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Abstract 

Since the beginning of 21st century technological innovations are aiding to improve the 

agricultural industry. Precision Agriculture (PA) systems are one of those technologies which are 

creating the greatest impact on agricultural practices. PA is defined as the farming practices which 

optimizes the farm inputs with a goal to increase overall yield and minimizing harmful 

environmental impacts. To accomplish such targets, collection of high resolution spatial and 

temporal data on crop health and physiology becomes critical in helping to make decisions on 

optimizing farm inputs. Due to this, there has been increase in the use of small unmanned aerial 

systems (sUAS) in agricultural industry as a PA tool. sUAS are used for remote sensing 

applications such as crop phenotyping, crop water stress estimation, crop disease detection among 

others. With the development of robust sUAS sensors, collection of vegetative based data in field 

is evolving into standalone system. Sensors chosen for such applications include RGB sensors, 

thermal infrared sensors, modified color infrared sensors, multispectral sensors and Hyperspectral 

sensors. Usually a sUAS sensor is selected based on the spectral ability of the sensor and specific 

configuration are not considered. Improper selection of sensors leads to false data collection 

affecting the studies done using these sensors.  

In this thesis thermal infrared, modified color infrared and multispectral sensors were 

identified and compared based on the parameters specific to the sensor involved, to understand 

and improve future selection of sUAS sensors. 

Multispectral sensors are more commonly used as compared to other UAS sensors as 

multispectral sensors provide information both in visible and infrared spectrum. Multispectral 

sensors can be divided into two categories, namely narrowband and broadband. A study was done 

to compare and evaluate performance of the two types of multispectral sensors available in 

precision agriculture systems. The sensors were examined on different parameters to check their 

ability to provide remote sensing data with high-accuracy. Spectral response, ground resolution 

and statistical correlation with ground data were evaluated for both the sensors. Results shows the 

sensors performed differently in different parameters, but the spectral data provided by them was 

in close correlation with each other. A need for developing better ground data collection methods 

was observed.  



  

Thermal image quality is critical to accurately quantify water stress patterns in field crops. 

Image data quality from a thermal sensor is impacted by several factor. A second experiment was 

conducted with goal to compare accuracy of canopy temperature quantification and assess the 

quality of thermal orthomosaic when using thermal sensor of different focal length and image 

acquisition at varying flying altitudes of a sUAS. Three thermal infrared cameras were selected 

with focal lengths of 9mm, 13mm, and 19mm. All three cameras were flown at altitudes of 20m, 

50m, and 80m. Results showed that 13 mm focal length and 50 m altitude produce finer resolution 

orthomosaic which provide a robust and accurate information on canopy temperature. Overall, the 

canopy temperatures were quantified accurately regardless of altitude and focal length by 

efficiently and accurately utilizing the ground reference system.   
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Chapter 1 - Introduction 

Due to the ever increasing population, crop production must increase approximately 25-70 

% from rcurrent levels to meet future demands (Hunter et al., 2017). To reach higher efficiencies, 

the environment is often ignored. Sustainable agriculture helps to avoid unwanted degradation of 

the agricultural lands along with increasing the farm yields. Precision agriculture is a farming 

practice in which farm inputs are optimized, overall efficiency of the farm is improved, and 

environmental footprint is reduced by concentrating on right management practice at right place 

at right time and at right rate (Gebbers and Adamchuk, 2010; Khanal et al., 2017; Hunt and 

Daughtry, 2018). Remote sensing is a important part of precision agriculture (Robert, 1982; Mulla 

and Khosla, 2016; Moran, Inoue and Barnes, 1997; Brisco et al., 1998).  

Designed initially for military purposes, unmanned aerial systems (UAS) are now 

increasingly used in agricultural fields as remote sensing platforms (Joshua, 2017). UAS provide 

an alternate solution to traditionally used satellite and aircraft remote sensing. UAS are more 

flexible to use and economically affordable compared to other remote sensing platforms (Zhang 

and Kovacs, 2012). UAS are successfully been used for remote sensing applications such as 

vegetation index calculations, species phenotyping, water stress identification, etc. (Berni et al., 

2009; Baluja et al., 2012; Zaman-Allah et al., 2015; Senthilnath et al., 2017).  

There are a variety of sUAS sensors are used onboard, but the most frequently used in 

agriculture are the standard Red-Green-Blue camera, multispectral, hyperspectral and thermal 

sensors. The type of information collected through remote sensing is decided by the sensor used 

which influences the nature of the application. A digital camera senses only visible light from the 

red, blue, and green wavelengths, and the combined RGB bands are used to produce the typical 

color image. Multispectral sensors deliver additional information by sensing data from non-visible 
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wavelengths as well as visible. Hyperspectral sensors collect data on hundreds of narrow, 

contiguous spectral bands which can provide specific information on particular wavelengths 

(Joshua, 2017). Thermal sensors are capable of capturing just the long wave infrared which helps 

in identifying water stress in field crops.  

Availability of a variety of sensors and platforms is better for research purposes, however, 

it is critical to choose the correct sensor for the application. Before selecting a sensor, researchers 

consider data outputs from the sensor. Common concerns that arise are whether the spatial 

resolution is adequate to provide accurate and robust data for analytics and whether the images can 

be efficiently stitched to generate geometrically accurate orthomosaics. A sensor is often selected 

based on the ability of the sensor to detect certain wavelengths and specific configuration such as 

focal length, sensors size, bandwidth and radiometric resolution are not considered. 

Considering the stated issue regarding camera selection for remote sensing purposes on 

UAS, this study was designed to compare and evaluate performance of the types of inrared sensors 

commonly used in precision agriculture with the following objectives: 

 Compare and contrast the differences between PI extracted from both narrowband 

and broadband multispectral sensors. 

 Check correlations between extracted data from remotely sensed imagery with 

ground data collected during the growing season. 

 Assess relative merits of PI derived from broadband and narrowband sensors to 

assess crop growth parameters.  

 Develop crop canopy thermal orthomosaic from aerial imagery collected at varying 

altitudes using thermal sensors of different focal lengths 

 Conduct qualitative and quantitative analysis on different images and thermal 

orthomosaics. 
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Chapter 2 - Infrared remote sensing using unmanned aerial vehicles 

for evaluating crop health parameter: A review 

 Abstract  

Global food demand is increasing due to this it is crucial to make farm operations more 

efficient and to reduce agricultural losses. Measuring spatial variability within the crop field is 

crucial to achieve this objective. Precision agriculture make use of various technologies such as 

remote sensing, sensors, global positioning system to provide in-field information which makes 

local management of agricultural inputs feasible. Remote sensing being one of the most important 

tool contributes by helping researchers to estimate in-filed variations. Platforms involved for 

remote sensing are satellites, aircrafts, unmanned aerial systems and ground sensors. Compared to 

satellites and aircrafts, unmanned aerial systems are flexible to use and are economic. Number of 

sensors are used onboard unmanned aerial systems. They include standard visible cameras, 

multispectral cameras, hyperspectral cameras and thermal cameras. Sensors are selected based 

upon the information which is required regarding the crop canopy. This paper reviews the 

applications of sensors used on unmanned aerial systems for evaluating crop health parameters. 

 Introduction 

The world’s population is expected to grow to 9 billion by 2044 (Bureau, 2011). Due to 

this there is going to be an increasing global food demands to meet the population needs. With the 

increasing global demand in food and agricultural outputs it becomes important to reduce 

agricultural losses and make farming operations more efficient (Crimmins 2016). For reducing 

environmental impact and optimizing the use of agricultural inputs, measuring spatial variability 

in above and below ground becomes a crucial task. The techniques which are used to measure 
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agricultural entities and help apply appropriate corrections is known as Precision Agriculture (PA) 

(Khanal, 2017). Precision agriculture apply a combination of technologies such as the Global 

Positioning System (GPS), remote sensing (RS), electronic sensors and devices, geographic 

information system (GIS) in order to provide the necessary information to make feasible the local 

management of the agricultural activities at within-field detail (Khanal, 2017). 

Remote sensing is the most commonly used tool in precision agriculture. RS plays a crucial 

role in serving researchers to estimate in-field variations (Joshua, 2017). This is done by measuring 

reflectance or emittance of electromagnetic waves which are produced by the plants after 

interacting with sunlight. Properties about a crop can be known by observing the reflectance or 

emittance values for the different wavelengths of light (Arthur et al., 2015). Remote sensing 

platforms include ground sensors, satellites, aircrafts and small unmanned aerial system (sUAS) 

sensors. The development of UAV in the last decade has led to a new era in remote sensing, 

providing data of high spatial, spectral, and temporal resolution (Colomina, 2014). UAS provide 

an alternate option to traditionally used satellite and aircraft to collect data as they are more 

independent from climatic variables, they are flexible to use and are economic as compared to 

other remote sensing platforms (Zhang and Kovacs, 2012). 

There are a variety of sUAS sensors accessible to the user, but the most frequently used in 

agriculture are the standard RGB (Red-Green-Blue) camera, multispectral, hyperspectral and 

thermal sensors. The quantity and quality of information collected through remote sensing is 

decided by the type of sensor used which influences the nature of the application. A digital camera 

senses only visible light from the red, blue, and green wavelengths, and the combined RGB bands 

are used to produce the typical color image. Multispectral sensors deliver additional information 

by sensing data from non-visible wavelengths as well as visible. Hyperspectral sensors collect data 
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on hundreds of narrow, contiguous spectral bands which can provide specific information on 

particular wavelengths (Joshua, 2017). Thermal sensors are capable of capturing just the long wave 

infrared which helps in identifying water stress in field crops. 

