

Bringing Computational Thinking to K-12 and Higher Education

by

Joshua Levi Weese

B.S., Kansas State University, 2011

M.S., Kansas State University, 2013

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2017

Abstract

Since the introduction of new curriculum standards at K-12 schools, computational

thinking has become a major research area. Creating and delivering content to enhance these

skills, as well as evaluation, remain open problems. This work describes different interventions

based on the Scratch programming language aimed toward improving student self-efficacy in

computer science and computational thinking. These interventions were applied at a STEM

outreach program for 5th-9th grade students. Previous experience in STEM-related activities

and subjects, as well as student self-efficacy, were surveyed using a developed pre- and post-

survey. The impact of these interventions on student performance and confidence, as well as

the validity of the instrument are discussed. To complement attitude surveys, a translation of

Scratch to Blockly is proposed. This will record student programming behaviors for

quantitative analysis of computational thinking in support of student self-efficacy. Outreach

work with Kansas Starbase, as well as the Girl Scouts of the USA, is also described and

evaluated.

A key goal for computational thinking in the past 10 years has been to bring computer

science to other disciplines. To test the gap from computer science to STEM, computational

thinking exercises were embedded in an electromagnetic fields course. Integrating

computation into theory courses in physics has been a curricular need, yet there are many

difficulties and obstacles to overcome in integrating with existing curricula and programs.

Recommendations from this experimental study are given towards integrating CT into physics

a reality. As part of a continuing collaboration with physics, a comprehensive system for

automated extraction of assessment data for descriptive analytics and visualization is also

described.

Bringing Computational Thinking to K-12 and Higher Education

by

Joshua Levi Weese

B.S., Kansas State University, 2011

M.S., Kansas State University, 2013

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2017

Approved by:

Major Professor

William H. Hsu

Copyright

© Joshua Levi Weese 2017.

Abstract

Since the introduction of new curriculum standards at K-12 schools, computational

thinking has become a major research area. Creating and delivering content to enhance these

skills, as well as evaluation, remain open problems. This work describes different interventions

based on the Scratch programming language aimed toward improving student self-efficacy in

computer science and computational thinking. These interventions were applied at a STEM

outreach program for 5th-9th grade students. Previous experience in STEM-related activities

and subjects, as well as student self-efficacy, were surveyed using a developed pre- and post-

survey. The impact of these interventions on student performance and confidence, as well as

the validity of the instrument are discussed. To complement attitude surveys, a translation of

Scratch to Blockly is proposed. This will record student programming behaviors for

quantitative analysis of computational thinking in support of student self-efficacy. Outreach

work with Kansas Starbase, as well as the Girl Scouts of the USA, is also described and

evaluated.

A key goal for computational thinking in the past 10 years has been to bring computer

science to other disciplines. To test the gap from computer science to STEM, computational

thinking exercises were embedded in an electromagnetic fields course. Integrating

computation into theory courses in physics has been a curricular need, yet there are many

difficulties and obstacles to overcome in integrating with existing curricula and programs.

Recommendations from this experimental study are given towards integrating CT into physics

a reality. As part of a continuing collaboration with physics, a comprehensive system for

automated extraction of assessment data for descriptive analytics and visualization is also

described.

vi

Table of Contents

List of Figures ...viii
List of Tables .. ix
Acknowledgements .. x
Chapter 1 - Introduction ... 1

Chapter 2 - Computational Thinking ... 4
Defining Computational Thinking ... 5
Computational Thinking: Concepts, Practices, and Perspectives .. 6
Problem Solving and Computational Thinking ... 12
Computational Thinking Assessments ... 15

Chapter 3 - Outreach .. 17

Visual Based Programming ... 17
Methods ... 19

Summer STEM Institute 2015 ... 22
Mission to Mars ... 23
Game Design .. 25

Instrument Design .. 27
Findings .. 29
Conclusions .. 33

Summer STEM Institute 2016 ... 34
Methods .. 34

Saving the Martian ... 35

Mighty Micro Controllers .. 38

Instrument .. 40
Findings .. 44

Conclusions .. 46
Starbase .. 47

Findings .. 48

Conclusions .. 51
Chapter 4 - Computational Thinking in Physics .. 54

Exploratory Study: Computational Thinking in Electromagnetics .. 57
Experiment Design ... 59
Results .. 62
Conclusions .. 69

