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Abstract

Successful advances in biochemical technologies have led to inexpensive, time-efficient

production of massive volumes of data, DNA and protein sequences. As a result, numerous

computational methods for genome annotation have emerged, including machine learning

and statistical analysis approaches that practically and efficiently analyze and interpret

data. Traditional machine learning approaches to genome annotation typically rely on

large amounts of labeled data in order to build quality classifiers. The process of labeling

data can be expensive and time consuming, as it requires domain knowledge and expert

involvement. Semi-supervised learning approaches that can make use of unlabeled data,

in addition to small amounts of labeled data, can help reduce the costs associated with

labeling. In this context, we focus on semi-supervised learning approaches for biological

sequence classification.

Although an attractive concept, semi-supervised learning does not invariably work as in-

tended. Since the assumptions made by learning algorithms cannot be easily verified without

considerable domain knowledge or data exploration, semi-supervised learning is not always

“safe” to use. Advantageous utilization of the unlabeled data is problem dependent, and

more research is needed to identify algorithms that can be used to increase the effectiveness

of semi-supervised learning, in general, and for bioinformatics problems, in particular. At

a high level, we aim to identify semi-supervised algorithms and data representations that

can be used to learn effective classifiers for genome annotation tasks such as cassette exon

identification, splice site identification, and protein localization.

In addition, one specific challenge that we address is the “data imbalance” problem,

which is prevalent in many domains, including bioinformatics. The data imbalance phe-

nomenon arises when one of the classes to be predicted is underrepresented in the data



because instances belonging to that class are rare (noteworthy cases) or difficult to obtain.

Ironically, minority classes are typically the most important to learn, because they may

be associated with special cases, as in the case of splice site prediction. We propose two

main techniques to deal with the data imbalance problem, namely a technique based on

“dynamic balancing” (augmenting the originally labeled data only with positive instances

during the semi-supervised iterations of the algorithms) and another technique based on

ensemble approaches. The results show that with limited amounts of labeled data, semi-

supervised approaches can successfully leverage the unlabeled data, thereby surpassing their

completely supervised counterparts.

A type of semi-supervised learning, known as “transductive” learning aims to classify the

unlabeled data without generalizing to new, previously not encountered instances. Theoret-

ically, this aspect makes transductive learning particularly suitable for the task of genome

annotation, in which an entirely sequenced genome is typically available, sometimes accom-

panied by limited annotation. We study and evaluate various transductive approaches (such

as transductive support vector machines and graph based approaches) and sequence repre-

sentations for the problems of cassette exon identification. The results obtained demonstrate

the effectiveness of transductive algorithms in sequence annotation tasks.
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Chapter 1

Introduction

1.1 Motivation

The developments of biotechnology during the last decades have resulted in powerful high

throughput sequencing instruments that can produce biological data (both DNA and de-

rived protein sequences) rapidly and inexpensively. Classical wet-lab annotation methods

can no longer handle the sheer volume and complexity of this exponentially accumulating

data. The “post-genomic” era, in which efforts are shifted towards data analysis, requires

computational methods to assist with the annotation tasks.

Traditionally, supervised machine learning has been successfully used for classification

or prediction problems in the field of bioinformatics. Supervised methods, however, require

large amounts of labeled data for training in order to produce valuable classifiers, but in

many cases obtaining a sufficiently large number of labels is infeasible. Unlabeled instances

are more accessible and usually they are available in much larger quantities than the labeled

instances. Therefore, semi-supervised learning, in which the classifiers trained on limited

amounts of labeled data can be improved by exploiting the large amounts of unlabeled data,

can provide cost-effective alternatives and is preferable to supervised learning.
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1.2 Overview of Machine Learning Approaches Used

Traditional machine learning algorithms rely on the availability of large amounts of accurate

labeled data [Mitchell, 1997] to find a function that fits the training (labeled) data and also

generalizes to new data. In supervised learning (SL), as can be seen in Figure 1.1, the

training phase produces a model that can be used to classify test (unlabeled) instances.

Supervised machine learning produces dependable models when there are large amounts of

labeled data available for training, but in reality, labeled data is usually scarce while large

volumes of unlabeled data are readily available. For genetics, obtaining labeled data is an

expensive process that requires expert involvement and time. From here comes the necessity

to use semi-supervised learning, which is a learning paradigm at the intersection between

supervised and unsupervised learning.

Large Amount 
of Labeled Data

Training Data

Test Data
(Unlabeled)

Learn a 
Model

Predict Labels 
for Test Data

Figure 1.1: Supervised Learning: In supervised learning, a model is learned from a large amount
of labeled data. The model can the be used to classify test instances not encountered before.

In this research, the focus is on semi-supervised learning, more precisely, semi-supervised

classification, and a special case of semi-supervised learning, known as transductive learning.
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Semi-supervised learning (SSL) [Chapelle et al., 2006] is a framework in machine learning

that provides a comparatively cheap alternative to having experts manually label more

data. The aim of semi-supervised learning is to utilize both the small amount of available

labeled data and the abundant unlabeled data together, in order to give the maximum

generalization ability on a given prediction task. Using unlabeled data together with labeled

data sometimes gives better results than using the labeled data alone. The concept of

improving supervised classifiers by leveraging unlabeled data is very appealing, yet it does

not always work as intended. In practice, it is very common for a classifier to be degraded

by the unlabeled data [Li and Zhou, 2011; Catal and Diri, 2009]. Deciding whether or not

to use the unlabeled data is a problematic task [Singh et al., 2009], and the focus of ongoing

research [Wang and Chen, 2013].

Small Amount 
of Labeled Data

Large Amount 
of Unlabeled Data

Training Data

+

Test Data
(Unlabeled)

Learn a 
Model

Predict Labels 
for Test Data

Figure 1.2: Semi-supervised Learning: In the semi-supervised learning paradigm, a model is
learned from limited labeled data and much larger quantities of unlabeled data. The model can
then be used to classify test instances not encountered before.

In a classic semi-supervised learning framework, the algorithm learns a model from the

labeled data and aims to improve that model by leveraging the latent knowledge presumably

3



available in the unlabeled data. At the end of the learning process, new unseen (test)

instances are classified, as shown in Figure 1.2. This type of learning, where a model is

produced and can be used to classify newly encountered instances, is also known as inductive

learning, or simply induction.

Small Amount 
of Labeled Data

(Large Amount 
of Unlabeled Data)

Test Data

All Data

+
Predict Labels 
for Test Data

Figure 1.3: Transductive Learning: In transductive learning, the aim is to find the labels of the
unlabeled data, which can be seen as test data.

As opposed to inductive learning, in which a model is produced, transductive learning

(TL) aims only to classify the unlabeled data that is already accessible. The algorithm

receives the instances to be classified in advance, as shown in Figure 1.3. In such a scenario,

where the instances to be classified are known a priori, it is desirable to discriminate between

the classes in the available data, rather than solving a harder problem, which would be to

learn a mode that can be used to discriminate between classes in future unseen data.

1.3 Biological Problems Addressed

The “central dogma of molecular biology”, as elaborated by Francis Crick [Crick et al., 1970],

explains the flow of genetic information from DNA to protein. It states that DNA duplicates

(replication), makes RNA (transcription), which is next transported outside the nucleus into

the cytoplasm, where the cellular machinery translates it into proteins (synthesis). Proteins

4



are made of amino-acids. In genetics, gene expression is the most fundamental level at which

the genotype gives rise to the phenotype. The genetic code stored in DNA is “interpreted” by

gene expression, and the properties of the expression give rise to the organism’s phenotype.

Two main biological problems are used as applications of the work in this dissertation:

• Prediction of alternative splicing events

Throughout the DNA strands, the are expressed regions (also known as exons) and

intervening regions (also known as introns). Alternative splicing, schematically shown

in Figure 1.4, is a phenomenon that occurs naturally, during gene regulation, in mul-

ticellular organisms and it is a main contributor to isoform diversity.

Exon3Exon1 Exon2

Genomic DNA
Transcription

Intron Intron Intron

Precursor mRNA
Alternative Splicing

Intron Exon4 Exon5

AS ASC
Exon1 Exon2 Exon3 Exon5

C
Mature mRNA (Isoform A - Exons 4 and 6 Skipped)

ASAS C
Exon4Exon1 Exon2

C
Exon5

Mature mRNA (Isoform B - Exons 3 and 6 Skipped)

Translation Translation

Protein A Protein B

3’5’

Exon6Intron

C
Exon3

C
Exon5

Mature mRNA (Isoform C - Exon 2 and 3 Skipped)

Translation

Protein C

AS AS
Exon1 Exon6

Figure 1.4: Alternative Splicing is a regulated process responsible for the formation of multiple
proteins from a single gene. Exons 2, 3, 4, and 6 are alternatively spliced, whereas Exons 1 and 5
are constitutive, as they appear in all isoforms.

There are five major types of alternative splicing events: exon skipping, intron reten-

tion, alternative donor site, alternative acceptor site, and mutually exclusive exons. In

our work, we focus on the first type, exon skipping, and formulate the prediction task

as a binary classification problem with the objective of discriminating between skipped

5



exons, also referred to as alternatively spliced or cassette exons, and constitutive exons.

We conduct experiments on a dataset from the organism C. elegans.

• Prediction of splice sites

Splice sites are conserved nucleotide dimers that indicate the boundaries between exons

and introns. As shown in Figure 1.5, they can be donor splice sites, signaled by “GT”

and situated at the 5’ end of the intron, or acceptor splice sites, indicated by “AG”

and situated at the 3’ end of the intron.

5’ 3’

Intronic NucleotidesExonic Nucleotides Exonic Nucleotides

Intron
Donor Splice Site

GTExon Exon
Acceptor Splice Site

AG

Figure 1.5: Splice Site Prediction refers to the identification of “AG” and “GT” dimers as true
acceptor splice site and true donor splice site, respectively.

Accurate gene identification relies heavily on correct determination of splice sites. The

major difficulty comes from the fact that such dimers occur very frequently throughout

the entire genome and their simple presence is not enough to declare a splice site.

Splice site prediction is a problem for which the natural positive (true splice site) to

negative (decoy site) ratio is very high. This challenge is known in the machine learning

field as the “data imbalance” problem, and requires specially designed approaches,

because the existence of a major unevenness between the prior class probabilities

leads to impartial learning thereby severely altering the performance of classifiers

which otherwise produce acceptable results. Our experiments are conducted on five

relatively large and highly imbalanced splice site datasets, from five organisms: C.

elegans, C. remanei, P. pacificus, D. melanogaster, and A. thaliana.

To summarize, the two main obstacles in the way of successfully analyzing and interpreting

biological data using computational methods are (1) labeled data insufficiency and (2) the
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data imbalance problem. While there are some studies on protein classification, DNA-level

classification using semi-supervised and transductive approaches has not been studied much.

1.4 Outline and Contributions

The major published contributions of this dissertation include:

• Chapter 2: Predicting Alternatively Spliced Exons Using Semi-supervised Learning

[Stanescu et al., 2015] (In press.) is an extension of an earlier work, namely Semi-

supervised Learning of Alternatively Spliced Exons using Expectation Maximization

Type Approaches [Stanescu and Caragea, 2012].

In this chapter, we conducted an ample comparison of iterative semi-supervised learn-

ing algorithms applied to the DNA prediction problem of distinguishing between al-

ternatively spliced and constitutive exons. The algorithms are Expectation Maxi-

mization, Self-training and Co-training using biologically relevant motifs and length

features derived from the sequences.

• Chapter 3: An Empirical Study of Self-training and Data Balancing Techniques for

Splice Site Prediction [Stanescu and Caragea, 2015b] (Under review) is an extension of

Semi-supervised Self-training Approaches for Imbalanced Splice Site Datasets [Stanescu

and Caragea, 2014a].

In this chapter, we performed an analysis of self-training classifiers using Näıve Bayes,

on five large and highly imbalanced splice site datasets, and have utilized balancing

techniques to address the uneven class distributions.

• Chapter 4: An Empirical Study of Ensemble-based Semi-supervised Learning Ap-

proaches for Imbalanced Splice Site Datasets [Stanescu and Caragea, 2015a] (In press.)

is extending the work Ensemble-based semi-supervised learning approaches for imbal-

anced splice site datasets [Stanescu and Caragea, 2014b].
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In this chapter, we proposed and studied several ensemble-based variants of two popu-

lar semi-supervised learning algorithms, self-training and co-training, and tested their

performance on the task of predicting splice sites. We adapted the ensembles to ad-

dress the highly imbalanced datasets of our case study, and we used various approaches

to augment the labeled data during the semi-supervised iterations.

• Chapter 5: Predicting cassette exons using transductive learning approaches. [Stanescu

and Caragea, 2015c].

In this chapter, we studied the applicability of three popular transductive techniques

and their compatibility with various kernels to the binary DNA classification problem

of cassette exon identification.
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Chapter 2

Predicting Alternatively Spliced

Exons Using Semi-supervised

Learning

2.1 Introduction

Supervised machine learning (also known as inductive learning) allows complex tasks to

be solved using a mathematical model inferred from prior knowledge (i.e., training data).

When used for classification tasks, a classification function, y = f(x), is learned based on

training instances, and this function is further used to predict the classes of new, unseen

instances. In supervised learning SL, training instances represent object-label pairs of the

form (x, f(x)). Supervised learning has been applied to a variety of domains, including

bioinformatics, among others [Jiang et al., 2013; Rider et al., 2014; Erdoğdu et al., 2013; Yu

et al., 2013; Wang and Wu, 2006; Chen, 2008]. The power of supervised machine learning

techniques depends on the quality and quantity of labeled data. In general, the more

labeled data is available, the better the classifiers learned. However, the process of obtaining

labeled instances is slow and/or expensive. On the other hand, unlabeled instances are more
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accessible. Semi-supervised learning (SSL) algorithms build classifiers using both labeled

and unlabeled data. SSL has received a lot of interest because it can improve upon a

prediction model learned only from labeled data by incorporating the unlabeled data in the

training process. Models trained in the semi-supervised framework are highly desirable when

there is substantial unlabeled data available, while labeled instances are scarce and costly.

SSL algorithms have shown great potential in many areas including text classification [Nigam

et al., 2000; Blum and Mitchell, 1998; Niu et al., 2005; Collins and Singer, 1999; Gupta and

Ratinov, 2008; Dai et al., 2007], sentiment categorization [Goldberg and Zhu, 2006], natural

language processing [Collins and Singer, 1999] and image classification [Rosenberg et al.,

2005].

Similar to these areas, the biological domain presents us with large amounts of un-

labeled data that are produced relatively fast and inexpensively. Thanks to advances in

the Next Generation Sequencing (NGS) technologies, which have led to the production of

unparalleled amounts of genomics data, the interest has gradually shifted towards data in-

terpretation [Baldi and Brunak, 2001], for which automated systems are in high demand.

Numerous bioinformatics tasks can be formalized as classification problems, for example

the task of recognizing splice sites or alternative splicing events; or the task of predicting

protein functions.

The identification of alternative splicing events, in particular, is essential for genome an-

notation. Alternative splicing is a natural phenomenon, first observed towards the late 1970’s

[Chow et al., 1977; Berget et al., 1977], that contributes to protein diversity [Schmucker et al.,

2000]. Genes contain regions that are expressed, called exons, which alternate with intra-

genic regions, called introns. Generally, introns are removed (or spliced out) from the gene

sequence and exons are retained (or transcribed) when creating mature RNA (mRNA) from

DNA. However, sometimes a gene can produce several transcripts (or splice variants), due to

alternative splicing events. For example, an exon can be present in a transcript, but skipped

in another transcript, in which case we say that the exon is alternatively spliced (exon skip-
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ping event). The alternative gene transcripts are called isoforms. Similarly, an intron can be

spliced out in a transcript but retained in another transcript, an alternative splicing event

called intron retention. Other manifestations of alternative splicing include: alternative 3’

and 5’ splice-site selection, mutually exclusive exons [Keren et al., 2010]. Identification of

alternative splicing events can be addressed by conducting wet-lab experiments. However,

as lab work can be very tedious, computational methods based on Expressed Sequence Tags

(EST) and, more recently, RNA-Seq to genome alignments have emerged [Bonizzoni et al.,

2005; Nagaraj et al., 2007; Lu et al., 2009]. Supervised machine learning approaches have

also been used in the context of alternative splicing, including the prediction of alternatively

spliced exons [Rätsch et al., 2005], a binary classification problem, where the two classes are

given by alternatively spliced or constitutive exons (i.e., exons that are always present in the

transcript). Specialized kernels that model similarities between sequences have been used

with Support Vector Machines to predict alternative splicing [Dror et al., 2005; Ben-Hur

et al., 2008; Xia et al., 2010].

Supervised learning requires labeled training data, and does not benefit from the large

amounts of unlabeled data available in biological sciences. When applicable, semi-supervised

learning techniques provide more attractive, cost-effective solutions for bioinformatics, in-

cluding genome annotation problems such as alternative splicing prediction. While semi-

supervised learning has been used for protein classification [Weston et al., 2005; 2006; Kall

et al., 2007; Craig and Liao, 2007], it has not been studied much for DNA sequence classi-

fication, such as alternative splicing prediction. To address this limitation, in prior work,

we studied how EM-type approaches [Stanescu and Caragea, 2012] and Co-training ap-

proaches [Tangirala and Caragea, 2011] behave on the problem of predicting alternatively

spliced exons. Our previous results motivated us to perform an ample comparison of SSL

algorithms on this problem. Specifically, we compare three semi-supervised learning al-

gorithms: Expectation Maximization, Self-training and Co-training. As opposed to prior

work, in the current work, we do extensive parameter tuning. Furthermore, we also exper-
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iment with Random Forests as a base classifier, in addition to Näıve Bayes and Support

Vector Machines algorithms, which we used in prior work. The results of our study show

that semi-supervised approaches can lead to good classification performance, as compared

to supervised learning from a small amount of data. These results can be used as evidence

for the usefulness of semi-supervised learning approaches for genome annotation tasks and

could potentially open the avenue for more extensive research in this direction.

The rest of the paper is organized as follows: we provide a review of related work in

Section 2.2 and present the approaches used in Section 2.3. Then, in Section 2.4, we describe

our experimental design. We discuss the results in Section 2.5, and conclude our study and

propose future research directions in Section 2.6.

2.2 Related Work

In this section, we review previous work related to and alternative splicing.

Semi-supervised Learning Algorithms

Expectation Maximization: The EM approach originates from statistics and was for-

malized as a probabilistic algorithm for maximum likelihood estimation by Dempster et al.

[1977]. EM allows the learning of a model in the presence of missing data, through iterative

parameter estimation. Its applicability to learning probability distributions and capability

of utilizing sufficiently large amounts of unlabeled data in order to build and improve upon a

supervised model makes EM a very powerful technique, which has gained a lot of popularity.

In recent years, a semi-supervised approach using EM and Näıve Bayes with Probabilistic

Labels was proposed by Nigam et al. [2000], in the context of text classification. EM has

been shown to be very useful in semi-supervised frameworks for other tasks, including au-

dio categorization tasks [Moreno and Agarwal, 2003], and image retrieval tasks [Dong and

Bhanu, 2003]. In biological and medical domains, EM has been used for various problems

such as modeling data for creating protein profiles [Nesvizhskii et al., 2003], finding motifs
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within protein sequences [Lawrence and Reilly, 1990], classifying protiens based on phylo-

genetic profiles [Craig and Liao, 2007], image reconstruction through clustering [Dong and

Bhanu, 2003], etc.

Self-training: Self-training (ST) is another technique that iteratively improves upon an

initial supervised classifier. At each iteration, the current classifier is used to label the

unlabeled data and the instances whose new labels are assigned with highest confidence will

be added to the labeled pool for the next iteration. Since it was first introduced by Yarowsky

[1995] for a text disambiguation problem, Self-training has been successfully applied to other

problems involving natural language processing [Collins and Singer, 1999], object detection

[Rosenberg et al., 2005], and bioinformatics [Kundu et al., 2013]. Other modifications and

variations have been proposed, either at the base classifier level [Guo et al., 2012], or for the

process of iteratively augmenting the labeled pool [Korecki et al., 2008].

Co-training: As originally described by Blum and Mitchell [1998], Co-training (CoT) is

a two-view iterative learning technique, which uses two independent and sufficient feature

representations (or views) of the same data, to learn two different classifiers. At each

iteration, the training data of one classifier is augmented with the best predictions that

the other classifier makes on the unlabeled data. The final classifiers are used together

to predict labels for new data. Blum and Mitchell [1998] used Co-training to solve the

problem of identifying course pages among other academic web pages. Nigam and Rayid

[2000] compared the performance of Co-training with that of supervised learning algorithms,

as well as EM and Self-training semi-supervised learning algorithms. Their results showed

that Co-training and EM outperformed supervised learning algorithms, irrespective of the

independence between the two views used in Co-training. Co-training outperformed EM

and Self-training, even in some cases when the two views used were not independent of

each other. The authors suggest that Co-training might be more robust to the assumptions

made by the base classifier used, although not as robust to its own assumptions (i.e., view

sufficiency and independence). Kiritchenko and Matwin [2011] worked on the problem of
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classifying emails using Co-training and compared the performance obtained with different

base classifiers. Specifically, they used Näıve Bayes and Support Vector Machines as base

classifiers and found that Co-training with SVM outperformed Co-training with Näıve Bayes.

Semi-supervised Learning in Bioinformatics

The nature of biological data, large amounts of labeled data and small amounts of

unlabeled data, has led many researchers to address biological prediction problems using

SSL approaches. For example, Weston et al. [2005] classified protein domains into SCP

super-families (SCP stands for Structural Classification of Proteins), both in an SSL and a

transductive setting. The authors employed cluster kernels (bagged mismatch and neighbor-

hood mismatch kernels) to make use of unlabeled data along with labeled data in learning

an SVM classifier.

Xu et al. [2009] used the CoForest approach [Li and Zhou, 2007], an ensemble of decision

tree classifiers, which makes use of knowledge from both labeled and unlabeled data, to

predict protein localization. A 2-gram representation is used to encode protein sequences

into feature vectors. Experimental results show that the CoForest approach outperforms

several baselines including decision trees, AdaBoost and state-of-the-art SVM classifiers

that make use of labeled data only. Pacharawongsakda and Theeramunkong [2013] also

addressed the problem of predicting protein localization in the SSL framework. Specifically,

the authors proposed iFLAST-CORE, which combines Singular Valued Decomposition (a

dimensionality reduction technique) with Co-training (SSL approach). Experimental results

suggest that iFLAST-CORE improves the performance as compared to supervised learning

or Co-training only.

Kim and Choi [2011] proposed a hybrid generative/discriminative model that makes

use of unlabeled sequences along with the available labeled sequences in the process of

discovering motifs. Li et al. [2003] proposed a co-updating approach to classify gene function,

and their approach makes use of heterogeneous sources of data. Specifically, two classifiers,

that benefit each other in a co-training-type fashion, are learned from microarray expression
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data (vectors of log ratio expression of genes) and phylogenetic profile data.

Teng and Tan [2012] proposed the semi-supervised and shifted bicluster identification

algorithm (SS-CoSBI) to identify multiple cell-type-specific histone modification states asso-

ciated with human enhancers. SS-CoSBI incorporates co-occurrence frequencies of histone

modifications (labeled source of information) as probabilistic priors to adjust the similarity

measure in biclustering (unsupervised).

Semi-supervised learning has been used also for problems related to gene regulatory

networks [Cerulo et al., 2010; Ernst et al., 2008; You et al., 2010], protein-protein interaction

networks [Loc, 2012; Nguyen and Ho, 2012; Lei and Aidong, 2010; Jiang and McQuay, 2012;

Qi et al., 2010], applications to microarray data [Yip et al., 2009], assembly problems [Xu

et al., 2012], etc.

