
A covariate-adjusted classification model for multiple biomarkers in disease

screening and diagnosis

by

Suizhi Yu

M.S., George Washington University, 2013

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2019



Abstract

The classification methods based on a linear combination of multiple biomarkers have

been widely used to improve the accuracy in disease screening and diagnosis. However, it

is seldom to include covariates such as gender and age at diagnosis into these classifica-

tion procedures. It is known that biomarkers or patient outcomes are often associated with

some covariates in practice, therefore the inclusion of covariates may further improve the

power of prediction as well as the classification accuracy. In this study, we focus on the

classification methods for multiple biomarkers adjusting for covariates. First, we proposed a

covariate-adjusted classification model for multiple cross-sectional biomarkers. Technically,

it is a two-stage method with a parametric or non-parametric approach to combine biomark-

ers first, and then incorporating covariates with the use of the maximum rank correlation

estimators. Specifically, these parameter coefficients associated with covariates can be es-

timated by maximizing the area under the receiver operating characteristic (ROC) curve.

The asymptotic properties of these estimators in the model are also discussed. An intensive

simulation study is conducted to evaluate the performance of this proposed method in finite

sample sizes. The data of colorectal cancer and pancreatic cancer are used to illustrate the

proposed methodology for multiple cross-sectional biomarkers.

We further extend our classification method to longitudinal biomarkers. With the use of a

natural cubic spline basis, each subject’s longitudinal biomarker profile can be characterized

by spline coefficients with a significant reduction in the dimension of data. Specifically,

the maximum reduction can be achieved by controlling the number of knots or degrees

of freedom in the spline approach, and its coefficients can be obtained by the ordinary

least squares method. We consider each spline coefficient as “biomarker” in our previous

method, then the optimal linear combination of those spline coefficients can be acquired

using Stepwise method without any distributional assumption. Afterward, covariates are



included by maximizing the corresponding AUC as the second stage. The proposed method

is applied to the longitudinal data of Alzheimer’s disease and the primary biliary cirrhosis

data for illustration. We conduct a simulation study to assess the finite-sample performance

of the proposed method for longitudinal biomarkers.
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of freedom in the spline approach, and its coefficients can be obtained by the ordinary

least squares method. We consider each spline coefficient as “biomarker” in our previous

method, then the optimal linear combination of those spline coefficients can be acquired

using Stepwise method without any distributional assumption. Afterward, covariates are



included by maximizing the corresponding AUC as the second stage. The proposed method

is applied to the longitudinal data of Alzheimer’s disease and the primary biliary cirrhosis

data for illustration. We conduct a simulation study to assess the finite-sample performance
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Chapter 1

Introduction

In disease diagnosis and screening, a large number of biomarkers have been studied and used

for the distinction between disease and healthy people. For instance, prostate-specific antigen

(PSA) is a biomarker measured in serum for the screening test of prostate cancer (Catalona

et al., 1991). Another example, cerebrospinal fluid (CSF) biomarkers are considered as a

potential source of Alzheimer’s disease (AD) pathology in many AD studies (Mistur et al.,

2009). In practice, using multiple biomarkers can significantly improve the diagnostic and

test accuracy and result in higher sensitivity and specificity than using a single biomarker

(Pepe and Thompson, 2000; Etzioni et al., 2003).

Sensitivity and specificity are the traditional measures of classification accuracy which

are generally reported with the use of the receiver operating characteristic (ROC) curve. The

ROC curve is a widely used statistical and graphical tool for continuous biomarkers to assess

the performance of disease diagnosis and classification (Swets, 1986; Zweig and Campbell,

1993; Baker, 2003). The ROC curve can be summarized by many indices such as the Youden

index and the area under the ROC curve (AUC). Particularly, AUC is the most commonly

used measure (Pepe, 2003, Page 77).

Combining multiple biomarkers for classification has been well discussed in the literature.

The popular approach is to find a linear combination of biomarkers by maximizing the AUC

using parametric and non-parametric approaches. Su and Liu (1993) presented an optimal
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linear combination of biomarkers to maximize the corresponding AUC under the assumption

of the multivariate normal distribution on biomarkers. To relax the biomarker distributional

assumptions, Pepe and Thompson (2000) suggested an empirical approach to search for

the linear biomarker combination to achieve the maximum AUC. However, their method

only works for combining two biomarkers. Pepe et al. (2006) further considered to find

a combination of multiple biomarkers under a generalized linear model. Liu et al. (2011)

developed a min-max approach to combine only the smallest and largest values of multiple

biomarkers by yielding the largest AUC nonparametrically. Kang et al. (2016) proposed a

nonparametric stepwise approach to combine one biomarker each time by maximizing the

empirical AUC to include all biomarkers.

However, the above classification procedures rarely discuss and use covariates. Covariates,

such as age and gender, are often related to biomarkers or outcomes of patients in practice.

For example, the detection of breast cancer by mammography highly depends on the female’s

age. In the exercise stress study, gender is an important covariate because of the difference

in the physical exercise abilities between women and men (Pepe, 2003, Page 48). Janes

and Pepe (2008) suggested that covariate adjustment should be included in the classification

procedures since covariates may provide the additional information to further improve the

classification accuracy.

Some studies have discussed the covariate adjustment on the classification for biomarkers.

One of the most popular approaches is to model the ROC curve as a function of covariates.

For example, Pepe (2000) suggested to parametrically model the ROC curve with covariates

under the framework of the generalized linear models. The similar work can be found

in Alonzo and Pepe (2002) and Cai and Pepe (2002). Janes and Pepe (2009) developed a

weighted average of the covariate-specific ROC curve for one biomarker and demonstrated the

associated asymptotic properties. As an extension of Janes and Pepe’s work, Kim and Huang

(2017) proposed a classification model conditioning on a discrete covariate. Another common

approach is to express biomarkers as a function of covariates. For instance, Schisterman et al.

(2004) extended Su and Liu (1993) method to include covariates by representing biomarkers

as a regression of covariates under the multivariate normality assumption.
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However, it is still unclear how to adjust for continuous or discrete covariates without

any distributional assumption. In this study, a new covariate-adjusted classification method

for multiple biomarkers is proposed with no assumption on joint distributions of biomarkers

and covariates. Technically, it is a two-stage method that biomarkers are first linearly com-

bined by using Su and Liu (1993) method or Stepwise method (Kang et al., 2016), and then

adjusting for covariates with the use of the maximum rank correlation estimators. Specif-

ically, these parameter coefficients associated with covariates can be obtained by attaining

the largest AUC. The asymptotic properties of these estimators are also studied thoroughly.

We conduct an intensive simulation study to assess the performance of the proposed method

in finite sample sizes. Our methodology is applied to the data of colorectal cancer and

pancreatic cancer data for illustration. The proposed method can significantly improve the

classification accuracy after adjusting for covariates. It is an easy-implemented approach,

which is also robust against the distributional assumptions on biomarkers and covariates.

In addition, we extend the proposed method to longitudinal biomarkers. The longitudinal

biomarker profile of each subject can be represented by the spline coefficients using the

method of the natural cubic spline. Those spline coefficients are treated as “biomarkers” in

our previous method. As the first stage, the spline coefficients are optimally combined by

Stepwise method (Kang et al., 2016). After that, covariates are incorporated by maximizing

the AUC in the second stage. We evaluate the finite-sample performance of our method

for longitudinal biomarkers through a simulation study. Alzheimer’s disease data and the

longitudinal data of primary biliary cirrhosis are used as real data applications. In sum,

this extended approach can significantly reduce dimensions of longitudinal biomarker data

and work well particularly when each subject is measured at different time points or has a

different number of measurements.

The rest of this dissertation is organized as follows. In Chapter 2, we briefly introduce the

area under the receiver operating characteristic curve and two popular classification meth-

ods for multiple biomarkers. In Chapter 3, our covariate-adjusted classification method for

multiple cross-sectional biomarkers is proposed. The asymptotic properties of the parameter

estimators in the proposed model are established. The performance of the proposed method
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is evaluated by an intensive simulation study. For real data applications, we apply our

method to the data of colorectal cancer and pancreatic cancer data. In Chapter 4, the pro-

posed method is extended to longitudinal biomarkers. The longitudinal data of Alzheimer’s

disease and primary biliary cirrhosis data are used to illustrate our extended method for

longitudinal biomarkers. We conduct a simulation study to assess the performance of the

proposed method. Discussion and conclusions are given in Chapter 5.
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Chapter 2

The AUC and classification methods

for multiple biomarkers

In this chapter, the area under the receiver operating characteristic (ROC) curve is intro-

duced concisely. We also review two popular classification methods for multiple biomarkers,

which are used to find an optimal linear combination of biomarkers in our approach.

2.1 The area under the receiver operating

characteristic curve

A brief introduction about the area under the ROC curve (AUC) is given in this section.

We assume a continuous biomarker is measured on nd subjects of the disease group and

nh subjects of the health group. Let YDp be the biomarker value of the pth subject in the

disease group and YHq be the biomarker value of the qth subject in the health group with

the corresponding cumulative distribution function FD and FH , where p = 1, ..., nd and

q = 1, ..., nh. For a threshold c (c ∈ R), the sensitivity and specificity of the biomarker are

defined as P (YD > c) = 1− FD(c) and P (YH ≤ c) = FH(c), which are the correct detection

rates for the disease and health groups. The ROC curve of the biomarker is generated in a

plot of
{

1 − FH(c), 1 − FD(c)
}

by given all possible values of c. The area under the ROC
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curve (AUC) is a popular index to evaluate the classification rate. It is defined as

AUC =

∫ 1

0

[
1− FD(F−1H (1− t))

]
dt,

where t = (1 - specificity) and 0 ≤ t ≤ 1. The value of AUC close to 1 indicates a better

classification performance. Bamber (1975) showed that AUC is equivalent to the probability

of P (YD > YH) mathematically. In practice, the computation of AUC is performed much

faster by using the Mann-Whitney U statistic. The AUC can be estimated empirically as

ÂUC =
1

ndnh

nd∑
p=1

nh∑
q=1

I(YDp > YHq),

where I(·) is the indicator function.

