Droplet departure modeling and a heat transfer correlation for dropwise flow condensation in hydrophobic mini-channels

Xi Chena,b and Melanie M. Derbya,*

aKansas State University, Manhattan, KS, USA
bIntel Corp., Hillsboro, OR, USA

*Corresponding Author: derbym@ksu.edu, 3002 Rathbone Hall, Manhattan, KS 66506

ABSTRACT

Droplet nucleation, growth, coalescence, and departure control dropwise condensation heat transfer. Smaller droplets are associated with higher heat transfer coefficients due to their lower liquid thermal resistances. Unlike quiescent dropwise condensation with gravity-driven droplet departure, droplet departure sizes in flow condensation are governed by flow-droplet shear forces and droplet-solid adhesive forces. This research models droplet departure, droplet size distributions, and heat transfer through single droplets under different flow conditions. Heat transfer through single droplets includes the thermal resistances at the vapor-liquid interface, temperature depression across the curved surface, conduction in the liquid droplet, and conduction through the surface promoter (e.g., Teflon). Droplet size distributions were determined for two ranges using the population balance method and power law function for small and large droplets, respectively. Droplet departure sizes (e.g., 10-500 µm) were derived using force balances between drag forces (obtained using FLUENT) and droplet-solid adhesive forces (determined using a third-order polynomial for contact angle distribution along contact line). The analytical model was compared to experimental flow condensation heat transfer data in a Teflon AFTM-coated rectangular mini-gap with hydraulic diameters of 0.95 and 1.8 mm. The correlation was compared against experiments with a steam mass flux range of 35–75 kg/m²s and quality of 0.2–0.9. There was good agreement between the model and experimental data; without any
curving fitting, the mean absolute errors of the heat transfer correlation were 9.6% and 8.8% respectively for the 0.95-mm and 1.8-mm mini-gaps.

KEY WORDS: Mini-channel, dropwise condensation, droplet dynamics, hydrophobicity, wettability, correlation

HIGHLIGHTS
- Single droplet heat transfer was integrated over droplet sizes up to departure.
- Droplet departure sizes obtained through the balance of drag and adhesion forces.
- A heat transfer coefficient model was developed for dropwise flow condensation.
- Correlation compared to experimental flow condensation in 0.95 and 1.8 mm channels.
- With no curve fitting, model agrees with the experimental results well (MAE<10%).

1. INTRODUCTION AND LITERATURE REVIEW

Due to large latent heat of water, steam condensation is an important process in industries such as thermal power plants [1, 2], desalination [3], fuel cells [4], air conditioning systems [5], water harvesting [6], and electronic device cooling [7]. An improved fundamental understanding of steam-side condensation can improve heat transfer performance and reduce the size of condensers [8]. Changing condensation modes from filmwise condensation, typically observed on hydrophilic, metallic surfaces, to dropwise condensation on hydrophobic or superhydrophobic surfaces can greatly increase heat transfer. Schmidt et al. [9] first recognized 5–7 times higher heat transfer coefficients in dropwise condensation rather than filmwise condensation.

Subsequent research investigated many parameters impacting dropwise condensation, including nucleation mechanisms [10], nucleation density [11-13], subcooling degree [14], droplet size [14-16], surface structures [17, 18], channel geometry [19], steam velocity [8, 20], heat flux [20], and saturation pressure [16, 21]. Lee et al. [13] numerically studied dropwise condensation on a nanopin-structured surface on which nucleation density was tunable by changing nano-pin dimensions and spacing. Higher condensation heat fluxes were achieved as nucleation sites increased. Tanasawa and
Ochiai [15] obtained time-averaged steady-state dropwise condensation by wiping the surface periodically. Various sweeping periods generated different maximum droplet sizes, where higher time-averaged heat transfer coefficients were associated with smaller maximum droplet sizes and higher wiping rates. Immediately after the surface was cleared, extremely high transient heat transfer coefficients (greater than 1 MW/m²k) were measured. Hatamiya and Hiroaki [21] experimentally studied dropwise condensation of steam on a variety of surfaces (e.g., gold-plated copper, ultra-finished gold disk, gold-vapor deposited silicon disk, and chromium plated copper) at different saturation pressures. Under the same conditions, smaller droplets seemed to be more densely populated on the gold-plated surface and provided higher heat transfer coefficients. With similar droplets sizes, similar heat transfer coefficients were observed on two surfaces.