Prediction of Alternative Splicing Events

Originally, the problem of identifying alternatively spliced exons in genomic sequences

has been addressed by conducting wet-lab experiments. However, approaches that align

Expressed Sequence Tags (EST) and transcripts to genome became prevalent as the se-

quencing technologies advanced [Nagaraj et al., 2007; Wu and Watanabe, 2005; Kim et al.,

2005]. Most recently, alternative splicing events are identified by aligning short RNA-seq

reads to a genome. As an alternative to alignment-based methods, machine learning ap-

proaches have also been used extensively to predict alternative splicing.

RNA-seq data based approaches

Recent advancements in sequencing technologies facilitated the use of RNA-seq data in

the process of identifying alternative splicing events. Sacomoto et al. [2012] and Sacomoto

et al. [2013] designed methods based on de Bruijn graphs (DBG) obtained from RNA-

seq reads to identify alternative splicing events. Zhou et al. [2012] used a combination of

alignment and transcript reconstruction tools to identify novel splicing events in human

genome. Kroll et al. [2012] used a set of regular expressions along with genome mapping,

to identify complex alternative splicing events also in human genome. Pervouchine et al.
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[2013] estimated alternative splicing events from RNA-seq data using a metric based on the

number of reads that align to the exonic sequence as well as the inclusion and exclusion of

exon adjacency.

Machine learning approaches

Rätsch et al. [2005] used SVM to predict alternative splicing events in C. elegans in a

supervised learning scenario. The authors used a weighted degree kernel along with length-

based features to learn a classifier. Dror et al. [2005] predicted alternative splicing events

in humans. The authors used conserved information between human and mouse, upstream

and downstream intronic sequence motifs, and length-based features in the learning process.

Yeo et al. [2005] used a regularized least-square classifier on top of sequence-based features

to identify alternative splicing events in human and mouse. Xia et al. [2010] used sequence

dependent features (based on GC content, exonic splicing enhancers, intronic regulatory

splicing motifs, etc.) to predict alternative splicing events. Eichner et al. [2011] proposed a

two stage supervised learning approach to identify alternative splicing events (specifically,

exon skipping and intron retention). In the first step, the authors use SVM classifiers

to discriminate between exons and introns, while in the second step, they discriminate

between alternatively spliced and constitutive events. Chen [2008] addressed the problem

of predicting skipped exons using Random Forests (RF) with position-specific conservation

scores as features. LeGault and Dewey [2013] proposed an EM-type algorithm for estimating

the maximum a posteriori parameters of Probabilistic Splice Graphs (PSG), given RNA-seq

data, an alternative transcript quantification task. Probabilistic Splice Graphs represent all

isoforms of a gene along with the structural relationships among them.

To the best of our knowledge, with the exception of our own prior work [Stanescu and

Caragea, 2012; Tangirala and Caragea, 2011], there is no study that uses SSL for alternative

splicing prediction. Furthermore, we are not aware of any study that compares EM, Self-

training and Co-training on a DNA sequence classification problem. We focus precisely on

this comparison.

16



2.3 Semi-supervised Learning Approaches Used in Our

Study

In this section, we describe the SSL algorithms studied in the context of alternative splicing

prediction, and the base classifiers used with the SSL algorithms.

Expectation Maximization (EM)

One of the approaches that we study is the Expectation Maximization, an iterative tech-

nique for maximum likelihood estimation. The usage of EM in a semi-supervised framework

assumes that a base classifier is first trained on the originally labeled data. Next, the classi-

fier is used to estimate and assign probabilistic class labels for the unlabeled instances. The

classifier is trained again using all the instances, originally labeled along with newly labeled.

This process is repeated for a fixed number of iterations or until convergence, i.e., until

the labels assigned to the unlabeled instances don’t change from one iteration to the next.

For text classification, Näıve Bayes has been successfully used as a base classifier [Nigam

et al., 2000]. Note that we use the multinomial model to capture the frequency of a feature

(e.g., word or motif), rather than simply its presence or absence, which would require a

multi-variate Bernoulli event model [McCallum and Nigam, 1998].

EM with Weighted Instances (EMW)

One variant of the standard EM approach can be obtained by assigning different weights

to the labeled and unlabeled instances during training. This variant was originally proposed

by Nigam et al. [2000], and used with NBM. Specifically, this variant introduces a new

weighting factor, designed to control the weight of each newly classified unlabeled instance

by adjusting (generally, decreasing) the influence of the unlabeled data over the model

parameters, and granting more authority to the labeled instances. Thus, for NBM, in

addition to the probabilistically-weighted class labels, the unlabeled instances are also given

lower weight, which means they contribute less to the final model as compared to the

labeled instances. The weighting scheme handles unlabeled instances with more caution, as
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sometimes they can add noise to the model and ultimately decrease the performance.

Self-training (ST)

Another popular SSL algorithm is Self-training, also known as self-teaching or boot-

strapping. It was introduced by Yarowsky [1995], who successfully used it for a natural

language processing problem. Self-training can be built around any base-classifier, which

is first trained on the labeled data. Then, the unlabeled instances are classified using the

resulting model. The newly labeled instances are subsequently used to self-train in the next

iteration, by integrating them in the labeled set and re-training. UnlikeEM, where all pre-

dictions are used to update the parameters of the model, Self-training only uses the best

predictions, and disregards the instances that are labeled with low confidence. An important

requirement is to maintain the ratio of positive to negative instances in the labeled training

set when adding newly labeled instances.

Co-training (CoT)

Co-training is another iterative algorithm designed by Blum and Mitchell [1998]. It

is similar to self-training. However, unlike Self-training, which is a single-view learning

algorithm, Co-training uses two views of the data (two different sets of features) to train

two supervised classifiers. At each iteration, the classifiers are updated using the newly

classified unlabeled data, by adding the most confidently labeled instances to the other

classifier’s training labeled set. The intuition is to allow classifiers to complement each

other’s learning and benefit from each other. To get optimal results from Co-training, the

views must satisfy the properties of sufficiency (each view should be sufficient to train quality

classifiers on its own) and independence (the views are independent of each other given the

classes). Similarly to ST, the number of instances added to the training labeled set must

not skew the prior class distribution.

The SSL algorithms that we focus on in this study can be seen as wrapper methods, and

they all require a base classifier. We use three base classifiers, belonging to three different

types of machine learning approaches: generative (Näıve Bayes Multinomial), discriminative
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(Support Vector Machines) and ensembles of decision trees (Random Forests). First, we

chose Näıve Bayes Multinomial (NBM) as biological sequence classification (in particular,

alternative splicing prediction) can be seen as equivalent to text classification. For text,

words are generally used to represent the data; for biological sequences we use motifs to

represent the data. Given that NBM has been successfully used for text data, we hypothesize

it might work well also for biological data. Second, prior work by Dror et al. [2005] has shown

that the Support Vector Machines (SVM) algorithm results in good performance when used

to identify alternative splicing events in a supervised learning scenario. We hypothesize it

might also give good performance as a base classifier in an SSL scenario. Thirdly, ensemble

classifiers such as Random Forests (RF) are very popular as they are known to surpass the

predictive performance of single learners. Thus, we want to explore the performance of an

ensemble classifier as a base classifier in SSL algorithms.

2.4 Experimental Setup

We study the applicability of semi-supervised learning algorithms (EM-type approaches,

Self-training and Co-training) to the DNA binary classification problem of distinguishing

alternatively spliced exons from constitutive exons.

2.4.1 Dataset and Feature Representation

We use genomic data from the model organism C. elegans in our experiments. The dataset

was published by Rätsch et al. [2005] and contains 3,018 nucleotide sequences of exons

and flanking introns (i.e., each instance is of the form of intron-exon-intron; the dataset is

available at http://people.kyb.tuebingen.mpg.de/raetsch/RASE.old/). Out of these

3,018 instances, 487 are labeled as alternatively spliced, meaning that the flanked exon

can be skipped in some isoforms. The rest of 2,531 sequences are labeled as constitutively

spliced, meaning that the exon is present in all known isoforms. The data was labeled based
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on alignments between ESTs and genomic DNA.

To represent instances in this dataset as vectors, we used two sets of splicing regulators as

features. Splicing regulators are biological motifs known to be responsible for the occurrence

of alternative splicing events. They can occur in both exons and introns. The ones that

occur in exons are called Exonic Splicing Enhancers (ESE), while those occurring in introns

are called Intronic Regulatory Sequences (IRS). We used 45 Exonic Splicing Enhancers

hexamers (6-nucleotide long) derived by Xia et al. [2010] for the C. elegans dataset. For

each sequence, we used a sliding window to find the 45 ESE motifs and to obtain their

frequencies within each sequence, thus producing a count representation. The class label

was not used in this procedure. The set of Intronic Regulatory Sequences (IRS motifs)

that we used was derived by Kabat et al. [2006] using comparative genomics in nematodes,

based on the observation that intronic sequences that are relevant for alternative splicing

are highly conserved among closely related species. To form the set of IRS motifs, we

combined both the upstream and downstream motifs and removed the duplicate motifs.

This resulted in a total of 165 IRS motifs assumed to be informative for alternative splicing.

We use a set of 210 splicing regulators (ESE and IRS), and represent each instance as a

210-dimensional vector of feature counts (i.e., for each feature or regulator, we record the

count of occurrences of that particular feature in the EST sequence). The alternatively

spliced sequences are considered to be positive, and the constitutively spliced sequences are

negative.

2.4.2 Evaluation Procedure and Parameter Tuning

An objective evaluation of any predictive model requires the use of the cross-validation tech-

nique, to avoid any (un)fortunate selection of instances. Similar to Rätsch et al. [2005], we

started with a fully labeled data set and simulated unlabeled data by withholding the real la-

bels during the training process, which allowed us to experiment with different amounts of la-

beled/unlabeled data. We used 5-fold cross validation to create our training/validation/test
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datasets (while maintaining the original distribution in each fold). Out of the 5 folds, 3

were used for training, one for validation and one for test. Furthermore, the training was

randomly split into labeled and unlabeled. In the experiments where we vary the amount

of unlabeled data, labeled data represents 5% of the training folds, and the unlabeled data

varies from 15% to 95%. These ratios are consistent with ratios that have been previously

used in the literature for other applications. Previous work on textual data has reported

that SSL algorithms can result in better performance as compared to their supervised coun-

terparts, when only a small amount of labeled data is available, e.g., [Nigam et al., 2000]

when 500 labeled documents and 10,000 unlabeled documents were used (i.e., 5% labeled),

the accuracy reached 70%.

In the experiments where we vary the amount of labeled data, unlabeled data represents

70% of the training folds, and the labeled data varies from 5% to 30%. Based on the size of

our own dataset, when using 30% of training data as labeled data and 70% as unlabeled, the

unlabeled to labeled ratio is less than 3:1. According to the literature [Nigam et al., 2000],

and also based on our preliminary experimentation, semi-supervised learning does not show

much benefit when the amount of unlabeled data is not significantly larger than the amount

of labeled data. Thus, for the experiments where we varied the amount of labeled data, we

kept the unlabeled data to 70% in order to satisfy the condition of unlabeled data being

“larger” than the labeled data.

Given that our data is skewed – there are approximately five times more “constitutive”

instances as compared to “alternatively spliced” instances – the accuracy of the predictions

would not reflect the true quality of the classifiers Therefore, we report the performance

in terms of area under the Receiver Operating Characteristic curve (auROC) [Huang and

Ling, 2005].

The machine learning algorithms that we used have several parameters that need to be

set. To select the optimal values for these parameters, models with different parametric

values are evaluated on a subset of the data, i.e., the validation set. A range of values
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(grid search) is used to build different models. Selecting the model that generalizes best on

the validation set, will presumably lead to a good generalization on the test set also. For

example, in the case of Self-training and Co-training, we must assign values to the sample

size (how many instances we are to classify at each iteration) and to the number of iterations

that the algorithm should execute. We included the following values for the sample size in

the grid: 25, 50, 75, 100, 125, 150, 200, 250, 300. As for the number of iterations, we used

the following values: 1, 5, 10, 15, 20, 25, 50, 100, 150, 200, 250, 300.

Moreover, SVM and RF have specific parameters. For example, in the case of the SVM

classifier, we employ a Gaussian kernel, where we need to tune the cost error (values tried:

0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10) and gamma (0.05, 0.1, 0.2, 0.3, 0.5)

parameters. For RF, the tunable parameters are depth of the tree (values from 0 to 30, in

steps of 2), number of features to consider in random feature selection (values from 0 to 2

x log(number of features + 1)), and number of trees in the forest (values from 10 to 50 in

steps of 2). In total, for all 3 base classifiers that we used, considering the supervised and

semi-supervised cases, the variation of labeled to unlabeled data and the 5 folds, we trained

approximately 328 million individual models.

To assess the behavior of the semi-supervised algorithms, we compare their performance

(specifically, auROC values) against baselines in each experiment. These values will give

us an indication of how much improvement can be expected from using the unlabeled data

in a particular case. First, supervised learning just from the labeled subset will give us a

lower bound (LB) for performance. This will show how well we can learn from the little

amount of labeled data available. Next, we run another supervised version of the algorithms,

maintaining the same folds, and assuming that no data in the training set is unlabeled.

Recall that we deliberately treat some instances as unlabeled, in order to simulate the semi-

supervised environment. If all the unlabeled data instances were in fact labeled, this would

represent an upper bound (UB). The UB value mainly estimates how good is the set of

motifs used and gives an upper limit for how well we can expect to do in the semi-supervised
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framework. We run two-tailed paired t-tests, as opposed to one-tailed t-tests, to identify

statistically significant differences in either direction, on all the semi-supervised algorithms

for all the variations of unlabeled data. The test determines if the difference between the

SSL algorithm and the lower bound is statistically significant or not [Dietterich, 1998].

2.4.3 Research Questions

Our experiments are designed to address the following research questions:

[1.]How does the performance of semi-supervised learning algorithms compare with that

of the corresponding supervised learning algorithms, when the amount of labeled data is very

small?

Given that the dataset used in our study consists of 3,018 instances, 5-fold cross vali-

dation splits the training into 2,414 instances and the test into 604 instances. Out of the

2,414 instances, one split was used in parameter tuning, and from the remaining 3 folds, 5%

were randomly picked as labeled (i.e., 90 instances). Since biological sequences are usually

harder to annotate, we decided to use no less than 5% labeled data in our study.

[2.]How do the semi-supervised algorithms studied compare with each other and which

one shows best improvements as compared to their supervised counterparts?

We compare the SSL approaches described in Section 2.3 with each other, to understand

what type of approach is more appropriate for the classification problem considered, and

which one shows the best improvements as compared to the supervised counterparts learned

from labeled data only (whose performance can be seen as a lower bound for the semi-

supervised algorithms which make use of both labeled and unlabeled data). We also compare

the performance with that of supervised classifiers learned by using all data as labeled data,

which is possible, given that all our data is labeled (we simulate unlabeled data by “hiding”

the labels of the instances in the unlabeled set). The performance of these supervised

classifiers can be seen as an upper bound for the semi-supervised learning.

[3.]How does the performance of the semi-supervised learning algorithms vary with the
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amount of unlabeled data?

In general, the performance of semi-supervised learning largely depends on the availabil-

ity of unlabeled data. The more unlabeled data available, the better the semi-supervised

classifiers learned, and consequently a higher improvement over the supervised lower bound

classifiers is expected. However, it can happen that larger amounts of unlabeled data will

produce more noise, which in turn can degrade the performance.

[4.]How does the performance of the semi-supervised learning algorithms vary with the

amount of labeled data?

Intuitively, the more labeled data is available, the better the classifier learned and the

unlabeled instances can be predicted more accurately. Adding the extra knowledge can

sharpen the classifiers’ quality and enhance their prediction power on further iterations.

As a whole, the performance of semi-supervised learning is expected to increase with the

increase of the amount of labeled data.

2.5 Results

We run three sets of experiments, each set is using either NBM, SVM or RF as base classifier

and each set is summarized in two tables. For each table, we have two supervised bounds (LB

and UB obtained using the base classifier in a supervised mode) and four semi-supervised

classifiers (EM, EMW, ST, CoT built on top of the base classifier). The first table shows

the results of the experiments where we vary the amount of unlabeled data from 15% to

95% of the training folds, while the amount of labeled data is fixed at 5%. The LB column

of this table is constant, and it represents the supervised lower bound of the base classifier

when trained using only 5% labeled data. The second smaller table, shows experiments

where we vary the amount of labeled data from 5% to 30%, while the amount of unlabeled

data is fixed at 70%. The values in bold represent the best performance for each experiment

and the italicized values represent the statistically significant variations. We also show the
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standard deviation of the averaged auROC values.

Table 2.1 shows the SSL experiments when NBM is used as the base classifier and the

amount of unlabeled data is varied. EMW, followed by EM, exhibit a consistent increase

over the LB as more unlabeled data is used. Furthermore, EMW is the only SSL method that

shows statistically significant improvements over the supervised lower bound throughout all

of the SSL experiments using NBM, without exception. EM seems to benefit more from

larger amounts of unlabeled data (more than 20%). ST and CoT outperform the other

methods in terms of auROC values, and CoT shows the highest classification performance

over all the SSL algorithms but surprisingly, ST and CoT, do not always have a statistically

significant performance improvement over the LB, as shown by the paired t-test.

LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

15%U 0.816±0.033 0.810±0.034 0.822±0.033 0.828±0.040 0.869±0.039 0.896±0.030
20%U 0.816±0.033 0.824±0.031 0.825±0.033 0.834±0.042 0.903±0.039 0.905±0.027
25%U 0.816±0.033 0.830±0.012 0.832±0.027 0.848±0.037 0.870±0.029 0.907±0.027
30%U 0.816±0.033 0.837±0.024 0.836±0.029 0.845±0.024 0.872±0.030 0.913±0.025
35%U 0.816±0.033 0.845±0.028 0.839±0.030 0.846±0.033 0.845±0.039 0.913±0.024
40%U 0.816±0.033 0.852±0.026 0.841±0.029 0.844±0.038 0.866±0.034 0.918±0.022
45%U 0.816±0.033 0.855±0.024 0.844±0.028 0.845±0.036 0.875±0.030 0.920±0.021
50%U 0.816±0.033 0.854±0.025 0.845±0.029 0.862±0.023 0.873±0.043 0.924±0.020
55%U 0.816±0.033 0.851±0.024 0.845±0.028 0.850±0.027 0.885±0.017 0.925±0.022
60%U 0.816±0.033 0.849±0.016 0.847±0.025 0.851±0.025 0.900±0.024 0.924±0.021
65%U 0.816±0.033 0.849±0.028 0.848±0.027 0.852±0.025 0.873±0.039 0.924±0.021
70%U 0.816±0.033 0.847±0.030 0.849±0.026 0.859±0.019 0.881±0.027 0.923±0.019
75%U 0.816±0.033 0.853±0.024 0.851±0.026 0.844±0.030 0.872±0.036 0.925±0.020
80%U 0.816±0.033 0.845±0.040 0.852±0.028 0.860±0.023 0.845±0.047 0.926±0.020
85%U 0.816±0.033 0.857±0.020 0.857±0.025 0.859±0.023 0.895±0.030 0.927±0.018
90%U 0.816±0.033 0.851±0.023 0.855±0.025 0.863±0.030 0.888±0.028 0.928±0.018
95%U 0.816±0.033 0.848±0.022 0.855±0.024 0.865±0.025 0.905±0.019 0.929±0.018

Table 2.1: Semi-supervised Learning Results Based on Näıve Bayes When Varying the
Amount of Unlabeled Data: Averaged auROC values for the 5 folds and the standard deviation
for experiments using NBM as base classifier, when varying the amount of unlabeled data from
15% to 95%, while maintaining a fixed labeled amount of 5%. LB and UB represent the supervised
lower and upper bounds, and the semi-supervised algorithms are Expectation Maximization (EM)
and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values in bold font
represent the best performance and italicized values represent statistically significant variations.

Table 2.2 shows the SSL experiments when NBM is used as the base classifier and the
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amount of labeled data is varied. We observe an expected trend; the larger the amount of

labeled data the base classifiers are trained on, the better the auROC values. Interestingly

enough, when the amount of labeled data is increased to 25% and 30%, CoT outperforms

the upper bound, suggesting that some of the instances from the unlabeled pool receive a

label that may be different from the actual label they have in the original dataset. Thus,

CoT, by “correcting” these instances, ultimately reaches a classification accuracy that is

higher than the accuracy achieved by the supervised model.

LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

5%L 0.816±0.033 0.847±0.030 0.849±0.026 0.859±0.019 0.881±0.027 0.923±0.019
10%L 0.852±0.032 0.866±0.027 0.872±0.023 0.875±0.020 0.903±0.023 0.924±0.019
15%L 0.872±0.012 0.874±0.014 0.883±0.009 0.882±0.019 0.913±0.010 0.925±0.019
20%L 0.887±0.011 0.883±0.014 0.896±0.011 0.890±0.011 0.921±0.017 0.926±0.017
25%L 0.904±0.015 0.885±0.015 0.907±0.015 0.905±0.012 0.930±0.008 0.927±0.018
30%L 0.912±0.015 0.894±0.016 0.914±0.015 0.910±0.011 0.934±0.014 0.929±0.018

Table 2.2: Semi-supervised Learning Results Based on Näıve Bayes When Varying the
Amount of Labeled Data: Averaged auROC values for the 5 folds and their standard deviation
for experiments using NBM as base classifier, when varying the amount of labeled data from 5%
to 30%, while maintaining a fixed amount of unlabeled data of 70%. LB and UB represent the
supervised lower and upper bounds, and the semi-supervised algorithms are Expectation Maxi-
mization (EM) and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values
in bold font represent the best performance and italicized values represent statistically significant
variations.

Table 2.3 shows the SSL experiments when SVM is used as the base classifier and the

amount of unlabeled data is varied. When learning the initial model from 5% labeled data,

EM and EMW do not seem to benefit from the unlabeled data, as their corresponding

auROC values are smaller than the supervised lower bound. ST and CoT show better per-

formance than EM and EMW in terms of auROC values, but sometimes their classification

performance is surpassed by the LB. CoT achieves the leading values overall. The improve-

ment in performance of EM over the LB has been found statistically significant by the paired

t-test in the majority of cases, followed by EMW and ST. The gain recorded by CoT over

the LB is not statistically significant, although it reaches the highest auROC values among

all the SSL techniques.
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LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

15%U 0.815±0.042 0.733±0.028 0.792±0.04 0.803±0.041 0.830±0.044 0.839±0.026
20%U 0.815±0.042 0.783±0.017 0.776±0.029 0.810±0.046 0.804±0.049 0.876±0.026
25%U 0.815±0.042 0.740±0.048 0.749±0.038 0.802±0.044 0.810±0.043 0.884±0.026
30%U 0.815±0.042 0.769±0.042 0.737±0.038 0.808±0.040 0.874±0.023 0.880±0.026
35%U 0.815±0.042 0.736±0.030 0.741±0.037 0.791±0.048 0.841±0.024 0.883±0.025
40%U 0.815±0.042 0.758±0.044 0.737±0.046 0.800±0.045 0.845±0.034 0.892±0.029
45%U 0.815±0.042 0.784±0.027 0.741±0.044 0.796±0.045 0.808±0.072 0.911±0.023
50%U 0.815±0.042 0.765±0.042 0.743±0.035 0.832±0.015 0.878±0.037 0.914±0.020
55%U 0.815±0.042 0.711±0.037 0.727±0.033 0.835±0.022 0.860±0.052 0.911±0.018
60%U 0.815±0.042 0.706±0.045 0.765±0.032 0.838±0.019 0.804±0.054 0.926±0.017
65%U 0.815±0.042 0.786±0.041 0.779±0.032 0.843±0.025 0.850±0.028 0.928±0.016
70%U 0.815±0.042 0.785±0.042 0.796±0.034 0.858±0.011 0.869±0.034 0.931±0.018
75%U 0.815±0.042 0.715±0.043 0.775±0.036 0.850±0.013 0.837±0.042 0.935±0.015
80%U 0.815±0.042 0.775±0.041 0.767±0.038 0.851±0.020 0.864±0.031 0.940±0.013
85%U 0.815±0.042 0.717±0.045 0.756±0.035 0.810±0.013 0.874±0.053 0.944±0.010
90%U 0.815±0.042 0.780±0.043 0.758±0.029 0.809±0.012 0.873±0.047 0.941±0.010
95%U 0.815±0.042 0.783±0.042 0.783±0.040 0.812±0.008 0.861±0.147 0.949±0.009

Table 2.3: Semi-supervised Learning Results Based on SVM When Varying the Amount
of Unlabeled Data: Averaged auROC values for the 5 folds and their standard deviation for
experiments using SVM as base classifier, when varying the amount of unlabeled data from 15%
to 95%, while maintaining a fixed labeled amount of 5%. LB and UB represent the supervised
lower and upper bounds, and the semi-supervised algorithms are Expectation Maximization (EM)
and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values in bold font
represent the best performance and italicized values represent statistically significant variations.

LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

5%L 0.815±0.042 0.785±0.042 0.796±0.034 0.858±0.011 0.869±0.034 0.931±0.018
10%L 0.856±0.027 0.832±0.030 0.846±0.027 0.826±0.017 0.867±0.036 0.926±0.017
15%L 0.837±0.025 0.847±0.027 0.840±0.036 0.788±0.036 0.911±0.011 0.936±0.015
20%L 0.844±0.025 0.864±0.024 0.843±0.040 0.816±0.037 0.915±0.016 0.935±0.012
25%L 0.855±0.026 0.861±0.017 0.888±0.029 0.814±0.025 0.922±0.020 0.939±0.012
30%L 0.901±0.016 0.894±0.024 0.907±0.019 0.854±0.021 0.934±0.020 0.949±0.011

Table 2.4: Semi-supervised Learning Results Based on SVM When Varying the Amount
of Labeled DataAveraged auROC values for the 5 folds and their standard deviation for exper-
iments using SVM as base classifier, when varying the amount of labeled data from 5% to 30%,
while maintaining a fixed amount of unlabeled data of 70%. LB and UB represent the supervised
lower and upper bounds, and the semi-supervised algorithms are Expectation Maximization (EM)
and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values in bold font
represent the best performance and italicized values represent statistically significant variations.

27



As it can be seen from Table 2.4, when the amount of labeled data is varied, CoT is

the most promising algorithm and it is closely approaching the UB as it learns from more

labeled data. ST best leverages the unlabeled information in the first case, when it is trained

on 5% labeled data, but in all other cases it is surpassed by the LB. EM and EMW exhibit

a steady increase in performance with the increase of labeled data, yet they do not always

exceed the LB values.

LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

15%U 0.867±0.05 0.821±0.042 0.841±0.042 0.883±0.022 0.897±0.053 0.933±0.020
20%U 0.867±0.05 0.797±0.035 0.839±0.034 0.882±0.019 0.872±0.041 0.930±0.020
25%U 0.867±0.05 0.817±0.039 0.793±0.019 0.896±0.028 0.899±0.049 0.937±0.012
30%U 0.867±0.05 0.786±0.028 0.805±0.069 0.903±0.024 0.904±0.042 0.939±0.009
35%U 0.867±0.05 0.805±0.049 0.821±0.030 0.893±0.020 0.883±0.048 0.947±0.012
40%U 0.867±0.05 0.815±0.028 0.825±0.033 0.901±0.031 0.891±0.061 0.953±0.017
45%U 0.867±0.05 0.812±0.044 0.822±0.045 0.905±0.026 0.916±0.053 0.955±0.016
50%U 0.867±0.05 0.788±0.052 0.811±0.053 0.911±0.016 0.902±0.061 0.965±0.009
55%U 0.867±0.05 0.791±0.035 0.794±0.058 0.913±0.030 0.903±0.054 0.963±0.020
60%U 0.867±0.05 0.802±0.032 0.805±0.042 0.909±0.014 0.926±0.052 0.959±0.005
65%U 0.867±0.05 0.823±0.036 0.814±0.033 0.910±0.015 0.924±0.049 0.967±0.008
70%U 0.867±0.05 0.801±0.017 0.752±0.111 0.912±0.014 0.940±0.034 0.966±0.007
75%U 0.867±0.05 0.813±0.039 0.781±0.064 0.911±0.031 0.933±0.049 0.964±0.008
80%U 0.867±0.05 0.795±0.042 0.785±0.062 0.898±0.032 0.921±0.059 0.969±0.008
85%U 0.867±0.05 0.798±0.039 0.827±0.045 0.911±0.026 0.940±0.056 0.969±0.007
90%U 0.867±0.05 0.843±0.012 0.784±0.069 0.919±0.021 0.926±0.047 0.970±0.008
95%U 0.867±0.05 0.777±0.047 0.774±0.055 0.912±0.025 0.942±0.058 0.971±0.007

Table 2.5: Semi-supervised Learning Results Based on Random Forest When Varying
the Amount of Unlabeled Data: Averaged auROC values for the 5 folds and their standard
deviation for experiments using RF as base classifier, when varying the amount of unlabeled data
from 15% to 95%, while maintaining a fixed labeled amount of 5%. LB and UB represent the
supervised lower and upper bounds, and the semi-supervised algorithms are Expectation Maxi-
mization (EM) and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values
in bold font represent the best performance and italicized values represent statistically significant
variations.

Table 2.5 shows the SSL experiments when RF is used as the base classifier, while varying

the amount of unlabeled data. The unlabeled data has proven to be advantageous for ST,

and most useful for CoT, where all the values of ST and CoT are surpassing the LB. Both ST

and CoT values are relatively close for the first experiments, when the amount of unlabeled

data is increased from 15% to 55% but as more unlabeled data is used during training, from
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LB EM EMW ST CoT UB
(supervised) (SSL) (SSL) (SSL) (SSL) (supervised)

5%L 0.867±0.050 0.801±0.017 0.752±0.111 0.912±0.014 0.940±0.034 0.966±0.007
10%L 0.904±0.020 0.881±0.039 0.872±0.018 0.928±0.017 0.950±0.017 0.963±0.015
15%L 0.922±0.018 0.906±0.026 0.898±0.019 0.932±0.021 0.960±0.016 0.972±0.006
20%L 0.935±0.019 0.920±0.016 0.930±0.019 0.943±0.019 0.940±0.014 0.965±0.012
25%L 0.939±0.016 0.919±0.020 0.936±0.022 0.947±0.012 0.960±0.011 0.968±0.013
30%L 0.948±0.012 0.929±0.023 0.934±0.015 0.942±0.013 0.964±0.012 0.969±0.007

Table 2.6: Semi-supervised Learning Results Based on Random Forest When Varying
the Amount of Labeled Data: Averaged auROC values for the 5 folds and their standard de-
viation for experiments using RF as base classifier, when varying the amount of labeled data from
5% to 30%, while maintaining a fixed amount of unlabeled data of 70%. LB and UB represent the
supervised lower and upper bounds, and the semi-supervised algorithms are Expectation Maxi-
mization (EM) and the weighted variant (EMW), Self-training (ST) and Co-training (CoT). Values
in bold font represent the best performance and italicized values represent statistically significant
variations.

60% to 95%, CoT exhibits the best performance. On the other hand, EM and EMW do not

benefit from the unlabeled data, as their performance is constantly exceeded by the LB, in

both cases (when the unlabeled data is varied, as well as when the labeled data is varied).

When the amount of labeled data is varied in Table 2.6, CoT is still leading the results,

followed closely by ST; they both outperform the LB.

We now summarize the results by addressing each of the research questions:

[1.]How does the performance of semi-supervised learning algorithms compare with that of

the corresponding supervised learning algorithms, when the amount of labeled data is very

small?

To answer the first question, we have varied the ratio of labeled to unlabeled data from

5% labeled to 15% unlabeled, to 5% labeled to 95% unlabeled. Overall, our experiments

show that having at least 3 times more unlabeled data than labeled data is usually enough

to benefit from SSL.

[2.]How do the semi-supervised algorithms studied compare with each other and which one

shows best improvements as compared to their supervised counterparts?

To answer the second question, we have found that the highest increase over the LB

has been obtained by CoT in the case of NBM (around 9%), although the values have not
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been established as statistically significant by the paired t-test. CoT is closely followed

by ST and almost always both of them surpass the LB. The EM-type approaches show

statistically significant improvements, especially in the case of NBM, but they are not always

advantageous, for instance when they are combined with SVM and RF as base classifiers.

[3.]How does the performance of the semi-supervised learning algorithms vary with the amount

of unlabeled data?

We have found that all SSL algorithms show most promise when larger amounts of

unlabeled data are used, and the auROC values rise by 3-4% in all SSL cases. However, we

observe a consistent increase for the EM classifiers, while the performance of ST and CoT

can increase and decrease depending on the quality of the data added when moving from

one unlabeled data experiment to another. One possible explanation for this is that EM is

adding all unlabeled data at each subsequent iteration (although with weights proportional

to how confidently that data was classified), while ST and CoT add only the most confident

examples. Thus, if some examples are mislabeled with high confidence, they will degrade

the overall performance of the classifier.

[4.]How does the performance of the semi-supervised learning algorithms vary with the amount

of labeled data?

Having more labeled data to learn the initial models from, leads to better final models

and improved overall performance.

Overall, the best base classifier is RF, reaching the highest auROC values, for both

supervised (up to 0.971) and semi-supervised (up to 0.964) learning. NBM is leveraging

the unlabeled data better than RF and SVM, with up to 9% increase over the LB when

utilizing 5% labeled and 95% unlabeled data, as opposed to an 8% increase in the case of

RF, and 5% in the case of SVM. However, if the available labeled data makes up more than

5% of the training dataset, SVM improves upon the LB by 3%, the highest of all the base

classifiers. The best SSL algorithm is CoT, which proves that having two views “informing”

each other about high confidence labels can overcome the noise from the unlabeled data. In
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practice, when such views are unavailable, ST with NBM or RF can take advantage of the

unlabeled data available and improve upon a supervised classifier.

2.6 Conclusion and Future Work

In this work, we have carried out a comparison of iterative semi-supervised learning al-

gorithms applied to the DNA prediction problem of distinguishing between alternatively

spliced exons and constitutive exons. Our findings confirm that leveraging the unlabeled

data during SSL can boost supervised performance. As reported in other studies, Co-

training performs the best, followed by Self-training and the EM techniques. Generally,

the more unlabeled data is used in training, the better the resulting classifier. This is a

promising conclusion which suggests that SSL algorithms can be successfully used for DNA

sequence classification. Overall, the best auROC values, corresponding to most accurate

classifications have been recorded in the case of RF, for both supervised and semi-supervised

paradigms. Given that the Random Forest algorithm is an ensemble type algorithm, it is of

interest to study other ensemble approaches in the context of SSL.

Also as part of future research, we would like to study another class of semi-supervised

algorithms, namely transductive methods. Transductive learning, as opposed to inductive

learning, solves an easier, more specific problem, as its goal is generally to label the unlabeled

data (used during training), as opposed to learning a classifier that will be used on future

unlabeled, unseen data. For example, we would like to use transductive SVMs and graph-

based methods, along with specialized kernels and similarity metrics.

Another direction worth investigating is the use of different feature representations of the

DNA sequences to understand how they perform in a semi-supervised scenario. Thus, we are

interested in a similar comparison study using intrinsic features that are generated directly

from the instances available (e.g., using a sliding window approach), without looking at the

class labels, under the assumption that labeled data is scarce.

31



Chapter 3

An Empirical Study of Self-training

and Data Balancing Techniques for

Splice Site Prediction

3.1 Introduction

Many domains, such as online social media, e-commerce, scientific literature, medical moni-

toring and diagnosis, risk management, image recognition, and cyber-security, are constantly

generating vast amounts of data. As a result, the current challenges now lie with the analysis

and interpretation of the data. The same trend can be observed in biological fields [Baldi

and Brunak, 2001]. Cost-effective, high-throughput Next Generation Sequencing technolo-

gies have enhanced the production of raw genomic data, which currently occurs at a much

faster rate than its annotation. Computational machine learning techniques can help with

data annotation, including genomic data, but the effectiveness of machine learning classifiers

depends on the training data available, specifically the quality and quantity of the labeled

instances, and their class distribution.

Having approximately the same number of instances in each class is critical for producing
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quality classifiers that can correctly identify all classes. However, in practice, there are

frequent situation when one of the categories (classes) to predict is sporadic, usually the

class of interest. This is due to the fact that the instances of the minority class are either

harder to acquire, or that they are indeed atypical relative to the other class(es). Datasets

that exhibit highly imbalanced distributions are common in many applications, for example

medical diagnosis, fraud detection, network intrusion, error-prone software modules, image

recognition. In such circumstances, when there are significant differences between the class

prior rates, standard classifiers that learn well from balanced distributions can sometimes

be negatively influenced by the imbalance phenomenon, showing bias towards the majority

class. The data imbalance problem has been studied over many decades and domains in

the supervised learning framework. We will briefly review data-level and algorithm-level

approaches to the data imbalanced problem below; for a comprehensive survey, the reader

is directed to [He and Garcia, 2009].

Datasets that are naturally imbalanced across classes can be adjusted before being pre-

sented to a learning algorithm by the means of external, data-level techniques, such as

re-sampling. The easiest way to balance an imbalanced dataset is to use under-sampling,

which simply discards the extra instances from the majority class. This technique can de-

crease the learning computation time, especially when the minority class is exceeded by a

few orders of magnitude by the majority class, in which case under-sampling would dispose

of a large portion of data. The direct drawback of such an approach is the obvious loss of

information that goes with discarding many instances. A careful, more informative selection

of the instances to be kept, rather than random sampling, could potentially alleviate some

of the knowledge loss [Korecki et al., 2008; Chawla et al., 2002]. Another data re-sampling

remedy, contrasting under-sampling, is over-sampling, where the number of instances in the

minority class is artificially increased to coincide with the number of instances in the ma-

jority class. Longer computational requirements (in terms of both time and memory) and

overfitting, due to artificial instance generation, are the main drawbacks of this technique.
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Aside from data-level techniques, solutions targeting the algorithm, or internal tech-

niques, have also been developed, such as cost-sensitive learning [Ling and Sheng, 2008]

and active learning [Li et al., 2012b]. Furthermore, while the concept of classifier ensembles

emerged as a way of improving the performance of a single classifier, ensembles have been

found to be useful also for skewed distributions. Galar et al. [2012] discuss combining clas-

sifiers using bagging, boosting and hybrid-approaches in the supervised framework, to deal

with imbalanced datasets.

Similar to other fields, the data imbalance problem has been addressed for many bioin-

formatics tasks [Wei and Dunbrack Jr, 2013; Batuwita and Palade, 2010; 2012; Lusa and

Blagus, 2010; You et al., 2011] in the supervised framework, under the assumption that a

sufficiently large amount of labeled data is available. However, in bioinformatics, labeled

examples are traditionally obtained via wet-lab experiments, which are expensive and time-

consuming methods and necessitate biological know-how. In contrast, unlabeled examples

are easily accessible, and on a much larger scale. Such a scenario, in which limited amounts

of labeled data and massive amounts of unlabeled data are available, is particularly favor-

able for automated semi-supervised learning (SSL) algorithms. Exploiting unlabeled data

to improve a supervised classifier’s performance is an attractive yet challenging task, and an

active research topic [Wang and Chen, 2013; Singh et al., 2009]. Semi-supervised learning

approaches have been used to address bioinformatics problems, such as disease genes detec-

tion [Nguyen and Ho, 2012], prediction of cancer recurrence based on gene expression [Shi

and Zhang, 2011], and protein classification [Weston et al., 2005; 2006; Kall et al., 2007;

Craig and Liao, 2007]. Unfortunately, it is not unusual for the unlabeled data to deteriorate

the performance of a classifier that would otherwise (i.e., in a purely supervised framework)

yield a quality prediction model [Li and Zhou, 2011; Catal and Diri, 2009].

Imbalanced distributions further contribute to the difficulty of the problem, and for

bioinformatics, there are many problems (e.g., splice site recognition, promoter prediction,

protein classification) that suffer from insufficient labeled data as well as disproportionate
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class rates. This particular niche, semi-supervised learning from imbalanced bioinformatics

distributions, has not been much studied, with the exception of a few notable works [Weston

et al., 2005; Kundu et al., 2013; Kondratovich et al., 2013] that focus on protein-related

problems. For DNA classification, the class imbalance problem has been mostly explored

in the supervised framework [Garćıa-Pedrajas et al., 2012], rather than the semi-supervised

learning framework.

Splice sites are conserved nucleotide dimers found at the interface between exons and

introns. They can be donor splice sites, signaled by “GT” and situated at the 5’ end of

the intron, or acceptor splice sites, indicated by “AG” and situated at the 3’ end of the in-

tron. The correct identification of splice sites is an essential task in the genome annotation

process. The major difficulty comes from the fact that such dimers occur very frequently

throughout the entire genome and their simple presence is not enough to declare a splice

site. However, these regulatory regions exhibit certain properties that are easily recogniz-

able by the snRNA-proteins in the pre-mRNA splicing process, which makes them good

candidates for classification algorithms that can capture these similarities. The prediction

(identification) of splice sites is a problem for which the natural positive (true splice site)

to negative (decoy site) ratio is very high, approximately 1% of the “AG” dimers occurring

in a genome correspond to splice sites.

In this work, we study the suitability of semi-supervised learning from skewed splice

site datasets. More precisely, we are interested in investigating how the positive-to-negative

ratio affects semi-supervised learning when external data-level re-balancing techniques are

used. Furthermore, as we vary the positive-to-negative and labeled-to-unlabeled ratios, we

compare the semi-supervised classifiers with supervised classifiers learned only from the

small amounts of labeled data available, to understand when semi-supervised learning is

preferable to supervised learning. We use self-training [Yarowsky, 1995] based on Näıve

Bayes, as the main SSL approach in our study. The splice site datasets that we use exhibit

imbalance degrees of 1-to-99. To examine how the performance is influenced by different
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levels of class imbalance, we subsample the original datasets in order to obtain lower rates

of imbalance, then gradually increase the imbalance level.

The rest of this paper is organized as follows: Section 3.2 describes the approaches

studied. We explain how we designed our experiments in Section 3.3: the data used and

the feature representation are described in Section 3.3.1, the research questions we are

addressing are enumerated in Section 3.3.2, and the evaluation procedure is described in

Section 3.3.3. Experimental results and discussions can be found in Section 3.4. In Section

3.5, we contrast our study with other related studies. We summarize our work, draw some

conclusions and propose future research directions in Section 3.6.

3.2 Semi-supervised Approaches for Learning from Im-

balanced Data

We use self-training based on Näıve Bayes and focus on balancing techniques at the data-

level, namely under- and over-sampling, and dynamic-balancing. We chose Näıve Bayes due

to its linear complexity and high scalability. Moreover, other algorithms depend on several

parameters and their tuning is often critical for obtaining good generalization capability.

The results presented in this paper required the individual training of 2,730 models, and

extra parameter tuning would have increased this number considerably. Näıve Bayes is

purely a frequency estimator based on feature occurrence counts, a concept in harmony

with the idea that the surrounding regions of the splice sites share a consensus in statistical

patterns.

3.2.1 Self-Training from Imbalanced Data

Yarowsky [1995] introduced self-training in the mid-nineties for a text disambiguation prob-

lem. Since then, self-training has produced successful results for other problems in compu-
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tational linguistics [Collins and Singer, 1999], object detection [Rosenberg et al., 2005], and

bioinformatics [Kundu et al., 2013].

As illustrated in Algorithm 1, in self-training, a base learner is first trained on just the

labeled data. Next, a randomly chosen sample from the unlabeled pool is labeled using

the classifier trained on just the labeled data. From these newly labeled instances, the

most confidently classified instances are added to the original labeled set and the classifier

is re-trained on the augmented labeled set. This process is iterative, and at each step, a

new sample of unlabeled instances is classified with the current classifier, and then used in

re-training. One important detail, relevant to the data imbalance problem studied in this

work, is that in the classical self-training algorithm, the number of newly labeled instances

that are added to the originally labeled training set is chosen such that the positive-to-

negative ratio displayed by the labeled data is maintained (e.g., if the class ratio in the

initial labeled set is 1-to-5, then 6 examples are extracted from the unlabeled pool and

added to the labeled dataset: the topmost confident positive prediction along with the top

5 most confident negative predictions). The iterations continue until a criterion is met, for

example until the unlabeled pool is exhausted, or the algorithm reaches a fixed number of

iterations. In this study, we refer to this algorithm as self-training from imbalanced data

(STI) because there is no modification made towards balancing.

Algorithm 1 Self-training Algorithm Yarowsky [1995]

1: Given: a training set comprised of labeled and unlabeled data D = (Dl, Du), |Dl| �
|Du|, fixed sample size S

2: Create U by picking S random instances from Du and update Du = Du - U
3: repeat
4: Train classifier on current Dl

5: Classify the instances in U using the classifier
6: Select most confident newly labeled instances from U to add to Dl, such that the

original class distribution is maintained
7: Randomly pick instances from Du to replace the selected most confident labeled in-

stanced in U
8: until Du is empty
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3.2.2 Self-Training with Data Balancing

Given the highly skewed datasets of splice sites, where the true acceptors appear in ap-

proximately 1% of the total number of sequences, it is important to evaluate some popular

re-sampling techniques on this DNA prediction problem in the semi-supervised context.

In this paper, we use two external, or data-level balancing schemes: under-sampling and

over-sampling. Both techniques aim to obtain a uniform distribution of instances in each

class. In under-sampling (of the majority class), we keep all positive instances and randomly

pick a negative number of instances to create a balanced labeled training set to feed to the

self-training classifier. We call this variant Self-Training with Under-sampling (STU).

In over-sampling (of the minority class), we artificially create positive instances to com-

pensate for the larger number of negative instances. Instead of randomly duplicating positive

instances in order to achieve an equal number of examples in each class, we chose to utilize

the Synthetic Minority Over-sampling Technique (SMOTE) [Chawla et al., 2002], where

instances of interest are generated by interpolation between other positive instances, in the

feature space. These new instances are novel, to some extent, and the idea is to avoid

overfitting, which can be caused by exact instance replication. We named this variant Self-

Training with Over-sampling (STO). From the self-training perspective, since the labeled

data that the learner is initially trained on is now balanced (via under- or SMOTE over-

sampling), only two instances are added into the labeled pool after each iteration for both

STU and STO: the top most confident from each class, such that the uniform distribution

that was obtained via re-sampling is maintained.

In addition to under- and over-sampling, we also study an alternative way of re-calibrating

the classes via the self-training algorithm, specifically we use a dynamic balancing technique.