Chapter 5 - The Data Explorer ... 70

Automated Assessment Extraction .. 70
Data Flow ... 72

Parsing Data ... 74
Guesser ... 77
Visualization .. 81
Continuing Work: Information Retrieval and Data Mining .. 85
Future Work: Instructional Decision Support and Adaptive Recommendation 86
Conclusion ... 87

vii

Chapter 6 - Summary and Future Work ... 88

Summary .. 88
Future Work ... 88

Girl Scouts ... 89

Activities .. 90
Summary .. 91

Computational Thinking: Qualitative to Quantitative ... 92
Scratch to Blockly .. 93

Chapter 7 - References ... 96

Appendix A - STEM Institute 2015 Survey .. 105
Student Survey ... 105
Teacher Survey .. 109

Appendix B - STEM Institute 2016 Survey ... 114

Appendix C - Starbase Pre-test .. 118
Appendix D - Starbase Post-test .. 125

Appendix E - Introduction to AI: Cat and Mouse Lesson Plans.. 132
Lesson .. 132

Time ... 132
Group Size ... 132
Materials .. 132

Objectives .. 132
Introduction .. 133

Procedure ... 134
Assessment ... 137

Appendix F - STEM 2015 Lesson Plans.. 138

Game Design .. 138

Day 1 .. 138
Day 2 .. 139
Day 3 .. 140

Day 4 .. 141
Coding to Mars .. 142

Day 2 .. 142
Day 3 .. 144

Appendix G - STEM 2016 Lesson Plans ... 146
Mighty Micro Controllers .. 146

Day 1 .. 146
Day 2 .. 148
Day 3 .. 150

Day 4 .. 152
Simulating the Martian .. 154

Day 1 .. 154
Day 2 .. 156
Day 3 .. 158
Day 4 .. 160

viii

List of Figures

Figure 1 Conceptual model of the aspects and processes involved in problem solving, adapted

from (Giannakopoulos, 2012; Voskoglou & Buckley, 2012). ... 13
Figure 2 Data flow for importer of Data Explorer. .. 73
Figure 3 F1-Score of the base model to the active learning model. .. 81
Figure 4. Data visualizer component of the Data Explorer, displaying a histogram of

normalized gain for a hypothetical class on the Force Concept Inventory (FCI)

assessment. ... 83
Figure 5. A "Breakdown by Question" view, showing drill-down for a single question and

multiple-choice responses, together with the distribution of student responses, on a post-

instructional assessment question (also for the FCI). .. 84
Figure 6. Visualization of student performance on pre- and post- assessment, organized by

classification of question. Class labels are assigned by subject matter experts (physics

education researchers). ... 85
Figure 7. Visualization of courses over time: tracking performance across classes in multiple

offerings (semesters and sections) in a longitudinal study. ... 86

ix

List of Tables

Table 1: Number of students (after survey exclusion) in each intervention 28

Table 2 Programming experience before the interventions ... 30
Table 3 Comparison of effect sizes for the 21st century learning and CT focused questions ... 32
Table 4 The four core sections of the self-efficacy survey, denoting which CT skill each

question falls under. ... 42
Table 5 The distribution of students included in the survey within each compared group as

well as average pre and post self-efficacy. .. 43
Table 6 The effect size for each survey question, broken into each comparison group.