In dropwise condensation, a periodic motion of droplet nucleation, coalescence, and departure can be driven by gravitational or shear forces. This cyclical process promotes nucleation and reduces the liquid film thermal resistance, which provides order-of-magnitude-higher heat transfer coefficients than filmwise condensation. Heat transfer coefficients were found to decrease with increasing droplet contact angle hysteresis, which generally corresponds to higher contact angle and easier droplet rolling [22]. Ma et al. [23] proposed that dropwise condensation heat transfer coefficients were related to the surface free energy difference between the condensate and the solid surface. Lower surface energies, associated with higher contact angles, promoted dropwise condensation. Surface modifications such as organic polymer coatings [24-30], self-assembled monolayers (SAM) [13, 31-36], ion implantation [37-40], electroplating [41], mini/micro/nano-structures [17, 42, 43] and biphilic patterns [8, 14, 18, 44, 45] decreased surface energy and eased droplet roll-off, thereby promoting dropwise condensation and increasing heat transfer coefficients compared to filmwise condensation.
In dropwise condensation, saturated vapor deposits on condensation surfaces and forms small droplets, which grow until external forces (i.e., gravity or shear forces) sweep them away. Few studies have created correlations to predict dropwise condensation. Le Fevre and Rose [46] analyzed condensation heat transfer through single droplets using an electrical resistor analogy. The results agreed with gravity-driven dropwise condensation on vertical films at heat fluxes of 0.3–1.8 MW/m². They also proposed the idea of determining heat transfer rates through single droplets, and then integrating over the range of droplet sizes to obtain the average heat transfer rate on condensation surfaces. They visualized dropwise condensation and correlated a power-law function for droplet size distribution with heat transfer coefficient obtained in their previous work [47], through which they developed the first dropwise condensation heat transfer coefficient correlation with four experimentally determined coefficients. Graham and Griffith [48] derived the minimum stable droplet size through mechanics and thermodynamics analysis, and Tanaka [49] observed that the power-law function works well for droplets growing through coalescence but not for smaller droplets growing through direct condensation. Population theory [11, 22, 49-51] considers conservation of droplet numbers in certain ranges of droplet sizes as well as sweeping effects.

Due to the importance of modeling and predicting dropwise condensation, the objectives of this paper are to develop a model for internal flow dropwise condensation where shear forces drive droplet incipient motion.

2. CORRELATION DEVELOPMENT

2.1. Overall heat transfer coefficient modeling approach

Depending on flow conditions (e.g., mass flux and quality), rivulets and liquid streams can form on hydrophobic surfaces concurrent with dropwise condensation [52], as shown in Fig. 1. Filmwise condensation models are used to describe rivulets and streams in section 2.2. Dropwise heat transfer
coefficients are estimated by integrating single droplet heat transfer for the range of droplet sizes encountered, as described in sections 2.3–2.6, and the dropwise flow condensation correlation is compared to experimental data in section 3.

![Image](image.png)

Fig. 1 Filmwise condensation region and dropwise condensation region during steam condensation on hydrophobic surfaces

Average flow condensation heat transfer coefficients on hydrophobic surfaces \(\bar{h} \) are weighted by the fractional areas undergoing filmwise and dropwise condensation,

\[
\bar{h} = \frac{A_{FW} h_{FW} + A_{DW} h_{DW}}{A_t} = \frac{A_{FW}}{A_t} h_{FW} + \frac{A_{DW}}{A_t} h_{DW}
\]

(1)

where \(A_{FW}, A_{DW}, \) and \(A_t \) are filmwise, dropwise, and total areas, respectively, and \(h_{FW} \) and \(h_{DW} \) are filmwise and dropwise heat transfer coefficients, respectively. The filmwise and dropwise condensation areas are estimated using void fraction,

\[
\frac{A_{FW}}{A_t} \approx 1 - \alpha; \quad \frac{A_{DW}}{A_t} \approx \alpha
\]

(2)

where void fraction, \(\alpha \), is obtained using the Lockhart-Martinelli correlation [53] assuming turbulent liquid and turbulent vapor,

\[
\frac{1 - \alpha}{\alpha} = 0.28 \left(\frac{1 - x}{x} \right)^{0.64} \left(\frac{\rho_v}{\rho_l} \right)^{0.36} \left(\frac{\mu_l}{\mu_v} \right)^{0.07}
\]

(3)

where \(x \) is quality, \(\rho \) is density, and \(\mu \) is dynamic viscosity.
2.2. Filmwise condensation modeling