Starting with the original imbalanced labeled dataset, we train a classifier and use it to pre-

dict the unlabeled data, similar to the classical approach, STI. The difference is that only

the instances that are predicted as positive by the base learner are added to the original

labeled set, more precisely, the top-most confidently predicted positive instance is added at
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each iteration. This approach re-adjusts the original class distribution by utilizing newly

labeled instances, instead of artificially generating positive examples like the over-sampling

techniques. We named this new variant Self-Training with Positive (STP). We want to

emphasize that unlike the classical self-training algorithm (Algorithm 1) that enforces the

constraint on the class distribution to be maintained after each iteration, STP is only adding

positive instances, thus compelling a dynamic re-calibrating of the prior.

3.2.3 Supervised Baselines

To evaluate the performance of semi-supervised learning and to observe the effects of the

labeled versus unlabeled data, we also train supervised classifiers. We compare each semi-

supervised algorithm described in Section 3.2 against its corresponding supervised variant,

built using the same re-sampling technique. The supervised counterparts can be seen as

lower bounds, and will show how well we can learn with limited labeled data, while the semi-

supervised results will give us an indication of how much improvement can be expected from

using the unlabeled data in a particular case. Each supervised version of the algorithms is

run on the exact same initial labeled set that is presented to the corresponding self-training

algorithm.

As STI and STP both start with the originally imbalanced labeled data, we compare

them with the supervised lower bound obtained from training the Näıve Bayes classifiers on

that same imbalanced labeled data. We name this classifier Lower Bound from Imbalanced

data (LBI). STU is compared to the supervised Näıve Bayes classifier trained with the

under-sampled labeled data, denoted Lower Bound with Under-sampling (LBU). Similarity,

STO is compared with the supervised Näıve Bayes classifier trained with the SMOTE over-

sampled data, denoted Lower Bound with Over-sampling (LBO).
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3.3 Experimental Setup

We start this section by describing the data used in our study and the feature representation.

As mentioned above, we investigate the behavior of self-training variants in the context of

imbalanced data, with application to the binary classification problem of predicting acceptor

splice sites in a DNA sequence.

3.3.1 Data and Feature Representation

We use five imbalanced and relatively large datasets of DNA sequences, from five organisms:

C. elegans, C. remanei, P. pacificus, D. melanogaster, and A. thaliana. On average, each

data sets contains approximately 160K instances, except for C. elegans, which contains

roughly 120K instances. Approximately 1% of the instances in each dataset are true acceptor

splice sites (our class of interest and the goal of our prediction models), and we denote this

category as the positive class. The rest of the instances comprise the decoy sites, or regular

“AG” dimers that are not acceptor splice sites, and we denote this category as the negative

class. All the instances share the same length (141 base pairs) and the “AG” dimer is

located at the 61st position in the sequence, as illustrated in Figure 3.1. The datasets have

been made available by Schweikert et al. [2008], who used them in a domain adaptation

context [Schweikert et al., 2008].

Figure 3.1: Acceptor Splice Site: Example of a positive instance from the datasets. Each
instance is 141 nucleotides long and the “AG” dimer is located at the 61st position in the sequence.
The class denotes whether or not the “AG” dimer is a true acceptor splice site (positive) or not
(negative).

ACATGCTA … ATCGATCTAG GGATGCTACATCGCGAT … ATCGATCTC
61st Position

Exonic NucleotidesIntronic Nucleotides

141 Nucleotides

  +

Class
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We use a vectorial representation of the instances, where each sequence is represented

as a vector with 141 features corresponding to positions in the sequence, and each feature

can take one of the four values {A, C, G, T}. The value of a feature in a sequence indicates

the nucleotide found at that position, corresponding to that feature.

3.3.2 Research Questions

Our experimental design specifically addresses the following research questions:

1. When is semi-supervised learning a good choice on highly imbalanced splice site

datasets, and what is the best balancing strategy?

2. How does the algorithms’ performance vary with the class distribution?

3. How does the algorithms’ performance vary with the labeled-to-unlabeled ratio?

According to the literature [Nigam et al., 2000; Le and Kim, 2014], the performance of

semi-supervised classifiers is known to vary with the labeled-to-unlabeled ratio. Moreover,

unless the amount of unlabeled data is significantly larger than the amount of labeled data,

learning in a semi-supervised framework is not particularly useful, and no major changes

are observed between semi-supervised models and their supervised counterparts. To better

understand this aspect in the context of imbalanced datasets, we vary the ratio of labeled-

to-unlabeled data for all the imbalance degrees. The labeled and unlabeled instances are

picked randomly, without replacement, from the original training datasets. As we have a

fixed amount of training data for each organism, we refer to the amounts of labeled/unlabeled

data in percentages. We vary the labeled data from a very small amount (1% of the training

data) to larger amounts (5% and 10% ). Consequently, the unlabeled data varies from 99%

to 95% and 90%. This allows us to study the variation of the performance with different

amounts of labeled data, and also the variation of the performance with the labeled-to-

unlabeled ratio, while all available training data is used.
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It is also expected for the classification performance to fluctuate with the variation in the

class distribution [Estabrooks et al., 2004]. To investigate this behavior more closely, we vary

the ratio of positive to negative examples from 1-to-5 to 1-to-99. We obtain different class

distributions by randomly discarding the excess instances of the majority class. In order

to conduct a fair comparative study, we build the imbalanced datasets incrementally, by

starting with the dataset of 1-to-5 imbalance degree, then adding more negative instances to

obtain the next dataset with the imbalance degree of 1-to-10, and so forth, until ultimately,

the dataset becomes the original set (with imbalance degree of 1-to-99). The 1-to-5 dataset

is thus a subset of the 1-to-10 dataset, and both are subsets of the 1-to-15 dataset, etc. The

labeled instances are the exact same in all the generated subsets. We want to emphasize

that although the actual splice site distribution for our datasets is known (approximately

1% of the “AG” occurrences throughout a genome), we vary the class ratios to study the

usefulness of semi-supervised approaches with data balancing techniques.

3.3.3 Evaluation Metrics

To measure the predictive ability of our approaches, we compare their performance in terms

of the area under the Precision-Recall Curve (auPRC). Since our case study is centered on

highly imbalanced datasets, auPRC is a more fitted assessment measure as compared to the

area under the Receiver-Operating Curve (auROC) [Davis and Goadrich, 2006]. For our

problem, the task is to identify true acceptor splice sites, therefore we report the auPRC

values for the minority (positive) class. The auPRC values for the negative class are negli-

gibly similar, differing only in the 3rd digit for a comparable group of experiments. For each

of the five organisms, we use 10-fold cross validation and average the auPRC values across

the ten folds. At each round of the cross validation procedure, 10% (or the equivalent of one

fold) is set aside for testing, while the remaining 90% (9 remaining folds) of the data is used

as training. To simulate semi-supervised conditions, from the training data, we utilize 1%,

5%, and 10%, respectively as labeled data, and the rest, 99%, 95%, and 90% respectively, is

42



treated as unlabeled data, by intentionally ignoring the labels. At last, the labeled data is

balanced incrementally to obtain the imbalance ratios used in our study. In our graphs, we

report the average over all five organisms of the auPRC values for the positive class (due to

the fact that the results were generally consistent).

3.4 Results

We have organized our experiments and their discussion in three main sections, Sections

3.4.1, 3.4.2, 3.4.3. Each of these result sections contains three graphs, one for each ratio

of labeled-to-unlabeled data (for varying positive-to-negative ratios). In Section 3.4.1, we

present the result from training purely supervised Näıve Bayes classifiers from the original

and re-sampled labeled data. In Section 3.4.2, we present the semi-supervised variants. In

Section 3.4.3, we compare the best supervised baseline and the top semi-supervised variants

in order to understand if the unlabeled data is indeed helping to improve classification.

Finally, in Section 3.4.4, we will conclude our results by answering each of the research

questions stated in Section 3.3.2.

3.4.1 Supervised Baselines

We have summarized our results of the supervised experiments in Figure 3.2 for 1% labeled

data, Figure 3.3 for 5% labeled data, and Figure 3.4 for 10% labeled data. Each graph

represents averaged auPRC values over all five organisms, and each group of bars shows the

performances of the supervised Näıve Bayes classifier when trained on the original imbal-

anced labeled data (LBI), on the under-sampled labeled data (LBU), and the over-sampled

labeled data (LBO) for one particular imbalance degree.

As can be seen from Figures 3.2, 3.3, and 3.4, the imbalance degree influences the

performance of all supervised classifiers. Specifically, the auPRC values decrease with the

increase of the class imbalance. For example, in Figure 3.2, the models learned from the
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Figure 3.2: Supervised Learning Results from 1% Labeled Data While Varying the
Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning supervised Näıve Bayes classifiers from 1% labeled data, while varying the positive-
to-negative ratio from 1-to-5 to 1-to-99.
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Figure 3.3: Supervised Learning Results from 1% Labeled Data While Varying the
Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning supervised Näıve Bayes classifiers from 5% labeled data, while varying the positive-
to-negative ratio from 1-to-5 to 1-to-99.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1to5 1to10 1to20 1to25 1to30 1to40 1to50 1to60 1to70 1to75 1to80 1to90 1to99 

LBI 

LBU 

LBO 

44



datasets with 1-to-5 imbalance degree reach auPRC values around 0.5, whereas the models

obtained from the dataset with 1-to-99 imbalance degree record auPRC values below 0.1.

Similar drops in auPRC values can be observed in Figures 3.3 and 3.4. Another foreseen

outcome is that the auPRC values increase with the amount of labeled data. The values in

Figure 3.2, representing the classifiers trained on very small amounts of labeled data (1%),

are lower than the values from Figure 3.3, where the classifiers are trained on more data

(5%), which, in turn, are lower than the auPRC values from Figure 3.4, where the classifiers

are trained with even more data (10%).

One interesting aspect is that in Figure 3.4, which shows experiments with classifiers

trained on 10% labeled data, the differences between performances on different imbalanced

distributions are not as big as in Figure 3.2, which shows experiments with classifiers trained

on 1% labeled data. This leads to the conclusion that eventually, a sufficient amount of

labeled data could allow for the classifiers to converge, and ultimately perform similarly,

regardless of the imbalance degree.

Surprisingly, the classifiers trained on the original imbalanced labeled datasets (LBI) are

outperforming the other classifiers trained on the re-sampled data. From the re-sampling

perspective, under-sampling (LBU) is clearly outperforming over-sampling (LBO). One in-

teresting exception is recorded in the most extreme case of imbalance, 1-to-99, when learning

from 1% labeled data, where LBO is surpassing the other classifiers. In such extreme cases,

SMOTE over-sampling seems to be a useful technique for generating positive examples.

3.4.2 Semi-supervised Variants

We have summarized our results for the semi-supervised self-training classifiers based on

Näıve Bayes in Figure 3.5 for 1% labeled and 99% unlabeled data, Figure 3.6 for 5% labeled

and 95% unlabeled data, and Figure 3.7 for 10% labeled and 95% unlabeled data. Again,

each graph represents averaged auPRC values over all five organisms, and each group of

bars represents all the algorithms’ performances for one particular imbalance degree.
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Figure 3.4: Supervised Learning Results from 1% Labeled Data While Varying the
Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning supervised Näıve Bayes classifiers from 10% labeled data, while varying the positive-
to-negative ratio from 1-to-5 to 1-to-99.
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Figure 3.5: Semi-supervised Learning Results from 10% Labeled Data While Varying
the Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning self-training classifiers based on Näıve Bayes from training data consisting of 1%
labeled 99% unlabeled, while varying the positive to negative ratio from 1-to-5 to 1-to-99.
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As can be seen from Figures 3.5, 3.6, and 3.7, STP is the best SSL algorithm in almost

all imbalanced cases. The only exception was recorded in Figure 3.5, for the case where 1%

of the training data is labeled and the imbalance degree is maximum (1-to-99), in which

case STO is slightly better. This shows that gradually balancing the labeled data during

the semi-supervised iteration (by adding only positive instances to the labeled dataset) is

a useful technique for addressing imbalanced distributions. The classical approach, STI, is

the second best for degrees of imbalance of up to 1-to-40, whereas for the more imbalanced

cases, the over-sampling technique, STO, is approaching STP and surpasses its performance

in the 1-to-99 case.

Figure 3.6: Semi-supervised Learning Results from 5% Labeled Data While Varying the
Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning self-training classifiers based on Näıve Bayes from training data consisting of 5%
labeled 95% unlabeled, while varying the positive to negative ratio from 1-to-5 to 1-to-99.
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In Figure 3.6, when the ratio of labeled to unlabeled data is 5% to 95%, STP is con-

sistently and considerably outperforming all the other algorithms, followed again by STI.

For distributions ranging from 1-to-5 to 1-to-50, STU is learning better than STO. Similar

trends have been reported for supervised learning by Lusa and Blagus [2010], who found

that when the class imbalance is not too severe, under-sampling is working better than
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over-sampling. For the more extreme cases, STO is a better learner than STU. Similar to

the experiments using 1% labeled data (Figure 3.5), the generation of synthetic samples via

SMOTE is a good practice to use with self-training approaches for highly skewed datasets.

Figure 3.7: Semi-supervised Learning Results from 10% Labeled Data While Varying
the Imbalance Degree: Averages of the auPRC values for the minority class over all 5 organisms,
when learning self-training classifiers based on Näıve Bayes from training data consisting of 10%
labeled 90% unlabeled, while varying the positive to negative ratio from 1-to-5 to 1-to-99.
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Finally, in Figure 3.7, we can see that when the ratio of labeled-to-unlabeled data is

10% to 90%, the trends are similar to the trends in the graphs where the ratio of labeled-

to-unlabeled data is 5% to 95%, mainly the STP approach is consistently and considerably

outperforming all the other algorithms, followed yet again by STI. One possible explanation

for the fact that STP and STI are leading these charts could be that the initial labeled

set they use in self-training is imbalanced, meaning it has more instances than the under-

sampled set, and, hence, more information, and also less noise than the over-sampled set,

where artificial instances may perturb the base classifier. This observation is also valid for

the supervised cases shown in Section 3.4.1, where both under-sampling and over-sampling

were surpassed by LBI, the algorithm trained on the original class distribution. However,

in the case of semi-supervised learning, dynamically balancing in subsequent iterations of
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the self-training algorithm (by adding only positive instances, i.e., STP), is better than

no balancing (STI). One difference between the trends in Figure 3.6 (5% labeled and 95%

unlabeled) and the trends in Figure 3.7 (10% labeled and 90% unlabeled) is that STO is

surpassing STU starting with imbalance degrees of 1-to-50 as opposed to 1-to-90. One

possible reason is that the more labeled data is added, the less the algorithms benefit from

the over-sampling technique, which is most probably introducing noise.

It has been reported that under-sampling is more suitable for semi-supervised learning

on imbalanced datasets than over-sampling [Li et al., 2011]. We have observed the same

trend when the imbalance degree is relatively low (1-to-5 to 1-to-25) and the amount of

labeled data is relatively large (10%), characteristics that mirror the characteristics of the

data from [Li et al., 2011]. However, for highly imbalanced datasets and smaller amounts of

labeled data (1% and 5%), we have found SMOTE over-sampling to be a better approach.

3.4.3 Supervised versus Semi-supervised Approaches

In this section, for easier visualization, we are presenting the best semi-supervised variants,

STP and STI (as revealed by the graphs in Section 3.4.2) in comparison with the best

supervised baseline, LBI (as revealed by the graphs in Section 3.4.1).

In Figure 3.8, when the amount of labeled data comprises 1% of the training set, STI

outperforms all supervised algorithms in all cases of up to 1-to-60 imbalance degrees. For the

more imbalanced cases, from 1-to-70 to 1-to-99, there are no consistent patterns observable,

but it seems that supervised learning in general outperforms semi-supervised algorithms. A

possible explanation is that the models learned from very limited amounts of highly skewed

data are weak, thus mislabeling the originally unlabeled instances and deteriorating the

classification.

In Figure 3.9, the labeled data available is now 5%, and STI is obviously useful when the

imbalance degrees are more extreme (from 1-to-80 to 1-to-99), whereas for milder degrees

of imbalance, STI is comparable with the supervised lower bound LBI. One possible expla-
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Figure 3.8: Semi-supervised vs. Supervised Performance when Learning from 1% La-
beled Data While Varying the Imbalance Degree: Averages of the auPRC values for the
minority class over all 5 organisms, when learning classifiers based on Näıve Bayes from training
data consisting of 1% labeled 99% unlabeled, while varying the positive to negative ratio from
1-to-5 to 1-to-99. This graph shows the best supervised baseline, LBI, and the top two most
accurate semi-supervised algorithms, STP and STI.
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Figure 3.9: Semi-supervised vs. Supervised Performance when Learning from 5% La-
beled Data While Varying the Imbalance Degree: Averages of the auPRC values for the
minority class over all 5 organisms, when learning classifiers based on Näıve Bayes from training
data consisting of 5% labeled 95% unlabeled, while varying the positive to negative ratio from
1-to-5 to 1-to-99. This graph shows the best supervised baseline, LBI, and the top two most
accurate semi-supervised algorithms, STP and STI.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1to5 1to10 1to20 1to25 1to30 1to40 1to50 1to60 1to70 1to75 1to80 1to90 1to99 

LBI 

STI 

STP 

51



nation is that with more labeled data, the original classifiers learned from labeled data are

better, and thus some unlabeled instances are correctly labeled as positive. However, for

smaller imbalance degrees, those instances don’t contribute significantly to the performance,

given that LBI and STI are comparable. As opposed to that, for higher imbalance degrees,

the correctly labeled instances can make a difference, and help the semi-supervised STI

classifier surpass the supervised LBI classifier. The classical self-training approach, STI, is

always falling below the supervised baseline, although the difference between them is small

for lower imbalance degrees and higher for higher imbalance degrees. That might mean that

some negative instances that are added to the labeled datasets may be mislabeled, especially

in the case of the higher imbalance degrees, and thus they are deteriorating the performance

as compared to the supervised counterpart.

When the amount of labeled data makes up a tenth of the total training data available

for learning, the supervised baseline is outperforming the semi-supervised algorithms, as

can be observed from Figure 3.10. One reason could be that 10% labeled data is enough

to train a competitive supervised classifier, and semi-supervised learning should be used

as a solution for the cases where the labeled data is truly limited. Similar results for the

YATSI-based semi-supervised algorithm using Näıve Bayes were reported in [Catal and Diri,

2009] on the problem of software fault-detection.

3.4.4 Addressing the Research Questions

In this subsection, we use our experimental results to answer each of the research questions

that motivated this work and summarize some general trends suggested by our study.

1. When is semi-supervised learning a good choice on highly imbalanced splice site datasets,

and what is the best strategy (combination of base-classifier and re-sampling tech-

nique)?

Our empirical results suggests that semi-supervised learning, especially self-training with
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Figure 3.10: Semi-supervised vs. Supervised Performance when Learning from 10%
Labeled Data While Varying the Imbalance Degree: Averages of the auPRC values for the
minority class over all 5 organisms, when learning classifiers based on Näıve Bayes from training
data consisting of 10% labeled 90% unlabeled, while varying the positive to negative ratio from
1-to-5 to 1-to-99. This graph shows the best supervised baseline, LBI, and the top two most
accurate semi-supervised algorithms, STP and STI.
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dynamic balancing with positive data only (STP), is a better choice than supervised learning,

when the amount of labeled instances represents a small percentage of the total data available

for training (1% in our case). As more labeled data becomes available (and comprises

5% of the training data in our experiments), STI is beneficial for datasets with very high

imbalance degrees. However, for larger amounts of labeled data (10% in our case), the

classical supervised baseline may become preferable.

2. How does the algorithms’ performance vary with the class distribution?

As expected, the class distribution ratio influences all the algorithms, supervised and

semi-supervised alike. Overall, better values for auPRC are obtained when the class ratio is

smaller and the values decrease for the more highly imbalanced cases. Although the datasets

increase in size with the increase in the imbalance degree (there are more instances belonging

to the majority class), the prediction problem becomes more difficult as the positive class is

more and more underrepresented and the learning is biased towards the majority class. The

dynamic balancing of STP, followed closely by the classical STI, are more beneficial than any

other re-sampling technique (under-sampling and over-sampling). For STP and STI, we run

two-tailed paired t-tests, as opposed to one-tailed t-tests, to identify statistically significant

differences in either direction, on the semi-supervised algorithms for all the variations of

unlabeled data, for each organism. The test determines if the difference between the SSL

algorithm and the lower bound is statistically significant or not [Dietterich, 1998]. The STP

and STI results were found statistically significant by the paired t-test, with only a few (8)

scattered exceptions for STP in some organisms (out of a total of 195 experiments).

3. How does the algorithms’ performance vary with the labeled-to-unlabeled ratio?

Our results show that the more labeled data is used in training (1% vs 5% vs 10%),

the higher the increase in auPRC values, for all classifiers. This is an expected trend, as

more labeled data improves the initial models, which can then classify more accurately the
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unlabeled instances and subsequently identify more appropriate examples to add back to

the labeled set for further re-training.

3.5 Related Work

The large volumes of genomic data ask for machine learning and statistical methods to

assist the complex process of genome annotation. Supervised machine learning approaches

for bioinformatics problems have been widely used [Liu et al., 2012; Chen, 2008; Wang and

Wu, 2006; Yu et al., 2013; Erdoğdu et al., 2013; Jiang et al., 2013; Rider et al., 2014; Huang,

2013]. The problem of identifying splice sites using machine learning techniques has also

been addressed, mostly by supervised methods [Baten et al., 2006; 2007; Sonnenburg et al.,

2007; Castelo and Guigó, 2004; Batuwita and Palade, 2012]. For example, in [Li et al.,

2012a], the authors present a state-of-the-art method using SVM and an RBF kernel for

human splice site detection. In [Baten et al., 2006], the authors use a combination between

a Markov Model of order 1 and SVM with polynomial kernel, for the NN269 dataset, with

imbalance degrees of approximately 1-to-4.2 in the case of acceptor sites, and 1-to-3.71 in

the case of donor sites. In [Baten et al., 2007], a Markov Model approach is used on a human

splice site dataset with imbalance degrees of 1-to-96 for acceptors and 1-to-116 for donors.

The goal of our work was not to obtain the best possible results for splice site classification,

which has already been successfully addressed by Sonnenburg et al. [2007] using SVM and

specialized kernels, but rather to explore semi-supervised learning as a possible solution for

splice site prediction, and to study the effects of imbalanced distributions on semi-supervised

learning algorithms.

Batuwita and Palade applied SVM [Batuwita and Palade, 2010] with re-sampling meth-

ods on four imbalanced biological datasets and the Pageblocks dataset from the UCI, with

up to 8K instances and no more than 1-to-50 imbalance degree. They proposed to first iden-

tify the most informative negative instances, and then randomly over-sample the positive
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instances in order to reach the same number of negative instances selected. They suggested

that the points located close to the class boundary are the most informative and used the

separating hyperplane found by SVM trained on the original imbalanced dataset. Two of

their insights regarding over-sampling are: (1) over-sampling could result in better classifi-

cation than under-sampling, by increasing sensitivity while reducing the specificity at much

milder rates compared to under-sampling, and they propose a more efficient over-sampling

technique, especially tailored for SVM; (2) over-sampling unavoidably increases the size of

the training set which makes SVM perform exponentially slower. This was one of the major

reasons why we chose Näıve Bayes as the classification algorithm for our study.

The same authors also proposed a novel measure for evaluating the learning of supervised

classifiers on imbalanced bioinformatics datasets, namely the “adjusted geometric-mean”

[Batuwita and Palade, 2012]. In this work, the authors conducted experiments on ten

DNA (including splice sites) and protein datasets, with imbalance degrees of up to 1-to-14

and dataset sizes with up to 10K instances. In our study, we use much larger datasets

(160K) with imbalance degrees of 1-to-99. Large-margin based classifiers, such as SVM,

would be impractical, due to their large number of parameters that need tuning and longer

computational times as compared to Näıve Bayes. Similar to Batuwita and Palade [2012],

we also used under- and SMOTE over-sampling.