2.2 The classification methods for multiple biomarkers

Let YDp = (YDp1 , YDp2 , ..., YDpk
) and YHq = (YHq1 , YHq2 , ..., YHqk

) be the values of k biomarkers

for the pth subject in the disease group and the qth subject in the health group, where

p = 1, ..., nd and q = 1, ..., nh. It is often of great interest to look for a vector of linear

combination coefficients α = (α1, ..., αk)
′

that can optimally combine multiple biomarkers

to achieve the corresponding maximum AUC. Many classification methodologies have been

proposed to find such linear combination of multiple biomarkers in the literature. Among

them, we present two popular methods, Su and Liu (1993) method and Stepwise method

proposed by Kang et al. (2016) in this section.

2.2.1 Su and Liu method

Su and Liu (1993) suggested a linear combination of biomarkers to attain the largest AUC

comparing all other possible linear combinations with assuming the multivariate normality

biomarkers.

Assume that YDp ∼ Nk(µD,ΣD) and YHq ∼ Nk(µH ,ΣH) are the biomarkers for the disease
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and health groups, where Nk is the k−dimensional multivariate normal distribution. The

vector of the best linear combination coefficients proposed by Su and Liu (1993) is

α ∝ (ΣD + ΣH)−1(µD − µH),

with the corresponding AUC equals to

Φ
(√

(µD − µH)′(ΣD + ΣH)−1(µD − µH)
)
,

where Φ denotes the standard normal distribution. A consistent estimate of α is

( SD
nd − 1

+
SH

nh − 1

)−1
(ȲD − ȲH),

where n1 and n2 are the sample sizes, ȲD and ȲH are the sample means of biomarkers, and

SD =
nd∑
p=1

(YDp − ȲD)
′
(YDp − ȲD) and SH =

nh∑
q=1

(YHq − ȲH)
′
(YHq − ȲH) are the sample sums of

squares of biomarkers for the disease and health groups.

2.2.2 Stepwise method

Kang et al. (2016) proposed a nonparametric stepwise approach to search for the optimal

linear coefficient of a single biomarker at each step by maximizing the empirical AUC without

distributional assumptions on biomarkers. It is the extension of the method developed by

Pepe and Thompson (2000).

Technically, Stepwise approach is started with sorting k (k ≥ 2) biomarkers from the

largest to smallest based on the estimated AUC of each biomarker, then using the method

proposed by Pepe and Thompson (2000) to find the vector of linear combination coefficients

for the first two biomarkers α̂ = (1, α̂2)
′

by attaining the largest corresponding AUC, where

ÂUC =
1

ndnh

nd∑
p=1

nh∑
q=1

I(YDp1 + α̂2YDp2 > YHq1 + α̂2YHq2).
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Next, the third largest biomarker is combined in the same manner. The rest biomarkers are

incorporated one at each step by repeating the process until the last biomarker is included.

The empirical AUC of all biomarkers is estimated as

ÂUC =
1

ndnh

nd∑
p=1

nh∑
q=1

I(YDp1 + α̂2YDp2 + ...+ α̂kYDpk
> YHq1 + α̂2YHq2 + ...+ α̂kYHqk

).

Overall, Stepwise method (Kang et al., 2016) is easy to implement and interpret the

linear combination coefficients. It is also robust to the distributional assumptions on multiple

biomarkers.
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Chapter 3

The proposed covariate-adjusted

classification method for

cross-sectional biomarkers

In this chapter, we propose a new classification method for cross-sectional biomarkers with

covariate adjustment.

3.1 The proposed method for cross-sectional biomark-

ers

In addition to k biomarkers, suppose that m (m ≥ 1) covariates are also observed from nd

subjects in the disease group and nh subjects in the health group. Let ZDp = (ZDp1 , ZDp2 , ..., ZDpm)

and ZHq = (ZHq1 , ZHq2 , ..., ZHqm) be m covariates values of the pth subject for the disease

group and the qth subject for the health group, where p = 1, ..., nd and q = 1, ..., nh.

The proposed method has two stages. In the first stage, k biomarkers are optimally

combined by using Su and Liu (1993) method or Stepwise method (Kang et al., 2016) to

obtain the vector of linear combination coefficients α. If the biomarkers follow the multivari-

ate normal distribution, both Su and Liu method and Stepwsie method are used. Stepwise
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method is only used when biomarkers are not normally distributed. Let YDC
= α

′
YD and

YHC
= α

′
YH , where YD = (YD1 , YD2 , ..., YDk

) and YH = (YH1 , YH2 , ..., YHk
). It is clear that

the random variables YDC
and YHC

are the optimal combinations of all k biomarkers for the

disease and health groups, respectively. The AUC for those combinations of biomarkers is

AUCW = P (YDC
> YHC

). (3.1)

Next, suppose β = (β1, ..., βm)
′

is an unknown vector of linear combination coefficients

for m covariates and γ is an unknown coefficient of the biomarker combination, where γ ∈ R

and β ∈ Rm. Let β
′
ZD and β

′
ZH be the combinations of the entire m covariates for the

disease and health groups, where ZD = (ZD1 , ZD2 , ..., ZDm) and ZH = (ZH1 , ZH2 , ..., ZHm).

Based on the biomarker combinations γ
′
YDC

and γ
′
YHC

, the classification can be conducted

by including the linear combinations of covariates. The proposed covariate-adjusted AUC is

defined as

AUC∗(γ, β) = P
(
YDC

+
β
′
ZD
γ

> YHC
+
β
′
ZH
γ

)
, (3.2)

which incorporates the covariates naturally in the classification model. The “best” coefficient

parameters (γ0, β0) can be obtained by maximizing the AUC∗ in Equation 3.2, that is

(γ0, β0) = argmax
γ∈R, β∈Rm

P
(
YDC

+
β
′
ZD
γ

> YHC
+
β
′
ZH
γ

)
. (3.3)

The following theorem demonstrates that the proposed method improves the classification

accuracy after adjusting for covariates.

Theorem 1. Assume the AUC with covariate adjustment given in Equation 3.2 is maximized

by the “best” coefficient parameters (γ0, β0), where γ0 ∈ R and β0 ∈ Rm, then

AUC∗(γ0, β0) = max
γ∈R, β∈Rm

P
(
YDC

+
β
′
ZD
γ

> YHC
+
β
′
ZH
γ

)
≥ P (YDC

> YHC
) = AUCW .

In words, the proposed covariate-adjusted AUC is at least and greater than the AUC without

10



covariate adjustment.

The proof is straightforward. Note that P
(
YDC

+ β
′
ZD

γ
> YHC

+ β
′
ZH

γ

)
= P

(
YDC

>

YHC

)
, when β = 0. If β 6= 0, by Equation 3.3, there always exists one (γ0, β0) such that

max
γ∈R, β∈Rm

P
(
YDC

+ β
′
ZD

γ
> YHC

+ β
′
ZH

γ

)
> P (YDC

> YHC
). In other words, the maximized

AUC with covariate adjustment is larger than the one without adjusting for covariates. Thus,

Theorem 1 holds.

Empirically, the optimal coefficient parameters can be estimated as follows,

(γ̂, β̂) = argmax
γ∈R, β∈Rm

1

ndnh

nd∑
p=1

nh∑
q=1

I
(
YDCp

+
β
′
ZDp

γ
> YHCq

+
β
′
ZHq

γ

)
,

where I(·) is the indicator function.

The estimated covariate-adjusted AUC of the proposed method is given as

ÂUC
∗
(γ̂, β̂) =

1

ndnh

nd∑
p=1

nh∑
q=1

I
(
YDCp

+
β̂
′
ZDp

γ̂
> YHCq

+
β̂
′
ZHq

γ̂

)
.

It is worth noting that (γ̂, β̂) is a special case of the maximum rank correlation (MRC)

estimator defined in Han (1987). The asymptotic properties of the MRC estimator have

been established in the literature.

3.2 Asymptotic properties

In this section, the asymptotic properties of the estimator for the parameter θ = (γ, β) in

the proposed method are investigated. We note that θ̂ = (γ̂, β̂) is a special case of the

MRC estimator. Therefore, we can derive the consistency and asymptotic normality of θ̂ by

adopting the proofs for the MRC estimator in Han (1987) and Sherman (1993).

Consider a binary outcome D of a screening or diagnosis study, where D = 1 refers to the

disease group and D = 0 refers to the health group, without loss of generality. Let YC be the

linear combination of k (k ≥ 2) biomarkers and Z = (Z1, Z2, ..., Zm) be m (m ≥ 1) covariates

for n subjects. Denote X = (YC , Z). For the uniqueness of estimation, the parameters are
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normalized as θ∗ = θ/‖θ‖, where ‖ · ‖ is a matrix norm. Let θ̂∗ be the parameter estimator

and θ∗0 be the true value of θ∗.

The following assumptions are needed to show the consistency of θ̂∗.

Assumption 1. The true parameter value θ∗0 is an interior point of Θ, which is compact.

Assumption 2. Let Sx be the support of the vector of X.

(i) Sx is not contained in any proper linear subspace of Rm+1.

(ii) The mth component of X has everywhere positive density conditional on other compo-

nents.

Theorem 2. Under Assumption 1 and Assumption 2,

θ̂∗
p−→ θ∗0, as n→∞.

In words, the parameter estimator converges to the value of true parameter in probability

asymptotically.

The proof is provided in Appendix A.1. This theorem shows the consistency of the

proposed parameter estimators.

Next, the asymptotic normal distribution property of θ̂∗ is studied. Suppose V = (D,X)

has a distribution P on a set S such that P (D|X) has a monotone increasing transformation,

where S = {0, 1} ⊗Rm+1. For each v = (d, x) ∈ S and θ∗ ∈ Θ, define

ϕ(v, θ∗) = E

{
I
(
d > D

)
I
(
x
′
θ∗ > X

′
θ∗
)}

+ E

{
I
(
d < D

)
I
(
x
′
θ∗ < X

′
θ∗
)}

.

