear from the context. We
define P (o) inductively as follows. If len(c) = 0, then P(o) =

en()
H oli = 1], ali]).

Bounded probabilistic reachability

We define bounded probabilistic reachability of both TMC and TMDP.

e For TMC T = (S, —), the probability of reaching a target set F from a state s with

path length exactly k and at most k£ within time 7', respectively, are defined as,

P=rp) (T, s) Z{P | 0 € Paths,(T,s,F), D(o) <T},

e For TMDP T = (S, —), we define the maximum and minimum probability of reaching

a target set ' from a state s with path length at most k& within time T, respectively,

20

to be:

P(S#gk,w)(Tv@ = sup Pr<um (T, 9),
YEL(T)

’;f<kF(T 5) = 1nf)77T<k1F)(T ,5).

~yel (T
Inductive definition of bounded probabilistic reachability

Here, we provide an alternate inductive definition for both P’;f <) (T, s) and P(S;fp e (T 9)-

e Base case:

inf sup 1, ifseF
P(T,go,ur)<T>5) P(T <0 IF)(T s) =

0, otherwise

e Induction step:

If s € F, then

Otherwise,

/P(i;{gk,ﬁ)(Tv s) = inf (Z p(S/)P(i;L“f—t,gk—l,]F)<T7 3,)>)

(s;p<kIF (T,s) = sup (Z s;pt<k 1]F)(T s)

Unbounded probabilistic reachability

We define unbounded probabilistic reachability of both DTMC and MDP.

e For DTMC T = (S, —), the probability of reaching a set of states I from a state s

is defined as,

P(T.s,F)= > Plo).

o€ Paths(T,s,F)

21

e For MDP M = (S, —), we define the minimum and maximum probability of reaching
a set of states F from a state s, denoted as Pi,/(M, s, F) and Py, (M, s, F), respectively.
Let > € {inf, sup}.

Pos(M, 5, F) :TeEijc(M) P(T,s,F).

3.3 Case study: vehicle navigation

In this section, we present a case study involving vehicle moving on a specific navigation
scenario given in Figure 3.1. Here, we consider dubbin’s dynamics for the vehicle. The

continuous dynamics of the vehicle is given below:

§(t) = v sin(8(1)) (3.1)

where (z(t),y(t)) denotes the position at time t; 6(¢) denotes the rotational angle; v denotes
the linear velocity; u(t) denotes the control input at time ¢ which is angular velocity w. Note
that Equation 3.1 is a non-linear system, and angular velocity is constant in each of the
control modes (horizontal, left turn, and vertical). However, Equation 3.1 can be expressed

into a linear system as given below:

z=A(c1,c,w)z, 1,02 € {0,1}, where ¢; +c2 > 1 (3.2)

22

(—4, 4) (-11 4) (11 4) (21 4)

(-4, 1)

(-41 _1)
(-41 _2) (21 -2)
Figure 3.1: Vehicle navigation

where z = (z,y, v, v,) denotes the state variable consisting of horizontal and vertical position

(x,y), and horizontal and vertical velocity (v,,v,), and

C1 0

Ay, co,w) =

o o o o
o o o o
o
|
S

The values of ¢y, co, and w vary depending on the control modes. For example, for horizontal
motion, ¢; = 1, ¢g = 0, and w = 0; for vertical motion, ¢; = 0, ¢ = 1, and w = 0; for left
turn with 7/4 angular velocity, ¢; = 1, ¢ = 0, and w = 7/4.

We assume that there are errors in sensors. The vehicle may not detect guard regions G
or (G5 when it is actually there due to sensor errors. Hence, the vehicle switches probabilisti-
cally from one mode to another mode as described below. In Figure 3.1, initially, the vehicle
is moving horizontally. When it reaches the yellow region (Gy), there are two possibilities,
namely, (a) it could take left turn; (b) it could still move horizontally. Since, the chances

of taking a left turn are high, we consider 9/10 as its probability of taking left turn, and

23

1/10 as its probability of moving horizontally. Next, if the vehicle crosses the yellow region
and misses the left turn, then the chances of moving it in a horizontal direction are high.
Hence, we consider 9/10 as its probability of moving horizontally, and 1/10 as its probability
of taking left turn. Further, if the vehicle takes a left turn, and reaches the blue region (Gs),
the vehicle could either continue turning or switch to move vertically. Since the chances
of switching to move vertically are high, we consider 9/10 as its probability of moving ver-
tically, and 1/10 as the probability of continuing turning. Next, if the vehicle crosses the
blue region and misses switching to move vertically, then the chances of continuing turning
are high. Hence, we consider 9/10 as its probability of continuing turning, and 1/10 as the
probability of switching to move vertically.

Our objective is to check whether the maximum probability of the vehicle reaching beyond

the lane is less than or equal to a desired probability threshold p > 0.

3.4 Probabilistic hybrid systems and its subclasses

In this section, we introduce the class of probabilistic hybrid systems and provide their formal
syntax and semantics. In addition, we introduce a certain subclass of probabilistic hybrid

systems that we study in this thesis.

Syntax

Probabilistic hybrid systems capture the discrete, continuous and probabilistic behaviors.
The continuous behaviors are captured using differential equations, while the discrete and
probabilistic behaviors are captured using probabilistic edges, guards, and resets. Next, we

introduce the syntax of probabilistic hybrid systems.

Definition 6 (Probabilistic Hybrid Systems). A probabilistic hybrid system (PHS) is a tuple
== (Q, X, Qo, Xy, Inv, Flow, Edges, Guard, Reset), where:

e O is a set of locations;

24

o XY C R" is a continuous state space;

Qo C Q is a set of initial locations;

Xo C X is a countable set of initial continuous states;

Inv: Q — 2% is an invariant function;

Flow: Q x X — 2% is a flow function which assigns a vector to each state (q,z) €

Qx X;

Edges C Q x Dist(Q) is a finite set of probabilistic edges;

Guard : Edges — 2% is a quard function;

Reset : Edges x Q x X — X s a reset function.

Notation: Given a PHS H, we will represent its elements using H as a subscript. For
instance, the invariant and flow functions of H, are represented as Invy and Flowy, respec-
tively.

Next, we describe two different semantics for a given polyhedral PHS, namely, in terms

of timed Markov decision processes and Markov decision processes.

Semantics

We describe the semantics of PHS in terms of an infinite state TMDP. A state of the PHS
is a pair (¢, z), where ¢ € Q is a discrete location, and x € X is a continuous state. A timed
probabilistic edge associated with a state (g,) consists of a time T" elapse in which the state
x evolves according to the dynamics to some state 2’ and then 2’ transitions instantaneously
to other states governed by guards and resets. The timed probabilistic edges correspond
to a continuous evolution using the flow function which remains within the corresponding
invariant, followed by an instantaneous probabilistic transition governed by the guards and

the resets. More precisely, a continuous transition from a state (¢, z) to a state (q,z’) is

25

possible in time 7" if there exists a function ¢ : [0,7] — X such that ¢(0) = z, ¢(T) = o/,
%gt) € Flow((q,¢(t))) and ¢(t) € Inv(q) for 0 <t < T. A probabilistic transition from a state
(¢,) to a state (¢',z") with probability p is possible if there exists an edge (¢, p) € Edges

such that = € Guard((q, p)), ' = Reset(((q, p),q',z)) and p(¢') = p.

Definition 7. Given PHS H = (Q, X, Qo, Xy, Inv, Flow, Edges, Guard, Reset), the semantics
of " is defined as TMDP [H] = (S, —xp), where:

e S=0xX;
o ((¢,2),T,m) e—py if 3 (q.p) € Edges and 3 ¢ : [0,T] = X such that

1. ¢(0) =z and ¢(T') € Guard((q,p));
2. ¢(t) € Inv(q) and %ff) € Flow((q,¢(t))) for allt € [0,T7];

3. For each (¢',2') € Q x X, n((¢',2")) = p(¢') if 2 = Reset(((q,p),q,d(T))) else

m((¢,z")) = 0.

The TMDP has an infinite number of states because each state is a pair of discrete location
and a continuous value, where the number of values of the continuous variables is infinite.
Note that although we have an infinite number of states, for every timed probabilistic edge

(q,7) LHH]] 7, ™ has finite support.

Remark 1. The semantics of PHS in terms of Markov decision process is the same except
the probabilistic edges, where the edges will be in the form of ((q,x),) instead of ((q,z),T,)

in Definition 29, that is, time T will also be the existential variable.

Subclasses of probabilistic hybrid systems

We define subclasses of probabilistic hybrid systems. Next, we define the syntax of linear
probabilistic hybrid systems, where the flow function is restricted to linear, and invariant

and guard functions are restricted to polyhedral sets.

26

Definition 8 (Linear PHS). A linear probabilistic hybrid system is a PHS H = (Q, X, Inv, Flow,
Edges, Guard, Reset) where:

o Flow(q,z) = {A,x + By} for some square matriz A, and constant vector By;
e [nv:(@Q — Poly(n);
e Guard: Edges — Poly(n);
e Reset: Edges x Q — Poly(2n);
The rest of the tuple entities are the same as defined in Definition 6.

Example 1. Consider the vehicle navigation case-study given in Figure 3.1, which can be

modeled as a linear probabilistic hybrid system shown in Figure 3.2.

North

Figure 3.2: Linear PHS

It has four continuous state variables, namely position and velocity in horizontal and

vertical direction represented by z = (z,y,v,,v,). Formally, it can be modeled as a linear

PHS H = (Q, X, Inv, Flow, Edges, Guard, Reset), where

e Q = {East, Left Turn, North};

27

X ={(z,y,v5,vy) | —4<2<2, —2<y<4, 0<0v,,v, <2};
Inv(q) = X for all ¢ € Q;

The flow function which is given by Flow(East, z) = A(1,0,0)z, Flow(Left Turn, z) =
A(1,1,7/4)z, and Flow(North, z) = A(0,1,0)z, where A(cy, ¢, w) is defined in Subsec-
tion 3.3 of Chapter 3;

Edges = {(East, p1), (East, p2), (Left Turn, p3), (Left Turn, p3)}, where:

— p1(Bast) = &, p1(Left Turn) = 3, pa(East) = %, pa(Left Turn) = ;

— ps(Left Turn) = 55, ps(North) = =%, ps(Left Turn) = 5, ps(North) = .

Guard(East, p1) = {(z,y,v5,vy) | —115 <2 < -1, -1 <y <1, 0<uv,0v, <2},

Guard(East, p2) = {(x,y,v5,vy) | —1<z,y <1, 0 <w,,v, <2},

Guard(Left Turn, p3) = {(z,y,v,vy) | —1 <2 <1, 1<y <115 0<uy,,v, <2},
(

Guard(Left Turn, py) = {(z,y,v,,v,)) | —1 <2 <1, 1<y<4, 0<uv,,v, <2}

All resets are identity functions, that is, Reset(p,q) = Id for p € {p1,p2}, q €
{East, Left Turn}, and Reset(p,q) = Id for p € {ps, ps}, ¢ € {North, Left Turn}.

Furthermore, we introduce the syntax of polyhedral probabilistic hybrid systems, where

invariant, flow, guard, and reset functions are restricted to polyhedron.

Definition 9 ((Polyhedral PHS). A polyhedral probabilistic hybrid system is a linear PHS
H = (Q,X, Inv, Flow, Edges, Guard, Reset) where Flow: Qx X — Poly(n) is a flow function
which assigns a polyhedral set to each state (q,x) € Q x X. The rest of the tuple entities are

the same as defined in Definition 8.

Example 2. Consider the vehicle navigation case-study given in Figure 3.1, and its lin-
ear PHS shown in Figure 3.2. We can reduce linear PHS into a polyhedral PHS by over-
approximating the linear dynamics into a polyhedral dynamics. It can be obtained by collecting

all the vector fields from the linear dynamics over the invariant set at respective location.

28

The polyhedral PHS corresponding to the linear PHS is shown in Figure 3.3 which can be

North

Figure 3.3: Polyhedral PHS

formally specified as H = (Q, X, Inv, Flow, Edges, Guard, Reset), where all the components
are the same as giwven in Example 1 except the flow function. Here, the flow function is given
by Flow(East, z) = Pg, Flow(Left Turn, z) = Ppr, and Flow(North, z) = Py, where:

o Pp={(2,y,0,,0,) | 0<% <2, y=10, =0,=0};

L4 PLT = {(I7yavw7vy) | 0 S %y S 27 Ua;+ ﬁv = 07 ijy - ﬁv = 0}7

200 7Y 200 %

o Py ={(i,9,0,,0,) | 0<§ <2, &=, =10, =0}

29

Chapter 4

Probabilistic reachability analysis

In this chapter, we consider probabilistic hybrid systems ' (PHS) to capture discrete, contin-
uous, and probabilistic behaviors. A PHS consists of a finite number of modes and a finite
number of continuous variables. Each mode is associated with continuous dynamics that
specify the evolution of the continuous variables using differential equations or inclusions.
This is similar to that of a hybrid automaton. In addition, a PHS consists of transitions that
are non-deterministic as well as probabilistic. Hence, our underlying model is a Markov De-
cision Process (MDP), which is then extended with continuous dynamics in each mode. We
are interested in analyzing the probability of reaching a target set of states F within a given
amount of time 7" and a bound on the number of discrete/probabilistic transitions k. Note
that since our model encompasses both non-deterministic as well as probabilistic transitions,
depending on how a scheduler resolves the non-determinism, there are different probabilities
associated with reaching the target set F. Hence, we consider the problem of computing the
maximum and minimum probability of reaching the target set among all schedulers. The
bounded verification problem, in general, captures the behavior of an under-approximation
of the system where the number of transitions and the time of execution is constrained.
However, it provides conservative bounds on the actual probabilities of an actual system.

Also, in many cases, there is a practical upper bound on the total time, and a lower bound

30

on the dwell time (how fast the system can switch), which justifies the problem of bounded
verification as a complete method for verification of the full system.

Here, we restrict ourselves to polyhedral dynamics that are an important and widely
prevalent class of dynamics for modeling physical processes. The main challenge towards the
probabilistic analysis of reachability is the computation of maximum and minimum prob-
ability of reachability which involves solving a complex optimization problem. To address
the problem, we consider an encoding into a problem that involves optimization over SMT
formulas with linear constraints, that can be solved efficiently using recent tools such as
Z3opt % and SYMBA '*!. More precisely, our broad approach consists of computing exact
bounds on the probability of reachability in the system. Next, we encode the computation
trees of polyhedral PHS using SMT formulae. We use Z3opt and SYMBA solvers to find
the maximum and minimum probabilities of reachability by optimizing the probability over
constraints encoded in SMT. We have implemented our approach in a Python toolbox, and
conducted experimental evaluation on a vehicle navigation case study for the probability of
reaching beyond the lane/road and maintaining a safe distance among the vehicles. The
experimental results demonstrate the feasibility of the proposed approach. The main chal-
lenge towards scaling the approach will be the exponential growth of the variables and the
size of the encoding with the number of discrete transitions. In many cases, certain tim-
ing constraints can enforce a practical bound on the number of transitions. However, this
bound could be large and the SMT solver might fail to return. Our future work will focus

on efficient encodings and heuristics for reducing/pruning the computation tree.

Remark 2. We use the timed Markov Decision Process for the semantics of polyhedral

probabilistic hybrid systems in the rest of this chapter.

4.1 Problem definition

Problem 1. [Probabilistic bounded reachability problem/ Given a polyhedral PHS H =

31

(Q, X, Inv, Flow, Edges, Guard, Reset), a set of initial states 1, a set of final states F, find the
mazximum,/minimum probability of reaching F from 1 within a given time horizon T > 0 with

at most k > 0 discrete transitions, that is, > <P§7§k7F)(ﬂHﬂ, 8)), where 1 € {inf, sup}.

Next, we illustrate the problem through the case-study shown in Figure 3.1 and its
corresponding polyhedral PHS shown in Figure 3.3. Here, we want to compute the maximum
probability of the vehicle starting from I = {East} x {(z,y, v, v,) | —4 <2 < —=3.5, —0.2 <
y < 02, 1 < v,,v, < 2} reaching beyond the lane within 77 = 5 units of time with
at most £k = 2 discrete transitions. Here, [is the space beyond the lane, that is, F =
{East, Left Turn, North} x ({(z,y,vs,vy) | —4 <2 < -1, 1 <y <4, 0 < v,,v, <
2 U{(z,y,v5,0y) | —4 <2 <2 —2<y< -1, 0<v,,v, <2}U{(z,y,v,,v,) | —4<z<

1, -1 <y <4, 0<v,,v, <2}).

4.2 Computing probability of reachability

Our main problem is to compute the probability of reaching a target set FF within k discrete
transitions and time 7" in a polyhedral probabilistic hybrid system. Our broad approach
consists of reducing the problem of computing the minimum and maximum probability of
reachability in a polyhedral PHS into two optimization problems with constraints expressed
using a satisfiability modulo theory formula, which encodes the computation trees of the
polyhedral PHS. From the inductive definition of the probability of reachability, we are
required to unroll the polyhedral PHS for k steps to construct a tree with k levels (height
k). The minimum/maximum probability of reachability at each node is expressed iteratively
as a solution of an optimization problem over constraints which themselves recursively con-
tain other optimization problems. Note that all the entities of a polyhedral PHS such as
invariants, dynamics, guards, and resets, can be expressed as linear constraints. However,
we have non-deterministic probabilistic edges, hence, each recursive call to the optimization

problems is in the form of a linear optimization problem subject to constraints consisting

32

of conjunctions and disjunctions of linear constraints. Though theoretically this problem
can be solved by encoding it in first-order logic, we do not know of any tool that efficiently
solves optimization problems of this kind. Our broad idea is to lift the recursive optimiza-
tion problem at each node of the computation tree up to the root level, that is, develop
an encoding that solves a single optimization problem at the root of the computation tree.
Linear optimization problems over conjunctions and disjunctions of linear constraints can be
efficiently solved using the tools Z3opt SMT- solver 14 and SYMBA '*!| which add optimiza-
tion capabilities to SMT solving. Next, we explain the construction of the encoding of the

computation, which will be the important part of the optimization problem we formulate.

Encoding

1 q1,Z1,t1,P1

1 3

q1.1,T11,t1.1,P11 1.2, T1.2, 12, P12

q1.3,%13,%1.3, P13

3

52

q121,%1.21,%1.21,P1.21 G1.22,T1.22,t1.22,P122 123, %123, 1.2.3, P1.2.3

Figure 4.1: Ilustration of computation tree for k = 2

We fix the following ordering on the locations of H, namely, qi,...,q, and we assume
that ¢, is the initial state we are interested in. Let us fix a polyhedral PHS H. Let n be
the number of locations in H. A computation tree of level k is essentially an n-ary tree of
height £k as shown in Figure 4.1. We define the names of the node in the tree as follows. The
name of the root node is 1. Inductively, the names of the i-th child of a node named « are
a.i, where ¢ ranges over 1 to n. Hence, the node 1.2.1 refers to the first child of the second

child of the root node. We annotate the tree with states reached along an unrolling of &

33

steps of [H]. We annotate the root with an initial state of [#]. The children of a node «
are annotated by the states reached by taking a timed probabilistic edge of [H]. Note that
in each timed probabilistic edge ((¢,), ¢, 7) of [H], 7 has finite support; more importantly,
for each ¢/, m(¢',2") # 0 for at most one z’. Hence, we will fix an ordering of the locations
Oz and assume that the i-th child is annotated by a state whose location is the i-location
in the ordering, and the i-th continuous state is given by the reset function corresponding
to the edge taken and the i-th location (target). (Recall Reset : Edges x Q x X — X,
where Q captures the target location.) Next, we describe the SMT formula that encodes the
computation tree.

First, we fix some notations that will be used in the rest of the section. Let Z,(x)
be a predicate corresponding to Inv(q), that is, Z,(z) evaluates to true if and only if x €
Inv(q). Similarly, Flowy(z,7), G (), and Ry, (x,2") be the predicates that capture
r € Flow(q,z), x € Guard(q, p), and =’ = Reset((q, p), ¢, x'), respectively. Also, let F,(z) be
a predicate for (¢, x) € F. First, we explain how to capture the discrete, continuous and timed
probabilistic edges of [H] using first-order formulas with only existential quantification,

conjunctions and disjunctions, that is, as a satisfiability modulo theory (SMT) formula.