Wei and Dunbrack Jr [2013] explored the effects that balancing both the training and test

datasets have on the SVM algorithm. The authors studied the problem of classifying human

missense mutations as deleterious or neutral; they systematically varied the proportion of

deleterious to neutral mutations in the training set, to conclude that balancing the training

dataset is producing more accurate SVM classifiers in terms of several accuracy measures,

while the class unevenness in the test data is irrelevant. Their study is particularly useful

for problems where the prior distribution of the test data is unknown.

Similar results have been reported by Lusa and Blagus [2010], who found that balancing

the class prior in the training set is a good choice, especially if the instances are represented
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in a high-dimensional space. Their focus is on high-dimensionality datasets and study the

behavior of various algorithms on binary classification problems on a simulated set and a

genuine bioinformatics set from a breast cancer gene expression microarray study, publicly

available. They explore under- and over-sampling, as well as the “multiple down-sizing”

technique, which is basically an ensemble of sub-classifiers trained on balanced subsets, and

the final prediction is obtained via majority voting of the sub-classifiers. We considered

this approach to be more algorithmically-oriented and plan to devote a separate study

concerned with building ensemble of classifiers to deal with imbalanced data in the semi-

supervised framework whereas in this work, we mainly focus on straightforward data specific

re-balancing techniques.

Semi-supervised learning has mostly been studied on protein classification [Weston et al.,

2005; 2006; Kall et al., 2007; Craig and Liao, 2007; Xu et al., 2009] and efforts on semi-

supervised learning from imbalanced distributions have focused on protein datasets with

relatively low imbalance degrees. For example, Kondratovich et al. [2013] address the prob-

lem of molecule activity prediction and they experiment with ten relatively small (3,000 in-

stances) molecule activity datasets with imbalance degrees no larger than to 1-to-40. They

use Transductive Support Vector Machines (TSVM), which is a subtype of semi-supervised

learning. The classical TSVM algorithm, without any re-sampling, is performing quite well,

and is found to be somewhat insensitive to the imbalance degree. Our results are similar

for self-training with imbalanced data (STI), the classical self-training approach, which also

does not specifically address the imbalance distribution. In our results, STI was the second

best variant that we experimented with, after STP. It would be interesting to apply TSVM

on the splice site DNA datasets and observe how the performance changes with higher

imbalance degrees.

Semi-supervised learning from imbalanced datasets has been explored in other domains.

Catal and Diri [2009] proposed the immune-based YATSI (Yet Another Two Stage Idea)

[Driessens et al., 2006] algorithm to predict faulty software, which is a semi-supervised meta-
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algorithm that can be wrapped around any supervised (base) classifier. In YATSI, at each

iteration, the decision of which instances to add to the labeled set is based on an ensemble

of predictions calculated from the k-nearest neighbors, in terms of Euclidean distance. The

weights of an unlabeled instance’s neighbors are summed per class and the class with the

largest weight is assigned as the label of that instance. Their experimental setup was based

on four datasets where the class of interest made up from 7% to 21% of the data, and they

varied the amount of labeled data from 5% to 10% and 20%.

In [Drummond et al., 2003], the authors investigated the C4.5 algorithm’s compatibility

with under- and over-sampling in terms of cost curves on four UCI datasets. They found that

under-sampling is more sensitive to class distributions than over-sampling, referencing other

studies that uncovered the same patterns with respect to decision trees. In this study, we

also found that under-sampling is outperforming over-sampling, in particular the SMOTE

technique, in terms of auPRC values.

Chen [2008] studied imbalanced datasets in the supervised and semi-supervised frame-

works for the 2008 U.C. San Diego Data Mining competition, using re-sampling techniques

like SMOTE, over-sampling (by duplicating each minority instance an equal number of

times) and random under-sampling in combination with Decision Trees, Näıve Bayes, and

Neural Networks. For the supervised task, the dataset contains 40K instances and has a

1-to-10 imbalance ratio. For Näıve Bayes, neither of the re-sampling techniques produced

significantly different results. For Random Forests, under-sampling and SMOTE improved

the results by 8%, while over-sampling by duplication gave similar results to the classifier

built on the imbalanced set. For Neural Networks, all three techniques significantly im-

proved the accuracy. For the semi-supervised task, the dataset consists of roughly 68.5K

instances, and only 60 of them are labeled as positive, while the rest are unlabeled; the

test set consists of approximately 11.4K instances. In such a context, when solely positive

examples are labeled, the problem is known as PU-learning, i.e., learning from only Positive

and Unlabeled data. The strategy from [Chen, 2008] was to first identify negative exam-
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ples, utilizing a technique, called Spy technique, and then train a Näıve Bayes supervised

classifier, which, as expected, produced better results than treating all the unlabeled data

as negative examples.

3.6 Conclusions and Future Work

In this study, we have performed an analysis of self-training classifiers using Näıve Bayes, on

five large and highly imbalanced DNA datasets, and have utilized balancing techniques to

address the uneven class distributions. Empirical evidence shows that when the labeled data

represents a very small percentage of the total number of training instances (in our case,

1%), while the remaining instances are unlabeled, semi-supervised learning algorithms are

a better choice than purely supervised classification algorithms. Our results also reveal that

for the given problem of acceptor splice site detection, if more than 10% of the total training

instances is labeled, the user will benefit more from training supervised algorithms. As our

results suggest, the use of semi-supervised learning under the difficult conditions of skewed

class priors and very limited amounts of labeled data, this study could potentially open

doors for more extensive research targeting DNA classification in semi-supervised scenarios,

which fit well with the current data availability constraints in bioinformatics.

In future studies, we hope that experimenting with different DNA datasets will reveal

additional insights into the DNA semi-supervised classification problem. Utilizing other

algorithms, such as co- and multi-training, which make use of multiple independent views

of the data, could potentially increase the classification ability.
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Chapter 4

An Empirical Study of

Ensemble-based Semi-supervised

Learning Approaches for Imbalanced

Splice Site Datasets

4.1 Background

Advances in biochemical technologies over the past decades have given rise to Next Genera-

tion Sequencing platforms that quickly produce genomic data at much lower costs than ever

before. Such overwhelmingly large volumes of sequenced DNA remain difficult to annotate.

As a result, numerous computational methods for genome annotation have emerged, in-

cluding machine learning and statistical analysis approaches that practically and efficiently

analyze and interpret data. Supervised machine learning algorithms typically perform well

when large amounts of labeled data are available. In bioinformatics and many other data-

rich disciplines, the process of labeling instances is costly; however, unlabeled instances are

60



inexpensive and readily available. For a scenario in which the amount of labeled data is

relatively small and the amount of unlabeled data is substantially larger, semi-supervised

learning represents a cost-effective alternative to manual labeling.

Because semi-supervised learning algorithms use both labeled and unlabeled instances

in the training process, they can produce classifiers that achieve better performance than

completely supervised learning algorithms that have only a small amount of labeled data

available for training [Wang et al., 2003; Kasabov and Pang, 2003; Stanescu et al., 2015].

The principle behind semi-supervised learning is that intrinsic knowledge within unlabeled

data can be leveraged in order to strengthen the prediction capability of a supervised model

that only uses labeled instances, thereby providing a potential advantage for semi-supervised

learning. Model parameters learned by a supervised classifier from a small amount of labeled

data may be steered towards a more realistic distribution (which more closely resembles the

distribution of the test data) by the unlabeled data.

Unfortunately, unlabeled data can also drive the model parameters away from the

true distribution if misclassification errors reinforce themselves. Thus, in practice, semi-

supervised learning does not always work as intended [Chawla and Karakoulas, 2005; Nigam

and Rayid, 2000; Zhou and Li, 2010]. Moreover, under incorrect assumptions, e.g., regard-

ing the relationship between marginal and conditional distributions of data, semi-supervised

learning models risk to perform worse than their supervised counterparts. Given that for

many prediction problems the assumptions made by learning algorithms cannot be easily

verified without considerable domain knowledge [Ben-David et al., 2008] or data exploration,

semi-supervised learning is not always “safe” to use. Advantageous utilization of the unla-

beled data is problem-dependent, and more research is needed to identify algorithms that

can be used to increase the effectiveness of semi-supervised learning [Li and Zhou, 2015; Le

and Kim, 2014], in general, and for bioinformatics problems, in particular. At a high level,

we aim to identify semi-supervised algorithms that can be used to learn effective classifiers

for genome annotation tasks.
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In this context, a specific challenge that we address is the “data imbalance” problem,

which is prevalent in many domains, including bioinformatics. The data imbalance phe-

nomenon arises when one of the classes to be predicted is underrepresented in the data

because instances belonging to that class are rare (noteworthy cases) or hard to obtain.

Ironically, minority classes are typically the most important to learn, because they may

be associated with special cases. In general, anomaly or novelty detection problems ex-

hibit highly imbalanced distributions. Specific applications outside the bioinformatics area

include credit card fraud, cyber intrusions, medical diagnosis, face recognition, defect de-

tection in error-prone software modules, etc. As established in the literature (e.g., [Chawla

et al., 2004]), the existence of a major unevenness between the prior class probabilities leads

to impartial learning. As a result, classifiers that produce good classification results under

normal circumstances (i.e., in the presence of balanced or mildly imbalanced distributions)

can be seriously compromised when faced with skewed distributions, as classifiers become

strongly biased towards the majority class. In bioinformatics, problems such as promoter

recognition, splice site detection, and protein classification are especially difficult because

these problems naturally exhibit highly imbalanced distributions.

Re-sampling datasets in order to reach balanced distributions is a common practice that

sometimes improves classification performance, as the model encounters an equal number

of instances from each class, thereby producing a more appropriate discriminative function

as opposed to a function obtained from skewed distributions. However, it is not well under-

stood what is the most appropriate balancing method. Context-dependent conclusions are

usually driven by empirical observations concerning both the classifier used and the imbal-

ance degree. The most straightforward method is under-sampling, in which instances that

belong to the majority class are eliminated until a balanced distribution is reached. As a

consequence, information is lost, which is obviously not desirable, given the value of labeled

instances, yet this is a good way to speed up the computation. Moreover, studies have shown

the effectiveness of under-sampling [Li et al., 2011] despite its obvious limitations. Over-
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sampling is another popular re-sampling method in which instances of the minority class

are generated artificially to counterbalance majority instances. These synthetic instances

can potentially improve the classifier, as it gains access to more labeled data. The trade-off

between longer computation times associated with larger datasets and better classification

performance is usually worthwhile. However, with oversampling, classifiers are prone to

overfitting, due to duplicate instances.

An algorithmic approach to handle imbalanced data distributions is based on ensembles

of classifiers. Limited amounts of labeled data naturally lead to “weaker” classifiers, but

ensembles of “weak” classifiers tend to surpass the performance of any single constituent

classifier. Moreover, ensembles typically improve the prediction accuracy obtained from a

single classifier by a factor that validates the effort and cost associated with learning multiple

models. Intuitively, “bagging” several classifiers leads to better overfitting control, since

averaging the high variability of individual classifiers also averages the classifiers’ overfitting.

The first effective model ensemble surfaced in the mid 1990s [Breiman, 1996], under the

name “bootstrap aggregating” (bagging), which is a meta-algorithm that performs model

averaging over models trained on multiple subsets, i.e., bootstrap replicates of the training

set. The predictions of the models are combined by voting (in the case of classification) or

averaging (in the case of regression) in order to output a single final verdict that reflects

the ensemble decision. Originally applied to decision trees, bagging can be used with any

classification or regression model and it is especially effective in conjunction with utilization

of unstable nonlinear models (i.e., a small change in the training set can cause a significant

change in the model’s learned parameters). Ensembles of classifiers that utilize bagging,

boosting, and hybrid-approaches for imbalanced datasets in the supervised framework were

reviewed by Galar et al. [2012].

For a comprehensive survey of data re-sampling and algorithmic approaches to the im-

balanced data problem in the supervised learning framework, the reader is referred to [He

and Garcia, 2009]. As opposed to supervised learning, fewer efforts have been aimed at
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the data imbalance problem in the semi-supervised learning framework, with some notable

exceptions. In particular, in a previous study [Stanescu and Caragea, 2014a], we exper-

imented with data re-sampling and algorithmic solutions and observed that dynamically

balancing the classifiers during the semi-supervised iterations of the algorithm is a useful

solution that works better than under- and SMOTE (Synthetic Minority Over-sampling

Technique) over-sampling for splice site prediction in the context of single semi-supervised

classifiers. We also found that ensembles usually tend to perform better than re-sampling

techniques, except for extreme cases when the imbalance degree is 1-to-99, in which case

oversampling performs slightly better than the ensemble-based approach. In a subsequent

study [Stanescu and Caragea, 2014b], we empirically evaluated ensembles of self-training

semi-supervised classifiers and found that maintaining diversity during the process of semi-

supervised learning is an important requirement for the ensemble. In the current study, we

experiment with both self-training and co-training, utilizing a different feature representa-

tion than the one we used in [Stanescu and Caragea, 2014b], to accommodate co-training,

which requires two views (representations) of the data.

Similar to our prior work, the current study is performed on the problem of predicting

splice sites, a challenging, but important task in genome annotation [Lomsadze et al., 2014].

Splice sites are located at the boundaries between exons and introns. At the 3’ end of an

intron, the “AG” dimer denotes an acceptor splice site; at the 5’ end of the intron, the “GT”

dimer denotes a donor splice site. Other non-consensus splice sites exist, but they are not

considered in this work. We formulate the task of predicting acceptor splice sites as a binary

classification problem in which the positive class represents true acceptor splice sites and

the negative class is comprised by decoy “AG” sites. We use five relatively large datasets

from five organisms. The distribution of the data (ratio of the size of the minority class

to majority class) is very skewed - approximately 1% of “AG” dimers are actually acceptor

splice sites.

Among others, Sonnenburg et al. [2007] previously addressed the splice site prediction
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problem, in the supervised framework, using Support Vector Machines (SVM) and special-

ized kernels. As opposed to prior work, in this work, our goal is to investigate ensemble-based

semi-supervised learning as a potential solution for splice site prediction and to study the ef-

fects of imbalanced distributions on semi-supervised algorithms when labeled data is sparse.

Given the large datasets of our case study and the numerous models that needed to be

trained to simulate different imbalanced degrees for different ensemble variants, we chose

Näıve Bayes as the base classifier in co-training and self-training, because of its computation

speed and to avoid tuning hyper-parameters (that many other classifiers require in order

to perform well). Although, theoretically, the i.i.d. assumption (that the observed features

are identically and independently distributed) does not hold for many problems (including

for the problem studied in this work) generative models such as Näıve Bayes can show su-

perior performance to discriminative models such as SVM, especially when small amounts

of labeled data are available [Druck et al., 2007; Stanescu et al., 2015].

The rest of this paper is organized as follows. We continue with a review of related work in

the next section, where we also contrast our study with other similar studies. In Methods,

we describe our approaches, namely the semi-supervised learning ensembles based on self-

training and co-training. Section Data is dedicated to describing the datasets and the

feature representation used with our classifiers. The experimental setting is described in

Experimental setup, starting with the research questions that motivated the study and

continuing with details of the evaluation procedure. We discuss the performance of our

approaches in Results, and finally, in Section Conclusion, we conclude the study and

suggest directions for future work.

4.2 Related work

Genome annotation is an ample task that requires machine learning and statistical methods

to assist experimental approaches, especially given the large amount of genomic data being
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generated at unprecedented rates. Supervised machine learning approaches have been widely

used in bioinformatics for many tasks, including splice site prediction [Sonnenburg et al.,

2007; Baten et al., 2006; 2007; Castelo and Guigó, 2004; Batuwita and Palade, 2012]. For

example, human splice site detection was explored in [Li et al., 2012a] using SVM classifiers

with a Gaussian kernel, and in [Baten et al., 2006] using a combination of Markov Models

and SVM classifiers with polynomial kernels. The work in [Baten et al., 2007] proposed a

Markov Model approach for splice site detection in a human dataset with imbalance degrees

of 1-to-96 for acceptors and 1-to-116 for donors.

Semi-supervised learning has generally been used in bioinformatics to solve protein clas-

sification problems [Weston et al., 2005; 2006; Kall et al., 2007; Craig and Liao, 2007; Xu

et al., 2009; Wu et al., 2015], with a few notable exceptions focused on DNA classification

[Kasabov and Pang, 2003; Stanescu et al., 2015]. A small number of studies [Kondratovich

et al., 2013; Weston et al., 2005; Kundu et al., 2013] have explored the data imbalance

problem in the semi-supervised context and proposed effective solutions, but the imbalance

degrees were moderate. For example, in [Kondratovich et al., 2013], the authors addressed

the problem of molecule activity prediction and experimented with transductive SVM clas-

sifiers on datasets with relatively small sizes (3K instances), exhibiting imbalance degrees

no higher than 1-to-40.

As opposed to that, we focus on datasets with higher degrees of imbalance (up to 1-

to-99) and study the behavior of semi-supervised learning algorithms when the available

labeled data is less than 1% of the total amount of training data. In general, such a small

amount of labeled data is expected to lead to weak classifiers, but an ensemble of classifiers

could help overcome this shortcoming to some extent. Galar et al. [2012] showed that, in

supervised frameworks, ensembles perform better than single learners trained on re-sampled

data. citeLusa:2010 found that balancing the class prior in the training set via ”multiple

down-sizing”, in other words, training an ensemble of subclassifiers on balanced subsets, is

particularly useful for high-dimensional representations. They showed this using a simulated
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set and a genuine, publicly available dataset from a breast cancer gene expression microarray

study. Another study by Li et al. [2011] also concluded that an ensemble of co-training

classifiers is suitable for imbalanced datasets.

Our objective in this study was to adapt existing semi-supervised learning ensembles to

datasets with high degrees of imbalance. Towards this goal, we used the approach from [Li

et al., 2011] as inspiration for two of the methods presented in this work. In [Li et al., 2011],

the authors proposed that, as the co-training sub-classifiers iterate, the balanced labeled

subsets are augmented with the same instances, specifically, the most confidently labeled

positive instances and the most confidently labeled negative instances. In our previous

work on the problem of splice site prediction [Stanescu and Caragea, 2014b], we found that

adding different instances to each self-training subsets leads to improved prediction because

diversity is maintained. However, it was not clear what is the best way to manipulate the

original distribution to ensure the largest diversity among ensemble members. Motivated

by the results of our dynamic balancing technique, where only positive instances are added

to the training set during the self-training iterations [Stanescu and Caragea, 2014a], and

also by our preliminary results on ensemble approaches based on self-training classifiers

[Stanescu and Caragea, 2014b], in the current study, we further analyze various combinations

of ensembles and dynamic balancing, with focus on how the augmentation of labeled data

should be managed during the semi-supervised iterations. We also experiment with co-

training, in addition to self-training, and investigate how ensembles of self-training and

co-training Näıve Bayes classifiers behave in the semi-supervised framework when dealing

with various imbalance ratios.

A study from Wei and Dunbrack [Wei and Dunbrack Jr, 2013] that explored the effects

of various distributions on supervised learning was centered around classification of human

missense mutations as deleterious or neutral. By systematically varying the ratio of dele-

terious to neutral mutations in the training set, the authors concluded that balancing the

training dataset improves the performance of SVM as evaluated by several accuracy mea-
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sures, even when the distribution of the data is just mildly imbalanced. The study in [Wei

and Dunbrack Jr, 2013] was performed under the assumption that the real distribution of

deleterious versus neutral mutations is unknown. In the datasets used in our work [Schweik-

ert et al., 2008], the proportion of true splice sites was assumed to be approximately 1%

of the total number of occurrences of the “AG” dimer throughout the genome, and thus

this was the highest imbalance degree that we experimented with (i.e., 1-to-99). However,

we varied the ratio of splice site to non-splice site “AG”s from 1-to-5 to 1-to-99, to per-

form a systematic study of the performance obtained using ensemble-based semi-supervised

approaches as a function of the imbalance ratio.

4.3 Methods

This section describes the algorithms studied. As we focus on ensemble-based semi-supervised

learning from imbalanced class distributions, specifically ensembles of self-training and co-

training classifiers, we will first provide background on self-training and co-training, and

also on ensemble learning. Then, we will describe the supervised ensemble approach used as

a baseline in our evaluation, and finally, our proposed self-training and co-training ensemble

variants.

4.3.1 Self-training

Self-training, also known as self-teaching or bootstrapping, is an iterative meta-algorithm,

that can be wrapped around any base classifier. Yarowsky [Yarowsky, 1995] originally

introduced self-training and applied it to a natural language processing problem, namely

word-sense disambiguation. The first step in self-training is to build a classifier using the

labeled data. Then, the labeled dataset is augmented with the most confidently predicted

instances from the unlabeled pool, and the model is rebuilt. The process is repeated until a

criterion is met, e.g., until the unlabeled dataset has been fully classified or a fixed number
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of iterations has been reached. In our work, we classify a sub-sample of unlabeled data at

each iteration (as opposed to all unlabeled data) in order to increase computation speed.

The most confidently classified instances are assigned the predicted class and used to re-

train the model. The remaining instances, classified with less confidence, are discarded. The

algorithm iterates until the unlabeled dataset has been exhaustively sampled.

4.3.2 Co-training

citeBlum:1998 introduced co-training, also an iterative meta-algorithm, to solve the prob-

lem of identifying course pages among other academic web pages. Similar to self-training,

co-training is applicable to any base classifier. Unlike self-training, which is a single view

algorithm, co-training requires two independent and sufficient views (a.k.a., feature rep-

resentations) of the same data in order to learn two classifiers. At each iteration, both

classifiers label the unlabeled instances and the labeled training data of one classifier is

augmented with the most confidently labeled instances predicted by the other classifier.

Similar to self-training, in our work we classify only a sub-sample of unlabeled data at each

iteration. Instances from the sub-sample classified with small confidence are discarded. The

algorithm iterates until the unlabeled dataset has been exhaustively sampled.

4.3.3 Ensembles

Ensemble learning exploits the idea that combinations of weak learners can lead to better

performance. Moreover, it is known that diversity among subclassifiers is an important

constraint for the success of ensemble learning [38, 39]. However, learning Näıve Bayes

classifiers from bootstrap replicates will not always lead to sufficiently “diverse” models,

especially for problems with highly imbalanced distributions. In order to ensure sufficient

variance between the original training data subsets of our highly imbalanced datasets, we

used a technique initially recommended by Liu et al. [2009], who proposed training each

subclassifier of the ensemble on a balanced subset of the data, providing subclassifiers with
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the opportunity to learn each class equally, while the ensemble continues to reflect the

original class distribution. An implementation of this technique by Li et al. [2011] proved

to be successful for the problem of sentiment classification, and was used as inspiration in

our work.

4.3.4 Supervised Lower Bound

Generally, supervised models trained only on the available labeled data are used as baselines

for semi-supervised algorithms. Thus, the hypothesis that unlabeled data helps is verified

against supervised models that entirely ignore unlabeled instances. Because our focus is

on ensemble methods and ensembles of classifiers typically outperform single classifiers, the

lower bound for our approaches is an ensemble of supervised classifiers. Specifically, we

train ensembles of Näıve Bayes classifiers using re-sampled balanced subsets and use their

averaged predictions to classify the test instances. This approach is referred to as the Lower

Bound Ensemble (LBE).