Under the binary outcome D = {0, 1}, we can show that ϕ(v, θ∗) is the probability

P
(
X
′

(D=1)θ
∗ > X

′

(D=0)θ
∗
)

, which is actually the covariate-adjusted AUC∗ proposed in Sec-

tion 3.1, where X(D=1) is the vector X given D = 1 (disease group) and X(D=0) is the vector

X given D = 0 (health group). To show the asymptotic normality of θ̂∗, the additional

assumption is given as follows.

Assumption 3.

12



(i) For each v ∈ S, the second partial derivatives of ϕ(v, θ∗) exist and are bounded on κ,

where κ is a neighborhood of θ∗0.

(ii) There exists an integrable function M(x) such that
∣∣∣∣∣∣ ∂
∂θ∗2

ϕ(v, θ∗) − ∂
∂θ∗0

2ϕ(v, θ∗0)
∣∣∣∣∣∣ ≤

M(v)|θ∗ − θ∗0| for all v ∈ S and θ∗ ∈ κ, where
∣∣∣∣∣∣ · ∣∣∣∣∣∣ is a matrix norm.

(iii) E
∣∣∣ ∂
∂θ∗0
ϕ(v, θ∗0)

∣∣∣2 <∞ and E
{

∂
∂θ∗0

2ϕ(v, θ∗0)
}

is negative definite for all v ∈ S.

Assumption 3 is the sufficient condition to apply a Taylor expansion of ϕ(v, θ∗) about θ∗0.

Theorem 3. Suppose Assumption 1 - 3 hold, then

√
n(θ̂∗ − θ∗0)

D−→ N(0,Λ−1ΣΛ−1), as n→∞,

where 2Λ = E

{
∂

∂θ∗0
2ϕ(v, θ∗0)

}
and Σ = E

{[
∂
∂θ∗0
ϕ(v, θ∗0)

][
∂
∂θ∗0
ϕ(v, θ∗0)

]′}
for all v ∈ S.

The proof is given in Appendix A.2. This result presents the parameter estimators

have the asymptotic normal distribution. In practice, it is suggested to use the bootstrap

resampling method to estimate the variability of the proposed parameter estimators (see, for

example, Zhang and Li, 2011).

3.3 Simulation study

In this section, an intensive simulation study is conducted to evaluate the performance of

the proposed method in the finite sample sizes. These performances are compared to those

of other classification methods without covariate adjustment, which are Su and Liu (1993)

method and Stepwise method (Kang et al., 2016).

The performance of the proposed method is studied under two data generating schemes

of covariates: (1) two covariates from normal and binomial distributions with different means

for the disease and health groups; (2) multiple covariates from different distributions with

equal means and variances for the disease and health groups to investigate the influence

of including irrelevant covariates on classification. For each scheme, four biomarkers for
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the disease and health groups are generated in two ways: (1) from the multivariate normal

distributions with different mean vectors and equal variance matrix for disease and health

groups as follows,

µD =



1.2

1.4

1.6

1.8


, µH =



1

1

1

1


, ΣD = ΣH =



1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


;

(2) from the following four different distributions,

YD1 ∼ N(0.20, 1.0), YD2 ∼ Pois(0.30), YD3 ∼ Exp(0.40), YD4 ∼ Γ(0.50, 1.0),

YH1 ∼ N(0.10, 1.0), YH2 ∼ Pois(0.15), YH3 ∼ Exp(0.20), YH4 ∼ Γ(0.25, 1.0).

Su and Liu method and Stepwise method are used for normally distributed biomarkers, and

Stepwise method is only used for the biomarkers from four non-normal distributions. For all

simulations, 1000 replicates are conducted for sample sizes from 20 to 60 for each group.

Under the first data generating scheme, two covariates for the health group ZH1 and

ZH2 are generated from N(µZH1
, 1) and Bin(pZH2

), where µZH1
= 0 and pZH2

= 0.2. We

generate two covariates for the disease group ZD1 and ZD2 from N(µZD1
, 1) and Bin(pZD2

),

where µZD1
∈ {0, 1} and pZD2

∈ {0.2, 0.5, 0.8}. The results for the normally distributed

biomarkers are reported in Table 3.1. For equal sample sizes, all estimated AUCs of the

proposed method are much larger than those of Su and Liu method and Stepwise method,

suggesting the AUCs are increased significantly after adjusting for covariates using the pro-

posed method. The largest improvement on the estimated AUCs achieves with the biggest

differences in the means of both covariates for the disease and health groups. Even only

the second covariate for the two groups have the different means, there is still an obvious

increasing on the estimated AUCs of the proposed method. The same results are obtained

for unequal sample sizes of the disease and health groups. Table 3.2 shows similar results

14



when the four biomarkers are from different distributions.

Table 3.1: The estimated AUCs for two covariates and four biomarkers

Without covariate

Sample size Covariates adjustment Covariate-adjusted

(nd, nh) µZD1
pZD2

Su & Liu Stepwise Su & Liu Stepwise

(20, 20) 1 0.2 0.784 0.785 0.879 0.871
1 0.5 0.783 0.783 0.899 0.892
1 0.8 0.780 0.781 0.939 0.935
0 0.5 0.784 0.783 0.850 0.840
0 0.8 0.781 0.782 0.910 0.905

(40, 40) 1 0.2 0.760 0.760 0.855 0.850
1 0.5 0.758 0.756 0.875 0.870
1 0.8 0.760 0.759 0.926 0.924
0 0.5 0.759 0.759 0.817 0.812
0 0.8 0.760 0.759 0.896 0.893

(60, 60) 1 0.2 0.751 0.750 0.845 0.842
1 0.5 0.752 0.750 0.868 0.865
1 0.8 0.751 0.749 0.921 0.920
0 0.5 0.751 0.749 0.806 0.802
0 0.8 0.753 0.752 0.889 0.887

(20, 40) 1 0.5 0.770 0.769 0.885 0.879
(20, 60) 0.769 0.767 0.883 0.878

(40, 20) 0.770 0.770 0.888 0.882
(40, 60) 0.757 0.756 0.874 0.870

(60, 20) 0.766 0.765 0.881 0.876
(60, 40) 0.755 0.754 0.874 0.871

Next, under the second data generating scheme, multiple covariates for the disease and

health groups are generated from the following different distributions with the same means
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Table 3.2: The estimated AUCs for two covariates and four biomarkers based on Stepwise
method

Sample size Covariates Without covariate

(nd, nh) µZD1
pZD2

adjustment Covariate-adjusted

(20, 20) 1 0.2 0.791 0.867
1 0.5 0.796 0.897
1 0.8 0.792 0.934
0 0.5 0.793 0.841
0 0.8 0.790 0.910

(40, 40) 1 0.2 0.765 0.842
1 0.5 0.767 0.868
1 0.8 0.765 0.922
0 0.5 0.766 0.811
0 0.8 0.765 0.894

(60, 60) 1 0.2 0.752 0.834
1 0.5 0.754 0.859
1 0.8 0.754 0.915
0 0.5 0.754 0.801
0 0.8 0.755 0.887

(20, 40) 1 0.5 0.776 0.876
(20, 60) 0.774 0.875

(40, 20) 0.782 0.880
(40, 60) 0.756 0.863

(60, 20) 0.774 0.874
(60, 40) 0.760 0.862

and variances,

ZD1 , ZH1 ∼ N(0, 1.52), ZD2 , ZH2 ∼ Bin(0.2),

ZD3 , ZH3 ∼ F(1, 2), ZD4 , ZH4 ∼ χ2
2,

ZD5 , ZH5 ∼ Pois(2), ZD6 , ZH6 ∼ Exp(0.5).

Clearly, the covariates are not relevant to the classification. The sample size for each group
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is raised to 200 and 1000. The result for four biomarkers from the multivariate normal dis-

tribution is summarized in Table 3.3. It suggests that the estimated AUCs of the proposed

method increase with adding more irrelevant covariates for small to moderate sample sizes.

However, when the sample sizes are large for both groups, the AUCs produced by the pro-

posed method have almost no change and tend to be same to the estimated AUCs of Su and

Liu method and Stepwise method, regardless the number of adjusted covariates. It shows

that adding more unrelated covariates has no impact on the classification accuracy of the

proposed method when the sample size is large. The similar result for four non-normally

distributed biomarkers is summarized in Table 3.4.

Table 3.3: The estimated AUCs for four biomarkers and multiple irrelevant covariates

Without covariate
Sample size adjustment Covariate-adjusted

(nd, nh) Covariates Su & Liu Stepwise Su & Liu Stepwise

(20, 20) Z1 + Z2 0.784 0.784 0.819 0.809

Z1 + Z2 + Z3 + Z4 0.784 0.783 0.834 0.828

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.781 0.782 0.845 0.845

(40, 40) Z1 + Z2 0.759 0.758 0.780 0.774

Z1 + Z2 + Z3 + Z4 0.758 0.757 0.787 0.785

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.759 0.758 0.799 0.799

(200, 200) Z1 + Z2 0.741 0.739 0.745 0.742

Z1 + Z2 + Z3 + Z4 0.741 0.739 0.748 0.746

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.742 0.740 0.751 0.749

(1000, 1000) Z1 + Z2 0.737 0.736 0.738 0.736

Z1 + Z2 + Z3 + Z4 0.738 0.736 0.739 0.737

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.737 0.735 0.739 0.737

Finally, we further conduct a simulation to study the asymptotic property of the pro-

posed parameter estimators. Under the second simulation scheme with four non-normally

distributed biomarkers, the means and standard errors (SEs) of the proposed parameter esti-

mators for four irrelevant covariates are computed with the sample sizes of 100, 200, 500 and
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Table 3.4: The estimated AUCs for four biomarkers and multiple irrelevant covariates based
on Stepwise method

Sample size Without covariate

(nd, nh) Covariates adjustment Covariate-adjusted

(20, 20) Z1 + Z2 0.794 0.808

Z1 + Z2 + Z3 + Z4 0.792 0.825

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.794 0.843

(40, 40) Z1 + Z2 0.767 0.777

Z1 + Z2 + Z3 + Z4 0.763 0.786

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.765 0.796

(200, 200) Z1 + Z2 0.739 0.742

Z1 + Z2 + Z3 + Z4 0.738 0.744

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.738 0.747

(1000, 1000) Z1 + Z2 0.733 0.733

Z1 + Z2 + Z3 + Z4 0.732 0.734

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 0.732 0.734

1000. Only Stepwise method is used since four biomarkers are not normally distributed. It is

believed that the true values of β∗s should be 0 because the included covariates are actually

useless to the classification. The results are reported in Table 3.5. It seems that the esti-

mates of γ∗ converge to 1 and β∗s are approximately unbiased. The associated SEs decrease

as sample size increases, which demonstrates the consistency of the proposed parameter

estimators.