The objective of this chapter is to review the use of infrared remote sensing using 

unmanned aerial vehicles for evaluating crop health and production parameters. We’ll discuss the 

kinds of sUAS platforms which are used for remote sensing applications. Sensors types will be 

discussed in brief. And finally we’ll look various application of these sensors in agricultural fields 

such as disease detection, drought stress detection, yield estimation, pigment concentration, etc.  

 sUAS platforms 

Originally made for military purposes, sUAS has witnessed an increase in their usage over 

the last decade as a remote sensing platform for agricultural applications (Joshua, 2017). A variety 

of sUAS platforms have been developed over the years. There are two main types of sUAS which 

are majorly used in agricultural applications: rotary-motor and fixed-wing. Fixed-wing airplane 

designs were studied by Beard et al., 2005and Everaerts, 2008, where they developed their own 

autopilots to be used on sUAS. Rotary-wing systems were developed and tested by Ehsani, 

Sankaran, Maja, & Neto, 2014 and Lucieer, Malenovský, Veness, & Wallace, 2014 for to be used 

in horticulture and seasonal crop sensing. Each aircraft type has its own benefits and drawbacks. 

Rotary-motor systems is known to have a longer lifecycle since they are able to do vertical takeoff 

and landing, and their flights are more stable. Conversely, their flight speeds are slower and they 

are not capable of covering much area due to limitations on their battery life. Fixed-wing systems 

are able to cover more area per flight but are comparatively expensive and have the affinity to 

breakdown after multiple crash landings, which is the usual landing style for a fixed wing system. 

However, fixed wings can take-off with a larger payload than the rotary style platforms (Shi et al., 
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2016). sUAS have shown great promise as tools for agricultural and environmental applications in 

recent years (Lucieer et al., 2014). The cost of collecting data using a UAS is less than using 

satellite data, but the cost for data processing rises considerably as the size of the area of interest 

increases (Matese et al., 2015). 

 sUAS camera sensors 

Different types of camera sensors are being used for remote sensing purposes. The 

selection of a camera is based on application, dimensional size, focal length, wavelengths 

observed, etc. The sensor types can be RGB true color, thermal infrared (TIR), multispectral 

broadband camera (MSB), multispectral camera, hyperspectral camera and other sensors (Majidi 

and Bab-Hadiashar, 2005; Berni et al, 2009; Zarco-Tejada et al., 2005; Kingston and Beard, 2004). 

RGB (red-green-blue) cameras are cheap and have high spatial resolution (Nijland, 2014). Not 

many vegetative indices can be calculated using RGB cameras but they can be used to generate 

digital elevation models and vegetative height maps (Maes, 2019). Secondly there are 

multispectral cameras, they are made to sense the near-infrared (NIR) spectrum alongside with the 

visible RGB spectrum. Multispectral cameras can be of two types, modified RGB and narrowband 

multispectral. Modified RGB cameras are the one which have their NIR filter replaced with a red 

filter, this makes the earlier red band sensitive to NIR spectrum (Berra, 2017).Even though they 

have only 3 observable bands, the bandwidth for a single band in modified RGB cameras usually 

ranges between 100-110 nm. Narrowband multispectral cameras have more spectral resolution, it 

consists a set of sensors with each sensor measuring in one spectral region (Maes, 2019). In 

narrowband multispectral cameras the sensing elements have a working bandwidth of between 10-

40 nm. Due to this difference between modified RGB and narrowband multispectral cameras, they 

are used to very specific application depending upon what information is required from the sensor. 



7 

The third type of UAV sensors are Hyperspectral cameras. They cover the spectrum for 

electromagnetic radiation related to crop health and monitoring (~ 400-1000 nm) in narrow bands 

usually <10 nm. They can have up to 250 different bands based on the product which is being 

used. Hyperspectral cameras don’t have much application right now but their use is predicted to 

increase in coming years (Adao, 2017). Lastly thermal cameras are low resolution cameras with 

only one band measured using a microbolometer sensor sensitive to longwave infrared region 

(7000-13000 nm). They have a common sensor size of 640x512 pixels, which is small as compared 

to multispectral and hyperspectral sensors which are used in remote sensing applications. Thermal 

sensors are typically used to extract canopy temperature or to create crop water stress maps.  

 Remote sensing applications 

In the following sub-sections we discuss some of the major applications of remote sensing 

using sUAS in assessing crop health and physiology.  

 Crop phenotyping 

Yang et al. 2017, has reviewed various crop phenotyping application of remote sensing 

using sUAS. The sUAS are mounted with different camera sensors to quickly and non-invasively 

collect high-resolution imagery data of the crop fields. After this various crop models are used to 

extract information from the imagery after the images were processed and stitched together 

(Sugiura et al., 2005; Li W. et al., 2016). sUAS have been successfully demonstrated their 

usefulness in obtaining crop geometric traits like vegetative cover (Weiss and Baret, 2017; Yu et 

al., 2017), crop height (Bareth et al., 2016; Holman et al., 2016), lodging (Chapman et al., 2014), 

canopy structure (Aasen et al., 2015; Weiss and Baret, 2017), leaf area index (Carcoles et al., 2013) 

and emergence (Sankaran et al., 2015) by processing and analyzing imagery collected by onboard 

camera sensors (Tamouridou et al., 2017; Yu et al., 2017). Crop identification and leaf color 
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monitoring is possible with image feature analysis using remote sensing image classification 

(Geipel et al., 2014). Canopy cover is considered an important factor while observing crop 

transpiration and photosynthesis (Mullan and Reynolds, 2010). Crop canopy dynamics over time 

is recognized as one of the important phenotyping traits in crop breeding (Zaman-Allah et al., 

2015; Yu et al., 2017). Surface temperature and crop reflectance can be used to approximate crop 

canopy cover (Booth et al., 2005; Rajan and Maas, 2009).  

 Disease detection 

Often crop and plantations are affected by diseases which results in product and capital 

losses, sometimes up to billions of dollars nationwide. Farmers are the one hugely affected by 

disease infestation in their crops. For minimizing losses and increasing yield, instantaneous 

detection of diseases is required. Multispectral imagery have been used and demonstrated as a tool 

to assess disease symptoms and severity. Infrared and visible spectroscopy (S. Sankaran et al., 

2010) and multispectral imagery (Garcia-Ruiz et al., 2013; Yang et al., 2010) can be used to early 

detect diseases in crops. Certain diseases can be identified by observing specific bands in the 

infrared region which provide information on the crop stress levels. Specific wavelengths are 

reflected by different plants which can be used to assess severity and the type of disease on the 

affected crop (S. Sankaran et al., 2010). Green normalized difference vegetative index (GNDVI) 

and soil-adjusted vegetative index (SAI) can be used to assess huanglongbing infestation in citrus 

trees (Garcia-Ruiz et al., 2013). Sudden death syndrome (SDS) in soybeans was found to be 

strongly correlated to pigment index (PI) collected using multispectral imagery (Hatton, 2018). 

 Drought stress detection 

Drought conditions are often experienced in crop fields which are rain fed. Also in irrigated 

field crops can experience water stress if irrigation is not applied in time. One of the biggest 
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challenges in agriculture is proficient use of water resources with the help of precision irrigation 

systems (Rockstrӧm et al., 2017; Ding, 2018). Thermal imagery is highly suitable for early 

detection of water stress, as crop canopy temperature decreases when the plant is transpiring and 

the canopy temperature increases when the plant is not transpiring due to lack of water availability 

(Maes and Steppe, 2012; Gago et al., 2015). Some sUAS studies were able to extract stomatal 

conductance from crop canopy data (Berni et al., 2009; Gago et al., 2017). Crop water stress index 

(CWSI) is also commonly used by researchers to detect water stress by normalizing crop canopy 

temperature data. Fresh methods are being studied to study crop water stress where narrow-band 

VI are created using hyperspectral imagery. A normalized form of photochemical reflectance index 

has been proposed as a water stress detection tool (Zarco-Tajeda et al., 2013). 

 Weed detection  

Infestation of weeds in agricultural crops is observed quite often. It is usually patchy and 

difficult to find within the crop which makes it time consuming to take required measures. sUAS 

provide a better way to identify and map the weeds within the crop. Site-specific weed 

management is a term which is often used with sUAS based weed control methods. Many studies 

have shown the use of sUAS imagery to develop site-specific weed management systems. Spectral 

responses of different weeds are different as compared to that of crops, which means supervised 

classification methods can be used successfully using modified RGB cameras (Alexandridis, T. et 

al., 2017; Tamouridou, A.A. et al., 2017). Supervised learning is a time-consuming method and 

better outcomes cannot be always guaranteed (Lambert, J. et al., 2018). Machine learning methods 

which are trained on ground-based data set are faster alternates to supervised learning 

(Chlingaryan, A. et al., 2018). Object-based image analysis is another method which is used in 

differentiating weeds from crops. In this method group of pixels with comparable spectral response 
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are used for analysis as compared to analyzing individual pixel. Significant decrease in herbicide 

use was observed when prescription maps were made using this technology (de Castro, A.I. et al., 

2018; López-Granados, F. et al., 2016a; López-Granados, F. et al., 2016b).   

 Estimating chlorophyll concentration  

The process of photosynthesis is used by the plants to produce chemical energy from solar 

energy. Chlorophyll concentration is vital to photosynthetic process as they are one of the primary 

pigment used for photosynthesis. Use of multispectral imagery to estimate chlorophyll content has 

been successfully demonstrated by few studies. Swain et al., 2007 and Tilling et al., 2007 showed 

that chlorophyll can be directly measured using canopy chlorophyll index. Hunt Jr. et al 2013 used 

triangular greenness index as a method to estimate chlorophyll content. 

