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Abstract

The modulus of a family of walks quantifies the richness of the family by favoring having

many short walks over a few longer ones. In this dissertation, we investigate various families

of walks to study new measures for quantifying network properties using modulus. The

proposed new measures are compared to other known quantities. Our proposed method is

based on walks on a network, and therefore will work in great generality. For instance, the

networks we consider can be directed, multi-edged, weighted, and even contain disconnected

parts.

We study the popular centrality measure known in some circles as information centrality,

also known as effective conductance centrality. After reinterpreting this measure in terms

of modulus of families of walks, we introduce a modification called shell modulus centrality,

that relies on the egocentric structure of the graph. Ego networks are networks formed

around egos with a specific order of neighborhoods. We then propose efficient analytical

and approximate methods for computing these measures on both directed and undirected

networks. Finally, we describe a simple method inspired by shell modulus centrality, called

general degree, which improves simple degree centrality and could prove to be a useful tool

for practitioners in the applied sciences. General degree is useful for detecting the best set

of nodes for immunization.

We also study the structure of loops in networks using the notion of modulus of loop

families. We introduce a new measure of network clustering by quantifying the richness of

families of (simple) loops. Modulus tries to minimize the expected overlap among loops by

spreading the expected link-usage optimally. We propose weighting networks using these

expected link-usages to improve classical community detection algorithms. We show that

the proposed method enhances the performance of certain algorithms, such as spectral par-

titioning and modularity maximization heuristics, on standard benchmarks.



Computing loop modulus benefits from efficient algorithms for finding shortest loops, thus

we propose a deterministic combinatorial algorithm that finds a shortest cycle in graphs. The

proposed algorithm reduces the worst case time complexity of the existing combinatorial

algorithms to O(nm) or O(〈k〉n2 log n) while visiting at most m − n + 1 cycles (size of

cycle basis). For most empirical networks with average degree in O(n1−ε) our algorithm is

subcubic.
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Computing loop modulus benefits from efficient algorithms for finding shortest loops, thus

we propose a deterministic combinatorial algorithm that finds a shortest cycle in graphs. The
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Chapter 1

Introduction

1.1 Introduction

Network analysis has become a way to understand complex interconnected systems in differ-

ent disciplines, such as social sciences, engineering, statistics, biological systems, etc. Uni-

versal properties of networks in different domains have been discovered. However, the rapid

growth of this field in the recent two decades also brought challenges such as scalability and

domain-specific needs. This leads to the introduction of ad-hoc methods that lack theoretical

background. As an example, several methods that aim at ranking the nodes based on their

spreading abilities, have been proposed21–23. Moreover, there are studies that focus on the

applicability of existing methods for specific applications24, claiming that “network analysis

has been driven much more strongly by its methods than by its theories.” Furthermore, a

method that is designed for a specific domain can be ineffective for another.

Most of the classical measures are based on simplified concepts such as geodesic distances

or counting simple structures, e.g. triangles for clustering coefficients. More sophisticated

methods, such as current flow closeness centrality7, or random walk betweenness central-

ity25, lack scalability and also, need special accommodations such as “symmetric” graphs

(undirected), or full ranked matrices (connectedness). As an example, in a piece of the Face-

book network in Figure 1.1, the clustering coefficient defined based on average number of
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Figure 1.1: An excerpt of Facebook network with n = 2888 and m = 2981. Edges represent
friendships between nodes3 with clustering coefficient 0.03%.

existing triangles over the number of possible triangles near a given node, cannot quantify

the structure of the loops in the network. A trade-off is required to be able to analyze the

local and global structure of the network, and it is not clear how to weigh these different

aspects. Our modulus technique will provide a synthesis between local and global properties.

In some cases, researchers have discovered important aspects of a network by analyzing

the overall network topology. One example is the number of short cycles in a graph. Methods

have appeared that take this into account by counting triangles, squares, etc, and then use

this information to find communities in a network. For instance, Radicchi et al. count the

number of short loops that pass through a given link as a local measure for clustering26.

To extend the method in26 for low clustered networks, Vragovic et al. in27 consider general

loops (with any length) passing through a node. However, according to28 its results are not

satisfying compared to standard clustering methods. The authors in29 define a new weighting

for a network to improve modularity maximization methods for finding communities with

sizes smaller than the resolution limit30. The weighting for a link comes from how many loops
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with length 3 and 4 it forms with the adjacent links. They show the effectiveness of their

method on Lancichinetti, Fortunato, and Radicchi (LFR) benchmark networks. Also the

authors in31 propose weighting a network with a combination of link-betweenness centrality32

and another measure called common neighbor ratio to enhance community identification.

These are ad-hoc methods that lack theoretical justification. Modulus can offer a unified

framework to these issues with a common theoretical background.

The requirement for complete knowledge of the network (sociocentric data) is another

drawback of existing methods. In the social sciences, anonymizing the data to protect the

privacy of network entities and also ethical reasons can prevent scientists from accessing

the complete network. Egonetworks or also known as neighborhood networks and are con-

sidered as samples of the underlying network. They are constructed around focal nodes

(egos) and allow for more flexible data collection and inexpensive computational costs. Thus

egonetworks are increasingly popular among social scientists33–36.

Several attempts have been made to address the need of egocentric measures21;37;38. In

addition to experimental studies, more theoretical justification is required. Marsden39 pro-

posed the egocentric versions of classical sociocentric centrality and betweenness centrality

measures introduced in Freeman’s seminal works32;40. He considers the first order neigh-

borhood of ego and shows that classical centrality measures reduce to degree centrality.

However, the egocentric betweenness centrality can have different biases. Egocentric mea-

sures show more stability41 against network sampling and less sensitivity to measurement

errors42. In Chapters 3 and 4, we study scalable centrality measures for ego networks based

on modulus.

Real networks contain closely connected subnetworks with local structural patterns char-

acterized by their richness of loop43. Loops offer a richer set of pathways compared to

treelike topologies; thus rich loop structures improve network robustness44 and impact prop-

agating and transporting processes in networks45. Previous approaches on the analysis of

loop structures focused on loops with lengths of order 3–5 separately46;47 and few such as48;49

emphasized the role of higher order loops to characterize their overall structures. We consider

assessing the loop structure of a network using modulus. Thus we will take into account
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loops of any length as well as their relative position. This allows us to analyze network

transitivity measures such as clustering coefficients, and to provide more information for

community detection algorithms.

In conclusion, the abstract framework of modulus allows us to analyze a given network

using a variety of families of walks, that can be defined in response to specific needs. We

develop new measures based on the richness of these families of walks that generalize existing

classical measures, while remaining scalable to address practical applications. We consider

different scenarios such as lack of complete network data or networks with added constraints,

such as directedness. Our focus for applications is investigating networked epidemic processes

and developing tools to mitigate disease outbreaks in contact networks or promote awareness

in information dissemination networks.

This dissertation studies applications of the modulus of families of walks on networks

developed in50–52. This is a discrete analog of the classical theory of modulus of curve

families in complex analysis53. Although modulus on networks has been studied under

several different guises, see54–57, it is not as well understood as in the continuum setting.

Modulus is a way of measuring the richness of certain families of objects on a network,

such as loops, walks, trees, etc, and is a discrete analog of the classical theory of modulus of

curve families in complex analysis53. Although modulus on networks is not a new concept

(see55;56), it is not as well developed as in the continuum setting. Our study of modulus of

walks on networks originated from58 in which the authors compared it to a new geometric

measure they called “epidemic quasimetric”. In50, the authors showed that modulus is a

standard convex optimization problem. Continuity and smoothness properties of modulus

on networks were considered in51. A probabilistic interpretation provided in52.

Modulus is a versatile tool to analyze networks. Different types of families of walks

can be used to learn about different aspects of the network. In59, we introduced centrality

measures based on various families of walks that can be computed on directed or undirected,

weighted or unweighted, and even disconnected networks. These measures do not necessarily

have to consider the whole network. We applied them to detect influential sections of the

network, ranking the nodes, and we explored applications to improve vaccination strategies
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for reducing the risk of epidemics. The applications to epidemic spreading were further

studied in60, where the authors used modulus to analyze the concept of Epidemic Hitting

Time.

We explore the versatility of modulus of families of walks, demonstrating that it provides

a powerful approach to the study of networks. We describe different problems that can be

handled by various classes of families of walks. Furthermore, we propose measures based on

these families that can be applied in a general framework, handling directed or undirected,

weighted or unweighted, and disconnected networks, while the amount of information ex-

tracted from a network can be adjusted with high accuracy.

1.2 Broader impact

Better measures to characterize and analyze networks are crucial for generating accurate

models and predicting the outcome of networked processes.

We investigate the concept of modulus of family of walks on networks that gives a method

for quantifying the richness of walks. Modulus generalizes concepts of connectivity ranging

from shortest path and minimum cut to effective conductance. Thus modulus helps under-

standing the network functions, such as synchronization, network topology characteristics,

such as clusters, and network properties, such as robustness. Therefore, applications of our

methods are wide-ranging and span from engineering to biology and data science.

A particular application of this theory relates to modeling and simulation of epidemics,

such as Ebola and flu. We suggest effective mitigation strategies by identifying best sets of

nodes to immunize.

Analyzing the topology of the network with modulus is crucial from unsupervised learning

to infer the relationship between different entities in system biology. Moreover, combining

results from modulus with operations theory problems is another field of application.
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1.3 Contributions

Our contributions can be summarized as the following. We

1. Introduce modulus of families of walks as a comprehensive method for analyzing net-

work structure

2. Develop a flexible network analysis paradigm that can be adapted based on user in-

terest. For example, same concepts can be applied for families of spanning trees or

families of matchings.

3. Apply the proposed measures to problems such as detecting influential parts of net-

works that can serve as major spreaders.

4. Rank most influential nodes in networks by analyzing walks as the generic pathways

of influence.

5. Develop efficient vaccination methods to mitigate the spread of infection diseases in

networks.

6. Introduce a powerful egocentric network measure called shell modulus.

7. Define general degree, as a simple centrality measure that enhances degree centrality.

8. Introduce a generic approach to analyze loops structures in the network that consider

local loop topologies with an eye on the entire network.

9. Quantify richness of loops and introduce a clustering measure based on modulus of

families of loop.

10. Find the probability of usage for each link in important loops and use it as a measure

of affinity between nodes to enhance network partitioning.

11. Develop an improved combinatorial algorithm for finding shortest cycle in weighted

graphs.
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1.4 Organization

The fundamental concepts of modulus of families of walks are presented in Chapter 2. We

introduce shell modulus in Chapter 3 and propose a powerful framework to design centrality

measures. Ego networks are discussed in Chapter 4 with ways to measure ego’s centralities.

Modulus of family of loops is discussed in Chapter 5, with efficient algorithm to find the

shortest cycle in weighted networks. Closing thoughts with future direction of this research

are in Chapter 2.

Epidemic simulations are done with GEMFPy a stochastic simulator for epidemic pro-

cesses on networks developed by the author. We briefly describe it in Appendix C. During

this work, a lot of other ideas brewed and flourished, we will discuss two of them in Appen-

dices A and B.
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Chapter 2

Modulus of Families of Walks on

Networks

In this chapter, we introduce our notations and definitions. We offer a brief review of modulus

of family of simple walks here, together with basic algorithms for its computation. To delve

deeper, we encourage interested reader to see50–52;61. Starting from basic definitions, let

G = (V,E) be a network with node set V and link set E. The cardinalities of V and E are

denoted by n and m respectively. Let p ≥ 1 and let w : E → (0,∞) be a positive weight

function representing a generalized edge conductivity (for undirected networks weights are

binary values).

2.1 Families of walks

A walk γ on a network is represented as a finite string of alternating nodes and links

v1e1v2e2v3 . . . ervr+1, with the property that vi and vi+1 are linked by ei for i = 1, 2, . . . , r.

We require that r ≥ 1, so that a walk will to traverse at least one link in the network.

A family of walks Γ is identified by the associated usage function that measures the usage

of edges by members in the family, i.e., the usage function for e in γ ∈ Γ is a number N (γ, e)

that determines the number of times γ traverses e. For simple walks we haveN (γ, e) ∈ {0, 1}.

8



Therefore, by stacking the usage of each γ into a matrix, we obtain the usage matrix

N|Γ|×m associated to Γ.

2.2 Admissible densities and p-energy of a density

Let ρ : E → [0,∞) be a density where we interpret ρ(e) as a penalization or cost that the

walk γ must pay for traversing link e once. We define the ρ-length of a walk γ as

`ρ (γ) ,
∑
e∈E

N (γ, e)ρ (e) (2.1)

and the ρ-length of a family of walks Γ as

`ρ (Γ) , inf
γ∈Γ

`ρ (γ) . (2.2)

A density ρ is admissible for Γ if

`ρ (Γ) ≥ 1

in other words ∀γ ∈ Γ, `ρ (γ) ≥ 1. The admissibility condition can be written in matrix

notation as:

Nρ ≥ 1

We denote the set of admissible densities by Adm(Γ).

Given ρ ≥ 0, we define the p-energy of density ρ as

Ep,w(ρ) =
∑
e∈E

w (e) ρ (e)p . (2.3)
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2.3 p-Modulus

For 1 < p <∞, Modp,w (Γ) is defined as

Modp,w (Γ) = min
{ρ|`ρ(Γ)>0}

Ep,w
`ρ(Γ)p

(2.4)

In this dissertation, we work with an equivalent form of (2.4)50:

Modp,w (Γ) = min
{ρ|Nρ≥1}

Ep,w (ρ) = Ep,w (ρ∗) , (2.5)

Correspondingly, the modulus problem in equation (2.5) can be recast into a convex

optimization formulation:

minimize
ρ

∑
e∈E

w (e) ρ (e)p

subject to Nρ ≥ 1

(2.6)

It was shown in52 that the set of admissible densities Adm(Γ) = {ρ ∈ RE
≥0|Nρ ≥ 1}}, is a

receding polyhedran since any family of walks Γ can be replaced with a finite subfamily of

walks Γ′ called essential subfimily, with Adm(Γ) = Adm(Γ′). In particular, (4.2) is a convex

optimization problem and for 1 < p < ∞, the energy is strictly convex and thus (4.2) has

a unique solution. The existence of an extremal density ρ∗ for p ≥ 1 is proven in51 Lemma

2.1. To simplify notation, the subscript w will be omitted unless needed.

2.3.1 Properties of p-modulus

Proposition 2.3.1. For any finite network G, the following properties hold:

(a) p-Monotonicity: The extremal densities satisfy 0 ≤ ρ∗ (e) ≤ 1 for all e ∈ E. Thus,

for 1 ≤ p ≤ q, we have Modq (Γ) ≤ Modp (Γ).

(b) Γ-Monotonicity: If Γ′ ⊂ Γ, then Modp (Γ′) ≤ Modp (Γ).
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(c) w-Monotonicity: If w and w′ are positive link weights with w ≤ w′ then Modp,w(Γ) ≤
Modp,w′(Γ).

(d) Empty Family: If Γ = ∅, then Modp (Γ) = 0.

(e) Countable Subadditivity: For any sequence {Γi}∞i=1 of families of walks,

Modp (∪∞i=1Γi) ≤
∞∑
i=1

Modp (Γi) .

(f) Extension Rule: Given two families of walks, Γ and Γ′, if for all γ ∈ Γ, there exists

γ′ ∈ Γ′ such that γ′ is subwalk (subordinate) of γ, i.e., N (γ′, e) ≤ N (γ, e) for every

e ∈ E. Then Modp (Γ′) ≥ Modp (Γ).

(g) Parallel Rule: Given two families Γ1 and Γ2, such that N (γ1, e)N (γ2, e) = 0 for

every e ∈ E, γ1 ∈ Γ1 and γ2 ∈ Γ2. Then Modp (Γ1 ∪ Γ2) = Modp (Γ1) + Modp (Γ2).

Proof. For (a), see51 Lemma 2.2 and Theorem 5.5. For (b), (d)–(f), see50 Proposition 3.4

and Section 5.5.

To prove (c), note that w does not affect the admissible set A(Γ). Moreover, for any

ρ ∈ A(Γ), Ep,w(ρ) ≤ Ep,w′(ρ).

For (g), since the statement is slightly different than in50, we provide a proof. By (e), we

know Modp (Γ) ≤ Modp (Γ1) + Modp (Γ2).

Let Ei be the set of links in E such that N (γ, e) 6= 0 for some γ ∈ Γi. Note that

E1 ∩E2 = ∅ by hypothesis. Given ρ ∈ A (Γ), define ρi = ρ · 1Ei for i = 1, 2, where 1Ei is the

indicator function for Ei. Then ρi ∈ A (Γi) for i = 1, 2, and Ep (ρ) ≥ Ep (ρ1)+Ep (ρ2). Taking

the infimum of both sides results in infρ∈A(Γ) Ep(ρ) ≥ infρ1∈A(Γ1) Ep(ρ1) + infρ2∈A(Γ2) Ep (ρ2).

Therefore, Modp (Γ) ≥ Modp (Γ1) + Modp (Γ2).

2.4 Basic families of walks; connecting, via and loop

In this section, we introduce three basic families of walks that will be fundamental later.
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2.4.1 Connecting families

The family of connecting walks Γ(A,B) is comprised of all walks that start on A ⊂ V and

end on B ⊂ V \ A in the network G. We will often abbreviate Mod2(Γ(A,B)) simply by

writing Mod2(A,B) or Mod2(s, t) if A = {s} and B = {t}.
On undirected networks, 2-Modulus of connecting families is the same as effective con-

ductance, as described in55 and in the following we show that modulus can be calculated

analytically in undirected networks.

Formula for Mod2(a, b) in undirected networks

Let F be the set of all unit flows f : E → R that satisfy Kirchoffs node law and pass through

a network G from a to b‘. Namely for v ∈ V

(∇.f)(v) =


1 v = a

−1 v = b

0 o/w

corresponds to the injected currents at each node. The energy of f is

Energy(f) ,
∑
e∈E

R(e)f(e)2

where R(e) = 1
w(e)

is the resistance of edge e. A unit current flow i ∈ F is a unit flow that

also satisfies Ohm’s law, i.e., there is a function V : V → R (called a potential) such that

for every edge (a, b):

R(a, b)i(a, b) = V(b)−V(a).

Let U : V → R be a vertex potential function. We can redefine the densities as the

gradient of U, i.e., for the edge e = {v, w}

ρU(e) = |Uu −Uw|

12



Thus the admissibility condition for walks from a to b converts to U(a) = 0, U(b) = 1, and

the 2-energy defined in (4.3) with ρU(e) is

Energy(ρU) =
∑
e∈E

ρU(e)2

assuming each edge has a unit resistance and substituting U by V

Reff(a,b)
+C, where V is the

electric potential when a unit current flow i ∈ F is passing through the network with source

a and sink b and the effective resistance between a and b is Reff. By Thompson’s principle,

i ∈ F is the minimizer of the energy function of all unit flows, i.e.,

∑
e∈E

i(e)2 = min
f∈F

∑
e∈E

f(e)2 = Reff(a, b)

Therefore,

Mod2(a, b) = min
Ua=0
Ub=1

ρT
U
ρU =

1

Reff(a, b)
. (2.7)

By Kirchhoff’s law of current conservation:

∑
j

Ai,j(Vi −Vj) = (∇.i)(i)

where A = [aij] ∈ RN×N is the adjacency matrix of G, with aij = 1 if and only if i, j ∈ E.

In matrix form:

LV = I (2.8)

where L is the Laplacian matrix of G and I = ∇.i. Because V is defined up to an additive

and the nullspace of L is along the constant vector, we ground an arbitrary node k and thus

reduce L by removing kth row and column denoted by kL (see Figure 2.1). Now we can find

solve (2.8):

k
V = (kL)−1 k

I.

13
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1

Figure 2.1: Mod2(a, b) represents the effective conductance between nodes a and b.

we denote (kL)−1 by G (reduced conductance matrix) and obtain effective resistance between

nodes a and b is

Reff(a, b) = k
Va − k

Vb

= Ga,a + Gb,b − 2 Ga,b
(2.9)

and from (2.7):

Mod2(a, b) = (Ga,a + Gb,b − 2Ga,b)−1 (2.10)

2.4.2 Family of walks visiting a set of intermediate nodes, “via”

family

Another interesting family of walks is the via family Γvia (A,B;C)50, which represents the

family of all walks that start from a set of nodes A, visit another set C ⊂ V \A, and end on

nodes B ⊂ V \ (A ∪ C).

By the extension property of modulus in Proposition 2.3.1, since Γ(A,B;C) is a subor-

dinate of Γ(A,B), we have:

Mod2(A,B) ≥ Mod2(A,B;C)

14



2.4.3 Family of loops

A walk γ = v1v2v3 . . . vr, is a simple loop if the nodes vi are all distinct, except that vr = v1.

We call L the family of all loops in G. Other possible loop families are loop families rooted

at a given node v or link e; we write Lv or Le in that case.

For example, if G is a tree, Modp (L) = 0 by Property (d) above; if G is an unweighted

complete graph, then Modp (L) = 1
3p

(
n
2

)
.

2.5 Interpreting modulus as a measure of the richness

of a family of walks

The properties of modulus allow quantification of the richness of various family of walks, i.e.,

a family with many short walks has a larger modulus than a family with fewer and longer

walks. In particular, Γ-monotonicity and subadditivity define a notion of capacity on the set

of walks in a network.

In order to measure the richness of a family of walks, we want to balance the number of

different walks with relatively little overlap and how short their lengths are. For example, in

a connecting family of walks that connects two sets of nodes, we want to value many short

walks. Modp (Γ(a, b)) provides this measure, and by varying the values of p more emphasis

can be placed on properties such as the number of walks or their length and bottlenecks,

see51. On undirected networks, when p = 2 and the family Γ is the connecting family

between two nodes, then Mod2(Γ) recovers effective conductance. Therefore, we primarily

restrict ourselves to p = 2 due to its physical interpretations and computational advantages.

Moreover, we will include families Γ that are not connecting and we can address networks

that are directed.

For example, in Figure 2.2, Γ0 is the connecting family between blue node s and orange

node t. Here the networks are directed. Comparing Figure 2.2(a) to Figure 2.2(b), we see

that every walk from s to t in the former contains a subwalk in the latter, thus the modulus

increases by the extension rule (Proposition 2.3.1 (f)). In Figure 2.2(c), the weight of a link

15



(a) (b)

2

(c) (d)

Figure 2.2: 2-Modulus of the family of connecting walks from a source node (blue node) to the
target node (orange node); all links have weights 1, except one link in the graph (c). When
the family is enriched, modulus increases, i.e., in (a) Mod2(s, t) = 0.4, (b) Mod2(s, t) = 0.5,
(c) Mod2(s, t) = 0.516, (d)Mod2(s, t) = 0.517
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s doubled to 2 and modulus increases as it must by w-monotonicity (Proposition 2.3.1 (c)).

Figure 2.2(d) differs from Figure 2.2(b) in that the number of walks is higher than before, and

modulus increases, demonstrating Γ-monotonicity (Proposition 2.3.1 (b)). The comparison

between Figures 2.2(c) and 2.2(d) is more subtle; the relationship between the moduli is

nontrivial since none of the monotonicity properties apply.

In another example, we want to measure the richness of a family of loops by balancing

the number of different loops with relatively little overlap vs. how many short loops there

are in the family.

We demonstrate this in Figure 2.3. For the square in Figure 2.3(a), the family L consists

of a single loop, hence Mod2 (L) = 0.25. In Figure 2.3(b), the weight of one link is doubled

and modulus increases to Mod2 (L) = 0.285, as it must, by w-monotonicity (Property (c)).

The network in Figure 2.3(c) has more loops than the one in Figure 2.3(a) and modulus

increases to Mod2 (L) = 0.5, demonstrating L-monotonicity (Property (b)). Comparing

Figure 2.3(c) to Figure 2.3(d), we see that they have the same number of loops, but in (d)

they are longer and thus the modulus decreases to Mod2 (L) = 0.455.

2.6 Dual formulation for 2-modulus

For p = 2 the modulus problem in (4.2) is (for simplicity of algebra, we assume w ≡ 1)

minimize
ρ

∑
e∈E

ρTρ

subject to Nρ ≥ 1

(2.11)

We consider the Lagrangian for (2.11):

L(ρ, λ) = ρTρ− λT
(
N Tρ− 1

)
, (2.12)

where λ ∈ RΓ
≥0 is the Lagrange multipliers. It is easy to show that ρ = 1 is an interior point

for the feasible region of (2.11), thus by Slater’s condition strong duality holds62. Minimizing
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(a)

2

(b)

(c) (d)

Figure 2.3: Loop Modulus for some networks demonstrating how modulus can quantify the
richness of loops, a) Mod2 (L) = 0.25 b) Weight of a link is doubled, modulus increase by w-
monotonicity: Mod2 (L) = 0.285 c) Increasing number of short loops the modulus increases
by L-monotonicity: Mod2 (L) = 0.5. d) Loops are longer than (c) and modulus decreases:
Mod2 (L) = 0.455.
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L in ρ gives

ρ∗(e) =
1

2

∑
γ∈Γ

λ∗(γ)1e∈γ, (2.13)

and the dual problem:

max
λ≥0

(
λT1− 1

4
λTCλ

)
. (2.14)

where C is the overlap matrix. Namely for simple walks,

C(γi, γj) =
∑
e∈E

N (γi, e)N (γj, e) = |γi ∩ γj|

measures the overlap of two walks, i.e., number of edges in common between them.