4.3.5 Ensembles inspired by the original approach: CTEO and

STEO

In [Li et al., 2011], co-training classifiers were augmented with the topmost confidently

labeled positive and negative instances, as found by classifiers trained on balanced labeled

subsets. The authors set the number of iterations at 50, and classified all unlabeled instances

at each iteration. Moreover, the two views of the co-training classifiers were created at each

iteration, using ”dynamic subspace generation” (random feature splitting into two views),

in order to ensure diverse subclassifiers.

However, this exact approach did not produce satisfactory results in our case, so we

modified the algorithm from [Li et al., 2011] in order to better accommodate our problem.

We named the resulting approach Co-Training Ensemble inspired by the Original approach
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(CTEO). We also experimented with a variant where co-training was replaced with self-

training, and named this variant Self-Training Ensemble inspired by the Original approach

(STEO). The pseudocode for both CTEO and STEO variants is illustrated in Algorithm 2.

As can be seen, Steps 7-9 are described for co-training (first line) and self-training (second

line, in italic font), separately.

The first modification we made to the original ensemble-based approach, for both self-

training and co-training variants, is that we kept the features fixed, i.e., used “static”

instead of “dynamic subspace generation.” For co-training, we used a nucleotide/position

representation as one view, and a 3-nucleotide/position representation as the second view,

under the assumption that each view is sufficient to make accurate predictions, and the

views are (possibly) independent given the class.

The second modification we made is that we did not classify all unlabeled instances

at each iteration; instead, we classified only a fixed subsample of the unlabeled data, as

proposed in the classical co-training algorithm [Blum and Mitchell, 1998]. This alteration

speeds up the computation process. The last modification that we made is that once a

subsample was labeled and the top most confidently labeled instances were selected to

augment the originally labeled dataset, we simply discard the rest of the subsample, thereby

differing from the classical co-training approach [Blum and Mitchell, 1998] and from the

original co-training ensemble approach [Li et al., 2011]. This change also leads to faster

computation times and, based on our experimentation, reduces the risk of adding mistakenly

labeled instances to the labeled set in subsequent iterations. Furthermore, the last two

adjustments lead to a fixed number of semi-supervised iterations, i.e., as the algorithm ends

when the unlabeled data pool is exhausted. We use a subsample size that is dependent

on the dataset size, and selected such that the algorithm iterates approximately the same

number of times (50) for each set of experiments, for a certain imbalance degree. After the

iterations terminate, the ensemble is used to classify the test set by averaging the predictions

of the constituent subclassifiers.
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An important observation regarding Step 9 in Algorithm 1 is that, in the case of co-

training, when the two classifiers based on view1 and view2 , respectively, make their pre-

dictions, an instance is added to the pseudolabeled set P only if (1) no conflict exists between

the classifiers, i.e., both classifiers agree on the label, and (2) one classifier predicts the label

with high confidence, while the other predicts the same label with low confidence. These

conditions ensure that the two views inform each other of their best predictions, thereby

enhancing each other’s learning.

Algorithm 2 Ensembles inspired by the original approach [Li et al., 2011] - CTEO/STEO

1: Given: a training set comprised of labeled and unlabeled data D = (Dl, Du), |Dl| � |Du|

2: Create U by picking S random instances from Du and update Du = Du - U , S = sample
size

3: Generate N balanced subsets from Dl : Dl1, . . . , Dln

4: repeat
5: Initialize P = ∅
6: for i = 1 to N do
7: CT: Train subclassifiers Ci1 on view1 and Ci2 on view2 of balanced subset Dli

ST: Train subclassifier Ci on combined views of balanced subset Dli

8: CT: Classify instances in U using the classifiers Ci1 and Ci2
ST: Classify instances in U using subclassifier Ci

9: CT: Use Ci1 and Ci2 to select 2 positive and 2 negative instances and add them to
P
ST: Use Ci to select 2 positive and 2 negative instances, and add them to P

10: end for
11: Augment each balanced subset with the instances from P
12: Discard remaining unused instances from U
13: Create a new unlabeled sample U and update Du = Du - U
14: until U is empty (i.e., the unlabeled data is exhausted)

As mentioned above, STEO differs from the co-training based ensemble, CTEO, at Steps

7-9 in Algorithm 1: instead of using two subclassifiers trained on two different views, only

one classifier is built using all features (view1 and view2 combined), and then this classifier

is used to select the best two positive predictions and the best two negative predictions.

Because each subclassifier in CTEO contributes one positive and one negative instance,

after one iteration, the set P of pseudo-labeled instances contains 2N positive instances
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and 2N negative instances. Therefore, in STEO, we add the top two positives and top two

negatives as predicted by the same subclassifier Ci in order to maintain an augmentation rate

identical to the augmentation rate in CTEO. After the semi-supervised iterations terminate,

the ensemble is used to predict the labels of the test set. The predictions of every subclassifier

in the ensemble on a test instance are combined via averaging, and the resulting probabilities

represent the final class distribution of the instance.

4.3.6 Ensembles using dynamic balancing with positive: STEP

and CTEP

The following two approaches use the dynamic balancing technique proposed in [Stanescu

and Caragea, 2014a], found to be successful for the classical self-training algorithm when

the dataset exhibits imbalanced distributions. The dynamic balancing occurs during the

semi-supervised iterations of the algorithm and uses only the instances that the classifier

(or subclassifiers in the ensemble) predicted as positive to augment the originally labeled

set. In the ensemble context, subclassifiers are used to select the most confidently predicted

positive instances. These variants are named Co-Training Ensemble with Positive (CTEP)

and Self-Training Ensemble with Positive (STEP), and illustrated in Algorithm 3. As before,

the co-training and self-training variants differ at Steps 7-9. For CTEP, during Step 9, the

instance classified as positive with topmost confidence in one view and low confidence in

the second view is added to P , and vice-versa. For STEP, the two most confidently labeled

positive instances are added to P , such that the augmentation rate is identical to that from

CTEP.
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Algorithm 3 Ensembles using dynamic balancing with positive - STEP/CTEP

1: Given: a training set comprised of labeled and unlabeled data D = (Dl, Du), |Dl| � |Du|

2: Create U by picking S random instances from Du and update Du = Du - U , S = sample
size

3: Generate N balanced subsets from Dl : Dl1, . . . , Dln

4: repeat
5: Initialize P = ∅
6: for i = 1 to N do
7: CT: Train subclassifiers Ci1 on view1 and Ci2 on view2 of balanced subset Dli

ST: Train subclassifier Ci on combined views of balanced subset Dli

8: CT: Classify instances in U using subclassifiers Ci1 and Ci2
ST: Classify instances in U using subclassifier Ci

9: CT: Use Ci1 and Ci2 to select 2 positive instances and add them to P
ST: Use Ci to select 2 positive instances and add them to P

10: end for
11: Augment each balanced subset with the instances from P
12: Discard remaining unused instances from U
13: Create a new unlabeled sample U and update Du = Du - U
14: until U is empty (i.e., the unlabeled data is exhausted)

4.3.7 Ensembles that distribute the newly labeled instances: CTEOD

and STEOD

Our next semi-supervised ensemble variants are based on CTEO and STEO, respectively,

and distribute the most confidently labeled instances among the classifiers in the ensemble.

They are referred to as Co-Training Ensemble Original Distributed (CTEOD) and Self-

Training Ensemble Original Distributed (STEOD), and shown in Algorithm 4. In CTEOD

and STEOD, as opposed to CTEO and STEO, instances are distributed such that each

balanced subset receives two unique instances, one positive and one negative, from each

view, instead of adding all instances from P to every balanced subset. The idea that

motivated this change was that different instance distributions would ensure a certain level

of diversity for the constituent classifiers of the ensemble. In Algorithm 4, the co-training

and self-training variants differ at Steps 6-8. As can be seen, the main difference compared

to CTEO and STEO is at Step 9, where classifier Ci1 trained on view1 is augmented with
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the top positive and top negative instances as predicted by classifier Ci2 trained on view2,

and vice-versa. Therefore, each balanced subset is augmented with two positive instances

and two negative instances, and the ensemble better conserves its initial diversity.

Algorithm 4 Ensembles that distribute newly labeled instances - CTEOD/STEOD

1: Given: a training set comprised of labeled and unlabeled data D = (Dl, Du), |Dl| � |Du|

2: Create U by picking S random instances from Du and update Du = Du - U , S = sample
size

3: Generate N balanced subsets from Dl : Dl1, . . . , Dln

4: repeat
5: for i = 1 to N do
6: CT: Train subclassifiers Ci1 on view1 and Ci2 on view2 of balanced subset Dli

ST: Train subclassifier Ci on combined views of balanced subset Dli

7: CT: Classify instances in U using subclassifiers Ci1 and Ci2
ST: Classify instances in U using subclassifier Ci

8: CT: Use Ci1 and Ci2 to select 2 positive instances and 2 negative instances
ST: Use Ci to select 2 positive instances and 2 negative instances

9: Augment current balanced subset, Dli, with selected positive and negative instances
10: end for
11: Discard remaining unused instances from U
12: Create a new unlabeled sample U and update Du = Du - U
13: until U is empty (i.e., the unlabeled data is exhausted)

4.3.8 Ensembles that distribute only positive instances - CTEPD

and STEPD

Our last semi-supervised ensemble variants are based on CTEP and STEP. We again use

the dynamic balancing technique from [15] that adds only positive instances in the semi-

supervised iterations. In addition, instances are distributed among the balanced labeled

subsets, such that diversity is maintained and the subclassifiers are trained on diverse enough

instance subsets, thus increasing the diversity of the constituent ensemble classifiers. The

resulting variants are named Co-Training Ensemble with Positive Distributed (CTEPD)

and Self-Training Ensemble with Positive Distributed (STEPD),and shown in Algorithm 5.
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The co-training and self-training variants differ at Steps 6-8. Overall, at each iteration, 2N

unique positive instances augment the ensemble in which N is the imbalance degree since

two instances originated from each co-training subclassifier. More specifically, each of the

N subclassifier receives two positive instances, different from the instances received by the

other subclassifiers.

Algorithm 5 Ensembles that distribute only positive instances - CTEPD/STEPD

1: Given: a training set comprised of labeled and unlabeled data D = (Dl, Du), |Dl| � |Du|

2: Create U by picking S random instances from Du and update Du = Du - U , S = sample
size

3: Generate N balanced subsets from Dl : Dl1, . . . , Dln

4: repeat
5: for i = 1 to N do
6: CT: Train subclassifiers Ci1 on view1 and Ci2 on view2 of balanced subset Dli

ST: Train subclassifier Ci on combined views of balanced subset Dli

7: CT: Classify instances in U using subclassifiers Ci1 and Ci2
ST: Classify instances in U using subclassifier Ci

8: CT: Use Ci1 and Ci2 to select 2 positive instances and add them to P
ST: Use Ci to select 2 positive instances and add them to P

9: Augment the current balanced subset with positive and negative instances
10: end for
11: Discard remaining unused instances from U
12: Create a new unlabeled sample U and update Du = Du - U
13: until U is empty (i.e., the unlabeled data is exhausted)

4.4 Data and feature representation

For our empirical evaluation, we used five imbalanced and relatively large datasets, originally

published in [Schweikert et al., 2008] and used for a domain adaptation study. The datasets

belong to five organisms, C. elegans, which contains approximately 120K instances, and C.

remanei, P. pacificus, D. melanogaster, and A. thaliana, which contain approximately 160K

instances each. In each of these datasets, the true acceptor splice sites represent 1% of the

total number of instances, hence the datasets exhibit a 1-to-99 imbalance ratio. The class
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label of each instance is either positive to indicate a true acceptor splice site, or negative to

indicate a decoy splice site.

In our previous work [Stanescu and Caragea, 2014a;b], we used 141-dimensional feature

vectors to represent instances, x = (x1, x2, ..., xN) ∈ RN (N = 141). Each dimension corre-

sponds to a position in the original sequences, and takes as values one of the four nucleotides

{A,C,G, T}, as shown in Figure 4.1. Specifically, feature xi indicates the nucleotide found

at the corresponding position i. In the current work, because the co-training algorithm

requires two views of the data, we use the nucleotide/position representation as the first

view and the 3-nucleotide/position representation from [Herndon and Caragea, 2014] as the

second view. As the name suggests, 3-nucleotides are sequences of length 3 (also referred

to as 3-mers or “codons”). Intuitively, 3-nucleotides can capture more context information,

as compared to single nucleotides. The 3-nucleotide/position representation, thus, captures

additional correlations between nucleotides, while maintaining a low number of features

(specifically, 139 features for our sequences which have length 141), thereby making the two

views comparable. Given that nucleotide/position and 3-nucleotide/position features have

shown to be effective in a domain adaptation scenario [Herndon and Caragea, 2014], we

hypothesize that semi-supervised learning could also benefit from these feature representa-

tions. For self-training, we used the two views together and trained the classifiers on the

complete set of features.

61st Position

View I: Nucleotide Features

ClassIntronic Nucleotides Exonic Nucleotides

View II: 3-mer Features     

ACATGCTA … ATCGATCTAG GGATGCTACATCGCGAT … ATCGATCTC   +
1st 141st 

Figure 4.1: Co-training Views of Acceptor Splice Site: Each instance is a 141-nt window
around the splice site, with the “AG” dimer starting at position 61. The sequence is used to
generate two views for co-training: one based on nucleotides and another one based on 3-mers.
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4.5 Experimental setup

4.5.1 Research questions

The experiments were designed to answer the following research questions:

1. Which ensembles are more affected by imbalanced distributions, supervised ensembles

or semi-supervised ensembles?

2. How does the performance of the approaches vary with the imbalance degree?

3. What is the best strategy for utilizing newly labeled instances when using ensembles

of semi-supervised classifiers trained on highly imbalanced data?

The five datasets used in this study were labeled, and therefore we were able to create, via

re-sampling, various data subsets with various imbalance degrees (from 1-to-5 to the original

1-to-99), in order to observe the algorithms’ performance with respect to the imbalance

degree. For example, in the original D. melanogaster dataset, with the imbalance degree

of 1-to-99, there are 159, 748 instances, 1,598 positives and 158,150 negatives. In order

to create the dataset for each experiment, we kept the positive instances and re-sampled

at random N number of negative instances to obtain a new dataset with an imbalance

degree of 1-to-N. For example, in the 1-to-5 experimental dataset for D. melanogaster,

there are 9,588 instances, 1,598 positives and 7,990 negatives. The rest of the datasets,

corresponding to higher imbalance degrees, were built incrementally so that the dataset

with the imbalance degree of 1-to-10 contains all the instances from the 1-to-5 dataset, and

also contains additional negative instances to reach the desired imbalance.

As can be seen, for each experiment, the number of instances varies, and in the semi-

supervised iterations, we used a sample size proportional to the dataset size, such that the

experiments iterate roughly the same number of times.

Because classifiers are highly susceptible to data variation and prone to sampling bias,

we evaluated the models using 10-fold cross validation in which nine folds were used to train
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the model and the tenth fold was used for testing. Data comprising the nine training folds

is further divided into labeled and unlabeled. We randomly pick labeled instances such that

the ratio of positive to negative is maintained and the total number of instances represents

no more than 1%.

4.5.2 Evaluation

Because of the highly skewed distributions of the datasets, in order to objectively measure

the predictive ability of our approaches, we compared their performance in terms of the

area under the Precision-Recall Curve (auPRC), which is a more appropriate assessment

measure than the area under the Receiver-Operating Curve (auROC) [Davis and Goadrich,

2006; Jeni et al., 2013]. In order to evaluate the results, we averaged auPRC values for

the minority (positive) class across the ten folds for each organism. While the trends are

generally maintained for individual organisms, we report averages of auPRC values over the

five organisms, for easier interpretation. We performed two-tailed paired t-tests, as opposed

to one-tailed t-tests, to identify statistically significant differences in either direction, on all

semi-supervised algorithms for all variations of imbalance degrees. The test determines if the

difference between a semi-supervised ensemble algorithm and its corresponding supervised

ensemble baseline (seen as a lower bound) is statistically significant [Dietterich, 1998].

4.6 Results and discussion

Our experimental results are compiled in Table 4.1. The first column represents the imbal-

ance degree of the experiment, which is varied from 1-to-5 to 1-to-99, by randomly discarding

negative (majority) instances. The second column, LBE, shows the results of the supervised

lower bound, which is also an ensemble, consisting of supervised classifiers. LBE is used

as the baseline against which to compare the semi-supervised approaches. From the third

column onwards, each method is presented for co-training and self-training. The results are
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discussed by addressing the research questions. Values marked with bold font represent per-

formances of the semi-supervised experiments that outperform the supervised lower bound.

The starred (*) values denote experiments whose variation in comparison to the lower bound

was found to be statistically significant by the paired t-test in all five organisms. The values

marked with a plus (=) indicate experiments that the paired t-test found to be statistically

significant in four out of five organisms. The values marked with a diamond (G) indicate

experiments that the paired t-test found to be statistically significant in three out of five

organisms.

1. Which ensembles are more affected by imbalanced distributions, supervised ensembles

or semi-supervised ensembles?

The supervised baseline remains somewhat constant irrespective of the imbalance de-

gree, showing that additional labeled data can help alleviate problems caused by ex-

treme cases of imbalance. Note that experiments with milder degrees of imbalance

contain less instances than experiments with higher degrees of imbalance, given the

way we constructed our datasets. When the imbalance degree is the highest, 1-to-99,

we used the entire dataset. Compared to supervised learning, semi-supervised learn-

ing ensembles show a slow decrease in performance as the imbalance degrees become

more prominent, most probably due to the fact that additional unlabeled data is more

difficult to label correctly.

2. How does the performance of the approaches vary with the imbalance degree?

As can be seen from the table, for lower degrees of imbalance (1-to-5 to 1-to-40), semi-

supervised ensembles are considerably surpassing the supervised baselines. As the

experiments become increasingly difficult (the imbalance degree becomes more promi-

nent), some semi-supervised ensembles deteriorate as a result of unlabeled data being

incorrectly classified with high confidence, and they are surpassed by the supervised

baselines.

In the original study [Li et al., 2011] that inspired our CTEO and STEO variants,
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the ensemble approach was used to predict the sentiment polarity of Amazon reviews

with imbalance degrees ranging between 1-to-5 and 1-to-8, and proved to be superior to

supervised baselines. Our variants, CTEO and STEO, also produced good results for

experiments with relatively low imbalance degrees, 1-to-5 and 1-to-10. From 1-to-20

onwards, however, the CTEO and STEO semi-supervised ensembles performed worse

than their supervised baselines, but, surprisingly, the self-training ensembles more

effectively utilized the unlabeled data as compared to the co-training ensembles. For

approaches that employ the “dynamic balancing” technique [Stanescu and Caragea,

2014a] in which only positive instances are used, the ensemble based on co-training

CTEP leveraged the unlabeled data and surpassed the supervised counterpart for

experiments with up to 1-to-60 imbalance degree, after which point no discernible

difference was observed between CTEP and the baseline. The ensemble based on

self-training, STEP, is more sensitive and was deteriorated by the unlabeled data

beginning with Experiment 1-to-10. The ”pseudo” positive instances could have been

misclassified, thereby misleading the classifiers, which all use the same newly labeled

positive instances. In general, the ensembles that do not distribute the instances

among their subclassifiers, deteriorate and fall below the baseline for moderate and

high degrees of imbalance. Variants of the algorithms where instances are distributed

tend to outperform the other approaches. When both positive and negative instances

are used to augment the labeled data, CTEOD and STEOD outperformed the not-

distributed versions CTEO and STEO. The self-training based approach STEOD still

falls below the supervised baseline for experiments over 1-to-50, but the co-training

based approach CTEOD is surpassing the baseline for all experiments. The variants

CTEPD and STEPD, which add only positive instances and distribute them, surpassed

the baseline for all experiments. No significant difference in performance between

CTEOD and CTEPD was observed, but STEPD outperformed STEOD and surpassed

the baseline in all experiments. Thus, the “dynamic” balancing approach proved to

81



be more useful for the self-training based ensemble.

3. What is the best strategy for utilizing newly labeled instances when using ensembles of

semi-supervised classifiers trained on highly imbalanced data?

One important observation that can be made based on our results is that the distribu-

tion of the newly labeled instances among subclassifiers in order to ensure subclassifier

diversity is a useful approach for semi-supervised ensembles. Variants that distribute

the newly labeled instances (either positive and negative for CTEOD and STEOD,

or solely positive for CTEPD and STEPD) achieved overall better performance than

the classifiers that receive all the newly labeled instances (CTEO, STEO, CTEP, and

STEP). Therefore, the conclusion is that diversity in this case is more useful than

the addition of substantially more“pseudo” (newly) labeled instances during the semi-

supervised iterations.

Our results for the paired t-test showed no particular consistency, specifically some ex-

periments and results were statistically significant and others were not.

4.7 Conclusions

In this work, we proposed and studied several ensemble-based variants of two popular semi-

supervised learning algorithms, self-training and co-training, and tested their performance

on the task of predicting splice sites. The task was formulated as a binary classification

problem and the models’ performance was tested on five large acceptor splice site datasets

from five organisms. We adapted the ensembles to address the highly imbalanced datasets

of our case study, and we used various approaches to augment the labeled data during

the semi-supervised iterations. Our results showed that one important constraint of any

ensemble (based on self-training or co-training) is to maintain diversity of the ensemble’s

subclassifiers, by augmenting the labeled subsets of subclassifiers with unique newly labeled

instances. Maintaining the ensemble diversity by adding less but unique instances to each
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Table 4.1: Results from Semi-supervised Ensemble-based Approaches: The values rep-
resent averages of auPRC values for the positive class over the five organisms when the class
imbalance degree varies from 1-to-5 to 1-to-99 and the amount of labeled instances represents less
than 1% of the training data. LBE is the ensemble-based supervised lower bound. CTEO and
STEO are the co-training-based and self-training-based ensembles inspired by the original approach
in [Li et al., 2011]. CTEP and STEP are the co-training and self-training based ensembles that
use the “dynamic balancing” approach introduced in [Stanescu and Caragea, 2014a], in which only
positive instances are used in semi-supervised iterations to augment the originally labeled training
data. CTEOD and STEOD add positive and negative instances but distribute them among all sub-
classifiers, such that the balance and diversity of each subclassifier’s labeled subset is maintained.
CTEPD and STEPD use “dynamic balancing” but also distribute instances among all subclassi-
fiers. The bold font denotes the semi-supervised experiments that outperform the lower bound.
The starred (*) values denote experiments whose variation in comparison to the lower bound was
found to be statistically significant by the paired t-test in all five organisms. The values marked
with a plus (=) indicate experiments that the paired t-test found to be statistically significant in
four out of five organisms. The values marked with a diamond (G) indicate experiments that the
paired t-test found to be statistically significant in three out of five organisms.