 Calculating biomass 

For better crop management and effective crop growth monitoring, information regarding 

in-field variation of crop growth and biomass is extremely useful to farmers. Studies have shown 

that vegetative indices derived from RGB imagery can be used to check up on growth stages of 

cereal crops quite successfully (Schirrmann, M. et al., 2016; Du, M.M. and Noguchi, N., 2017; 

Burkart, A. et al., 2018).  Crop height calculated from digital elevation models which are made 

using RGB imagery from sUAS are a good estimator of actual height (Madec, S. et al., 2017; 

Watanabe, K. et al., 2017; Hu, P.C. et al., 2018; Brocks, S. and Bareth, G., 2018; Diaz-Varela, 

R.A. et al., 2015; Dillen, M. et al., 2016). Vegetative indices can be combined with crop height 

data to obtain in-field biomass estimates (Bendig, J. et al., 2015; Yue, J.B. et al., 2017).  Also 

several studies used the same method to map lodging in crop fields (Du, M.M. and Noguchi, N., 

2017; Wang, J.-J. et al., 2018; Chu, T.X. et al., 2017; Yang, M.-D. et al., 2017). Another study 
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used a separate approach by combining RGB and thermal imagery to improve the efficiency of 

assessing lodging (Liu, T. et al., 2018). 

 Predicting yield 

Accurate prediction of yield is of quite importance to both the farmer and agricultural 

industry. Vegetative indices and plant height calculated using RGB imagery and multispectral 

imagery has been used successfully to estimate crop yields (Chu, T. et al., 2016; Du, M.M. and 

Noguchi, N., 2017;  Gracia-Romero, A. et al., 2017; Kyratzis, A.C. et al., 2017;  Zhou, X. et al., 

2017). Regression models have been focused on so far for all the studies done on estimating yields. 

These models usually cannot be applied to crop on the same location for consecutive year or at 

different location for the same year but can be scaled up to entire field for same location and same 

year (Rembold, F. et al., 2013).  

 Conclusion 

Remote sensing applications using sUAS in agricultural industry are growing day by day. 

The various aircrafts being used for such applications were reviewed. Also different sensors which 

are used onboard sUAS for collecting spectral data were studied. Finally, specific agricultural 

applications of remote sensing were examined such as crop phenotyping, disease detection, 

drought stress detection among others. It was observed that all kind of spectral sensors can be used 

onboard sUAS with great efficiency. But it was noticed that the sensors used in these studies were 

the one which were already available with the researcher or which are easily available 

commercially. Consideration was not given to examine and compare specifications related to each 

sensor, such as sensor size and radiometric resolution. Also other sUAS parameters such as flying 

altitude and flight speed were not properly evaluated. There is a need to understand these 

parameters to expand the knowledge which is available regarding sUAS and sensors used onboard 
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them. This information can improve the quality of data collected on crops using sUAS sensors. 

Having this idea in consideration, in this thesis thermal infrared, modified color infrared and 

multispectral sensors were identified and compared based on the parameters specific to the sensor 

involved, to understand and improve future selection of sUAS sensors. 
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Chapter 3 - Comparison of multispectral platforms for calculating 

pigment index by referencing ground data 

 Abstract 

Vegetative based data collection is evolving due to development of more robust and 

lightweight sensors. Among these sensors, multispectral sensors are popular among researchers 

owing to their wide range of application. There are two kinds of multispectral sensors, narrowband 

and broadband sensors. A multispectral sensor is selected as per according its ability analyze 

specific wavelengths and sensor configuration such as focal length, sensor size and radiometric 

resolution are not given consideration. Therefore, this study was conducted to compare 

multispectral sensors for calculating pigment index by referencing ground data. A narrowband and 

broadband sensor was flown over soybean field using a quadcopter. Imagery data was compared 

for ground resolution, orthomosaic quality and statistical comparison with ground data. Broadband 

sensor performed better in capturing detailed spatial information. Broadband sensor was found to 

be highly correlated soybean maturity (r = 0.83, p ≤ 0.001). Ground data collected was of coarse 

resolution as compared to spectral data. Better resolution ground data can confirm spectral 

responses as crop parameter. Narrowband sensor was limited in its ability to calculate pigment 

index. In future, other indicies will be examined which can be calculated from multispectral 

sensors to compare with ground data.  

 Introduction 

There is a lot of pressure on current agricultural fields to produce food for the ever growing 

human population (Hunter et al., 2017). In the effort to reach this goal, the environment is often 

ignored to reach higher efficiencies. The concept of sustainable agriculture has been introduced to 
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avoid unwanted degradation of the agricultural lands. A sustainable system should be resource 

conserving, socially supportive, commercially competitive and environmentally sound (Ikerd, 

1990).  Precision agriculture (PA) is a major contributing factor in helping us to create a more 

sustainable agriculture environment. PA has a goal to optimize use of resources to increase 

sustainability and profitability of agricultural systems by keeping environmental impact at a 

minimum and improve the quality of social aspects of agriculture (Gebbers and Adamchuk, 2010). 

PA provides tools and technologies to identify in-fields soil and crop variability, offering a means 

to improve sub-field level farming practices and optimizing agronomic inputs (Khanal, 2017).  

Remote sensing plays a central role in attaining that goal by helping researchers determine 

in-field variation. This can be done by measuring reflectance or emittance of electromagnetic 

waves which are produced by the plants after interacting with sunlight. Properties about a crop can 

be determined by observing the reflectance or emittance values for the different wavelengths of 

light (Arthur et al., 2015). Designed primarily for military applications, unmanned aerial systems 

(UAS) are now being increasingly used in agricultural scenarios as remote sensing platforms 

(Joshua, 2017). UAS provide an alternate option to traditionally used satellite and aircraft to collect 

data as they are more independent from climatic variables, they are flexible to use and are 

economical  compared to other remote sensing platforms (Zhang and Kovacs, 2012). Also the data 

can be obtained in higher resolution which could provide critical information for  phenotyping 

studies on crops, disease detection and crop stress evaluation (Berni et al., 2009; Baluja et al., 

2012; Candiago et al., 2015; Zaman-Allah et al., 2015; Senthilnath et al., 2017).  

With the development of robust and lightweight sensors, collecting vegetative based data 

in field is rapidly evolving into standalone systems (Berni et al., 2009). The use of UAS based 

sensors to detect water stress and to quantify biomass in crops has been successfully demonstrated 
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by many researchers (Bendig et al., 2015; Park et. al., 2015). The kind of information collected 

using remote sensing depends on the type of sensor used and sensor selection is based on the 

application in which it will be used. The sensors types can be classified broadly as Red-Green-

Blue (RGB) sensors, thermal infrared (TIR) sensors, modified color infrared (CIR), narrowband 

multispectral sensor and hyperspectral sensors (Kingston and Beard, 2004; Majidi and Bab-

Hadiashar, 2005; Zarco-Tejada et al., 2005; Berni et al, 2009). 

Multispectral sensors are more commonly used by farmers and researchers compared to 

other UAS sensors since multispectral sensors provide information both in the visible and infrared 

spectrums (Joshua, 2017). Multispectral sensors can be divided into two categories, namely 

narrowband and broadband. A typical narrowband multispectral sensor has a bandwidth of 10 nm 

whereas broadband sensors have a bandwidth ranging from 40 nm to 110 nm (Lei deng, 2018). 

Both type of sensors can be used for estimating crop variables, but it is often found that information 

extracted from narrowband and broadband sensors when compared with each other are neither in 

complete agreement nor conflict (Zhao, 2007). Usually a multispectral sensor is selected based on 

the ability of the sensor to detect certain wavelengths and specific configuration such as focal 

length, sensors size, bandwidth and radiometric resolution are not considered. 

Considering the stated issue regarding camera selection for remote sensing purposes on 

UAS, this study was designed to compare and evaluate performance of the two types of 

multispectral sensors commonly used in precision agriculture. The sensors were examined to 

assess differences in their ability to provide accurate remotely sensed data and derive a Pigment 

Index (PI) for multiple flights in the season. In this study the following objectives were set:  

 Compare and contrast the differences between PI extracted from both narrowband 

and broadband multispectral sensors. 
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 Check correlations between extracted data from remotely sensed imagery with ground 

data collected during the growing season. 

 Assess relative merits of PI derived from broadband and narrowband sensors to assess 

crop growth parameters. 

 Methods 

 sUAS and cameras 

A Matrice – 100 (DJI, Shenzhen, China) quadcopter was used to perform the aerial 

missions (Fig. 3.1). The quadcopter could handle a maximum payload of 1 kilogram. The UAS 

was equipped with in-built autopilot and custom missions can be uploaded on the copter using 

third party applications. It has dual battery compatibility each battery providing 5700mAh power 

to the copter, providing 25 minutes of effective flight time with multispectral sensors (185-350 

gm) onboard.  The quadcopter can fly in wind speeds of up to 10 m/s but to maintain safety 

standards and to avoid error in data caused due to wind influence data was collected when the wind 

speeds were less than 4.5 m/s. The sensors were mounted using a custom made 3-D printed gimbal. 

The copter was used to collect color infrared imagery to compare multispectral cameras.  