Overall, the proposed method can greatly improve the AUC with covariate adjustment.

The improvement highly depends on the discrepancies of covariates between the disease and

health groups. When the sample size is large, adding many irrelevant covariates does not

influence the classification performance of the proposed model.
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Table 3.5: The estimates (S.E.) that associated with four irrelevant covariates based on
Stepwise method

Sample size

nd = nh γ̂∗ β̂∗1 β̂∗2 β̂∗3 β̂∗4

100 0.857 0.006 0.020 -0.001 0.005

(0.438) (0.110) (0.235) (0.003) (0.007)

200 0.938 -0.001 0.030 0 0.003

(0.281) (0.079) (0.179) (0.013) (0.04)

500 0.987 0 0.027 0 0.001

(0.086) (0.042) (0.125) (0.003) (0.022)

1000 0.996 0.003 0.018 0 0

(0.008) (0.029) (0.080) (0.002) (0.014)

3.4 Applications to cancer data

In this section, the proposed model is applied to the data of colorectal cancer and pancreatic

cancer for illustration.

3.4.1 Colorectal cancer data

A colorectal cancer observational study was conducted in Taiwan to investigate new biomark-

ers for colorectal cancer detection. The data of 135 patients diagnosed with colorectal cancer

and 78 individuals with no colorectal cancer were collected from Taipei Medical University

Hospital and Taipei Veterans General Hospital for the study. BEND5, PPP2R5C and EHD3

are three tumor suppressor genes and oncogenes closely related to the formation of colorectal

cancer, which are measured as continuous biomarkers in the study. In addition, BEND5 and

PPP2R5C can be categorized as binary biomarkers. Age and gender are considered as two

covariates in the study, which are summarized in Table 3.6.

Only Stepwise method is capable since the distributions of both continuous and binary

biomarkers are not the multivariate normal. The results for the continuous biomarkers are
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Table 3.6: The descriptive statistics of covariates for colorectal cancer data

Age (years) Gender(%)

Group n Range Mean Std. Dev Male Female

Disease 135 [37, 92] 64.57 13.63 54.81 45.19

Health 78 [35, 62] 50.82 16.25 63.29 36.71

reported in Table 3.7. The estimated AUC and accuracy of Stepwise method are all around

0.5, which imply the low classification rate of using biomarkers only. However, the AUC

and accuracy of the proposed method are close to 0.9, which are increased considerably

with covariate adjustment. In Table 3.6, it is easy to see the differences in the descriptive

statistics of two covariates between the disease and health groups, which are helpful to the

classification performance under the proposed method. The ROC curves given in Figure 3.1

show the improvement on the AUC.

Table 3.7: The classification results by using the continuous biomarkers for colorectal cancer
data based on Stepwise method

Continous Without covariate

biomarkers Covariates adjustment Covariate-adjusted

AUC
BEND5 + Age + Gender 0.552 0.886

PPP2R5C +

EHD3 Accuracy

0.453 0.875

For the binary biomarker data, the results in Table 3.8 show that the remarkable im-

provements on both estimated AUCs and accuracies are still obtained from comparing the

proposed method to Stepwise method without covariate adjustment. Figure 3.2 gives the

ROC curves with and without adjustment of covariates.
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Figure 3.1: The ROC curve using the continuous biomarkers for colorectal cancer data
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Table 3.8: The classification results by using the binary biomarkers for colorectal cancer
data based on Stepwise method

Binary Without covariate

biomarkers Covariates adjustment Covariate-adjusted

AUC
BEND5B + Age + Gender 0.676 0.862

PPP2R5CB
Accuracy

0.642 0.827

BEND5B and PPP2R5CB are the binary biomarkers

Figure 3.2: The ROC curve using the binary biomarkers for colorectal cancer data
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3.4.2 Pancreatic cancer data

In a pancreatic cancer case-control study, the fluorescence-based nanobiosensors for the early

detection of pancreatic cancer were developed by a team from Kansas State University

(Kalubowilage, 2017). The nanobiosensors are particularly sensitive to detect the activities

of protease and arginase in blood serum, which are necessary for tumors development and

progression. To demonstrate the potential of the nanobiosensor technology for early de-

tecting pancreatic cancer, the serum samples of 35 patients who have been diagnosed with

pancreatic cancer and 48 healthy volunteers were collected from the University of Kansas

Cancer Center. Eight biomarkers including arginase, cathepsin B, cathepsin E, UpA, MMPs

1, MMPs 3, MMPs 9 and neutrophil elastase are measured in each serum sample for the

study (Udukala et al. 2016; Kalubowilage 2017). The descriptive statistics of two covariates

in the study, age and gender, are given in Table 3.9.

Table 3.9: The descriptive statistics of covariates for pancreatic cancer data

Age (years) Gender(%)

Group n Range Mean Std. Dev Male Female

Disease 35 [19, 81] 64.09 13.66 48.57 51.43

Health 48 [19, 81] 63.92 12.43 50.00 50.00

Since the biomarkers are not normally distributed, we only use Stepwise method to

combine biomarkers. The results in Table 3.10 present that the AUC and accuracy of the

proposed method are almost same as those of Stepwise method. It is noted that the descrip-

tive statistics of two covariates for the disease and health groups in Table 3.9 are almost same

because they were controlled by the study. Therefore, little additional information to the

classification is delivered by two covariates. However, adjusting for the controlled covariates

by the proposed method does not jeopardize the classification performance.
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Table 3.10: The classification results for pancreatic cancer data based on Stepwise method

Without covariate

Biomarkers Covariates adjustment Covariate-adjusted

AUC

Arginase + Cathepsin B + Age + Gender 0.8607 0.8613

Cathepsin E + UpA +

MMPs 1 + MMPs 3 +

MMPs 9 + Accuracy

Neutrphil Elastase 0.8433 0.8433

3.5 Discussion

In this study, we have developed a new classification method for multiple cross-sectional

biomarkers to adjust for covariates, which does not require any assumption on joint distri-

butions of biomarkers and covariates. The approach of the proposed method is using the

covariate adjustment over the optimal biomarker combination that maximizes AUC. The

proposed method can significantly improve the classification accuracy when covariates for

the disease and health groups have discrepancies. In addition, the proposed model works well

for discrete or continuous covariates. It is also worth noting that the proposed covariate-

adjusted method is capable not only for multiple biomarkers but also works for the case

where only one biomarker is involved.

However, the proposed method has some limitations. The considerable improvement on

the classification accuracy under the proposed model mainly depends on the discrepancies

of covariates between the disease and health groups. When the discrepancy is small, the

proposed method may not improve the classification performance considerably by adjusting

for such covariates. It is expected to increase the classification rate as including many relevant

covariates. However, adjusting for irrelevant covariates may overestimate the accuracy when

the sample size is small. For large sample sizes, including more irrelevant covariates does

not affect the classification performance under the proposed model.

Overall, the proposed method has provided an easy-implement and distribution-free
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covariate-adjusted approach to improve the classification accuracy for multiple cross-sectional

biomarkers. It is also robust to include irrelevant covariates when the sample size is large.
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Chapter 4

The proposed covariate-adjusted

classification method for longitudinal

biomarkers

In this chapter, we extend the proposed method to longitudinal biomarkers for the binary

and time-independent outcome.

4.1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder which will lead to

memory loss, cognitive impairment, dementia, and total disability eventually. To date, no

intervention or cure can effectively halt, delay or even reverse the progression of AD, thus

most of AD patients would require medical assistance and care from professional caregivers,

making AD become one of the most costly chronic diseases in the United States. By 2050, an

estimated over 14 million Americans will be affected by AD (Mistur et al., 2009; Alzheimer’s

Association et al., 2012), which will become a great burden of American society.

More than a hundred active AD longitudinal and clinical studies around the world are

conducted to study the life course of AD and search for effective treatments. In 2004, the
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Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal study was established

to track the progression of AD with biomarkers (ADNI). In the ADNI study, the imaging,

clinical, genetic and biochemical biomarkers of each participant were measured repeatedly

over time. These biomarkers can be particularly used for the early detection of AD. Our

study is motivated by using those longitudinal biomarkers in the ADNI study to identify

dementia or AD patients. In general, longitudinal biomarkers are considered as a special case

of functional biomarkers, which are typically recorded in higher frequencies and dimensions

(Rice, 2004; Zhao et al., 2004).

The classification approaches for functional data have been well studied in the past few

decades. One major approach is the functional linear discriminant analysis (FLDA), which

is an extension of the classical linear discriminant analysis (LDA). This approach classifies

a new subject into a group based on its maximum posterior probability (Hall et al., 2001;

James and Hastie, 2001). Another popular approach is the functional regression methods to

model the relationships between the functional predictors and the binary response variable

(James, 2002; Müller and Stadtmüller, 2005; Leng and Müller, 2005). In addition to those

two common approaches, the functional support vector machine approach (Rossi and Villa,

2006) and the weighted distance approach (Alonso et al., 2012) are also proposed with the

concept of nonparametric.

As a special case of functional data, the classification approaches for longitudinal data

are somewhat different. The conventional approaches for longitudinal classification are the

generalized estimating equations (Liang and Zeger, 1986) and the generalized linear mixed

models (GLMM) (Breslow and Clayton, 1993). The extensions of the generalized linear

models (GLM) are also the most common classification methods for longitudinal data. For

example, Zeger et al. (1985) extended the logistic regression models to represent the marginal

probabilities as the logistic functions of the predictors. Erkanli et al. (2001) proposed the

non-homogeneous Markov regression models in which the transition probability is expressed

using the logistic regression models for the subject’s past outcomes and predictors. Besides,

the linear discriminate analysis under the mixed models have been suggested for longitudinal

classification (Tomasko et al., 1999; Marshall and Barón, 2000). Bagui and Mehra (1999)
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proposed a multi-stage rank nearest-neighbor rule, which extends the k-nearest neighbors to

the classification for longitudinal data.