Imbal.
Degree

LBE CTEO STEO CTEP STEP CTEOD STEOD CTEPD STEPD

1-to-5 0.452 0.526G 0.567* 0.647* 0.479G 0.692* 0.652* 0.644= 0.612G

1-to-10 0.434 0.462 0.455= 0.557= 0.343= 0.584* 0.573= 0.584= 0.573=

1-to-20 0.437 0.434 0.440G 0.522= 0.292G 0.515G 0.529= 0.523G 0.526*
1-to-25 0.437 0.384G 0.423G 0.497G 0.245* 0.507G 0.465G 0.510G 0.507=

1-to-30 0.430 0.336* 0.408G 0.484G 0.239* 0.509= 0.470G 0.503G 0.514*
1-to-40 0.443 0.404= 0.409 0.492G 0.222= 0.503G 0.468 0.504G 0.497=

1-to-50 0.450 0.372= 0.409G 0.491 0.236* 0.508G 0.451 0.504 0.486
1-to-60 0.471 0.388= 0.398 0.472 0.195= 0.496 0.423 0.494G 0.474
1-to-70 0.450 0.392= 0.411 0.462 0.207= 0.474G 0.444 0.480G 0.478
1-to-75 0.454 0.388 0.399G 0.460G 0.249= 0.483G 0.435 0.483 0.471
1-to-80 0.449 0.353= 0.386= 0.436 0.204* 0.457 0.421G 0.460G 0.465=

1-to-90 0.453 0.359= 0.410 0.449 0.242 0.470 0.423 0.473= 0.456
1-to-99 0.446 0.376 0.389G 0.440= 0.226= 0.464 0.414 0.459 0.457

subclassifier is a better approach than adding the same (larger sets of) instances to all

subclassifiers.

In order to address highly skewed distributions, we found that dynamically balancing of

ensembles by utilizing only positive instances during semi-supervised iterations to augment

the labeled data and distributing them among constituent subclassifiers is a useful technique

that benefits both types of ensembles, but especially the self-training-based approaches. For

co-training-based approaches, whether instances from both classes are added (CTEOD) or
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just positives (CTEPD), the performance variations are negligible. Both approaches CTEPD

and CTEOD surpass the other semi-supervised ensembles studied.

In general, our results show that ensembles based on self-training are surpassed by the

ensembles based on co-training, a trend that has been reported many times in the literature

for single classifiers, e.g., in the prediction of alternatively spliced exons [Stanescu et al.,

2015], or text classification [Nigam and Rayid, 2000].

As part of future work, we consider exploring other base learners (e.g., large margin

classifiers) for self-training and co-training algorithms. Given that aggregated stacking pro-

duced the best results for protein function prediction and genetic interactions prediction in

[Whalen and Pandey, 2013], it would be interesting to explore meta-learning and ensemble

selection for the splice site prediction problem. Transductive approaches demonstrated great

potential for protein classification from imbalanced datasets [Kondratovich et al., 2013], and

SVM has previously been shown to successfully identify splice sites [Sonnenburg et al., 2007].

Therefore, the behavior of SVM in a transductive context is of interest in relation to splice

site prediction.
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Chapter 5

Predicting Cassette Exons Using

Transductive Learning Approaches

5.1 Introduction

Supervised machine learning produces dependable classifiers when large amounts of labeled

data are available for training. Because of expensive generation, however, labeled data

is usually scarce. Unlabeled data is easier to obtain as a result of advancement in high

throughput Next Generation Sequencing (NGS) technologies. This scenario, in which lim-

ited amounts of labeled data along with considerably larger amounts of unlabeled data are

available, suggests the use of semi-supervised learning (SSL), which is a learning paradigm

at the intersection of supervised and unsupervised learning. SSL requires a small amount of

labeled data and larger amounts of unlabeled data in order to build classification tools that

perform better than models trained only on labeled data. Improving supervised classifiers

by leveraging unlabeled data is a very appealing concept, although it does not always work

as intended: in practice, the unlabeled data can degrade a classifier [Catal and Diri, 2009; Li

and Zhou, 2011]. Understanding whether or not unlabeled data will enhance a supervised

learning classifier for a particular problem is still the focus of ongoing research [Singh et al.,
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2009; Wang and Chen, 2013].

In a classic semi-supervised environment, a learner has access to labeled and unlabeled

examples during the training phase, and the classifier must produce a classifier that can be

used to predict the class of future data points not previously encountered. A subtype of SSL,

called transductive learning, aims to classify unlabeled data without generalizing to other

new, unseen examples. The goal of transduction is not to produce an inductive model (as in

supervised and SSL), but to predict the labels of the unlabeled data to which the algorithm

has access during the training phase. This may be an advantage for the algorithm, and

transduction is sometimes viewed as an “easier” case of semi-supervised learning.

Theoretically, transduction is particularly suitable for genome annotation, in which a

newly sequenced genome, ready to be annotated, is typically available up front, along

with limited annotation. Vapnik introduced a popular large-margin transductive approach,

known as Transductive Support Vector Machines (TSVM) [Vapnik and Vapnik, 1998].

TSVM has primarily been used for protein-related problems in bioinformatics [Shin et al.,

2009; Kondratovich et al., 2013; Kuang et al., 2005; Pang and Kasabov, 2004], with a notable

exception for promoter recognition [Kasabov and Pang, 2003].

One of the most popular graph-based transductive algorithms is Label Propagation (LP),

proposed by Zhu and Ghahramani [2002], in which available labels are propagated across a

graph, thereby resembling the Markov random-walk algorithm. LP was originally tested on

the problem of recognizing handwritten digits, but it has also produced successful results

on problems related to natural language processing (e.g., word sense disambiguation). LP

is one of the first methods to gain rapid popularity, and it remains in use as a baseline for

derivations of graph-based algorithmic approaches.

A more recent transductive algorithm is the Adsorption algorithm, a graph-based ap-

proach first introduced by Baluja et al. Baluja et al. [2008] in the context of YouTube

video recommendation. As a variation of “Adsorption”, Talukdar and Crammer Talukdar

and Crammer [2009] proposed the “Modified Adsorption” algorithm (MAD) and used it
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for sentiment classification on Twitter data. Several other problems have been addressed

using MAD Kirchhoff and Alexandrescu [2011]; Liu and Kirchhoff [2013], but only a limited

amount of work has been conducted on biology-related classification problems, with the ex-

ception of De Baets [2014], who applied MAD to a gene prioritization problem. We believe

that MAD’s suitability for bioinformatics comes form the fact that it is scalable to accom-

modate the large amounts of data available in biology-related fields, and can also handle

multiclass problems. The goal of this study is to increase understand of the strengths and

limitations of the three popular transductive learning algorithms (TSVM, LP, and MAD)

for DNA sequence classification, with concrete applications to the problem of predicting a

type of alternative splicing, specifically cassette exons.

Alternative splicing, a naturally-occurring phenomenon first observed in the late 1970s,

increases proteome complexity in eukaryotes. Alternative splicing occurs after transcription.

There several types of alternative splicing events, but in this work we focus on alternatively

spliced exons, also called “cassette” or “skipped” exons. As illustrated in Figure 5.1, when

transcribing DNA into mRNA, some exons, called “constitutive” exons, are always tran-

scribed, while the “cassette” exons can be skipped in some isoforms.

The identification of alternative splicing events, in particular, “cassette” exons, is an

essential step in the task of genome annotation and can be addressed by conducting wet-lab

experiments. However, such experiments are time-consuming and require expert involve-

ment, and unfortunately computational methods based on Expressed Sequence Tags (EST)

and full length cDNA are still expensive because constructing them is difficult. Recently,

RNA-Seq to genome alignments have emerged [Bonizzoni et al., 2005; Lu et al., 2009], but

are not accurate enough (e.g., Cufflinks only detects 44% of true alternative splicing events,

as shown in a recent study [Deng and Zhu, 2014]).

Supervised machine learning approaches have also been implemented for the problem of

predicting alternative splicing events, including the prediction of cassette exons. In [Rätsch

et al., 2005], the task is formulated as a binary classification problem, where the two classes
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Figure 5.1: Cassette versus Constitutive Exons: Exons 1 and 3 are “constitutive” since they
appear in all isoforms, while exons 2, 4, and 5 are “cassette” exons, because they are excluded
from some isoforms.

are given by “cassette” (alternatively spliced) exons and “constitutive” exons (i.e., exons

that are always transcribed). In [Dror et al., 2005], the focus is on predicting alternative

splicing events in humans. The authors used conserved information between human and

mouse, upstream and downstream intronic sequence motifs, and length-based features in the

learning process. Specialized biological kernels that model similarities between sequences

have been used with SVM to predict alternative splicing [Dror et al., 2005; Ben-Hur et al.,

2008].

To the best of our knowledge, no study has compared transductive algorithms on a

DNA sequence classification problem; therefore our research focuses precisely on this com-

parison. The contributions of this paper are threefold: (1) We study and compare three

transductive algorithms based on two paradigms (large-margin and graph-based) in order

to evaluate the algorithms’ suitability for DNA sequence classification. More specifically, we

use TSVM, LP, and MAD to predict cassette exons in Caenorhabditis elegans; (2) We ex-

periment with various data representations and kernels to determine which of them exhibits
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stronger compatibility with transductive methods. We utilize an additive kernel comprised

of the spectrum kernel or weighted degree kernel with shifts on the actual sequence, along

with a linear kernel on sequence length features; (3) We study the effects of the amount of

labeled data on the performance of the transductive algorithms considered.

The rest of the paper is organized as follows. In Section 5.2, we review relevant and

related works and present the context of our study, and explain the need for this research. We

present the algorithms in Section 5.3, and data and similarity measures used are described

in Section 5.4. We enumerate research questions that we want to address and outline the

experimental setting in Section 5.5. The results are presented and discussed in Section 5.6.

Finally, we present our conclusions in Section 5.7, where we also enumerate several directions

we are interested in pursuing as future work.

5.2 Related Work

Transductive learning has been applied to a wide range of domains, including text classifi-

cation, sentiment analysis, movie and video recommendation, natural language processing,

image and phonetic processing, and prediction or diagnosis of various events in medical

fields. In bioinformatics, transductive approaches have been successfully used primarily for

protein-related problems.

Shin et al. Shin et al. [2009] proposed a method for combining multiple graphs ob-

tained from several independent and complementary sources of information. The resulting

combined graph was used with spectral clustering to determine functional classes of yeast

proteins, a multiclass prediction problem. Weston et al. Weston et al. [2005] classified pro-

tein domains into SCP super families (SCP stands for Structural Classification of Proteins).

The authors employed cluster kernels (bagged mismatch and neighborhood mismatch ker-

nels) to utilize unlabeled data and labeled data. Kondratovich et al. Kondratovich et al.

[2013] utilized TSVM for the problem of molecule activity prediction.
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Comparative studies of transductive algorithms have been conducted for sentiment clas-

sification, including a recent study by Yong et al. Ren et al. [2014] at the document level,

for underresourced languages. The authors compared MAD and LP and ran experiments

on datasets from three domains (hotels, notebooks, and books). The datasets consist of

approximately 4,000 reviews, out of which a balanced subset of 300 comprised labeled in-

stances, manually annotated in terms of sentiment polarity (150 positive and 150 negative

reviews). Yong et al. Ren et al. [2014] also decreased the amount of labeled data (from 300

instances to 20 instances) in order to assess the algorithms’ behavior with various amounts

of labeled data. Results showed that MAD outperformed LP. We conduct a similar study,

but we compare TSVM, LP, and MAD on a biological (DNA) classification problem.

For DNA classification, purely SSL approaches, such as Expectation Maximization, Self-

training, and Co-training, have been studied for the problem of predicting alternatively

spliced exons Stanescu et al. [2015] and acceptor splice sites Stanescu and Caragea [2014a;b].

However, the collection of studies on purely transductive approaches is not as rich; here we

mention a notable exception from Kasabov et al. Kasabov and Pang [2003], who used TSVM

on the problem of promoter recognition in a multispecies dataset.

Because transductive learning algorithms rely on similarities, biological kernels are also

relevant to our work. Specialized biological kernels have been proven to enhance classifi-

cation capabilities of supervised large-margin classifiers, for protein related problems. For

example, Kuang et al. Kuang et al. [2005] used SVM with profile-based string kernels from

PSI-BLAST profiling for the problems of protein classification and detecting remote homol-

ogy of proteins, in a supervised classification setting. Rangwala and Karypis Rangwala and

Karypis [2005] designed two classes of kernels, window-based and alignment-based, for SVM

to be used for the problem of detecting remote homologs and identifying folds, respectively.

For supervised DNA sequence classification, Rätsch et al.Rätsch et al. [2005] created a

biological string kernel, called the weighted degree kernel with shifts, and used this kernel

with SVM. We also employ this kernel in our study but in a transductive framework.
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5.3 Transductive Approaches Studied

In this section we describe the types of methods compared in our study, with a focus on

transductive learning and determining which algorithm produces the best results. Many

popular transductive algorithms have different assumptions, but in this study we will fo-

cus on one margin-based algorithm in this study, namely TSVM (Section 5.3.1) and two

graph-based algorithms, LP (Section 5.3.2) and MAD (Section 5.3.3). Other transductive

approaches such as Learning with Local and Global Consistency Zhou et al. [2004] and Label

Matrix Normalization Li et al. [2013], did not produce satisfactory results on our data, and

were therefore excluded from this paper.

5.3.1 Transductive Support Vector Machines (TSVM)

The TSVM algorithm Vapnik and Vapnik [1998] is an extension to the classical SVM al-

gorithm. The “low density separation” assumption states that points residing in the same

cluster share the same label and that the decision boundary should reside in a low density

region, known as a large margin. This separating hyperplane maximizes the margin while

minimizing the training error, as a penalty term for misclassification must be introduced

for the non-linearly separable cases. Because TSVM optimization is an intractable prob-

lem, Joachims Joachims [1999] proposed a solution resembling the classical “self-training”

approach because it uses the completely supervised SVM built on the labeled data, and

then “switches” labels of the unlabeled (test) data in order to optimize the objective func-

tion while consistently classifying the originally labeled examples. In other words, the

new boundary must be consistent with the labeled data. In this paper, we use SVMLight

Joachims [1999] implementation of TSVM that was designed to accommodate problems with

datasets of no more than a few thousand examples.

Similar to SVM, TSVM can benefit from the “kernel trick”, in which the traditional dot

product that appears in the original SVM optimization problem is replaced by a nonlinear
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kernel function, which provides an alternative to measuring the similarity between two

instances. Instead of utilizing the dot product of the instances’ vector representation, the

kernel models different notions of similarity that are more appropriate for the problem

studied. This kernelized version that transforms the representation of instances to a higher

dimensional space allows customized solutions to calculate similarities between instances.

We experiment with various sequence representations and similarity kernels, as explained

in Section 5.4. The same representations and similarity kernels are used to build similarity

(affinity) matrices for the graph-based approach.

5.3.2 Label Propagation (LP)

In graph-based methods, all available data, including labeled instances {(x1, y1), ..., (xl, yl)}

and unlabeled (or test) instances {(xl+1, yl+1), ..., (xu, yu)} where usually l � u, are repre-

sented as nodes in an undirected graph. Formally, the graph is defined as G = {V,E,W},

where V represents the set of nodes (vertices), E = V ×V is the set of edges that represents

every pair of nodes, and W is the set of weights associated with the edges. Weights on the

edges reflect the similarities between the connected nodes. The “smoothness” assumption

of graph-based methods states that because nodes connected by a strong edge are very sim-

ilar, the nodes are more likely to share the same label. LP Zhu and Ghahramani [2002] is

a transductive algorithm that spreads labels of the originally labeled nodes throughout the

graph in order to classify unlabeled nodes, which receive a class distribution in the form

of “soft” labels (probabilities). The elements of the vector Yv maintain the node’s v prior

class distribution, and are different from zero if the node is labeled, and null if the node is

unlabeled. The second vector Ŷv is initialized to zero and its dimensions get assigned values

for each class, as inferred by the algorithm. The smoothness assumption can be mathemat-

ically formulated as the optimization problem from Equation (5.1), where labels ŷi and ŷj

of nodes vi and vj, respectively, should be similar for a large Wij in order to minimize the

function, while ensuring that the original labels are maintained.
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min
∑
i,j

Wij(ŷi − ŷj)2, s.t. Ŷl = Yl. (5.1)

The function from Equation (5.1) can be solved iteratively, using Algorithm 6, which utilizes

the nodes’ label distribution given in the form of a matrix Y = (l+u)×C, where l represents

the number of labeled examples, u is the number of unlabeled examples, and C is the number

of classes. Next, a probabilistic transition matrix T is computed such that the probability

of jumping from node i to node j is

Tij =
wij∑l+u
k=1wkj

(5.2)

After the initialization of Ŷv with class labels for Ŷl and arbitrary values for Ŷu, actual

propagation occurs (line 4 in Algorithm 6). The algorithm continues with re-setting of the

initial labels (line 5 in Algorithm 6) in order to reinforce the labels of the originally labeled

training data. This operation is referred to as “clamping” of the labels. The iterations are

then repeated until convergence (i.e., until the propagation is complete and the labels do

not vary much between iterations).

Algorithm 6 Label Propagation (LP)

Require: Similarity Graph G = {V,E,W}, Label Matrix Yv
1: Compute T = D−1W , where D is diagonal degree matrix
2: Initialize Ŷv = Yv
3: repeat
4: Ŷv = T Ŷv
5: Ŷv = Yv, (v ∈ Vl) “Clamp” the original labels

6: until Ŷv converges
7: return Ŷv, the estimated probability distribution over the labels of vertex v
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5.3.3 Modified Adsorption (MAD)

The original Adsorption Baluja et al. [2008] algorithm resembles the concepts of LP Zhu

and Ghahramani [2002] and also Zhu et al. [2003]. MAD Talukdar and Crammer [2009] can

be considered a “random walk”-type approach that propagates labels throughout the graph

in a more controlled manner, by the means of three probabilities: (1) injection probability,

pinjv , which returns the initial Yv label distribution of a node; (2) continuation probability,

pcontv , that continues to propagate the label from v onto the next node v′ with probability

proportional with the similarity between the two nodes, given by:

Pr[v′|v] =
Wv′v∑

u:(u,v)∈EWv′v
(5.3)

and (3) termination (or abandonment) probability, ptermv that terminates the propagation

process for a node. The condition is that pinjv +pcontv +ptermv = 1.

LP and MAD differ from each other in (1) that MAD does not reinforce the initial

class distribution carried by the training labeled data, thereby presumably dealing with

potential noise in the original label data and (2) that MAD can express uncertainty regarding

classification through the means of a dummy label that acts as an extra “class” initialized

to zero in the beginning and later assigned the default abandonment probability when/if

the label propagation is abandoned at a given training phase (iteration).

The actual class distribution of every node v is stored in Yv, which is a (C+1)-dimensional

row vector enhanced to hold the extra dummy variable ν. C is the number of classes. Similar

to the notation from LP, the predicted (inferred) class distribution of every node is stored

in Ŷv. MAD also utilizes a (C + 1)-dimensional row vector r whose elements are set to zero,

except for the extra element holding the dummy label, which is set to 1 (rl = 0 for l 6= ν,

rν = 1).

MAD, an extensions to the original Adsorption algorithm, has a well-defined optimization
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function (Equation 5.4) that can be solved iteratively in matrix form using the Jacobi method

(Algorithm 7). The first term of the cost function captures the constraint that the inferred

labels should not significantly differ from the original labels. The second term ensures the

“smoothness” assumption and the third term is a regularizer that discourages uncertainty.

The importance of each term is controlled by three hyperparameters, µ1, µ2, and µ3.

min
∑
v

[µ1

∑
k

pinjv (Yvk − Ŷvk)2 + (5.4)

µ2

∑
v

∑
j

pcontv wvj(Ŷvk − Ŷjk)2 +

µ3

∑
k

ptermv (Ŷvk −Rvk)
2]

Algorithm 7 Modified Adsorption (MAD)

Require: Similarity Graph G = {V,E,W}, Label Matrix Yv, Probabilities pinjv , pcontv , ptermv ,
∀v ∈ V

1: Initialize Ŷv = Yv
2: repeat

3: Dv =
∑

uWuvŶv∑
uWuv

4: for v ∈ V do
5: Ŷv = pinjv × Yv + pcontv ×Dv + ptermv × r
6: end for
7: until Ŷv converges
8: return Ŷv, the estimated probability distribution over the labels of vertex v

In this work, we use the Junto implementation of LP and MAD, from https: // github.

com/ parthatalukdar/ junto and we maintain the default parameters. All three transduc-

tive approaches explored in this work require a similarity measurement, in the form of a

kernel function, for each pair of instances, such as in the case of TSVM, or they require a

similarity measurement in the form of a similarity matrix, as in the case of the graph-based

MAD and LP algorithms.
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5.4 Data Representation and Similarity Measures

In our experiments, we use genomic data from the model organism Caenorhabditis elegans in

our experiments. The dataset was published by Rätsch et al. [2005] and it is publicly avail-

able at http: // people. kyb. tuebingen. mpg. de/ raetsch/ RASE. old/ . The dataset

contains 3,018 nucleotide sequences of exons and adjacent introns, i.e., each instance is in

the form left intron–exon–right intron, as illustrated in Figure 5.2. Out of these 3,018 in-

stances, 487 are labeled as alternatively spliced, meaning that the flanked exon is a cassette

exon that can be skipped in some isoforms. The remaining 2,531 sequences are labeled as

constitutive, meaning that the exon is present in all known isoforms. The data was labeled

based on alignments between ESTs and genomic DNA.

Given the intron-exon-intron sequence, two types of features are readily available: (1)

content-based features obtained directly from the DNA sequence, and (2) length-based nu-

meric features obtained from the lengths of the exons and their flanking introns. Accord-

ingly, two types of similarity scores can be captured by string kernels and numeric kernels,

respectively. Because kernels are additive, these two scores can be added, to more accu-

rately reflect the overall similarity between two instances. In our study, we experiment with

three different ways for capturing content-based similarity at the sequence-level using string

kernels, as described below. For lengths, we always use a linear kernel that computes the

dot (inner) product between numeric features. Along with the dataset, Rätsch et al. [2005]

also made available length features associated with the instances.

Length features are obtained directly from [Rätsch et al., 2005] in which lengths of each

upstream intron, exon and downstream intron (of every sequence in the set) were used to

generate 30-dimensional logarithmically spaced vectors for a total of 90 features per instance,

corresponding to the three lengths. The set of length features also includes 3-dimensional

vectors that characterize the frame of the stop codon, resulting in 15 additional features

for a total of 105 length features (LG) per instance. Labels of the instances were not used

during the feature generation process. The following sections describe how we used the
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Figure 5.2: Intron-Exon-Intron Sequence Example: Example of an instance from the dataset
in the form of intron-exon-intron. Content-based features are generated from 400-nt windows
around the splice sites, while length features are obtained from the lengths of the exons and
flanking introns.

string kernels to capture DNA-level similarities.

5.4.1 Weighted Degree Kernel with Shifts (WDS)

The similarity between two DNA strings using the Weighted Degree kernel with Shifts

(WDS) [Rätsch et al., 2005] is given by the count of co-occurrences of exact k-mers at

correspondent (exact or shifted) positions in the sequences, where k ∈ {1..degree}, and

whose weights are controlled by β coefficients, with β dependent on the size of k. In

order to utilize WDS, the DNA sequences must have equal lengths. Because most splicing

regulatory information is typically aggregated in the proximity of splice sites, the WDS

is applied on 400-nucleotide windows centered around the acceptor and donor splice sites

in regions upstream and downstream of the exon. The more sequence overlap that exists

close to the splice site, the higher the score captured by the WDS. Leveraging the additive

property of kernels, the two score values that correspond to donor and acceptor sites are

then added; the combined kernel reflects the overall sequence similarity. For more details

regarding WDS, the reader is referred to [Rätsch et al., 2005].
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5.4.2 K-Spectrum Kernel (k-SK)

The k-Spectrum Kernel (k-SK) is a linear kernel introduced in [Leslie et al., 2002] for strings;

we combine it with the linear kernel for length features. The Spectrum Kernel, designed for

protein classification using SVM, is similar in nature to the feature vector representation of

sequences because it describes the content of a sequence, in terms of substring frequencies.