From the KKT conditions, a pair (ρ∗, λ∗) ∈ RE ×RΓ is optimal for the primal (2.11) and

the dual problem (2.14), if and only if

• Primal-dual feasibility: ρ∗ ∈ Adm(Γ) and λ∗ ≥ 0

• Complementary slackness: ∀γ ∈ Γ

λ∗(γ)

(
1−

∑
e∈E

N (γ, e)ρ∗(e)

)

• Stationarity:

(∇ρL)(ρ∗, λ∗) = 0

If we know the minimal subfamily of Γ denoted by Γ′ then C is invertible and λ(γ′(e)) > 0

, we can analytically solve the dual problem by

∇λ

(
λT1− 1

4
λTCλ

)
= 0

obtaining λ∗ = 2C−11 and from strong duality Mod2(Γ) = 1TC−11.
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Algorithm 1 Approximating densities for Mod2(Γ) with tolerance 0 < εtol < 1

1: ρ← 0; ρ0 ← 1
2: Γ′ ← ∅
3: γ ← Shortest(ρ0)
4: while `ρ(γ) ≤ 1− εtol do
5: Γ′ ← Γ′ ∪ {γ}
6: ρ← argmin{E2(ρ) : Nρ ≥ 1}
7: γ ← Shortest(ρ)
8: end while

2.7 Approximating the modulus

The numerical results in this dissertations are produced by a Python implementation of the

simple algorithm described in50. This algorithm exploits the Γ-monotonicity (Property (b))

of the modulus by building a subset Γ′ ⊆ Γ so that Mod2(Γ′) ≈ Mod2(Γ) to a desired

accuracy50 Theorem 9.1. In short, the algorithm begins with Γ′ = ∅, for which the choice

ρ ≡ 0 is optimal, and repeatedly adds violated constraints to Γ′, recomputing the optimal ρ

each time. The algorithm terminates when all constraints are satisfied to a given tolerance

(Algorithm 1).

The two key ingredients for implementing this algorithm are a solver for the convex

optimization problem (4.2) and a method for finding violated constraints, i.e., finding shortest

walks with ρ-length less than one. In our implementation, the optimization problem is

solved using an active set quadratic programming solver63 and the violated constraint search

algorithm varies based on the walk family. For example, shortest walk between a pair of nodes

can be found using Dijkstra’s algorithm.

Although simple, this algorithm is adequate for computing the modulus in the most of

the examples presented here, on a Linux operating computer with Intel core i7 (and 2.80

GHz base frequency) processor, for example. More advanced parallel primal-dual algorithms

can be developed to treat modulus computations on larger networks.
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Chapter 3

Network measures based on shell

modulus

The modulus of a family of walks quantifies the richness of the family by favoring many

short walks over fewer longer ones. In this chapter, we investigate various families of walks

in order to introduce new measures for quantifying network properties using modulus. The

proposed new measures are compared to other known quantities such as current-flow close-

ness centrality, out-degree centrality, and current-flow betweenness centrality. Our proposed

method is based on walks on a network, and therefore will work in great generality. For

instance, the networks we consider can be directed, multi-edged, weighted, and even contain

disconnected parts. Examples are provided to show the effectiveness of our measures.

In this chapter, we explore the versatility of modulus of families of walks, demonstrating

that it provides a powerful approach to the study of networks. We describe different prob-

lems that can be handled by various classes of families of walks. Furthermore, we propose

measures based on these families that can be applied in a general framework, handling di-

rected or undirected, weighted or unweighted, and disconnected networks, while the amount

of information extracted from a network can be adjusted with high accuracy. We apply the

proposed measures to problems such as detecting influential parts of networks, ranking most

important nodes in networks, and mitigating the spread of infection in networks. These mea-
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sures capture the importance of a node on a network by considering only parts of the network

most strongly influenced by the node. Thus, the computation of these proposed measures

can be done in a decentralized manner, allowing an efficient parallel implementation for large

networks.

The chapter is organized as follows. We define our proposed measures in detail and

compare them to different conventional measures, and apply these new measures in various

examples and applications.

3.1 Closeness Centrality

There are many centrality measures for evaluating the importance of nodes in networks. The

simplest measure is degree, which considers immediate neighbors. Degree ignores the rest of

the network and hence cannot be a proper measure for evaluating the importance of a node

in the whole network. Another centrality measure is closeness centrality, which measures

the closeness of a node in a network by computing the reciprocal of the sum of shortest-path

distances from the given node to all other nodes64:

Cc(v) =
1∑

u∈V
d(v, u)

(3.1)

where d(v, u) is the distance between node v and u.

As described in65, any reasonable centrality measure should increase when more links are

added to the network. For connecting families of walks, modulus does have this behavior

because of Proposition 2.3.1 (b). The main purpose of this chapter is to introduce new

centrality measures based on modulus of families of walks. For instance, a simple first

attempt is to define

C (v) :=
∑
i∈V

Mod2 (v, i) (3.2)

where Mod2 (v, i) is the 2-Modulus of the family of all walks from node v to node i.

Note that modulus of connecting families is a measure of proximity rather than a distance,
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so this is roughly analogous to the classical measure (3.1).

However, in order to obtain this centrality measure for all nodes, we need to compute 2-

Modulus, n2 times. We propose a more efficient measure based on modulus below in Section

3.3.

Remark 3.1.1. Note that in a directed network we could also define Cin (v) =
∑

i∈V Mod2 (i, v),

which measures the richness of walks that are reaching v, and Cout (v) =
∑

i∈V Mod2 (v, i),

which computes the influence of node v over the network. In this chapter we will mostly be

concerned with the latter measure.

3.2 Betweenness centrality

Betweenness centrality evaluates the prominence of v in the transmission of information,

disease, signals, etc., between pairs of nodes.

A popular betweenness centrality for a node v is defined by the fraction of shortest paths

between pairs of nodes that pass through the node v:

CB(v) =
∑

s 6=t6=v 6=s

σst(v)

σst
(3.3)

where σst is the number of shortest paths between node s and node t and σst(v) is the size

of the subset of such shortest paths that visit v 66.

An analogous measure of betweenness centrality could be defined using viaMod, which

computes the richness of walks between s and t that pass through node v (see Section 2.4.2):

BC (v) :=
∑

s 6=t6=v 6=s

viaMod2 (s, t; v)

Mod2 (s, t)
(3.4)

A naive implementation of this formula requires |V |3+|V |2 modulus computations. Although

not much is currently known about the computational complexity of modulus of general

families of walks, in our experience computing the modulus of connecting and via families is

reasonably fast due to the applicability of Dijkstra’s algorithm in these cases (see50) and the
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fact that these families contain very few important walks (see61). Nevertheless, for efficiency

it is desirable to reduce the number of modulus computations and, therefore, we propose the

following more efficient measures.

3.3 Efficient measures for centrality based on modulus

The centrality measures introduced above consider all pairs and triples of nodes, which can

be infeasible for large networks. In applications the entire scope of network data cannot

always be obtained, and even if it is acquired, such an extensive volume of data is sometimes

unnecessary. Each node v will influence some nodes more than others. Therefore, we restrict

our analysis of centrality for v to a portion of network aound v. The following section

describes a technique used for this purpose.

3.3.1 Shell-Centrality

For a node v ∈ V , S (v, k) is the set containing nodes y such that {y ∈ V : d (y, v) = k}),
namely all the nodes with discovery time k. We call this the k-th shell around v. If the

context is clear, we simply write Sk.

We are interested in the 2-Modulus of all walks from node v to the shell Sk, which

according Section 2.4.1, Mod2 (v, Sk) is a measure of conductance between node v and the

set Sk. Note that Mod2 (v, S1) is equal to the out-degree of v, corresponding to the influence

of v on its immediate neighbors. (The extremal density ρ∗ in this case gives value 1 to every

out-link from v, and value 0 to every other link.)

The modulus from v to the shell Sk is a measure of the importance of node v out to

radius k in the network. When a node has a persisting effect on larger and larger radii, it

will have an overall greater closeness centrality (Figure 3.1).

Our proposed measure for the centrality of a node v, which we call shell centrality, is

Cshell (v) :=

d(v)∑
i=1

Mod2 (v, Si) (3.5)
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Figure 3.1: (a) A directed network; (b) Plot of Mod2 (v, Si) with various shells i, given three
different nodes for the network in (A). The Red node maintains its influence over the network
and reaches farther, while the Blue node can influence only its first two shells. Out-degree
of Blue is more than Black and it is more influential on shells 1 and 2 but Black node has
influence over a larger part of the network, therefore Black node has higher centrality than
Blue and Red is the more central than both Blue and Black. Link directions are shown by
thicker stubs.
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where d (v) ∈ {1, 2, · · · , ε (v)} is a cutoff to be determined later, that can vary from node to

node. The largest d(v) is called the eccentricity of v, i.e., ε (v), is the maximum hop-length

between v and any other node in G.

Example 3.3.1. In order to compare the proposed measure with the exact expression of C

in (3.2), we compute C and Cshell for a weighted and directed network found in4 (Figure 3.2).

Each node in this network represents a rhesus monkey, and links between nodes represent

observed grooming behavior. The direction of each link indicates the act of grooming. The

correlation between C and Cshell is 98%, thereby demonstrating that the measure obtained

almost the same results as (3.2) with less computation costs. In Figure 3.2, the centrality

value of nodes is normalized by their maximum value, therefore for a node.

Example 3.3.2. In this example, we compute normalized Cshell with (3.5) for four weighted

and directed networks, each differing from the previous one by one link. In Figure 3.3, the

size of each node is scaled by its centrality, as computed by (3.5). The centrality value can

be observed inside the nodes.

Changes of nodes centralities provide interesting, and in some cases significant, assess-

ments of a node’s influence on the entire network. In Figure 3.3(a), the yellow node is the

most central node, thereby influencing the entire network more than any other node. For

the network in Figure 3.3(b), the direction of the link from the yellow node to the magenta

node has been changed and the centrality updated, with the result that the centrality of the

magenta node is now the highest. As shown in Figure 3.3(b), the white and magenta nodes

have identical (weighted) out-degree centrality, but the white node cannot influence the net-

work on its left side. If a link is added from white to magenta (Figure 3.3(c)), then the white

node becomes the most central node. The addition of another link with a new node at the tail

of the network, as shown in Figure 3.3(d), only changes centrality of the cyan node, while

centrality of the other nodes stays almost constant. With out-degree centrality the cyan node

would be the most central node.

Example 3.3.3. As mentioned, for large networks acquisition or consideration of all data

is not always possible. Therefore, there is a trade-off between the amount of information
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Figure 3.2: Correlation between normalized closeness centralities measured by (3.2) and (3.5)
for the Rhesus Network in4. Link directions are shown with thick link heads.
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Figure 3.3: Closeness centrality measured for nodes in a directed and weighted network;
weights are shown on links and directions are shown by thicker stubs. The size of each node
is scaled by its centrality.
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2-Modulus Centrality

(a) (b)

Figure 3.4: (a) Random directed network; node size is enlarged with respect to its closeness
centrality based on 2-Modulus centrality, (b) Correlation between exact 2-Modulus centrality
and approximated one with varying cutoffs.

extracted and computational costs. For example, in Figure 3.4, we consider a random directed

geometric network and plot the correlation between the centrality Cshell computed with d(v) =

ε(v) in (3.5), and the same centrality computed with different cutoffs d(v) = r for various

radii r of shells. By increasing these cutoff radii, we obtain increasingly better correlation,

but after having reached r = 4 it seems that increasing the cutoff becomes unnecessary (Figure

3.4). This reflects the fact that, after 6 hops from each node in this network, the importance

of the node starts to decay rapidly throughout the entire network and hence considering the

first 3− 4 shells is enough for most applications.

Remark 3.3.4. For a general network, it is difficult to predict the proper cutoff for a given

node. In practice, we introduce a tolerance that is used to stop whenever Mod2(v, Sk) is less

than a given value.

3.3.2 Betweenness centrality measure

Consider the visiting family of walks described in Section 2.4.2. Here, we introduce a mod-

ification of this family more well suited to the betweenness centrality measures defined in
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Section 3.3.2. Let A ⊂ V and let c ∈ V \ A. We define the betweenness family Γb(A; c) as

the family of walks originating at some node a ∈ A, visiting node c and then terminating at

a node in A \ {a}. In other words,

Γb(A; c) =
⋃
a∈A

Γvia(a,A \ {a}; c).

In the sequel, we will write Modp (Γvia (A,B;C)) as viaModp (A,B;C) and Modp (Γb (A; c))

as BModp (A; c).

If walks begin from a node ai ∈ A, visit node v and return to a different node aj ∈ A
where i 6= j, we called this family Γvia (A,A, v). We choose A to be a proportion of the most

central nodes using our centrality Cshell from (3.5). Then, we set

BCshell (v) = viaMod2 (A,A, v) (3.6)

Note that only one modulus computation is involved in (3.6) for each node. The number of

nodes considered in A vary with the type of network, but BCshell generally provides good

results even when considering a handful of nodes. Also, if A happens to include all the

neighbors of v, then BCshell simply gives the degree of v.

Example 3.3.5. We know 2-Modulus of a family of connecting walks between two nodes

is equal to effective conductance between them. Thus, one might expect the betweenness

measure (3.6) to be related to the well-known current-flow betweenness centrality (CFBC).

However, the modulus-based centrality measure is more general in that it is not restricted

to connected, undirected networks. In this example, we provide evidence that BCshell and

CFBC are linearly correlated by considering both a random geometric network and a random

scale-free network.

We calculate (3.6) for a geometric network5 and a scale-free network6 as shown in Figure

3.5. We illustrate the correlation between well-known current-flow betweenness centrality7,

and our measure of betweenness centrality BCshell when the number of most central nodes

chosen for the set A varies.
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Figure 3.5: (a) A geometric network5, (b) A scale-free network6, (c) Correlation between
current flow betweenness centrality and proposed betweenness centrality computed with
various number of servers for the geometric network in (a), (d) Correlation between Current
flow betweenness centrality and proposed betweenness centrality computed with different
number of nodes in the set A for the scale-free network in (b).
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For the geometric network in Figure 3.5(a), there are only a few important nodes and

they are scattered. So when the size of A increases past a certain level, A starts to include

nodes on the periphery of the network and as shown in Figure 3.5(c) the correlation starts

to decrease slightly.

In the scale-free network in Figure 3.5(b), central nodes are more accurately identifiable

and they are more concentrated. So including more nodes in A leads to better and better

correlation. However, a relatively small set A (here about 10% of the nodes in the network)

can already give high correlation.

3.4 Further Results and Applications

In order to evaluate the effectiveness of our proposed measures (3.5) and (3.6), we compare

them to various conventional network measures. First, we consider undirected, unweighted,

and connected (simple) networks, and compare our measure Cshell to a well-known measure,

current-flow centrality, demonstrating that they lead to similar results. Then, we consider

general networks where current-flow centrality cannot be applied, and thus illustrate the

advantages of using 2-Modulus centrality measures. Finally, we give two applications.

3.4.1 Undirected networks

For connected undirected networks there are numerous centrality methods65. In particular,

the symmetry of the Laplacian matrix allows one to use measures such as effective conduc-

tance, also knows as current-flow closeness centrality (CFC)7.

In order to evaluate the performance of Cshell in (3.5), we compare it to CFC in a simple

geometric network with 60 nodes as shown in Figures 3.6(a) and 3.6(b).

These figures illustrates the measured proposed centrality and its correlation with current

flow centrality. The correlation of these measures is 0.97, implying very similar rankings.

This means that our measure is at least as good as CFC for simple networks.
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Figure 3.6: Closeness centrality measured with Cshell and correlation with current flow close-
ness centrality7 for two networks (A) and (B) with node size. In both cases, (C) and (D),
the correlation is 0.97.
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3.4.2 Directed networks

There are fewer closeness centrality measures for directed networks compared to undirected

networks, and most of the measures focus on local information of nodes. There are other

measures that can be applied for directed networks, such as Pagerank and Katz centrality

(for a good review, see67), but because they have some shortcomings in directed networks

when there is a lack of mixing, we chose to compare our measure to out-degree centrality.

In Figure 3.7, we compare 2-Modulus centrality and out-degree centrality for two random

directed networks, showing these centralities using the size of the nodes.

As depicted in these figures, out-degree centrality emphasizes the local importance of

nodes, while 2-Modulus closeness centrality takes a broader perspective of the network. Con-

sequently, nodes of the network that cannot reach most of the network have less importance

in 2-Modulus centrality; however, in out-degree centrality nodes can have high centrality if

they have high out-degree, as shown in Figure 3.7(c) in which nodes that have high out-

degree centrality and small 2-Modulus centrality corresponded to nodes of the network that

did not significantly influence the entire network.

3.4.3 Ranking of most influential nodes

Comparing nodes with a low number of heavily weighted links to nodes with a high num-

ber of more lightly weighted links, is usually a challenge for measures such as out-degree

centrality68. However, 2-Modulus centrality does not have this problem, because it is not a

local property. For instance, a heavily weighted link might lead to a smaller portion of the

network.

Here we consider the network in69 that consists of relationships between a group of 32

scientists. In this network, directed links are weighted by the number of sent messages

between each pair of researchers.

Opsahl et al. ranked the nodes in this network with a centrality measure that upgraded

out-degree centrality that can be tuned between the number of outward links and the sum

of out-weights68. Since this centrality measure considers only links to the nearest neighbors,

34



(a) (b)

(c)

Figure 3.7: 2-Modulus closeness centrality (A) and out-degree centrality (B) measured for
a random directed networks. (C) 2-Modulus centrality and out-degree centrality. Each dot
represents a node with x-axis as 2-Modulus centrality and y-axis as out-degree centrality.
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it ignores most of the network structure. For example, ranking errors occur when a strong

link is directed to a dead end in the network (or to an unimportant part of the network) but

a weaker link is directed to important parts of the network.

In Table 3.1, we propose a new ranking performed based on 2-Modulus centrality with

no concern for balancing between the number of paths and their weight strengths and with

an eye on the node position in the network.

3.4.4 Suppressing epidemics

Detection of the most influential nodes is critical in some applications. Vaccination is com-

monly used to mitigate the spread of an infectious disease. However, it is not always possible

to vaccinate the entire population. Therefore, determining the best sub-population to vacci-

nate is a challenge due to network complexity2;70. In this section, we show that the proposed

measure can be efficiently used to vaccinate a fraction of highly central nodes, especially

for directed networks with mesoscopic structure. A majority of real networks are formed by

connecting clusters of sub-networks, such as communities. Each community contains its own

structure and connects to others with a different structure. However, local measures, such

as degree centrality, cannot capture these higher order structures.

In this study, we considered a random directed network consisting of clusters with in-

ternal Poisson degree distribution, which are connected to each other by another Poisson

distribution71. In order to consider a directed version of these networks, we chose a direction

for each link at random. Figure 3.8(a) shows a network generated in this way with 200

nodes and 8 modules. We compute 2-Modulus centrality with a cutoff of 4 and out-degree

centrality. As presented in Figure 3.8(c)(b), nodes with identical out-degree centrality can

have a different role in the network based on 2-Modulus centrality.

We consider an SIR (susceptible-infected-recovered) epidemic process on this network

with infection rate β = 0.5 and recovery rate δ = .2, starting with two initial infections.

After vaccinating the first 50 nodes with the highest centrality in both measures, we ran sev-

eral simulated epidemics (hundreds) with the parameters specified above and computed the
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Table 3.1: Ranking of scientists in network EIES according to their 2-Modulus centrality
and degree centrality scores.

Rank 2-Modulus Centrality (value)
1 LIN FREEMAN (1.0)
2 BARRY WELLMAN (0.78)
3 RUSS BERNARD (0.67)
4 LEE SAILER (0.55)
5 DOUG WHITE (0.51)
6 PAT DOREIAN (0.44)
7 SUE FREEMAN (0.33)
8 NICK MULLINS (0.21)
9 RON BURT (0.2)
10 RICHARD ALBA (0.19)
11 STEVE SEIDMAN (0.17)
11 AL WOLFE (0.17)
12 CAROL BARNER-BARRY (0.15)
13 JACK HUNTER (0.14)
13 MAUREEN HALLINAN (0.14)
14 PAUL HOLLAND (0.12)
15 DAVOR JEDLICKA (0.11)
15 JOHN BOYD (0.11)
16 PHIPPS ARABIE (0.08)
17 DON PLOCH (0.07)
18 MARK GRANOVETTER (0.05)
18 CLAUDE FISCHER (0.05)
19 JOEL LEVINE (0.04)
19 NAN LIN (0.04)
19 NICK POUSHINSKY (0.04)
19 CHARLES KADUSHIN (0.04)
20 JOHN SONQUIST (0.02)
21 BRIAN FOSTER (0.01)
21 EV ROGERS (0.01)
21 GARY COOMBS (0.01)
21 ED LAUMANN (0.01)
21 SAM LEINHARDT (0.01)

37



(a)

0.0 0.2 0.4 0.6 0.8 1.0

2-Mod Centrality with cut-off 4

0.00

0.01

0.02

0.03

0.04

0.05

O
u
t-
d
e
g
re
e
 c
e
n
tr
a
lit
y

(b)

0 5 10 15 20 25 30

Time (day)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
a

ct
io

n
 o

f 
Po

p
u

la
ti

o
n

S (No Vaccination)

I (No Vaccination)

S (Out-Degree Vaccination)

I (Out-Degree Vaccination)
S (2-Mod Vaccination)

I (2-Mod Vaccination)

(c)

Figure 3.8: (a) Random modular network, (b) Out-degree centrality and 2-Modulus central-
ity measured for each node in network (a), (c) Comparison of vaccination strategies based
on 2-Modulus centrality and out-degree centrality for an SIR epidemic in network (A). The
fraction of susceptible population (S) at the end of the outbreak for 2-Modulus central-
ity vaccinated people is larger than the fraction obtained by vaccinating using out-degree
centrality.

average fraction of susceptible (not yet infected) individuals for each day of the outbreak72.

As shown in Figure 3.8(c), 2-Modulus centrality pinpointed the most effective nodes better

and allowed a more successful mitigation of the outbreak.
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Chapter 4

Egocentric network centralities and

general degree

Ego networks or also known as neighborhood networks are considered as samples of the

complete network around egos that help to gain insights about the population and it is an

exciting solution due to their flexible data collection and inexpensive computation costs. How

to collect this samples in a way that significant conclusions can be made is a challenge due to

the inherent structure of the network that can be lost in the ego centric data collection. In

this chapter, we focus on the centrality measures in this kind of networks with considerations

that justify the applications of them as scalable tools as a substitute for sociocentric methods.

The outline of the chapter is as following. First, we introduce our tools for analyzing

families of connecting walks and redefine the popular effective conductance and its ego-centric

version. Second, we discuss how to calculate this measures analytically and approximately.

Third, we introduce general degree to incorporate higher order neighborhood in the simple

degree measure. Proofs, examples and applications of these measures are postponed to

supplemental materials.
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4.1 From sociocentric measures to the egocentric coun-

terparts

The concept of information centrality was first introduced in73 and was later reinterpreted

in terms of electrical conductance in74. Given a network G = (V,E) and a node a ∈ V , the

information centrality of a is defined as

Ceff(a) :=
∑
b6=a

1

Reff(a, b)
. (4.1)

where Reff(a, b) is effective resistance distance between a and b in a resistance networks.

Note that this measure considers every possible path that electrical current flow might take

from a to an arbitrary sink b.

The situation can be clarified by introducing the notion of modulus of families of walks.

This is a way of measuring the richness of certain families of walks on a network (and beyond,

see52;75). Given two nodes a and b we may consider the connecting family Γ(a, b) of all walks

γ from a to b. Then, given edge density ρ : E → R for p ∈ [1,∞], we define the p-modulus

of Γ to be

Modp (Γ) , min
`ρ(Γ)≥1

Energyp (ρ) (4.2)

Namely, we minimize the energy of candidate edge-densities ρ subject to the ρ-length of every

walk in Γ being greater than or equal one, i.e., `ρ(Γ) ≥ 1. These densities can be interpreted

as costs of using the given edge and then modulus is a constrained convex optimization

problem that has a unique extremal density ρ∗ when 1 < p <∞. The energy we consider is

Energyp(ρ) =
∑
e∈E

ρ (e)p , (4.3)

This point of view allows for much more flexibility, because it can be applied to a variety

of different families of objects: walks, cycles, tress, etc, and also works when the under-

lying network is directed or weighted. Moreover, modulus has very useful properties of
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Γ-monotonicity and countable subadditivity.

Furthermore, in the special case of connecting families, by varying the parameter p, we see

that Modp(Γ(a, b)) generalizes classical measures such as shortest path, effective resistance

and min cut51;55. For instance, when the network is undirected and p = 2, Mod2(Γ(a, b)) is

exactly the effective conductance between a and b. In particular, effective conductance can

be written as (see Section 2.4.1)

Ceff(a) =
∑
b∈V \a

Mod2(Γ(a, b)) (4.4)

For the rest of this paper, we consider p = 2 due to its physical interpretation as effec-

tive conductance as well as computational advantages, for instance, in this case (4.2) is a

quadratic program. Moreover, the right-hand side also makes sense on directed networks.