Figure 3.1. Matrice 100 quadcopter which was used for 

collecting infrared data 
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Two kinds of multispectral sensors, one was a narrowband sensor Micasense Rededge-M 

(Micasense Inc., Seattle, WA) with 5 bands of blue, green, red, red-edge and near infrared. The 

bandwidth varied from 10 nm to 40 nm for this sensor with 1.2 MP of sensor size. The second 

sensor was a modified broadband infrared Sony α5100 (Sony corporation of America, New York, 

NY). It had 3 bands of blue, green and near infrared. Modified broadband cameras have broader 

bands as compared to Micasense sensor close to 100 nm with 24 MP of sensor size. The Micasense 

sensor had a global shutter whereas Sony α5100 had a rolling shutter. Also, a Flir Vue pro R 13 

mm (Flir Systems Inc, Wilsonville, OR, USA) thermal infrared camera was used to collect thermal 

aerial imagery in °C and cross verify spectral response from both multispectral cameras (Fig. 3.2).  

 Crops and Missions 

The crop selected for this study was soybean (Fig. 3.3a). The plot was located south of 

Assaria, KS (38.669030° N, -97.604247° W). The agronomic performance Roundup Ready 2 

Xtend® commercial soybean cultivars was evaluated under dryland conditions as part of the 

Kansas Soybean Variety Performance Test Trials. Each cultivar was planted in 4-row plots, 3.7 m 

long, spaced .76 m apart. The experimental design was a randomized complete block with 4 

replications. Planting rate was 30 seeds per m of row. The soil type at the site was a Detroit silty 

clay loam. There were total 35 cultivars represented as E1, E2, etc. The missions were created on 

Figure 3.2. Camera sensor used for this study: a) Micasense Rededge-M b) Flir Vue pro R 

13 mm c) Sony α5100 modified CIR 
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Mission Planner (Mission Planner®, by Michel Oborne) autopilot software suite. Mission Planner 

was used as a configuration utility and as a dynamic control supplement for compatible 

autonomous vehicles. After determining the mission characteristics, the mission files were 

imported into a third party autonomous flight application (Litchi® for DJI). Litchi allowed mission 

files from Mission Planner to be uploaded onto the quadcopter. This function is not available 

within DJI software and hardware packages. The planned missions were then uploaded to the 

autopilot onboard the quadcopter which carried out the missions and returned safely to the launch 

site. All missions were conducted at an altitude of 50 m, within ±1.5 hours of solar noon to avoid 

deep shadows and bidirectional reflectance artifacts. The quadcopter was flown at a velocity of 3 

m/s for all missions. Multiple flights were done over the season, but due to weather constraints 

and errors in stitched data only 2 days of good data collection, one mid-season and a second at the 

end of season (1: 08/02/2018, 2: 09/22/2018). The data from the sensors will be abbreviated as the 

name of the sensor and code of the date e.g. RE1 for Rededge-M data collected on 08/02/2018. 

 Ground Data 

For verifying the performance of each sensor, leaf wilting scores were collected on each 

plot on multiple days of the season (King, 2009). Wilting scores were rated using a scale from 0-

Figure 3.3. a) Soybean crop used for data collection. b) Matrice 100 with a 

Sony α5100 CIR camera 
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100. 0 represented no wilting, 20 represented slight wilting evidence and rolling of leaves at top 

of the canopy, 40 represented severe rolling of leaves at the top of the canopy and moderate wilting 

of leaves throughout the plant, 60 represented severe wilting thought the canopy, 80 represented 

dead leaves throughout the canopy and severely wilted petioles and 100 represented plant death. 

The wilting scores collected 4 times during the season on 7/25, 08/01, 08/08 and 09/01/2018 will 

be abbreviated as W1, W2, W3 and W4 respectively. The most severe wilting scores were observed 

on 7/25. Scores for the latter three dates were relatively low because of more frequent rain events 

the second half of the season. Plant maturity was recorded as the number of days after August 31st 

when 95% of soybean pods have reached stage R8 (Christenson, 2013). After maturity, the center 

two rows of each plot was harvested to measure seed yield (kg/ha).  

 Sensor comparison 

The quality of data extracted from the sUAS imagery depends greatly on the quality of the 

images collected. Other factors which play a role in producing quality data are image overlap, 

flight time, calibration, etc. For qualitative and quantitative analysis for comparing the different 

multispectral sensors the following experiments were performed with the aerial data collected: 

 Ground resolution  

Aerial and satellite imagery have ground resolution often listed as a parameter for 

comparing between different sensors. According to Hengl (2006), at least four pixels are required 

to detect the smallest feature in an image. Therefore, it becomes necessary to look at ground 

resolution for the imagery collected in this study to compare the 2 infrared sensors. The ground 

resolution and the foot-print of the images collected for a flying altitude of 50 m was calculated 

for all the flights using ArcMap 10.4.1 (ArcGIS, ESRI, Redlands, CA, USA).  

 Statistical and orthomosaic analysis 
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Using the infrared imagery from both the sensors, one selected vegetative index was 

calculated. A Pigment Index (PI) was derived by subtracting the green normalized difference index 

(GNDVI) from the blue normalized difference index (BNDVI) (KSURF Invention Disclosure 

No.2016-010, 2016). 

𝐺𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 −  𝐺𝑟𝑒𝑒𝑛  

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

𝐵𝑁𝐷𝑉𝐼 =
 𝑁𝐼𝑅 −  𝐵𝑙𝑢𝑒 

𝑁𝐼𝑅 +  𝐵𝑙𝑢𝑒
 

𝑃𝐼 =  𝐵𝑁𝐷𝑉𝐼 –  𝐺𝑁𝐷𝑉𝐼 

 

 During the process of photosynthesis plants produce reactive oxygen species as a 

secondary product along with sugars and fatty acids. High concentrations of reactive oxygen 

species are harmful to plants and stress causes these concentrations to increase (Hodecker et al., 

2018; Kang et al., 2017). Also fungi and bacteria produce reactive oxygen species to invade plant 

tissues. To reduce the concentration of reactive oxygen, plants produce carotenoids which behave 

as antioxidants (Kim S. H. et al., 2012). Stress leads to higher carotenoid concentrations. 

Chlorophyll a and b absorb energy across blue and red regions of the electromagnetic spectrum 

whereas carotenoids absorb photons in the blue and green regions (Chappelle et al., 1992), as seen 

in Fig. 3.4 (Heliospectra, 2014). Also, plants reflect a considerable amount of energy in the NIR 

region of the spectrum. BNDVI values are influenced by chlorophyll a and b content with some 

influence of carotenoids. GNDVI is influenced by carotenoid concentration to a larger extent and 

is used to as a plant health indicator (Gitelson A. A. et al., 1996). PI values provide an indication 

of carotenoids to chlorophylls ratios, therefore it is correlated with stress conditions in the plant 

and physiological reasons that lead to changes in chlorophyll-carotenoid ratios, such as plant 

progression through growth stages (Hatton, 2018). A major advantage of the PI compared to other 
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types of spectral indices is that it decouples the influence of biomass from stress.  NDVI provides 

low values even when the plant biomass is low. PI values are influenced less by biomass.  

PI index was extracted from the orthomosaics generated for each 4-row plot, only selecting 

the middle 2 plots to avoid errors due to pixel mixing. The PI was averaged into a single value for 

each 4-row plot. Anova analysis was done to check the differences between cultivars and sensors 

ability to identify differences in cultivars. Cultivar means were used to check significant 

differences between cultivars with respect to yield, maturity, S1, S2, RE1, RE2, F1, W1, W2, W3 

and W4. A correlation matrix was created for checking the overall correlations between ground 

and aerial data (R Foundation, USA).  
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Figure 3.4. Plant Pigment spectral absorption distribution 
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 Results and Discussion 

 Ground resolution and spectral discrimination 

The ground resolution (GR) and footprint (FP) from both the infrared sensors was 

calculated for a mission altitude of 50 m. The GR and FP for Sony α5100 were GR = 0.56 cm and 

FP = 33.6 x 22.3 m, whereas for Rededge-M they were GR = 3.47 cm and FP = 44.4 x 33.3 m. 

The Sony α5100 provided better ground resolution and footprint compared to Rededge-M which 

means more information is available from the imagery for spectral study (Fig. 3.5). Also there was 

a vast difference in sensor size between the Sony α5100 and Rededge-M. The Sony α5100 had a 

sensor size of 23.5 x 15.6 mm with 6000 x 4000 pixels on the sensor array. The Rededge-M had a 

sensor size of 4.8 x 3.6 mm with 1280 x 960 pixels on the sensor array. Rededge-M is a wide-

angle camera (focal length = 5.4 mm) as compared to Sony α5100 (focal length = 16 mm). Sony 

α5100 16 mm lens is a less sharper lens due to this there are more number of pixels for transition 

between the 2 gradients. The results exhibited that Sony α5100 had better capability of gathering 

more detailed spatial information of the crop canopy which helps in understanding plants 

physiology. Rededge-M collected imagery in 16-bit (65,536 value intervals) radiometric resolution 

while the Sony α5100 imagery was collected with 8-bit (256 value intervals) radiometric 

resolution.  

(a) (b) 

Figure 3.5.Ground resolution comparison for a) Sony α5100 CIR and b) Rededge-M 
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 Statistical and orthomosaic analysis 

The orthomosaics created during this study were compared with each other (Fig. 3.6). The 

orthomosaics were created for the entire field not limited to the cultivars used for comparison. 

Similar patterns were found between imagery collected from S2, RE2 and F2. The pattern does 

not necessarily represent the cultivar differences. The areas in the close-up section of crop marked 

with the red boundary were areas where the plots spectrally exhibited poor health and areas marked 

with the green boundary were the areas that exhibited good health.  These patterns indicate that 

even though different sensors were used in this study the spectral response of all the sensors 

somewhat remained similar. Further statistical comparison between camera sensors and ground 

data was done to fully evaluate the performance of the sensors.  