The filmwise condensation heat transfer coefficient is obtained from the Kim and Mudawar [54] mini-channel flow condensation correlation for annular flows [e.g., \(We^* > 7X_n^{0.2} \), Equation (4)] and slug-bubbly flows [e.g., \(We^* < 7X_n^{0.2} \), Equation (5)]. \(We^* \) is the modified Weber number as defined by Soliman [55] and \(X_n \) is turbulent-turbulent Lockhart-Martinelli parameter,

\[
h_{FW} = \frac{k_l}{D_h} \left[\left(0.048Re_l^{0.69}Pr_l^{0.34} \frac{\Phi_v}{X_{tt}} \right)^2 \right]^{0.5} \tag{4}
\]

\[
h_{FW} = \frac{k_l}{D_h} \left[\left(0.048Re_l^{0.69}Pr_l^{0.34} \frac{\Phi_v}{X_{tt}} \right)^2 + \left(3.2 \times 10^{-7}Re_l^{-0.38}St_{vo}^{1.39} \right)^2 \right]^{0.5} \tag{5}
\]

where \(Re_l \) is liquid Reynolds number, \(G_{st} \) is steam only mass flux, and \(Pr_l \) is liquid Prandtl number.

2.3. Dropwise condensation modeling overview

In dropwise condensation, droplet departure sizes and sweeping periods are influenced by flow conditions (i.e. steam mass flux and steam quality) and affect the thermal resistance of liquid, thereby regulating dropwise condensation heat transfer. In horizontal channels, vapor-droplet interfacial shear stresses induce droplet departure, whereas gravity dominates droplet departure in quiescent flows. Average flow condensation heat fluxes were obtained by integrating heat transfer through all the droplets on the surface of a unit area,

\[
q''_{DW} = \int_{d_{min}}^{d_{max}} \dot{Q}_{drop}(d) A(d) d(d) \tag{6}
\]

\[
h_{DW} = \frac{q''_{DW}}{T_f - T_s} \tag{7}
\]

where \(\dot{Q}_{drop}(d) \) is the heat transfer rate through the base (droplet-solid contact area) of one droplet with a diameter \(d \), \(A(d)d(d) \) is the differential area fraction occupied by droplets with diameter of \(d \) to \(d+d(d) \), \(d_{max} \) and \(d_{min} \) are respectively the largest and the smallest droplet diameters on the condensation surface, \(T_v \) is the vapor saturation temperature, and \(T_s \) is condensation surface
temperature. The droplet departure diameter is premised to be the largest droplet diameter on the surface.

2.4. Heat transfer through a single droplet

Across a single droplet, the thermal resistances are between the vapor \((T_v)\) and surface temperatures \((T_s)\), the interfacial thermal resistance due to the droplet curvature \((R_{lv})\), conduction thermal resistance in the droplet \((R_{drop})\), and conduction thermal resistance of the a surface promoter coating \((R_{coat})\), as shown in Fig. 2. Since these resistances are in series, the general equation for heat flux through a droplet of diameter \(d\) is

\[
\hat{Q}_{drop}(d) = \frac{T_v - T_s}{R_{lv} + R_{drop} + R_{coat}}
\]

(8)

![Fig. 2 Resistor analogy for condensation heat transfer through a droplet](image)

Table 1 and Fig. 3 compare models developed by Le Fevre and Rose [46], Bonner [56], and Kim and Kim [12] for heat fluxes through droplets of different diameters at the same thermal conditions. Results from the Le Fevre and Rose model [46] are significantly larger than the other two, perhaps because the thermal resistance in promoter layer and effects of contact angle were not included. The Bonner model [56], adopted in this research, modified Le Fevre and Rose’s model [46] by adding the
effects of contact angle and the thermal resistance in the surface promoter. Leach et al. [57] experimentally and numerically investigated growth rates of droplets with different sizes. Small droplets (e.g., \(d < 50 \mu m \)) provided 15 times higher heat fluxes than the larger droplets, and, therefore, they contributed equivalent condensation rates even though these small droplets only occupied 5% of the condensation surface.