As mentioned above, Ceff(a) is sociocentric in the sense that it considers all walks from

a to an arbitrary node in G. However, in practice, it can be prohibitive to scale socio-

centric methods to very large networks. Moreover, in real-world situations it is not feasible

to have access to the entire network. Rather, one can at best know local information up

to a few neighborhood levels. For instance, when data is anonymized to protect privacy of

network entities, identifying the sociocentric picture is impossible, e.g., sexual networks may

be limited to the number of contacts of individuals.

An alternative approach is to consider measures that are adapted to egonetworks (also

known as neighborhood networks). An ego network Ga(r) around a node a is constructed

by collecting data (nodes and edges) starting from the ego a and searching G out to a

predefined order of neighborhood r ∈ {1, · · · ε(a)}; where ε(a) is the eccentricity of node a

or the maximum distance from a to nodes in G.

Egonetworks are often preferred because they support more flexible data collection meth-

ods76 and often involve less expensive computation costs. In this paper, we focus on cen-

trality measures that are adapted to the ego-centric paradigm as substitutes for sociocentric

methods, with a focus on the scalability issue. These measures are more stable41 against

network sampling and reliable (less sensitivity) with measurement errors42. We concentrate
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on unweighted (binary) networks to simplify the algebra, although, all of our methods and

discussions can be easily generalized for weighted networks. Thus, we let d(a, b) denote the

shortest-path distance between two nodes (smallest number of hops). The neighborhood

structure around an ego a is described by the shells of order k:

S(a, k) := {y ∈ V : d(a, y) = k},

and the corresponding families of walks Γ(v, S(a, k)), consisting of simple walks that begin

at ego v ∈ V and reach S(a, k) for the first time. Modulus allows a quantification of the

richness of the family of walks, i.e., a family with many short walks has a larger modulus

than a family with fewer and longer walks. Here we consider shell modulus Mod2(v, S(a, k))

which quantifies the capacity of walks emanating from the ego up to the shell S(a, k)59

without having to account the data outside Ga(k). In particular, we propose the following

egocentric version of Ceff(a):

Cshell(a, r) ,
r∑

k=1

Mod2(v, S(a, k)) (4.5)

which we call shell modulus centrality and follows the same logic as (4.4) but only requires

the egocentric network data.

4.1.1 Formula for Cshell(a, r) in undirected networks

Similar to Section 2.4.1, to find Mod(a, S(a, r)) in the egocentric network Ga(r), we solve

the equation for Kirchhoff’s law of currents

La(r)V = I (4.6)

where Lv(r) is Laplacian of Ga(r) and I is the injected external current vector with values 1

at ego and for nodes in S(a, r)

1T IS = −1 (4.7)
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Figure 4.1: Interpreting Mod(a, S(a, r)) as finding effective conductance between grounded
node a and nodes with the same potential c in S(a, r) in an electrical network problem.
Solution follows from the corresponding Laplacian system.

and zero for other nodes (see Figure 4.1).

Nodes in S(a, r) will have a same electric potential c, i.e., they are short circuited.

The above problem has a unique harmonic solution for V up to a constant, we ground

the potential at ego, i.e., Va = 0 and find other nodes potentials by

V = G I

where G =
(
aLv(r)

)−1

is the reduced conductance matrix. Combining (4.6) and (4.7)
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where xi =
∑Ss−1

j=S1
Gij. If |S| = s and for i ∈ {S1, · · · , Ss−1}

Ii =
c

xi

We can find c from last equation of (4.8):

c

−1− c∑Ss−1
j=S1

1
xi

= xSs

c =
−xs

1 + xs
∑Ss−1

j=S1

1
xi

and the effective resistance between a and S(a, r):

Ra,S(a,r) = Vv − c =
xs

1 + xs
∑Ss−1

j=S1

1
xi

and since Va = 0 (grounded):

Mod(a, S(a, r)) =
1 + xs

∑Ss−1
j=S1

1
xi

xs
. (4.9)

Note that, we can ground any node other than nodes in the shell, because they have

similar potentials, unless we ground all of them. This forced us to ground only the ego and

thus we need one matrix inversion per ego network.

In Figure 4.2, centrality of nodes in three small networks are computed, where we consider

the entire network and both Cshell(v, r) and Ceff(a) are highly correlated.

In Figure 4.2, node sizes are scaled with their Cshell(v, r) values and the computed cen-

tralities are, as expected, highly correlated with Ceff(a) with Spearman rank correlation 1,

0.94, and 0.99 respectively for Figures left to right meaning they are measuring a similar

quantity.

For undirected networks, we can calculate both Ceff(a) and Cshell(v, r) analytically without

going through the optimization problem in (4.2) by formulas (2.10) and (4.9)
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(a) (b) (c)

Figure 4.2: (a) Davis women club (b) Dolphin network (c) Jazz musicians network. Node
sizes are scaled with their centrality computed by (4.5). The resultant centralities are highly
correlated to (4.4) with Spearman rank correlation 1, 0.94, and 0.99 respectively for (a)-(c).

In general, (4.4) requires |V | modulus computations in all of G, while (4.5) only needs r

modulus computations in Ga(r).

Shell modulus centrality can handle fairly large networks, e.g. 100,000 edges. The algo-

rithm used here computes (4.2) using an active set dual method quadratic programming63.

We have shown that it’s theoretically enough to consider at most |E| active constraints50.

Violated (active) constraints are found using Dijkstra’s algorithm and constraint matrix

updating is done using the Cholesky decomposition.

In the following, we focus on approximating (4.5) efficiently, while incorporating most of

the benefits of shell modulus in a scalable framework.

4.1.2 Bounding from above

First, we provide an upper bound that is known in the complex analysis literature as Ahlfors

estimate77 Chapter 4, Equations 4-6, and in the context of electrical networks goes under

the name of Nash-Williams inequality78. Given an egonetwork Ga(r), we consider the set of

edges that connect a shell S(a, k − 1) to the next shell S(a, k), for k ∈ {1, · · · , r}:

E(a, k) := {e = {x, y} ∈ E| x ∈ S(a, k − 1), y ∈ S(a, k)} .
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We call the sets E(a, k) shell connecting sets. Since Mod2(v, S(a, r)) is a minimization

problem (4.2), we get an upper bound simply by choosing an appropriate admissible density

ρ̄. Here, we pick the best admissible density that is constant for all edges in each shell

connecting set. After computing the energy of this density, we obtain:

Mod2(a, S(a, r)) ≤ 1∑r
k=1

1
|E(a,k)|

. (4.10)

Proof. To find an upper bound for the shell modulus Mod2(v, S(v, r)), since (4.2) is a min-

imization problem, it is enough to pick an appropriate density ρ̄. Here we will restrict

ourselves to densities that are constant on the shell connecting sets E(v, k). So consider

weights xk for k = 1, . . . , r and set

ρ̄(e) := xk if e ∈ E(v, k).

Then we solve the following minimization problem:

minimize
x

r∑
k=1

θkx
2
k

subject to
r∑

k=1

xk = 1

(4.11)

where θk := |E(v, k)| with θk. By Cauchy-Schwarz inequality

1 ≤
(

r∑
k=1

xk

)2

=

(
r∑

k=1

1√
θk

√
θkxk

)2

≤
r∑

k=1

1

θk

r∑
k=1

θkx
2
k

and thus the minimum in 4.11 is greater than
(∑r

k=1
1
θk

)−1

. However, when x takes the

form:

xk =
C

θk
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Then the minimum is achieved for

C =
1∑r
k=1

1
θk

.

4.1.3 Estimate for the Ahlfors upper bound

In order to study the Ahlfors upper bound, it is useful to establish the following estimate.

Claim 4.1.1. For every finite sequence of positive numbers an, we have

N∑
n=1

1∑n
k=1

1
ak

≤ 4

3

N∑
k=1

ak
k
.

Proof. We know that
∑n

k=1 k = n(n+1)
4

. Using Cauchy-Schwarz:

n2(n+ 1)2

4
=

(
n∑
k=1

k

)2

=

(
n∑
k=1

k
√
ak

1√
ak

)2

≤
n∑
k=1

k2ak

n∑
k=1

1

ak
(4.12)

Thus, interchanging the order of summation:

N∑
n=1

1∑n
k=1

1
ak

≤ 4
N∑
n=1

1

n2(n+ 1)2

n∑
k=1

k2ak = 4
N∑
k=1

k2ak

N∑
n=k

1

n2(n+ 1)2
(4.13)

For every k ≥ 1 we have:
N∑
n=k

1

n2(n+ 1)2
≤ 1

3k3

To see this considering the following sequence:

xk :=
1

3k3
−

N∑
n=k

1

n2(n+ 1)2
.
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Then

xk − xk+1 =
1

3k3
− 1

3(k + 1)3
− 1

k2(k + 1)2
=

1

3k2(k + 1)2
> 0

Therefore, xk+1 > 0 implies that xk > 0. So we only need to check k = N . But

xN =
1

3N3
− 1

N2(N + 1)2
> 0 ∀N ∈ R.

4.1.4 Ahlfors upper bound for Erdős-Rényi

We can provide a better estimate for Ahlfors’ upper bound for Erdős-Rényi graphs in the

connected regime:

p(N − 1) = 2 logN.

Concavity of the Ahlfors bound

We can use concavity and get

E

(
r∑

k=1

1∑k
j=1

1
θj

)
≤

r∑
k=1

1∑k
j=1

1
Eθj

So we would like to estimate E(θk).

Computing the first two cases

• First note that θ1 is Binomial(N − 1, p). So:

Eθ1 = p(N − 1),

from the binomial distribution.

• Now, given θ1 we must toss θ1 variables distribute as Binomial(N − 1− θ1, p), because
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the ego and the first shell are now out of consideration. So

E (θ2 | θ1) = θ1p(N − 1− θ1).

Therefore, computing the secon moment of θ1 we get:

Eθ2 = E(E(θ2 | θ1)) = E(θ1)p(N − 1)− pE(θ2
1) = p2(1− p)(N − 1)(N − 2).

• Given θ1 and θ2 we must toss a certain number s of Binomial(N − 1 − θ1, p) random

variables, where s is the number of nodes in the second shell. However, this number

s is not easy to calculate because it depends on the interaction at the previous step.

For instance, if all the binomial variables in the previous step are equal to zero, then

s = 0. But for higher values of s it becomes quite complicated.

In particular, we will have

Eθ1 = logN and Eθ2 ' (logN)2.

Lower bound for E(θk)

First we will estimate Eθk from below. Given an ego a, Spielman sets

r(a) := max

{
r : |B(r, a)| ≤ N

12 logN

}

and then shows that for k ≤ r(a),

P
[
|S(a, k + 1)| ≤ 1

5
logN |S(a, k)|

]
≤ N−1.2|S(a,k)|.

He first finds that

E [|S(a, k + 1)| | Ga(k)] ≥ 5

3
|S(a, k)| logN, (4.14)
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and then applies the theory of Chernoff bounds. Note that by simply taking the expectation

in (4.14) we get

E|S(a, k + 1)| ≥ 5

3
(logN)E|S(a, k)|.

This gives geometric growth for k ≤ r(a):

E|S(a, k)| ≥ (logN)k. (4.15)

In our case, since every c 6∈ B(a, k) must toss |S(a, k)| biased coins, we get

E [θk+1 | Ga(k)] = |S(a, k)|p(N − |B(a, k)|) ≥ 11

12
|S(a, k)|pN =

11

6
(logN)|S(a, k)|.

Again we can take expectations and get

Eθk+1 ≥
11

6
(logN)E|S(a, k)|.

Using (4.15), we get

Eθk ≥ (logN)k.

Upper bound for Eθk

To get an upper bound we can compare the growth in the Erdős-Rényi graph with the growth

for a Galton-Watson branching process with offspring distribution X = Binomial(N − 1, p).

This will be larger because there are no collisions and we always toss the maximum number

of coins. If Zk is the population at time k, then

EZk = µk

where µ = EX = p(N − 1) = 2 log(N). So we get that

Eθk ≤ (2 logN)k.
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Upper bound for the Ahlfors estimate

We can apply this to our estimate of the average Ahlfors upper bound and get that:

E

(
r∑

k=1

1∑k
j=1

1
θj

)
≤

r∑
k=1

1∑k
j=1

1
Eθj

≤
r∑

k=1

1∑k
j=1

1
(2 logN)j

= (2 logN − 1)
r∑

k=1

1

1− (2 logN)−k

= (2 logN − 1)
r∑

k=1

(2 logN)k

(2 logN)k − 1

= (2 logN − 1)
r∑

k=1

[
1 +

1

(2 logN)k − 1

]

' (2 logN − 1)

[
r +

r∑
k=1

1

(2 logN)k

]

= (2 logN − 1)

r +
1

2 logN

1−
(

1
2 logN

)r
1− 1

2 logN


= (2 logN − 1)

[
r + 1− 1

(2 logN)r((2 logN)− 1)

]
' (2 logN − 1)(r + 1)

4.1.5 Bounding shell modulus from below

To provide a lower bound for shell modulus, we focus on geodesic paths (shortest walks).

These are usually the most important pathways of influence between the ego and other nodes.

Classical measures of centrality, such as closeness centrality and betweenness centrality, are

based uniquely on shortest paths40.

When collecting the egocentric data around an ego a, one can take care to avoid forming

cycles, and the resulting egonetwork becomes a tree. So assuming T a(r) is a tree contained in

Ga(r), we can use Γ-monotonicity to get a lower bound. Moreover, if we write Mod2(T a(r))

for the shell modulus of all walks in T a(r) starting at the root a and reaching depth-level r.
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a

c1 c2 c3 cm

· · ·

Tc1,r−1 Tc2,r−1 Tc3,r−1 Tcm,r−1

T a
c3,r

r

Figure 4.3: The tree T ar and its subtrees. Each child ci of a can induce two subtrees–if it
has descentants until depth r − 1. T aci,r (outlined with a dashed line for i = 3 in the figure)
is the subtree rooted at v formed by removing all other children and their descendants from
T ar . Tci,r−1 is the subtree rooted at ci formed by removing a from T aci,r .

Let Ta be a rooted shortest tree at a with vertex set V , and edge set E. Every density

ρ : E → [0,∞) gives a weighted distance on the tree defined by

dρ(x, y) =
∑

e∈γ(x,y)

ρ(e)

We define the set of admissible densities Adm(T ak ), for walks starting from root a (ego)

to leaves at depth k, denoted by lk:

Adm(T ak ) := {ρ : E → [0,∞) : `ρ(a, lk) ≥ 1}.

with modulus

Mod2(T ak ) := inf
ρ∈Adm(Ta,k)

∑
e∈E

ρ(e)2

Assuming a has at least one child, let C(a) := {c1, c2, ...} ⊆ V be the children. Each

child c induces two rooted subtrees (Figure 4.3). Let T ac represent the subtree (still rooted

at a) formed from Ta by pruning all of as children other than c along with their descendants,

and let Tc represent the subtree (now rooted at c) formed by removing a from T ac .

The following lemma is an immediate consequence of the parallel rule of modulus, i.e.,

given two families Γ1 and Γ2, where for every e ∈ E and γ1 ∈ Γ1 and γ2 ∈ Γ2 we have
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N (γ1, e)N (γ2, e) = 0. Thus Mod2 (Γ1 ∪ Γ2) = Mod2 (Γ1) + Mod2 (Γ2).

Lemma 4.1.2. The modulus of T ak is related to the moduli of the T aci,k as follows.

Mod2(T ak ) =
m∑
i=1

Mod2(T aci,k).

By Lemma 4.1.2, we may restrict ourselves to the case that a has a single child c. In

this case, serial rule for modulus allows us to reduce the problem to finding the modulus of

Tc,k−1. This is explained in the following lemma.

Lemma 4.1.3. The modulus of T ac,k is related to the modulus of Tc,k−1 as follows.

Mod2(T ac,k) =
Mod2(Tc,k−1)

1 + Mod2(Tc,k−1)
(4.16)

Proof. If c is a leaf of T ak , then ρ(a, c) = 1 is the minimizer for the modulus. Otherwise,

by considering the density, ρ(a, c), on the edge from a to c, the optimization effectively

decouples. In order for ρ to be admissible, it is necessary that dρ(c, l) ≥ 1− ρ(a, c) for every

leaf lk−1 of Tc,k−1 at depth k − 1. For 0 ≤ ` ≤ 1, define the parameterized set of admissible

densities, for every leaf lk−1

Adm(Tc,k−1; `) := {ρ : E → [0,∞) : d(c, lk−1) ≤ `}

and the parameterized modulus problem

Mod′p(Tc,k−1; `) = inf
ρ∈Adm′(Tc,k−1;`)

∑
e∈E(Tc)

ρ(e)2

where E(Tc,k−1) represents the set of edges in the subtree Tc,k−1 . It is straightforward

to verify that

Mod′2(Tc,k−1; `) = `2 Mod2(Tc)
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and, thus

Mod2(T ac,k) = inf
0≤ρ(a,c)≤1

{ρ(a, c)2 + Mod′2(Tc,k−1 : 1− ρ(a, c))}

= inf
0≤ρ(a,c)≤1

{ρ(a, c)2 + (1− ρ(k, c))2 Mod2(Tc,k−1)}
(4.17)

The infimum, given by (4.16), is attained when

ρ(a, c) =
Mod2(Tc,k−1)

1 + Mod2(Tc,k−1)

Lemmas 4.1.2 and 4.1.3 combined prove the following theorem.

Theorem 4.1.4. The modulus Mod2(T a(k)) can be found by the formula

Mod2(T ak ) =
∑
c∈C(a)

Mod2(Tc,k−1)

1 + Mod2(Tc,k−1)
(4.18)

Equation (4.18) computes Mod2(T a(k)) recursively. For each leaf node lk, set Mod2(Tlk,0) =

∞. Then (4.18) will propagate the modulus to the ego. For example, to compute Mod2(Ta,2)

in the graph in Figure 4.4(b), we start by assigning ∞ for modulus of the leaves e and f .

Then, by (4.18), each contributes 1 to node b, and Mod2(Tb,1) = 2. Thus Mod2(T a(2)) =

Mod2(Tb,1)

1+Mod2(Tb,1)
= 2

3
.

4.2 General degree

From the previous section, Ahlfors’ upper bound (4.10) considers all edges in the shell con-

necting sets even if they are not on the shortest paths, such as edge a− d in Figure 4.4(a).

On the other hand, when using the ego-tree approximation, we inevitably lose valuable in-

formation hidden in the edges that where discarded. For example in Figure 4.4(b-c), to form

a tree we need to solve the child custody problem between parents b and c and child f . In
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Figure 4.4: (a) To compute the upper bound in (4.10), for ego a and depth k = 2, edge
{a, c} has the same role as edge {a, d}. (b) and (c) give different ways to obtain T a2 . (d)
shows the edges considered in general degree.

particular, the lower bound calculation will discard at least one edge. Moreover, this leads

to multiple possible lower bounds, e.g., Mod2(Ta,r) = 2
3

in Figure 4.4(b) and Mod2(Ta,r) = 1

for Figure 4.4(d).

As a compromise between the Ahlfors upper bound and the tree modulus lower bound,

we propose a measure we call general degree. Fix a depth i = 1, 2, 3, . . . , r and consider a

tree rooted at the ego a, whose leaves are all contained in the shell S(a, i), and such that the

geodesics from the root to S(a, i) take exactly i hops. Let H(a, i) = (Vi, Ei) be the union of

all such trees found by breadth first search. For instance, in Figure 4.4(d) we show H(a, 2)

in that case. Note that we discarded nodes that are not on the geodesic paths from a to

S(a, 2).

Since, in general, we cannot use the recursion (4.18) on H(a, r), we instead compute the

upper bound (4.10). Namely, we consider the shell connecting sets Ei(a, k) for H(a, i) and
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Algorithm 2 Algorithm for computing summands in (4.19).

1: D ← set of all descendants for each ancestor
2: r ← neighborhood order
3: k ← 1
4: for nodes in {Sr(a, k), k ≤ r} do
5: Update D with nodes as new descendants
6: Removing ancestors that do not have any descendants in nodes
7: k ← k + 1
8: end for
9: return harmonic means of number of ancestral relations in each k

define general degree to be the following expression:

gDeg(a) :=
r∑
i=1

1∑i
k=1

1
|Ei(a,k)|

(4.19)

Observe that the first summand of 4.19 is the ordinary degree of the ego and thus our

formula acts as a generalization of degree which takes into account information about the

shells around the ego. For example, we have E1(a, 1) = 3, E2(a, 1) = 2, E2(a, 2) = 3 in

Figure 4.4(d). For r = 2, gDeg(a) = 3 + 1
1
2

+ 1
3

= 3 + 6/5 = 4.2. For small depths r the

computation can be done by hand with keeping track of ancestral relations from the ego to

nodes in each shells resulting in O(rna) complexity for an ego network Ga(r) with na nodes.

4.2.1 Comparisons of shell modulus approximations and an algo-

rithm for general degree

We illustrate the differences between the proposed method with (4.5), (4.10), and (4.18) in

Table 4.1 for a small example egocentric network.

Genral degree, behaves similar to degree and no normalization is needed which is critical

when comparing centrality of different egos, when there is no information about connections

between their ego-networks.

We can compute the summands in (4.19) with Algorithm 2.

In short, we keep track of ancestral relations from the ego to nodes in each shells, and
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Table 4.1: Examples for Shell modulus, bounds and general degree.

Quantity i = 1 i = 2 i = 3 total

Mod(v, Si)

a

b

c

d

a

b

c

d

e

f a

b

c

d

e

f

g

h

3 1.26 0.44 4.71

Lowerbound

a

b

c

d

a

b

c

d

e

f a

b

c

d

e

f

g

h

3 0.66 0.4 4.06

Upperbpund

a

b

c

d

a

b

c

d

e

f a

b

c

d

e

f

g

h

3 1.5 0.85 5.35

General Degree

a

b

c

d

a

b

c

d

e

f a

b

c

d

e

f

g

h

3 1.2 0.4 4.6
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discard nodes those that do not have any descendants in shell r; leading to required informa-

tion about H(a, r) and thus we can find summands in (4.19). The overall time complexity of

calculating (4.19) is due to the graph search in step 4 of Algorithm 2 and keeping the informa-

tionc of ancestral relationships, i.e, for an ego network Ga(r) size na, algorithm performance

is in O(rna).

We illustrate the performance of general degree compared to the Ahlfors upper bound

and the Tree modulus lower bound for conventional random network models such as Erdős-

Rényi networks, scale-free (Barabasi-Albert model8), Spatial (geometric model in the unit

square9), and small world (Watts-Strogatz model11). Figure 4.5 shows that general degree

gives a better approximation for Cshell(a, r) than the Ahlfors and Tree modulus estimates.

4.3 Applications and results

Computing node centrality in networks has numerous practical applications, for example,

finding influential nodes in immunization strategies. We evaluate the proposed measures

with comparison to other existing popular centralities. Although, comparing egocentric

measures to sociocentric ones is in favor of the latter, we can use the results to evaluate their

performance.

Because Ceff is a widely accepted measure and efficient algorithms are available for medare

size undirected networks7, we focus on benchmarking our ego-centric measures with this

sociocentric counterpart (4.4) in the subsequent discussions.

In this section, we will consider networks in Table 4.2.

4.3.1 Effects of neighborhood order r on general degree

We examine the correlation of the computed general degree when considering increasing

order of neighborhood cutoff r in (4.19) with the sociocentric data (entire network). Our

studies show that for most of the networks cutoff = 3 can gives over %90 correlation with

respect to having the entire data in the measure. In Figure 4.6, we illustrate two examples
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Figure 4.5: Comparing the value of the Ahlfors upper bound, Tree modulus lower bound,
General degree, and Shell modulus in randomly generated network models (a) Erdős-Rényi
networks with p = 2 log n/n, (b) Scale free network by Barabasi and Albert model8 with
6 edges preferential attachment. (c) Spatial network (random geometric network9) with
distance threshold value r =

√
2 log n/n and small world network by Watts-Strogatz model

with initial degree of 2 log n and rewiring probability 0.3. General degree is providing a fair
estimate of shell modulus in these networks.
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Table 4.2: Network attributes.

Network |V | |E|
network of 40 homosexual men10 40 41
Bottlenose dolphins social network79 62 59
Jazz musician collaboration14 198 2, 742
Davis southern club women80 32 89
Power grid of western united states11 4, 941 6, 594
Users interaction network of Pretty Good Privacy (PGP)12 10, 680 24, 316
Facebook friendship network of Princeton University13 13, 081 88, 266
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Figure 4.6: Correlation of values of gDeg for networks PGP and power grid computed in
different cutoffs.

of PGP network and US power grid.

4.3.2 Ranking of nodes

In the seminal paper of Stephenson and Zelen73, authors study a network of 40 homosexual

men10 (Figure 4.7(top)) and they show the advantages of information centrality Ceff and

they suggest ranking the nodes based on this measure represents the node overall structural

importance in the network. The resultant ranking is useful in detecting individuls that

transfer HIV virus easily. We redo the experiment and compute the centrality of nodes with

Ceff by degree and general degree in Table 4.3.