Encoding of transition relation

We provide the details of the construction of transition relations in terms of continuous and
discrete transitions given below.

Continuous transitions. We construct a formula Cont,(z,t,2’) that encodes whether
there exists an execution that starts from the state (¢,) and reaches the state (¢, z’) at time

t demonstrate in Figure 4.2.

r, t)
Zq(x) @ Flowy(z,) '® I'J(x)

Figure 4.2: Continuous transition

Conty(z,t,2") = 3 r, Flow,(x,r) Na' =z +rt NI, (x) NI, (x)

34

Note that if H is a polyhedral PHS, then all the constraints in Cont,(x,t,2") will be linear
expressions except for the multiplication of rate and time, that is, rt. We can eliminate the
nonlinear expression rt by converting it into an equivalent linear expression. From the
definition of polyhedral PHS, the predicates Flow,(x,r) and Z,(x) can be expressed as the
conjunctions of linear constraints of the form a - r < b, where a is a constant n dimensional
vector and b is a constant number. We introduce a new variable (vector) y = rt (note r is
a vector and ¢ is a scalar), and then replace all linear constraints a - r < b in Flow,(z,r)
by the linear constraints a - y < b.t, and the constraint 2’ = x + rt by 2’ = x + y. The two
constraints are equivalent, since we will have assumed that the domain of ¢ is the non-negative
real numbers.

Discrete probabilistic transitions. We construct a formula Disc,(z,x, p) that en-
codes the distribution over the states reached by taking some probabilistic edge p from the
state (¢, z) demonstrated in Figure 4.3. If no such edge exists, we allow a dummy transition

with 0 as the probabilities. The (g, p)’s range over Edges.

r —G(z)

R(z,z1) R(z,z2) R(z,z,) 1 T2 Tn

Figure 4.3: Discrete transition

Discy(z,x,p) = [(/\ =G (g0 ()N /\ p; =0)V

(a,p) j=1
\/ [Gig) (@ /\ R(qpq] T,) A pj = P(%))]
(a.p) J=1

Transition relation. The formula Trans,(x,t,z’',x,p) encodes a timed probabilistic

edge, that is, a combination of a continuous transition followed by a discrete probabilistic

35

transition.

Trans,(z,t,x,p) = [3 o, Cont,(x,t,2") A Disc,(z',x,p)]

We will use Trans as a primitive to encode computation tree of H. We need variables to
capture different entities at each of the nodes of the computation tree. Hence, we introduce
some notation. Let Iy = {a | a = 1l.i1.45. im, 0 <m <k, i; €[n]for 1 <j<m} denote
the set of all paths starting from root node in the computation tree. Note that the location
at node « is L(c). Given a variable z, V¥ will denote a set of variables for each node in
the tree corresponding to z, that is, V¥ = {2, | @ € I,}. The free variables of our formula
will include VI, VF, and V¥, where z, denotes the continuous state in the computation tree
at a; similarly, ¢, denotes the time spent at location qr), and p,; denotes the probability
of the transition from (gr(a), ¥a) t0 (¢, ¥a.i) in the computation tree. We will assume that

p1 = Init(qr, 7).

Encoding of execution tree

We need to ensure that the total time spent on the executions is bounded by some value 7T'.
Hence, we track the total time spent along any path from the root in the computation tree
using the variables in Vp. Our goal is to optimize the probability of reaching a final state.
Hence, we use the variables in Vp to capture the probabilities along the paths of the com-
putation tree, that is, P, captures the probability associated with execution corresponding
to . Finally, we need to add the probabilities of all those paths that end in a final state
and don’t reach a final state before that. Hence, we have boolean variable sets Vr and Vp,
where F, is a boolean variable that is true when « corresponds to an execution that ends in
a final state without having visited a final state before, and B,, is a boolean variable that is
true if a final state has been visited along «.

Next, we construct a formula FzxecSHTF that captures the sum of the probabilities of the
executions of computation tree with level k that reaches the target set I (for the first time)

within time 7.

36

Validation of tree edges. The formula Tree validates all the edges in the computation
tree for given values of V., V;, V,. It also checks that the initial state and probability (at the
root) are valid. Here I,(x,p) is a predicate such that Init(q,z) = p. We use z; to denote

(Za.l’ s 7Za.n)-

Tree(Vy, Vi, V) = Ly (x1,p1) A /\ [Transg, . (Tastas Tas s Po)]

acl, 4

Timing constraints. The formula Timer checks the relation between global times
in Vr and local times in V,, and ensures that the total times are less than 7' along any
executions. The local and global time variables for a probabilistic edge are demonstrated in

Figure 4.4.

Ta.l TQ.Z Ta.n

Figure 4.4: Time variables

Timer(Ve, V) =[(Ti=0)A N\ (N Toj=Ta+ta) A \ O T, <T)]
OéEIk,1]:1 OzEIk
Probability checking. The formula Prob checks the relation between the total probabil-
ity along a path captured using Vp and the local probabilities along the individual transitions
captured using V,. The local and global probability variables for a probabilistic edge are

demonstrated in Figure 4.5.

P(_EJ. Pﬂ.2-"“““"“““}30.'”
Figure 4.5: Probability variables

37

PT’Ob(VP,Vp>:[P1:p1/\ /\ (/\Pa.j:Pa*pa.j)]
j=1

acll_q
Checking if final state has been reached. The formula Before captures using Vg
whether a state from the target set has been seen at any previous node in the path from

root node to that node in the execution of computation tree using the values in V,.

Before(Vp, Vs) = [(Br =Fg, (z)) A\ (/\Bw— BoVFy., (€a;))]

ael_1 j=1

Final target state checking. The formula Final captures using Vr whether a target
set is visited for the first time at a node in a path from the root node to that node in the

execution of the computation tree using the values in Vg.

n

Final(Vr,Vp) = [(F1 = By) A /\ ((Fa-j = (—Ba A Ba-j)))]

acly_1 j=

Sum of probabilities. The formula Sum checks whether given Vp, Vr and p, if ps is the
sum of all the probabilities associated with nodes in the computation tree which correspond

to executions that reach the final state only in the last state.

Sum(Vp, Vi, ps) = [ps = (Y FaPa)

acly

Finally, we can put all the formulas defined above to construct the formula ExecstTE (),
Vi, Vo, V1, Vp, Vi, Vi, ps) that captures the values of the variable V,, V;, V,, Vr, Vp, Vg and
Vr for a computation tree, along with the total probability of reaching the target set F for

this computation tree in p;.

Exec=P TV, Vi, Vy, Vi, Ve, Vi, Vi, ps) = Tree(V,, Vi, V) A Time(Vr, Vi) A

Prob(Vp,V,) A Before(Vg, Vi) A Final(Vr, Vi) A Sum(Vp, Ve, ps)

38

Note that the formula EzecS*TF does not check for the minimum/maximum probabilistic
reachability. Therefore, we need to solve an optimization problem with p, as the objective

<kTF as the constraints. Note that the formula EzecS*TF has conjunc-

function over Fxec
tions and disjunctions of linear expressions which can be solved by existing SM'T optimization

tools Z3opt SMT-solver 4’ and SYMBA 4!,

4.3 Experimental analysis

In this section, we present an implementation details of the SMT based approach for comput-
ing the bound on the minimum/maximum probability of reachability for a polyhedral prob-
abilistic hybrid system. Our implementation has probabilistic reachability analysis module
that takes as input a polyhedral PHS, number of discrete transitions k, total time T, an
initial set I, and a target set I, and outputs an SMT formula that captures all the compu-
tation trees corresponding to the polyhedral PHS. The latter module calls either Z3opt to
solve the optimization problems over the SMT formula that returns the minimum /maximum
probability of reachability. Next, we explain a systematic way of constructing polyhedral
PHS of different number of modes and dimensions associated with vehicle navigation. All

the computation times are measured in seconds. The evaluation of the experiment has been

conducted on Ubuntu 18.04 OS, 2.5 GHz Quad-Core Processor, 8GB RAM.

Polyhedral PHS for vehicle navigation

We consider a 2D field, where different number of horizontal and vertical roads intersect
with each other. For example, two horizontal and vertical roads on a 2D field is shown in
Figure 4.6. Here, dark grey regions are part of the road, and light grey regions are the blocks
beyond the road. To construct a polyhedral PHS, we randomly generate a simple route,
where the same cell does not appear again, as shown by black solid line in Figure 4.6, and

consider uncertainties at each turn involved in the route. For example, when the vehicle is

39

Figure 4.6: Vehicle navigation

in the region G, the vehicle could either take left/right turn. Here, we assign probability
value 0.95 to the desired direction and probability value 0.05 to the undesired direction as
shown in Figure 4.6. Finally, we generate a polyhedral PHS corresponding to the route as
shown in Figure 4.7. In Figure 4.7, we create a location for each cell involved in the route.
Then, for each location, we assign appropriate dynamics based on the route. For example,
in the location L;, the vehicle moves in upward direction. Hence, we assign the dynamics
of vertical motion, that is, 2 = A(0,1,0)z. Here, the motion in anticlockwise and clockwise
direction are annotated by AW and CW respectively.

We first evaluate our method for the case study demonstrated in Section 3.3 of Chapter 3.
Let U be the region beyond the lane. Here, we want to compute the probability of the vehicle
reaching U and —U in the North direction starting from I = [—4, —3.9] x [—0.1,0.1] towards
the East direction, respectively. Further, for measuring the scalability of our method, we

consider a set of examples. We generate different polyhedral PHS of different number of

40

locations and probabilistic edges. We consider a scenario consisting of 20 horizontal and 20
vertical roads intersection with each other in a 2D plane. Then, we randomly generate a
simple route of different length and its corresponding polyhedral probabilistic hybrid system
as described in the previous paragraph. Here, we want to compute the probability of the

vehicle reaching the end cell(IF) from the initial cell.

Figure 4.7: Polyhedral PHS for the Navigation shown in Figure 4.6

Experimental results

The experimental results are summarized in Tables 4.1, 4.2, and 4.3. In the tables, Prob
denotes the maximum probability of reachability; K and T denote the number of discrete
transitions and time horizon, respectively. Ej;n. and C;pedenote the time taken for encoding
the bounded probabilistic behaviors, time for computing the maximum /minimum probability
by the tool Z3opt, respectively. In Table 4.3, Nodes and Edges denote the number of locations

and probabilistic edges, respectively.

41

Row | K | Prob(U) | Prob(—=U) | Epme(sec.) | Crime (sec.)
1 2 10 0.81 0.063 0.049
2 4 10 0.9963 0.107 0.082
3 6 |0 0.999945 0.189 0.195
4 8 |0 0.99999927 | 0.190 0.580

Table 4.1: Probabilistic reachability of the case-study for T'=5

Next, in Tables 4.1 and 4.2, we report the results of analyzing the case study for different
number of discrete transitions K and time horizon 7', respectively. In Table 4.1, we have
fixed the value of T', and varied the number of discrete transitions K. We observe that
the probability of the vehicle reaching beyond the lane in the North direction is zero for all
values of discrete transitions. However, the probability of the vehicle being in the lane in
the North direction increases as we increase the value of K. This is expected because the
number of paths reaching —U in the North direction increases when the value of K increases;
thus increasing the probability. In adition, both the encoding and computation time grow

linearly as we increase the number of discrete transitions as it can be seen in the Table 4.1.

Row | T | Prob(U) | Prob(=U) | Eyme(sec.) | Cime (sec.)
1 210 0 0.118 0.080
2 310 0 0.78 0.075
3 4 10 0.9963 0.105 0.095
4 510 0.9963 0.117 0.070

Table 4.2: Probabilistic reachability of the case-study for K =4

In Table 4.2, we have fixed the number of discrete transitions K, and varied time horizon
T. We observe that the probability of the vehicle reaching beyond and on the lane in the
North direction is zero for 7' = 2, 3. This is because 3 units of time are not sufficient for the
vehicle to move from East direction to North direction. For T' = 4,5, the probability of U
in the North direction is zero; however, probability of =U in the North direction is 0.9963
because all paths up to length 4 may have been explored for T" = 4. In addition, both the

encoding and computation time remain constant because size of the encoding does not grow

42

when we increase the time horizon 7.

Row | Length | Nodes | Edges | (K,T) | Prob(F) | Eume(sec.) | Cime (sec.)
1) 7 4 (5,5) 0.9025 0.11 0.062

2 10 12 9 (10,10) | 0.8145 0.19 0.057

3 15 17 14 (15,15) | 0.73556 | 0.27 0.06

4 20 22 19 (20,20) | 0.63024 | 0.35 0.105

Table 4.3: Probability of reaching F

In Table 4.3, we report the results of analyzing polyhedral PHS of different number of
locations and edges generated from different lengths of route. Here, we choose number of
transitions K and time horizon T to be the same as the length of the respective route. In
Table 4.3, we observe that the probability of reaching end cell (F) of the respective route
decreases, when we increase the length of the route. This is because there is only one path
reaching the location corresponding to the end cell F as can be seen in Figure 4.7. Hence,

the probability of a shorter path is high, and the probability of a longer path is less.

Remark 3. Methods similar to Bounded model checking require solvers to solve the encoding
capturing all potential bounded executions. For solvers like Z3, scalable s limited due to
the computational complexity which increases with the number of quantified variables. An
alternative approach to deal with bounded probabilistic reachability analysis is sampling based
approach, such as statistical model checking (SMC)™?. Different methods, such as frequetist
sequential probability ratio test (SPRT)", Bayesian SMC"™ have been explored. However,
there s trade-off between accuracy and computational effort. While SMC' based approaches
provide approrimate results, it is beneficial for bounded reachability analysis of probabilistic
hybrid systems with complexr dynamics. Note that such an approach can not be directly
employed for unbounded probabilistic reachability analysis because paths of infinite length

need to be sampled.

43

Chapter 5

Safety analysis of polyhedral

probabilistic hybrid systems

In this chapter, we consider safety verification problems of polyhedral probabilistic hybrid
systems. We present a counterexample guided abstraction refinement (CEGAR) based algo-
rithm. The broad approach consists of starting with abstraction and iteratively refining the
abstraction based on a counterexample in the the abstract system that points to a potential
violation of the property. To the best of our knowledge, this is the first CEGAR algorithm
for probabilistic hybrid systems.

Developing a CEGAR algorithm for PHSs is challenging because it needs to address
the branching behavior due to probabilities and the infinite state space due to continuous
variables simultaneously. We view a given concrete PHS H as an infinite state MDP and start
by constructing an abstract finite state MDP # that simulates 7. We use the model-checker
PRISM to obtain a counterexample of the abstract MDP, which is a DTMC in the form of a
layered directed acyclic graph (LDAG), that is obtained by a finite unrolling of the DTMC
returned by PRISM. Unlike DTMC, the LDAG has bounded paths and is more succinct than
a tree unrolling. While the validation problem is a bounded model-checking problem, an SM'T

based approach for validation typically requires an exponential number of variables in the

44

length of the counterexample!#3. We present an efficient validation procedure that performs
a bottom-up backward reachability analysis and either finds a concrete counterexample or
points to a node in the LDAG that needs to be refined. The refinement procedure is more
involved as compared to the non-probabilistic setting due to the absence of clear disjoint
sets that can be separated in the refinement step. Let us say that the validation fails at
the layer £ from the top at a node v, which corresponds to a set of concrete states S,. Let
Ry, Ry, - -+, R, be the nodes reached using the backward reachable set computation at layer
k 4+ 1. We know that the set of predecessors of the states Ri, R, --- , R, which are in S,
is empty (because the validation failed). This implies that the successors of the states S,
which correspond to a set of n tuples, say P,, is disjoint from R; x Ry X --- X R,,. However,
this does not immediately imply that the projection of P, to the i-th component, namely, P!
is disjoint from R;. Refinement in the purely hybrid setting is based on finding two disjoint
sets, and splitting the corresponding node in the abstract system to separate a post set and
a reach set. We observe that in general, we do not find two disjoint sets P’ and R; for
every 7, nevertheless, we can split in a manner that ensures progress, that is, guarantees the
elimination of the abstract counterexample in a finite number of refinements.

We implemented our algorithm in a Python toolbox called Procegar, and we compared
our method with the tool ProHVer!'3!. Our method concludes safety in many more instances
than ProHVer. The method can return concrete counterexamples and it scales to higher

dimensions than ProHVer.

Remark 4. We use the Markov decision process for the semantics of polyhedral probabilistic

hybrid systems in the rest of this chapter.

45

5.1 Preliminaries

Notations and Definitions

Definition 10 (Layered Directed Acyclic Graph (LDAG)). An LDAG D = (§',—') is a

special case of DTMC where 8" C S X N for some set S such that
* There is a unique state s € S such that (s,0) € S';
* If ((s,1),p) €—', then for allt € S, p(t,j) =0 forj #i+1;

*x If (s,1) € 8', then there exists (s',i — 1) —' p for some (s',i — 1) € S such that

p(s,i) # 0.

The LDAG begins with a unique root state at layer 0. All state transitions with positive
probability correspond to jumps to states in the next layer. The last condition ensures
that each state in the LDAG can be reached from the root. The depth d of a finite LDAG
D = (8',—') is the maximum length of any path in D, that is, d = max{i | (s,i) € S'}.

Next, we define a sub-LDAG as a substructure of an LDAG rooted at a certain state/node.

Definition 11 (Sub-LDAG). Given an LDAG D = (S,—), a sub-LDAG D’ = (§', —)

rooted at (s,j) € S is defined as
* 8"'={(s',1—7)|(s,1) is reachable from (s, j) in D};

* —'={((5,4),p)] (¢,1) € S, A(s,i+j),p) e—, ¥V (",i+1) € S p((s" i+ 1)) =

p(s",i+j+1)}
We consider executions of M as LDAGs that arise due to unrolling of M.

Definition 12. Given an MDP (S, —), Ezec(M) is the set of all LDAGs D = (S, —')
where " C S x N; and for every ((s,i),p') €—', then there is p such that (s, p) €E— and

for every (t,i+1) €S, p'(t,i +1) = p(t).

46

Probabilistic simulation

Probabilistic simulation captures a relation between states of two MDPs wherein if two states
are related then any probabilistic transition from the simulated state can be mimicked by
the simulating state. In this section, we consider a restricted version of the probabilistic
simulation relation between two probabilistic systems as defined in'#*, which is sufficient to
capture the relation between the concrete system and its abstraction defined in this paper.
In particular, we enforce a bijection between the probability distribution associated with the
two states. We consider this restricted version because it simplifies our technical discussion

and suffices for our purposes.

Definition 13. Let M = (81, —>1) and My = (Ss, —>2) be two MDPs. An onto function
a: 81 — Sy is a probabilistic simulation from Sy to Ss if for all s; € Sy, so € Sy such that

a(s1) = sy and sy — w, 3 p € Dist(S2) such that ss — p, and
* 7(s) = p(a(s)), for all s € support(r);
*x For s,s' € support(m) if s # &', then a(s) # a(s').

We say that « is a probabilistic simulation from M, to M, denoted by M; <, Ms. In
addition, given .# C Sj, we say that « respects .7 if for s € . and t € §;\ F, a(s) # a(t).

Next, the following theorem states the fact that if two MDPs M and M, are related by
a probabilistic simulation «, that is, M; <, My, then MDP M, is an over-approximation
of My, that is, My has a larger number of executions than Mj; thus the minimum and
maximum probability of reaching a set of states in M is lower bounded by the minimum
and upper bounded by the maximum probability of reaching the related set of states in M.

The following theorem is similar to the theorem given in the paper?.

Theorem 1. Let My = (81, —1) and My = (S, —>9) be two MDPs and %, C S;. If a is

a probabilistic simulation from My to My which respects %, then for any s; € S, we have

(a) Psup(MlaslaﬁH) S Psup(M%a(Sl%a(ﬁl));

47

(b) Prob(Ms,a(s1),a(F1)) < Proby (M, s1,F1).

Next, we define a function ay that extends probabilistic simulation relation between

states of MDPs to states of corresponding executions.

Definition 14. Given a probabilistic simulation o : &1 — Sy between two MDPs M; =
(81, —1) and My = (Sa, —2), we define ay : St XN — Sy XN such that an(s, i) = (a(s), 1)

for each s € &1, i € N.