However, it is ignorant to the order or position of such occurrences. In order to calculate

the pairwise similarity of two instances (DNA strings), the k-SK uses all subsequences of

a fixed length k that occur throughout the instance. If subsequences co-occur frequently

throughout two DNA strings, their dot (inner) product under the kernel will be large. The

intuition is that the more subsequences two DNA strings have in common, the more likely

they are to be similar and share the same biological functions. Biological signals are rela-

tively short, usually 6-14 nucleotides long. We use the Spectrum Kernel with length k = 6

denoted 6SK because a majority of the biological motifs described next are 6-nucleotides

long. Other studies of exonic splicing regulators have also focused on hexamers [Fairbrother

et al., 2002; Wang et al., 2009].

5.4.3 Motif-Spectrum Kernel (MSK)

WDS and SK can be used if there is no prior knowledge about biologically significant motifs

(that have an influence on the problem of interest) because WDS and SK use all possible

occurrences of subsequences of variable length (in the case of WDS) or fixed length (in

the case of SK) to compute similarities. In order to better understand how well “unbiased”

kernels capture sequence similarity in a transductive framework, we use the Spectrum Kernel

in a slightly different manner. Instead of using all occurrences of k-length subsequences,

we use only a selected subset of motifs recognized to have biological significance, and we

omit the rest of the subsequences. In other words, we only account for biological motifs,

known as splicing regulators, established to work as signals responsible for the occurrence
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of alternative splicing and potentially result in good classification performance. We denote

this kernel as Motif-Spectrum Kernel, MKS.

Biologically relevant signals, such as splicing regulators, can occur in exons and introns.

The ones that occur in exons are called Exonic Splicing Enhancers (ESE), while those oc-

curring in introns are called Intronic Regulatory Sequences (IRS). We use 45 ESE hexamers

(6-nucleotide long) derived by Xia et al. [2010] for the Caenorhabditis elegans dataset. The

set of IRS motifs Kabat et al. [2006] was obtained using comparative genomics in nematodes

based on the observation that intronic sequences that are relevant for alternative splicing

are highly conserved among closely related species. In order to form the set of IRS motifs,

we combined the upstream and downstream motifs and removed duplicate motifs, resulting

in a total of 165 IRS motifs assumed to be informative for alternative splicing. The class

label was not used in any of these procedures, and repetitive regions were not specifically

addressed. A total of 205 biological motifs with variable lengths were present. Their use-

fulness in a purely semi-supervised framework was reported in [Stanescu et al., 2015], and

we anticipate that its quality will also aid transduction.

5.5 Experimental Setup

In this work, we investigate the performance of transductive algorithms TSVM, LP, and

MAD on the binary classification problem of predicting cassette exons. Our experimental

setup is designed to address the following research questions:

1. What is the most effective transductive algorithm for the problem of identifying cas-

sette exons based on DNA sequences?

2. How does the performance of the transductive algorithms vary with the amount of

labeled data?

3. What is the most useful sequence representation and similarity measure (or kernel)

when classifying instances transductively?
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5.5.1 Evaluation

We used 5-fold cross-validation to avoid sampling bias and to be consistent with [Rätsch

et al., 2005]. Furthermore, in order to use the tuned parameters of the Weighted Degree

kernel with Shifts (WDS), we utilized identical splits from the supervised study conducted

on the same dataset as [Rätsch et al., 2005]. In order to simulate a transductive environment,

we deliberately hide some of the labels at random.

In general, the effect of the labeled data on the classification ability, in semi-supervised

and transductive frameworks, is far more significant than the effect that the same amount

of unlabeled data would have [Joachims, 1999]. In order for the unlabeled instances to have

an observable impact, they must significantly outnumber the labeled instances. Therefore,

we limit the amount of labeled data to 20% of the total dataset, and the test (unlabeled)

instances represent the remaining 80%. In order to observe variation in the algorithms’

performance, we also decrease the labeled data from 20% (approximately 600 instances per

fold, on average) to 5% (approximately 150 instances per fold, on average), by discarding

some instances at random, while the test dataset remains the same 80% (approximately

2,415 instances per fold, on average).

Because our dataset is relatively imbalanced (with approximately 5 times more “consti-

tutive” instances compared to “cassette” instances) – the accuracy of the predictions would

not reflect the quality of the classifiers [Provost et al., 1998]. Therefore, we report the

performance in terms of area under the Receiver Operating Characteristic curve (auROC)

[Huang and Ling, 2005], averaged over 5 folds, and the afferent variance.

5.6 Results

We present our results in Table 5.1. The auROC values emphasized in bold font represent

the best values obtained by an algorithm for a given amount of labeled data. The colored

cells highlight values of the best result overall for a given amount of labeled data. In
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the first column, the percentages refer to the amount of labeled data used for training

the algorithms. The three groups of experiments represent the performances of TSVM,

LP, and MAD algorithms using each of the three data representations (and corresponding

kernels): (1) the Weighted Degree kernel with Shifts (WDS) for the DNA sequence along

with the Linear Kernel (LK) for the Length Features (LG), (2) the 6-Spectrum Kernel (6SK)

capturing 6-mers along with the Linear Kernel (LK) for the Length Features (LG), and (3)

the M -Spectrum Kernel (MSK) for the biologically relevant motifs and the Linear Kernel

(LK) for the Length Features (LG).

TSVM LP MAD

WDS+LK 6SK+LK MSK+LK WDS+LK 6SK+LK MSK+LK WDS+LK 6SK+LK MSK+LK

DNA+LG 6MERS+LG Motifs+LG DNA+LG 6MERS+LG Motifs+LG DNA+LG 6MERS+LG Motifs+LG

5% 0.777±4.9E-4 0.614±3.9E-4 0.903± 1.9E-4 0.800± 6.3E-4 0.615± 4.6E-4 0.534±93.3E-6 0.828±39.0E-4 0.621± 4.9E-4 0.742±2.0E-4

10% 0.811±3.6E-4 0.652±4.5E-4 0.916±59.6E-6 0.810±71.4E-6 0.698± 6.3E-4 0.565±14.3E-6 0.828± 7.9E-4 0.729± 3.3E-4 0.781±4.3E-4

15% 0.838±3.7E-4 0.616±7.0E-4 0.887± 1.3E-4 0.801± 3.5E-4 0.815±15.1E-4 0.596±37.2E-6 0.830±37.9E-4 0.873± 1.6E-4 0.830±3.5E-4

20% 0.858±4.5E-4 0.700±3.4E-4 0.926±94.8E-6 0.814±14.1E-6 0.864±70.9E-6 0.612± 1.7E-4 0.888± 4.5E-4 0.942±32.2E-6 0.835±3.5E-4

Table 5.1: Transductive Results for Cassette Exon Identification: Averages of auROC
values over the 5 folds and the corresponding variance, while varying the amount of labeled data
from 5% to 20%, and maintaining a fixed test set of 80%. The algorithms are Transductive Support
Vector Machines (TSVM), Label Propagation (LP), and Modified Adsorption (MAD). The first
similarity measure used is the Weighted Degree kernel with Shifts (WDS) for the DNA sequence
along with the Linear Kernel (LK) for the Length Features (LG). The second similarity measure is
the 6-Spectrum Kernel (6SK) capturing 6-mers along with the Linear Kernel (LK) for the Length
Features (LG). The third similarity measure is the M -Spectrum Kernel (MSK) for the exonic
splicing enhancers and intronic regulatory sequences (Motifs) along with the Linear Kernel (LK)
for the Length Features (LG). The values emphasized in bold font represent the best performance
recorded by an algorithm for a given amount of labeled data, and the colored cells highlight the
values of the best results overall, for a given amount of labeled data.

We discuss the results by answering the research questions.

1) What is the most effective transductive algorithm for the problem of identifying cassette

exons based on DNA sequences? Empirical results of our study are encouraging, showing

that from limited amounts of labeled data, the performance of transductive classifiers reaches

high auROC values (from 0.903 to 0.942 for various amounts of labeled data). These values

are comparable to the ones from our previous study of purely semi-supervised algorithms

for this problem [Stanescu et al., 2015], however, a direct comparison is not possible since
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the unlabeled and test sets differ in semi-supervised learning from transductive, where the

unlabeled data is the actual test data to predict. Overall, TSVM performs better than MAD

and LP, especially when trained on smaller amounts of labeled data (5% to 15%). However,

MAD more advantageously utilizes the 20% labeled instances.

2) How does the performance of the transductive algorithms vary with the amount of

labeled data? As expected, the amount of labeled data is a deciding factor for training

quality classifiers, and auROC values for all algorithms generally increase with the increase

in the amount of labeled data. The trends from our study are consistent with the trends

reported on the task of sentiment classification [Ren et al., 2014].

For the 6-mers representation, MAD and LP recorded more rapid increases in perfor-

mance from increasingly larger amounts of labeled data. The classification performance

improved from 0.621 auROC in the case of 5% labeled data to 0.942 auROC in the case of

20% labeled for MAD, and from 0.615 auROC to 0.864 auROC in the case of LP. TSVM

is not as sensitive to the amount of labeled data, and variations are not as abrupt as for

graph-based approaches. However, for 6-mers and motifs, TSVM records a counterintuitive

decrease in performance at 15% labeled data, most likely due to an erroneously found hyper-

plane, unrepresentative of the whole labeled data, also suggested by slightly higher variance.

This is understandable since TSVM relies on support vectors found in the low density region,

as opposed to graph-based methods that utilize a diffusion approach to propagate labels.

3) What is the most useful sequence representation and similarity measure (or kernel)

when classifying instances transductively? WDS is particularly suitable for MAD and LP

when learning from limited amounts of labeled data and somewhat useful for TSVM when

additional labeled data is available. The 6SK is most appropriate for MAD, which, compared

to all three algorithms, seems to be least susceptible to noise, indicated by the fact that when

using 6-mers, which probably contain more noisy features than the other representations,

MAD achieves better results than TSVM and LP. MSK (biological motifs) along with the

length features are the most helpful for TSVM, possibly because TSVM is able to locate
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a more accurate hyperplane in the space rendered by informative features (i.e., biological

motifs established as relevant to alternative splicing) since they are fewer than the 6-mers,

which render data to a much higher dimensional space, thereby increasing the difficulty in

identifying a good separation.

For 6-mers, TSVM records its worst performance as it is unable to find a correct sepa-

rating hyperplane in the space generated by these features, possibly due to an unnecessarily

high dimensionality (20 times higher than the motifs; 4.2K 6-mers vs 210 motifs). Because

MAD has more more features available in the 6-mers set, a greater amount of common

information could be propagated among the instances. However, if some of the information

in the 6-mers set is noisy, the labeling becomes erroneous, since strong edges could connect

positive instances to negative instances. This can potentially occur for small amounts of

labeled data (e.g., 5% and 10%). However, for relatively larger amounts of labeled data,

(e.g., 15% and 20%), the 6-mers can propagate the labels more accurately. For LP, the best

performance is recorded for 6-mers, when the algorithm is presented with relatively larger

amounts of labeled data (15% and 20%).

As opposed to TSVM, MAD records unsatisfactory results from MSK (the motif repre-

sentation), possibly due to the fact that there are only 210 motifs available, and they don’t

capture overall sequence similarity as well as the set of all 6-mers used by the 6KS, or the

various-length matches captured within close proximity of the splice sites by the WDS. Fur-

thermore, a smaller set of motifs could lead to higher-degree nodes which are discouraged

in MAD, hence the correct label is not propagated along the connected nodes. For LP, the

motif representation is the least compatible.

5.7 Conclusions

In this study, we investigate the applicability of transductive approaches to DNA sequence

classification. The case study of our work is the problem of discriminating between cassette
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(or alternatively spliced) and constitutive exons. Experimental results suggest that trans-

ductive learning is a useful approach for addressing DNA sequence classification tasks, but

we should note that it may be possible to observe different trends for different problems.

We found that biologically relevant features are better exploited by the discriminative

nature of the TSVM algorithm, which is able to find a good separation boundary in the space

defined by biological motifs. However, when such features are unavailable, the k-Spectrum

Kernel is more appropriate for graph-based approaches if a reasonable amount of labeled

data is available. Although the best classification performance came mostly from TSVM,

this is not a feasible solution when managing massive amounts of data, comprised of more

than a few thousand instances. However, MAD is particularly suitable for “big data” and

could solve problems posed by larger datasets. Similar to previously reported results Ren

et al. [2014], MAD outperformed LP on all cases.

In future work, we plan to address other DNA sequence classification problems and eval-

uate graph-based algorithms on more ample datasets (with hundred thousands instances).

Furthermore, choosing the appropriate similarity measure strongly influences the effective-

ness of graph-based approaches and kernel-based algorithms. An investigation of other ker-

nels and their compatibility with DNA transductive classification would also be interesting

and beneficial.
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Chapter 6

Conclusions and Future Work

Semi-supervised and transductive learning algorithms constitute an efficient and less expen-

sive alternative to accumulating extra labels thereby improving classification performance.

In this dissertation, we have explored the applicability and usefulness of semi-supervised

and transductive learning methods for bioinformatics problems. Our experiments show that

such algorithms can take advantage of the unlabeled data and ultimately achieve better ac-

curacy than purely supervised algorithms. For the problem of cassette exon identification,

the performances achieved by semi-supervised and transductive learning are as high as 0.964

auROC (as opposed to its supervised counterpart of 0.867) and 0.942, respectively.

In general, the performance of all algorithms (semi-supervised, transductive, as well as

the supervised baselines) improves with more labeled data. Iterative wrapper methods, such

as Expectation Maximization, Self-training, and Co-training have proven to be surpassing

the predictive capabilities of their supervised counterparts when the amount of unlabeled

data is at least four times as large as the amount of labeled data.

For better visualization, we have summarized the results of our experiments from Chapter

2 for cassette exon identification from Table 2.1 and Table 2.2 in the following two graphs,

Figure 6.1 and Figure 6.2.
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Figure 6.1: Trends of SSL algorithms when trained from increasingly large amounts
of unlabeled data Performance (auROC) variation with increasing amounts of unlabeled data
of three iterative semi-supervised algorithms, Expectation Maximization (EM), Self-training (ST),
Co-training (CoT) with Näıve Bayes Multinomial (NBM) as base classifier while the labeled data
remains fixed at 5% from the training set

As previously reported in the literature, Co-training is outperforming self-training, prob-

ably due to the two views “informing” each other about the best predictions. However, Co-

training is also more unstable than Self-training and Expectation Maximization, with high

variation in the performance when learning from increasingly large amounts of unlabeled

data. One possible explanation is that during the semi-supervised iterations, instances in-

correctly classified with high confidence are perturbing the classifiers, and errors reinforce

themselves leading to a decrease in performance.

From the experiments of Chapter 2, another apparent trend that is consistent with

previously reported results is that Random Forest, because it is an ensemble, surpasses SVM

and Näıve Bayes Multinomial, reaching the highest auROC values, for both supervised (up

to 0.971) and semi-supervised (up to 0.964) learning.
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Figure 6.2: Trends of SSL algorithms when trained from increasingly large amounts
of labeled data Performance (auROC) variation with increasing amounts of labeled data of
three iterative semi-supervised algorithms, Expectation Maximization (EM), Self-training (ST),
Co-training (CoT) with Näıve Bayes Multinomial (NBM) as base classifier while the unlabeled
data remains fixed at 70% from the training set

We present some of the most interesting trends for two of the transductive learning

algorithms from Chapter 5 in Figure 6.3. TSVM is particularly compatible with the repre-

sentation from biological motifs, being able to find a good separation hyperplane with the

help of relatively few, but highly predictive features. Conversely, MAD is more resilient

to the noise present in the 6-mers set, whose dimensionality is more than two orders of

magnitude higher than the dimensionality of the motifs.

TSVM learns very poorly from the 6-mers set; it is possibly steered in the wrong direction

by the high dimensionality of the 6-mers. MAD find the set of biological motifs too small

for a correct propagation of the labels throughout the graph. The variable-length positional

match representation (denoted “ dna” in Figure 6.3) captured by the Weighted Degree

Kernel with Shifts (WDS) represents a good alternative when biological motifs are not

available, especially when the labeled data represents less than 15% of the total amount of
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available training instances.
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Figure 6.3: Trends of transductive learning from increasing amounts of labeled data
Performance (auROC) variation of TSVM and MAD with DNA-based features ( dna), 6-mers, or
biological motifs.

Splice site prediction, the second problem studied in this work, faces the data imbal-

ance problem, a challenge prevalent in bioinformatics. Specifically designed for the semi-

supervised paradigm, we have introduced a novel “dynamic balancing” (Section 3.2.2) tech-

nique that can improve traditional iterative semi-supervised classifier when the data ex-

hibits highly skewed class distributions. The method requires that the originally limited

set of labeled instances be augmented only with newly classified positives. This approach

ensures that the already insufficient labeled information is not wasted (as in the case of

under-sampling, where discarding negative instances results in information loss) and it also

potentially helps overfitting (as in the case of over-sampling, where instance replication may

cause bias towards the labeled set yielding in poor generalization).

Some interesting trends are presented in Figure 6.4 and Figure 6.5 and correspond to the

results from Section 3.4.2. STP is consistently outperforming the other balancing methods

109



as well as the original baseline. As the imbalance gets more and more prominent, the

performance of all algorithms decreases, showing that a good classification function is more

difficult to obtain since the learning algorithms are more biased towards the majority class.

Also, as the problem gets more difficult, i.e., the imbalance degree is higher than 1-to-

50, over-sampling is outperforming under-sampling when learning from 5% labeled data.

When learning from 10% labeled data, over-sampling takes over at imbalance degrees of

1-to-90 and higher, which leads to the conclusion that if enough labeled data is available,

under-sampling should be preferred, since it decreases computation times.
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Figure 6.4: Trends of SSL and data balancing methods for various imbalance degrees
when learning from 5% labeled data Performance (auPRC)variation of self-training based
on Näıve Bayes from increasingly high imbalance degrees: Self-training Imbalanced (STI), Self-
Training with Positives (STP), Self-training from Under-sampled (STU) and Self-training from
Over-sampled (STO).
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Figure 6.5: Trends of SSL and data balancing methods for various imbalance degrees
when learning from 10% labeled data Performance (auPRC) variation of self-training based
on Näıve Bayes from increasingly high imbalance degrees: Self-training Imbalanced (STI), Self-
Training with Positives (STP), Self-training from Under-sampled (STU) and Self-training from
Over-sampled (STO).

As opposed to single semi-supervised classifiers (Chapter 3), the ensemble-based ap-

proaches achieve satisfactory performance from as little as 1% labeled data for the problem

of splice site prediction. We present some interesting trends from our empirical analysis

of Chapter 4 in Figure 6.6. The performance of the supervised ensemble baseline is not

dropping with increasing data imbalance as the semi-supervised ensembles (or the single

semi-supervised classifiers). The “dynamic balancing” has proved useful for ensemble clas-

sifiers as well, and in addition, distributing the instances in order to maintain the diversity of

the constituent sub-classifiers is also a useful approach. Similarly to our findings from Chap-

ter 2, the ensembles based on Co-training (CoT) are slightly outperforming the Self-training

(ST) ensembles.
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Figure 6.6: Trends of ensemble-based SSL for various imbalance degrees when learning
from 1% labeled data Performance (auPRC) variation of ensemble-based semi-supervised clas-
sifiers from increasingly high imbalance degrees. CTEPD and STEPD are our proposed ensemble
variants built from positive distributed pseudo-labeled data obtained during the semi-supervised
iterations. The approaches inspired from the original approach are denoted STEO and CTEO,
and the ensemble based supervised lower bound is LBE.

We propose several future research directions for the two problems explored in our work,

cassette exon identification and acceptor splice site prediction.

Transductive learning, especially the graph-based Modified Adsorption algorithm, has

not been used much for bioinformatics problems. Given that it is a robust algorithm (with

a well defined optimization function) designed for “big data”, its applicability to other

problems is worth studying. A potential study could focus on the comparison of transductive

learning approaches and unsupervised feature generation, when biologically relevant features

are not easily available, to explore various representations and their compatibility with these

algorithms.

Graph-based methods, such as Modified Adsorption and Label Propagation, applied to

splice site prediction can provide new insights into the behavior of transductive algorithms

in the presence of highly imbalanced distributions, as well as the algorithms’ compatibility
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with various representations of DNA sequences.

Ensemble-based semi-supervised learning might benefit from different base-classifiers, or

techniques such as stacking or ensemble-selection.
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Glossary

6SK 6-Mer Spectrum Kernel. 102, 103

auPRC Area under Precision Recall curve. 42, 43, 45, 54, 58, 79

auROC Area under Receiver Operating Characteristic curve. 21, 22, 25, 26, 30, 31, 42,

79, 101–103, 106, 107

CoT Co-training. 13, 18, 24–26, 28–30, 111

CTEO Co-training ensemble inspired by the original approach. 71–73, 80–82

CTEOD Co-training ensemble inspired by the original approach and distributed. 74, 81–84

CTEP Co-training ensemble with positive. 73, 75, 81, 82

CTEPD Co-training ensemble with positive distributed. 75, 81, 82, 84

DNA Deoxyribonucleic acid. 1, 4, 5, 7, 10, 11, 16, 19, 20, 31, 35, 38, 40, 56, 57, 59, 60, 66,

88, 89, 91, 97–100, 102, 104, 105, 113

EM Expectation Maximization. 11–13, 16–18, 24–26, 28–31

EMW Expectation Maximization with weighted instances. 24–26, 28, 29

ESE Exonic Splicing Enhancers. 20, 100

EST Expressed sequence tags. 11, 15, 20

IRS Intronic Regulatory Sequences. 20, 100
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LB Lower Bound. 24–26, 28–30

LBI Lower bound from imbalanced. 43, 45, 48, 49, 52

LBO Lower bound from over-sampling data. 43, 45

LBU Lower bound from under-sampling. 43, 45

LG Length features. 97, 102

LK Linear Kernel. 102

LP Label Propagation. x, 87–89, 91–93, 95, 96, 100, 102–105

MAD Modified Adsorption. x, 87–89, 91, 92, 95, 96, 100, 102–105, 108

MSK Motif Spectrum Kernel. xi, 99, 102–104

NBM Näıve Bayes Multinomial. 17, 19, 24, 25, 29–31

RF Random Forest. 16, 19, 24, 28, 30, 31

RNA Ribonucleic acid. 4, 16

SK Spectrum Kernel. x, 99

SL Supervised learning. 2, 9

SMOTE Synthetic Minority Over-sampling Technique. 38, 39, 45, 48, 49, 56, 58

SSL Semi-supervised learning. 3, 10, 11, 14, 16–19, 21, 23, 25, 26, 28–31, 86, 91

ST Self-training. 13, 24–26, 28–31, 111

STEO Self-training ensemble inspired by the original approach. 71–74, 80–82
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STEOD Self-training ensemble inspired by the original approach and distributed. 74, 81,

82

STEP Self-training ensemble with positive. 73, 75, 81, 82

STEPD Self-training ensemble with positive distributed. 75, 81, 82

STI Self-training from imbalanced data. 37–39, 47–49, 52, 54, 57

STO Self-training from imbalanced data. 38, 39

STP Self-training with positive instances. 39, 47–50, 109

STU Self-training from under-sampling. 38, 39

SVM Support Vector Machines. 14, 16, 19, 22, 24, 26, 30, 31, 55, 56, 65, 66, 68, 84, 92,

99, 107

TL Transductive Learning. 4

TSVM Transductive Support Vector Machines. x, 57, 87–92, 96, 100, 102–105, 108

UB Upper Bound. 24, 28

WDS Weighted Degree Kernel with Shifts. x, 98, 99, 101–104, 108
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