Top three central nodes are similar in both Ceff and general degree. General degree

distinguishes between importance of peripheral nodes (with degree 1) such as 14 and 15 that

are connected to the most central node 16. Moreover, lowest central peripheral node 35 in
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Table 4.3: Ranking by different centrality measures for network of 40 homosexual men10

Rank Ceff Degree gDegree

1 16 (0.0104) 16 (8) 16 (14.096)
2 22 (0.0097) 5 (5) 26 (10.935)
3 26 (0.0096) 26 (5) 22 (9.102)
4 20 (0.0089) 22 (4) 5 (8.352)
5 11 (0.0087) 8 (3) 11 (8.350)
6 28 (0.0087) 11 (3) 28 (8.180)
7 19 (0.0083) 20 (3) 20 (7.808)
8 31 (0.0077) 28 (3) 31 (7.579)
9 14 (0.0075) 31 (3) 8 (6.360)
10 12 (0.0074) 32 (3) 19 (6.252)
11 15 (0.0074) 34 (3) 32 (6.158)
12 17 (0.0074) 38 (3) 38 (5.991)
13 21 (0.0074) 2 (2) 34 (5.323)
14 38 (0.0072) 9 (2) 14 (5.184)
15 23 (0.0072) 14 (2) 29 (5.064)
16 25 (0.0071) 19 (2) 33 (4.823)
17 27 (0.0070) 23 (2) 36 (4.766)
18 5 (0.0070) 29 (2) 23 (4.749)
19 8 (0.0068) 33 (2) 2 (4.717)
20 18 (0.0066) 36 (2) 9 (4.587)
21 29 (0.0066) 1 (1) 12 (4.234)
22 32 (0.0062) 3 (1) 15 (4.234)
23 36 (0.0060) 4 (1) 17 (4.234)
24 13 (0.0058) 6 (1) 21 (4.234)
25 39 (0.0057) 7 (1) 18 (4.078)
26 40 (0.0057) 10 (1) 27 (4.048)
27 24 (0.0056) 12 (1) 3 (3.863)
28 2 (0.0056) 13 (1) 4 (3.863)
29 3 (0.0055) 15 (1) 6 (3.863)
30 4 (0.0055) 17 (1) 25 (3.826)
31 6 (0.0055) 18 (1) 7 (3.732)
32 9 (0.0054) 21 (1) 30 (3.565)
33 7 (0.0054) 24 (1) 39 (3.559)
34 34 (0.0054) 25 (1) 40 (3.559)
35 33 (0.0054) 27 (1) 13 (3.478)
36 30 (0.0052) 30 (1) 1 (3.416)
37 37 (0.0049) 35 (1) 35 (3.415)
38 1 (0.0046) 37 (1) 37 (3.388)
39 10 (0.0045) 39 (1) 10 (3.373)
40 35 (0.0044) 40 (1) 24 (3.246)
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Figure 4.7: (Top) Network of 40 homosexual men10 (Bottom) Pearson r and Spearman ρ
correlation of general degree with Ceff (c) Pearson r and Spearman ρ correlation of degree
with Ceff.
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Ceff is also a low central node in general degree. The general degree shows a close correlation

to Ceff compared to degree 4.7(b). Although, degree cannot distinguish between nodes with

the same degree while they are different in the other two measures.

4.3.3 Application in immunization strategies

Targeted immunizations in computer networks and heterogenious populations can greatly

impact the overall outcome of spreading processes81–83. Mitigating an epidemic with random

immunization of nodes, requires vaccinating over %80 of the population and thus identifying

a good set of target nodes has attracted much attention84;85.

However, most of the methods for finding proper sets of nodes for immunization requires

global knowledge about the network, making it impossible to use in practical situations.

Therefore, scientists prefer algorithms that are agnostic to global structure of the network, for

example acquaintance immunization chooses random neighbors of randomly picked nodes86.

In what follows, we illustrate the immunization performance of general degree when r = 3,

i.e., knowledge of neighbors together with neighbors of neighbors, compared to other popu-

lar methods, such as acquaintance, effective conductance, and betweenness and eigenvector

centrality.

We consider the well-known spreading model susceptible, infected, recovered (SIR) that

can represent infectious processes that are not reversible and susceptible nodes in the network

can become infected I (proportional to infectious severity β rate and the number of infected

neighbors) and eventually rest in R state (immune) after a recovery period 1
δ

days, i.e, S→I

(see Figure 4.8). We assume a constant δ = 0.1, i.e., nodes stay in I state in average for 10

days. To model widespread diseases such as Flu that caused by close contacts, the infectious

rate β is chosen to have reproduction number R0 ∼ β
δ
〈k〉 = 3, where 〈k〉 is the avergae degree

of the network85.

We investigate the vaccination strategies that choose different fractions of population

to immunize based and after updating the contact networks with the immunized nodes,

we asses the performance of different strategies. In our experiments, all nodes are initially
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β, #infected neighbors δ

Figure 4.8: Schematic of the SIR model.

susceptible and the infectious process starts with a randomly chosen patient zero. The

algorithm performances are monitored by measuring the epidemic final size, i.e., number of

nodes in R state after there is no more I state nodes.

We simulate the process 2000 times to get more insights into the undergoing spreading

nature in the newly obtained contact networks with different immunization strategies. The

simulations are done with GEMFsim, that employs event-based exact stochastic simula-

tion87. We test the significance of comparisons of the obtained results by the nonparametric

Mann-Whitney test88.

In Figure 4.9, we compare immunization performance of effective conductance, acquain-

tance, and betweenness and eigenvector centrality to general degree with r = 3.

In addition to US power grid and PGP networks, we consider the friendship network

for Princeton University and University of North Carolina at Chapel Hill (UNC) extracted

from Facebook13. To assume potential physical networks, Salathe et. al.85 suggests only

interactions of individuals in the same dormitory or if they are in the same year and same

major. This makes the networks extremely modular and poses a big challenge for centrality

measures that emphasize on closeness of the nodes to others. As it is shown in Figure 4.9, up

to %15 fraction of immunization betweenness centrality measure is delivering better choice

of immunization, but with considering more immunized people our egocentric measure statrs

to outperform it.

Effective conductance and betweenness centrality performs better than general degree in

small immunization coverages. One explanation is these centrality measures are computed

for the initial networks and with removing nodes, networks are changing and the central

nodes will differ consequently. Therefore, with increasing immunization coverage, General

degree performs better compared to other methods, more similar to effective conductance (as
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expected). General degree is performing better than both eigenvector centrality and acquain-

tance immunization. The latter can be explained because it is considering less information

than general degree.

4.3.4 Behavior of shell modulus estimates when n, r →∞

Modulus on the complete graph

Verifying that a metric ρ is extremal for p-modulus can be done using Beurling’s criterion

(proof in52).

Theorem 4.3.1 (Beurling’s Criterion for Extremality). Let G be a simple graph, Γ a family

of walks on G, and 1 < p < ∞. Then, a density ρ ∈ Adm(Γ) is extremal for Modp(Γ), if

there is a subfamily Γ̃ ⊂ Γ with `ρ(γ) = 1 for all γ ∈ Γ̃, such that for all h ∈ RE:

∑
e∈EN (γ, e)h(e) ≥ 0, for all γ ∈ Γ̃ =⇒

∑
e∈E

h(e)ρp−1(e) ≥ 0. (4.20)

The complete graph KN is a simple graph on N nodes, where every node is connected to

each other, see Figure 4.13.

Figure 4.14 depicts the extremal density ρ∗ for Γ(a, b) in KN .

In formulas, ρ∗(a, x) = 1/2 = ρ∗(b, x) for every x 6= a, b, and ρ∗(a, b) = 1, otherwise ρ∗ is

zero. To verify Beurling’s criterion, consider the subfamily Γ̃ of simple paths consisting of

a b and a x b for any x 6= a, b. We get that

Modp(Γ(a, b)) = 1 + 2(N − 2)
1

2p
and Mod2(Γ(a, b) =

N

2
.

Take n complete graphs K1, . . . , Kn.

Constant sizes For j = 1, . . . , n, assume that |V (Kj)| = N , and pick a pair of distinct

nodes xj−1, yj ∈ V (Kj). Then, for j = 1, . . . , n − 1, glue yj ∈ V (Kj) to xj ∈ V (Kj+1). We

denote the resulting graph by G(N, n).
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Figure 4.9: Comparing different immunization strategies with effective conductance, ac-
quaintance, eigenvector centrality, and betweenness centrality with general degree (r = 3).
The immunization coverage varies from %1 to %30 of the highest central nodes. Bars show
the difference of final size of epidemic outbreak. Negative differences shows general degree
performs better in the immunization compared to the other policy. By increasing the cov-
erage, general degree outperforms other methods. Results are inferred by 2000 simulations
of SIR epidemic model and statistically nonsignificant results are shown by shaded bars.
Empirical networks are US power grid (Grid)11, PGP network (PGP)12, Facebook friendship
network of Princeton university (PR)13. Statistically insignificant differences are shown by
shaded colors.
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Figure 4.10: Comparing different immunization strategies with effective conductance, ac-
quaintance, eigenvector centrality, and betweenness centrality with general degree (r = 3).
The immunization coverage varies from %1 to %30 of the highest central nodes. Bars show
the difference of final size of epidemic outbreak. Negative differences shows general degree
performs better in the immunization compared to the other policy. By increasing the cov-
erage, general degree outperforms other methods. Results are inferred by 2000 simulations
of SIR epidemic model and statistically nonsignificant results are shown by shaded bars.
Facebook friendship network of UC Berkeley (CAL), Amherst (AM) and Lehigh (LE). Sta-
tistically insignificant differences are shown by shaded colors.
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Figure 4.11: Comparing different immunization strategies with effective conductance, ac-
quaintance, eigenvector centrality, and betweenness centrality with general degree (r = 3).
The immunization coverage varies from %1 to %30 of the highest central nodes. Bars show
the difference of final size of epidemic outbreak. Negative differences shows general degree
performs better in the immunization compared to the other policy. By increasing the cov-
erage, general degree outperforms other methods. Results are inferred by 2000 simulations
of SIR epidemic model and statistically nonsignificant results are shown by shaded bars.
Facebook friendship network of University of Michigan (MICH), UC San Francisco (SF) and
Johns Hopkins (JH). Statistically insignificant differences are shown by shaded colors.
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Figure 4.12: Comparing different immunization strategies with effective conductance, ac-
quaintance, eigenvector centrality, and betweenness centrality with general degree (r = 3).
The immunization coverage varies from %1 to %30 of the highest central nodes. Bars show
the difference of final size of epidemic outbreak. Negative differences shows general degree
performs better in the immunization compared to the other policy. By increasing the cov-
erage, general degree outperforms other methods. Results are inferred by 2000 simulations
of SIR epidemic model and statistically nonsignificant results are shown by shaded bars.
Facebook friendship network of Rice University (RICE), Massachusetts Institute of Technol-
ogy (MIT) and Tufts University (TUFT). Statistically insignificant differences are shown by
shaded colors.
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Figure 4.13: K6- Complete graph on 6 nodes

Figure 4.14: ρ∗ for Γ(a, b) on KN

For convenience, for j = 1, . . . , n, we write Aj := V (Kj) \ {xj−1, yj}, so that the shell at

level j is Sj = V (Kj) \ {xj−1} = Aj ∪{yj}. Then, fix m = 1, . . . , n, and for j = 1, . . . ,m− 1,

define the following density on ∈ E(Kj):

ρ∗(e) :=



1
m

if e = {xj−1, yj}

1
2m

if e = {xj−1, a} or e = {yj, a} for some a ∈ Aj

0 otherwise

For j = m, and e ∈ E(Km), set

ρ∗(e) :=


1
m

if e = {xm−1, a} for some a ∈ Am ∪ {ym}

0 otherwise
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Observe that the support of ρ∗ can be decomposed as the disjoint union of N − 1 paths. To

see this, enumerate each Aj = {aj,k}N−2
k=1 . Then, for k = 1, . . . , N − 2, let

γm,k := x0 a1,k x1 a2,k · · · xm−1 am,k.

Finally set

γm,0 := x0 y1 · · · xm−1 ym.

One can check that Γ̃ = {γm,k}N−2
k=0 is a Beurling subfamily for the shell modulus Mod2(x0, Sm).

So

Mod2(x0, Sm) =
1

m
+ (N − 2)

[
2m− 2

4m2
+

1

m2

]
=

N

2m

(
1 +

1

m

)
− 1

m2
,

which is roughly N/(2m). Also note that for m = 1 we recover the degree of x0. If we sum

we get
n∑

m=1

Mod2(x0, Sm) ' N

2

n∑
m=1

1

m
' N

2
log n.

The Ahlfors upper bound gives

n∑
m=1

1∑m
j=1

1
N−1

= (N − 1)
n∑

m=1

1

m
' (N − 1) log n.

The generalized degree gives

n∑
m=1

1

m− 1 + 1
N−1

' N + log n

Increasing sizes Now we repeat the construction above, but this time, setting kj :=

|V (Kj)|, we have k1 = α1 + 2 and, for j = 2, . . . , n, we assume that kj = αj(kj−1 − 2) + 2,

for an increasing sequence of positive integers {αj}nj=2.
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Then, fix m = 1, . . . , n, and for j = 1, . . . ,m−1, define the following density on ∈ E(Kj):

ρ∗(e) :=



∏m
k=j+1 αk

1+
∑m
j=1

∏m
k=j+1 αk

if e = {xj−1, yj}

2−1
∏m
k=j+1 αk

1+
∑m
j=1

∏m
k=j+1 αk

if e = {xj−1, a} or e = {yj, a} for some a ∈ Aj

0 otherwise

For j = m, and e ∈ E(Km), set

ρ∗(e) :=


1

1+
∑m
j=1

∏m
k=j+1 αk

if e = {xm−1, a} for some a ∈ Am ∪ {ym}

0 otherwise

Now form km − 1 paths. Set

γm,0 := x0 y1 · · · xm−1 ym.

As before, enumerate each Aj = {aj,k}kj−2
k=1 . Now, km − 2 = αm(km−1 − 2), so we can group

the km − 2 edges {xm−1, a} for a ∈ Am into km−1 − 2 groups of αm edges. Each such group

will then flow through a different node in Am−1, and then we repeat. The claim is that this

gives rise to a Beurling family of paths Γ̃. By construction, they all have ρ∗ length equal to

1. We only need to check Beurling’s criterion. So suppose h ∈ RE satisfies

`h(γ) ≥ 0 for all γ ∈ Γ̃.
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Then
∑

e∈E ρ
∗(e)h(e) is equal to:

m∑
j=1

(ρ∗h)(xj−1, yj) +
m−1∑
j=1

kj−2∑
i=1

[(ρ∗h)(xj−1, aj,k) + (ρ∗h)(aj,k, yj)] +
km−2∑
i=1

(ρ∗h)(xm−1, am,k).

And if we write α := 1 +
∑m

j=1

∏m
k=j+1 αk, and collect terms, this equals

α−1

α m∑
j=1

h(xj−1, yj) +
m−1∑
j=1

(
m∏

k=j+1

αk

)
kj−2∑
i=1

[h(xj−1, aj,k) + h(aj,k, yj)] +
km−2∑
i=1

h(xm−1, am,k)

 .

which is ≥ 0, because for every j = 1. . . . ,m− 1

(kj − 2)
m∏

k=j+1

αk = km − 2

So we get

Mod2(x0, Sm) = α−2

(
1 +

3

2
(km − 2)

m∑
j=1

m∏
k=j+1

αk + (km − 2)

)

Now choose αj ≡ 2. Then

α = 1 + 2 + 4 + · · ·+ 2m−1 = 2m − 1.

Also

km − 2 = 2m−1α1

So

Mod2(x0, Sm) ' α1.

And
n∑

m=1

Mod2(x0, Sm) ' α1n.
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On the other hand the generalized degree is

n∑
m=1

1

m− 1 + 1
km−1

' log n.
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Chapter 5

Network clustering and community

detection using modulus of families of

loops

We study the structure of loops in networks using the notion of modulus of loop families.

We introduce a new measure of network clustering by quantifying the richness of families of

(simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the

expected link-usage optimally. We propose weighting networks using these expected link-

usages to improve classical community detection algorithms. We show that the proposed

method enhances the performance of certain algorithms, such as spectral partitioning and

modularity maximization heuristics, on standard benchmarks.

This chapter is organized as follows. First, we introduce our notation and the necessary

background on modulus of families of loops. We introduce an efficient algorithm to find

the shortest weight cycle in graphs. Then, we define our proposed methods to measure

clustering in the network. Next, we show how to preprocess a network in order to improve

partitioning techniques such as Fiedler vector bisection and the modularity maximization

heuristics. Finally, we discuss other potential applications.
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5.1 Probability interpretation of loop modulus

We define a probability mass function µ ∈ P(L) := {µ ∈ RL≥0 : µ1 = 1} that defines a

random loop γ ∈ L with

µ(γ) = Pr(γ = γ). (5.1)

Writing λ = νµ for a nonnegative scalar ν and a pmf µ (2.14) becomes:

max
ν≥0

(
ν − ν2

4
min
µ∈P(L)

µTCµ

)
. (5.2)

The maximum in (5.2) occurs when

ν∗ = 2

(
min
µ∈P(L)

µTCµ

)−1

(5.3)

Substituting (5.3) in (5.2), we get that ν∗ = 2 Mod2(L) and

Mod2(L)−1 = min
µ∈P(L)

µTCµ = Eµ∗
∣∣∣γi ∩ γj∣∣∣ ,

for an optimal µ∗, where Eµ∗
∣∣∣γi ∩ γj∣∣∣ is the minimum expected overlap of two independent,

identically distributed random loops with pmf µ∗ ∈ P(L).

Moreover by (2.13), the exremal density satisfies

ρ∗(e) = Mod2(L)Eµ∗
[
N (γ, e)

]
where Eµ∗

[
N (γ, e)

]
=
∑

γ∈LN (γ, e)µ∗(γ) is the expected usage of link e in loop γ. There-

fore, the optimal measures µ∗ are related to the optimal density ρ∗ as follows:

ρ∗(e)

Mod2(L)
= Pµ∗

(
e ∈ γ

)
(5.4)

We call Pµ∗
(
e ∈ γ

)
the expected usage of link e.

Moreover, one can always find an optimal measure µ∗ that is supported on a minimal set
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Algorithm 3 Approximating densities for Mod2(L) with tolerance 0 < εtol < 150

1: ρ← 0; ρ0 ← 1
2: L′ ← ∅
3: γ ← ShortestLoop(ρ0)
4: while ∃γ such that `ρ(γ) ≤ 1− εtol do
5: L′ ← L′ ∪ {γ}
6: ρ← argmin{E2(ρ) : Nρ ≥ 1}
7: end while

of loops of cardinality bounded above by |E|, see52 Theorem 3.5. We think of these loops as

“important loops” that play a role in the optimization problems as active constraints.

5.2 Approximating the modulus

The numerical results in the examples that follow are produced by a Python implementation

of the simple algorithm described in50. This algorithm exploits the L-monotonicity (Prop-

erty (b)) of the modulus by building a subset L′ ⊆ L so that Mod2(L′) ≈ Mod2(L) to a

desired accuracy50 Theorem 9.1. In short, the algorithm begins with L′ = ∅, for which the

choice ρ ≡ 0 is optimal and insert a loop with the shortest hop-length then repeatedly adds

violated constraints to L′ and determines the optimal ρ each time. The algorithm terminates

when all constraints are satisfied to a given tolerance (Algorithm 1).

The two key ingredients for implementing this algorithm are a solver for the convex

optimization problem (4.2) and a method for finding violated loops, i.e., with ρ-length less

than one. In our implementation, the optimization problem is solved using an active set

quadratic program63 and the violated constraint search is performed using a modified version

of the breadth-first search from each node that has a cut-off 1−tol and reports the first

backward link that forms a loop less than the cut-off.

Although simple, this algorithm is adequate for computing the modulus in the examples

presented here, on a Linux operating computer with Intel core i7 (and 2.80 GHz base fre-

quency) processor, for example. More advanced parallel primal-dual algorithms are currently

under development to treat modulus computations on larger networks.
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5.3 Finding the shortest loop

Finding shortest cycle in graphs is a fundamental problem, but less explored compared

to finding the shortest path. Efficient algorithm to find shortest cycle of a graph, also

known as girth89, is critical in cycle theory, determination of minimal cycle basis90–92 and

maximum cycle packing93–95. In particular, efficiently finding girth is crucial for methods

that iteratively populate all loops with selected weights? . The shortest cycle problem is also

related to graph properties such as chromatic number and connectivity96;97, also for planar

graphs it corresponds to the min-cut problem in the dual graph.

We can use all pair shortest path algorithm (Floyd-Warshall) to find the shortest cycle

in directed graphs. However, this procedure is not directly applicable on undirected graphs

due to possible self-loops and the objective of finding simple cycles without repetition of

edges. For unweighted graphs Itai et al. used reductions in subcubic time (upperbounded

by the matrix multiplication exponent); they left the weighted graphs98 as an open problem.

Roditty et al. extended Itai et al. result for integer weights99.

Vassilevska et al. relates finding minimum cycle to other graph theory problems with no

subcubic time algorithm100 and thus any improvements for one of these problems influences

others.

Further approximation algorithms are proposed in98;101–104. Finding shortest cycle with

even length is analyzed in105, and randomized algorithms proposed, e.g., in103. In this

section, we focus on a deterministic algorithm to find the girth that has arbitrary length.

Because more efficient combinatorial algorithm is required for (real valued) weighted and

undirected graphs, this research introduces an easily implementable method that incorpo-

rates the known shortest path algorithm philosophy. We employ a unique definition for walks

with sockets (pair consisting of a vertex and an edge) and modify the existing Dijkstra’s al-

gorithm respectively. We translate the algorithm into nodes and edges afterwards.

Most of the proposed algorithms are focused on finding the shortest cycle rooted to each

node and repeating the process for all nodes, e.g. in98;103;106. Nevertheless, we focused on

minimizing a composite distance from each node to the cycles, with shrinking the network
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Figure 5.1: Socket Sa,e consisting of vertex a and edge e.
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Figure 5.2: Chain of sockets Sa,1Sb,2Sc,3 form a loop on vertices a, b, and c.

with discarding nodes that are not improving the subsequent searches.

Let G = (V,E) be a graph with vertex set V and edge set E. The size of V and

E are denoted by n and m subsequently. The set of neighbors of node v is denoted by

Nv = {u ∈ V |u is connected to v}. A walk γ on a graph is represented by a finite string of

vertices and edges v1e1v2e2 . . . vr, where vi’s and ei’s are all distinct. A cycle is a walk that

starts and ends at the same vertex v1e1v2e2 . . . vrerv1. The length of cycle c is defined as

` (c) :=
∑
e∈c

w (e) , (5.5)

where w : E → R+ is a weight function, interpreted as length of edges.

A socket Svi,ej includes a connected pair of vertex and edge (vi, ej), as shown in Figure

5.1. Distinct sockets, have no nodes or edges in common and weight of a socket Svi,ej is

weight of ej.

Therefore, walk can be redefined with sockets; a finite string of distinct sockets that do

not share vertices and edges, i.e., Sv1,e1Sv2,e2 . . . Svr,er is a simple walk, and a cycle is a simple

walk that starts from an initial socket Sv1,e1 and ends in Svr,er , where e1 and er are two

distinct edges incident to vertex v1. A simple loop with sockets is shown in Figure 5.2.
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5.3.1 Composite distance

Let L be the set of simple cycles in G; assume L is nonempty, i.e., G is not a tree. For

x, y ∈ V and c ∈ L, let d(x, y) be the distance between x and y, and d(x, c) be the distance

between x and c, that is

d(x, c) = min
y∈c

d(x, y).

Additionally, define the composite distance of node x ∈ V to loop c ∈ L:

d+(x, c) = d(x, c) + `(c), (5.6)

and the composite distance of node x to all loops L:

d+(x) = min
c∈L

d+(x, c). (5.7)

The following theorem shows that we obtain the shortest cycle by solving the optimization

problem (5.7) for every vertex x,

Theorem 5.3.1. Minimizing d+(x) over x ∈ V is equivalent to finding the shortest cycle in

L, and the minimum is attained for any x in a shortest cycle.

Proof. For any x ∈ V and c ∈ L, d+(x, c) ≥ `(c), and equality holds if x ∈ c, so the minimum

will be attained when c is a shortest cycle and x ∈ c.

Theorem 5.3.1 suggests to find a shortest cycle, we determine d+(x) for all nodes subse-

quently, with using the previous best d+(x) as a cut-off for the next. The following theorem

shows that we can exclude node z that d(x, z) ≤ d(x, c) from further consideration in our

search.

Theorem 5.3.2. Suppose d+(x) = d+(x, c) for some x ∈ V and c ∈ L. Let c′ 6= c ∈ L be a

shortest cycle and let y ∈ c′. Then

d(x, y) > d(x, c).
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x

d(x, c)

z1 z2

z3

c
d(x, c)

Figure 5.3: Nearest cycle to node x. Nodes such as z1, z2, and z3 that d(x, zi) ≤ d(x, c) can
be excluded from further considerations.

In other words, after a search starting from x, we can exclude from further consideration

any node that x is closer to them than the minimizing cycle c.

Proof. Since d+(x) < d+(x, c′) and `(c′) < `(c), we have

d(x, c) + `(c) < d(x, c′) + `(c′) < d(x, c′) + `(c),

so

d(x, c) < d(x, c′) < d(x, y),

implying the theorem.