Furthermore, we define the set of all executions D; of an MDP M, which simulate an

execution Dy of an MDP M, with respect to the probabilistic simulation o between M;

and M.

Definition 15. Given a probabilistic simulation o : &1 — Sy between two MDPs M; =

(S1,—1) and My = (Sy, —2), an LDAG Dy € Ezec(My), we define a™(Dy) as follow:

a ! (Dy) = {D; € Ezec(M;) | Dy <, D, for some v € I(ay)}.

Additionally, we define an abstraction of an MDP M = (S§,—) denoted a(M) with
respect to an abstraction function o : § — &’ for some §’. The abstraction function is

formally defined as follows.

Definition 16. Given an MDP M = (S, —), an abstraction function o : S — S’ for some
set 8" is a function such that for any (s, p) €—, if s1, 2 € support(p), then a(sy) # a(sq),

where 1 # $o.

The above definition appears to be a restricted notion of abstraction on the MDPs,
however, the particular abstractions we consider on probabilistic hybrid systems in the sequel
will correspond to abstraction functions of this kind on the underlying MDPs. Furthermore,

the formal definition of a(M) is given as below.

Definition 17. Given an MDP M = (§,—) and an abstraction function a : S — &',

a(M) = (8", —), where —'={(¢,p') | 3(s, p) €E—>, a(s) = &, Vt, p(t) = p'(a(t))}.

48

The theorem below states that a(M) is an over-approximation of M.

Theorem 2. Given an MDP M = (S,—), an abstraction function o : S — S for some

set ', we have M <, a(M).

5.2 Problem definition

Problem 2 (The Maximum Probabilistic Safety Problem). Given a polyhedral PHS H, an
initial location qy, a set of final locations F and probability bound 6 € [0, 1], check whether

the mazimum probability of reaching F x X from {qo} x Inv(qo) is less than or equal to 6,

that is, max Py,([H], s, F x X) <6.

s € {go}xInv(qo)
Similarly, the minimum probabilistic reachability problem can be defined. Here, we focus
on the maximum probabilistic safety problem. However, our results extend in a straightfor-

ward manner to verify lower bound on the minimum probability of reachability.

5.3 Running example

We consider a one dimensional example shown in Figure 5.1 as a running example throughout

this chapter to illustrate each step of our CEGAR algorithm.

Figure 5.1: Polyhedral Probabilistic Hybrid System

49

Example 3. Figure 5.1 illustrates a polyhedral PHS, where the locations q1, o, q3 and q4 are
represented using circle nodes, where the initial location is indicated with an incoming arrow
and the final location is indicated with double circles. The variable x represents the continuous
variable which takes real values, that is, the continuous statespace is R. Fach location is
annotated with a polyhedral inclusion dynamics and an invariant which are written within
the corresponding circle. A polyhedral inclusion dynamics is represented using a constraint
over the rates of the continuous state variables, and the invariant is a constraint over the
continuous state variables, which constrains the system evolution at a particular location.
For example, in location qi, the polyhedral inclusion dynamics is 1 < & < 2, where s
the rate of continuous state evolution, and the invariant is x € [0,4]. Next, the switching
from one location to another location is expressed by a probabilistic edge which has mainly
three components, namely, the guard, the probability distribution and the reset. The guard
18 a constraint over the continuous state variables that represents the condition that enables
the system to switch between locations; the probability distribution provides the probability of
switching to a target location, and the reset expressed as a constraint over the continuous
state variables and its primed versions, provides the values of the continuous state before and
after a transition, respectively. For example, in location q1, the system has a probabilistic edge
with guard 0 < x < 2, probability distribution p1(q2) = p1(g3) = 0.5 and reset for locations
¢o and q3 as ¥’ = x. Hence, when the system is in location q; and the continuous state x
satisfies the quard 0 < x < 2, the system switches to locations qy and qs with probability 0.5

each, and the continuous state remains unchanged (v, = x).

5.4 Counterexample guided abstraction refinement

In this section, we provide the details of our Counter-Example Guided Abstraction Refine-
ment (CEGAR)® algorithm for the probabilistic safety analysis of polyhedral PHS. The

maximum probabilistic safety problem for polyhedral PHS is challenging due to the infinite

50

statespace. An abstraction based analysis consists of abstracting a given (concrete) system
to a simpler abstract system, such that the satisfaction of a certain property, such as, the
maximum probability of reaching an unsafe state being less than 6, on the abstract system,
implies the satisfaction of the property on the concrete system. In our case, the concrete
system is a polyhedral PHS and the abstract system is a finite state MDP, on which the
maximum probabilistic safety analysis can be carried out efficiently. One of the challenges
towards abstraction based analysis is the choice of the abstraction, on which the success
of the verification crucially relies. In other words, the abstract system is often an “over-
approximation” and hence, the violation of the property by the abstract system does not
imply a violation in the concrete system. However, a violation in the abstract system pro-
vides a potential reason for the violation of the property in the concrete system, in the form
of an abstract counterezample (ACE). Analysis of the abstract counterexample using a val-
idation algorithm, results in either a concrete counterexample corresponding to it (a bug)
or in concluding that the abstract counterexample is spurious, that is, does not correspond
to a real counterexample. In the latter case, the spurious counterexample analysis can be
used to refine the abstract system so as to eliminate the same. This process is continued
until either some abstraction of the concrete system satisfies the property or the validation
algorithm determines that the system violates the property. This iterative refinement of the
abstract system based on counterexamples is referred to as the counterexample guided ab-
straction refinement. While CEGAR algorithms have been proposed for (non-probabilistic)
hybrid systems®® and finite state probabilistic systems®®, there are several challenges due to
the combination of infinite statespace and the branching behavior in a probabilistic hybrid
system. In particular, we need a succinct representation of the abstract counterexample,
efficient validation and refinement algorithms. We provide the details of each of the steps of

the CEGAR loop in the sequel.

51

5.4.1 Abstraction

In this section, we develop a partition based predicate abstraction technique that converts a
polyhedral PHS into a finite state MDP. The broad idea is to divide the statespace of each
mode into a finite number of regions, and construct an MDP which consists of these regions as
abstract nodes. Let us fix a polyhedral PHS H = (Q, X, Inv, Flow, Edges, Guard, Reset) and
a finite partition R of Q x X’ such that for any partition element P € R if (¢, z), (¢',2') € P
then ¢ = ¢’. So, R consists of a partitioning of the statespace where states from different
modes are kept separate. Predicate abstraction creates a set of locations, where each location
is a partition element P € R. For each probabilistic edge (g, p), where p(q1) = p1, p(q2) =
P2y -, p(qe) = pe, for each tuple ((qo, Ro), (q1, R1), - - -, (qe, Re)) € ReT! we check whether
there exists a probabilistic execution starting from x € Inv(q) N Ry and reaching Inv(g;) N R;,
1 =1,2,...,c. More precisely, there exists a vector field r in flow function associated with
the location ¢, T" > 0 such that = + rt € Inv(q) for 0 < ¢ < T and guard condition
corresponding to the probabilistic edge (g, p) is satisfied by x + rT’; there exist x1,xo, ..., x.
are reset by reset function for ((¢,p), q1,x +rT), (¢, p), g2, +7rT),...,((q,p), qc,x + 7T,
respectively. Then, there exist vector fields r1, 7, ..., 7. in the flow function associated with
the locations qi,qa, . . ., q., respectively, T} > 0,75 > 0,...,T,. > 0 such that for 0 <t < Tj,
x;+rit € Inv(q;) and z; +r;T; € R;, i =1,2,...,c. If the execution exists, then we create a
probabilistic edge ((g, Ro), p') such that p'((¢;, R;)) = p(qi), i = 1,2, ...,c. Next, we present

the formal definition of predicate abstraction.

Definition 18. Given a polyhedral PHS H = (Q, X, Inv, Flow, Edges, Guard, Reset) and a
finite partition R of the state space Q x X, where R = Q x {R; | 1 <i <k, k € N}, we
construct a finite state MDP Abs(H,R) = (S, —), where

* §=TR;

* ((Q7 R)aﬂ-) c— Zle (Q7:0) € Edges) S R7 I= ’{q/ | p(q/) 7& O}|7 (<QI7R1)> (q27R2)7 ER
(q1, Rp)) € RE, where p(q;) # 0 fori € [I], ¢ : [0,T] — X, x;,¢; : [0, T;] — X, i € [I]

52

such that

* ¢(0) =z and $(T) € Guard((q, p));
x For 0 <t <T, %20 ¢ Flow((q, 6(t))), ¢(t) € Inu(q);

* x; = Reset(((q. p), a:,)(T))), ¢:1(0) = w;, i € [I];

* for 0 <t <T;, 4 € Flow((qi, ¢i(t))), ¢i(t) € Inv(g;), i € [1);

dt

* ¢i(T;) € R, i € [I]; Y w((qi, Ri)) >0, plgi) = 7((q:, Ri)).

From the definition, for each state (g, R), there could be more than one probabilistic
distributions over R associated with the state, thus allowing non-determinism. Therefore,
Abs(H,R) need not be DTMC in general even if H has deterministic probabilistic transi-
tions. Therefore, Abs(H,R) is a finite state MDP. In addition, Abs(#H,R) captures all valid
probabilistic edges of H. Next, we present the correctness of the predicate abstraction.

Consider a function ag : @ x X — R such that ag(q,x) = (¢, R), where z € R. That
is, ar maps a concrete state to the corresponding region in the partition it belongs to. Note
that ax is an abstraction function, because, for any ((¢,), p) €—puy, if (q1,21), (g2, 22) €
support(p) and (qi,z1) # (q2,22), then ¢ # ¢o (from the semantics, there is a unique
successor state corresponding to every target location), and hence, ag(q1, 1) # ar(qga, x2).

The abstraction of H with respect to the finite partition R denoted as Abs(H,R) is
ar([H]). From Theorem 4, Abs(H,R) is an over-approximation of polyhedral PHS H. From
Theorem 6, if the abstract system Abs(#, R) is probabilistically safe, that is, Py, (Abs(H, R),
(g0, R), ar(F x X)) < 0 for every (qo, R) € ar({q} x Inv(qo)), then the concrete system H
is also probabilistically safe, that is, Py, ([H], (g0, z),F x X) < @ for every (qo,x) € {qo} X
Inv(qo). If R is a polyhedral partition, then Abs(H,R) can be constructed. Note that from
Definition 30, to check whether a probabilistic edge exists in the abstract system, we need to
check if a corresponding concrete edge exists. This can be encoded as a satisfiability problem
of a conjunction of linear constraints. Alternately, one could use polyhedral manipulations

to compute the predecessor states corresponding to the abstract probabilistic edge in the

53

concrete system, and check for its emptiness. The next example illustrates the computation

of the abstract MDP.

Example 4. Consider the polyhedral PHS H shown in Figure 5.1 with its state space Qx X =
{q1,92,q3,q4} % [0,4]. Let R = {(q1, R), (g2, R), (g3, R), (qa, R)} be a finite partition of the
state space Q X X, where R = [0,4]. The abstraction of H with respect to the partition R is
Abs(H, R) which we construct according to Definition 30. Each partition element of R is an
abstract state, for instance, (q1, R) is a state of the abstract system as shown in Figure 5.2.
Next, we construct a probabilistic edge from one abstract state to a tuple of abstract states
with certain probabilities if there is a corresponding concrete edge in H. For example, we
construct an abstract edge from (qi, R) to (g2, R) and (g3, R) with probabilities 0.5 and 0.5,
respectively, because a corresponding concrete edge exists in H, as given next. The system
starts from x = 0.5 € R at location q; and evolves for time t = 2 with flow © = 0.5 and
reaches the state v1 = x + @t = 0.5 4+ 0.5 x 2 = 1.5 which satisfies the gquard constraints, that
is, 1.5 € 10,2]. Then, the system switches to gz and q3 by resetting the continuous states to
To =x1 = 1.5 and x3 = x1 = 1.5, respectively. Since x4, 13 € R, we have a concretization of

the edge from (qu, R) to (g2, R) and (g3, R) with probability 0.5 each.

Figure 5.2: Markov Decision Process Abs(H,R)

5.4.2 Model checking and counterexample

In this section, we verify the maximum probabilistic safety problem for the abstract system

Abs(H,R). Since the abstract system is a finite MDP, we adopt probabilistic model checker

o4

tool PRISM?® for the purpose of verification. PRISM?® takes as input a finite MDP, a set
of initial states and a PCTL formula®, and returns either true to indicate that the MDP
satisfies the formula, or returns a counterexample 7 in the form of a DTMC. Maximum
probabilistic safety specification can be encoded as a PCTL-formula. While T is a coun-
terexample, it contains cycles and hence, analyzing it for spuriousness is complex. Hence,
we unroll 7 and construct a finite LDAG D as a succinct counterexample. Next, we provide

the formal definition of a counterexample.

Definition 19. Given an MDP M, an initial state qo, a set of final states F and 6 €
[0,1], an LDAG D e Ezec(M) is a counterexample of M with respect to qo, F and 0, if

1),
P(D, (¢0,0),F x N) > 6.

Algorithm 1 provides the details of extracting a succinct LDAG counterexample D from
a given DTMC counterexample 7 that is returned by PRISM which indicates that the
probability of reaching F in T from Qo is greater than 6. The crux of the algorithm consist
of unrolling the DTMC and collecting enough paths reaching F from ¢y whose sum total
exceeds #. The algorithm iteratively computes pf], which is the probability of reaching a final
state in [F from ¢ within ¢ steps. It can be observed that there is always a d for which pgo
exceeds 0. To see this, note that in the DTMC %, the probability of reaching F from q is
> @, which is the sum of probabilities of paths reaching IF. Since, the DTMC is finite, we can
enumerate the paths, and the corresponding probabilities. Let pq, po, - - - be the probabilities
of the paths reaching F, where) .p; > 6. Our objective is to show that there is finite
number of these probabilities (correspond to finitely many paths) who sum exceeds 6. Note
that if the sequence is finite, we can take all the paths that reach F. Otherwise, >, p; > 6
implies that lim;_,, 23:1 p; > 0 by definition of infinite sum. From the definition of limit,
there is a k£ such that Zé’:lpi > @ for all + > k. In particular, 2521 p; > 0. Hence, in at
most k iterations, pg will exceed 6 and exit the loop. Once the length d for the sufficient
unrolling is computed, the function ForwardReach performs a forward reachability analysis

to only keep those nodes in the unrolling of M up to length d that can be reached from ¢q

55

using transitions in the support (that is, edges with non-zero probability).

Algorithm 1: Get_LDAG: Extract a succinct LDAG counterexample from a given
DTMC counterexample

Input: T -a DTMC, F - a set of final states, 6 - a probability bound, ¢, - a state of T
Output: a finite LDAG D

1 SetKwKwGoTogo to begin
2 For each state ¢ of T if q € F then p2 =1 else p2 =0 d=0
3 while pgo < f do
4 d =d+1
5 for each edge (q,p) of 7 do

L if ¢ € F then pf =1else pl = > p(s') * pt
6 state s’ of T

7 D= ForwardReach(M, qo, d) return D
8 end

Example 5. Consider the MDP Abs(H,R) shown in Figure 5.2, an initial state (q1, R),
a set of final states {(qs, R)} and 6 = 0.5. The LDAG D € Ewec(Abs(H,R)) shown in
Figure 5.3 is a counterezample, because Prob(D, ((¢1, R),0),{(qs, R)} x N) = Prob(oy) +
Prob(oq) + Prob(os) = 0.254 0.25 + 0.125 = 0.625, which is greater than 0.50, where oy, o9
and o3 are paths given by o1 = ((q1, R),0) — ((¢2, R), 1) — ((q4, R),2), 09 = ((¢1, R),0) —
((g3, R),1) = ((qa, R), 2) and 03 = ((q1, R),0) = ((g2, R), 1) = ((g3,), 2) = ((qa, R),3) in
D.

Figure 5.3: LDAG D € Erec(Abs(H,R)) violating Probg,,

56

If Abs(H,R) is not probabilistically safe, then an abstract counterexample D of Abs(H,R)
can be computed. The abstract counterexample indicates only a potential violation of safety
in the concrete system. Hence, we need to validate the counterexample D to check if it is
realizable in the concrete system H. Next, we provide the details about the validation of a

counterexample.

5.4.3 Validation

In this section, we provide a method to validate whether a counterexample expressed as an
LDAG for the abstract system Abs(H,R) is realizable in the concrete system H. Let us fix
a finite LDAG D = (Sp, —5) as a counter example of Abs(H,R) whose depth is d. Our
validation problem is to check whether D is realizable in the concrete system H. This is

formally defined as below.
Problem 3 (Validation Problem). Verify whether there ezists D € FEzec([H]) such that
D € az' (D).

Our broad approach for the validation of D is to compute all those concrete set of states
associated with the abstract states from which sub-LDAG of D rooted at the abstract state is
realizable in H. We compute such sets from bottom to top layer, which is based on backward

reachability analysis for which we define a function Pre.

Definition 20. Given a set S, a finite set of sets {S;}ica and {p;}ica for some index set A,

we define a function Pregy(S,{Si}ica, {Di}ica) as
{s€S|3p, s—pgp, Yie A Is; €5, such that p(s;) = p;}.

We are going to compute a set of concrete states ER’(“% r) for each abstract state ((q,R), k)
of ﬁ, where 9%’(2 r) denotes the set of all concrete states (q,z) € {q} x R from which there

exists an LDAG D € Ezec([H]) such that the sub-LDAG D’ of D rooted at ((¢, R), k) is

realizable by D in the concrete system H. This is formally defined as follows.

57

Definition 21. Given an abstract state ((¢, R), k) € Sp, we have %I(C%R) as {(q,x) € {q} x
R | 3D € Ezec([H]) rooted at ((g,z),0) for which there exists a sub— LDAG D’ of D
rooted at ((q,R),k) such that D € ax'(D’)}.

Alternatively, 9%’(“(17) can be inductively defined as follows. Let S(k% R) be the set of all
concrete states associated with the abstract state ((g, R), k), that is, S(kqﬁ) = az'(q, R), and

Qy. be the set of all those abstract states (¢, R) at layer k in ﬁ, that is, ((¢, R), k) € Sp.
* If k = d or there is no abstract edge ((¢, R), k) —5 p, then 9% (0.R) 18 S(q R)S

* If there is an abstract edge ((¢, R), k) —5 p, then Dﬁi’fqu) is
Prep (St py ARy my o rrean s 10 BY) b+ D} g myegu)-

Example 6. Consider the LDAG D shown in Figure 5.3. We compute the concrete set of
states Sé“q’ R) and backward reach sets ‘ﬁ’(“% R) for each abstract state (q, R) at layer k, from
the bottom to the top layer. The continuous part of S(kqﬁ) and 9%’(“(171%) for each abstract state
of D are expressed in the lower and upper part of the circle, respectively, in Figure 5.4.
The concrete sets of states are computed as S@R) = ax'(q, R) = (¢, R) from ar given in
Ezample 4. For example, for the abstract state (g3, R) at layer 1, qu R) = (gs,0,4]) and
its continuous part is [0,4] which is written in lower part of its circle. Backward reach sets
are computed according to its inductive definition. There are three cases. (a) The abstract
state is located at the last layer of D. For example, abstract state (q1, R) is located at layer
3 which is the depth of D. Hence %?ql’R) = Sg’ql r) = (@1,(0,4]). (b) There is no probabilistic
edge from the abstract state and it is not located at the last layer. For example, there is no

probabilistic edge from (qu, R) at layer 2. Hence, 9{%% =82 o = (q4,[0,4]). (c) All those

(@a,R) —
abstract states from which there is a probablistic edge. For example, abstract state (g3, R) at
layer 2 has a probabilistic edge to (¢, R) and (q4, R) at layer 3 with probabilities 0.5 and 0.5,

respectively. The backward reach set ER (4s.r) 15 Prepu (S(qu {S (R Sq4R} {0.5, 0.5}).