Several methods have been developed to incorporate the covariates into the functional

data classification. In general, covariates such as age and gender may deliver the additional

information to the outcomes of patients. For example, it is known that aging is significantly

related to AD and many cancers. Therefore, incorporating covariates in the classification

model may further improve the classification performance (Rowe et al., 1976; Lebowitz,

1996). The most common way to accommodate covariates is using the functional regression

models. For example, Chiou et al. (2003) proposed a functional smooth random-effects

model to incorporate covariates by the conditional distributions of the functional principal

components (FPC) scores. Cardot (2007) suggested the conditional functional principal

component analysis (FPCA) to relate covariates to the conditional mean and covariance

functions nonparametrically. Recently, Li et al. (2017) presented a subspace projection

classifier to adjust for covariates through the mean function of the response variable, and

evaluated the results using the area under the receiver operating characteristic curve (AUC).

The AUC is a popular measure for the functional or longitudinal classification (Kohlmann

et al., 2009; Kim and Kong, 2016)

These methods use covariates in the classification procedure, however, some of them

require the assumption of independent and identically distributed, and some of them are

unclear about how to deal with longitudinal data measured at unequally spaced time points.

In this study, we propose a new classification method for longitudinal biomarkers with co-

variate adjustment based on the maximum AUC without the distributional assumptions.

Technically, the use of the natural cubic spline is suggested for the representation of longi-

tudinal biomarker profile of each subject, and we use the spline coefficients as the predictors

in our proposed classification method. Our method is a two-stage method. Obtaining the

optimal combination of the spline coefficients using Stepwise method (Kang et al., 2016) is

the first stage, then the largest AUC is achieved in the second stage by including covariates

based on the combination of spline coefficients. The classification accuracy of longitudinal

biomarkers can be improved significantly after adjusting for covariates using the proposed
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method. With the help of the natural cubic spline approach, the dimension of longitudinal

biomarker data can be greatly reduced. The proposed method can be implemented easily

and it works well even when each subject has a different number of measurements or the

measurements are observed at different time points for each subject.

The rest of this chapter is organized as follows. In Section 2, we briefly review the

natural cubic spline basis. Our new covariate-adjusted classification method for longitudinal

biomarkers is proposed in Section 3. In Section 4, the proposed method is illustrated by using

the longitudinal data of Alzheimer’s disease and primary biliary cirrhosis data. In Section

5, we evaluate the finite-sample performance of the proposed method by a simulation study.

Concluding remarks with discussion are provided in Section 6.

4.2 Natural cubic spline basis

In this section, the natural cubic spline basis is briefly introduced. We use a natural cubic

spline basis and spline coefficients for each subject’s longitudinal biomarker profile represen-

tation.

Suppose that Xij(t) =
(
Xij(tij1), Xij(tij2), ..., Xij(tijnij

)
)

is the jth observed longitudinal

biomarker of the ith subject at the time points t = (tij1, tij2, ..., tijnij
), where i = 1, ..., n and

j = 1, ..., J . In this study, we consider a linear combination of basis functions to represent

the longitudinal observations of each subject Xij(t). Let {Sκ(t)}κ=1,...,K be a set of K known

basis functions of Xij(t), which satisfies

Xij(t) =
K∑
κ=1

Sκ(t)cκ = S
′
c,

where S is the nij ×K basis matrix and c = (c1, c2, ..., cK)
′

is the corresponding vector of

basis coefficients.

In practice, we pre-select a basis function and predetermine the number of K before

using the spline representation. The number of K is the dimension of the expansion, which

is decided according to the characteristics of data. The small K is often used to reduce the
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dimension of data for the computational purpose. For the choice of a basis function, (Ramsay

et al., 2005, Page 45-56) have discussed several widely used bases in practice. For example,

a Fourier basis is often used for the data with the periodic feature. For non-periodic data, a

spline basis such as a natural cubic spline appears to be appropriate.

A natural cubic spline (NCS) basis is one of the widely used spline bases in the literature

(James et al., 2000; James, 2002; James and Sugar, 2003). An NCS is defined as a function

g on [a, b] with the knots sequence as a < ξ1 < ξ2 < ... < ξτ < b, which satisfies that (1) g

is a cubic polynomial on each of the (τ + 1) intervals (a, ξ1), (ξ1, ξ2), ..., (ξτ−1, ξτ ), (ξτ , b), and

ξ1, ξ2, ..., ξτ are interior knots; (2) g is continuous up to the second derivative; (3) g has the

second and third derivatives at a and b equal to zero. The last condition is also called the

natural boundary constraints, ensuring that g is linear beyond the boundary knots a and b

(Green and Silverman, 1993, Page 12).

An NCS with K knots can be generally represented by K basis functions as follows:

N1(x) = 1, N2(x) = x, ..., Nκ+2(x) = dκ(x)− dK−1(x),

where dκ(x) =
[
(x− ξκ)3+ − (x− ξK)3+

]
/ (ξK − ξκ) for κ = 1, ..., K − 2, and

(x− ξκ)+ =


x− ξκ, if x− ξκ > 0,

0, otherwise.

Comparing with other cubic splines such as a cubic B-spline (see details at Appendix B), an

NCS can generate more stable estimates at the boundaries since it has additional boundary

constraints (James et al., 2013, Page 274).

For an NCS, the number of K is typically decided by the number of knots. An NCS with

more knots placed produces a more flexible curve, and using the fewer knots would result in

a less flexible one. The common way to determine K is to try out the different numbers of

knots and choose the appropriate smoothed curve. Another approach is to choose K giving

the smallest cross-validated residual sum of squares (James et al., 2013, Page 275).
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It is easy to generate an NCS basis matrix using the function “ns” in R package with

providing the locations of knots or the degrees of freedom (df). The generated NCS matrix is

based on the cubic B-spline basis matrix of data by adding the natural boundary constraints.

By specifying the degrees of freedom, it automatically places the same number of knots

including the boundary knots at evenly spaced quantiles of data. As the default in the “ns”

function, the design matrix of an NCS basis does not include the column of the intercepts,

that means (df - 1) interior knots are needed. In contrast, (df - 2) interior knots are required

to include the intercepts.

4.3 The proposed method for longitudinal biomarkers

In this section, we present a new classification method for longitudinal biomarkers with

covariate adjustment, which is an extension of the proposed method in Chapter 3. Techni-

cally, a natural cubic spline basis and its coefficients are used to represent the longitudinal

biomarker profile of each subject. The information about biomarkers is contained in the

spline coefficients, which can be considered as the predictors in our proposed method. We

consider using Stepwise method proposed by Kang et al. (2016) to combine the spline coef-

ficients. Based on the combination of the spline coefficients, covariates are incorporated by

achieving the maximum AUC.

Suppose Sij(t) =
(
Sij(tij1), Sij(tij2), ..., Sij(tijnij

)
)′

is an known NCS basis matrix with

the dimension of nij ×K for Xij(t), then

Xij(t) = Sij(t)cij, i = 1, ..., n, j = 1, ..., J

where cij = (cij1, cij2, ..., cijK)
′

is the unknown vector of the NCS spline coefficients. The

common approach to obtain cij is using the ordinary least squares method. It is clear that the

profile of the longitudinal biomarkers Xij(t) can be represented by the NCS coefficients cij,

which can be further treated as the predictors in the proposed method. Let Mi be the binary

outcome of the ith subject, where Mi = 1 and Mi = 0 are indicative of disease and health,
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respectively. For the total number of the spline coefficients l = J×K, CD
p = (CD

p1, C
D
p2, ..., C

D
pl )

and CH
q = (CH

q1, C
H
q2, ..., C

H
ql ) are the sets of l spline coefficients for the pth subject in the

disease group and the qth subject in the health group, where p = 1, ..., nd and q = 1, ..., nh

are the sample sizes of those two groups such that nd + nh = n. For these multiple spline

coefficients, we regard each of them as a single biomarker, and can be combined optimally

by adopting Stepwise method proposed by Kang et al. (2016).

We denote the l spline coefficients for the disease and health groups as CD = (CD
1 , C

D
2 , ...,

CD
l )
′

and CH = (CH
1 , C

H
2 , ..., C

H
l )
′
. Let

Y D
C = α

′
CD and Y H

C = α
′
CH ,

where α = (1, α1, α2, ..., αl−1)
′

is the associated vector of parameters and its estimate can

be obtained by Stepwise method. Clearly, all spline coefficients for the disease and health

groups are optimally combined in the random variables Y D
C and Y H

C . By Equation 3.1, the

AUC for the linear combinations of the spline coefficients is

AUCW = P (Y D
C > Y H

C ).

In addition to the spline coefficients, let ZD
p = (ZD

p1, Z
D
p2, .., Z

D
pm) and ZH

q = (ZH
q1, Z

H
q2, ...,

ZH
qm) stand for m univariate covariates of the pth subject for the disease group and the qth

subject for the health group, where m ≥ 1. Assume that β = (β1, ..., βm)
′

is an unknown

vector of coefficients for covariates and γ is an unknown coefficient of the combined spline

coefficients, where γ ∈ R and β ∈ Rm. We denote the combinations of m covariates for

the disease and health groups as β
′
ZD and β

′
ZH , where ZD = (ZD

1 , Z
D
2 , ..., Z

D
m)
′

and ZH =

(ZH
1 , Z

H
2 , ..., Z

H
m )
′
. Then we conduct the classification by including the linear combination

of covariates based on γ
′
Y D
C and γ

′
Y H
C . By Equation 3.2, the proposed covariate-adjusted

AUC is given as

AUC∗(γ, β) = P
(
Y D
C +

β
′
ZD

γ
> Y H

C +
β
′
ZH

γ

)
, (4.1)

which naturally adjusts for the covariates in the classification procedure. We obtain the
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“best” coefficient parameters (γ0, β0) by maximizing the proposed AUC∗ in Equation 4.1,

that denotes as

(γ0, β0) = argmax
γ∈R, β∈Rm

P
(
Y D
C +

β
′
ZD

γ
> Y H

C +
β
′
ZH

γ

)
.