As a trivial example for Theorem 5.3.2, after a search from node v, all nodes z that

d(x, z) ≤ d(x, c) will be excluded from subsequent searches (Figure 5.3).

5.3.2 Algorithm

The proposed method searches the sockets in the graph with Dijkstra’s algorithm while using

a priority queue implementation to map each socket to its position in the queue107. We

illustrate an example of a cycle including vertex a with degree 3 that transforms into a cycle

in Figure 5.4(a) to a path of distinct sockets from set {Sa,1, Sa,2, Sa,3} to {SN1,1, SN2,2, SN3,3}
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Figure 5.4: (a) Vertex a with neighbors. The remainder of the graph is shows by a dashed
rectangle; (b) shortest path between set of sockets {Sa,1, Sa,2, Sa,3} to another set of sockets
{SN1,1, SN2,2, SN3,3}, such that all sockets are distinct, gives the shortest cycle for vertex a.

in Figure 5.4(b).

Following Theorem 5.3.1, to find a shortest cycle we examine the smallest found d+(x)

over x ∈ V by running Dijkstra’s algorithm (see Algorithm 4). Whence the shortest path

starting from sockets attached to x meets a nondistinct socket, algorithm returns d+(x).

We illustrate an example of a weighted graph in Figure 5.5(a) and the found d+(a) in

Figure 5.5(b) with nodes that can be excluded from further consideration in yellow color.

We demonstrate different steps of the algorithm in Figure 5.6.

To find the girth we apply Algorithm 4 for each node as root and use the shortest found

cycle as a cut-off for the next search with excluding the nodes that cannot be roots for

future searches using Theorem 5.3.2. The pseudo-code is shown in Algorithm 5, from the

algorithms and theorems we conclude the following corollary:

Corollary 5.3.3. Using Algorithm 4 and 5, each loop will be searched at most only once.

Moreover, the number of loops that the algorithm completes is upperbounded by size of cycle

basis108.

We translate the proposed algorithms into vertices and edges. Following Theorem 5.3.1,

to find the girth we examine the smallest found d+(x) over x ∈ V exhaustively using Dijk-

stra’s algorithm: when a node z is added to the set of “visited” nodes (i.e., the nodes whose a
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Algorithm 4 Algorithm to determine improved d+(x) = minc∈C d
+(x, c) and excluded

sockets.

1: Q.enqueue(Adjacent sockets to x with their weights)
2: walk← Dictionary of shortest walk for each socket from source sockets
3: while Q do
4: S , dist(S)← Q.dequeue
5: if dist(S) > Cut-off then
6: return None
7: end if
8: u← adjacent vertex to S .
9: if u ∈ socket T in walk[S ] then
10: return dist(S) and nodes in sockets with distance less than dist(T ).
11: end if
12: for Sockets Ru,ei starting from u and distinct from S do
13: dist(Ru,ei) = dist(S) + weight of w(ei))
14: if dist(Ru,ei) > Cut-off then
15: continue to next iteration
16: end if
17: if Ru,ei /∈ seen or dist(Ru,ei) <seen[Ru,ei ] then
18: seen[Ru,ei ]← dist(Ru,ei)
19: update walk[Ru,ei ] = walk[S ] + Ru,ei
20: Q.enqueue(Ru,ei , dist(Ru,ei))
21: end if
22: end for
23: end while
24: return None

a

b

c

d

e

f

g

h

1

2

1

10

2

2

3
4

2

1
4

(a)

a

b

c

d

e

f

g

h

b

a

d g

h

(b)

Figure 5.5: (a) Example graph with weights. (b) Nearest loop to vertex a, i.e.,
arg minc∈C d

+(x, c). Sockets linked to nodes a, b, and d will be discarded for the subse-
quent searches.
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Figure 5.6: Solution steps in which each yellow socket is pushing into the queue and red
sockets are popping. (a) Enumerating edges for better explanation (unnecessary for the
proposed algorithm); (b) pushing the immediate attaching socket to vertex a with their
weights as priority: (Sa,0, 1), (Sa,2, 1), and (Sa,1, 2); (c) (Sa,0, 1) popped and neighboring
sockets with new distances pushed: (Sb,3, 11) and (Sb,4, 3); (d) (Sa,2, 1) popped, and (Sd,7, 3),
and (Sd,8, 5) pushed; (e) (Sa,1, 2) popped and (Sc,3, 12), (Sc,5, 6), and (cc,6, 4) pushed. (f)
(Sb,4, 3) popped and (Se,5, 7), and (Se,9, 6) pushed; (g) (Sd,7, 3) popped and (Sg,10, 4) pushed;
(h) (cc,6, 4) popped and (Sf,9, 7) pushed; (i) (Sg,10, 4) popped and (Sh,8, 8) pushed; (j) (Sd,8, 5)
popped and (Sh,10, 6) pushed; (k) (Sc,5, 6) popped and (Se,4, 8) pushed; (l) (Se,9, 6) popped and
(Sf,6, 8) pushed; (m) (Sh,10, 6) popped and (Sg,7, 8) pushed; (n) (Se,5, 7) popped and (Sc,1, 9)
pushed; (o) (Sf,9, 7) popped but does not lead to any socket from a previously shorter walk;
(p) (Se,4, 8) popped and (Sb,0, 9) pushed; (q) (Sf,6, 8) popped and interrupts its shortest path.
The algorithm returns the closest circle: Sd,8, Sh,10, Sg,7 with length 4 + 1 + 2 = 7, shown in
Figure 5.5(b).
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Algorithm 5 Using Algorithm 4 to find the girth

1: cut-off ←∞
2: while V do
3: v ← V .pop
4: c, Y ← Algorithm 4 for v, and with cut-off
5: remove Y from G
6: if cut-off > `(c) then
7: cut-off = `(c)
8: end if
9: end while
10: return cut-off

path from x to them is now determined). For each neighbor y of z, if a shorter path is found

from the root, we update the shortest walk to y. If y has been visited and the found shortest

path to y cannot be improved, we have a candidate for d+(x) of the root node x, namely the

walk that begins at x, follows the Dijkstra tree to z crosses {z, y} and returns to x along the

Dijkstra tree. The candidate composite distance is d(x, z) + d(x, y) − d(x, ca) + w({x, y}),
where ca is the common ancestor of z and y in the shortest path tree. Algorithm enqueues

the found candidate for the composite distance to the priority queue. Whenever a candidate

dequeues by the algorithm, a composite distance d+(x) is found, finishing the search. As we

run Dijkstra, we keep track of the best d+(x) found so far as a cut-off for the next search.

If, at any point, we visit a node z that is farther from x than this best distance, we stop the

search and excludes nodes that are not improving further searches by Theorem 5.3.2.

In the following theorem, we obtain the algorithm complexity.

Theorem 5.3.4 (Complexity of the algorithm). The worst case complexity for finding the

girth from

min
x∈V

(
min
c∈C

d+(x, c)

)
(5.8)

with algorithms 4 and 5 using socket is O(〈k〉n2 log n), where 〈k〉 is the average degree of the

network and with nodes and edges is in O(nm+ n2 log n) or.

Proof. In the socket language; from a node v, algorithm starts searching from all adjacent

sockets and at most completes a tree with an extra socket to close a loop, i.e., n− 1 sockets
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plus one. In each step i, from Theorem 5.3.2, algorithm excludes nodes that cannot improve

the found shortest cycle and thus the network is shrinking. Therefore, the total number of

heap operations is
n∑
i=1

k∗(i)(n− i+ 1) (5.9)

where k∗(i) : {1 : N} → Z is the degree at step i. Equation (5.9) is bounded by nkmax

because
n∑
i=1

k∗(i)(n− i+ 1) < n
n∑
i=1

k∗(i) = nm

Therefore the worst case complexity, with enqueuing heap operation in O(log(n)), is in

O(〈k〉n2 log n). With nodes and edges it is in O(nm+ n2 log n)

5.3.3 Examples

We consider test examples to compare the algorithm with the naive counterparts where to

find the girth in the graph is for all edges e = {u, v} ∈ E, we find the shortest path γ from u

and v, such that e 6∈ γ, the resultant cycle γ+ e, is the shortest cycle rooted to e. Repeating

this process for all edges and comparing the length of them results in choosing the shortest

one in O(m2 + nm log n) using Dijkstra’s algorithm with Fibonacci heap operations.

In the first example, we consider a random geometric graph to illustrate the algorithm

behavior. Moreover, because complete graphs (or similar graphs) are posing a challenge for

the algorithm performance due to their large degrees, we test them as the second example.

Random geometric graph with light spanning tree An example for short-circuiting

in networks can be described in a random geometric network G, with weight values chosen

uniformly random between 104 and 105. After finding a spanning tree T = (V,ET ), we

reweigh the edges ET to be uniformly random between 20 and 50. Now if we randomly

choose one edge in E \ET and assign a small weight, the shortest cycle comprises this edge

and some edges in ET . Finding this cycle is hard for the naive algorithm because it finds

the shortest cycle rooted to each edge. However, our proposed algorithm finds this shortest
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Figure 5.7: Shortest cycle found in a spatial network, with small weights on the spanning
tree and one nontree edge.

cycle quickly (here with one iteration), see Figure 5.7 for the illustration.

Complete network We plot the total number of heap operations in the naive algorithm

and our proposed algorithm for several randomly weighted complete graph instances in

Figure 5.8. The proposed algorithm outperforms the naive counterpart with shrinking the

network in each search.

In summary, we proposed a deterministic algorithm to find shortest cycle in graphs.

Instead of finding the shortest cycle rooted at each node, we focus on finding the short-

est composite distance of a node to cycles in the graph. We proved that algorithm is in

O(nm). Another way to right the worst case complexity is with the average degree 〈k〉 in
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Figure 5.8: Heap operations in our algorithm (left) compared to the naive algorithm (right)
for complete graphs with random positive weights.

O(〈k〉n2 log n) and thus subcubic when graphs average degree is in O(n1−ε which often is

the case in empirical applications.

5.4 Clustering measure with modulus of family of loops

Complex networks exhibit properties such as the small-world phenomenon11, scale-free de-

gree distribution6, and local clustering of nodes11. In social networks, when two individuals

are acquainted it is probable that they have another friend in common, resulting in properties

of homophily for the network. For example, in friendship networks people introduce their

friends to each other. This transitivity property makes the real world networks different from

synthetic random networks109. However, this clustering tendency is difficult to quantify.

A proposed measure of clustering for a node v 11 is to compute the fraction of links between

neighbors of v that actually are in the network, over all possible ones. The authors in110

pointed out the importance of closed paths (loops) in the cluster and discussed computation

of the clustering coefficient using the density of loops with length 3 (triangles). Because

this measure fails to describe the clustering of grid-like parts of the network, the authors

improved the measure by counting quadrilaterals–loops with length 4 or mutuality in109–

and proposed a new measure that considers different types of quadrilaterals. Similarly,47

addresses bipartite networks that lack triangles thus the standard clustering coefficient is not
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useful. In47,111 and112 the authors emphasize the importance of longer loops in the network.

The authors in113 showed that clustering coefficient measures are highly correlated with

degree, and they proposed a measure that preserves the degree sequence for the maximum

possible links among neighbors of node v, thus avoiding correlation biases. Kim et al.

introduced local cycling coefficient that quantifies local circle topologies by averaging the

inverse length of loops passing the nodes49. They average this coefficient for all nodes to

derive the degree of circulation in the network.

The authors in114 introduced a version of clustering coefficient that considers weighted

network, and115 propose a way to measure a general clustering coefficient for weighted and

directed networks.

Numerous versions of clustering coefficients for different types of networks expose the

need for a generalized measure that works for a wide range of applications. We apply the

concept of modulus of families of loops as a tool to study structural properties of network

clustering. In this section, we show that analysis of loops using modulus provides a general

approach to the study of network clustering properties. We also propose a new clustering

measure that can explain situations that conventional methods struggle to handle.

A network has a high clustering measure when most of the links are included in short

loops that also visit nearby links. The standard method of counting triangles considers the

smallest loops, while other methods consider the next shortest loops, i.e., quadrilaterals. A

method must be devised to compare these loops and evaluate the combined influence to

improve clustering measures109. The previous section introduced a way to evaluate family

of loops using modulus. Therefore, we propose a comprehensive modulus-based measure of

clustering.

The classical clustering coefficients that measure triangle density, are usually normalized

by comparing the links in the networks (that form triangles) with all possible links between

nodes, i.e., all possible triangles in the corresponding complete graph. Most real networks

are far from being complete graphs (even locally), therefore, classical coefficients usually

have small values, and they are correlated to the degree of the node113.

We normalize our clustering measure using the probabilistic interpretation in (5.4). Mod-
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ulus tries to spread expected usage as much as possible among the links of the network in

order to minimize the expected overlap. However, the expected link usages are not always

uniform. Define a uniform density ρu(e) ≡ 1/3 that is always admissible for loop modulus–

because it penalizes all loops at least 1. So its energy E2(ρu) = |E|/9 gives an upper bound

for Mod2(L).

Therefore, our proposed clustering measure takes the following form

Cloop(G) :=
9

|E|Mod2(L), (5.10)

where Cloop is a measure of richness of actual link participation in important loops over the

ideal case that all links participate equally in triangles. For example, consider a grid as in

Figure 5.9(a) with 100 nodes and 200 links. We compare its loop modulus with that of a

random regular network with the same number of nodes and same degree as shown in Figure

5.9–these networks behave similar to the two extremes of small world networks11. Since

the classical methods use the number of triangles in a network, they give zero clustering

coefficient to the grid and 2 − 3% to the random regular network. The grid has square

clustering coefficient 14.7% and the random regular network square clustering is close to

zero (we use square clustering introduced in47). For each network in Figures 5.9(a) and

5.9(b):

Mod2 Lgrid = 10.8 and Mod2 Lreg = 7.8.

Therefore, Cloop (Ggrid) = 54% which means the network is highly clustered and Cloop (Greg) =

34% is less clustered than grid.

In some cases, our proposed measure gives different conclusions than the classical cluster

coefficients. For example, let us compare the networks (a) and (b) in Figure 5.10. Network

(a) is collaboration network between Jazz musicians14 and network (b) is an email commu-

nication network at the University Rovira i Virgili in Spain15. In the email communication

network a very rich core is balanced by many stems on the periphery and the loop clustering

measure is slightly higher than for the Jazz network. This goes in the opposite direction
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(a) (b)

Figure 5.9: (a) A grid network with deg = 4 and 100 nodes, (b) a random regular network
with deg = 4 and 100 nodes. The proposed clustering measure is C (Ggrid) = 56.25%,
C (Greg) = 34%. Classical clustering coefficient gives zero for the grid and 2.4% for the
regular network and average square clustering coefficient is 14.7% for the grid and 0.4% for
the regular network.

.

than the classical clustering coefficient result116. For the piece of the Facebook network in

Figure 5.10(c)3, the loop clustering value is slightly greater than the classical case, reflecting

a certain amount of tightly knit communities. Finally, in the friendship network for the

website hamsterster16, the clustering measure and classical clustering coefficient give almost

similar results.

Furthermore, we can isolate the contribution of triangles, squares, and higher order loops

by considering modulus of subfamilies of L. This can be done assuming a hop-length cut-

off for γ in Algorithm 4. Moreover, the property of subadditivity (Property (e)) gives an

upperbound for the aggregate effects.

5.5 Weighting to enhance community detection algo-

rithms

Communities in networks are defined as groups of nodes that are closely knit together relative

to the rest of the network. Real world networks, for example social networks117 and biological
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(a) (b)

(c) (d)

Figure 5.10: (a) Jazz musicians network14 with Cloop = 10.0%; average triangle density
C = 52.0% and average square clustering 6.66%. (b) Email communication network in
University Rovira i Virgili in Spain with Cloop = 13.8%; average triangle density C = 16.6%
and average square clustering 1.46%15. (c) An excerpt of Facebook network with n = 2888
and m = 2981. Edges represent friendships between nodes3 with Cloop = 3.7%; average
triangle density 0.03% and average square clustering 0.07%. (d) Friendship network of the
website hamsterster.com16, with n = 1858 and m = 12534. The clustering in the network is
Cloop = 6.22%. The classical clustering coefficient (transitivity) is 9.04% and average square
clustering coefficient 6.78%.
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networks118, comprise densely connected parts that are loosely connected with each other.

Finding these communities is crucial in analyzing the collective behavior of the network or in

order to be able to make assumptions (meta population). These communities can be disjoint

or overlapping. For a comprehensive review of the literature on this subject see28.

When a pair of nodes are in the same group, it is more likely to have strong flow of

communication among each other together with their groupmates and information tends to

stay within communities. This emphasizes the importance of having many non-overlapping

short loops.

Analyzing loops in a network provides information about the cluster structure and em-

phasizes the importance of links in these clusters. By (5.4) the extremal density ρ∗(e)

measures the amount of important loops (see Section 5.1) passing through link e (expected

usage). Assuming members of the community shares a lot of cycles between themselves, thus

ρ∗(e) serves as a measure of affinity for the nodes connected by e. In other words, nodes on

important loops are well connected to the rest of the group. In this section, we show that

indeed preprocessing the network using ρ∗(e) can improve network partitioning.

After we compute loop modulus for a network, the extremal density ρ∗(e) gives generic

information about the structure of communities that contains many short loops and the

importance of links in these clusters that generalize methods in26 and27. We can substan-

tially improve the performance of some partitioning methods such as spectral partitioning or

modularity maximization heuristics by preprocessing the network into a weighted network

with link weights ρ∗(e). We can apply our methods to any weighted and directed network.

As the first example, we consider Zachary’s Karate Club17–a friendships network at a

university Karate club with 34 members, see Figure 5.11(a). A conflict between the instructor

and the club’s president split the club into two groups. Finding the communities in this

network is a basic benchmark test for partitioning algorithms119 Chapter 9.

To bisect this network, we use Fiedler vector bisection67 on both weighted and unweighted

networks in Figures 5.11(b) and (c). In the unweighted case, the bisection method failed to

separate a node correctly and there are two nodes that are very close to the other cluster.

Our weighting method does this clustering with complete accuracy.
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Figure 5.11: (a) Zachary’s karate club network17 with the groups splitted after conflict. (b)-
(c) Fiedler vector values corresponding with the node labels. (b) Spectral partitioning of
Zachary’s karate club network17, node 3 is wrongly partitioned. (c) spectral partitioning of
the same network weighted by Loop Modulus where nodes are correctly partitioned.
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It may be useful to allow for overlapping communities. For instance, a node can be a

member of different communities, such as family, sport club, workplace, etc120. Although

bisection methods alone are unable to detect overlapping communities, we see that loop

modulus can augment these methods by distinguishing nested partitions in networks with

overlapping communities in the next example. Figures 5.12 (a)–(c) show a network that

is partitioned by Palla et al.18. We compute the Fiedler vector in both unweighted and

weighted cases. As shown, the unweighted method failed to separate C and D overlapping

communities, while the weighted method does distinguish them with the overlapping part.

To show the effectiveness of the weighting method in a more standard fashion, we con-

sider two popular heuristics for modularity maximization; greedy modularity optimization

method by Clauset, Newman, and Moore (CNM)121 and the Louvain method122 on the

LFR benchmarks123. The LFR benchmarks allow the user to specify the community size

distribution along with the degree distribution, offering more realistic benchmarks than the

Girvan-Newman benchmarks124. We show re-weighting the network, using ρ∗(e) from loop

modulus, improve both CNM and Louvain substantially.

In Figure 5.13(a)-(c), three networks are produced by the LFR benchmark with 400

nodes, mean degree 5, maximum degree 10, and community sizes ranging from 20 − 40

nodes. The interconnectedness of various communities is measured by the mixing rate µ.

We plot the mutual information125 for both the derived membership from CNM and Louvain

on each network and the weighted version and compare them to the ground truth from LFR

in Figure 5.13. As we observed, both the CNW and Louvain algorithms perform better on

re-weighted networks using modulus.
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Figure 5.12: (a) A network partitioned by Palla et. al.18. Nodes 16, 17 and 18 are shared
between C and D groups and Node 2 is shared between D and A groups. (b) Fiedler vector of
the network, (c) Fiedler vector of the weighted network by Loop Modulus where overlapping
groups can be distinguished.
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Figure 5.13: (a)-(c) Networks are produced by LFR benchmark with size 400 nodes, mean
degree 5, maximum degree 10, and community sizes ranging from 20 − 40. The mixing
rate µ, for adjusing ratio of intra-communities links over all links are 0.1, 0.2, and 0.3. (d)
The plot depicts the normalized mutual information for community memberships found by
Greedy modularity optimization (CNM) and Louvain method. Both the CNW and Louvain
methods perform a better task on re-weighted networks.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this dissertation, we framed modulus of families of walks as a tool for developing network

measures that use generic structural properties of the network. We introduced general cen-

trality measures based on modulus of families of walks. These measures provide information

about nodes using knowledge from the entire network, while keeping computational costs low

and without requiring acquisition of data from the entire network. These methods can be

applied to very general networks, whether weighted, directed, multi-edged, or disconnected.

We also presented several applications of our proposed measure to identify influential parts of

a network and node ranking, as well as for mitigating epidemics. Considering different fam-

ilies of walks and their modulus can provide additional insights into solving other problems

on networks.

We analyzed egocentric network measures based on modulus of family of walks connecting

ego to its neighborhood nodes. We compare the proposed measures with the sociocentric

counterparts and illustrate the advantages of our methods. For undirected networks, shell

modulus can be computed by solving a Laplacian system. Moreover, for directed, multi-

edges, networks we propose approximations that carry the same benefits of the original

definition while being easy and cheap to compute. Finally, we introduce a generalization of
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degree called general degree. We illustrated the applications of our methods, particularly in

epidemic mitigation.

We used modulus of families of loops to analyze loop structures in networks and showed

that loop modulus quantifies the richness of loops in the network and we used it to measure

clustering. The extremal densities found for loop modulus represent the probability of link

participation in important loops. The performance of community detection methods such as

spectral bisection and modularity maximization partitioning can be improved by weighting

networks with their extremal densities derived from loop modulus.

We proposed a deterministic algorithm to find a shortest cycle in graphs. Instead of

finding the shortest cycle rooted a each node, we focus on finding the shortest composite

distance of a node to cycles in the graph. We proved that algorithm is O(〈k〉n2 log n), and

thus subcubic when graphs average degree is in O(n1−ε), this is often the case in empirical

applications.

6.2 Future work

Our research raised numerous questions that require further investigations. Here, we list a

few of them briefly.

We focused primarily on edge-based modulus, where we assign a density to each edge,

interpreted as the importance of the edge in a specific family. This can generalized to other

network elements, such as nodes or sockets, leading to very different families of objects on

networks.

Modulus characterizes the importance of members of a family from their dual point of

view. For example, in a family of spanning trees, important members act as the backbone

of the network. This is important for robustness and security design. Moreover, modulus

sensitivity is determined by infinitesimal changes in the edge weights, using the extremal

densities of the edges. Also, each member of the family has an associated dual variable,

which provides a measure of its importance.

Moreover, analyzing network functions, such as synchronization and propagation, is an-
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other application. For example, investigating families of specific structures, e.g. loops,

provide valuable information for inferring how the topology affects specific dynamics, e.g.

synchronization.

There are many algorithmic challenges hidden in the modulus computation, for example

in Section 5.3 in this dissertation. Moving toward distributed solver and exploiting graph

structures as spatially distributed systems to capture couplings between optimization vari-

ables in the cost functional and linear constraints is another interesting direction. In the

active set method for quadratic programming, the determination an efficient and general

method for choosing active constraints using the dual problem gave us initial promising

results and needs more in-depth analysis.

During the work on network robustness (Appendix A), we observed that modulus of

family of walks connecting layers of network generalizes popular measures such as algebraic

connectivity with fewer restrictions. This can be an immediate interesting line of research.

Moreover, combining modulus with control theory is another promising application. For

example, modulus of family of spanning trees with encrypted message delivery time is one

application.

Chapter 5, shows that studying loop modulus improves community detection. A theo-

retical framework to re-formulate communities of networks based on cyclic structure looks

more promising than existing methods based on the density of edges in communities. This

requires a model-based approach in unsupervised statistical learning and stochastic block

models.

Although we present some applications of loop modulus, analyzing loop structures on the

network can expose information about various dynamics, e.g., synchronization and propa-

gation126–128. Combining loop modulus and a measure such as the diameter can give us an

insight about dynamics on the network such as consensus126, synchronization of Kuramoto

oscillators127, and susceptible-infected-susceptible SIS epidemic model128 where loops have a

crucial role. Another application is to evaluate the complexity of the network. For example,

considering trees as simple graphs, adding more links to them corresponds to more loops, and

hence, higher complexity. Moreover, loop modulus satisfies the axioms of graph complexity
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in129.

Modulus of families of walks is proved to be a useful tool for characterizing structure and

functions of complex networks. We hope this dissertation further spreads the word and also

helps users to appreciate modulus practicality.
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[47] Pedro G Lind, Marta C González, and Hans J Herrmann. Cycles and clustering in

bipartite networks. Physical review E, 72(5):056127, 2005.

[48] Ginestra Bianconi and Andrea Capocci. Number of loops of size h in growing scale-free

networks. Physical review letters, 90(7):078701, 2003.