Italicized indicates a p-value of ≤ .05, italicized, underlined indicates a p-value of ≤ .01,

and bolded indicates a p-value of ≤ .001. .. 44
Table 7 Distribution of Starbase student democraphics and race. ... 49

Table 8 Starbase test results for male students. ... 49

Table 9 Starbase test results for female students. .. 50
Table 10 Starbase test results for Caucasian students. ... 50

Table 11 Starbase test results for all races except Caucasian. ... 50
Table 12 Self-efficacy survey given to students in the E&M class. .. 62
Table 13 Annotation labels and descriptions used to analyze student code submissions. 63

Table 14 Number of labels annotated for each degree of commenting made by students in their

CT problem submissions. ... 64
Table 15 Self-efficacy pre- and post-survey results. ... 65

Table 16 Heuristics for identifying the header row ... 75
Table 17 Results showing the performance of the base guesser model by assessment. 79

x

Acknowledgements

I would like to extend thanks to Nathan Bean and Russell Feldhausen who have helped

organize, develop, and contribute material to the outreach efforts. I would like to thank Jesse

Peters, Brooke Snyder, Kent Hildebrand, and Chris Herald for their work and assistance in the

summer STEM Institute. I would also like to thank Beck Caitlyn and staff at Kansas Starbase

Manhattan for there dedication to STEM and working with me to integrate computer science

into their program. This work would not be possible without the support of my wife, Chelsea,

my advisor, Dr. William H. Hsu, and my doctoral committee.

1

Chapter 1 - Introduction

Computer science has become one of the most relevant, fastest growing, and highest

paying fields; however, Kansas and many other states are behbeind the curve for being an

advocate of computer science. According to Code.org, 9 out of 10 parents want their children

to study Computer Science (CS), but only 1 in 4 schools teach computer programming. There

are 2,980 open computing jobs in Kansas, but only 338 CS college graduates (Code.org,

2017). The core problem in Kansas is that CS is not widely offered in K-12 schools, where

there are no CS curriculum standards, CS does not count towards high school graduation, and

no state-level funding for computer science professional development for teachers (Code.org,

2017). Nationwide, there has been a 17% increase to 54,379 students in 2016 who took AP

CS; 23% of which were female and 16% were from underrepresented minorities (Code.org,

2017). Kansas also saw an increase in the number of students in AP CS; however, the number

of students from underrepresented minorities decreased to only 7% and only 7% female

(Code.org, 2017).

The ever-growing popularity of computer science has fostered the need for

computational thinking (CT), especially in K-12 education. Creating and delivering content to

enhance these skills, as well as evaluation, remain open problems. In recent years, countries

have begun to develop and incorporate computing in the K-12 education system. From these

curricula and reports, succinct definitions of CT provide broader impacts in terms of

education. Currently, the US does not have country wide K-12 CS education standards.

Organizations have been dedicated in creating CS standards that incorporate CT, although

these standards are not widely adopted by the states. Since Jeanette Wing’s ACM Viewpoint in

2

2006, CT has gained traction as an essential 21st century learning skill (Wing J. M.,

Computational Thinking, 2006). CT draws from computer science fundamentals; however,

few definitions of CT give a succinct synopsis of what fundamentals CT includes. This is an

important distinction to make as computer science standards are being formed for K-12

education in the United States. CT in K-12, as well as higher education, gives students a firm

foundation for a higher level of thinking not only in computer science, but also a plethora of

other STEM fields. As Barr and Stephenson state, an interpretation or definition of CT “must

ultimately be coupled with examples that demonstrate how computational thinking can be

incorporated in the classroom [2].”

The novel contributions of this work center on a clear synopsis of CT and what

computer science principles are included therein as described in Computational Thinking:

Concepts, Practices, and Perspectives. This report also includes new surveys for qualitatively

assessing student self-efficacy in CT. Current survey work is presented in the Summer STEM

Institute 2015 chapter, followed by adaptations of that survey in Summer STEM Institute

2016. Novel curricula, supported by the student self-efficacy survey, are also presented,

designed for K-12 outreach and embedding CT. Apart from CT in K-12, results from an

experimental study incorporating CT into an undergraduate physics course is presented. A

new method for automatically extracting semi-structured assessment data in physics is

presented. Although this methodology is first being applied to the domain of physics, this

approach is designed to be applicable across domains for future use in CS. This also provides

capability for advanced analytics with assessment data. Finally, future work, including

proposed work for quantitatively analyzing CT by going beyond the portfolio and static

analysis of completed or compiled programs is presented. This research is published in part by

3

(Weese, 2016; Weese & Feldhausen, 2017; Weese & Hsu, 2016; Weese, Feldhausen, & Bean,

2016). The goals of this research are aimed at answering the following questions:

1. Can the attitude surveys created reliably assess student ability in computational

thinking? This is answered by the survey analysis in the summer STEM Institute

2015 and 2016.