By Theorem 1, we can also show that the classification accuracy is improved after adjusting

for covariates by the proposed metod.

The optimal (γ, β) can be estimated empirically as

(γ̂, β̂) = argmax
γ∈R, β∈Rm

1

ndnh

nd∑
p=1

nh∑
q=1

I
(
Y D
Cp

+
β
′
ZD
p

γ
> Y H

Cq
+
β
′
ZH
q

γ

)
,

where I(·) is the indicator function.

The proposed covariate-adjusted AUC is estimated as

ÂUC
∗
(γ̂, β̂) =

1

ndnh

nd∑
p=1

nh∑
q=1

I
(
Y D
Cp

+
β̂
′
ZD
p

γ̂
> Y H

Cq
+
β̂
′
ZH
q

γ̂

)
.

It is noteworthy that (γ̂, β̂) is a special case of the maximum rank correlation (MRC)

estimator defined in Han (1987), which implies that (γ̂, β̂) is also consistency and asymptotic

normality.

4.4 Real data application

In this section, we illustrate the proposed method using the longitudinal data of Alzheimer’s

disease and primary biliary cirrhosis data.

4.4.1 Alzheimer’s disease data

The Alzheimer’s disease (AD) data used in this study are from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), which is a longitudinal study designed to examine multiple

types of biomarkers for early detecting and identifying AD. The ADNI study has three phases:

ADNI 1, ADNI GO and ADNI 2, in which 1785 participants who were diagnosed repeatedly
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every six months for a period up to 144 months from 2004 to 2016. The participants were

evaluated with three clinical stages as cognitive normal (CN), mild cognitive impairment

(MCI), and Alzheimer’s disease (AD). In our study, we focus on those participants who were

diagnosed as normal (CN) at baseline. The outcome of interest is to identify the patients

with MCI or AD. We denote the disease group as M = 1 and the health group as M = 0.

The AD/dementia (M = 1) and normal (M = 0) groups are defined by whether they stayed

at the CN stage until the last visit. For the illustration purpose, the proposed method can

be used for the early detection of AD/dementia.

In our study, we consider the Fluorodeoxyglucose positron emission tomography (FDG-

PET) and the volume of the hippocampus as the longitudinal biomarkers (i.e., X1 = FDG-

PET, X2 = hippocampus). In practice, FDG-PET has been used to examine the decreased

regional cerebral metabolic rates of glucose, which is an indicator of AD. The regional cerebral

hypometabolism often happens at the MCI and AD stages (Biagioni and Galvin, 2011). The

hippocampus volume is a primary biomarker with huge potential to detect the presence

and progression of AD in many magnetic resonance imaging (MRI) studies. The volume of

hippocampus generally declines at the MCI stage and accelerated decreases at the AD stage,

which is indicative of AD pathology (Schuff et al., 2009).

After removing the participants with less than three clinical visits, 23 and 56 partici-

pants remain in the AD/dementia and normal groups. The number of total visits for the

participants is summarized in Table 4.1. Figure 4.1 (a) and (b) provide the spaghetti plots

of FDG-PET and the volume of the hippocampus, suggesting the declining trend of both

biomarkers for the AD/dementia participants. Age and gender are regarded as the covariates

(i.e., Z1 = age, Z2 = gender) in our study, and their descriptive statistics are given in Table

4.2.

A simple classification approach is to apply the classical logistic regression with consid-

ering longitudinal biomarkers as multiple predictors. For the raw data of AD, the number

of visits for each patient is different from one to the other. Therefore, the classical logistic

regression is unable to use for the raw AD data (Zhang et al., 2016). In this study, the

proposed method is compared to Stepwise method (Kang et al., 2016) without covariate
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Table 4.1: The distribution of visits for Alzheimer’s disease data

Number of participants

Visits Normal AD/Dementia

3 9 2

4 12 7

5 19 8

6 10 4

7 5 2

8 1 0

Total 56 23

Figure 4.1: The spaghetti plots of FDG-PET and the volume of hippocampus
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adjustment and the functional logistic regression (F-LR) model proposed by James (2002).

The functional logistic regression model is the functional generalized linear model (FGLM)

using the logit link function. This method smooths each functional profiles by the spline

basis functions with the normality assumption on the spline coefficients. The details about
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Table 4.2: The descriptive statistics of covariates for Alzheimer’s disease data

Age (years) Gender(%)

Group n Range Mean Std. Dev Male Female

AD / Dementia 23 [69.9, 84.8] 77.18 4.12 69.57 30.43

Normal 56 [62.0, 85.8] 74.77 4.88 67.88 32.12

the estimation of the F-LR model can be found in James (2002) (or Appendix C). The over-

all result of data analysis is reported in Table 4.3. It indicates that the estimated AUCs of

the proposed method are slightly larger than those of Stepwise method and the F-LR model

after adjusting for age or gender. It is clear that the two covariates for the AD/dementia

and normal groups in Table 4.2 have almost no discrepancy. Thus, the two covariates carry

little helpful information to the classification of AD, leading to no considerable improvement

even after adjusting for both covariates by our method. For adjusting for two covariates, the

F-LR model fails to converge.

Table 4.3: The AUCs for Alzheimer’s disease data

Without covariate Covariate-adjusted

adjustment Age Gender Age + Gender

Stepwise Proposed F-LR Proposed F-LR Proposed F-LR

0.745 0.761 0.724 0.756 0.717 0.761 −†

F-LR: functional logistic regression model;
† : the model fails to converge

4.4.2 Primary biliary cirrhosis data

The proposed method is applied to the other longitudinal data, the primary biliary cirrhosis

(PBC) data, for illustration. The PBC data came from the clinical trial on the patients with
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the chronic liver disease, PBC, conducted by Mayo Clinic between 1974 and 1984 (Murtaugh

et al., 1994; Fleming and Harrington, 2011). For each of 312 patients, 20 variables including

several biomarkers, age, sex, the number of days between registration and the visit, and the

status at the endpoint were contained in the data. In our study, the proposed method is

used to detect the survived patients from PBC. The binary outcome is defined based on

the patients survived (M = 0) or not (M = 1) before the end of the study. We select the

patients with at least four visits and summarize their visit times in Table 4.5. The data

contain 94 and 113 patients in the death and survival groups. The serum bilirubin (bili) and

serum albumin (albumin) are considered as the longitudinal biomarkers (i.e., X1 = bili, X2

= albumin) because they have been extensively studied (Chan et al., 2015). Their spaghetti

plots are presented in Figure 4.2 (a) and (b). The descriptive statistics of two covariates,

age and sex (i.e., Z1 = age, Z2 = sex), are presented in Table 4.4.

Table 4.4: The descriptive statistics of covariates for primary biliary cirrhosis data

Age (years) Sex

Group n Range Mean Std. Dev Male Female

Death 94 [30.86, 75.01] 52.18 9.97 19 (20.21%) 75 (79.78%)

Survival 113 [28.88, 78.44] 48.67 10.48 7 (6.19%) 106 (93.81%)
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Table 4.5: The distribution of visits for primary biliary cirrhosis data

Number of patients

Visits Death Survival

4 29 9

5 14 12

6 10 10

7 8 11

8 7 13

9 5 10

10 9 13

11 6 9

12 3 9

13 3 3

14 0 5

15 0 6

16 0 3

Total 94 113
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Figure 4.2: The spaghetti plots of bilirubin and albumin
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For the comparison purpose, the AUCs estimated by the three methods are shown in

Table 4.6. The F-LR model performs almost the same as the proposed method. After ad-

justing for age, the AUC of the proposed method is slightly larger than that of Stepwise

method since the descriptive statistics of age for each group are almost same in Table 4.4. It

implies that age provides no additional information for the proposed classification procedure.

The percentages of male and female for the dead and survival groups are different, however,

the number of survived male is too small. Therefore, the estimated AUCs of the proposed

method with the sex adjustment and Stepwise method without covariate adjustment have

almost no difference. Even including both covariates by the proposed method has no signif-

icant improvement on the AUC, and the F-LR method fails to converge.
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Table 4.6: The AUCs for primary biliary cirrhosis data

Without covariate Covariate-adjusted

adjustment Age Sex Age + Sex

Stepwise Proposed F-LR Proposed F-LR Proposed F-LR

0.885 0.903 0.885 0.887 0.875 0.907 −†

F-LR: functional logistic regression model
† : the model fails to converge;

4.5 Simulation study

In this section, we conduct an intensive simulation study to assess the finite-sample perfor-

mance of the proposed method.

We consider two longitudinal biomarkers and one univariate covariate in our simulation

study. For both biomarkers, four observations from each subject are measured at the time

points t = (1, 2, 3, 4). The performance of the proposed method is evaluated through a

comparison of the AUC with the other two approaches: Stepwise method without including

covariates and the F-LR model.

4.5.1 Data generated from the functional logistic regression model

In the first data generating scheme, we generate the jth longitudinal biomarkers Xij and the

response variable Mi for the ith subject from the F-LR model:

Xij = Sijcij + ei, i = 1, ..., n, j = 1, 2,

Mi =


1, if

(
1 + exp{−ω0 − ωZ

′
Zi −

∑J
j=1 ωj

′
cij}

)−1
> 0.5,

0, if
(

1 + exp{−ω0 − ωZ
′
Zi −

∑J
j=1 ωj

′
cij}

)−1
≤ 0.5,

where

ei ∼ N(0, σ2
xj
I) and cij ∼ N(µj,Γj).
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Here ωs are the model coefficients and Zi is a univariate covariate of the ith subject. In

our simulation, Sij are the NCS basis matrices of a follow up time t = (1, 2, 3, 4) and

Zi ∼ Exp(0.5). Let σ2
x1

= 1, σ2
x2

= 2, ω0 = −1, ωZ = 0.3, ω1 = (0.15, 0.25)
′
, ω2 = (0.1, 0.2)

′
,

µ1 = (0.2, 0.4)
′
, µ2 = (0.3, 0.5)

′
, Γ1 =

 1 0.5

0.5 1

 and Γ2 =

 2 0.5

0.5 2

. We simulate 200

Monte Carlo samples for the sample sizes from 20 to 60 for the health group and 20 for the

disease group.