[49] Hyun-Joo Kim and Jin Min Kim. Cyclic topology in complex networks. Physical

Review E, 72(3):036109, 2005.

[50] Nathan Albin, Pietro Poggi-Corradini, Faryad Darabi Sahneh, and Max Goering. Mod-

ulus of families of walks on graphs. In Proceedings of Complex Analysis and Dynamical

Systems VII, to appear. http://arxiv.org/abs/1401.7640.

[51] Nathan Albin, Megan Brunner, Roberto Perez, Pietro Poggi-Corradini, and Natalie

Wiens. Modulus on graphs as a generalization of standard graph theoretic quantities.

106

http://link.aps.org/doi/10.1103/PhysRevE.94.012305


Conformal Geometry and Dynamics of the American Mathematical Society, 19(13):

298–317, 2015.

[52] Nathan Albin and Pietro Poggi-Corradini. Minimal subfamilies and the probabilistic

interpretation for modulus on graphs. The Journal of Analysis, pages 1–26, 2016.

[53] L. V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill

Book Co., New York, 1973. McGraw-Hill Series in Higher Mathematics.

[54] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal

of Mathematics 8, 3:399–404, 1956.

[55] R. J. Duffin. The extremal length of a network. J. Math. Anal. Appl., 5:200–215, 1962.

ISSN 0022-247x.

[56] O Schramm. Square tilings with prescribed combinatorics. Israel Journal of Mathe-

matics, 84(1-2):97–118, 1993.
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[85] Marcel Salathé and James H Jones. Dynamics and control of diseases in networks with

community structure. PLoS Comput Biol, 6(4):e1000736, 2010.

[86] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. Efficient immunization

strategies for computer networks and populations. Physical review letters, 91(24):

247901, 2003.

[87] Faryad Darabi Sahneh, Aram Vajdi, Heman Shakeri, Futing Fan, and Caterina Scoglio.

Gemfsim: a stochastic simulator for the generalized epidemic modeling framework.

arXiv preprint arXiv:1604.02175, 2016.

[88] Henry B Mann and Donald R Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The annals of mathematical statistics,

pages 50–60, 1947.

[89] Frank Harary et al. Graph theory, 1969.

[90] Petra M Gleiss, Josef Leydold, and Peter F Stadler. Circuit bases of strongly connected

digraphs. 2001.

[91] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna Paluch. A

faster algorithm for minimum cycle basis of graphs. In Automata, languages and

programming, pages 846–857. Springer, 2004.

110



[92] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail. New approximation algo-

rithms for minimum cycle bases of graphs. In STACS 2007, pages 512–523. Springer,

2007.

[93] Alberto Caprara, Alessandro Panconesi, and Romeo Rizzi. Packing cycles in undirected

graphs. Journal of Algorithms, 48(1):239–256, 2003.

[94] Michael Krivelevich, Zeev Nutov, and Raphael Yuster. Approximation algorithms for

cycle packing problems. In Proceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 556–561. Society for Industrial and Applied Mathemat-

ics, 2005.

[95] Mohammad R Salavatipour and Jacques Verstraete. Disjoint cycles: Integrality gap,

hardness, and approximation. In Integer Programming and Combinatorial Optimiza-

tion, pages 51–65. Springer, 2005.

[96] Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. Springer-Verlag

Berlin and Heidelberg GmbH & amp, 2000.

[97] Hristo N Djidjev. Computing the girth of a planar graph. In Automata, Languages

and Programming, pages 821–831. Springer, 2000.

[98] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal

on Computing, 7(4):413–423, 1978.

[99] Liam Roditty and Virginia Vassilevska Williams. Minimum weight cycles and triangles:

Equivalences and algorithms. In Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on, pages 180–189. IEEE, 2011.

[100] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between

path, matrix and triangle problems. In Foundations of Computer Science (FOCS),

2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

111



[101] L. Roditty and R. Tov. Approximating the girth. pages 1446–1454, 2011.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-79955727144&

partnerID=40&md5=9e02cbd736c40eb01240c9e982db5c5c. cited By 2.

[102] Andrzej Lingas and Eva-Marta Lundell. Efficient approximation algorithms for shortest

cycles in undirected graphs. Information Processing Letters, 109(10):493–498, 2009.

[103] Raphael Yuster. A shortest cycle for each vertex of a graph. Information Processing

Letters, 111(21):1057–1061, 2011.

[104] David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for network diameter

and girth. Automata, Languages, and Programming, pages 660–672, 2012.

[105] Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on

Discrete Mathematics, 10(2):209–222, 1997.

[106] James B Orlin and Antonio Sedeno-Noda. An o (nm) time algorithm for finding the

min length directed cycle in a graph, 2016.

[107] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[108] Keith Paton. An algorithm for finding a fundamental set of cycles of a graph. Com-

munications of the ACM, 12(9):514–518, 1969.

[109] Mark EJ Newman. Ego-centered networks and the ripple effect. Social Networks, 25

(1):83–95, 2003.

[110] Guido Caldarelli, Romualdo Pastor-Satorras, and Alessandro Vespignani. Structure

of cycles and local ordering in complex networks. The European Physical Journal

B-Condensed Matter and Complex Systems, 38(2):183–186, 2004.

[111] Pedro G Lind and Hans J Herrmann. New approaches to model and study social

networks. New Journal of Physics, 9(7):228, 2007.

112

http://www.scopus.com/inward/record.url?eid=2-s2.0-79955727144&partnerID=40&md5=9e02cbd736c40eb01240c9e982db5c5c
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955727144&partnerID=40&md5=9e02cbd736c40eb01240c9e982db5c5c


[112] Agata Fronczak, Janusz A Ho lyst, Maciej Jedynak, and Julian Sienkiewicz. Higher

order clustering coefficients in barabási–albert networks. Physica A: Statistical Me-

chanics and its Applications, 316(1):688–694, 2002.

[113] Sara Nadiv Soffer and Alexei Vazquez. Network clustering coefficient without degree-

correlation biases. Physical Review E, 71(5):057101, 2005.
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Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massim-

iliano Zanin. The structure and dynamics of multilayer networks. Physics Reports,

544(1):1–122, 2014.

[158] Victor M. Preciado, Faryad Darabi Sahneh, and Caterina Scoglio. A convex framework

for optimal investment on disease awareness in social networks. In Global Conference

on Signal and Information Processing (GlobalSIP), 2013 IEEE, pages 851–854, 2013.

117



[159] B Lemmens and R Nussbaum. Nonlinear Perron-Frobenius Theory. Cambridge Tracts

in Mathematics. Cambridge University Press, 2012. ISBN 9780521898812. URL http:

//books.google.com/books?id=EYud2hfi_c4C.

[160] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval

Research Logistics, 9:181?186, 1962.

[161] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined

convex programming, 2008.

[162] F Darabi Sahneh, Caterina Scoglio, and Piet Van Mieghem. Generalized epidemic

mean-field model for spreading processes over multilayer complex networks. Network-

ing, IEEE/ACM Transactions on, 21(5):1609–1620, 2013.

[163] Daniel A Schult and P Swart. Exploring network structure, dynamics, and function

using networkx. In Proceedings of the 7th Python in Science Conferences (SciPy 2008),

volume 2008, pages 11–16, 2008.

[164] Zhen Z Shi, Chih-Hang Wu, and David Ben-Arieh. Agent-based model: a surging tool

to simulate infectious diseases in the immune system. Open Journal of Modelling and

Simulation, 2014, 2014.

[165] Chih-Hang J Wu, ZhenZhen Shi, David Ben-Arieh, Steven Q Simpson, and Douglas

Peterson. Agent-based model with embedded system dynamics: A simulation tool for

modeling progression of acute inflammatory responses. In D37. IMMUNE MECHA-

NISMS IN THE LUNG, pages A5729–A5729. American Thoracic Society, 2010.

[166] Zhenzhen Shi, Stephen K Chapes, David Ben-Arieh, and Chih-Hang Wu. An agent-

based model of a hepatic inflammatory response to salmonella: A computational study

under a large set of experimental data. PloS one, 11(8):e0161131, 2016.

[167] Faryad Darabi Sahneh and Caterina Scoglio. Competitive epidemic spreading over

arbitrary multilayer networks. Physical Review E, 89(6):062817, 2014.

118

http://books.google.com/books?id=EYud2hfi_c4C
http://books.google.com/books?id=EYud2hfi_c4C


[168] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Physical

Chemistry, 1977.

[169] M.J. Keeling and P. Rohani. Modeling Infectious Diseases in Humans and Animals.

Princeton University Press, 2007.

119



Appendix A

Maximizing algebraic connectivity in

interconnected networks1

Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node

and link connectivity on networks. When studying interconnected networks it is useful to

consider a multiplex model, where the component networks operate together with inter-layer

links among them. In order to have a well-connected multilayer structure, it is necessary

to optimally design these inter-layer links considering realistic constraints. In this work,

we solve the problem of finding an optimal weight distribution for one-to-one inter-layer

links under budget constraint. We show that for the special multiplex configurations with

identical layers, the uniform weight distribution is always optimal. On the other hand, when

the two layers are arbitrary, increasing the budget reveals the existence of two different

regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian

is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on

each layer. Increasing the budget past the threshold, the optimal weight distribution can

be non-uniform. The interesting consequence of this result is that there is no need to solve

the optimization problem when the available budget is less than the threshold, which can be

easily found analytically.

Real-world networks are often connected together and therefore influence each other130.
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Robust design of interdependent networks is critical to allow uninterrupted flow of informa-

tion, power, and goods in spite of possible errors and attacks131–133. The second eigenvalue

of the Laplacian matrix, λ2(L), is a good measure of network robustness134. Fiedler shows

that algebraic connectivity increases by adding links135. Moreover, it is harder to bisect a

network with higher algebraic connectivity136.

The second eigenvalue of the Laplacian matrix is also a measure of the speed of mixing

for a Markov process on a network137. Boyd et al. maximize the mixing rate by assigning

optimum link weights in the setting of a single layer138;139.

For multiplex networks (see Fig. A.1), a natural question is the following. Given fixed

network layers, how should the weights be assigned to inter-layer links in order to maximize

algebraic connectivity?

The behavior of λ2, in the case of identical weights, i.e., with a fixed coupling weight p

for every inter-layer link, has been studied recently. For instance, Gomez et al. observe that

λ2(L) grows linearly with p up to a critical p∗, and then has a non-linear behavior after-

wards140. Sole-Ribalta et al. analyze the spectrum of multiplex networks with perturbation

theory on a decomposed–the intra- and interlayer structure–version of Laplacian matrix141.

Radicchi and Arenas find bounds for this threshold value p∗ 142. Sahneh et al. compute

the exact value analytically143.

Martin-Hernandez et al. analyze the algebraic connectivity and Fiedler vector of multi-

plex structures, with addition of a number of inter-layer links in two configurations; diagonal

(one-to-one) and random144. They show that for the first case, algebraic connectivity satu-

G1

G3

G2

Figure A.1: A schematic of a multiplex network G with two layers G1, G2, connecting through
an inter-layer one-to-one structure G3.
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rates after adding a sufficient number of links. Li et al. adopt a network flow approach to

propose a heuristic that improves robustness of large multiplex networks by choosing from

a set of inter-layer links with predefined weights145.

Here, we remove the constraint of identical interlinking weights and pose the problem of

finding the maximum algebraic connectivity for a one-to-one interconnected structure be-

tween different layers in the presence of limited resources. We show that up to the threshold

budget p∗N—where p∗ is the same threshold studied before140;142;143—the uniform distribu-

tion of identical weights is actually optimal. For larger budgets, the optimal distribution of

weights is generally not uniform.

A.1 Model framework

Let G = (V , E) represents a network and by V = {1, . . . , N} and E ⊂ V × V , we denote the

set of nodes and links. For a link e between nodes u and v, i.e, e : {u, v} ∈ E , we define a

nonnegative value wuv as the weight of the link. The Laplacian matrix of G can be defined

as:

L =
∑
ij∈E

wijBij (A.1)

where Bij := (ei− ej)(ei− ej)T is the incidence matrix for link ij, and ei is a vector with ith

component one and rest of its elements are zero.

For a multiplex network with two layers G1 = {V1, E1} and G2 = {V2, E2} and |V1| = |V2|,
we consider a bipartite graph G3 = {V , E3} with E3 ⊆ V1 × V2. The multiplex network G
is composed from G1, G2, and G3 (Fig. A.1). We want to design optimal weights for G3

to improve the algebraic connectivity of G as much as possible with a limited budget, i.e.,∑
wij = c. Using Eq. (A.1), the Laplacian matrix of G (supra-Laplacian matrix), is:

L(w) =
∑

ij∈E2∪E3

Bij +
∑
ij∈E3

wijBij, (A.2)

where we use the notation L(w) to make explicit the dependence of the Laplacian on the
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interlayer weights w.

From Eq. (A.2), the Laplacian, L, of the combined network takes the form

L(w) =

L1 0

0 L2

+

 W −W

−W W

 ,
where L1 and L2 are the Laplacians of the individual layers and W = diag(w) with w ≥ 0

the inter-layer link weights satisfying the budget constraint wT1 = c. We assume the two

layers are connected independently, so that λ3(L) > 0, for all choices of c and w.

The second eigenvalue can be characterized as the solution to the optimization problem

λ2(L) = min
v 6=0
vT 1=0

vTLv

‖v‖2
. (A.3)

The optimal weight problem, then, can be phrased as follows. Given a budget c ≥ 0, solve

the problem

F (c) := max
w≥0
wT 1=c

λ2(L(w)). (A.4)

Since L is an affine function of w, and λ2 is a concave function of L, it follows that (A.4)

is a convex optimization problem. In fact, it can be recast as a semi-definite programming

problem or SDP:

maximize
wij

λ

subject to
∑
ij∈E3

wijBij + L0 + µeeT − λIn � 0

∑
ij∈E3

wij ≤ c

wij ≥ 0

(A.5)

where L0 =
∑

i,j∈E1∪E2 Bij. We know L � 0 and λ1 = 0. Due to this redundancy in Laplacian

matrix, parameter µ is employed to avoid the zero eigenvalue.

Problem (A.5) is a convex SDP62 and can be efficiently solved for arbitrary large networks

with applying sub-gradient methods. We consider the case of a two-layer network with one-
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to-one interlayer links.

A.2 Threshold for optimal weight distribution

Returning to (A.3), it is convenient to write v in component form v = (vT1 , v
T
2 )T so that (A.3)

implies

vT1 L1v1+vT2 L2v2 + (v1 − v2)TW (v1 − v2)

− λ2(L)
(
‖v1‖2 + ‖v2‖2

)
≥ 0 ∀ vT1 1 = −vT2 1.

(A.6)

Since v must satisfy vT1 1 = −vT2 1, we use the following substitution for v1 and v2 to separate

the 1 subspace and its orthogonal counterpart ui:

v1 = α1 + u1, v2 = −α1 + u2, (A.7)

where ui ∈ RN , such that uT1 1 = uT2 1 = 0, and α is some constant. Rewriting the terms

in (A.6), we observe that

(v1 − v2)TW (v1 − v2)

= (2α1 + u1 − u2)TW (2α1 + u1 − u2)

= 4α2c+ 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)

and that

‖vi‖2 = ‖α1‖2 + ‖ui‖2 = α2N + ‖ui‖2 for i = 1, 2.
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Thus, Eq. (A.6) implies that

uT1L1u1 + uT2L2u2 + 4α2c+ 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)−

λ2(L)
(
2α2N + ‖u1‖2 + ‖u2‖2

)
≥ 0

∀α, uT1 1 = uT2 1 = 0.

(A.8)

In particular, setting u1 = u2 = 0 in (A.8), then, gives the inequality

4α2c− 2α2Nλ2(L) ≥ 0 ∀α

which can only be true if λ2(L) ≤ 2c
N

. Thus for the two-layer problem described above, we

have the bound

F (c) ≤ 2c

N
. (A.9)

Now we turn our attention to the question of attainability of (A.9). This question is

answered by the following theorem.

Theorem A.2.1. The inequality in (A.9) can only be satisfied as equality if w = c
N

1.

Proof. Suppose the weights w are chosen such that the Laplacian L satisfies λ2(L) = 2c
N

.

Then (A.8) simplifies to

uT1L1u1 + uT2L2u2 + 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)

− 2c

N

(
‖u1‖2 + ‖u2‖2

)
≥ 0 ∀ α, uT1 1 = uT2 1 = 0.

This can only be true if the linear coefficient in α, 4wT (u1 − u2), vanishes for every choice

of u1, u2 satisfying uT1 1 = uT2 1 = 0. This implies that w is parallel to 1 and, since wT1 = c,

the theorem follows.

The previous theorem shows that when the bound (A.9) is attained, it can only be
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attained by the uniform choice of weights w = c
N

1. The next theorem characterizes exactly

the budgets for which the bound is attained.

Theorem A.2.2. For a given two-layer network, define the constant

c∗ :=N min
uT1 1=uT2 1=0
u1+u2 6=0

uT1L1u1 + uT2L2u2

‖u1 + u2‖2 (A.10)

Then, for all budgets c ≥ 0, F (c) = 2c
N

if and only if c ≤ c∗.

Proof. By Theorem A.2.1, the upper-bound 2c
N

for F (c) can be attained only in the case of

uniform weights w = c
N

1. In this case we write L = L(c). For all c ≥ 0, one can check

that 2c
N

is always an eigenvalue of L(c), with eigenvector (1T ,−1T )T . Since L(c) is positive

semi-definite and λ1(L(c)) = 0, it follows that λ2(L(c)) ≤ 2c
N

. Thus, we have F (c) = 2c
N

if and

only if λ2(L(c)) ≥ 2c
N

. Recalling the variational characterization of λ2(c) in (A.3), we observe

that λ2(L(c)) ≥ 2c
N

if and only if the following inequality holds for every choice of v 6= 0,

with vT1 = 0 or, equivalently, for every choice of α, u1 and u2 according to the substitution

(A.7):

0 ≤ vTLv − 2c

N
‖v‖2

= vT1 L1v1 + vT2 L2v2 +
c

N
‖v1 − v2‖2 − 2c

N

(
‖v1‖2 + ‖v2‖2

)
= uT1L1u1 + uT2L2u2 −

c

N
‖u1 + u2‖2.

This inequality holds for all uT1 1 = uT2 1 = 0 if and only if c ≤ c∗ as defined in (A.10),

completing the proof.

The threshold obtained by Eq. (A.10) is exactly equivalent to the threshold found in143,

as shown in the following theorem.
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Theorem A.2.3. The threshold budget c∗ satisfies

c∗

N
= λ2

((
L†1 + L†2

)†)
(A.11)

Proof. We begin by rewriting the minimization in (A.10):

min
uT1 1=uT2 1=0
u1+u2 6=0

uT1L1u1 + uT2L2u2

‖u1 + u2‖2
= min

uT 1=0
u6=0

min
uT1 1=uT2 1=0
u1+u2=u

uT1L1u1 + uT2L2u2

‖u‖2

= min
uT 1=0
u6=0

1

‖u‖2
min

uT1 1=uT2 1=0
u1+u2=u

(
uT1L1u1 + uT2L2u2

)
.

(A.12)

To solve the inner minimization problems, we introduce Lagrange multipliers to find that

the minimizing u1 and u2 satisfy

L1u1 = ν1 + µ, L2u2 = η1 + µ.

Taking an inner product of each of these with the 1 vector shows that

ν = η = −µ
T1

N
,

so that

u1 = L†1

(
µ− µT1

N

)
, u2 = L†2

(
µ− µT1

N

)
.

Thus, without loss of generality, µ can be taken to be orthogonal to 1. With this form, u1

and u2 are already orthongal to 1 as well. In order to satisfy the constraint u1 + u2 = u, we

must have (
L†1 + L†2

)
µ = u, i.e., µ =

(
L†1 + L†2

)†
u.

From this, we see that the minimizing u1 and u2 of the inner minimization problem

in (A.12) satisfy

u1 = L†1

(
L†1 + L†2

)†
u, u2 = L†2

(
L†1 + L†2

)†
u,
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giving a minimum value of

uT1L1u1 + uT2L2u2 = uT
(
L†1 + L†2

)†
L†1L1L

†
1

(
L†1 + L†2

)†
u+

uT
(
L†1 + L†2

)†
L†2L2L

†
2

(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)†
L†1

(
L†1 + L†2

)†
u+

uT
(
L†1 + L†2

)†
L†2

(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)† (
L†1 + L†2

)(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)†
u.

(A.13)

Here, we have used the identity A†AA† = A†.

Substituting back into (A.12), we have

c∗

N
= min

uT 1=0
u6=0

uT
(
L†1 + L†2

)†
u

‖u‖2
.

Since L1 and L2 are positive semidefinite, so are L†1 and L†2 and, consequently, so are L†1 +L†2

and
(
L†1 + L†2

)†
. Since the component networks are assumed connected, the nullspace of(

L†1 + L†2

)†
is spanned by the vector 1. The Rayleigh quotient in (A.13) is therefore mini-

mized over the orthogonal complement of the eigenspace associated with the first eigenvalue

of
(
L†1 + L†2

)†
and the theorem follows.

where L† represents the Moore-Penrose pseudoinverse of L. At the threshold a rough

lower-bound for λ2(L) is

λ2(L) =
2

N
c∗ ≥ min{λ2(L1), λ2(L2)}. (A.14)
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One way to see this is to observe that:

uT1L1u1 + uT2L2u2

‖u1 + u2‖2
≥ ‖u1‖2 + ‖u2‖2

‖u1 + u2‖2
min{λ2(L1), λ2(L2)}.

Inequality (A.14) then follows from the parallelogram law146. An upper bound for λ2(L) is

given in140

λ2(L) ≤ 1

2
λ2(L1 + L2). (A.15)

A.3 Results

In the special case of identical layers (L1 = L2) with corresponding nodes connected, the

bound in (A.15) is attained with uniform weights at the threshold budget c∗ 142. This can be

seen by combining (A.14) and (A.15). Therefore, in this case, uniform weights are optimal

for budgets c ≤ c∗, and increasing the budget beyond c∗ cannot increase the algebraic

connectivity, regardless of the weight allocation.

For general structures, it is possible to substantially improve the algebraic connectivity by

increasing the budget beyond c∗ using an optimal weight distribution. Figs. A.2a and A.2b

compare the optimal value of λ2(L) to the one obtained by the uniform distribution as the

budget c varies for two different network structures. In both cases, the optimal distribution

gives a higher algebraic connectivity after the threshold.

In Fig. A.2c, we plot the first five eigenvalues of L (omitting the zero eigenvalue) for a

multiplex with identical weights on the inter-layer links. Because 2c
N

is always an eigenvalue

and λ3(L) > 2c
N

for c → 0, increasing c, λ2(L) and λ3(L) cross. For the same multiplex

with optimal distribution of inter-layer weights, we plot the eigenvalues in Fig. A.2d. When

increasing the budget beyond the threshold; we observe that, in this example, the second

and third eigenvalues coalesce and are less than 2c
N

. Since (A.4) is a convex optimization

problem, we know the optimal wi’s vary continously with c, and smooothly away from the

finite set of budgets where eigenvalue multiplicities change.

When c ≤ c∗, the Fiedler vector is v = 1√
2N

[1,−1] and the Fiedler cut distinguishes the
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Figure A.2: (a) and (b) Plots of λ2(L) with different amount of available budget. The
solid (red) line is for the optimal weights and the dashed (black) line is for uniform weights.
The threshold budget and upper-bound is shown with vertical (green) dotted and horizontal
(blue) dot-dashed lines respectively. The upper-bound is from Eq. (A.15) and the threshold
is from Eq. (A.11). (a) A structure of two Erdös-Renyi networks each with 30 nodes and
(b) a structure of two scale-free networks each with 30 nodes. (c) First five eigenvalues of
Laplacian matrix of G considering a uniform distribution of weights for the multiplex in (b).
(d) First five eigenvalues of Laplacian matrix of G considering an optimal distribution of
weights for the multiplex in (b).
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layers142–144. For c > c∗, due to the multiplicity of λ2(L), there is a corresponding Fiedler

eigenspace. Therefore, the two layers are not as easily recognizable as before.

In Fig. A.2, we also observe that for c > c∗, λ2 increases more slowly. Moreover, as

Fig. A.3 shows, for a multiplex of two scale free network layers (more results in Fig. A.4 in

the Appendix), we can have very non-uniform weights in this case.

These optimal weights represent the importance of each link in improving the algebraic

connectivity of the whole network.

In Figure A.4, we plot the optimal weight distribution for a multiplex of two Erdös-Renyi

network layers.