58

From Definition 29, Pre[m]]((45.R) {S(q1 R) (q4 r 1+ 10.5, 0.5}) is computed as follows. First,
for the edge from q3 to q1, we compute the set G of continuous states which satisfy the guard
and transition to (q1, R). Since the guard constraint is v € [3,4], R = [0,4] and the reset is
identity, we obtain Gy = [3,4]. Similarly, the continuous states which can transition to g,
is given by Go = [3,4]. Hence, the continuous states from which the probabilistic edge can
be taken are given by the set G = G1 N Gy = [3,4]. The set of all continuous states in [0, 4]
which can reach G with rate —1 < & < 0 is [3,4], since, all states in [3,4] can reach G by
following the rate 0, and no states in [0,3) can reach G because there are no positive rates.
Hence, PT‘e[H](S(% R) {S?ql,R),S(S%R)},{O.S, 0.5}) is (g3, [3,4]) which is the set of states in
S,,.ry from which there is a concrete probabilistic edge to S, py and S(,,) with probabilities

0.5 each.

0
Rig,R)

point of refinement =0

Figure 5.4: Point of refinement and spurious edge in D shown in Figure 5.3

The next proposition states that if any of the backward reach sets becomes empty there

there is no concrete counterexample corresponding to the abstract counterexample.

I
=

Proposition 1. aﬁl (73) 1s an empty set if and only if there exists k such that 9%’(“(1 R)

for some ((¢, R), k) € Sp.

Proof. If az' (73) is an empty set, then 9%’(‘3(1) 18 empty for k& = 0. Suppose there exists k

such that ?ﬁf% R) = 0 for some ((¢,R),k) € Sz. This implies that 9“{’(“;,7 Ry 1s also an empty

59

set for all those states ((¢/, R'), k") which are on the path from the root state of D to the
state ((¢, R), k). In particular, we have 9‘{(()%’ Ro) = (), which by definition implies that o' (@)

is an empty set. 0

If a5'(D) is not empty, then there is a valid counterexample D € Erec([H]) for the
concrete system H, that is, H is not probabilistically safe. However, if aﬁl(ﬁ) is empty,
then D is a spurious counterexample. Hence, we use the information from the analysis of
the counterexample D to refine the concrete system. We define the following which will be

useful in defining the refinement.

~

Definition 22. A point of refinement denoted as porpy3yr)(D), is defined as the largest
layer [ofﬁ such that there is a state ((¢,R),l) € Sz where SRl(q’R) is an empty set. A

probabilistic edge (((¢, R),l'), p) €E—>5 is spurious if ﬁ{l(lq,R) =0 and ' =1.

In Figure 5.4, the largest layer at which the backward reach set is empty in [= 0. Hence,

the point of refinement is 0 and the spurious edge is (((¢1, R),0), p), where p((g2, R),1) =

p((gs, R),1) = 0.5.

5.4.4 Refinement

In this section, we provide a method to refine the abstract system Abs(H,R) to eliminate
the spurious counterexample D. Let us fix a point of refinement [for D and a refinement
of partition R denoted as R;. Consider a function mapping the refinement to the current
abstraction, given by B,) : R1 — R where for all (¢, R) € Ry, (¢, R) € Br,»)(¢, R).
We need to eliminate the spurious counterexample from the abstract system Abs(H,R;).
Hence, we define a progressive refinement which ensures that the refinement makes progress
towards eliminating the counterexample D. It essentially captures the intuition that every
abstract counterexample in the refinement that corresponds to D has a point of refinement

which is lower in the LDAG.

60

@ Ca 0D a1
y4! P2 P1 b2 D1 D2
11 (. 7) @EDEED) >

Figure 5.5: Spurious Edge Figure 5.6: Edge 1 Figure 5.7: Edge 2
b1 b2 D P2
Figure 5.8: Edge 3 Figure 5.9: Edge 4

Definition 23 (Progressive Refinement). A refinement Ry of R is a progressive refinement

if we have

POTAbs(H,Rl)(D) > POTAbs(%,R)(D)> for all D € 5(_7311,73) (D).

Our objective is to find a progressive refinement R, of R. Since the main reason for a
probabilistic edge ((q, R),[),p) to be spurious is the emptiness of the backward reach set
Rl(g.R) OUr broad approach is to find a splitting of the nodes in the [+ 1 layer that eliminate
the spuriousness at layer [+ 1. This is achieved by splitting the nodes in layer [to separate
the post of Sé O.R) from the backward reach sets of layer [+ 1. Hence, we define a function

Post, which is along the lines of Pre.

Definition 24. Given a set S, a tuple (py, py, ..., p,), we define a function Postyy(S, (p1,

ypn)) as {(s1,52,...,8,) | 35 ES, (s,p) E—>py such that p(s;) = p; for all i € [n]}.

For any spurious edge (((¢q, R),1), p), backward reach set %I(Q’R) = 0, that is, Prepy (Séq’R),

{ml(;]’—’}R’)}(q/,R')EQHU (pb e va)) = (Da where (pla cee apn) € X {p((q’, R,)al + 1)} for
(¢, R"NEQi4+1

some n € N. From the definition of Post function as given in Definition 24, Postjy (Sé WR) (p1,
.., Pn)) intersected with the tuple of concrete states corresponding to the abstract states in
layer [+ 1 is not empty, because there exists an abstract probabilistic edge corresponding

to the spurious edge. Also, we obtain that no common element in the post of the concrete

61

set of states of the abstract state (¢, R) at layer | with respect to the spurious edge and
Cartesian product of backward reach sets of all target abstract states (¢/, R') at layer [+ 1

of the spurious edge. This is formally stated in the following proposition.

Proposition 2. Given a probabilistic edge (((¢, R),1), p) €E—5 (spurious) and (p1,...,pn) €

x Ap((¢, R),l+ 1)} for some n € N, we have
(¢'\R)€EQi+1

Postin (St m, (p1, .., pa)) N X RITL, = 0. 5.1
[[H]]((q,R) (p1) (@ B (¢ \R") (5.1)

It might be possible that intersection between the projection of the post for an abstract
state and backward reach set for the same abstract state is not empty. This is formally

written as a remark.

Remark 5. Given a probabilistic edge (((¢, R),l),p) €E—5 (spurious), it is not necessary
that the following statement is true. Let (p1,...,pn) € X {p((¢', R'),l+ 1)} for some

(¢',R")€Qi4+1
n € N.

P’I"Oj(POStHH]] (Sé%R)a (pla e apn))v ((q,/7 R//)v [+ 1)) N ml(:]&-”lR”

need not be empty for all (¢", R") € Q1.

Example 7. We illustrate Remark 5 using a counterexample. Consider the spurious edge E
shown in Figure 5.4. The post of the abstract state (q1,[0,4]) is B = (g2, 0,2]) X (g3, [0,2]).
From Figure 5.4, we have %%Q%R) = (q2,[1,4]) and ER%%R) = (g3, (3,4]). This implies that
BN (%%qz,R) X ER%%R)) = (). Next, the projection of B for the abstract state (¢2, R) and

(g3, R), 1)) = (g3, [0,2]),
respectively. Note that although Proj(B, ((gs, R),1)) N ?ﬁ%qs r = 0, Proj(B,((¢2,), 1)) N
ER%(D,R) 7 0.

(q37 R) at layer 1 are PT’Oj(B, ((q27 R)a 1)) = <Q27 [07 2]) and PTOJ(

Next, we provide the details about the separation. Let us consider a spurious edge F

with the point of refinement [shown in Figure 5.5 where the probability of transitions to

62

abstract states (qi,J) and (go, K) are p; and po, respectively. Let Slql SZH and SZIIK)

be concrete set of states for the abstract states (q, 1), (q1,J) and (gq, K), respectively, and
‘ﬁ 9%’;“11 sy and %l(;r; k) be the backward reach set for the abstract states (¢, 1), (¢1, /) and

(q2, K), respectively. Let X be the post of qu’l), and Y = %i;lJ ?}ié;’lK Let X; and X,

be the projection of X for the abstract states (q1,J) and (gz, K), respectively, and Y} and Y,

be the projection of Y for the abstract states (¢, J) and (g2, K) at layer [4 1, respectively,
: _ il I+1

that is, Y7 = %(qh‘]) and Yo =R

(q2,K)"

Case (a) When X;NY; =0 for i = 1,2, X3, Y] and X3, Y3 need to be separated by the
partition of 8(1;11 sy and Sl(";l 7y» respectively. Next, we show that such partition eliminates the

Sl+1 and Sl+1 Sl+1

(q1,J1) “(q1,J2) (g2,K1)7 ~(g2,K2)’

respectively, such that X; C Sé;l 7) Y C Sé;ll and X, C S“rl and Y; C S“rl . There

spurious edge. Let Séql and Sé;lK be partitioned into Sl

are four potential probabilistic edges corresponds to the spurious edge shown in Figures 5.0,

5.7, 5.8 and 5.9.

(1) Edge shown in Figure 5.6 exists in the refined system because X ﬂ(Sfjll) XSZ;;Kl) # 0.
However, the point of refinement must be [41 because backward reach set %l;rll’ =0
because 9%1(;1 SltlJl), S)%ZJFIIJl) CY; and S”lljl) NnY; = 0.

(2) Edge shown in Figure 5.7 does not exist in the refined system because XQﬂSl (g2,K2) = 0.

(3) Edge shown in Figure 5.8 does not exist in the refined system because X; ﬂSé;l 5 = 0.

(4) Edge shown in Figure 5.9 does not exist in the refined system because X; ﬁSlql = 0
and Xo NSH) = 0.

Hence, such separation guarantees that the spurious edge gets eliminated.

Case (b) When either X; NY] # 0 or Xo NYy # 0 is true, X3 \ Yy, Y7 and X, \ Vs,
Y5 need to be separated by the partition of Sé;j 7 and Sé;;)7 respectively. Next, we show
that spurious edge gets eliminated by such partition. Assume that X; NY; # (). Note that

for a spurious edge, there must be at least one target abstract state such that intersection

63

between the projection of post with respect to the target abstract state and its backward

reach set is empty. This implies that X, NY, = ().

(a) Edge shown in Figure 5.6 exists in the refined system, but the point of refinement must

be I + 1 due to the same reason given in case (a)(1).

(b) Edges shown in Figures 5.7, 5.9 do not exist in the refined system due to the same

reason given for case (a)(2).

(c) Edge shown in Figure 5.8 exist in the refined system but the point of refinement must

be [+ 1 due to the same reason given in case (a)(1).

From case (a) and case (b), we have identified that X; \ Y; and Y;, i = 1,2 needs to be
separated. Next, we provide strategies for partitioning the concrete states associated with

the abstract states such that there identified sets must be separated by the partition.

Definition 25. Let (((q, R),l),p) be a probabilistic edge (spurious) and Q11 be a set of
all abstract states which are at layer | + 1. A refinement Ry eliminates a spurious edge
(((g, R), 1), p) if for each (¢', R) € Qu41, there is no partition element (¢, R1) € Ry such that
the following two conditions hold: let (pi,...,pn) € X {p((¢",R"),l + 1)} for some

(¢",R")EQi4+1
n € N,

C1: Ry N (Proj(Postpy (quﬁ), (p1,y---ypon)), (¢, R),1+1)) \EHZ(;’,}R,)) #0;

C2: RyNR S, #0.

The strategies in Definition 25 are basically restrictions on the partition of the concrete
set of states corresponding to the abstract states which make sure that the identified sets
are not shared by the same partition element. Since the spurious edge gets eliminated by
such a partitioning, the progress of the refinement is guaranteed. We formally state it in the

following theorem.

Theorem 3. Given a refinement Ry of R, if Ri1 eliminates the spurious edge, then Ry is

a progressive refinement.

64

Any such splitting as given by Definition 25 will eliminate the counterexample. Note that
Definition 25 requires that there is no partition element which for any location ¢ intersects
with both the projection of Post to ¢ and the reach set SR corresponding to ¢q. Hence, for
every partition element which intersects with both, we need a strategy to separate the two
sets, say, S7 and S;. One possible way to have such splitting can be obtained by Algorithm
2. Algorithm 2 aims to partition a polyhedral set S for given two polyhedral sets §; C S and
Sy C S such that §; \ Sp and Sy does not share the same partition element of the partition
of S.

S

Figure 5.10: Ilustration of Algorithm 2

Algorithm 2: Refine a partition P to separate S; \ Sy and Sy

Input: P - a partition, S C S - a polyhedral set, So C S - a polyhedral set
Output: P - a partition of S that separates S; \ Sy and Sy

SetKwKwGoTogo to begin
Let S{ == 81 \SQ
while 3 P € P such that PNS; # 0 and PNS; # () do

if 3 ¢ € Cons(8Sy) such that [c] NS) # 0 then
P=P\{P}
P=Pu{Pn]|d}

P=PU{PnN]|d}

N O s W N

return P

o]

9 end

Algorithm 2 checks whether there is a partition element P in the current partition P

which overlaps with both §; and S; \ Sy at line 3. If so, then we check if there exists a

65

constraint ¢ € C'ons(Ss) such that S; \ Sz overlaps with the complement of the set [¢], then
we split P into two polyhedral sets PN [c] and PN [c] and add them into P at lines 5-7. We
repeat 4-7 until we come up P such that no partition element of P overlaps with both &7 and
81\ So. We have illustrated Algorithm 2 in Figure 5.10. In the left picture of Figure 5.10,
all the constraints of Sy are required to separate Sy and &; \ Sy and it results in 7 partition

elements of §. However, in the right picture of Figure 5.10, one constraint is enough to

separate S and S; \ Sy, and it results in two partition elements.

Figure 5.11: Markov Decision Process after Refinement

Example 8. We illustrate the separation based on the spurious edge E shown in Figure 5.4.
From Ezamples 6, 7, we have S(lq%R) = (g0, [0,4]), S(lqij) = (gs,[0,4]), i)%%q27R) = (g0, [1,4]),
9‘{%%7}3) = (qo,[3,4]), and the post of the abstract state (q1,[0,4]) is B = (g2, [0, 2]) x (g3, [0, 2]).
Let Bg,,r), Bgs,r) be the projection of B for the abstract states (q2, R), (g3, R), respec-
tively, at layer 1. Then, we use Algorithm 2 to partition S, ry and Sg,.r. We obtain
{(g2, R}), (2, R3)} as a partition of Sy, gy, where R: = [0,1], R = [1,4]. Similarly, we get
{(g5, R}), (g3, R3)} as a partition of S4 gy, where RS =[0,3), RS = [3,4]. Thus, we obtain a
refinement of the partition R, which is R1 = {(q1, R), (q2, B?), (g2, R2), (g3, R3), (g3, R3), (q1, R) }.
Next, we use Ry for refining the abstraction and we obtain a Markov Decision Process as
shown in Figure 5.11. The probability of reaching final state (qs, R) from initial state (q1, R)

1s less than 0.50. Hence, polyhedral PHS shown in Figure 5.1 is probabilistically safe with

66

respect to the initial location qo, a set of final locations F = {q,}, and probability bound

6 = 0.50.

5.5 Computability

In this section, we summarize the CEGAR algorithm and discuss computability and com-

plexity issues.

CEGAR Algorithm

Algorithm 3 presents the CEGAR framework to check whether a given polyhedral PHS H
is the maximum probabilistically safe with respect to an initial location qq, a set of final
locations [, and a probability bound 6.

The function Abstraction takes as input the system H, partition R, the initial state g
and the set of final locations F and returns the MDP abstraction M = Abs(H, R) along with
the set of abstract states S corresponding to the concrete states {qo} X Inv(qo) and the set of
abstract states ' corresponding to the concrete states F x X'. The function Model-Checking
takes the abstract MDP M, abstract initial states S and final state F" as input and either
returns a Status = T, if the abstract system satisfies the property and L otherwise. In the
latter case, it also returns a counterexample 7 in the form of a DTMC, which is then passed
on to the function Get_.LDAG to extract the LDAG D. The function Validation function
validates the counterexample D using the backward reachability algorithm and checking if
iﬁ’gqu) = () for some ((q, R), k) € S5. valid = T if the above condition is satisfied in which
case a concrete counterexample exists, otherwise, Dis a spurious abstract counterexample,

in which case some spurious information ST is returned. It first computes the spurious edge

SE = (((¢, R),1), p) €—5 where [l is the largest number satisfying %équ) = () for some (¢, R)

and p. Then, ST consists of three sets Sy, Sy and S5, where S = X Sé;,lR,), So
(¢, R"),I+1)Esupport(p)
- POSt(Sé%R)Jplaan"'7pn>a Wherepi :p((qlsz)vl—'—]-)? and S3 - X %Z(Z_I%R/)

((¢',R),l4-1)€support(p)

67

Algorithm 3: CEGAR Algorithm

Input: H - polyhedral PHS, qq - initial location, [- a set of final locations, 6 -
probability bound, R - partition of the state space

Output: T/L based on satisfaction/rejection of the specification with respect to o,

F, 0
1 begin
2 Sat = None
3 while Sat = None do
4 M, S, F' = Abstraction(H, R, qo, F)
5 T, Status = Modelchecking(M, s, F', 0)
6 if Status = T then
7 Sat = T
8 break
9 else
10 D = Get_LDAG(T, F'.S, 6)
11 SI, valid = Validation(H, ﬁ, R)
12 if valid = T then
13 Sat = L
14 break
15 else
16 R1 = Refinement(R, ST)
17 R = Rl
18 end

Refinement(R, ST) runs Algorithm 2 for partitioning Proj(Si, ((¢, R),141)) for each abstract
state ((¢, R),l+1) € support(p) with respect to Proj(Sa, ((¢, R),l+1), Proj(Ss, (¢, R),l+1).
Then, for each for each abstract state ((q, R),l + 1) € support(p), the partition element
Proj(Si, ((¢, R),1+1) of R is replaced by all its partition elements obtained from Algorithm
2. The CEGAR loop is repeated until the specification is refuted or satisfied, in general, it

is not guaranteed to terminate. Hence, it is a semi-decision procedure.

Complexity Analysis

In this section, we discuss the computability and complexity of the different steps in the

CEGAR algorithm. The crux of Algorithm 3 is the computation of Pre and Post functions,

68

corresponding to computing the one step backward and forward reach sets. When the dy-
namics is polyhedral inclusion & € P for a polyhedral set P, the Pre and Post with respect to
a polyhedral set of states .S, results in a polyhedral set. This can be computed by writing a
finite set of linear constraints that the states before and after a transition need to satisfy, and
eliminating one of them (depending on whether we are computing Pre or Post). This corre-
sponds to computing intersections, checking satisfiability and variable elimination in a set of
linear constraints. The first two operations can be performed efficiently (polynomial in the

size of the constraints), while variable elimination is more expensive and can be performed

Nc

1)?""), where n, is the number

using Fourier—Motzkin elimination whose complexity is O(4(
of linear constraints in a polyhedral set and n, is the number of variables that need to be
eliminated. It also leads to a exponential blow-up in the number of constraints with respect
to the number of eliminated variables. In the rest of the section, we present the complexity
analysis assuming a cost of C' for each Pre and Post computation. We realize that C' depends
on the size of the representation of the intermediate reach sets which can themselves grow
exponentially as the algorithm proceeds, however, we would like to characterize the behavior
of the rest of the algorithm.

We note that for more general dynamics, the reach set is not a polyhedral set and could
require exponential functions for representation, for instance, for linear dynamics such as
& = Ax or other non-linear dynamics. Hence, though the CEGAR framework in Algorithm
3 can be applied, one will need to resort to over-approximate computations of Pre and Post
for abstraction construction and deducing spuriousness of the counterexample.

Next, we discuss the complexity of each step presented in Algorithm 3. Let us consider
an n—dimensional polyhedral PHS H, and a partition R of its state space @) x X. Let
|R| = k1 X ky where k; = |Q| and ks is the number of distinct partition elements of X

In the abstraction, each abstract edge has a source of the form (¢, R) and a set of target
states of the form (q1, R1), -, (qk,, Rk,). We need to check if each such potential abstract

edge corresponds to a concrete edge, which can be computed by one Pre operation followed

69

by checking emptiness. Hence, the cost of abstraction is given by O(C’kzé““), and size
(representation) of the output MDP M is O(k5'™). The complexity of Model-Checking
function is polynomial in the size of the MDP M. The GET_LDAG algorithm runs until
enough paths are found. There is a priori no bound on the length of paths explored, however,
it is guaranteed to terminate and the time complexity is polynomial in d, which is the length
of the unrolling. Then the complexity of validation and computation of ST is O(DC'), since
the validation requires one Pre computation and one emptiness checking operation (which is
cheaper than Pre computation) corresponding to every node in D. The Refinement function
calls the partitioning algorithm at most once for every location. The complexity of the
partitioning algorithms is O(n.n,), where n. number of constraints in the representation of
R sets, and n,, is the number of partition elements. However, the number of elements of the

refined partition could be exponential in n,.