Table 3.1 shows the F-values from analyses of variance for cultivar differences with respect 

to yield, maturity, S1, S2, RE1, RE2, F1, W1, W2, W3 and W4. Maturity S2, RE2 and W2 

exhibited larger cultivar differences compared to the other variables. A correlation matrix (along 

with levels of significance) was created to evaluate the relationship between the phenotypic 

variables evaluated for cultivars (Tables 3.2 and 3.3). S2 was found to be highly correlated with 

Figure 3.6.Orthomosaic generated with infrared imagery used in this study 
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maturity (r = 0.83, p ≤ 0.001). S2 was also correlated with yield (r = 0.49, p ≤ 0.01). RE2 was only 

found to be significantly correlated to yield (r = 0.63, p ≤ 0.001). Part of the correlation of S2 and 

RE2 with yield is due to later stages of crop maturity. Chlorophyll concentration decreases during 

senescing and stress no longer is reason for reduced chlorophyll activity. F2 showed correlation 

with maturity and S2 with r values of -0.68 (p ≤ 0.001) and -0.61 (p ≤ 0.001), respectively. 

Correlation between S1 with maturity and RE1 with S1 and S2 were significant but turned out to 

be small.S1 was found to have a correlation with maturity (r = 0.47, p ≤ 0.01). RE1 was correlated 

to S1 and S2 with r values of 0.47 (p ≤ 0.01) and 0.43 (p ≤ 0.05) respectively. 

Table 3.1. Analysis of variance summary for cultivar difference 

 

Significant correlations were observed between the wilting scores and the sensor data, but 

the correlations tended to be small, and varied in sign (Table 3.3) For example, a positive 

association was observed between W2 and S2 (r = 0.42, p ≤ 0.05), while a negative association 

was observed between W3 and S1 (r = -0.42, p ≤ 0.05). One possible reason for this inconsistency 

may have been related to the timing of the measurements. S2 was recorded later in the growing 

season than W2, when the plants were beginning to mature. S1 and W3 were recorded within 6 

days of each other during pod fill and resulted in an expected negative correlation between PI and 

wilting, where cultivars with less wilting and under less stress tended to have higher PI values.  

However, in this data set, wilting scores were limited in their capability to discern differences 

among the cultivars and were not correlated to seed yield. 

 

 Y MATURITY S1 S2 RE1 RE2 

F-VALUES 3.465*** 60.762*** 7.683*** 59.415*** 6.026*** 30.077*** 

 F2 W1 W2 W3 W4  

F-VALUES 2.956*** 10.8*** 15.514*** 2.029** 2.998***  

*** P = 0.001; ** P ≤ 0.01 
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Table 3.2. Main effects means table for all the variables 

 

ENTRY YIELD MATURITY S1 S2 RE1 RE2 F2 W1 W2 W3 W4 

E1 3104.5 27.5 -0.023 -0.143 0.071 0.191 23.2 36 3 11 14 

E2 3388.9 29 -0.009 -0.105 0.080 0.219 23.7 33 3 10 9 

E3 3628.7 30.25 -0.034 -0.110 0.066 0.220 24.1 31 14 15 21 

E4 3172.4 28.75 -0.048 -0.100 0.068 0.205 23.7 51 34 23 18 

E5 3543.6 34.75 -0.029 -0.052 0.074 0.235 22.9 41 13 13 13 

E6 3595.5 38 -0.016 -0.043 0.090 0.206 22.8 43 25 19 15 

E7 3657.1 41 -0.031 -0.057 0.081 0.189 22.0 29 11 9 18 

E8 3129.1 25 -0.050 -0.139 0.072 0.191 23.7 36 14 18 9 

E9 3717.8 37 -0.020 -0.042 0.101 0.226 23.8 55 48 18 24 

E10 3039.9 46.5 -0.018 -0.027 0.055 0.146 21.6    3 

E11 3509.9 28.75 -0.027 -0.064 0.077 0.238 23.9 46 30 23 28 

E12 3352.9 41 -0.030 -0.063 0.085 0.190 22.5 26 11 9 21 

E13 3063.9 26.25 -0.018 -0.154 0.070 0.188 23.4 28 0 9 18 

E14 3672.0 32.25 -0.032 -0.107 0.075 0.229 25.3 36 13 14 29 

E15 3698.8 29 -0.053 -0.085 0.059 0.215 23.1 50 41 19 33 

E16 3433.0 29.75 -0.030 -0.068 0.089 0.231 24.0 49 33 20 15 

E17 3174.0 32.25 -0.046 -0.096 0.081 0.235 24.6 41 18 19 26 

E18 3443.9 41.5 -0.017 -0.047 0.088 0.183 21.5 63 48 19 33 

E19 3570.1 32.5 -0.031 -0.098 0.084 0.234 24.4 36 13 13 33 

E20 3622.8 33.75 -0.024 -0.055 0.076 0.235 23.3 45 11 11 10 

E21 3774.8 40.75 -0.020 -0.041 0.089 0.202 22.8 35 16 16 33 

E22 4027.3 35.75 -0.016 -0.041 0.078 0.244 21.8 35 13 11 16 

E23 3642.1 29.5 -0.050 -0.096 0.074 0.215 23.0 49 18 19 39 

E24 3380.2 27 -0.047 -0.124 0.069 0.199 23.9 41 24 15 35 

E25 3309.4 27.5 -0.029 -0.140 0.074 0.192 25.1 23 3 11 31 

E26 3457.5 28 -0.026 -0.135 0.078 0.192 24.4 20 1 9 20 

E27 3663.8 27.25 -0.034 -0.140 0.060 0.196 24.2 23 6 9 20 

E28 3581.6 32 -0.035 -0.066 0.069 0.231 23.0 53 35 17 28 

E29 4105.8 35.25 -0.014 -0.054 0.090 0.246 23.8 45 26 11 36 

E30 3957.5 35 -0.030 -0.045 0.081 0.245 22.0 31 18 11 20 

E31 3762.1 40.5 -0.018 -0.026 0.082 0.228 22.7 28 5 18 18 

E32 3572.2 38.75 -0.035 -0.048 0.082 0.222 23.3 54 38 20 31 

E33 3651.0 35.75 -0.025 -0.052 0.076 0.230 23.7 35 26 13 16 

E34 3772.7 28.5 -0.050 -0.086 0.062 0.212 24.6 55 43 19 23 

E35 3511.0 39.75 -0.025 -0.063 0.082 0.199 22.0 23 5 10 10 

MEAN 3533.92 33.314 -0.030 -0.080 0.077 0.213 23.37 38.8 19.1 14.6 21.7 

VARIANCE 136332.4 31.052 0.000199 0.001464 0.000149 0.000546 2.59 154.2 228.7 46.0 169.0 

CV 7.93 4.23 -28.69 -12.18 10.59 3.85 4.83 17.00 36.75 41.45 49.64 

LSD (0.05) 393.08 1.979 0.0119 0.0137 0.01140 0.01151 1.58 9.3 9.9 8.5 15.1 
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Table 3.3. Correlation matrix for cultivar data 
 

MATURITY S1 S2 RE1 RE2 F2 W1 W2 W3 W4 

YIELD 0.24   0.15  0.49 ** 0.31 . 0.63 *** -0.1  0.09  0.22  -0.08  0.33 . 

MATURITY 
 

0.47 ** 0.83 *** 0.39 * -0.14  -0.68 *** 0.06  0.16  -0.05  -0.13  

S1 
  

0.37 * 0.47 ** 0  -0.34 * -0.23  -0.27  -0.42 * -0.31 . 

S2 
   

0.43 * 0.28  -0.61 *** 0.35 * 0.42 * 0.24  -0.08  

RE1 
    

0.34 * -0.11  0.15  0.18  0.05  0.19  

RE2 
     

0.24  0.25  0.2  0.18  0.23  

F2 
      

-0.05  -0.04  0.11  0.3 . 

W1 
       

0.88 *** 0.74 *** 0.34 . 

W2 
        

0.72 *** 0.38 . 

W3 
         

0.3 . 

SIGNIF. CODES:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Rededge-M was limited in its ability to calculate PI values. For fully observing the 

carotenoid activity with respect to chlorophyll, broad coverage of each color spectrum is required. 

In the methods, the chlorophyll and carotenoid overlapping electromagnetic spectrum activity was 

discussed. Sony α5100 being a broadband camera had overlapping bands and senses the full region 

in which the pigments are active. The Rededge-M is sensing a narrow region in the spectrum and 

no overlap is present between the bands. Rededge-M is therefore does not fully capture the pigment 

absorption spectrum for carotenoids.  