In summary, we have shown that before a threshold budget, the largest possible algebraic

connectivity is a linear function of the budget and can only be attained by the uniform weight

distribution. Since the threshold budget is always strictly positive, for low enough budgets

it is not necessary to solve (A.4). On the other hand, for larger budgets, (A.4) can be solved

with efficient semi-definite programming solvers to find the optimal weights. In particular,

heuristic methods based solely on the information of each layer are too blunt to notice this

threshold phenomenon.
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Figure A.3: Optimal weight distribution for different amount of budgets. The stucture of
a multiplex with two scale free network layers, with N = 100 nodes and |E1| = 196 and
|E2| = 291. In (a) budget is lower than threshold and uniform distribution is optimal. In
this example, the threshold budget c∗ is 51.4.
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Figure A.4: Optimal weight distribution for different amount of budgets. The stucture of
a multiplex with two scale free network layers, with N = 100 nodes and |E1| = 358 and
|E2| = 362. In (a) budget is lower than threshold and uniform distribution is optimal. In
this example, the threshold budget c∗ is 64.
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Appendix B

Optimal Information Dissemination

Strategy to Promote Preventive

Behaviors in Multilayer Epidemic

Networks2

Launching a prevention campaign to contain the spread of infection requires substantial

financial investments; therefore, a trade-off exists between suppressing the epidemic and

containing costs. Information exchange among individuals can occur as physical contacts

(e.g., word of mouth, gatherings), which provide inherent possibilities of disease transmission,

and non-physical contacts (e.g., email, social networks), through which information can be

transmitted but the infection cannot be transmitted. Contact network (CN) incorporates

physical contacts, and the information dissemination network (IDN) represents non-physical

contacts, thereby generating a multilayer network structure. Inherent differences between

these two layers cause alerting through CN to be more effective but more expensive than IDN.

The constraint for an epidemic to die out derived from a nonlinear Perron-Frobenius problem

that was transformed into a semi-definite matrix inequality and served as a constraint for a

convex optimization problem. This method guarantees a dying-out epidemic by choosing the
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best nodes for adopting preventive behaviors with minimum monetary resources. Various

numerical simulations with network models and a real-world social network validate our

method.

B.1 Introduction

Complications associated with modeling and analyzing epidemic spreading processes are

well-studied problems. This paper focuses on mitigation of epidemic spreading, including

consideration of available resources. Research in147 and148 showed that human behavior

influences the spreading trend of an epidemic. These works introduced an extension of the

“Susceptible-Infected-Susceptible” (SIS) model by adding an “Alert” state that incorporates

preventive behavior. Sahneh et al. revealed an operating region in which the infection eventu-

ally dies out due to cautious behavior of people exposed to infected neighbors. Consequently,

if an epidemic is stronger than the SIS classical threshold, long-term disease elimination is

possible after a break-out period.

Sun et al. used an SI model to study causes of disease extinction, such as infection rate

and migration149. In150, Sun studied disease transmission and spatial patterns of spreading

with nonlinear incidence rates. He demonstrated the positive correlation of force of infection

β on these patterns.

Granell et al. studied interplay between disease and information in a two-layer network

consisting of one physical contact network that spread the disease and a virtual overlay

network that spread information to mitigate the disease151. They found a meta-critical

point for the epidemic depending on awareness dynamics and the overlay network structure.

A majority of works concerning epidemic models have been conducted on a single graph.

However, the study of disease spread in physical systems requires an elaborate interaction

model based on multiple interconnected networks (152–156). Also157 contains a comprehensive

review on structural and dynamical organization of multilayer networks.

Sahneh et al. extended their analysis for multilayer networks in19 by considering an

additional directed network layer with nodes identical to the contact network (CN) but
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with different edges between these nodes. Information exchange was realized through these

networks and each individual became aware of the state of infected neighbors at rates pro-

portional to the number of neighbors. They proposed an optimal structure for information

dissemination network (IDN) by introducing an information dissemination metric.

Preciado et al. controlled the spreading process by investing in alertness rates using

the “Susceptible-Alert-Infected-Susceptible” (SAIS) model and considering some realistic

assumptions on the cost function in order to obtain a convex optimization framework. In158,

Preciado et al. attempted to ensure that largest eigenvalue was smaller than the persisting

threshold introduced in148, consequently leading to rate control based on CN structure.

Motivated by158 and using threshold concepts in147;148, we attempted to identify alertness

rates on multilayer networks in order to achieve a dying-out epidemic. However this problem

is more general than19 because each layer can have an arbitrary structure. The second

threshold was obtained from a nonlinear eigenvalue problem that is a nonlinear form of

the Perron-Frobenius problem. In order to obtain optimal rates, we coupled this nonlinear

Perron-Frobenius problem (NPF) with a convex optimization problem, creating a general

method that can be applied to solve a variety of optimization problems combined with NPF

problems in various disciplines. Optimal rates were obtained for a specific effective infection

rate, so epidemics with identical or weaker effective infection rates will certainly die-out with

a safety margin. In addition, by monitoring the status of a small subgroup and characterizing

epidemic properties and behavioral response, we obtained a cost effective strategy to mitigate

long run spreading for the entire population.

The remainder of the paper is organized as follows. First, we introduce our notation

and modeling method and we analyze characteristics of the multilayer model. In Section

B.4, we introduce problem statements, and in Section B.5 we demonstrate how to approach

this problem, proving necessary properties and introducing the coupled NPF problem with

the convex problem. In Section B.6, we solve several examples of standard networks and a

real-world network and discuss results.
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B.2 Multilayer Network Structure

We used a multilayer network structure to represent multiple types of interconnection among

individuals in the population. A multilayer network consists of L layers of graphs that have

identical nodes but their edges can be different and independently formed. In this work, we

considered a two-layer network. Although a disease can propagate among individuals through

the physical contact network (CN), information can spread among the same individuals

through an on-line information dissemination network (IDN).

Since physical interactions can be considered as undirected edges and we omit individuals

who do not interact with the population, therefore, these assumptions lead to an undirected

and connected graph for CN. Some people may not have a social network account or a person

may follow a celebrity on Twitter but that celebrity does not reciprocate; therefore, IDN can

be directed and not connected.

A = [aij] ∈ RN×N denotes the adjacency matrix of CN, where aij = 1 if and only

if (i, j) ∈ E ; otherwise aij = 0. Similarly, we defined the adjacency matrix of IDN as

B = [bij]N×N . The largest eigenvalue of the adjacency matrix A, known as the spectral

radius of A, is denoted by λ1(A); elements of the corresponding eigenvector v1 are real

and non-negative. Spectral centrality of nodes in a graph is determined by the rank of

corresponding elements of v1.

B.3 Model Development

In this paper, results are based on the SAIS model developed in148. Each node is allowed

to be in one of three states: ‘susceptible’, ‘infected’, or ‘alert’ and a node maintained the

same state in all layers. A susceptible node becomes infected with a given infection rate

through infected neighbors in CN and becomes alert through infected neighbors in different

layers with corresponding rates. An alert node becomes infected with a rate less than the

initial infection rate. An infected node is recovered at a given removing/recovery rate. For

each agent i ∈ {1, ..., N}, let the random variable xi(t) = e1, if the agent i is susceptible at
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time t, xi(t) = e2 if alert, and xi(t) = e3 if infected, where e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , and

e3 = [0, 0, 1]T are standard unit vectors of R3. Throughout this paper, the infection rate for

an alert individual is assumed to be a reduced version of β, i.e., rβ with r ≤ 1.

In the following equations, Pr[·] denotes probability, X(t) , {xi(t), i = 1, ..., N} is the

joint state of the network, ∆t > 0 is a time step, and the indicator function 1{X} is 1 if X
is true and 0 otherwise. A function f(∆t) is said to be o(∆t) if lim∆t→0

f(∆t)
∆t

= 0. For node

i, Yi (t) is the number of neigbors in CN who are infected at time t and Zi is the number of

neigbors in IDN who are infected at time t:

Yi (t) ,
N∑
j=1

aij1{xj(t)=e3},

Zi(t) ,
N∑
j=1

bij1{xj(t)=e3}.

There are four stochastic transitions in the SAIS model:

1. A susceptible agent becomes infected with infection rate β times the number of infected

neighbors:

Pr [xi (t+ ∆t) = e3|xi (t) = e1, X (t)] = βYi (t) ∆t+ o (∆t) , (B.1)

for i ∈ {1, ..., N}.

2. An infected agent recovers to the susceptible state with curing rate δ:

Pr [xi (t+ ∆t) = e1|xi (t) = e3, X (t)] = δ∆t+ o (∆t) . (B.2)

3. A susceptible agent may become alert if surrounded by infected individuals in both

CN and IDN. Specifically, a susceptible node becomes alert with alerting rate κ ∈ R+

times the number of infected neighbors in CN and with alerting rate µ ∈ R+ times the

number of infected neighbors in IDN:
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Pr [xi (t+ ∆t) = e2|xi (t) = e1, X (t)] = (κiYi (t) + µiZi (t)) ∆t+ o (∆t) , (B.3)

4. An alert agent can become infected but with a weaker infection rate 0 < rβ < β:

Pr [xi (t+ ∆t) = e3|xi (t) = e2, X (t)] = rβYi (t) ∆t+ o (∆t) . (B.4)

Stochastic compartmental transitions of a node are depicted in Figure B.1-a. An Illus-

trative schematic of CN and IDN is shown in Figure B.1-b.
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Figure B.1: From left to right, (a) Compartmental transition graph according to the SAIS
model with information dissemination. Yi and Zi are the number of infected neighbors
of agent i in contact network and information dissemination network, respectively19; (b)
Multilayer contact topology.

Let pi and qi denote the probabilities that agent i is infected and alert, respectively. The

SAIS model with the information dissemination layer is obtained with some modification

from19:

ṗi = β (1− pi − qi)
N∑
j=1

aijpj + rβqi

N∑
j=1

aijpj − δpi; (B.5)

q̇i = (1− pi − qi)
{
κi

N∑
j=1

aijpj + µi

N∑
j=1

bijpj

}
− rβqi

N∑
j=1

aijpj. (B.6)
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Equations (B.5) and (B.6) are derived by a mean field Type approximation.

B.3.1 Analysis of SAIS Model

SAIS with No Alertness (SIS)

When no alertness transmission is present through CN or IDN, κi = 0 and µi = 0, the

model reduced to the original SIS model, as discussed in147. Therefore, the system exhibits

a threshold for the effective infection rate τ , β
δ
, under which the infection dies out expo-

nentially. This threshold has been proven to be the inverse of the largest eigenvalue of CN

adjacency matrix in τc1 ,
1

λ1(A)
.

SAIS with Alertness Dissemination

Theorem B.3.1. In the SAIS model (B.5-B.6), initial infections will die out exponentially

if the effective infection rate τ is less than τc1 = λ−1
1 and a second threshold, τc2, exists such

that if τc1 < τ < τc2, then the infection dies out asymptotically after an initial spread. In

addition, the second threshold τc2(κi, µi) is a monotonically increasing function of κi and µi.

Proof. 19 contains the proof.

The first threshold depends only on topology of the CN layer, but the second threshold

depends on behavioral properties and topology of both layers.

After the second threshold, i.e., τ > τc2 , steady-state values of infection probabilities are

positive and τc2 can be determined by studying the steady-state solution. According to (B.5)

and (B.6), at the steady-state,

(1− p∗i )
{
κi

N∑
j=1

aijp
∗
j + µi

N∑
j=1

bijp
∗
j

}
− q∗i

{
κ

N∑
j=1

aijp
∗
j + k

N∑
j=1

bijp
∗
j

}

− rβq∗i
N∑
j=1

aijp
∗
j = 0; (B.7)
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q∗i = (1− p∗i )
κ̄i
∑N

j=1 aijp
∗
j + µ̄i

∑N
j=1 bijp

∗
j

(1 + κ̄i)
∑N

j=1 aijp
∗
j + µ̄i

∑N
j=1 bijp

∗
j

, (B.8)

where p∗i and q∗i are steady-state probabilities and κ̄i , κi
rβ

and µ̄ , µ
rβ

are normalized

alertness rates. Combining (B.7) and (B.8), the steady-state equation becomes,

τ(1− p∗i )
N∑
j=1

aijp
∗
j

− τ(1− r)(1− p∗i )
κ̄i
∑N

j=1 aijp
∗
j + µ̄i

∑N
j=1 bijp

∗
j

(1 + κ̄i)
∑N

j=1 aijp
∗
j + µ̄i

∑N
j=1 bijp

∗
j

N∑
j=1

aijp
∗
j

= p∗i . (B.9)

Theorem B.3.2. The second threshold is the nontrivial solution of the following nonlinear

eigenvalue problem:

τc2diag

(
(1 + rκ̄i)

∑N
j=1 aijwj + rµ̄i

∑N
j=1 bijwj

(1 + κ̄i)
∑N

j=1 aijwj + µ̄i
∑N

j=1 bijwj

)
AGw = w, (B.10)

where w = [w1, ..., wN ]T , with wi > 0 ∀i = 1, ..., N .

Proof. Define τ̃ , τ − τc2 . Close to the second threshold, i.e., as τ̃ → 0+, we have p∗i =

τ̃
∂p∗i
∂τ
|τ=τc2

+ o(τ̃). Letting τ → τ+
c2

in (B.9),

τc2

N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

− τc2(1− r)
κ̄i
∑N

j=1 aij
∂p∗j
∂τ
|τ=τc2

+ µ̄i
∑N

j=1 bij
∂p∗j
∂τ
|τ=τc2

(1 + κ̄i)
∑N

j=1 aij
∂p∗j
∂τ
|τ=τc2

+ µ̄i
∑N

j=1 bij
∂p∗j
∂τ
|τ=τc2

N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

=
∂p∗i
∂τ
|τ=τc2

. (B.11)

Because τc2 is the second threshold,
∂p∗i
∂τ
|τ=τc2

must be positive for every i ∈ {1, ..., N}.
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Therefore, τc2 is such that the set of algebraic equations (B.10) has positive solutions. By

substituting wj =
∂p∗j
∂τ
|τ=τc2

in (B.11), the nonlinear eigenvalue problem in (B.10) can be

obtained.

B.4 Problem Statement

Given network layer adjacency matrices A and B and disease properties β, δ, and r, the

following optimization problem is considered:

minimize
κ̄i,µ̄i

N∑
i=1

fi (κ̄i, µ̄i)

subject to τc2 (κ̄i, µ̄i) ≥ τ,

µ̄min ≤ µ̄i ≤ µ̄max,

κ̄min ≤ κ̄i ≤ κ̄max.

(B.12)

where fi is a linear fractional cost function to promote alertness in the population158. Min-

imization of this objective function while constraining the system to die out asymptotically,

requires a trade-off.

Asymptotic Stability Constraint

According to Theorem B.3.1, in order to have an asymptotically dying-out infection, the

effective infection rate should be less than the second threshold, corresponding to the first

constraint in (B.12).

The nonlinear eigenvalue problem in (B.10) can be written as follows:

diag (hi (ξi,w))Aw = λw, (B.13)

where diag (hi (ξi,w)) is a nonnegative diagonal matrix with unknown parameters ξi =

[κ̄i, µ̄i] , ∀i = 1, ..., N and λ corresponds to the inverse of the second threshold τc2 . There-

fore the eigenvalue problem in (B.13) is a NPF problem159.
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According to NPF theory, the largest eigenvalue is positive and real and the corresponding

normalized eigenvector w is unique and positive159.

B.5 Solution Methodology

Given ξi using the power iteration algorithm, the largest eigenvalue and corresponding eigen-

vector of (B.13) can be found. Starting with an initial guess for w(0), the following iteration

is performed:

diag
(
hi
(
ξi,w

(l)
))
Aw(l) = λ(l+1)w(l+1), (B.14)

where λ(k+1) and w(k+1) are the approximated value of the largest eigenvalue and corre-

sponding eigenvector in the k’th step. They are obtained from the following relations:

λ(l+1) =‖ diag
(
hi
(
ξi,w

(l)
))
Aw(l) ‖; (B.15)

w(l+1) =
diag

(
hi
(
ξi,w

(l)
))
Aw(l)

‖ diag (hi (ξi,w
(l)))Aw(l) ‖ . (B.16)

This algorithm has guaranteed convergence to the largest eigenvalue and corresponding

eigenvector of (B.13) with a chosen tolerance ε. Pseudocode for this algorithm is given in

Algorithm 1.

Algorithm 6 Power iteration

Require: guess← w(0)

Ensure: w = w(l+1)

1: for l do
2: w(l) ←guess

3: w(l+1) =
diag(hi(ξi,w(l)))Aw(l)

‖diag(hi(ξi,w(l)))Aw(l)‖

4: if | w(l+1) −w(l) |≤ ε then
5: stop
6: end if
7: guess← w(l+1)

8: end for
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Proposition B.5.1. Optimal parameters in (B.10) can be found by alternating between the

NPF problem and the optimization problem.

Proof. Starting with a guess for ξ
(0)
i ,

diag
(
hi

(
ξ

(0)
i ,w

))
Aw = λw. (B.17)

Using the derived eigenvector w(0) from the power method, we approximate diag (hi (ξi,w))

as diag
(
hi
(
ξi,w

(0)
))

and then solve the optimization problem in (B.12), and find new ap-

proximation for parameters ξ
(1)
i as the new guess. Because of existing constraints, new

obtained parameters ensure initial NPF problem properties. Using the updated guess, we

alternate between the NPF problem and the optimization problem until these guesses con-

verges with a tolerance ε, i.e., | ξ(k)
i − ξ

(k−1)
i |≤ ε.

At each step with approximated diag
(
hi
(
ξi,w

(k)
))

, the NPF problem in B.10 becomes

a linear Perron-Frobenius problem. Therefore, the first constraint in (B.12) transforms to a

semidefinite inequality with the following lemma.

Lemma B.5.2. If D is a diagonal matrix with positive diagonal entries, A is a symmetric

matrix, τc and τ are scalars, and the following eigenvalue problem exists:

τcDAw = w, (B.18)

for τ ≤ τc:

A− (τD)−1 � 0. (B.19)

Proof. First, we show that eigenvalues of τcDA are real with the following variable change:

w = D
1
2x. (B.20)

Rewriting (B.18),
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τcDAD
1
2x = D1/2x, (B.21)

and multiplying both sides by D−
1
2 produces

τcD
1
2AD

1
2x = x, (B.22)

which shows that DA and D
1
2AD

1
2 share similar eigen-properties. Then, since D

1
2AD

1
2 is

symmetric, it has real eigenvalues; therefore, DA also has real eigenvalues.

From (B.18):

λ1 (τcDA) = 1. (B.23)

If τ ≤ τc

τλ1 (DA)− 1 ≤ 0,

which can be rewritten as

λ1 (τDA− I) ≤ 0. (B.24)

Equations (B.24) and (B.22) show that

(
τD

1
2AD

1
2 − I

)
� 0, (B.25)

or

A− (τD)−1 � 0. (B.26)
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Convex Formulation

According to Lemma B.5.2, the dying-out constraint, τc2 (κ̄i, µ̄i) ≥ τ = β
δ

can be written as,

A− δ

β
diag

(
(1 + κ̄i)φ

A
i + µ̄iφ

B
i

(1 + rκ̄i)φAi + rµ̄iφBi

)
� 0, (B.27)

where φAi and φBi represent
∑N

j=1 aijwj and
∑N

j=1 bijwj, respectively. For a linear fractional

cost function,

N∑
i=1

ciκ̄i + tiµ̄i
rκ̄iφAi + rµ̄iφBi + φAi

, (B.28)

the problem in (B.12) is a quasiconvex optimization problem62.

Because all equations are homogeneous, we choose a scale zi such that for i ∈ 1, · · · , N ,

zi
(
rκ̄iφ

A
i + rµ̄iφ

B
i + φAi

)
= 1. Substituting1 ui = ziκ̄i and vi = ziµ̄i produced the following

semi-definite optimization problem (SDP) equivalent to (B.12):

minimize
ui,vi,zi

N∑
i=1

(ciui + tivi)

subject to A− δ

β
diag

(
uiφ

A
i + viφ

B
i + ziφ

A
i

)
� 0,

rUΦA + rV ΦB + ZΦA = I,

µ̄minzi ≤ ui ≤ µ̄maxzi,

κ̄minzi ≤ vi ≤ κ̄maxzi.

(B.29)

where U , V , Z, ΦA, and ΦB are diagonal matrices with ui, vi, zi, φ
A
i and φBi as their entries,

respectively. Using classic solvers such as interior point-based methods, the SDP in (B.29)

can be solved in a fast and robust fashion for networks up to 1000 nodes. In this work, we

use CVX161. Subgradient methods or smoothing and accelerated algorithms can be used to

efficiently solve (B.29) in very large networks. These methods are well-studied and powerful

commercial solvers are developed for applying them.

From Proposition B.5.1, ΦA and ΦB update with each iteration and carry new structural

1This transformation is similar to Charnes-Cooper transformation160.
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properties; therefore, a new optimization problem should be solved each time causing κ̄i, µ̄i,

and wi to converge to the desired solution. Pseudocode is given in Algorithm 7.

Algorithm 7 Power iteration

Require: guess← ξ
(0)
i

Ensure: ξ = ξ
(k)
i

1: for k do
2: ΦA(k)

,ΦB(k) ←Power method

3: Convex Problem← ΦA(k)
,ΦB(k)

4: ξ
(k)
i ←Convex Problem

5: if | ξ(k)
i − ξ

(k−1)
i |≤ ε then

6: stop
7: end if
8: guess← ξ

(k)
i

9: end for

B.6 Numerical Simulations

We considered an infectious disease with an effective infection rate β
δ

= 3
λ1(A)

, an unstable

situation in SIS, and a reduction in infection rate r = 1
3

due to alertness. Alertness rates

vary between an upper limit and a lower limit, based on response capacity of the population.

Due to inherent differences between µi and κi, a higher awareness may be reached through

CN, but these rates are more expensive than rates in IDN. In the following simulations, we

assume that µmax = 5, κmax = 10, and µmin = κmin = 0, and cost function weights are

c = 1.5 and t = 1.

For the following multilayer structures, if no information dissemination is available the

second threshold does not exist and dying-out epidemic occurs if β
δ
< 1

λ1(A)
. Considering

information dissemination through CN and without IDN, if we assign the highest amount of

alertness rate for all individuals, i.e., κi = κmax, then τc2 (κi = κmax, µi = 0) = 1+κmax
1+rκmax

1
λ1(A)

=

2.51 1
λ1(A)

which cannot suppress the epidemic even though it is very expensive. However, use

of IDN and proposed optimal rates helps achieve a cost-efficient suppression of the epidemic.
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In the following simulations, we selected a preferential attachment network6 for IDN. Four

networks were selected for CN: a regular random network, a geometric random network5, a

preferential attachment network, and a real-world social (face-to-face) network.

Example 1: CN is a regular random graph

In this example, the CN layer is a regular random graph. Nodes in a regular graph has the

same number of neighbors. Obtained optimal alertness rates are depicted in Figure B.2.
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Figure B.2: Optimal alertness rates µi and κi for i = 1, · · · , 50, with respect to degree of
nodes in both layers. Each layer has 50 nodes. The information dissemination network is a
preferential attachment network with minimum node degree 5, and the contact network has
a random regular structure with node degree 4. Note: There are nodes with the same node
degree and same optimum rates which caused overlapping in the figure.

Because all individuals have identical number of neighbors in CN, the only difference
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between them is their degree in IDN. For individuals with high degree, µi influence is more

effective compared to lower degree nodes. Since promotion of µi is less expensive than κi,

maximum investment of µi is optimum after a certain degree (nodes with degi ≥ 6 in this

example) in IDN. For nodes with lower degree in IDN, more reliable sources of information are

neighbors in CN, similar to occasions when people are not active in online social networks

and must be contacted through their neighbors in CN. In this example, since promoting

alertness in CN is more expensive, although κmax > µmax, the optimization problem does

not allow any node to have κi = κmax while µi = µmax.

Example 2: CN is a random geometric graph

In this example, CN is a random connected geometric graph in a two-dimensional coordinate

system. Optimal alerting rates versus degree in both layers are shown in Figure B.3. Because

high degree nodes in CN mean increased exposure to the infection, a high emphasis must be

assigned to them. Furthermore, low degree in CN means decreased infecting opportunities

and, because of limited monetary resources, the proposed method allocates all available

resources to higher degree nodes. Unlike Example 1, some nodes are assigned with the

maximum amount of κi. Nodes with µi = µmax and κi = κmax (saturated nodes) are hubs

in IDN and high degree nodes in CN.

Example 3: CN is a random preferential attachment network

In this example, both layers are preferential attachment networks with different preferential

attachment probabilities and 80 nodes. Optimal alerting rates as a function of node degree

in both layers are shown in Figure B.4. Similar to previous examples investment on very

low degree individuals in the presence of financial restrictions is not wise. Since high degree

nodes in CN are more exposed to the infection, they must be encouraged to be alert through

IDN or CN neighbors. Results identical to example 2 can be observed. Emphasis on high

degree individuals is notable (hubs).
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Figure B.3: Alertness rates µi and κi for i = 1, · · · , 80, with respect to degree of each nodes
in both layers. Each layer has 80 nodes. The IDN is a preferential attachment network with
minimum node degree 5, and the contact network has a random geometric structure. Note:
Colors represent the optimum rates according to the colorbar. Nodes with identical node
degree caused overlapping in the figure.
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Figure B.4: Alertness rates µi and κi for i = 1, · · · , 80, with respect to degree of each nodes
in both layers. Each layer has 80 nodes. The IDN is a preferential attachment network with
minimum node degree 5, and the contact network has a preferential network with minimum
node degree 3. Note: Colors represent the optimum rates according to the colorbar. Nodes
with identical node degree caused overlapping in the figure.
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Example 4: CN is a social (face-to-face) network

In this example, the CN layer is a portion of the social contact network based on survey

of a community in Chanute, Kansas, United States20. In an effort to consider important

connections in the network, we remove links with weights less than 0.2. Based on weight

distribution in20, we consider the remining connected network as an unweighted CN with

102 nodes (Figure B.5).