5.6 Experimental analysis

In this section, we provide the details of the implementation and experimental analysis.
We have implemented the CEGAR framework for polyhedral PHS in a Python toolbox
called Procegar. We use Parma Polyhedra Library (PPL)!® to compute the abstract MDP,
and PRISM® model checker to verify the probabilistic safety specification on the abstract
system. PRISM generates a counterexample in the form of a DTMC. We unroll the DTMC
and convert it into an LDAG which we validate with respect to the polyhedral PHS using
PPL!'"6. The refinement module generates a new partition of the state space that eliminates
the counterexample, and it is implemented using PPL'®. 'We compare our experimental
evaluation of probabilistic safety analysis with tool ProHVer!3!, which has been performed
on Ubuntu 12.04 OS, Intel R@©Pentium(R) CPU B960 with 2.20GHzx 2 Processor and 2GB
RAM.

We consider two examples, one corresponding to a grid world, and the other an oscillator-

70

filter. For the grid world example, we construct grids with n x n cells, where we have
polyhedral dynamics ©—y <= 0, 22—y >= 0 in each cell. A probabilistic edge is defined from
a cell to two of its adjacent cells with equal probability. here, we consider the specification,
where we choose cell (1,1) as an initial location with continuous states [0,0.5] x [0, 0.5],
and cell (2,2) as a final location with continuous states [1.5,2] x [1,1.5]. Next, for the 2-
dimensional oscillator and m-filter benchmark, we modify the deterministic version of the
oscillator-filter benchmark!*” by introducing probabilities and additional reset constraints.
Note that the deterministic version of the benchmark is a linear PHS. So, we first convert
the benchmark into polyhedral PHS by transforming the linear dynamics into polyhedral
dynamics by hybridization over the invariant set. In addition, we consider the state space
for each variable as the interval [—3, 3]. For the specification, we consider (I, {—0.5 <z <
0, 0 <y < 0.35}) as the initial set of states and (I4,{0 < z < 0.5,—0.35 < y < 0}) as the
final set of states. For all the experiments, we are interested in verifying maxgser Psyp([H],
s,[F) < @ for different values of probability bound 6, where I is the set of initial states and F
is the set of final states.

L and compare the experi-

We perform experiments using tools Procegar and ProHVer!?
mental results. For the probabilistic safety analysis using tool ProHVer 3!, we first compute
the maximum probability of reaching a set of final states from a set of initial states and

check whether the maximum probability of reachability is less than or equal to 6.

Procegar ProHVer
Rows | Grid Size | 0 | Size(init) | Size(final) | Status | Taycprv(Sec.) | Tyer(Sec.) | Pr(Sec.) | Pr | Status | Pr(Sec.)
1 yro 025 (43) 9.6) I 6.56 3.13 969 | 1 U 0.03
2 0.50 (4,3) (9,6) T 3.31 3.08 6.39 1 U 0.03
3 Axd 0.10 | (16,15) (23,19) 1 6.20 3.18 9.38 0.25 U 0.057
4 0.25 | (16,15) (23,19) T 3.17 3.08 6.25 0.25 T 0.057
5 6x6 0.10 | (36,35) (43,39) €L 6.32 3.07 9.39 0.25 U 0.085
6 0.25 | (36,35) (43,39) T 3.20 2.96 6.16 0.25 T 0.085
7 8 x8 0.10 | (64,63) (71,67) € 6.30 3.17 9.47 0.25 U 0.122
8 025 | (64,63) | (7L67) T 3.26 2.01 62 [025] T 0.122

Table 5.1: Verification results for the Grid World (n =2, K = 2)

In Table 5.1 and Table 5.2, the results of analysis of the grid world and the oscillator-

filter are summarized, respectively. In the tables, § shows the probability bound; Size(init),

71

Size(final) show the size of initial and final abstract system which are expressed as a pair
(IV|, |E]), where |V|, |E| are number of vertices and edges, respectively. Status represents
whether a given specification is satisfied (T), non-satisfied (L) or the verification result
is inconclusive(U). Tarcpyy shows the total time (among all iterations) taken for the ab-
straction, counterexample simplification, and validation steps; T,.,. represents the total time
(among all iterations) for checking the property by PRISM and Pr represents the total time
taken for the safety verification. All times are measured in seconds. Pr represents the value

of the maximum probability of reachability for a given specification in ProHVer!3!,

dim,
K represent dimension of the system and number of iterations in CEGAR, respectively. m

shows the number of filters for 2-dimensional oscillator and m-filter benchmark.

Procegar ProHVer
m | dim | 0 | Size(init) | Size(final) | Status | Tarcpsv(Sec.) | Tyer(Sec.) | Pr(Sec.) | Pr | Status | Pr(Sec.)
P AL CE) 4.3) T 3.25 151 476|073 | U 11.66
020 | (4.3) (4.3) T 0.01 1.45 146 |073| U 11.66
9 4 0.10 (4,3) (4,3) 1 4.70 1.46 6.16 0.73 U 711.96
020 (43) (4.3) T 0.01 148 149 | 073 | U | 71196
| 5 [010] (43) (4.3) i 36.11 1.65 3776 | 0.73 | U | 4385.63
020 [(43) (4.3) T 0.01 1.55 156 | 0.73| U | 4385.63
L e 010 (43) (4,3) T 1273.30 155 | 12748 | — | — TO
020 (43) (13) T 0.01 1.88 189 | — | — TO

Table 5.2: Verification results for the oscillator-filter (K'=1)

We observe that in Table 5.1, Procegar concludes safety of the specification for different
values of 6 for all grid sizes. Procegar takes little more time in comparison to ProHVer;
however, ProHVer!®! is unable to conclude safety in Rows 1,2, 3,5, and 7.

In Table 5.2, Procegar takes less time in comparison to ProHver '*'. ProHVer 3! is unable
to conclude safety of the specification for m = 1,2,3. ProHVer'®!' did not terminate for
m = 4 within a timeout of 75 minutes. Also, for Procegar, the total verification time
grows with respect to the dimension of the system when the specification is false. It is
expected because a finite number of validation operation needs to be performed, which is
based on backward reach sets, which are obtained using computationally expensive quantifier

elimination procedure, specifically, for large dimensional systems.

72

Overall, Procegar is able to find proofs in many more instances and with less time as
compared to ProHVer for three or more dimensional systems, which does not use any clever
refinement techniques. There is no extensive set of benchmarks for probabilistic hybrid

systems so we have modified some of the existing benchmarks in the non-probabilistic setting.

73

Chapter 6

Safety analysis of linear probabilistic

hybrid systems

In this chapter, we consider the problem of unbounded safety analysis of linear probabilistic
hybrid systems (PHS) which model discrete, continuous and probabilistic behaviors. The
discrete and probabilistic dynamics are captured using finite state Markov decision processes
(MDP), and the continuous dynamics are modeled by annotating the states of the MDP with
linear differential equations. Finite state abstractions of discrete-time and continuous time
PHS have been investigated®%2. One of the challenges with constructing finite-state ab-
stractions of continuous dynamics is efficiently determining the existence of a probabilistic
edge in the abstract system. It requires performing a continuous post-computation as in the
non-probabilistic case, but in addition requires, computing for multiple discrete posts simul-
taneously corresponding to a probabilistic edge. Post computation is challenging even for
linear dynamics, and hence, instead of directly computing post, we first apply hybridization
to simplify the dynamics to polyhedral inclusion dynamics. To address the computation of
multiple discrete posts, we encode the existence of a probabilistic edge as a set of linear con-
straints in GNU Linear Programming Kit (GLPK). This is feasible because of the dynamics

in polyhedral inclusion. Hence, our abstraction consists of two steps: hybridization to con-

74

struct a PHS with polyhedral inclusion dynamics and predicate abstraction to construct a
finite state MDP. We show that the abstractions are sound, and by adding more predicates,
we can obtain more precise abstractions.

We have implemented the abstraction procedure in Python. We show that the abstrac-
tions are sound, and by adding more predicates, we can obtain more precise abstractions.
We refer to this two step abstraction procedure as the hierarchical abstraction. We per-
form experimental comparison with ProHVer and perform experimental evaluation of the

computational complexity of the abstraction procedures.

6.1 Abstractions

In this section, we develop an abstraction procedure that abstracts linear PHS to finite
state MDP. The abstraction procedure consists of hybridization and predicate abstraction.
Hybridization is used to simplify linear PHS to polyhedral PHS based on a partition of its
state space, and predicate abstraction is used for abstracting polyhedral PHS into a finite

state MDP. Next, we formally define hybridization procedure.

6.1.1 Hybridization

Hybridization takes as input linear probabilistic hybrid system and a partition R of its
continuous state space, and constructs a polyhedral probabilistic hybrid system. For each
location ¢ in linear PHS, hybridization creates a set of locations for polyhedral PHS, where
each location is a pair of ¢ and R, where R is the intersection of a partition element of R
and invariant set associated with g. The flow function associated with each location (¢, R)
in polyhedral PHS is the union of the set of all vector fields {A,z + B,} over R, {A,x+ B,}
is the flow function associate with the location ¢ in respective linear PHS. Thus, the flow
function in polyhedral PHS over-approximates the flow function in respective linear PHS.

The flow function associated with the location (¢, R) can be obtained by performing linear

1)

transformation on A,z+ B, over R. The invariant for each location (¢, R) is R. Next, for each
probabilistic edge (q, p), where p(q1) = p1, p(g2) = pa2, - - ., p(q:) = pe, hybridization creates a
set of probabilistic edges associated with the location (g, R), where each probabilistic edge is
((q, R), p'), where p'((q1, 1)) = p1, p'((q2, R2)) = pa, - .- p'((qe, Re)) = pe. Also, guard, reset
associated with the probabilistic edge ((q, R), p') is the same as the guard, reset associated
with the probabilistic edge (g, p), respectively. In addition, it also constructs an additional
set of probabilistic edges for each location (g, R), where each probabilistic edge is ((¢, R), p'),
and p'(¢,R) =1, R>> R or R = R'. In this case, guard is R” and reset is Id. Next, we

present the formal definition of the hybridization.

Definition 26. Given two sets Q, R, p' € Dist(QXR), and p € Dist(Q), we say p and p are
consistent denoted as cstoxr(p', p) if Y per 0'(¢; R) = p(q) and 0 < [{R | p'(q, R) > 0} <1,

for each q € Q.

Definition 27. Given n-dimensional linear PHS H = (Q, X', Inv, Flow, Edges, Guard, Reset)
and a partition set R = {Ry, Ry, ..., Ry}, where R; € Poly(n), 1 < i < k. we define
hybridization of H with respect to R to be a polyhedral PHS Abs;(H,R) = (Q', X', In/, Flow/,

Edges', Guard, Reset'), where

x* @ ={(¢,R) | g€ QR € Rand R = R' N Inv(q) # 0};
* X' = X;
*x Int/((q,R)) = R;
* Flow/(((q, R),x)) = {Flow((q, ")) | z,2" € R};
*x Edges = FE, U E, where

* By ={(¢q,R),p") | 3 (q,p) € Edges such that ecsto/(p',p)}.

x By = {(q,R),p) | p € Dist(Q') and 3 R, (¢,R') € Q, p(¢q,R) =1, (Rr>
R or R= R},

76

x Guard (¢') = Guard(e)if ¢ € Ey, ¢ = ((¢, R),p'), e = (q,p), and cst(p’, p); Guard (€')
R"if ' € EQ.

x Reset'((¢/,(¢',R'),x)) = Reset((e,q,x)) if ¢ € Ey, ¢ = ((¢,R),p), ¢ = (q,p),
o' (¢, R)) >0, and csto(p', p); Reset'((¢,(¢',R'),x)) = Idif ¢ € Ey, ¢ = ((q,R),p),
and (¢, R) = 1.

Next, we show that Abs;(H,R) is an over-approximation of [H].

Theorem 4. Given a linear PHS H and a partition of its state space R, we have

[H] <o, [Absi(H,R)],

where a1 = {((¢,), ((q,R),z)) € S1 X Sz | * € R}.

Theorem 4 provides the correctness of hybridization construction that over-approximates
the linear PHS H. However, Abs;(H,R) still has infinite number of states, thus resulting

infinite state MDP.

Computability In the hybridization construction, we are needed to compute the intersec-
tion of two polyhedral sets for constructing the locations in polyhedral PHS. In addition,
we are required to perform the linear transformation over a polyhedral set for obtaining the
flow function. For probabilistic edges, we are needed to check the adjacency between two
polyhedral sets. All these operations are supported by Parma Polyhedra Library 4.
Furthermore, we use a partition based predicate abstraction technique that converts a
polyhedral PHS into a finite state MDP as described in Subsection 5.4.1 of Chapter 5. Thus,

the probabilistic safety analysis of linear PHS can be done automatically.

7

6.2 Experimental analysis

In this section, we present the analysis of some examples using our hierarchical abstraction
procedure. The abstraction has been implemented in a Python toolbox. Before applying the
hybridization, we parse a probabilistic linear hybrid system expressed in an input file into
a graph data structure which is supported by the NetworkX package within the sagemath
platform. Hybridization procedure converts the system into a polyhedral probabilistic hybrid
system with respect to a partition of the state space using linear transformation supported

by Parma Polyhedra Library 4.

Predicate abstraction procedure transforms a polyhedral
probabilistic hybrid system into a finite state Markov decision process with respect to a
partition of the state space using the GLPK solver available in sagemath. Then, the toolbox
automatically computes the minimum/maximum probability of reachability for a given initial
and unsafe specification over the Markov decision process using the PRISM model checker?’.
The evaluation of the experiment is performed with Ubuntu 14.04 OS, Intel ® Pentium(R)
CPU B960 2.20GHz x 2 Processor, 4GB RAM.

We compare our toolbox with the tool ProHVer for the following examples. First,

we consider an m x m grid and generate a linear dynamics for each cell given as v =

—-1.2 0.1
(v —vg), where vy is the desired velocity, which we generate randomly. For

0.1 —-15

each cell, we randomly create probabilistic edge for moving into its adjacent cells. For the
experiment, we fix the initial region to be [-0.9,—-0.6] x [-0.9, —0.6] in (%,) cell and un-
safe region to be [0.6,0.9] x [0.6,0.9] in (% + 1, % + 1) cell, where m x m is the size of grid.
We compute the maximum probability of reaching the unsafe region. We choose predicates
based on uniform grid for hybridization and predicate abstraction. Next, we consider the
bouncing ball and thermostat benchmarks.

In Table 6.1, Loc, Pred, PE, show the number of locations, number of predicates, and
number of probabilistic edges, respectively. Ty, Ta, Typp, Tiota, Ty show the time for

hybridization, predication abstraction, probabilistic reachability computation in MDP, total

78

System Hierarchical abstraction based analysis ProHVer
Grid Loc | PE Predy | Ty Predy | Ty Tvpp | Tiotal Prob Prob | Ty,
0 0.14 1.68 1.82
0 0.002 1 0.36 1.70 2.06 1 1 0.038
2 0.98 1.69 2.67
2x2) 414 0 1.02 1.69 | 2.71
1 0.004 1 1.56 1.66 3.22 0 0 0.068
2 6.48 1.68 8.16
0 0.46 1.66 2.13
0 0.006 1 1.50 1.67 3.18 1 1 0.07
2 5.69 1.67 7.37
dxd) 116116 0 11.68 1.66 | 13.44
1 0.010 1 13.04 1.65 14.79 1 TO TO
2 49.65 1.69 51.44
0 0.76 1.64 2.41
0 0.012 1 5.17 1.67 6.85 1 1 0.16
2 14.63 1.63 16.27
661 |36 36 0 34.05 1.66 | 35.74
1 0.030 1 34.71 1.67 36.41 0 0 2.40
2 130.24 1.64 131.91

Table 6.1: Probabilistic Reachability Analysis of Grid Navigation

Hierarchical abstraction based analysis ProHVer
Benchmarks Rows | Time bounds | Tuyya | Tyupp | Tiotar | Prob Prob | Ty
1 1 1.14 | 1.63 2.77 |1 1 25.69
Bouncing ball | 2 2 1.24 | 1.92 3.18 |1 1 33.47
3 4 1.19 1.76 296 |1 TO TO
1 1 0.03 1.64 1.67 |0 0 0.07
Thermostat 2 2 049 | 1.64 213 |0 0 0.08

Table 6.2: Probabilistic Reachability Analysis of Benchmarks

time, and probabilistic reachability computation in ProHVer, respectively; Predy and Pred 4
show the number of predicates for hybridization and predicate abstraction, respectively. In
Table 6.2, Time_bound shows the time bound.

For the grid navigation, we use the same predicate for hybridization in our tool and tool
ProHVer. In Table 6.1, we observe that the time for hybridization increases slowly when we
increase the number of locations, however, the time for predicate abstraction rapidly increases
when we increase the number of locations. This is reasonable because the construction of

predicate abstraction requires solving a set of linear constraints for each probabilistic edge.

79

Also, we have obtained the same results in our tool and ProHVer for 2 x 2 and 6 x 6 grid
examples, however, ProHVer did not terminate for 4 x 4 grid example within 5 minutes.
For bouncing ball, we choose the initial specification as x = 2, v = 0 and unsafe specifica-
tion x = 0,v < 0. In addition, we choose the same predicate for our tool and tool ProHVer.
We observe that the tool ProHVer does not terminate when we increase the time bound to
4. Also, the tool ProHVer takes more time than our tool for time-bound 1,2, respectively.
Similarly, we compare our tool with ProHVer for the thermostat. In Table 6.2, we observe

that we have obtained the same probability from both the tools.

80

Chapter 7

Parametric verification of linear

discrete-time stochastic systems

In this chapter, we consider parametric verification problem of a class of stochastic systems,
namely, linear discrete-time stochastic systems DTSSs. Linear DTSSs start in a given set
of normal random vectors and evolve according to a linear function X’ = AX + W, where
X and X’ are current and next-step random vectors, respectively, A is a linear transforma-
tion matrix, and W is an additive noise from a given set of normal random vectors. The
behavior of the system is a sequence of normal random vectors, which can be identified with
the sequence of mean and covariance matrices associated with the random vectors, namely,
(1, 51) (2, X2) - - - . We investigate the verification of parametric properties of linear DTSSs.
Since all the states of the system are normal random vectors, we express parametric proper-
ties as a subset of mean and covariance space of a normal random vector. Given a parametric
property S, we are interested in checking whether all the random vectors reachable from an
initial set within bounded or unbounded steps satisfy S. The problem consists of univer-
sal quantifiers over an initial set of random vectors and time steps, which is expensive.
Hence, we reduce the universally quantified problem into an equivalent existentially quan-

tified problem. Let U be the complement of S, which we call undesirable property. Then,

81

the existentially quantified problem corresponds to checking whether all the states reachable
from an initial set in K steps, avoid undesirable property U. In the rest of the paper, we use
bounded/unbounded parametric properties verification (PPV) problem for the existentially
quantified problem of bounded /unbounded steps, respectively.

For bounded PPV problem, we consider the approach bounded model-checking in 1457150,
wherein, we encode the K-step executions of the system as a finite set of constraints, such
that the satisfying assignments provide an execution that meets the undesirable properties
U. The variables in our encoding capture the parameters (i, ¥) rather than random vectors,
and constraints capture the evolution of the parameters along with the execution, which
uniquely specify the sequence of the normal random vectors. The constraints contain linear
as well as semidefinite constraints, which we solve using a semi-definite programming solver
CVXPY 15,

While the bounded PPV problem is decidable, in fact, efficiently solvable, the unbounded
PPV problem for linear discrete-time stochastic systems is undecidable!®2. In particular, the
bounded model-checking approach cannot be extended, since there is no a priori bound K on
the length of executions, and hence, require a potentially unbounded number of constraints
in the encoding. One way to tackle this issue is based on abstraction, which simplifies the
system for the purpose of analysis. A widely studied class of abstractions for stochastic
systems consists of finite abstractions, either probabilistic or non-deterministic, that are
obtained by partitioning the state-space.