2. Are the underlying computer science principles being taught through outreach

curricula reflected in student performance? Similarly, this mostly comes out in the

analysis of survey work done for the summer STEM institutes. Some anomalies

were found and are described in the findings.

3. Is there a link between self-efficacy in computational thinking and self-efficacy in

problem solving skills? An initial answer to this question was found during the

2016 summer STEM Institute; however, further studies will need to be done to

thoroughly answer this research question.

4. Does introducing CT to physics students without any training in computer

programming lead to gains in students’ abilities in computational thinking? Initial

experiences and recommendations are made, but a more formal and larger

experiment will be needed to study the effects of CT on students in the physics

classroom.

4

Chapter 2 - Computational Thinking

The ability to define, incorporate, and assess computational thinking is the main

purpose of this research. The Next Generation Science Standards (NGSS) (NGSS Lead States,

2013) and Common Core Standards (CCSS) (National, 2010) have influenced a STEM

movement with ever-increasing needs for computational thinking. CT has been defined in a

variety of ways, but discussion between researchers on what the definition of CT should

include was born from Wing’s vision to make CT a fundamental skill for everyone, not just

computer scientists (Wing J. M., Computational Thinking, 2006). Computational Thinking: A

Digital Age Skill for emphasizes the importance of Wing’s vision and notes the significance of

CT as a vital 21st century skill, which is noted in the P21 Framework for 21st Century Learning

(P21 Partnership for 21st Century Learning, 2015). Not all definitions of CT are created

equal; however, among various definitions (Barr & Stephenson, 2011; Barr, Harrison, &

Conery, 2011; National Academy of Sciences, 2010; Sengupta, Kinnebrew, Biswas, & Clark,

2013; Wing J. M., Computational Thinking, 2006), abstraction and algorithms are two main

concepts that everyone agrees upon. More so, Barr and Stephenson point out that whatever an

educator’s interpretation or definition of CT includes, it “must ultimately be coupled with

examples that demonstrate how computational thinking can be incorporated in the classroom”

(Barr & Stephenson, 2011). This leads to a conclusion that educators do understand the

importance of CT skills; however, they lack a clear, practical definition with established

pedagogy to help bring CT to their classrooms (Barr, Harrison, & Conery, 2011; Barr &

Stephenson, 2011). Solving this problem would also remove the preconceived notion that

computational thinking is CS or computer programming, and show educators that CT is a skill

used across many disciplines (Wing J. M., Computational Thinking, 2006; Sengupta,

5

Kinnebrew, Biswas, & Clark, 2013; Bennett, Ioannidou, Repenning, Kyu Han, &

Basawapatna, 2011; Repenning, et al., 2015).

 Defining Computational Thinking

“Computational thinking involves solving problems, designing systems, and

understanding human behavior, by drawing on the concepts fundamental to computer science”

(Wing J. M., Computational Thinking, 2006). As mentioned earlier, this is not intended to be

interpreted as equating computer science outright to computational thinking; rather the essence

of CT comes from thinking like a computer when faced with problems from any discipline

(Grover & Pea, 2013). In 2011, Wing expanded the definition of CT, mentioning that CT is

“the thought process involved in formulating problems and their solutions so that the solutions

are represented in a form that can be effectively carried out by an information processing

agent” (Wing J. M., 2011). The inclusion of intelligent agents in what embodies CT creates a

pathway to fostering CT in multiple disciplines by means of scientific simulation and real-

world problem sets. This is the key point when defining CT: the ability to connect core

computer science concepts to non-computer science domains.