 Conclusions  

Sony α5100 displayed better capability of gathering more detailed spatial information of 

the crop canopy. Overall anova and LSD means exhibited that the cultivars displayed maximum 

differences in means for maturity, S2, RE2 and W2. S2 was found highly correlated to maturity (r 

= 0.83, p ≤ 0.001). Wilting scores were found limited in their ability to provide higher resolution 

data as compared with spectral data. With better resolution ground data the spectral responses can 

be confirmed as an actual crop parameter. Redegde-M was discovered to be restricted in its 

capacity to calculate the PI due to sensor limitation. In future studies, other vegetative indices 
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which can be derived from Rededge-M bands will be examined to check whether they correlate to 

crop parameters and ground data. 
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Chapter 4 - Impact of camera lens angle and sUAS flying altitude on 

spatial crop canopy temperature evaluation 

 Abstract 

Thermal image quality is critical to accurately quantify spatial and temporal growth and 

stress patterns of field crops. Image data quality from a thermal sensor can be impacted by several 

factors including environment, flying altitude, and camera focal length. Often times the thermal 

sensor selection is based upon price or one already available for research. Metrics are available to 

select the flight altitude based on thermal sensor focal length for desired ground resolution, 

however, no study has been conducted to provide the relative difference in image data, quality and 

efficiency of generating a thermal orthomosaic. Therefore, this study was conducted with the goal 

to compare the accuracy of canopy temperature quantification and assess the quality of thermal 

orthomosaic when using a thermal sensor of different focal lengths and image acquisition at 

varying flying altitudes of an sUAS. Three thermal infrared cameras were selected with focal 

lengths of 9mm, 13mm, and 19mm. All three cameras were flown at altitudes of 20m, 50m, and 

80m, to collect aerial imagery of a 7,000 m2 soybean field. The cameras were mounted on a rotary 

quadcopter. All flights were conducted at 3 m/s flying speed and 1 second shutter trigger interval. 

A ground reference system comprising of a panel and water bath system with measured actual 

temperature provided ground truth data for thermometric transformations. Imagery data were 

compared to assess differences in the number of images collected, percentage overlap required for 

1 second shutter trigger interval, quality of orthomosaic and accuracy of canopy temperatures. 

Results showed that 13 mm focal length and 50 m altitude resulted in a finer resolution orthomosaic 

which can provide robust and accurate information on canopy temperature. The selection of such 
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a system of camera lens angle and altitude can provide accurate, reliable and rapid canopy 

temperature quantification.. 

 Introduction 

With the increasing human population, crop production must increase approximately 25-

70 % from recent levels to meet demands in 2050 (Hunter et al., 2017). Sustainable agriculture is 

going to be a major contributing factor in achieving this goal. Sustainable agriculture is defined as 

the farming systems that can maintain their productivity and usefulness to society indefinitely. 

Such systems must be resource conserving, socially supportive, commercially competitive and 

environmentally sound (Ikerd, 1990). Precision agriculture is going to be a major contributor in 

creating a sustainable farming system. Precision agriculture is a farming practice in which farm 

inputs are optimized, overall efficiency of the farm is improved, and environmental footprint is 

reduced by concentrating on right management practice at right place at right time and at right rate 

(Gebbers and Adamchuk, 2010; Khanal et al., 2017; Hunt and Daughtry, 2018). 

Remote sensing has been considered a crucial technology for precision agriculture (Robert, 

1982; Mulla and Khosla, 2016; Moran, Inoue and Barnes, 1997; Brisco et al., 1998). Numerous 

research has been completed on remotely sensed data collected by satellite and aircraft platforms 

for agriculture purposes over the last 60 years (Colwell, 1956; Jackson, 1984; Pinter et al., 2003). 

In recent years, there has been an increase in the use of small Unmanned Aerial System(s) (sUAS) 

for remote sensing applications such as vegetation index calculations, species phenotyping, water 

stress identification, etc. (Berni et al., 2009; Baluja et al., 2012; Zaman-Allah et al., 2015; 

Senthilnath et al., 2017). UAS provide an alternate solution to traditionally used satellite and 

aircraft remote sensing. sUAS are more flexible to use in different climatic conditions and are 

economically affordable when compared to other remote sensing platforms (Zhang and Kovacs, 
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2012). In addition, the remotely sensed data can be obtained in higher resolution, especially for 

data based on the vegetation, which was not possible with traditional remote sensing platforms 

(Laliberte and Rango, 2011). 

Different types of camera sensors are being used for remote sensing purposes. The 

selection of a camera is based on application, dimensional size, focal length, wavelengths 

observed, etc. The sensor types can be RGB true color, thermal infrared (TIR), multispectral 

broadband camera (MSB), multispectral camera, hyperspectral camera and other sensors (Majidi 

and Bab-Hadiashar, 2005; Berni et al, 2009; Zarco-Tejada et al., 2005; Kingston and Beard, 2004). 

The increase of sUAS use in crop fields has improved the process and response time of crop 

monitoring. MSB and TIR sensors are available from commercial manufacturers including DRS 

technologies, FLIR, AgEagle, Micasense and others, both for commercial and agricultural users.  

Among these technologies, thermal camera sensors are gaining increased interest with 

researchers and farmers as a medium to determine plant health parameters (Bellvert, Marsal, 

Girona and Zarco-Tejada, 2014; Bellvert  et al., 2014; Elvanidi et al, 2017; Ortega-Farías et al., 

2016; Santesteban, 2017; Riberio-Gomes et al., 2017).  Images collected by thermal sensors were 

used as an effective tool in the cultivation of potatoes to assess the water availability to the crop 

(Rud et al., 2014). Digital cameras along with thermal cameras were used to determine 

physiological data for vineyards with acceptable accuracy (Möller et al., 2007). In studies 

conducted on maize fields, thermometry was found useful in identifying plant stress by monitoring 

and quantifying water stress through measuring canopy temperature (DeJonge et al., 2015; and 

Mangus et. al., 2016). Thermal infrared sensors are also being used in other applications such as 

irrigation scheduling, soil moisture detection, drought stress monitoring and plant disease detection 

(Khanal et al, 2017; Nicholle et al, 2018). 
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Availability of a variety of sensors and platforms is good for any research application, 

however, it is critical to choose the correct sensor for the desired application. Before selecting a 

sensor, researchers consider data outcomes that are needed from the sensor. Common concerns 

that need to be answered are whether the spatial resolution is adequate to provide accurate and 

robust data for analytics and whether the images can be efficiently stitched to generate 

geometrically accurate orthomosaics.  When using the thermal infrared spectrum, it is important 

to select a correct sensor as it is sensitive to atmospheric conditions like relative humidity, air 

temperature, wind speed and solar noon. These factors impact flying altitude selection, 

documenting environmental conditions and camera properties such as focal length or sensor size. 

Other factors which must be considered when comparing temporal data sets from test sites is the 

ability to segment canopy and robustness of canopy temperature extraction. Studies and matrices 

are available to determine ground resolution, but limited information is available on the factors 

affecting thermal infrared imagery collection. This study was designed to:  

 Develop crop canopy thermal orthomosaic from aerial imagery collected at varying 

altitudes using thermal sensors of different focal lengths 

 Conduct qualitative and quantitative analysis on different images and thermal 

orthomosaics. 

 Methods 

 sUAS and Cameras  

A vertical take-off rotary copter quadcopter, Matrice – 100 (DJI, Shenzhen, China), was 

used to perform the low altitude aerial missions. The quadcopter can take off with maximum 

payload of 1 kg. The UAS has an in-built autopilot and missions which are custom made according 

to the application can be uploaded on the UAS using third party applications. UAS has 

compatibility to two batteries with each battery providing 5700mAh power to the copter, which 



32 

provides 25 minutes of effective flight time with thermal sensors (350 gm) onboard.  The 

quadcopter is able to fly in wind speeds of up to 10 m/s but to assure safety standards and to avoid 

error in data due to wind influence, data was aquired when the wind speeds were less than 4.5 m/s. 

The sensors were mounted using a fixed gimbal on UAS.  

The quadcopter was used to collect Thermal Infrared (TIR) data from TIR cameras (Flir 

Systems Inc, Wilsonville, OR, USA) with different lens characteristics. The focal lengths for the 

cameras used were 9 mm, 13 mm and 19 mm. All three TIR cameras had a standard VOx micro-

bolometer sensor with 640x512 pixels and operated at 30 Hz of full frame rate. The spectral band 

observed by these cameras was 7-13.5 μm. The images were collected in a 14-bit tiff format. Using 

a tiff image instead of an 8-bit radiometric jpeg have advantages. The 8-bit radiometric Jpeg 

images are affected by the camera due to flat-field correction which occur whenever there is a 

difference between the temperature range the camera is observing. This causes the pixel values on 

the jpeg images to change even when the temperature of the observed feature does not change. The 

change in pixel values could create artifacts in an orthomosaic giving false information in the form 

of hot spots within the crop. The auto contrast correction does not happen when collecting tiff 

format images and this format also provides better radiometric resolution (14-bit) compared to a 

jpeg image format. 

(a) (b) 

Figure 4.1(a) The quadcopter platform with a mounted thermal infrared sensor (b) A close-up of the 

mounted sensor 
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 Crop and Missions 

The crop selected for this study was soybean. The plot area was approximately 7000 m2 

and the soybean crop was at partial canopy closure. The plot was located southwest of the City of 

Manhattan, KS, in Kansas State University River Valley research farm at Ashland Bottoms 

(39.133028° N, -96.617874° W). The trails were on progeny varieties of soybeans developed in 

Kansas State University. The varieties were planted in 1-row plots, 2 m long and 0.76 m apart. 