In contrast to existing techniques that partition the state-space, we propose an abstrac-
tion based on the random vector space. We exploit the elegant properties of normal random

vectors, to develop an efficient method for abstraction construction based on parameters.

82

7.1 Motivation

In this section, we present an example of parametric verification in the context of an au-
tonomous vehicle. Let us consider an autonomous vehicle as shown in Figure 7.1, where the

position sensors are noisy. We consider the following linear discrete-time dynamics,

(zo, yo) (1, Y1) e (K, yr)

Figure 7.1: Expectation and Covariance Verification Problem

xX

Z; a1 a2 Ti—1 w;
= + (7. 1)

Yy

Yi a21 Q22 Yi—1 wy

where (z;,y;) denotes the position of the vehicle at time ¢ and (wf,w!) denotes the corre-
sponding sensor noise. (w?,w?!) is assumed to be a zero-mean normal random vector, and
a;;, 1 <i,j <2 are constants. An initial state (zo, o) is considered to be a normal random
vector specified as a pair of mean po and covariance ¥ (note that the linear dynamics has the
property that all the states (z;,y;) are normal random vectors from the linear transformation
of normal random vectors). For the autonomous vehicles, it is desirable to have expected
positions in each lane with a limited deviation. We can capture it as a parametric property
on expectation p and covariance ¥, where p corresponds to all the points within the lane
and ¥ lies in a d-ball. To verify such properties, we need to check whether all random states
reachable from a given initial random state of the vehicle satisfy the parametric property at

all time steps.

83

7.2 Preliminaries

Multivariate Normal Distributions. Let X ~ A (u,X) denote a multivariate normal
vector (NV) with mean p and covariance matrix 3. It is known that ¥ is always a symmetric
and positive semi-definite matrix. We use P(n) to denote the set of all parameters of n-
dimensional NVs, that is, P(n) = {(1,2) | p € R", ¥ € S}}. Note that P(n) is an
uncountable set, and is not continuous. Hence, we use P(n) = {(u, A) | n € R", A € R™*"}
as a continuous over-approximation of P(n), which is used for obtaining a partition of P(n).
Given P’ C P(n), X € P’ states that X ~ N (i, X) for some (u, X) € P’. Next, we state
a well-known result about NVs, that is, a linear transformation of a multivariate normal

vector is normal, whose parameters can be easily computed as in the following property.

Property 1. Given two n-dimensional independent NVs X ~ N (pix, Xx) and W ~ N (uq, Xq),
Y = AX + W for some square matric A € R™" is given by Y ~ N (u,,%,) where
ty = Apix + g, and Xy = AT AT+ 3,

Discrete Time Stochastic Processes. An n-dimensional discrete time stochastic process

is a finite sequence of NVs denoted as {X;}icix], K € Z*, where X is a NV.

Graphs. A directed graph is a tuple G = (V, &), where
e)V is a set of nodes;
e £ CV xVisaset of edges that captures a relation between any two nodes.

We define a path of a directed graph G = (V, £) as a sequence of nodes o = s, $1, S3...5,,
such that (s;,s;41) € £. We use oi] to denote the i*" node, that is, o[i] = s; and len(o) to
denote the length of path o, that is, len(c) = n. Let Path(G) denote the set of all paths
of G. Given two nodes s,t of G, we use Paths(G, s,t) to denote the set of all paths starting

from s that visit ¢, that is, Paths(G,s,t) = {o € Path(G) | o[0] = s, for some 0 < i <

84

len(o), oli] = t}. In addition, we use Reach(G, s,t) to denote whether node ¢ is reachable

from node s in G, which is defined as follows:

true if Paths(G,s,t) # 0
Reach(G, s, t) =

false otherwise

7.3 Stochastic systems

In this paper, we study the class of linear discrete time stochastic systems (DTSSs), where
stochastic dynamics is expressed in the form of a linear stochastic difference equation. Al-
though the dynamics is linear, analyzing DTSS is complex due to the stochastic nature.

First, we provide the syntax and semantics of linear discrete time stochastic systems.

Definition 28 (linear DTSS). An n-dimensional linear discrete time stochastic system is a

tuple H = (Xo, W, A), where

* Xg C P(n) is a set of parameters representing an initial set of multivariate normal

vectors;

* W C P(n) is a set of of parameters representing a set of multivariate normal vectors

for noise;

* A € R™™ is a square matriz of dimension n X n representing a linear transition

relation.

The instantaneous description of the system is captured using an NV X. The system
evolves discretely from an NV X; at time ¢ to another NV X;,; at time ¢ 4+ 1 under some
noise NV W € W, that is, X;;; = AX,; + W, where Xy € Xy which is independent of the
noise vector W. In addition, the noises at different times are independent.

Next, we illustrate a linear DTSS with an example.

85

ZT; 11 Ti—1 Wy

Example 9. Consider the following system.: = + , where [z, 3] €
Yi L1 Yi—1 Wy
Wy 0 1 0
P(2), ~N : , and [zo,yo]" € C(S,,Sx), where
wy 0 01
So= " sy € 10,1 Y, and Sy = [€ ([0, 1)) | = is a SPSD}.
\ _My
This can be formally expressed as a linear DTSS H = (Xo, W, A), where Xy = C(S,, Sy),
0 1 0 11
W = , ,and A = .
0 01 11

\

We define a behavior of a linear DT'SS as a stochastic process where the i-th NV X, and
the i + 1-st NV X, are related by a linear transformation corresponding to the matrix A
along with an additive noise from W, that is, X;,; = AX; + W, where W € W. We capture
the semantics of a linear DTSS as a set of discrete time stochastic processes. The formal

definition of the semantics is as follows.

Definition 29. Given an n-dimensional linear DTSS H = (X, W, A), the semantics of
M is defined as a set of discrete time stochastic processes [H] = {{Xi}icix)| K € Z7,Xo €

Xo, i j € [K - 1] Xj+1 = AXJ + Wj+17 for some Wj+1 c W}

The semantics [#] consists of infinitely many discrete time stochastic processes because
of the unbounded length of these processes. Further, there could be many behaviors starting
from a NV due to a non-deterministic choice of noise NV at each point of time. We refer to

Example 9 to illustrate the semantics.

Example 10. We demonstrate a behavior of H presented in Example 9 starting from an ini-

xo 1 11 1 2 5 4
tial NV ~N , . From Property 1, we have ~N ,

Yo 1 11 Y1 2 4 5

because [ty = Apix + pg = + = and

86

1 1|1 1)1 1 10 5 4
¥y = AN AT+ 3, = + = . Similarly, we obtain
1 1|1 1)1 1 0 1 4 5
T 4 19 18 x3 8 75 T4
~N , , ~N , , and so on. Thus, we obtain
Yo 4 18 19 Y3 8 74 75
Ly Zo
a discrete time stochastic process € [H] for some K € Z* starting from ,
7 Yo
1€[K]

where for each 1 < i < K, we have

1—2 i—2
A 12) +4+1 24) +4
T 2 =0 =0
il i—2 , i—2 ,
Yi 2 2SS +4 24|44 +1
=0 j=0

We are interested in checking whether the model satisfies a desirable parametric property
S of NVs, that is, whether all the stochastic behaviors of the model starting from the initial
NV [z, y0]T always satisfy the parametric property S. In other-words, whether all the

stochastic behaviors of the model starting from the initial NV [z, y0]T avoid the undesirable

set U. Next, we illustrate with an example.

0.25
0.20
0.15 Pdf
0.10
0.05
0.00

nit \bvfar undesire

10

Figure 7.2: Specification Illustration for the Model shown in Example 9

Let us consider undesirable set U = {(u, X) | 1 € ([3,5])?, = € (([2,7])*) is a SPSD matrix}.

87

The probability density function (pdf) of initial and undesirable set U of NVs have been

plotted in Figure 7.2, where 4nit indicates pdf of [xg,vo]*, and lower undesire and upper
undesire indicate pdfs of U corresponding to the lowest and highest NV X; ~ N (p, %),

Xy ~ N (g, X), respectively, where

There is only one deterministic stochastic behavior starting from [zg, yo]* for model shown
in Example 9 because of a singleton noise set. The behavior demonstrated in Example 10
avoids U. However, there could be behaviors starting at other NVs which could reach U.
that might meet the undesirable properties U.

Next, we formally define two versions of the PPV problem, the bounded and the un-
bounded PPV problems. In the bounded PPV problem, we are interested in checking if
the undesirable property U of NVs can be satisfied by a NV reachable from an initial NV
at some time step less than or equal to a given time bound K; whereas in the unbounded
version we check if the the undesirable property U of NVs can be satisfied by a NV reached
at the K-th step for some K. That is, in the unbounded version, we check if the undesirable

property U can be satisfied by a NV reached in some finite number of steps.

Problem 4. [Bounded PPV Problem/] Given an n-dimensional linear DTSS H = (Xo, W, A),
an undesirable property U of NVs, and an integer K € Z™, we want to check whether there
exists a behavior {X;}icp € [H] for some | € [K] starting from initial NV Xy € Xo such
that X; € U. If no such process exists then we say that H satisfies the bounded parametric

property with respect to U.

Problem 5. [Unbounded PPV Problem/ Given an n-dimensional linear DTSS H = (Xo, W, A),
and an unsafe set U of NVs, we want to check whether there exists a behavior {X,}icix) €

[H], for some K € Z* starting from initial NV Xo € X such that Xx € U. If no such

88

process exists then we say that H satisfies the unbounded parametric property with respect to

U.

Note that Xy and W could have infinitely many elements; thus, [#] could contain in-
finitely many discrete time stochastic processes. We address the bounded PPV problem by
encoding processes of length < K and checking if they satisfy the undesirable property. For
the unbounded PPV, we need to check the existence of a K and a corresponding process
{Xi}iex) € [H] for which NV [z, yx|" € U. Since, the set of unbounded length processes
cannot be encoded by a finite number of constraints, we resort to an abstraction based

approach.

7.4 Bounded PPV using semi-definite programming

In this section, we develop a method similar to bounded model checking for the bounded
PPV of a linear DTSS H = (Xo, W, A). Our broad approach is to encode all stochastic
processes up to a certain length in conjunction with an undesirable property of NVs into a
semidefinite programming problem on the parameter space. Then, we use the semidefinite
program solver CVXPY ™! for checking the feasibility of the encoding. Next, we provide the
formal construction of the encoding.

Let init(u, 3), undesire(u, X2), and noise(u, 32) be specified as part of the problem descrip-
tion denoting the set of linear constraints over (i, %) that capture the initial set, undesirable
property and noise normal random vectors, respectively. Also, the transition matrix A is
provided. We use — (i1, X1, fta, 24, H2, 22) to capture one step transition between two

NVs (u1, 1), and (ug, 3o) under noise NV (g, ¥4). According to Property 1, it is given by,
— (1, 21, fhas By 2, B2) = [po = Apig + fg, X2 = AS AT + 2dl,

for the linear relation A. Furthermore, we encode the set of all finite stochastic processes

of H up to length [as a formula ¢}, using [+ 1 copies of vector and symmetric positive

89

semidefinite matrix variables defined as follows:

Spg}-[(,u()a ZO;Mly 2]17 ey M, Z]l) =3 (Mf, Zg% 1 S l S la ant(uo, EO)/\
l -1

N\ noise(uf, S A N\ — (s S e, S prin, Sign) A undesire(pu, 5)
=1 =0

Finally, we construct a formula ¢% as a disjunction of ¥, ¢}, ..., @k, that is,
K
o5 = \/ P
1=0

Unsatisfiability of the formula ¢ implies that the system satisfies bounded parametric
property with respect to U. Otherwise, the system meets undesirable properties U, that
is, one of the formulas ¢, i, ..., o is true, and its satisfying assignment provides a

counterexample. We formally state this in the following theorem.

Theorem 5. Given an n-dimensional linear DTSS H = (X, W, A), an undesirable property
U of NVs, and an integer K, we have

gbﬁ is unsatisfiable <& H satisfies bounded parametric property w.r.t. U.

Next, we illustrate with an example.

Example 11. We again consider Example 9 to demonstrate bounded PPV. Let us consider
the undesirable set U = {(u,) | p € [10,20], 3 € (([250,300])*)} of NVs and an integer

K = 3. We construct the formula ¢¥ for U as @9,V @}, V ©3, V o3, where

0 0 1 0 0 1 1
w3, (o, X0) = <o < ; <X < ;
0 1 0 0 1 1
10 20 250 250 300 300
S Ho S 3 S EO S ;
10 20 250 250 300 300

90

‘P%—L(Hoazoaﬂlyzl) =3 (/vbfliaz(li) €) ’ S Ho S)
0 01 0 1

<3 < = Apo + pf, T = ANpAT + 2,

) Szlé)

250 250 300 300

1
10 20] 250 250 300 300

Forl =23, <p§{(,u0,20,,u1,21, ce g, 2) = 3 (uf, Zf) €

0 10 0 1 0 0 11
, forvo=1,...,1, < g < , <Yy <

0 01 0 1 0 0 11
Hit1 = A[/q + ,ufﬂ, Eﬂ_l = AEZAT + Z;ﬂ_h for 0 S 1 S [—1

10 20 250 250 300 300
< < <% <

10 20| |250 250| 300 300
The formula ¢3, is unsatisfiable because none of the formulas @3, 3, 3, @3, are true.
Hence the system satisfies bounded parametric properties with respect to U. However, for

K =4, ¢3, is satisfiable because @3, is true and its satisfying instance is the following:

1 11 2 5 4 4 19 18
(MOaEO) =) a(ulazl) =) 7(,“2722) = ;)
1 11 2 4 5 4 18 19
8 75 T4 16 299 298
(13, %3) = ; (pa, X)) =) , undesire(fig, ¥4) = T
8 74 75 16 298 299

91

Computability. In the encoding, the formula % consists of a 2K + 1 symmetric and
positive semidefinite matrix variables and K(n? + n) + 3m linear constraints, where K is
the number of transitions and each transition consists of n? + n linear constraints, and Init,
undesire, and noise are expressed using at most m linear constraints. The worst case com-
plexity of checking feasibility of the semidefinite constraints is O((max(m,n))*nzlog(1))'
for a given solution accuracy ¢ > 0, where m is the number of linear constraints and n x n
is the dimension of positive semidefinite matrix. We use the semidefinite program solver

CVXPY 5! to check the satisfiability of the encoding.

7.5 Unbounded parametric properties verification

In this section, we present a novel predicate abstraction procedure for unbounded PPV. Our
algorithm takes as input a linear DT'SS H and a partition of the multivariate normal vector
space, provided as a partition of the parameter space P(n), and outputs a finite abstract
graph, which captures all the behaviors of the DTSS. Hence, unbounded PPV of the DTSS

can be inferred by the absence of paths in the graph that reach undesired nodes.

Predicate abstraction and soundness

Our broad approach for constructing a finite abstract graph is based on a polyhedral partition
of the parameter space P(n). Let R = { Ry, Ra, ..., R} be a polyhedral partition of P(n).
First, we construct a finite set of nodes V by considering each partition element R € R as
a node, that is, V = {Ry, Rs, ..., R,}. Then, an abstract edge between two abstract nodes
Vi and V; is constructed if there exist NVs X € V;, and Y € Vj}, such that Y = AX + W
for some W € W. In the rest of the section, we use S to denote the set of abstract nodes
corresponding to a given set S of NV parameters, that is, S = {VeVv|VnS+#(}. Next,

the formal construction of the abstract graph is defined as follows.

Definition 30. Given an n-dimensional linear DTSS H = (Xo, W, A), and a polyhedral

92

partition R of the parameter space P(n), we construct a finite abstract graph G = (V,€),
where YV =R, and £ CV x V, where (V1,V3) € & if there exist (u1, %) € Vi, (p2,X2) € Vo
such that po = Apy + g, Yo = AXAT + 3, for some (g, Xq) € W.

From the definition, GE captures all behaviors of H, which is stated in the following

lemma.

Lemma 1. Given an n-dimensional linear DTSS H = (Xo, W, A), a polyhedral partition R
of the parameter space P(n) and the finite abstract graph G = (V,E), for each stochastic
behavior {X;}ieix) € [H], there exists a path o € Paths (G5) of length K, such that X; € oli]
for alli € [K].

Proof. Let us consider a discrete time stochastic process {X;}icix] € [H], where X; ~
N (ui, ;). Next, we show the existence of a path o € Paths (GX) corresponding to the
process. Since abstract nodes forms a partition of P(n), each (u;, ;) should be in some
abstract node V; € V. We show that o = Vj, Vi, Vs, ..., Vi is a path in the graph. Note that
X; € oli] by choice of V;. From Definition 29, for 0 <i < K, we have X;;; = AX; + W4,
for some W;,; € W. From Property 1, we have pr = Ap; + pg, Bigr = ASAT + 3,
for some (g, 2q) € W. Along with Definition 30, this implies that for each 0 < i < K,

(‘/iavti+1) € g [

From Lemma 1, the finite abstract graph G is an over-approximation of H, hence, the
safety of H can be inferred by checking that no nodes corresponding to the undesirable set

of NVs is reachable in G, which is stated in Theorem 6.

Theorem 6 (Soundness). Given an n-dimensional linear DTSS H = (Xo, W, A), a polyhe-
dral partition R of the parameter space P(n), the finite abstract graph G, and undesirable
set U C P(n), if U is not reachable in g% from the abstract initial set Xo, then H satisfies

the unbounded parametric property with respect to U.

Proof. Let the undesired set U be not reachable from the set §A§0, that is, there is no path

starting from a node in Xo reaching one of the nodes in U. Assume that H does not satisfy

93

the unbounded parametric property with respect to U, that is, there exists {X;}icix) € [H]
for some K € Z* such that Xy € X, and X € U. From the partition of parameter space,
for each X; there exists a node V; € V such that X; € V;. From Definition 29, we have
Xy € Xo, and X1 = AX; + W, for some W,; € W, j € [K — 1]. This implies that
(V;, Viz1) € € from Definition 30. So, there is a path ¢ = V4, V4,...,V; in the graph GX.
Since X, € Xy, we have Vj € §A§0. Similarly, Xx € U implies Vi € U. This implies that
there is a path starting from V; € Xo reaching Vi € I[AJ, which is contradicts the fact that
U is not reachable from the set XO. Hence, H satisfies the unbounded parametric property

with respect to U. U

Example

We illustrate the abstraction procedure by constructing a finite abstract graph for the linear
DTSS shown in Example 9. In Example 9, an over-approximation of P(n) is C(S,,Sy),
where S, = R?, Sy, = R*. Let us consider a polyhedral partition of the set C(S,, Sx) as the
following set: R = {C(P!,P4) | 1 <i <2, 1< j <4}, where Pls are partition elements for

S, which are shown via regions in Figure 7.3, and given as below:

(2] 021 922,

Figure 7.3: Partition of §,, Figure 7.4: Partition of Sy, Figure 7.5: Partition of Sy,

1 H1

pa+ 2 <20 0, P2 = f1 + pp > 20 3. Partition of Sy is ex-
H2 H2
pressed via cartesian product of regions of Sy, , and Sy, shown in Figures 7.4, and 7.5, respec-

1 _
P, =

tively, that is, PL = (C(PL, P3), P2 = (C(PL, P4), P& = (C(P2, F3)), PL = (C(P2, PY)),

where P's are as below:

94

6

d

(2)
A (a3)

Figure 7.6: Abstract Graph GF

—(&

o Pl ={(011,001) | 011 + 091 <40}, P2 = {(011,021) | 011 + 021 > 40},
o P} ={(012,092) | 012 + 092 < 40}, P} = {(012,092) | 012 + 022 > 40}.