Table 1 Thermal resistance in the models by Le Fevre and Rose [46], Bonner [56] and Kim and Kim [12]

<table>
<thead>
<tr>
<th>Curvature</th>
<th>Interfacial</th>
<th>Droplet</th>
<th>Surface promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Fevre and Rose [46]</td>
<td>(\frac{4 \sigma T_v}{\rho l_{lv}})</td>
<td>(\frac{T_{sat}}{\mu l_{lv}} \left(\frac{y + 1}{y - 1} \right) \left(\frac{R_g T_{sat}}{2 \pi} \right)^{\frac{1}{2}})</td>
<td>(\frac{d}{2k_i})</td>
</tr>
<tr>
<td>Modified Bonner [56]</td>
<td>(\frac{4 \sigma T_v}{\rho l_{lv}})</td>
<td>(\frac{T_{sat}}{\mu l_{lv}} \left(\frac{y + 1}{y - 1} \right) \left(\frac{R_g T_{sat}}{2 \pi} \right)^{\frac{1}{2}})</td>
<td>(\frac{d(1 - \cos \theta)}{2k_i \sin \theta})</td>
</tr>
<tr>
<td>Kim and Kim [12]</td>
<td>(\frac{4 \sigma T_v}{\rho l_{lv}})</td>
<td>(\frac{1}{2(1 - \cos \theta) k_i})</td>
<td>(\frac{d(1 - \cos \theta)}{2k_i \sin \theta})</td>
</tr>
</tbody>
</table>

![Fig. 3 Heat flux through droplet bases using three models developed by Rose [46], Kim and Kim [12] and Bonner [56] at saturation temperature of 130°C, subcooling of 3°C and surface promoter thickness of 200 nm](image)
Leach et al. [57] studied the growth rate of condensing droplets at different sizes and found that droplets with diameters smaller than 50 μm have the same growth rate (i.e., volumetric growth rate per unit base area). This observation was added to the Bonner model [56] as the heat transfer rate formula in this research,

\[
\dot{Q}_{\text{drop}}(d) = \frac{(T_v - T_s - \frac{4\sigma T_v}{d \rho_i l_{iv}})\left(\frac{\pi d^2}{4}\right)(\cos^2 \theta)}{T_{\text{sat}} \left(\frac{\gamma + 1}{\gamma - 1}\right) \left(\frac{R_g T_{\text{sat}}}{2\pi}\right)^{\frac{1}{2}} + \frac{d(1 - \cos \theta)}{2 k_i \sin \theta} + \frac{\delta_{\text{coat}} \sin \theta}{k_{\text{coat}}}} \quad \text{when } d > 50\mu m
\]

\[
\dot{Q}_{\text{drop}}(d) = \frac{(T_v - T_s - \frac{4\sigma T_v}{D \rho_i l_{iv}})\left(\frac{\pi d_{\text{co}}^2}{4}\right)(\cos^2 \theta)}{T_{\text{sat}} \left(\frac{\gamma + 1}{\gamma - 1}\right) \left(\frac{R_g T_{\text{sat}}}{2\pi}\right)^{\frac{1}{2}} + \frac{d(1 - \cos \theta)}{2 k_i \sin \theta} + \frac{\delta_{\text{coat}} \sin \theta}{k_{\text{coat}}}} \quad \text{when } d \leq 50\mu m
\]

where \(\sigma\) is the water surface tension, \(\theta\) is equilibrium contact angle, \(i_{iv}\) is the latent heat of evaporation of water, \(\gamma\) is specific heat ratio of saturated water, \(d_{\text{co}}\) is the cutoff diameter (i.e. 50 μm), and \(\delta_{\text{coat}}\) is the Teflon™ coating thickness. The numerator in equation (10) remains constant, while the droplet size affects the droplet term in the denominator.

2.5. Droplet size distribution

Because liquid thermal resistance is proportional to droplet size, heat fluxes and thus condensing heat transfer coefficients depend on the droplet size distribution. Equations (11) and (12) calculate the size distribution of large and small droplets using the cutoff size \(d_c\) proposed by Wu and Maa [50]; droplets with diameter smaller than \(d_c\) (i.e., the distance between closest nucleation sites) grow mainly through direct condensation, while droplet larger than \(d_c\) grow through coalescence,

\[
a_l(d) = n \frac{2}{d_{\text{max}}} \left(\frac{d}{d_{\text{max}}}\right)^{-\frac{2}{3}} \quad \text{for } d > d_c
\]