The soil type of the filed was Bismarckgrove - Kimo complex. The missions were created on 

Mission Planner (Mission Planner®, by Michel Oborne) autopilot software suite. Mission Planner 

was used as a configuration utility and also as a dynamic control supplement for compatible 

autonomous vehicles. After determining the mission characteristics, the mission files were then 

imported into a third party autonomous flight application (Litchi® for DJI). Litchi allowed mission 

files from Mission Planner to be uploaded onto the quadcopter. This functionality is not available 

within DJI software and hardware packages. The planned missions were then uploaded to the 

autopilot present onboard the quadcopter which carried out the mission and returned safely to the 

launch site. Missions were planned to collect aerial imagery at three different altitudes of 20 m, 50 

m and 80 m. All the missions were conducted within ±1.5 hours of solar noon to avoid deep 

shadows and unevenly heated plants. Additional preliminary studies conducted during the project 

indicated that neglecting to fly within the solar noon window could potentially create artifacts 

(inaccurate canopy temperature quantification) and software stitching errors. The quadcopter was 

flown at a velocity of 3 m/s for all of the missions. The velocity was carefully chosen after initial 

experimentation with various aircraft velocities. The quadcopter was flown at speeds ranging from 

2 to 5 m/s. At the speeds of 4 and 5 m/s and flying at lower altitudes, the sensor needed to have a 

trigger frequency of less than 1 sec which was not possible with the available TIR cameras and the 
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images obtained at these speeds were blurry. At the speed of 2 m/s the flight time for some flights 

exceeded the quadcopter’s capability to complete the mission before running out of battery power.  

 Ground truthing  

Using thermal infrared sensors requires temperature calibration to account for atmospheric 

variations so that the quantification of crop canopy temperature is done correctly. In this study, a 

custom-made weather station was developed with an integrated data acquisition (DAQ) system 

and environmental sensor package data using a NI myRIO (National Instruments, Austin, TX, 

USA) for calibration of thermal imagery to correct temperature values. The weather station was 

designed to have different temperature gradients on matte painted metal panels having emissivity 

values ranging from 088-0.93, which provided a range of maximum and minimum temperatures 

that were present when the flight was being conducted. The temperature of these panels was 

constantly recorded using thermistors (Precision Thermistor Element, 44004, Omega Engineering, 

Norwalk, CT, USA). A relationship was established between the Dn (digital number) values which 

extracted from orthomosaics using ArcMap 10.4.1 (ArcGIS, ESRI, Redlands, CA, USA) and 

temperature recorded from the weather station to apply the thermometric transformation to each 

orthomosaic. The temperature points are plotted against Dn and regression equation is estimated 

using the data. Then the data is plotted against the regression equation and the points continually 

followed the regression line validating that the calibration curve is highly accurate. 

Figure 4.2 Ground truthing station for calibrating thermal 

imagery 



35 

 Image quality comparison 

The quality of data extracted from the sUAS imagery depend greatly on the quality of the 

images collected. Other factors which play a role in producing quality data are image overlap, 

flight time, geometric accuracy, etc. For qualitatively and quantitatively comparing images and 

orthomosaics from the various flights of this study, a variety of parameters were selected by 

referencing a previous study that was conducted to assess quadcopter image quality at different 

altitudes (Mesas-Carrascosa et al., 2015). The images and orthomosaics were evaluated on the 

following parameters: 

 Non-Reference Image Quality Metrics (NRIQM) 

Image visual quality is always an important factor while evaluating aerial imagery. In this 

study image scores were calculated which indicated the relative quality of the images. NRIQM 

scores were calculated using Matlab (2018a), for Natural image Quality Evaluator (NIQE) (Mittal 

et al., 2013) and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 

2012). Both NIQE and BRISQUE are metrics developed by image quality researchers which use 

Natural Scene Statistics (NSS) to score image quality. BRISQUE is an opinion aware model, 

which means that this model is trained with a known database of good quality images whereas 

NIQE is an opinion unaware model meaning it is not trained using a database. Image quality scores 

were calculated and averaged for each flight for comparison. The score for a good quality image 

will be lower than the score for a poor quality image for both NIQE and BRISQUE. 

 Geometric Accuracy 

Aerial imagery is useful if it is geometrically accurate and is able locate the region in study 

correctly on map, thus making it a critical parameter while comparing different orthomosaics.  The 

method used for calculating geometric accuracy was the Root Mean Square Error (RMSE) method 
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suggested by the American Society for Photogrammetry and Remote Sensing (ASPRS). RMSE is 

defined as the error in the square root of the average of the squared discrepancies. For calculating 

geometric accuracy a large black and white checkerboard patterned sheet with an individual square 

size of 30.48 x 30.48 cm was built (Fig. 4.3). The vertices of the square blocks were marked as 

checkpoints. Real-Time Kinematic (RTK) corrected GPS coordinates were collected and assigned 

to each checkpoint. The GPS position coordinates from the orthomosaics were then extracted from 

the orthomosaic for an error calculation and comparison with the actual position coordinates of the 

checkpoint. The error was calculated in both north – south and east – west directions namely 

RMSEy and RMSEx, then RMSE was compared across the collection of flights. Lower RMSE 

values indicated a better geometric accuracy within the generated orthomosaics which improves 

data manipulation and utilization within production agriculture. 

 Ground Resolution and Spectral Discrimination 

Aerial and satellite imagery have ground resolution often listed as a parameter for 

comparing between different sensors. At least 10 pixels are required to report a meaningful thermal 

measurement (Flir Technical Note, 2016). Therefore, it becomes necessary to select an altitude 

which provides a fine ground resolution. For this study the ground resolution and the foot-print of 

Figure 4.3 Checkerboard used for calculating RMSE for geometric accuracy 
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the images collected was calculated for all the conducted flights using ArcMap 10.4.1 (ArcGIS, 

ESRI, Redlands, CA, USA).  

In order to access if the resolution was sufficient to identify crop from soil, spectral 

discrimination was determined for all the orthomosaics. Spectral discrimination is defined as how 

well the image pixels are able to differentiate between two different features or between foreground 

and background. Spectral discrimination plots were made by extracting pixel values across the 

colored wooden panels using ArcMap (Fig. 4.4), which should exhibit a parabola in the center 

indicating a sudden jump in the pixel values. Depending upon how sharp the slope of the 

approaching line is to the peak, conclusions can be drawn to determine how well the pixels were 

spectrally discriminated. The sharper the slope of the approach, the better the spectral 

discrimination exhibited by the camera.  

 Canopy Temperature Extraction from Thermal Orthomosaics 

Numerous software platforms are available to generate orthomosaics from sUAS imagery. 

For this study the collected thermal imagery was stitched using Metashape (Agisoft Metashape, 

Agisoft LLC, St. Petersburg, Russia). Metashape was selected as it provides more freedom in 

selecting stitching parameters and is more flexible in working with imagery from any camera. The 

stitched imagery was exported as an orthomosaic having a .tiff file extension. The thermal 

orthomosaics were generated using the exported orthomosaics with ArcMap 10.4.1 (ArcGIS, 

ESRI, Redlands, CA, USA) to observe the canopy temperature distribution for the crop across 

different flights. A temperature curve made from the weather station data was used to calibrate the 

thermal orthomosaics. Canopy temperatures were extracted from the orthomosaics using 3D 

analyst tool in ArcMap. 
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 Results and Discussion 

 Non-Reference Image Quality Metrics (NRIQM) and Geometric Accuracy 

The NRIQM scores did not show any large deflections from each other, indicating that 

there was little impact on the quality of image irrespective of chosen flying altitude and focal 

length of the camera (Table 4.1). This means image quality is independent of parameters usually 

considered before selecting a sensor for data collection.  

Geometric accuracy results (Table 4.2) indicated that the 9 mm thermal sensor at an altitude 

of 80 m presented the highest value of RMSE both in terms of longitude (RMSEx = 0.191 m) and 

latitude (RMSEy = 0.344 m). Overall, the lowest RMSE values for both directions (RMSEx = 

0.031 m, RMSEy = 0.034 m) were observed when using the 13 mm thermal sensor at an altitude 

of 20 m. For RMSE in the x direction, the lowest RMSE was observed for 19 mm thermal sensor 

at an altitude of 50 m, whereas the lowest RMSE for the y direction was exhibited by 13 mm 

thermal sensor at an altitude of 20 m. Lower RMSE means better ability of the orthomosaic to 

accurately represent the original position of the features present in the orthomosaic.  

 

 

Figure 4.4 Wooden panels used to measure spectral discrimination 
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Table 4.1 NIQE and BRISQUE scores for images taken from all the flight combinations 

 

Table 4.2 RMSEx and RMSEy values for all the flight combinations 

  

 Ground Resolution and Spectral Discrimination 

Ground Resolution (GR) and footprint (FP) for all the flights of thermal sensors was noted 

and arranged in a metric (Table 4.3). The smallest GR and FP was exhibited by the 19 mm thermal 

sensor at an altitude of 20 m: GR = 1.79 cm and FP = 11.5 x 9.2 m. Also, the highest GR and FP 

was exhibited by the 9 mm thermal sensor at an altitude of 80 m: GR = 15.11 cm and FP = 96.7 x 

77.4 m.. 