The estimated AUCs and their standard errors (SEs) of the three methods are summa-

rized in Table 4.7. The results suggest that the F-LR model outperforms the other two

methods since the data is generated from the framework of the F-LR model. As expected,

the estimated AUCs of the proposed method are just slightly smaller than those of the F-LR

model. The performance of the proposed method is still better than Stepwise method which

is without covariate adjustment, showing that the classification accuracy is significantly im-

proved after adjusting for covariates using the proposed method.

Table 4.7: The estimated AUCs and SEs for data generated from the functional logistic
regression model with 200 Monte Carlo samples

Without covariate

Sample size adjustment Covariate-adjusted

(nd, nh) Stepwise F-LR Proposed

(20, 20) 0.752 0.943 0.914

(0.073) (0.048) (0.046)

(20, 40) 0.724 0.941 0.913

(0.061) (0.026) (0.036)

(20, 60) 0.721 0.938 0.909

(0.054) (0.025) (0.036)

F-LR: functional logistic regression model
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4.5.2 Data simulated from different distributions

Under the second data generating scheme, we generate the first longitudinal biomarkers with

four-time points for the health and disease groups from the multivariate normal distribution

as follows:

XH
1 ∼ N





2

2

2

2


,



1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1




, XD

1 ∼ N


µD1 ,



1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1




,

where µD1 = {2 + 0.25× t− 0.1× t2}t=1,2,3,4. Another biomarker for the health and disease

groups are generated from the multivariate exponential distribution (abbreviated MVE) as

XH
2 ∼ MVE(1.5, 1.5, 1.5, 1.5) and XD

2 ∼ MVE(λD2 ), where λD2 = {0.4 + 0.25 × t + 0.1 ×

t2}t=1,2,3,4. In addition to the biomarkers, we generate an exponential distributed covariate

for the disease and health groups as ZD ∼ Exp(0.5) and ZH ∼ Exp(2). Two hundred Monte

Carlo samples are simulated for the sample sizes from 20 to 60.

The AUCs with their SEs given in Table 4.8 indicate that the obtained AUCs of the

proposed method appear to be the largest, and those of Stepwise method are the smallest.

It implies that including the covariates by the proposed model improves the classification

performance dramatically.
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Table 4.8: The estimated AUCs and SEs for two biomarkers and one covariate with 200
Monte Carlo samples

Without covariate

Sample size adjustment Covariate-adjusted

(nd, nh) Stepwise F-LR Proposed

(20, 20) 0.723 0.743 0.864

(0.075) (0.109) (0.061)

(40, 40) 0.700 0.738 0.854

(0.057) (0.073) (0.045)

(60, 60) 0.691 0.726 0.850

(0.049) (0.059) (0.038)

F-LR: functional logistic regression model

4.5.3 Simulation for consistency

An additional simulation is conducted to study the consistency of the proposed parameter

estimators. With the two longitudinal biomarkers from the second data generating scheme,

four covariates are generated from the following different distributions with equal means and

variances for the disease and health groups,

ZD
1 , Z

H
1 ∼ N(0, 1.52),

ZD
2 , Z

H
2 ∼ Exp(1),

ZD
3 , Z

H
3 ∼ Bin(0.2),

ZD
4 , Z

H
4 ∼ Pois(2).

We use 100, 200, 500 and 1000 as the sample sizes of each group with conducting 1000 Monte

Carlo simulations. It is clear that those covariates are useless to the classification, implying

that the true values of βs in our method should be 0.

The estimates and their SEs of the parameters are provided in Table 4.9. The results

indicate that the βs are approximately close to 0 and the estimates of γ are close to 1. The

43



associated SEs decrease as increasing the sample sizes, showing the evidence of consistency.

Overall, the proposed method can make a massive improvement on the classification ac-

curacy after adjusting for covariates. The functional logistic regression model also performs

well, however, the computation time is significantly expensive.

Table 4.9: The estimates (S.E.) for parameters that associated with four irrelevant covariates
with 1000 Monte Carlo samples

Sample size

nd = nh γ̂ β̂1 β̂2 β̂3 β̂4

100 0.733 0.013 0.017 0.036 0.017

(0.584) (0.088) (0.146) (0.287) (0.094)

200 0.886 0.002 0.001 0.018 0.001

(0.390) (0.065) (0.099) (0.207) (0.072)

500 0.981 0.002 -0.001 0.003 0.0009

(0.091) (0.041) (0.068) (0.148) (0.044)

1000 0.990 0.001 0.001 0.003 0.0005

(0.013) (0.034) (0.050) (0.119) (0.034)

4.6 Discussion

The proposed method is an easy-implemented approach to improve the classification perfor-

mance of longitudinal biomarkers after adjusting for covariates. In addition, no assumption

on the distributions of biomarkers or covariates is required for the proposed method. Our

methodology works well particularly when each subject is measured at different time points

or has a different number of measurements.

When the discrepancies of the covariates between the disease and health groups are

significant, the proposed method with such covariate adjustment can achieve a considerable

improvement on the classification performance. The proposed method employs the technique
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of the natural cubic spline for reducing the dimension of longitudinal biomarker data.

From a simulation (not shown) using a natural cubic spline basis with different degrees

of freedom (i.e., df = 4, 3, 2), the results show that the AUCs are not significantly different.

Therefore, we suggest the natural cubic spline basis with two degrees of freedom (df = 2) in

our method to achieve the maximum data dimension reduction.

In general, intercepts can be included or excluded in a natural cubic spline basis, and

the default is without intercepts in the R package. The result of another simulation (not

shown) shows no impact on the classification accuracy with intercepts in a natural cubic

spline basis or not. Other basis functions such as a Fourier basis and orthogonal polynomial

bases could also work for the proposed method to deal with different types of data, such as

periodic data.
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Chapter 5

Conclusions and future work

In this study, a new covariate-adjusted classification method for cross-sectional biomarkers

has been proposed. It is an easy-implemented approach, which requires no distributional

assumption on biomarkers and covariates. The classification performance can be improved

remarkably after adjusting for covariates using the proposed method. Our method works well

for discrete or continuous covariates. Even including irrelevant covariates does not jeopardize

the classification accuracy of biomarkers under the proposed method in large sample sizes.

In practice, we suggest conducting an initial screening manually to remove the irrelevant

covariates for improving the computational efficiency.

We also extend the proposed method to longitudinal biomarkers. The considerable im-

provements on classification accuracy of longitudinal biomarkers can be achieved with co-

variate adjustment as well. Our extended method works well even when each subject has

an unequal number of measurements or the measurements are not observed at the same

time points for each subject. The proposed method is robust to the assumptions on the

biomarkers and covariates distributions, and it is easy to perform. Using the technique of

the natural cubic spline, the proposed method can significantly reduce the dimension of

longitudinal biomarker data with little loss in the classification performance.

In practice, the issue of dropouts often exists in longitudinal studies. The missing data

due to dropouts may affect the classification performance. Computationally, our extended
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method can still work for the situation of late dropouts as long as it is non-informative,

but a loss of classification accuracy is expected. It is unclear about the performance of the

proposed method under other types of missing data mechanism, and a further investigation

could be our future work.
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Appendix A

Proofs of Theorem 2 and 3

A.1 Proof of Theorem 2

The AUC∗(θ) of the proposed method defined in Equation 3.2 is equivalent to

AUC∗n(θ) =
1

n(n− 1)

∑
p6=q

{
I(Dp > Dq)I(Xp

′
θ > Xq

′
θ)
}
,

where I is the indicator function. The proposed parameter estimator is given as

θ̂ = (γ̂, β̂) = argmax
θ

AUC∗n(θ).

The maximum rank correlation (MRC) estimator defined in Han (1987) is

θ̂ = argmax
θ

(
Sn(θ)

)
,

where

Sn(θ) =
1

n(n− 1)

∑
p6=q

{
I(Dp > Dq)I(Xp

′
θ > Xq

′
θ) + I(Dp < Dq)I(Xp

′
θ < Xq

′
θ)
}
.
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For a binary outcome D = {0, 1}, if Dp > Dq, then Dp = 1 indicates that the pth subject

belongs to the disease group and Dq = 0 indicates that the qth subject belongs to the

health group. The inequality Xp
′
θ > Xq

′
θ represents the value of biomarkers and covariates

combination for the pth subject in the disease group is larger than that for the qth subject

in the health group. If Dp < Dq, then Dp = 0 shows that the pth subject belongs to the

health group and Dq = 1 shows that the qth subject belongs to the disease group. We use

the inequality Xp
′
θ < Xq

′
θ to represent the value of biomarkers and covariates combination

for the pth subject in the health group is smaller than that for the qth subject in the disease

group. Thus, only considering the direction of the inequality Xp
′
θ > Xq

′
θ,

Sn(θ) =
1

n(n− 1)

∑
p6=q

{
I(Dp > Dq)I(Xp

′
θ > Xq

′
θ)
}

=
1

n(n− 1)

∑
p 6=q

{
I(Xp

′
θ > Xq

′
θ)
}

is actually the Mann-Whitney U statistic of AUC∗(θ) = P (Xp
′
θ > Xq

′
θ), implying the

proposed parameter estimator is a special case of the MRC estimator.

Therefore, the consistency of the parameter estimators in the proposed method can be

derived base on the same proof of the MRC estimator shown in the following three steps by

Han (1987). The parameters are normalized as θ∗ = θ/‖θ‖, where ‖ · ‖ is a matrix norm.

The first step is to show the uniqueness that the true value θ∗0 is the unique maximizer of

E
(
Sn(θ∗)

)
. Next, the uniformly convergence of θ∗ is shown by using the Borel-Cantelli

lemma. In the final step, we can show that

θ̂∗
a.s.−−→ θ∗0.