Figure B.5: A portion of the social (face-to-face) network built based on a survey of a
community in Chanute, Kansas, United States20. Network size is 102, maximum node
degree is 36, and minimum node degree is 1

Similar to previous examples a preferential attachment network as IDN with the same size

as CN is considered. Optimal alerting rates as a function of node degree in both layers are

shown in Figure B.6. Results identical to the previous examples are observed. In addition, for

nodes with high degree in CN or more exposed to the infection, optimal alertness investments

are either through CN or IDN. An extreme case, such as a hub, that must be considered

from both networks was not observed in this example.

The threshold phenomena predicted in158 is observed in these examples too. Because of

effects from IDN, this threshold is not abrupt. In order to determine optimal alertness rates,

a transition zone exists with a trade-off between topological characteristics of both layers.
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Figure B.6: Alertness rates µi and κi i = 1, · · · , 102, with respect to degree of each nodes in
both layers. Each layer has 102 nodes. The IDN is a preferential attachment network with
minimum node degree 20, and the contact network is a portion of a rural county social (face-
to-face) network20. Note: Colors represent the optimum rates according to the colorbar.
Nodes with identical node degree caused overlapping in the figure.
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B.7 Conclusions

Based on the SAIS epidemic model, containment and suppression of an infectious disease

spreading in a CN are possible with the help of disease-awareness diffusion among individ-

uals. We proposed a method to optimally allocate available monetary resources for disease

awareness. In particular, we determined optimal transition rates to a preventive-behavior

state for each individual in the CN and IDN layers. We demonstrated that an epidemic can

be contained in a multilayer network structure for a larger range of effective infection rates

compared to a one-layer structure with the identical amount of resources. Furthermore, by

allocating resources in both layers, epidemics can be contained that cannot be contained

in a one-layer structure with more resources. Awareness rates are obtained by alternating

the solution of a NPF problem and a convex optimization problem for an epidemic with a

given effective infection rate until convergence is obtained. These optimum rates are posi-

tively correlated with node degrees in both layers. Therefore, any epidemic with identical

or weaker effective infection rate is suppressed with a safety margin. This method selects

the best individuals for adopting preventive behaviors with minimal costs and guaranteed

epidemic dying-out.
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Appendix C

Tutorial for GEMFPy: Generalized

Epidemic Modeling Framework

Software in Python

In this appendix, we are explaining the tutorial for the Python version of Generalized Epi-

demic Modeling Framework (GEMF) developed in162. For a more in depth report, please

see87;162. We used NetworkX163 in our examples due to its ubiquitous use for wrangling

network data.

We are using compartmental epidemic models with networked contacts. For example,

the SIS model has only two compartments: susceptible and infected. Transitions between

compartments, are specified by the transition rates and their types. To determine nodal and

edge-based transition rates, we use node transition graphs. However, for individual-based

epidemic models, transition graphs represent only the transition mechanism for each node

in the network and not for the entire population. The inducer compartment and layers

that define neighbor nodes must also be specified. Other simulating paradigms, such as

agent-based modeling164–166 can follow the same methodology.

We present examples of epidemic models that can be simulated with Gemf. To imple-
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ment the following code snippets, user should import Gemf with the following line1.

1 from GEMFPy import *

C.1 SIS

Each node in an SIS model can be susceptible or infected; therefore, the number of com-

partments is M = 2. A susceptible node can become infected if it is surrounded by infected

neighbors. Infection process of a node with one infected neighbor is a Poisson process with

transition rate β. The infection processes are stochastically independent of each other;

therefore, for a susceptible node with more than one infected node in its neighborhood, the

transition rate is the infection rate β times the number of infected neighbor nodes. The

neighborhood of each node is determined by a contact network. In addition to the infection

process, a recovery process also exists. An infected node becomes susceptible again with a

curing rate δ. The main characteristics and a node transition graph for the SIS model are

shown in Table C.1 and Figure C.1.

Table C.1: Descriptions of the SIS model

SIS
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1

I (I → S) node-based δ

Parameters in Table C.1 can be entered by the following lines:

1 beta = 0.8; delta = 1;

2 Para = Para_SIS(delta ,beta)

3 Net = NetCmbn ([ MyNet(G)])

where the function Para-SIS is defined as

1 def Para_SIS(delta ,beta):

2 M = 2; q = np.array ([1]); L = len(q);

1The latest version of Gemf can be found here.
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Figure C.1: Schematic of the network-based SIS model

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para

we can choose initial condition such that two nodes are initially in the first inducer

compartment2 and others are in the first compartment:

1 x0 = np.zeros(N)

2 x0 = Initial_Cond_Gen(N, Para [1][0] , 2, x0)

Simulation

After defining Para for SIS model, we simulated the SIS model with β = 1.2 and δ = 1,

as shown in Figure C.2. The simulation can be done by the following lines of codes: First

2Python is using 0-based indexing.
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define the duration of simulation

1 StopCond = [’RunTime ’, 20]

and finding the occurred events:

1 ts, n_index , i_index , j_index = GEMF_SIM(Para , Net , x0, StopCond ,n)

One output of the simulation can be the history for population of each compartment:

1 T, StateCount = Post_Population(x0 , M, n, ts , i_index , j_index)

In Figure C.2, the fraction of nodes in each state is shown.
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Figure C.2: Simulation of the SIS model

Due to stochastic nature of the simulation, we repeat it for multiple times (N) with the

following snippet with a predefined step (see Section C.5.4):

1 N = 2

2 T_final = 3

3 step = .1

4 Init_inf = 2

5 t_interval , f = MonteCarlo(StopCond , Init_inf , M, T_final , step , N, n)

where n is the entire population size, step is the chosen time step and f is the averaged

population of each compartment in the time step.

158



C.2 SIR

In the Susceptible-Infected-Recovered (SIR) model, each node can be either susceptible,

infected, or recovered (immune). Therefore, the number of compartments, denoted by M ,in

the SIR model, was M = 3. A susceptible node can become infected if it is surrounded by

infected nodes. The infection process of a node with one infected neighbor is a Poisson process

with transition rate β. Similar to SIS, infection processes are stochastically independent of

each other. In addition to the infection process, a recovery process also exists. An infected

node recovers and becomes immune with a recovery rate δ. The main characteristics and a

node transition graph for the SIR model are shown in Table C.2 and Figure C.3.

Table C.2: Descriptors of the SIR model

SIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1

I (I → R) node-based δ
R

Parameters in Table C.2 can be entered by the following lines:

1 beta = 1.2; delta = 1;

2 Para = Para_SIR(delta , beta)

3 Net = NetCmbn ([ MyNet(G)])

where the function Para-SIR is defined as

1 def Para_SIR(delta , beta):

2 M = 3; q = np.array ([1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][2] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para
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Figure C.3: Node transition graph for the SIR model for nodes in N

C.2.1 Simulation

After defining Para for SIR model, we simulated an SIR model with β = 1.2, δ = 1, as

shown in Figure C.3 for a Barabasi-Albert network with 500 nodes. Method is similar to

SIS simulation in Section C.1.
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Figure C.4: Simulation of the SIR model
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Table C.3: Descriptors of the SEIR

SEIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1

E (E → I) node-based λ
I (I → R) node-based δ

C.2.2 SEIR

In the Susceptible-Exposed-Infected-Recovered (SEIR) model, each node can be susceptible,

exposed, infected, or recovered (immune). Therefore, M = 4. A susceptible node can

become exposed, if it is surrounded by infected nodes. The infection process of a node with

one infected neighbor is a Poisson process with transition rate β. The neighborhood of each

node is determined by a contact network N . An exposed node is not yet infectious, but it

will transition to the infected state with rate λ. Finally, an infected node recovers with a

recovery rate δ. The main characteristics and a node transition graph for the SEIR model

are shown in Table C.3 and Figure C.5.

Parameters in Table C.3 can be entered by the following lines:

1 beta = 1.5; delta = 1; Lambda = .5

2 Para = Para_SEIR(delta , beta , Lambda)

3 Net = NetCmbn ([ MyNet(G)])

where the function Para-SEIR is defined as

1 def Para_SEIR(delta , beta , Lambda):

2 M = 4; q = np.array ([2]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][2] = Lambda; A_d [2][3] = Lambda

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para
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Figure C.5: Node transition graph for the SEIR model for nodes in N

C.2.3 Simulation

After defining Para for SEIR model, we simulated an SEIR model with β = 1.2, δ = 1 and

λ = .4, as shown in Figure C.6.
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Figure C.6: Simulation of the SEIR model
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C.3 SAIS

The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed to incorporate in-

dividual reactions to the spread of a virus148. In the SAIS model, each node (individual)

can be susceptible, infected, or susceptible-alert. Therefore, the number of compartments in

the SAIS model was M = 3. The recovery process is similar to recovery process in the SIS

model, characterized by the recovery rate δ. The infection process of a susceptible agent is

also similar to the infection process of the SIS model, determined by infection rate β and

contact network N . However, in the SAIS model, a susceptible node can become alert if it

senses infected agents in its neighborhood. The alerting transition rate is κ times the num-

ber of infected agents. An alert node can also become infected by a process similar to the

infection process of a susceptible node. However, the infection rate for alert nodes is lower

than susceptible nodes due to the adoption of preventive behaviors. The alert infection rate

is denoted by βa with 0 < βa < β. The main characteristics and a schematic for the SAIS

model are shown in the following Table C.4 and Figure C.7.

Table C.4: Descriptors of the SAIS single layer model.

SAIS single Layer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1

(S → A) edge-based κ Neighbors in I 1

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

Parameters in Table C.4 can be entered by the following lines:

1 Para = Para_SAIS_Single(delta , beta , beta_a , kappa)

where the function Para-SAIS for single layer is defined as

1 def Para_SAIS_Single(delta , beta , beta_a , kappa):

2 M = 3; q = np.array ([1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):
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6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 A_b [0][0][2] = kappa

9 A_b [0][2][1] = beta_a

10 Para = [M, q, L, A_d , A_b]

11 return Para

A

S I

I, βa, NI, κ, N

I, β, N

δ1

Contact Network N

Figure C.7: Node transition graph for the SAIS one layer model for nodes in N

C.3.1 Simulation

After defining Para for SAIS model, we simulated an SAIS model in one-layer (N), with

β = 5
λ1(G1)

, δ = 1 and βa = 0.5
λ1(G1)

, and κ = 0.2β, as shown in Figure C.8.
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Figure C.8: Simulation of the SAIS single layer model.

C.3.2 SAIS Multilayer

The SAIS model on a two layer network was developed to incorporate multiple sources of

information to react to the spread of the virus. In the SAIS spreading model, each node

(individual) can be either susceptible, infected, or susceptible-alert. Again, the number of

compartments in the SAIS model was M = 3. The infection process of a susceptible agent

was also similar to the infection process of the SIS model, determined by infection rate β

and contact network NA. However, in this version of the SAIS model, a susceptible node can

become alert if it senses infected agents in its contact neighborhood or if it is notified about

infected neighbors in an information network NB. The alerting transition rate is κ times the

number of infected agents in the contact network and µ times the number of infected agents

in the notification network. An alert node can also become infected by a process similar

to the infection process of a susceptible node. However, the infection rate for alert nodes

βa is lower than β due to the adoption of preventive behaviors such as using masks. The

main characteristics and a schematic for the SAIS-2 layer model are shown in Table C.5 and

Figure C.10.

Parameters in Table C.5 can be entered by the following lines:

1 lambda1 = EIG1(G)[0]; delta = 1; beta = 5/ lambda1; beta_a = .5/ lambda1;

kappa = .2* beta; mu = .5* beta
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Table C.5: Descriptors of the SAIS two-layer model

SAIS multilayer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1

(S → A) edge-based κ Neighbors in I 1

(S → A) edge-based µ Neighbors in I 2

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

2 Para = Para_SAIS(delta , beta , beta_a , kappa , mu)

where the function Para-SAIS for two layer is defined as

1 def Para_SAIS(delta , beta , beta_a , kappa , mu):

2 M = 3; q = np.array ([1 ,1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 A_b [0][0][2] = kappa

9 A_b [1][2][1] = beta_a

10 A_b [1][0][2] = mu

11 Para = [M, q, L, A_d , A_b]

12 return Para

C.3.3 Simulation

After defining Para for SAIS model, we simulated the process with β = 5
λ1(G1)

, δ = 1 and

βa = 0.5
λ1(G1)

, κ = 0.2β, and µ = 0.5β, as shown in Figure C.11.
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Figure C.10: Node transition graph for the SAIS two-layer model on network with layers NA

and NB.
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Figure C.11: Simulation of the SAIS in 2 layer
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C.4 Multiple interacting pathogen spreading SI1SI2S

Assigning only one influencer compartment to one network layer allows different elegant

analysis. However, a more general possibility is that an edge-based transition m→ n occurs

if a neighbor j, is in a subset of the compartments, such as ql,1 or ql,2. This case can be

treated within the same structure, allowing the network layer to be counted twice. For

example, we assumed that in the first layer the model had the influencer compartment ql,1,

and in the second layer, the graph has the influencer compartment ql,2.

The SI1SI2S model is an extension of continuous-time SIS spreading of a single virus on

a simple graph, to the modeling of competitive viruses on a two-layer network167. In this

model, each node is either susceptible, 1-infected, or 2-infected (i.e., infected by Virus 1 or

2, respectively). Virus 1 spreads through network N1, virus 2 spreads through network N2.

In this competitive scenario, the two viruses are exclusive: a node cannot be infected by

Virus 1 and Virus 2 simultaneously. Consistent with SIS propagation on a single layer, the

infection and recovery processes for Virus 1 and 2 have similar characteristics. The curing

process for 1-infected Node i is a Poisson process with recovery rate δ1 > 0. The infection

process for susceptible Node i effectively occurs at rate βiYi (t), where Yi (t) is the number

of 1-infected neighbors of node i at time t in layer N1. Recovery and infection processes for

Vvirus 2 are similarly described. The main characteristics and a node transition graph for

the SI1SI2S model are shown in Table C.6 and Figure C.12.

Table C.6: Descriptions of the SI1SI2S model. S: suscpetible, I1: infected by virus 1, I2:
infected by virus 2,

SI1SI2S
State Transition Type Parameter Inducer Layer

S
(S → I1) edge-based β1 Neighbors in I2 1

(S → I2) edge-based β2 Neighbors in I2 2

I1 (I1 → S) node-based δ1

I1 (I2 → S) node-based δ2

Parameters in Table C.6 can be entered by the following lines in two different networks

N1 (G) and N2 (H):
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1 N = G.number_of_nodes ()

2 lambda1_1 = EIG1(G)[0]; lambda1_2 = EIG1(H)[0]; delta1 = 1; beta1 = 5/

lambda1_1; delta2 = 1; beta2 = 5/ lambda1_2;

3 Para = Para_SI1I2S(delta1 , delta2 , beta1 , beta2)

4 Net = NetCmbn ([ MyNet(G), MyNet(H)])

5 x0 = np.zeros(N)

6 x0 = Initial_Cond_Gen(N, Para [1][0] , 20, x0)

7 x0 = Initial_Cond_Gen(N, Para [1][1] , 20, x0)

where the function Para-SI1SI2S is defined as

1 def Para_SI1I2S(delta1 , delta2 , beta1 , beta2):

2 M = 3; q = np.array ([1 ,2]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta1; A_d [2][0] = delta2

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta1 #[l][M][M]

8 A_b [1][0][2] = beta2 #[l][M][M]

9

10 Para = [M, q, L, A_d , A_b]

11 return Para

C.4.1 Simulation

After defining Para for this model, we simulate an S1SI2S model in one layer with β1 = 5
λ1(G1)

,

β2 = 5
λ1(H1)

, δ1 = 1 and δ2 = 1 in Figure C.13.

C.5 An overview of the functions

In the subsequent sections, we describe the following functions of Gemf:

1. Initialization functions
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Figure C.12: Node transition graph for the SI1SI2S in two layer model

Figure C.13: Simulation of the S1SI2S model
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(d) InitialCond

2. Simulations

(a) Sim

(b) PostProcess

(c) MonteCarlo

3. Output

(a) Visualization

C.5.1 Initialization

“Net”: Converting network data

Gemf converts graph information into graph adjacency list format with function Net; there-

fore, we recorded i, j, and w in vectors L2, L1 and W for each edge (i, j, w) . L2 are neighbors

of L1 with weight W , and we sorted L2 and re-arranged L1 and W with resulting sorted

arguments in order to organize these data. All network data was acquired with L1, L2 and

W .

The NeighborhoodData function was used, which takes L1 and L2 as its inputs and

returns 5 vectors outputs. Neighvec and NeighWeight are vectors of neighbors, and their

weights I1 and I2, respectively, are node indices and d is their edge multiplicity. Benefits of

this representation are described in Section C.5.2.

We defined NNeighborhoodData in order to distinguish between neighbors of node

i with nodes that have i as neighbors. This function, is useful when we are dealing with

a directed network and has the same structure as the previous function. Outputs of this

function, NNeighvec and NNeighWeight, are vectors of adjacent nodes (not neighbors) and

their edge weights respectively and NI1 and NI2 are indices and Nd is edge multiplicity.

Function Net returns all above information for a single layer.
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Combining network layers data

For each layer, we obtained the required information from Net, and we combined them with

the NetComb function.

NetComb ({Net1, · · · , NetL}) =

[[Net1 (1) , · · · , NetL (1)] , · · · , [Net1 (H) , · · · , NetL (H)]]1×L (C.1)

where Netl = Net (Gl).

Transition rates

We used Para function to enter the required data for transition rates. A nodal transition

rate matrix is an M ×M matrix in which entry mn represents the rate of nodal transition

m→ n:

Aδ , [δmn]M×M . (C.2)

An edge-based transition rate matrix, corresponding to the network layer l, is an M ×M
matrix in which entry mn represents the rate βl,mn > 0 of edge-based transition m→ n:

Aβ ,
[
[β1,mn]M×M , · · · , [βL,mn]M×M

]
1×L . (C.3)

Initial condition

With “InitialCondGen” function the initial status of each individual in the population

can be determined and various approaches can be used to do this.

• User input: Initial condition is directly chosen by the user.

• Fixed initial infected population: NJ individuals randomly chosen to be in compart-

ment J .
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C.5.2 Simulations

Gemf uses an event-driven approach to simulate the stochastic process. This method is

advantageous compared to the discretized method. For example, in discretization approach,

no transition may occur in several time increments dt or several transition may occur in one

time increment; therefore, computation time for the event-based method is not unnecessarily

longer and on the other side the solution is more accurate and captures more events compared

to the discretized method (See168;169).

Number of neighbors in influencer compartment Nq

One of the key factors in edge-based transitions is the number of neighbors in influencer

compartment, Nq. Nq is an L×N array, representing the number of influencer compartment

for each node in each layer, weighted by edge weights. Because node status changes in each

event, Nq is updated after each event. From Section C.5.1, initial status of all nodes X0
M×N

is obtained. For example, if X [:, 4]T =

[
0 1 · · · 0

]
1×M

, then node 4 is in compartment

2.

To compute Nq, Gemf goes over all nodes in each layer. Using network data from

NetComb, all neighbors of node n in layer l can be derived via

Nln = Neigh [l] [I1 [l, n] : I2 [l, n]] (C.4)

with weights:

Wln = NeighWeight [l] [I1 [l, n] : I2 [l, n]] . (C.5)

Using (C.5), entries of Nq (influencer neighbors) can be determined by

Nq [l, n] =

|Nln|∑
i=1

X [q [l] , Nln [i]] ·Wln [i] (C.6)

where |Nln| is the cardinality of set Nln.
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Rate of changes

From Section C.5.1, we entered Aβ and Aδ through Para. The simulation code initially

generated bil, which is an arrays:

bil ,



∑M

i=1 β1,1i

...∑M
i=1 β1,Mi


M×1

· · ·


∑M

i=1 βL,1i
...∑M

i=1 βL,Mi


M×1


1×L

(C.7)

where bil represents the sum of edge-based transition rates of each compartment in each

layer.

The array of edge-based transition rates matrix for each compartment in all layers bi was

bi ,





β1,11 · · · βL,11

β1,12 · · · βL,12

...
. . .

...

β1,1M · · · βL,1M


M×L

· · ·



β1,21 · · · βL,21

β1,22 · · · βL,22

...
. . .

...

β1,2M · · · βL,2M


M×L


1×M

(C.8)

For each compartment, the total leaving rate due to nodal transition was derived from C.2

(by summing up each row of matrix Aδ):

di =


∑M

i=1 δ1i

...∑M
i=1 δMi


M×1

. (C.9)

Total Rates

Using di and bil, total transition rates for each node were generated as

Rin = (di11×N)M×N ◦X + (bilNq)M×N ◦X (C.10)
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where ◦ represents element-wise multiplication.

In order to find the total rate of change for the entire system, we re-added the rates.

For example, for the total rate of change for each compartment in the entire network, we

introduce Ri:

Ri =


∑N

i=1 Rin [1, i]

...∑N
i=1Rin [M, i]


M×1

(C.11)

and for the total rate of change for the entire system, we introduced R:

R =
M∑
i=1

Ri [i] . (C.12)

Updating system status after an event

The initial state for all nodes was generated according to Section C.5.1. Because all random

processes are Poisson processes, the assumption was made that the next event would occur

in time δt:

δt =
− ln(rand)

R
(C.13)

where 0 ≤ rand ≤ 1 is a generated random number. During this event one of the nodes

changes its status. We determined which compartment changed by drawing a sample among

M compartments with probability distribution Ri; this compartment was called is.

Once the leaving compartment was identified, we wanted to know which node experienced

the transition. Therefore, we drew a sample from N nodes with probability distribution

Rin [is, :] (i.e., is row of matrix Rin) and called this Node ns.

To find the new status (compartment) of Node ns, again Gemf randomly draws the new

compartment js among M compartments with the following probability distribution:

pTjs = Aδ [is, :]
T + bi [is]Nq [:, ns] . (C.14)
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Drawing samples with given probability distribution is done with RndDraw function.

With δt, is, js, and ns, Gemf had all necessary information to update the network

status and apply required changes with the occurred event. However, Gemf had to update

X matrix and the future rate of transitions.

Because Node ns changed its status from is to js, we have:

X [is, ns] = 0, X [js, ns] = 1. (C.15)

To update Ri, we subtracted the column in Rin that corresponded to Node ns (i.e., Rin [:, ns])

and then we updated

Rin [:, ns] = di ◦X [:, ns] + (biNq [:, ns]) ◦X [:, ns] . (C.16)

Now we add Rin [:, ns] to Ri. Next if any of the old or new compartment are in influencer

category in any layer, code should update Nq matrix. First, we find neighbors of node ns:

Nln = Neigh [l] [I1 [l] [ns] : I2 [l] [ns]] (C.17)

WeightedNeigh = NeighW [l] [I1 [l] [ns] : I2 [l] [ns]] (C.18)

(C.19)

Then we conducted the following steps for all these neighbors:

• If the old compartment is was an influencer compartment in layer l, we do the following

removed ns as their infected neighbors and recorded the weight of the edge. We also

updated Rin. For n, the k’th neighbor of ns was

Nq [l] [n]− = NNeighW [l] [NI1 [l] [ns] + k] (C.20)

Rin [:, n]− = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n]) (C.21)
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where − = indicates subtracting to current value.

• If the new compartment js was an influencer compartment in layer l, we added ns as

their infected neighbors and recorded the weight of the edge. We also updated Rin.

For n, the kth neighbor of ns was

Nq [l] [n] + = NNeighW [l] [NI1 [l] [ns] + k] (C.22)

Rin [:, n] + = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n]) (C.23)

where + = indicates adding to current value.

We stacked ns, js, and is into nindex, jindex, and iindex, respectively, and then we recalculated

Ri and R and prepared for the next event.

C.5.3 Post processing

From Sim, we obtained the set of time increments of occurring events, ts. The cumulative

sum of ts, T , was the time history of events. StateCount, an M × (|ts|+ 1) array conveying

the total number of nodes in each compartment in each time step, , was also generated. The

First column of StateCount is initial condition:

StateCount [:, 1] =
N∑
i=1

X0 [:, i] . (C.24)

For the remainder of StateCount, PostPopulation generated a temporary array DXM×1

in each event, with the following non-zero elements:

DX [iindex [k]] = −1 (C.25)

DX [jindex [k]] = 1, (C.26)
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and zero on the other elements. In each event, we obtained the following recursion:

StateCount [:, k + 1] = StateCount [:, k] +DX (C.27)

PostPopulation returns T and StateCount.

C.5.4 Monte carlo simulation

In order to obtain a reliable result for stochastic simulation, it is necessary to repeat random

processes had to be repeated for many times and the results need to be averaged.

In an event-based analysis, the number of events are not identicale for different simula-

tions; therefore, arrays that show the state of the group in each simulation will not be of the

same size and they cannot be added and averaged.

In order to average several random processes, a ubiquitous time interval with a desired time

increment must be defined.

Therefore, the function MonteCarlo, uses histogram counting. For all simulations, it finds

the closest previous event for the time increments and then maps these events on the new

time interval. With the new unified time scale, the average of all processes was derived.
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