From Definition 30, we construct a finite state graph G = (V,), where
o V={V; |1<i<2 1< <4}, where V;; = C(P}, PL);

L4 g == {(‘/1,17 ‘/1,1)7 (‘/l,h ‘/1,4)7 (‘/1,17 ‘/2,1)7 (‘/1,17 ‘/2,4)7 (‘/1,27 ‘/1,4)a (‘/1,27 ‘/2,4)7
(‘/1,37 ‘/1,4)) (‘/1,37 ‘/2,4>7 (‘/1,47 ‘/1,4)7 (‘/1,47 ‘/2,4)7 (‘/2,17 ‘/2,1)7 (‘/2,1; ‘/2,4)7 (‘/2,27
‘/2,4)7 (‘/2,37 ‘/2,4)7 (‘/2,47 ‘/2,4)}-

The abstract graph is shown in Figure 7.6. Note that an abstract edge (V, V') belongs to £

Via Via
Abstract Edge
1. = [p(0), u(1)] w = [p'(0), g/ (1)]
2. et xTEx >0, VxeR” ¥ost. xTEx>0, VxeR"
3. x=xT y=xT
[u€ Pl [v' € P,
4. p(1),1(2) >0, p(1) + p(2) <20 B, 4'(2) 20, f'(1)+4(2) €20
£ € P (2 € Pg]
5. 2(1,1),%(1,2),%(2,1),%(2,2) > 0 ¥'(1,1),%'(1,2),3(2,1),¥(2,2) = 0
6. $(1,1) + %(2,1) < 40 S(1,1) + /(2,1) > 40
7. 5(1,2) + %(2,2) < 40 $'(1,2) + £7(2,2) > 40
8. 1 =Ap

9. % =ATAT +1J

Figure 7.7: Validation of the Abstract Edge (Vi1,Vi.4)

only if it is valid, that is, it corresponds to a concrete transition in the DTSS, wherein, there
are NVs X € V and X’ € V’, that are related by the transition matrix with some additive

noise. We encode the transition relation, that is, the set of all possible concrete transitions,

95

corresponding to the abstract edge into semi-definite programming. We use semi-definite
program solver CVXPY ! to check the satisfiability of the encoding. An illustration of the
encoding for the abstract edge (V, V') = (V11,V14) € & is shown in Figure 7.7, where Lines
1, 2 and 3 encode the constraints of the parameter space, corresponding to semi-definiteness
and symmetricity of the covariance matrices. Here, (u,3) and (y/,%’) are the parameters
corresponding to V and V', respectively. Line 4 encodes the polyhedral partition elements
77; and 773 corresponding to the mean variables. Lines 5, 6, and 7 encode the polyhedral
matrix partition elements Pg and Pg in the matrix variables X, ¥, respectively. Lines 7
and 8 encode the linear relation between any two multivariate normal parameter values in
Vi1 and Vi 4, respectively, where J is the identity matrix of size 2 x 2 that we considered for

the covariance matrix of noise NV [w,, w,]T.

Computability

In the predicate abstraction, there are two main computations, namely, polyhedral parti-
tioning of the parameter space P(n) and validation of the abstract edges. Note that P(n)
is the Cartesian product of mean space R™ and covariance matrix space, that the set of all
symmetric and positive semi-definite matrices of dimension n x n. P(n) is an uncountable
set, and is not continuous. Hence, to represent a region of P(n), we consider a continuous
set P as an over-approximation of P(n), and construct the partition of P instead of P(n)
based on a given set of linear expressions of size p. This require us to perform at most 27
operations corresponding to computing intersections of polyhedral sets and checking empti-
ness of polyhedral sets. Both intersection and emptiness can be performed in polynomial in
the number of constraints (say O(C')). The worst case complexity of constructing polyhedral
partition of P is O(2PC). Note that a partition of P will represent a partition of P(n) via
by adding the constraint that the matrix corresponding to the ¥ parameter is symmetric
and positive semidefinite matrix. Next, we need to solve positive semidefinite constraints for

the validation of an abstract edge. For an abstract edge, the semidefinite constraints consist

96

of 2p + n? + n linear constraints, where 2p linear constraints are for encoding membership
in the two abstract nodes, since a polyhedral partition element can have at most p linear
constraints, and n? + n linear constraints are required to encode the linear relation. Hence,
the complexity of the validation of an abstract edge is O((max(2p + n? + n, n))4n%log(%))
from the worst-case complexity of semidefinite programming>* for a given solution precision
¢ > 0. We use Parma Polyhedra Library (PPL) for polyhedral partitioning of 7/5, and the
semi-definite program solver CVXPY'®! for checking the existence of positive semidefinite

matrices satisfying a set of linear constraints.

7.6 Experimental analysis

In this section, we present details of the implementation and the experimental analysis of a
fixed 2-dimensional model shown in Figure 9 and some random linear systems of different
dimensions. We have implemented our bounded model checking based method for bounded
PPV and abstraction procedure for unbounded PPV in a Python toolbox. We have im-
plemented bounded encoding into semidefinite programming and used semidefinite program
solver CVXPY %! for bounded PPV. For the unbounded PPV, the abstraction procedure
consists of mainly three modules: (a) Polyhedral Partitioning; (b) Abstraction; (c) Safety
Checking. We have used Parma Polyhedra Library (PPL) for the module (a). The ab-
straction module outputs a finite abstract graph from a linear DTSS based on a polyhedral
partition of the parameter space, and we have used CVXPY ! for checking the validity of
an abstract edge. NetworkX!”* has been used for checking parametric properties on the
finite abstract graph with respect to given undesirable properties. We have performed our
experimental evaluation with Ubuntu 18.04 OS, Intel ® Pentium(R) CPU B960 2.5GHz
Quad-Core Intel Core i7, 8GB RAM.

We consider Example 9 for the bounded PPV. Let the undesirable set U be { (1, 2) | p €
([10,20])2, ¥ € (([250,300])*)NS5 }. We randomly generate models with different dimensions

to measure the computational performance of the method, where A is chosen randomly with

97

entries in between 1 and 10. For all random models, the disturbance set is chosen as a pair
of the interval vector ([0,1])? for mean vectors and the interval set ([0,1])* for covariance
matrices (([0,1])*) N'S]. For the specification, an initial set is randomly generated as a

pair of mean vectors ([, ft.])", and covariance matrices (([oy,0,])") NS,

n?

where p;, 0, €
0,5], fiu, 0, € [5,10]. Similarly, undesirable properties are randomly generated as a pair
of mean vectors ([, 1)), and covariance matrices (([oy, 0,))™) NS} where y; € [30,300],
Iy € [500,600], o; € [100, 300], o, € [500,600].

In Tables 7.1 and 7.2, Rows, Dim and result show row number, dimension of the system
and the result of the parametric properties verification, respectively. K, Ty, Tsafe, and Tiota
represent bound on the number of transitions in the stochastic processes, time for encoding
of bounded PPV (into CVXPY), time for bounded PPV checking (time taken by CVXPY
solver), and total time, respectively. The experimental results for different values of K and
Dim are presented in Tables 7.1 and 7.2.

In Table 7.2, we observe from rows 1, 2,3 that the encoding time increases linearly as
we increase the value of K while retaining the same dimension. Also, it is almost constant
as we increase the dimension while keeping the value of K the same as observed from rows
3,6,12,15. The bounded PPV checking time is constant for a fixed value of K regardless of
the dimension, and it increases linearly as we increase the value of K for a fixed dimension.

The experimental results show that our method is reasonably scalable.

K | T.ne(sec.) Tsafe(sec) Tiotar(s€C) result
2 0.003 0.062 0.06 safe
3 0.004 0.082 0.08 safe
4 0.006 0.10 0.10 unsafe

Table 7.1: Bounded PPV of the Model shown in Example 9

Furthermore, we consider the following 2-dimensional model for the unbounded paramet-

98

Rows | Dim K Tene(sec.) | Tsape(sec.) | Tiora(sec.)
1 1 0.002 0.041 0.044
2 2 5 0.006 0.113 0.12
3 25 0.021 0.47 0.49
4 1 0.002 0.042 0.048
5 4 5 0.006 0.12 0.131
6 25 0.022 0.54 0.56
7 1 0.002 0.049 0.05
8 6 5 0.006 0.127 0.135
9 25 0.022 0.71 0.73
10 1 0.002 0.054 0.058
11 8 5 0.007 0.136 0.145
12 25 0.022 0.624 0.648
13 1 0.002 0.059 0.063
14 10 5 0.006 0.16 0.169
15 25 0.022 0.70 0.729

Table 7.2: Computational Analysis for Bounded PPV of Random Models

ric properties verification.

T; 2 0| |x;—1 Wy,
= + : (7.2)
Yi 0 2 Yi—1 Wy
Wy, 0 1
where [z;,1;]T € P(2), ~ N , . For the specification, an initial and

w, ol o1
undesirable set are considered as follows: Xo = {(1, %) | 1 € ([4,5])%, ¥ € (([4,5))") NS5},

U={(,2) | e ([0,1])% 2 € (([1,2))")NS; }. We partition the mean and covariance matrix
space with respect to linear expressions [z — 2,y — 2] and [0, — 2, 04y — 2,0y — 2, 04y — 2],
respectively. Also, we randomly generate models with different dimensions and undesirable
sets to evaluate the computational performance of the abstraction method. We randomly
generate a linear matrix A of size n X n where each entry lies in [0, 1]. Similarly, we randomly
generate n-dimensional interval vectors and interval matrices of size n x n, where initial

interval mean vector and covariance matrices are ([, pt])” and (([o7, 0,])") NS, where

n?

w =0, py, o0 € [0,5], o, € [5,10], and interval mean vector and covariance matrices for

99

Predicate Abstract Graph Time(seconds)

Rows| | #mean| #variance #nodes| #edges Tp Tovs | Tsate | Tiotal result

1 2 4 32 112 0.036| 34.86 | 23.50 | 58.37 safe

2 2 4 32 112 0.039] 34.61 | 24.14 | 58.75 | Unknown|

Table 7.3: Unbounded PPV of the Model shown in Equation 7.2

the undesirable set are ([u, 1)) and ([0, 0,])"") NS, where 4, 0; € [5000, 5050], fi, 0 €
[5100,5150]. For all random models, we consider zero vector for noise mean and identity
matrix for noise covariance matrix. In addition, we randomly generate linear expressions
for polyhedral partitioning of mean space R™ and matrix space R"*" via randomly choosing
coefficients of the linear expressions to be either 1 or —1.

In Tables 7.3 and 7.4, Rows and Dim show row number and dimension of the random
model, respectively. #mean and #wvariance represent the number of linear expressions used
for polyhedral partitioning of mean and matrix space, respectively. In addition, Tp, T,ps,
Tsate;, and Tipeq show the computation time for polyhedral partitioning, predicate abstrac-
tion, parametric properties checking on the abstract graph, and total time, respectively. All
computation times are measured in seconds. The experimental results are reported in Tables
7.3 and 7.4.

In Table 7.3, we report the experimental analysis in row 1 for the model shown in Equation
7.2 with respect to the initial set Xy and undesirable properties U, respectively. We found
that the model satisfies unbounded PPV, which is expected for the model. However, when
we switch the initial and undesirable set with each other, the result is unknown due to the
abstraction.

In Table 7.4, we observe that the computation time for the polyhedral partitioning for the
same number of linear expressions is almost constant for all dimensions as we can see in rows
1,7,13,19,and 25 for 3 linear expressions for mean space and 1 linear expression for matrix
space. In addition, abstraction time for the same number of abstract nodes increases linearly

as we increase the dimension, which can be seen in rows 1,10, 16,22, and 28. Also, time for

100

Predicate Abstract Graph Time(seconds)

Rows| Dim H#mean| #variance | #nodes F#edges Tp Tobs Tsate Tiotal
1 1 8 64 1.34 2.81 6.06 10.22
2 3 2 12 112 1.84 6.95 9.46 18.25
3 5 4 24 168 4.59 38.13 18.62 61.36
4 1 6 24 1.25 1.71 4.58 7.55
5 2 2 3 3 1.44 0.41 2.27 4.13
6 4 16 192 2.66 13.85 12.74 29.25
7 1 12 144 1.71 9.29 9.21 20.22
8 3 2 20 375 2.51 35.91 15.29 53.72
9 4 4 64 2960 4.31 508.94 | 52.98 | 566.23
10 1 8 52 1.29 4.97 6.18 12.45
11 2 2 12 144 11.52 11.37 9.35 22.25
12 4 18 216 4.32 29.59 14.28 48.20
13 1 10 100 2.14 9.23 7.99 19.37
14 3 2 16 256 1.84 30.47 12.64 44.95
15 6 4 92 9216 5.58 | 2133.55 | 120.75 | 2259.49
16 1 8 64 1.30 7.29 6.29 14.81
17 2 2 16 256 1.84 30.47 12.64 44.95
18 4 32 1024 2.42 131.59 | 25.46 | 159.51
19 1 16 256 2.08 30.04 13.04 45.17
20 3 2 24 576 2.56 105.81 | 19.96 | 128.34
21 3 4 96 9216 5.76 | 3420.54 | 115.78 | 3542.09
22 1 8 64 1.37 11.65 6.80 19.85
23 2 2 16 256 1.78 45.55 13.20 60.53
24 4 48 2304 4.17 435.52 | 42.11 | 481.82
25 1 12 144 2.19 23.43 10.93 36.55
26 3 2 32 1024 2.75 272.19 | 29.72 | 304.67
27 10 4 128 | 16384 6.61 | 10088.34 143.07 | 10234.03
28 1 8 64 1.57 15.86 7.35 24.79
29 2 2 16 256 1.96 66.37 14.88 83.23
30 4 64 4096 4.44 | 1188.03 | 66.56 | 1253.60

Table 7.4: Computational Analysis for Unbounded Safety of random Models

unbounded PPV checking is constant for the same number of abstract nodes regardless of
the number of edges for all dimensions as it can be seen in rows 1,10, 16, 22, 28. The total
time increases quadratically as we increase the dimension for the same number of linear

expressions used for mean and matrix space. This can be observed in rows 1, 10, 16, 22, 28.

The experimental observations show that our method is reasonably scalable.

101

Chapter 8

Conclusions and future work

In thesis, first we have developed a method for computing the bound on the minimum /maximum
probability of reachability in a polyhedral probabilistic hybrid system, where non-deterministic
probabilistic transitions are allowed. This issue is not only a probabilistic reachability prob-
lem, but also an optimization problem. Our method exploits the recent advances of existing
tool Z3opt and Symba to solve the bounded reachability problem. We have found that
Z3opt performs faster than Symba. Hence, we have used Z3opt for computing the max-
imum/minimum probabilistic reachability. We have run our method for the probabilistic
reachability analysis of the vehicle navigation. The experimental results show that the
method is efficient for solving the bounded reachability problem. In future, we will extend
the bounded reachability analysis to systems with complex non-linear dynamics, wherein in
addition to non-determinism, we consider constraints involving rewards and gains. In addi-
tion, we will investigate existing tools that support linear objective function with conjunction
and disjunction of linear/non-linear constraints and select appropriate tool for the efficient
computation of probabilistic reachability. Also, we will explore sampling based approaches,
such as statistical model checking.

Next, we have developed a CEGAR based method for probabilistic safety analysis of

polyhedral probabilistic hybrid systems. We have implemented the method in a Python

102

toolbox and compared our method with the tool ProHVer®.

Our experimental analysis
demonstrates the advantages of our technique in terms of both being able to verify many
more systems as well as being able to validate counterexamples. However, there are several
strategies for splitting to achieve progressive refinements, and we will explore some of those
in the future work. Some of the suggested ideas to speed up the algorithm are the following.
To speed up the construction of the refined abstract graph in each iteration, if we store
non-modified vertices and edges of the abstract graph, then we will only need to check
branching behaviors corresponding to the new potential abstract edges. The verification
time for the abstract graph can be improved in two ways. First, we may need to check other
probabilistic safety verification tools, such as statistical model checker. Second, the refined
abstract graph could be expressed as a pair of modified and non-modified parts with respect
to the previous abstract system. Then, the analysis on the refined system can be achieved
via performing the analysis on only its modified part and combining its analysis with the
analysis of the non-modified part. We could also take an advantage of the tool ProHVer
via running ProHVer and our CEGAR algorithm in parallel, specifically for those systems,
for which ProHVer returns true earlier than our method. To speed up the validation of an
LDAG, other quantifier elimination tools may be useful.

Then, we have developed a hierarchical abstraction for safety analysis of linear probabilis-
tic hybrid systems. We have implemented the hierarchical abstraction in a Python toolbox
and compared our method with the tool ProHVer. The performance of our tool relies on
choosing the right predicates for hybridization and predicate abstraction procedures. Hence,
in the future, we will develop a counter-example guided abstraction refinement scheme for
choosing predicates carefully to improve the precision of the probabilistic reachability and
the performance of our method.

Finally, we have developed methods for verification of parametric properties of linear
discrete time stochastic systems for both bounded and unbounded time horizons. We have

presented a bounded model checking based method for the bounded PPV that reduces the

103

problem to that of the satisfiability of a semidefinite program, which can be efficiently solved
using solvers such as CVXPY !, For the unbounded safety analysis, we have presented
a novel predicate abstraction method based on partitioning the space of random vectors
that we have implemented in a Python toolbox using Parma Polyhedral Library!4® and
semidefinite program solver CVXPY 1. We have used our methods for the the verification of
parametric properties of randomly generated models up to 10 dimensions. Our experimental
analysis shows that our methods are reasonably scalable. However, the performance of the
abstraction method relies on the selection of the right predicates. However, the performance
of the abstraction method relies on the selection of the right predicates. Hence, in the
future, we will develop a CEGAR based method for the careful selection of predicates to
achieve precise result for the PPV. Finally, we will explore the benefits and limitations of
our methods for relevant industrial applications, such as simplified model of autonomous

systems, power trains, and robotics.

104

1]

[9]

Bibliography

Toshiaki Kakinami, Mitsuyoshi Saiki, and Jun Sato. Vehicle cruise control system,

1993. US Patent 5,230,400.

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,

2011.

Manana S Netto, Salim Chaib, and Said Mammar. Lateral adaptive control for vehicle

lane keeping. In Proceedings of the American Control Conference, 2004.

Jochen Kaller and Dieter Hoetzer. Lane-change assistant for motor vehicles, 2011. US

Patent 8,040,253.

Xiangru Xu, Jessy W Grizzle, Paulo Tabuada, and Aaron D Ames. Correctness guaran-
tees for the composition of lane keeping and adaptive cruise control. IEEE Transactions

on Automation Science and Engineering, 2017.

Mike Daily, Swarup Medasani, Reinhold Behringer, and Mohan Trivedi. Self-driving

cars. Computer, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of

safe and scalable self-driving cars. arXiv preprint arXiw:1708.06374, 2017.

Claudine Badue, Ranik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vini-
cius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago Paixao, Filipe

Mutz, et al. Self-driving cars: A survey. arXiv preprint arXiw:1901.04407, 2019.

Luu Anh Tuan, Man Chun Zheng, and Quan Thanh Tho. Modeling and verification

105

[11]

[12]

[13]

[14]

of safety critical systems: A case study on pacemaker. In International Conference on

Secure Software Integration and Reliability Improvement, 2010.

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam.
Modeling and verification of a dual chamber implantable pacemaker. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,

2012.

Timothy W Vanderveen. System and method for verifying connection of correct fluid

supply to an infusion pump, 2006. US Patent 7,092,796.

Mark C Estes, Mitchell Wenger, Morten Mernoe, and James Causey. Method and
system for manual and autonomous control of an infusion pump, 2012. US Patent

8,192,394.

Jodi Forlizzi and Carl DiSalvo. Service robots in the domestic environment: a study
of the roomba vacuum in the home. In Proceedings of the conference on Human-robot

interaction, 2006.

Ja-Young Sung, Lan Guo, Rebecca E Grinter, and Henrik I Christensen. my roomba
is rambo: intimate home appliances. In International conference on ubiquitous com-

puting, 2007.

Robert D Howe and Yoky Matsuoka. Robotics for surgery. Annual review of biomedical

engineering, 1999.

Santiago Horgan and Daniel Vanuno. Robots in laparoscopic surgery. Journal of

Laparoendoscopic € Advanced Surgical Techniques, 2001.

Haiyang Chao, Yongcan Cao, and YangQuan Chen. Autopilots for small fixed-wing
unmanned air vehicles: A survey. In International Conference on Mechatronics and

Automation, 2007.

106

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

HaiYang Chao, YongCan Cao, and YangQuan Chen. Autopilots for small unmanned
aerial vehicles: a survey. International Journal of Control, Automation and Systems,

2010.

CDR HR Everett. Survey of collision avoidance and ranging sensors for mobile robots.

Robotics and Autonomous Systems, 1989.