In recent years, countries have begun to incorporate computing in the K-12 education

system. From these curricula and reports, succinct definitions of CT provide broader impacts

in terms of education. The U.S.A. does not have country wide CS education standards;

however, some organizations, like the CSTA, have been dedicated in creating CS standards

that incorporate CT, although their standards are not widely officially adopted. The CSTA

defines CT as solving problems in a way that can be implemented with a computer, including

concepts like abstraction, data, recursion, and iteration (Seehorn, et al., 2011; Seehorn, et al.,

2016). CSK12 is also a collaborative effort by CS educators and professionals aiming for

6

creating a standardized CS curriculum in the U.S.A. Many states have begun to adopt their

own CS standards; however, there is no uniformity among them. Countries like the United

Kingdom have had a large push for reforming their educational system to incorporate

computer science and CT. The U.K. has had CS standards in their education system in the

past encompassing ICT (Information and Communication Technology). However, in a report

by the Royal Academy, the ICT curricula has left students only coming out of the school

system with digital literacy skills and not a true handle on computer science (Royal Society,

2012). The report encourages to move away from ICT and to use a combination of

information technology, digital literacy, and computer science. The report also emphasizes the

need to incorporate CT, defined as “the process of recognizing aspects of computation in the

world, and applying tools and techniques from computer science to understand and reason

about both natural and artificial systems and process” (Royal Society, 2012). This

encompasses the vision of CT, drawing from traditional computer science to encourage new

ways of thinking about the world.

 Computational Thinking: Concepts, Practices, and Perspectives

Computational thinking can be expanded by defining in terms of concepts, practices,

and perspectives (Brennan & Resnick, Using artifact-based interviews to study the

development of computational thinking in interactive media design, 2012). CT concepts have

been a popular target for research and curricula development (Barr, Harrison, & Conery, 2011;

Grover & Pea, 2013; Sengupta, Kinnebrew, Biswas, & Clark, 2013; Royal Society, 2012;

National Academy of Sciences, 2010; Seehorn, et al., 2011); however, the concepts vary

across domains. Some, such as Brennan and Resnick, present CT concepts as referenced in

their problem domain (Scratch), while others, such as the Computer Science Teachers

7

Association (CSTA), present CT concepts for application across K-12 curricula. Even from

within the general domain application, what authors include in their definition of CT concepts

vary (Grover & Pea, 2013; Seehorn, et al., 2011; Bort & Brylow, 2013; Chuang, Hu, Wu, &

Lin, 2015; Google, 2016). Brennan and Resnick define computational concepts (also referred

to as CT concepts as the “concepts that designers employ as they program.” To encompass

more fields, CT concepts are generalized as the usage of one of the following computer

science principles in solving a problem: algorithmic thinking, abstraction, problem

decomposition, data, parallelization, and control flow. These concepts are first generalized,

and when necessary, broken into subtopics. Many computer science principles could arguably

be included as or fall under one or more of these CT concepts; however, for purposes of this

research, domain-independent language is used where possible, and definition of the concepts

are kept finite.

Algorithmic Thinking – Algorithms are sequences of steps used to solve anything from

simple to complex tasks. Procedural knowledge, such as algorithms, apply to a plethora of

domains, like chemistry, math, and physics. An example applicable to everyday life is

cooking. Recipes provide a well-formed plan for cooking food. This is the quintessence of

algorithmic thinking: the ability to clearly define a sequence of steps. One sub-concept that is

included under algorithmic thinking is operations. Operators have been presented as a CT

concept in Scratch (Brennan & Resnick, Using artifact-based interviews to study the

development of computational thinking in interactive media design, 2012), but have been

absent in others. Operations are defined in context of algorithmic thinking as logical,

mathematical, symbolic, and textual expressions. While expressions contain some layers of

8

traditional abstraction and usage of data concepts, they require a systematic, step-by-step

approach to implement and solve.

Abstraction – An abstraction is a generalized representation of a complex problem.