A.2 Proof of Theorem 3

The proof of Theorem 3 follows the same steps to show the asymptotic normality of the

MRC estimator in Sherman (1993). Let v1 = (d1, x1) and v2 = (d2, x2). For each (v1, v2),

define

f(v1, v2, θ
∗) = I(d1 > d2)

{
I(x1

′
θ∗ > x2

′
θ∗)− I(x1

′
θ∗0 > x2

′
θ∗0)
}
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and a U-statistics

Γn = AUCn(θ∗)−AUCn(θ∗0) =
1

n(n− 1)

∑{
I(d1 > d2)

[
I(x1

′
θ∗ > x2

′
θ∗)−I(x1

′
θ∗0 > x2

′
θ∗0)
]}
.

For the U-statistics, let the empirical measure be Pn and random measure be Un. By the

decomposition of a U-statistics of order two, it can be obtained that

Γn(θ∗) = Γ(θ∗) + Png(·, θ∗) + Unh(·, ·, θ∗), (A.1)

where

g(·, θ∗) = Pf(v, ·, θ∗) + Pf(·, v, θ∗)− 2Γ(θ∗),

h(v1, v2, θ
∗) = f(v1, v2, θ

∗)− Pf(v1, ·, θ∗)− Pf(·, v2, θ∗) + Γ(θ∗).

Specifically, Pf(v1, ·, θ∗) denotes the conditional expectation of f(v1, v2, θ
∗) given v1,

Pf(·, v2, θ∗) denotes the conditional expectation of f(v1, v2, θ
∗) given v2.

For all v ∈ S, by a Taylor expansion of ϕ(v, θ∗) about θ∗0, Assumption 3 (i)(ii) and

2Γ(θ∗) =
(
ϕ(·, θ∗)− ϕ(·, θ∗0)

)
, we can show that

2Γ(θ∗) = (θ∗ − θ∗0)
′
Λ(θ∗ − θ∗0) + o

(
|θ∗ − θ∗0|2

)
as θ∗ → θ∗0, (A.2)

where Λ = E
{

∂
∂θ∗0

2ϕ(v, θ∗0)
}

for all v ∈ S.

By E ∂
∂θ∗0
ϕ(v, θ∗0) = 0 and Assumption 3 (iii), then Wn

D−→ N(0,Σ), where

Σ = E

{[
∂
∂θ∗0
ϕ(v, θ∗0)

][
∂
∂θ∗0
ϕ(v, θ∗0)

]′}
for all v ∈ S. Since g(v, θ∗) = ϕ(v, θ∗) − ϕ(v, θ∗0) −

2Γ(θ∗), by A.1 and the weak law of large numbers, we can show that

Png(·, θ∗) =
1√
n

(θ∗ − θ∗0)
′
Wn + o

(
|θ∗ − θ∗0|2

)
. (A.3)

Next, by Theorem 3 in Sherman (1993) and the Euclidean properties of Nolan et al.

(1987), then
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Unh(·, ·, θ∗) = op(1/n). (A.4)

By A.2, A.3, A.4 and Assumption 3 (iii), we can show that

Γn(θ∗) =
1

2
(θ∗ − θ∗0)

′
Λ(θ∗ − θ∗0) +

1√
n

(θ∗ − θ∗0)
′
Wn + op(1/n),

which implies that
√
n(θ̂∗ − θ∗0)

D−→ N(0,Λ−1ΣΛ−1).
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Appendix B

A brief introduction of B-spline

Suppose a sequence of knots {ξ1 < ξ2, ..., < ξτ−1 < ξτ} is on [a, b]. Additional R knots are

below or above the boundaries such that ψ1 ≤ ψ2 ≤ ... ≤ ψR ≤ a, b ≤ ψt+R+1 ≤ ψt+R+2 ≤

... ≤ ψt+2R, where R = 1, 2, 3, ... It is often to make the extra knots equal to the two

boundary respectively (i.e. ψ1 = ψ2 = ... = ψR = a, ψτ+R+1 = ψτ+R+2 = ... = ψτ+2R = b).

Let ψe+r = ξe, where e = 1, ..., τ . It is defined that a B-spline with order r is a piecewise

polynomial function of degree (r − 1) on [a, b], where r = 1, 2, 3, ... ≤ R . We denote the

Lth basis function of a rth order B-spline as BL, r(x). For the order r = 1, the B-spline basis

function is given by

BL, 1(x) =


1, if ψL ≤ x < ψL+1,

0, otherwise,

where L = 1, ..., τ + 2R− 1. The higher order basis functions are provided as

BL, r(x) =
x− ψL

ψL+r−1 − ψL
BL, r−1(x) +

ψL+r − x
ψL+r − ψL+1

BL+1, r−1(x),

for L = 1, ..., τ + 2R− r (Friedman et al., 2001, page 186-187). A B-spline has the property

that it is continuous up to the (r−1)th derivative but discontinuous at the boundaries a and

b. Besides, a linear combination of the rth order B-splines can express any spline function of

the same order.
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Appendix C

James’ (2002) functional logistic

regression algorithm

A Monte Carlo simulation is used to compute ĉij and Vcij because of no closed form solution

for them. A sample of c∗ij1 , ..., c
∗
ijN

for the jth biomarker of the ith subject is generated from

the distribution

cij|xij ∼ N
(

(σ2
xj

Γ−1j + Sij
′
Sij)

−1(σ2
xj

Γ−1j µj + Sij
′
xij), (Γ

−1
j + Sij

′
Sij/σ

2
xj

)−1
)
,

where i = 1, ..., n, j = 1, ..., J , and other parameters are given in Section 4.5.1. Then ĉij and

Vcij are unbiased estimated by

ĉij =

∑N
u=1 c

∗
ijuP (M = Mi|c∗iju)∑N

u=1 P (M = Mi|c∗iju)
, (C.1)

Vcij =

∑N
u=1 c

∗
ijuc

∗
iju

′
P (M = Mi|c∗iju)∑N

u=1 P (M = Mi|c∗iju)
− ĉij ĉ

′

ij, (C.2)
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where

P (M = Mi|c∗iju) =


(

1 + exp(−ω0 − ωz
′
zi −

∑J
j=1 ωj

′
c∗iju)

)−1
, for Mi = 1,(

1 + exp(ω0 + ωz
′
zi +

∑J
j=1 ωj

′
c∗iju)

)−1
, for Mi = 0,

and Mi are the outcome of the ith subject. Therefore, µj, Γj and σ2
xj

can be estimated as

µ̂j =
1

n

n∑
i=1

ĉij, (C.3)

Γ̂j =
1

n

n∑
i=1

{
Vcij + (ĉij − µ̂j)(ĉij − µ̂j)

′
}
, (C.4)

σ̂2
xj

=
1∑
nij

n∑
i=1

{
(xij − Sij ĉij)

′
(xij − Sij ĉij) + tr(SijVcijSij

′
)
}
, (C.5)

where nij is the number of time points for the jth biomarker of the ith subject. ω0, ωz and

ωj are estimated by

E(A
′
WA)


ω0

ωz

ωj

 = E(A
′
WF ),

where A is an n × (K + 2) matrix with the ith row of (1, zi, cij
′
), W is an n × n di-

agonal matrix with the ith diagonal of πi(1 − πi), F is a vector with the ith element of

ω0 + ωz
′
zi +

∑J
j=1 ωj

′
cij + Mi−πi

πi(1−πi) and πi = P (Mi = 1|cij). Therefore,
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
ω̂0

ω̂z

ω̂j

 = E(A
′
WA)−1E(A

′
WF )

=

∑i E


πi(1− πi) πi(1− πi)zi
′

πi(1− πi)cij
′

πi(1− πi)zi πi(1− πi)zizi
′

πi(1− πi)zicij
′

πi(1− πi)cij πi(1− πi)cijzi
′
πi(1− πi)cijcij

′



−1

× E



∑
i

(Mi − πi)∑
i

(Mi − πi)zi∑
i

(Mi − πi)cij.

 (C.6)

To complete the calculation of ω̂0, ω̂z and ω̂j, the estimates for the elements in (C.6) are

given by ∑N
u=1 ΩuP (M = Mi|c∗iju)∑N
u=1 P (M = Mi|c∗iju)

, (C.7)
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where

Ωu =



P (M = 1|c∗iju)
{

1− P (M = 1|c∗iju)
}

for E
{
πi(1− πi)

}
,

ziP (M = 1|c∗iju)
{

1− P (M = 1|c∗iju)
}

for E
{
πi(1− πi)zi

}
,

zizi
′
P (M = 1|c∗iju)

{
1− P (M = 1|c∗iju)

}
for E

{
πi(1− πi)zizi

′
}
,

c∗ijuP (M = 1|c∗iju)
{

1− P (M = 1|c∗iju)
}

for E
{
πi(1− πi)cij

}
,

zic
∗
iju

′
P (M = 1|c∗iju)

{
1− P (M = 1|c∗iju)

}
for E

{
πi(1− πi)zicij

′
}
,

c∗ijuc
∗
iju

′
P (M = 1|c∗iju)

{
1− P (M = 1|c∗iju)

}
for E

{
πi(1− πi)cijcij

′
}
,

Mi − P (M = 1|c∗iju) for E(Mi − πi),

zi

{
Mi − P (M = 1|c∗iju)

}
for E

{
zi(Mi − πi)

}
,

c∗iju

{
Mi − P (M = 1|c∗iju)

}
for E

{
cij(Mi − πi)

}
.

The EM algorithm of the functional logistic regression repeats the three following steps

until the convergence of the parameters.

Step 1 (E-step) : calculate the expected values and variance of the cijs using (C.1), (C.2)

and the values of E
{
πi(1 − πi)

}
, E
{
πi(1 − πi)zi

}
, E
{
πi(1 − πi)zizi

′
}

, E
{
πi(1 − πi)cij

}
,

E
{
πi(1 − πi)zicij

′
}

, E
{
πi(1 − πi)cijcij

′
}

, E(Mi − πi), E
{
zi(Mi − πi)

}
, E
{
cij(Mi − πi)

}
using (C.7).

Step 2 (M-step) : estimate the parameters σ2
xj

, µj, Γj, ω0, ωz and ωj using (C.3), (C.4),

(C.5) and (C.6) respectively.

Step 3 : repeat step 1 and 2 until the parameters have converged.
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