BM Albaker and NA Rahim. A survey of collision avoidance approaches for unmanned
aerial vehicles. In international conference for technical postgraduates (TECHPOS),

2009.

Stamatis Karnouskos. Cyber-physical systems in the smartgrid. In international con-

ference on industrial informatics. IEEE, 2011.

Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart gridthe new and

improved power grid: A survey. IEEE communications surveys € tutorials, 2011.

Gregor V Bochmann and Carl A Sunshine. A survey of formal methods. In Computer

Network Architectures and Protocols. 1982.

Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of industrial

applications of formal methods. In Z User Workshop, London, 1993.
Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking. 1993.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. MIT press, 2018.

Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of

the symposium on Theory of computing, 1971.

107

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[37]

Melvin Fitting. First-order logic and automated theorem proving. Springer Science &

Business Media, 2012.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic logic and mechanical theorem

proving. Academic press, 2014.
Donald W Loveland. Automated Theorem Proving: a logical basis. Elsevier, 2016.

Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International

journal on software tools for technology transfer, 1997.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An

opensource tool for symbolic model checking. In International Conference on Computer

Aided Verification, 2002.

Gerard J Holzmann. The SPIN model checker: Primer and reference manual, volume

1003. Addison-Wesley Reading, 2004.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of
probabilistic real-time systems. In International Conference on Computer Aided Ver-

ification, 2011.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
storm is coming: A modern probabilistic model checker. In International Conference

on Computer Aided Verification, 2017.

Harsh Raju Chamarthi, Peter Dillinger, Panagiotis Manolios, and Daron Vroon. The
acl2 sedan theorem proving system. In International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, 2011.

108

[38]

[39]

[45]

[46]

Yves Bertot and Pierre Castéran. Interactive theorem proving and program develop-
ment: CoqArt: the calculus of inductive constructions. Springer Science & Business

Media, 2013.

Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic proof
and disproof in isabelle/hol. In International Symposium on Frontiers of Combining

Systems, 2011.

Zohar Manna, Nikolaj Bjorner, Anca Browne, Edward Chang, Michael Colén, Luca
de Alfaro, Harish Devarajan, Arjun Kapur, Jaejin Lee, Henny Sipma, et al. Step: The

stanford temporal prover. In Colloquium on Trees in Algebra and Programming, 1995.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs with pvs. In

International Conference on Computer Aided Verification, 1997.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,

2008.
Christos G Cassandras and John Lygeros. Stochastic hybrid systems. CRC Press, 2018.

Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid
systems. In International Workshop on Hybrid Systems: Computation and Control.

Springer, 2000.

John Lygeros and Maria Prandini. Stochastic hybrid systems: a powerful framework

for complex, large scale applications. Furopean Journal of Control, 2010.

Jan JMM Rutten, Marta Kwiatkowska, Gethin Norman, and David Parker. Mathe-
matical techniques for analyzing concurrent and probabilistic systems. In Amer- ican

Mathematical Soc., 2004.

109

[47]

[48]

[49]

[50]

[51]

[55]

[56]

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s

decidable about hybrid automata? J. Comput. Syst. Sci., 1998.

Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. A new class of decidable
hybrid systems. In International Conference on Hybrid Systems: Computation and

Control, 1999.

Goran Frehse. Phaver algorithmic verification of hybrid systems past hytech. In Pro-
ceedings of the Hybrid Systems: Computation and Control, International Workshop,
HSCC, 2005.

Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint
propagation based abstraction refinement. In Proceedings of the Hybrid Systems: Com-

putation and Control, International Workshop, HSCC, 2005.

Wenji Zhang, Pavithra Prabhakar, and Bala Natarajan. Abstraction based reachability
analysis for finite branching stochastic hybrid systems. In International Conference on

Cyber-Physical Systems, 2017.

Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz Hahn.

Safety verification for probabilistic hybrid systems. Fur. J. Control, 2012.
John G Kemeny and J Laurie Snell. Markov chains. Springer-Verlag, New York, 1976.

James R Norris, John Robert Norris, and James Robert Norris. Markov chains. Cam-

bridge university press, 1998.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-

niques. MI'T press, 2009.

Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American

Mathematical Soc., 2012.

110

[57]

[58]

[60]

[61]

[62]

[65]

[66]

A Agung Julius, Addm Haldsz, M Selman Sakar, Harvey Rubin, Vijay Kumar, and
George J Pappas. Stochastic modeling and control of biological systems: the lac-
tose regulation system of escherichia coli. IEEE Transactions on Automatic Control,

(Special Issue), 2008.

Jaime Gomez-Ramirez and Ricardo Sanz. On the limitations of standard statistical
modeling in biological systems: a full bayesian approach for biology. Progress in bio-

physics and molecular biology, 2013.

Ying-zi Li and Jin-cang Niu. Forecast of power generation for grid-connected photo-
voltaic system based on markov chain. In Asia-Pacific Power and Energy Engineering

Conference. IEEE, 2009.

Wai-Ki Ching and Michael K Ng. Markov chains. Models, algorithms and applications,
2006.

Giorgio Alfredo Spedicato. Discrete time markov chains with r. R J., 2017.

Ward Whitt. Continuous-time markov chains. Dept. of Industrial Engineering and

Operations Research, Columbia University, New York, 2006.

Damjan Skulj. Discrete time markov chains with interval probabilities. International

journal of approximate reasoning, 2009.

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric markov models. International Journal on Software Tools for Technology

Transfer, 2011.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.

1994.

Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-checking

111

[71]

continuous-time markov chains. ACM Transactions on Computational Logic (TOCL),

2000.

Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen.
Model-checking algorithms for continuous-time markov chains. IEEFE Transactions

on software engineering, 2003.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,

1977., 18th Annual Symposium on, 1977.

Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for probabilistic
real-time systems. In International Colloquium on Automata, Languages, and Pro-

grammang, 1991.

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-valued
abstraction for probabilistic systems. The Journal of Logic and Algebraic Programming,

2012.

Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David N Jansen. Bisimulation
minimisation mostly speeds up probabilistic model checking. In International Confer-

ence on tools and algorithms for the construction and analysis of systems, 2007.

Hakan LS Younes and Reid G Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In International Conference on Computer Aided

Verification. Springer, 2002.

Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathematical

statistics, 1945.

Ratan Lal, Weikang Duan, and Pavithra Prabhakar. Bayesian statistical model check-
ing for continuous stochastic logic. In ACM-IEEE International Conference on Formal

Methods and Models for System Design (MEMOCODE). IEEE, 2020.

112

[75]

[76]

[77]

[80]

[31]

[82]

[83]

Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient proba-
bilistic model checking. In Proceedings of the 33rd international conference on software

engineering, 2011.

Tingting Han, Joost-Pieter Katoen, and Damman Berteun. Counterexample genera-

tion in probabilistic model checking. IEFEE transactions on software engineering, 2009.

Christel Baier, Joachim Klein, Sascha Kliippelholz, and Steffen Méarcker. Computing
conditional probabilities in markovian models efficiently. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, 2014.

Hakan LS Younes and Reid G Simmons. Statistical probabilistic model checking with

a focus on time-bounded properties. Information and Computation, 2006.

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Approximate parameter
synthesis for probabilistic time-bounded reachability. In Real-Time Systems Sympo-
sium, 2008, 2008.

Husain Aljazzar, Holger Hermanns, and Stefan Leue. Counterexamples for timed prob-
abilistic reachability. In International Conference on Formal Modeling and Analysis of

Timed Systems, 2005.

Husain Aljazzar and Stefan Leue. Extended directed search for probabilistic timed
reachability. In International Conference on Formal Modeling and Analysis of Timed

Systems, 2006.

Michael Benedikt, Rastislav Lenhardt, and James Worrell. Ltl model checking of
interval markov chains. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2013.

Serge Haddad and Benjamin Monmege. Reachability in mdps: Refining convergence

of value iteration. In International Workshop on Reachability Problems, 2014.

113

[84]

[85]

[30]

8]

[39]

[91]

Bjorn Wachter and Lijun Zhang. Best probabilistic transformers. 2010.

Miguel E Andrés, Pedro DArgenio, and Peter van Rossum. Significant diagnostic
counterexamples in probabilistic model checking. In Haifa Verification Conference,

2008.

Ralf Wimmer, Nils Jansen, Erika Abrahém, Joost-Pieter Katoen, and Bernd Becker.
Minimal counterexamples for linear-time probabilistic verification. Theoretical Com-

puter Science, 2014.

Ernst Moritz Hahn, Holger Hermanns, Bjorn Wachter, and Lijun Zhang. Pass: Ab-
straction refinement for infinite probabilistic models. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2010.

Di Wu and Xenofon Koutsoukos. Reachability analysis of uncertain systems using

bounded-parameter markov decision processes. Artificial Intelligence, 2008.

Sergio Giro and Pedro R Dargenio. Quantitative model checking revisited: neither
decidable nor approximable. In International Conference on Formal Modeling and

Analysis of Timed Systems, 2007.

Vojtéch Forejt, Marta Kwiatkowska, David Parker, Hongyang Qu, and Mateusz Ujma.
Incremental runtime verification of probabilistic systems. In International Conference

on Runtime Verification, 2012.

Christian Dehnert, Daniel Gebler, Michele Volpato, and David N Jansen. On abstrac-
tion of probabilistic systems. In Stochastic Model Checking. Rigorous Dependability

Analysis Using Model Checking Techniques for Stochastic Systems. 2014.

Mark Kattenbelt and Michael Huth. Verification and refutation of probabilistic speci-

fications via games. In LIPIcs-Leibniz International Proceedings in Informatics, 2009.

114

[93]

[94]

[95]

[96]

[97]

[99]

[100]

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. Game-
based probabilistic predicate abstraction in prism. FElectronic Notes in Theoretical

Computer Science, 2008.

Holger Hermanns, Bjorn Wachter, and Lijun Zhang. Probabilistic cegar. In Interna-

tional Conference on Computer Aided Verification, 2008.

Marta Kwiatkowska. Model checking for probability and time: from theory to practice.
In Logic in Computer Science, 2003. Proceedings. 18th Annual IEEE Symposium on,
2003.

Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guldstrand
Larsen. Reachability analysis of probabilistic systems by successive refinements. In
Process Algebra and Probabilistic Methods, Performance Modeling and Verification:
Joint International Workshop, PAPM-PROBMIV, 2001.

Peng Dai and Judy Goldsmith. Topological value iteration algorithm for markov deci-
sion processes. In IJCAI 2007, Proceedings of the 20th International Joint Conference

on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007.

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: A
tool for automatic verification of probabilistic systems. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2006.

Miguel E Andrés and Peter Van Rossum. Conditional probabilities over probabilistic
and nondeterministic systems. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, 2008.

Krishnendu Chatterjee, Martin Chmelik, and Przemystaw Daca. Cegar for qualitative
analysis of probabilistic systems. In International Conference on Computer Aided

Verification, 2014.

115

[101]

102]

[103)]
[104]

[105]

[106]

107]

[108]

109

Rohit Chadha and Mahesh Viswanathan. A counterexample-guided abstraction-

refinement framework for markov decision processes. 2010.

Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In International School on Formal

Methods for the Design of Computer, Communication and Software Systems, 2011.
Vidyadhar G Kulkarni. Modeling and analysis of stochastic systems. Crc Press, 2016.
Peter E Caines. Linear stochastic systems, volume 77. SIAM, 2018.

Muhammad Syifaul Mufid, Dieky Adzkiya, and Alessandro Abate. Bounded model
checking of max-plus linear systems via predicate abstractions. In International Con-

ference on Formal Modeling and Analysis of Timed Systems, 2019.

Maxence Dutreix and Samuel Coogan. Efficient verification for stochastic mixed mono-
tone systems. In Proceedings of the ACM/IEEE International Conference on Cyber-

Physical Systems, 2018.

Morteza Lahijanian, Sean B Andersson, and Calin Belta. Formal verification and syn-
thesis for discrete-time stochastic systems. IEFEE Transactions on Automatic Control,

2015.

Maria Svorenova, Jan Kretinsky, Martin Chmelik, Krishnendu Chatterjee, Ivana
Cerng, and Calin Belta. Temporal logic control for stochastic linear systems using

abstraction refinement of probabilistic games. Nonlinear Analysis: Hybrid Systems,

2017.

Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Aggregation and control of
populations of thermostatically controlled loads by formal abstractions. IEEE Trans-

actions on Control Systems Technology, 2014.

116

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Morteza Lahijanian, Sean B Andersson, and Calin Belta. Approximate markovian

abstractions for linear stochastic systems. In IEEE Conference on Decision and Control

(CDC), 2012.

Sasa V Rakovic, Franco Blanchini, Eva Cruck, and Manfred Morari. Robust obstacle

avoidance for constrained linear discrete time systems: A set-theoretic approach. In

IEEE Conference on Decision and Control, 2007.

Shun-ichi Azuma and George J Pappas. Discrete abstraction of stochastic nonlinear
systems. IFICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, 2014.

Abolfazl Lavaei, Sadegh Esmaeil Zadeh Soudjani, Rupak Majumdar, and Majid Za-
mani. Compositional abstractions of interconnected discrete-time stochastic control

systems. In IEEE 5Annual Conference on Decision and Control (CDC), 2017.

Ameneh Nejati, Sadegh Soudjani, and Majid Zamani. Abstraction-based synthesis of
continuous-time stochastic control systems. In European Control Conference (ECC),

2019.

Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid
systems. In International Conference on Hybrid Systems: Computation and Control,

2000.

John Lygeros and Maria Prandini. Stochastic hybrid systems: A powerful framework

for complex, large scale applications. 2010.
Christos G Cassandras and John Lygeros. Stochastic hybrid systems. CRC, 2006.

Manuela L Bujorianu and John Lygeros. Toward a general theory of stochastic hybrid

systems. In Stochastic hybrid systems. 2006.

117

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

Alessandro Abate, Joost-Pieter Katoen, and Alexandru Mereacre. Quantitative au-
tomata model checking of autonomous stochastic hybrid systems. In Proceedings of

the 14th international conference on Hybrid systems: computation and control, 2011.

Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic

reachability and safety for controlled discrete time stochastic hybrid systems. 2008.

Saurabh Amin, Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sas-
try. Reachability analysis for controlled discrete time stochastic hybrid systems. In

International Workshop on Hybrid Systems: Computation and Control, 2006.

A Agung Julius and George J Pappas. Probabilistic testing for stochastic hybrid

systems. In IEEE Conference on Decision and Control, 2008.

Martin Franzle, Ernst Moritz Hahn, Holger Hermanns, Nicolas Wolovick, and Lijun
Zhang. Measurability and safety verification for stochastic hybrid systems. In Inter-

national conference on Hybrid systems: computation and control, 2011.

Maria Prandini and Jianghai Hu. A numerical approximation scheme for reachability
analysis of stochastic hybrid systems with state-dependent switchings. In Decision and

Control, 2007 46th IEEE Conference on, 2007.

Stephen Prajna, Ali Jadbabaie, and George J Pappas. Stochastic safety verification

using barrier certificates. In IEEE Conference on Decision and Control, 2004.

Koichi Kobayashi, Yasuhito Fukui, and Kunihiko Hiraishi. Discrete abstraction for a
class of stochastic hybrid systems based on bounded bisimulation. IFICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences, 2014.

Henk AP Blom, GJ Bakker, and Jaroslav Krystul. Probabilistic reachability analysis
for large scale stochastic hybrid systems. In Decision and Control, 2007 46th IEEE

Conference on, 2007.

118

[128]

[129]

[130]

[131]

132]

[133]

[134]

[135]

Fedor Shmarov and Paolo Zuliani. Probreach: verified probabilistic delta-reachability
for stochastic hybrid systems. In Proceedings of the 18th International Conference on

Hybrid Systems: Computation and Control, 2015.

Tino Teige and Martin Franzle. Stochastic satisfiability modulo theories for non-linear
arithmetic. In International Conference on Integration of Artificial Intelligence (Al)

and Operations Research (OR) Techniques in Constraint Programming, 2008.

Tino Teige, Andreas Eggers, and Martin Franzle. Constraint-based analysis of concur-
rent probabilistic hybrid systems: An application to networked automation systems.

Nonlinear Analysis: Hybrid Systems, 2011.

Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz Hahn.
Safety verification for probabilistic hybrid systems. In International Conference on

Computer Aided Verification, 2010.

Martin Franzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability modulo
theory: A novel technique for the analysis of probabilistic hybrid systems. In Proceed-
ings of the Hybrid Systems: Computation and Control, 11th International Workshop,
HSCC, 2008.

Audemard Gilles, Bozzano Marco, Cimatti Alessandro, and Sebastiani Roberto. Ver-
ifying industrial hybrid systems with mathsat. FElectron. Notes Theor. Comput. Sci.,
2005.

Martin Frnzle and Christian Herde. Efficient proof engines for bounded model checking

of hybrid systems. FElectronic Notes in Theoretical Computer Science, 2005.

Husain Aljazzar, Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. Directed
and heuristic counterexample generation for probabilistic model checking: a compara-
tive evaluation. In ICSE Workshop on Quantitative Stochastic Models in the Verifica-

tion and Design of Software Systems, 2010.

119

[136]

[137]

[138)]

[139]

[140]

[141]

142]

[143]

Rajeev Alur, Thao Dang, and Franjo Ivanci¢. Counter-example guided predicate ab-
straction of hybrid systems. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, 2003.

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Hare: A hybrid ab-
straction refinement engine for verifying non-linear hybrid automata. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

2017.

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Hybridization based
CEGAR for hybrid automata with affine dynamics. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2016.

Jeremy Sproston. Decidable model checking of probabilistic hybrid automata. In

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, 2000.

Nikolaj Bjgrner, Anh-Dung Phan, and Lars Fleckenstein. vz - an optimizing SMT
solver. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, 2015.

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik. Sym-
bolic optimization with SMT solvers. In Symposium on Principles of Programming

Languages, POPL, 2014.

Christian Ellen, Sebastian Gerwinn, and Martin Franzle. Confidence bounds for sta-
tistical model checking of probabilistic hybrid systems. In International Conference on

Formal Modeling and Analysis of Timed Systems. Springer, 2012.

Ratan Lal and Pavithra Prabhakar. Bounded verification of reachability of probabilistic

hybrid systems. In Quantitative Evaluation of Systems QEST, 2018.

120

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic pro-

cesses. In International Conference on Concurrency Theory, 1994.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In International Conference on Com-

puter Aided Verification, 2000.

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhedra library:
Toward a complete set of numerical abstractions for the analysis and verification of

hardware and software systems. Sci. Comput. Program., 2008.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex:
Scalable verification of hybrid systems. In International Conference on Computer

Aided Verification, 2011.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu,

et al. Bounded model checking. Advances in computers, 2003.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model

checking using satisfiability solving. Formal methods in system design, 2001.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan

Zhu. Bounded model checking. Handbook of satisfiability, 2009.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language

for convex optimization. The Journal of Machine Learning Research, 2016.

Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. Approxi-

mate model checking of stochastic hybrid systems. Furopean Journal of Control, 2010.

Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and Shuzhong Zhang.

121

Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing

Magazine, 2010.

[154] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National Lab.(LANL),

Los Alamos, NM (United States), 2008.

122

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Formal methods
	Modeling of stochastic hybrid systems
	Main results of the thesis
	Thesis outline

	Background
	Markov Chains
	Markov decision processes
	Stochastic systems
	Stochastic hybrid systems
	Probabilistic hybrid systems

	Probabilistic hybrid systems
	Preliminaries
	Timed Markov decision processes
	Probabilistic reachability

	Case study: vehicle navigation
	Probabilistic hybrid systems and its subclasses

	Probabilistic reachability analysis
	Problem definition
	Computing probability of reachability
	Experimental analysis

	Safety analysis of polyhedral probabilistic hybrid systems
	Preliminaries
	Problem definition
	Running example
	Counterexample guided abstraction refinement
	Abstraction
	Model checking and counterexample
	Validation
	 Refinement

	Computability
	Experimental analysis

	Safety analysis of linear probabilistic hybrid systems
	Abstractions
	Hybridization

	Experimental analysis

	Parametric verification of linear discrete-time stochastic systems
	Motivation
	Preliminaries
	Stochastic systems
	Bounded PPV using semi-definite programming
	Unbounded parametric properties verification
	Experimental analysis

	Conclusions and future work
	Bibliography