Often, this representation is not holistic in nature. Abstraction allows one to ignore certain

aspects or details in order simplify and understand a difficult problem, although what gets

included or excluded in the abstraction should be done with great care. The traditional

definition of abstraction differs from that of computational abstraction, such that

computational abstractions may generalize beyond mathematical and physical science

properties and tend to be more symbolic in nature (Wing J. M., Computational Thinking and

Thinking about Computing, 2008). Wing continues to show that the abstraction process

involves multiple layers. A cake itself, for example, is an abstraction that contains several

interconnected layers of abstractions. The layers of sponge, separated with layers of frosting

or other fillings, are results of detailed recipes by various combinations of ingredients and

cooking. The relationship between each layer must also be understood, otherwise the cake

may not be structurally sound or taste very good. This idea leads us to argue that the “nuts and

bolts of computational thinking are defining abstractions, working with multiple layers of

abstraction, and understanding the relationships among the different layers” (Wing J. M.,

Computational Thinking and Thinking about Computing, 2008).

Problem Decomposition – Problem decomposition involves breaking down a problem

into smaller, more manageable parts where each part can be solved independently of each

other. These can then be recombined to solve the problem as a whole. Problem

decomposition is not to be confused with abstraction. Abstraction can help in decomposing

problems, because each decomposed part, while smaller and more manageable, is not

9

guaranteed to be conceptually simpler. Abstraction is intended only for generalizing or

simplifying, whereas problem decomposition is used to separate a problem into independent

sub problems.

Data – Data can reference an extremely wide variation of information, things, and

ideas. Data in computational thinking can be broken down into three parts: collection,

representation, and analysis (Google, 2016; Chuang, Hu, Wu, & Lin, 2015; Bort & Brylow,

2013; Seehorn, et al., 2011). Data collection is the act of gathering information. For example,

students could measure the height of everyone in their class and record it in a variety of

mediums, like on a digital spreadsheet or a simple piece of paper. This leads into data

representation: the depiction and organization of data (Google, 2016). Students could choose

to use metric, standard, or an arbitrary form of measurement. The heights can also be

organized, maybe by being sorted or even grouped by male or female. This prompts data

analysis: gaining an understanding or developing insight from data (Google, 2016). Students

should formulate questions to answer from the heights they collected. The way they chose to

represent their data can have a direct impact here as well. If the question is “Who is the

shortest and tallest person in the class?,” it will take longer to discover if the data is not

organized. Some data that is collected may be irrelevant to the questions that need answered.

Analysis of the data, which can be a primitive form of abstraction, brings focus to data that is

relevant.

Parallelization – Parallelization is the “simultaneous processing of smaller tasks from a

larger task to reach a common goal” (Google, 2016). For example, a restaurant will often have

different cooks for different parts of the menu (a person that fries food, one who grills, one

who bakes, and different people for prepping the food before it gets cooked). Parallelization

10

also includes simultaneous processing of the same task to improve efficiency. In the restaurant

example, adding more than one person at each station can improve the speed at which food can

be sent from the kitchen. Synchronization is also an import concept in parallelization.

Synchronization is the coordination of the tasks that are being executed in parallel.

Control Flow – Without control flow, algorithms are simple, linear problem solving

traces. In other words, control flow directs an algorithm’s steps and when an algorithm

completes. This includes allowing the algorithm to repeat steps several times, complete steps

under certain conditions (based on observed data or events), skip steps, or even stop before all

steps are completed. Control flow can make algorithms more efficient by reducing duplicated

or redundant steps, and ultimately, this can improve the way problems are solved using

algorithms, giving one the ability to solve a problem in a non-linear manner.

Brennan and Resnick argued that assessing CT only by computational concepts does

not provide proper representation the learning and participation that occurs (Brennan &

Resnick, Using artifact-based interviews to study the development of computational thinking

in interactive media design, 2012). Thus, computational practices and perspectives are

included in assessment (Brennan & Resnick, Using artifact-based interviews to study the

development of computational thinking in interactive media design, 2012; Seehorn, et al.,

2011; Royal Society, 2012). “Computational practices focus on the process of thinking and

learning, moving beyond what you are learning to how you are learning” (Brennan & Resnick,

Using artifact-based interviews to study the development of computational thinking in

interactive media design, 2012). From this framework, practices include: being incremental

and iterative, testing and debugging, and reusing and remixing.