\[
a_s(d) = \frac{2}{3 d_{\text{co}}^2 d_{\text{max}}} \left(\frac{d_c}{d_{\text{max}}}\right)^{-\frac{2}{3}} \left(\frac{d_c}{d_{\text{min}}}\right)^{-\frac{1}{4}} A_1 d + A_2 \exp(B_1 + B_2) \quad \text{for } d < d_c
\]
\[A_1 = \frac{\theta(1 - \cos \theta)}{4k_{\text{coat}} \sin \theta} \]

\[A_2 = \frac{1}{2h_t} + \frac{\delta_{\text{coat}}(1 - \cos \theta)}{k_{\text{coat}} \sin^2 \theta} \]

\[B_1 = \frac{A_2}{\tau A_1} \left[\frac{d_e^2 - d^2}{8} + \frac{d_{\text{min}}}{4} (d_e - d) - \frac{d_{\text{min}}^2}{4} \ln\left(\frac{d - d_{\text{min}}}{d_e - d_{\text{min}}} \right) \right] \]

\[B_2 = \frac{A_3}{2 \tau A_1} [d_e - d - d_{\text{min}} \ln\left(\frac{d - d_{\text{min}}}{d_e - d_{\text{min}}} \right)] \]

\[\tau = \frac{3d_e^2 \left(\frac{A_2 d_e}{2} + A_3 \right)^2}{A_1 \left(11A_2 d_e^2 - 14A_2 d_{\text{min}} d_e + 8A_3 d_e - 11A_3 d_{\text{min}} \right)} \]

where \(a_s(d) \) and \(a_l(d) \) are the size distributions of droplets smaller and larger than \(d_e \), respectively, \(\tau \) is the sweeping period obtained by setting continuity of \(a_l(d) \) and \(a_s(d) \) at \(d = d_e \). The cutoff size is defined as

\[d_e = \frac{0.385}{d_{\text{min}}} \quad (13) \]

where \(d_{\text{min}} \) is the nucleation size derived by Graham and Griffith [48] using heterogeneous droplet nucleation theory,

\[d_{\text{min}} = \frac{\tau_{\text{sat}} \sigma_{\text{lv}}}{\rho_i \dot{\text{lv}} \text{dr}} \quad (14) \]

Therefore, the dropwise condensation heat flux is the summation of the heat transfer rate through all droplets on a unit area,

\[q''_{DW} = \int_{d_{\text{min}}}^{d_e} \dot{Q}(d)a_s(d)d(d) + \int_{d_e}^{d_{\text{max}}} \dot{Q}(d)a_l(d)d(d). \quad (15) \]

The dropwise condensation heat transfer coefficient the ratio of heat flux to subcooling degree of the surface,

\[h_{DW} = \frac{q''_{DW}}{\Delta T}. \quad (16) \]
Fig. 4 depicts dropwise condensation heat transfer coefficients with respect to the droplet departure sizes at saturation temperature of 130°C, subcooling degree of 3°C, and TeflonTM coating thickness of 200 nm, corresponding to experimental conditions [52]. The equilibrium contact angle on the coated surface was measured to be 110° using goniometer.

![Fig. 4 Heat transfer coefficients with respect to droplet departure size](image)

2.6. Droplet departure size

Dropwise condensation heat transfer coefficients strongly depend on the droplet departure size (Fig. 5) which is the largest droplet on the surface and therefore affects liquid thermal resistance and droplet populations [e.g., d_{max} in Equations (12) and (13)]. Antonini et al. [58] modified the Brown et al. correlation [59] of contact angle and adherence, and developed equation (17) for adhering forces. The drag force obtained from equation (19) increases with increasing droplet size at higher order than the adherence. In this research, droplet departure is premised to happen when the drag force exerted on the droplets by flowing vapor exceeds the adherence between the droplet and the surface.
Adhesion forces are developed through contact angle hysteresis. Researchers [58, 60-63] investigated contact angle hysteresis and the resultant adhesion forces between droplets and surfaces. In this research, equation (17) is utilized for the adhesion force,

$$F_{adh} = -\gamma \int_{0}^{2\pi} \cos \theta \cos \phi r d\phi$$ (17)

where \(\theta \) is the dynamic contact angle varying along the contact line, \(\phi \) is the azimuthal angle in the top view in Fig. 5 (right). The dynamic contact angle is modelled using a third-order polynomial proposed by ElSherbini and Jacobi [64],

$$\cos(\theta) = 2\frac{\cos \theta_{adv} - \cos \theta_{rec}}{\pi^3} \phi^3 - 3\frac{\cos \theta_{adv} - \cos \theta_{rec}}{\pi^2} \phi^2 + \cos \theta_{adv} \phi.$$ (18)

At different flow conditions (i.e. steam mass fluxes and steam qualities), the relatively velocities of vapor over droplets vary. Shear forces are estimated using the drag force equation:

$$F_d = \frac{1}{2} C_d \rho_v A_p U_v^2$$ (19)

$$U_v = \frac{G x}{\rho_v \alpha}$$ (20)

where \(F_d \) is the drag force, \(C_d \) is the drag coefficient, \(U_v \) is the vapor velocity, \(A_p \) is the projected area, \(G \) is the steam velocity, and \(\alpha \) is the void fraction.