Table 4.3 Ground resolution and footprint in parenthesis for all the focal length of the thermal sensors at 

different flying altitudes 

 

FOCAL LENGTH 
IMAGE QUALITY 

INDICATOR 

ALTITUDE 

20 m 50 m 80 m 

9 MM 
NIQE Avg: 10.2 Avg: 9.4 Avg: 8.7 

BRISQUE Avg: 47.0 Avg: 46.4 Avg: 46.7 

13 MM 
NIQE Avg: 10.3 Avg: 10.9 Avg: 9.6 

BRISQUE Avg: 46.9 Avg: 46.5 Avg: 45.8 

19 MM 
NIQE Avg: 10.4 Avg: 10.4 Avg: 10.6 

BRISQUE Avg: 48.4 Avg: 46.7 Avg: 45.7 

 20 M 50M 80M 

 RMSEx RMSEy RMSEx RMSEy RMSEx RMSEy 

9MM 0.028 0.053 0.030 0.094 0.191 0.344 

13MM 0.031 0.034 0.047 0.045 0.053 0.043 

19MM 0.041 0.038 0.028 0.047 0.043 0.050 

 ALTITUDE 

FOCAL LENGTH ↓ 20 m 50 m 80 m 

9 MM 3.78 cm 

(24.2 x 19.3 m) 

9.44 cm 

(60.4 x 48.4 m) 

15.11 cm 

(96.7 x 77.4 m) 

13 MM 2.62 cm 

(16.7 x 13.4 m) 

6.54 cm 

(41.8 x 33.5 m) 

10.46 cm 

(67 x 53.6 m) 

19 MM 1.79 cm 

(11.5 x 9.2 m) 

4.47 cm 

(28.6 x 22.9 m) 

16 cm 

(745.8 x 36.6 m) 
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The GR and FP data also showed that the type of information to be extracted from a raster 

could a major factor in deciding the focal length and flying altitude. Depending on the size of the 

canopy and the size of the plant leaf it would be important to know the extent of information on a 

single pixel. If the pixel size is bigger than the canopy, then the information coming into that pixel 

is diluted by the background and may not accurately represent actual canopy temperature. 

Similarly, there should be a minimum of 10 pixels on the canopy to accurately extract canopy 

emittance or temperature. To access the accuracy of canopy temperature, an analysis was 

conducted on a segmented image of a 60.96 x 60.96 cm ground control point from each 

orthomosaic (Figure 4.5).   

Figure 4.5 shows  a clear visual differentiation between ground resolution results and 

orthomosaics and also indication of orthomosaics from which more accurate canopy temperature 

information could be extracted. Features are not distinguishable for 9 mm thermal sensor at a flying 

9 mm - 20 m 9 mm - 50 m 9 mm - 80 m 

13 mm - 20 m 13 mm - 50 m 

19 mm - 20 m 

13 mm - 80 m 

19 mm - 50 m 19 mm - 80 m 

Figure 4.5. on the left is the ground control point from visible camera which was used to compare 

ground resolution for each flight combination. On the right are the segmented images from the 

thermal orthomosaics of the same ground control point at the different resolutions 
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altitude of 80 m, and there is no difference between soil pixels, panel pixels or plant pixels. 

Similarly, the 19 mm thermal sensor at flying altitude of 20 m resulted in distinguishable soil, 

panel, and plant pixels.  Figure 4.6 contains the spectral discrimination plots collected in the study. 

An acceptable plot will be one which has the ascending and descending slope almost perpendicular 

to the x-axis and a flat response at the top of the plot representing enough number of pixels present 

on the panel. The more gradual the slope, lesser the ability of the camera to spectrally separate 

features in an image. Also less number of pixels on panel due to poor resolution indicate fewer 

information available from pixels and possibility of pixel mixing in the imagery. Results indicate 

that all plots surpassed the threshold that justified them as acceptable except all 80 m altitude 

9 mm - 20 m 

13 mm - 80 m 

9 mm - 50 m 9 mm - 80 m 

13 mm - 20 m 13 mm - 50 m 

19 mm - 20 m 19 mm - 50 m 19 mm - 80 m 

Figure 4.6 Spectral discrimination plots for the thermal sensors flown at different altitudes 
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flights and one 50 m using the 9 mm thermal sensor flight which did not presented acceptable 

discrimination in the pixels. 

 Flight Time and Image Overlap 

Flying at very low altitude may provide higher resolution and better spectral discrimination 

but low altitude flights are limiting due to longer flight time to cover even smaller number of acres 

and limitation of battery life to complete a single flight (25 mins) with needed sensor payloads. 

Additionally, users may have to select an overlap (both side-to-side and back-to-forth) which 

would be less than the recommended overlap (≥ 80 %) by commercial software’s (Table 4.4). The 

lower image overlaps causes issues during image processing as it becomes difficult for the 

software to find common features between images to be able to stitch images together. The most 

common concerns with lower image overlap was the potential impact of the change in weather 

from start to finish of flight on canopy emittance and insufficient common tie points to build a 

dense cloud for the edge of the test plot. Overall, users must consider the trade-off between flight 

time and altitude for appropriate image overlap to develop more accurate orthomosaics. 

Table 4.4 Flight time and image overlaps used for each thermal sensor at different altitudes 
 

20 M 50 M 80 M 

9 MM 14 mins 

80 % front lap 

80 % side lap 

11 mins 

90 % front lap 

89 % side lap 

9 mins 

90 % front lap 

89 % side lap 

13 MM 22 mins 

76 % front lap 

79 % side lap 

11 mins 

85 % front lap 

85 % side lap 

11 mins 

90 % front lap 

90 % side lap 

19 MM 22 mins 

66 % front lap 

70 % side lap 

17 mins 

85 % front lap 

85 % side lap 

11 mins 

87 % front lap 

82 % side lap 

 Thermal Orthomosaic 

Results from this study showed that all the thermal orthomosaics had an even temperature 

distribution over the canopy and no artifacts were observed. As an example, two of the 

orthomosaics are shown in Figure 4.7 with cropped thermal maps highlighting 4-row plots. Within 
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a 4-row plot, the role of ground resolution and spectral discrimination becomes very evident. In 

the flight at an altitude of 50 m with 13 mm thermal sensor, results showed a distinct separation 

between soil and canopy pixels. The number of pixels in the center of the canopy was close to 100 

and not affected by the soil background. The results indicated that there was sufficient and accurate 

information available which was not diluted by the surrounding surfaces. However, during the 

mission at 80 m with 9 mm thermal sensor the differentiation between the soil and canopy pixels 

was not discrete. The discrete distinction was due to not enough number of pixels within the 

canopy (close to 10), which potentially could result in data extraction difficult and if not conducted 

correctly data may not accurately representing true canopy temperature. Canopy temperatures 

extracted carefully from the thermal orthomosaics and compared to the plant temperature collected 

using a Flir TG167 (Flir Systems Inc, Wilsonville, OR, USA) held at 30 cm above the crop canopy 

exhibited that the plant temperature during the flight captured by the thermal infrared sensors were 

with an error range of ±1° C as compared with ground data (table 4.5) (t = 0.92609, p-value = 

0.3767). The results indicated that thermal sensor can accurately capture canopy temperature on 

spatial scale accurately (r = 0.84, p = 0.036).  

Table 4.5 Sample temperature readings from crop canopy collected from Flir TG167 and 13 mm 50 m 

thermal orthomosaic 
 

FLIR TG167 13 MM 50 M 

C1 31.8 30.9 

C2 33.1 32.32 

C3 31.7 30.52 

C4 32.2 31.45 

C5 30.2 30.9 

C6 29.9 29.17 
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 Conclusion and future work 

According to our experimental study, the 13 mm thermal infrared camera at 50 m provided 

appropriate image overlap, spectral discrimination, flying time trade-off, ground resolution, image 

quality, and accurate crop canopy temperatures. In the orthomosaic generated from this set of 

images, there was enough number of pixels to extract valuable data from the crop canopy. In 

particular, the RMSE in geometric accuracy was low and consistent in both directions. Other flight 

combinations also performed well in some criteria but using the images from these flights may 

require extensive post-processing to able to extract data. Future studies will be conducted on 

different crops like corn, wheat, sorghum, etc. to see the effect of the change in crop canopy on 

the listed parameter on this study. 

 

  

Figure 4.7 Thermal orthomosaic map generated for 13 mm and 9 mm focal length thermal 

sensors at flying altitude of 50 m and 80 m 
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Chapter 5 - Conclusion 

 Summary of finding  

Remote sensing applications using sUAS in agricultural industry are growing day by day. 

Different kind of spectral sensors can be used onboard sUAS with great efficiency. But it was 

noticed that the sensors used in these studies were the one which were already available with the 

researcher or which are easily available commercially. Consideration was not given to examine 

and compare specifications related to each sensor, such as sensor size and radiometric resolution. 

Also other sUAS parameters such as flying altitude and flight speed were not properly evaluated. 

There is a need to understand these parameters to expand the knowledge which is available 

regarding sUAS and sensors used onboard them. This information can improve the quality of data 

collected on crops using sUAS sensors. In this thesis thermal infrared, modified color infrared and 

multispectral sensors were identified and compared based on the parameters specific to the sensor 

involved, to understand and improve future selection of sUAS sensors. 

Sony α5100 displayed better capability of gathering more detailed spatial information of 

the crop canopy. Sony α5100 was found highly correlated to maturity (r = 0.83, p ≤ 0.001). Wilting 

scores were found limited in their ability to provide higher resolution data as compared with 

spectral data. With better resolution ground data the spectral responses can be confirmed as an 

actual crop parameter. Redegde-M was discovered to be restricted in its capacity to calculate the 

PI due to sensor limitation. In future studies, other vegetative indices which can be derived from 

Rededge-M bands will be examined to check whether they correlate to crop parameters and ground 

data. 

The 13 mm thermal infrared camera at 50 m flying altitude provided appropriate image 

overlap, spectral discrimination, flying time trade-off, ground resolution, image quality, and 
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accurate crop canopy temperatures. In the orthomosaic generated from this set of images, there 

was enough number of pixels to extract valuable data from the crop canopy. In particular, the root 

mean square error in geometric accuracy was low and consistent in both directions. Other flight 

combinations also performed well in some criteria but using the images from these flights may 

require extensive post-processing to able to extract data. Future studies will be conducted on 

different crops like corn, wheat, sorghum, etc. to see the effect of the change in crop canopy on 

the listed parameter on this study. 
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