CFD simulations were conducted using FLUENT™ to evaluate the drag forces applied to solid spherical caps of same projected area as deformed ones observed in experiments. These simulations investigated droplet diameters of 25–100 \(\mu \)m and vapor velocities of 5–25 m/s, which are equivalent to flow conditions for steam mass fluxes of 35–100 kg/m²s and qualities of 0.2–0.8. Geometry modelling was completed in ANSYS design modeler, where the channel was divided into multiple zones for multi scale meshing (Fig. 6 and Fig. 7). For boundary layer calculations, thirty and ten
inflation layers were created for the bottom and top surfaces, respectively. For grid independence, 3–4 cases were run at different meshing sizes for each scenario and consistent results were observed. Ultimately, there were 1–3 million elements in the mesh depending on droplet size.

The κ-ω SST model low-Re correction was employed for the simulation due to its ability to solve for the confined flow and near-wall field. Drag force simulations were run for droplet diameters of 25, 50 and 100 μm, at flow velocities of 5, 10, 15, 20, 25 and 30 m/s. FLUENT calculated the drag force exerted on the droplet surfaces and drag coefficients (C_d). The average values of drag coefficients at six velocities were all approximately 0.45 with average percentage variances of 8.7%, 7.4% and 5.1% for droplet diameters of 25, 50 and 100 μm, respectively (Fig. 8).
Sommers et al. [65] studied critical velocities of shearing flow to sweep droplets from vertical surfaces and determined the drag coefficient. Milne and Amirfazli [61] evaluated drag coefficients by investigating incipient motion of droplet on hydrophilic, hydrophobic and superhydrophobic surfaces under shearing air flow in a wind tunnel. Both studies saw a consistent drag coefficient between 0.44 and 0.45. Volynskii [66], Lane [67], and Morsi [68] observed similar drag coefficients (i.e., 0.44-0.45) of deformable droplets and rigid spheres. Combined with the FLUENT simulations, a constant drag coefficient of 0.45 is assumed for this model. Fig. 8 (left) compares the drag forces from simulations and using a constant drag coefficient of 0.45. Fig. 9 depicts predicted droplet departure sizes at steam mass fluxes of 35–200 kg/m²s and steam qualities of 0.2–0.9. Increasing steam mass fluxes and steam qualities increase vapor velocity and in turn decrease droplet departure size.
Fig. 9 Droplet departure diameter at different steam mass fluxes and qualities

In order to validate the model, experiments were conducted in an open-loop apparatus using campus steam; the apparatus description was reported by Chen and Derby [52]. Simultaneous droplet dynamics and heat transfer measurements were observed in two copper mini-channels, with hydraulic diameters of 0.95 mm (i.e., cross sectional area: 10 mm by 0.5 mm) and 1.8 mm (i.e., cross sectional area: 10 mm by 1.0 mm). Experimentally-obtained droplet departure sizes were compared with the predicted results from the model at steam mass fluxes of 50 and 75 kg/m²s and steam qualities of 0.45 and 0.65 (Fig. 10). The axial and lateral lengths of departing droplets were measured using Photron FASTCAM Viewer software. The averages of axial and lateral departure sizes in the experimental were taken as the nominal departure sizes and compared with the results from the model in Table 2. To ensure shear-induced departure, size measurements were performed on droplets completing the series of nucleation, growth, coalescence and departure. The nominal departure sizes are the average of lengths in axial and lateral directions. The predicted departure size is on average 6.5% smaller than the mean value of the two principal sizes. The uncertainty of the measurements was ± 4 pixel (i.e., equivalent to ± 11.2 μm) with the magnification of 5.0 in the lens and camera pixel size of 14 μm.
Fig. 10 Droplet departure sizes observed in experiments at a) $G=50 \text{ kg/m}^2\text{s}$, $x=0.45$, b) $G=50 \text{ kg/m}^2\text{s}$, $x=0.65$, and c) $G=75 \text{ kg/m}^2\text{s}$, $x=0.5$

Table 2 Experimental and predicted droplet departure sizes

<table>
<thead>
<tr>
<th>Steam mass flux</th>
<th>Quality</th>
<th>Experimental results</th>
<th>Predicted results</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.45</td>
<td>370±11.2 μm</td>
<td>364</td>
</tr>
<tr>
<td>50</td>
<td>0.65</td>
<td>231±11.2 μm</td>
<td>225</td>
</tr>
<tr>
<td>75</td>
<td>0.5</td>
<td>131±11.2 μm</td>
<td>111</td>
</tr>
</tbody>
</table>

3. Comparison with experimental data

Measured flow condensation heat transfer coefficients in the 0.95-mm mini-gap are shown in Fig. 11. It should be noted that this model is not designed for steam qualities lower than 0.2, because the void fraction changes dramatically at these low qualities. Increasing steam mass flux and steam quality increases heat transfer coefficients through increasing interfacial shear, thereby decreasing droplet departure size and subsequently lowering the thermal resistance. At increasing steam mass fluxes, dropwise condensation heat transfer coefficients become less dependent on steam quality because most droplets are within the diameter range of 50 μm where heat transfer coefficients are independent of droplet sizes.
Predicted and experimental heat transfer coefficients are presented in Fig. 12. All the predictions are all within -30% to +30% range of relative errors (RE), and most of the data are within ± 15%. With no curve fitting in the model, the mean absolute errors (MAE), for the 0.952 and 1.8-mm mini-gaps are 9.6 % and 8.8%, respectively.

$$MAE = \frac{\sum_{i=1}^{n} \left| \frac{h_{corr} - h_{exp}}{h_{exp}} \right|}{n} \times 100\%$$

Fig. 11 Droplet departure size at various steam mass fluxes and steam qualities

Fig. 12 Droplet departure size at various steam mass fluxes and steam qualities
4. CONCLUSIONS

The following conclusions can be drawn from this study:

- Heat transfer coefficients on hydrophobic surfaces were modeled by weighting filmwise and dropwise condensation areas using void fraction. The filmwise condensation heat transfer coefficients were predicted using the Kim and Mudawar [54] filmwise condensation.

- Heat transfer through single droplets was analyzed using the resistor analogy and droplet size distributions were developed using power law function and population theory to estimate dropwise condensation heat transfer coefficients.

- Heat transfer coefficients significantly depended on the droplet departure size which were predicted using a force balance between drag and adhesion forces. The drag forces were calculated using FLUENT simulations and the adhesion forces were predicted using the Antonini et al. [58] model assisted by the ElSherbini and Jacobi [64] correlation for droplet dynamic contact angles.

- The correlation presented good agreement with the experimental results with relative errors (RE) all within the range of ± 30%, and most of the data are within ± 15%. With no curve fitting in the model, the mean absolute errors (MAE) for the 0.5-mm and 1-mm deep mini-gaps are 9.6 % and 8.8%, respectively.

5. ACKNOWLEDGMENTS

The authors gratefully acknowledge the partial support of the Electric Power Affiliates Program of Kansas.

6. NOMENCLATURE

A Area
a Droplet size distribution
D Channel diameter
d Droplet diameter
f Flow
G Flow mass flux
\(\bar{h} \) average heat transfer coefficient
i Evaporative enthalpy
k Thermal conductivity
Pr Prandtl number
\(\dot{Q} \) Heat transfer rate
\(q'' \) Heat flux
R Thermal resistance
Re Reynolds number
\(R_g \) Steam vapor gas constant
Su Suratman number
T Temperature
x Quality

Greek:
\(\alpha \) Void fraction
\(\gamma \) Specific heat ratio
\(\delta \) Thickness
\(\theta \) Contact angle
\(\mu \) Dynamics viscosity
\(\rho \) Density
\(\sigma \) Surface tension
\(\tau \) Sweeping period
\(\Phi \) Two-phase flow multiplier
X_{tt} Tallent-tallent Martinelli parameter

Subscripts:

Cond Condensation

cos Cutoff droplet diameter (i.e., 50 μm)

DW Dropwise condensation

FW Filmwise condensation

l Liquid

s Surface

sat Saturation

st Steam

t Total condensation areas

v Vapor

vo Vapor only flow

7. REFERENCES

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/