11

 Being incremental and iterative: Instead of finishing a problem all at once, being

incremental or taking the problem one step at a time can decrease the difficulty of

complex problems. This is in relation to the engineering design process where

problems are cycled through multiple times, often making incremental improvements

before settling on a final solution.

 Testing and debugging: Testing and debugging refers to troubleshooting a problem

solution. Often, the solutions are not perfect the first time they are implemented.

Troubleshooting is usually test driven, where a set of standards or conditions are

checked each time something in the solution is modified.

 Reusing and remixing: Many problems are rooted in ones that have already been

solved. This practice refers to taking an existing solution to a similar problem and

adapting it to solve your own.

Abstraction is also included as a practice from the framework done by Brennan and Resnick;

however, as abstraction is a concept that is rooted deeply in many of the CT concepts, it is

included as a CT concept in this research, rather than a practice. Computational perspectives

are the way students understand the effect of computation and technology in the world around

them, as well as with their relation to others and themselves (Brennan & Resnick, Using

artifact-based interviews to study the development of computational thinking in interactive

media design, 2012). Brennan and Resnick address the following perspectives:

 Expressing: Especially with visual languages, computer science provides people with

a way to interact through various media. This perspective looks at when someone sees

computation as a medium. This allows students who grasp this perspective to use

computation as an opportunity to create, express, and implement their ideas.

12

 Connecting: This perspective points out the value of networking, where learning is

social practice. This gives further motivation for students and creators, such that see

the value of creating with and for others. Whether it is by entertaining, engaging, or

equipping (examples solutions or parts of solutions meant to be reused) others, having

some form of connection with others makes the learning process more valuable.

 Questioning: The idea of this perspective is to get learners to inquire and investigate

the role that computation has in their life and world around them. It prompts students

to go from being able to use technology to considering how those technologies and

devices work and how they can take part in it.

 Problem Solving and Computational Thinking

Incorporating CT into existing curricula and programs is not always an easy task,

especially in K-12 where problem solving (PS) skills are traditionally emphasized. Most non-

computer science educators see the importance of CT; however, it is difficult to distinguish CT

from PS so it is common for CT to be seen as PS within computational domains. Many of the

CT concepts and practices described in the previous section are not necessarily unique to

computer science nor are they restricted to being used with technology (computers,

electronics, etc.). They have roots in many other disciplines, as well as problem solving;

however, using these concepts and practices collectively in mutually-reinforcing ways to solve

problems is typically limited to computer scientists.

Authors Voskoglou and Buckley define PS as “an activity that makes use of cognitive

or cognitive and physical means to overcome an obstacle (problem) and develop a better idea

of the world that surrounds us” (Voskoglou & Buckley, 2012). This definition originates from

Polya: “solving a problem means finding a way out of a difficulty, a way around an obstacle,

13

attaining an aim that was not immediately understandable” (Polya, 1973). Critical thinking,

though there are a plethora of definitions, can be defined as “the systematic evaluation or

formulation of beliefs or statements by rational standards” and can be viewed as “how we

think” not “what we think about” (Vaughn, 2008).

Critical thinking is often included when discussing problem solving; however, there

isn’t a consensus among philosophers and educators on what the relationship between the two

really is (Giannakopoulos, 2012). The discussion ranges from wondering if critical thinking is

a form of problem solving, a part of problem solving, should it include problem solving, or is

it complementary to problem solving (Papastephanou & Angeli, 2007; Giannakopoulos, 2012).

For this work, critical thinking is treated as its own distinctive process, but complementary to

problem solving. As such, one who has sufficient critical thinking skills and knowledge can

solve a problem. These aspects can be seen in Figure 1 with addition of cognitive processes.

Figure 1 Conceptual model of the aspects and processes involved in problem solving,

adapted from (Giannakopoulos, 2012; Voskoglou & Buckley, 2012).

Cognitive processes are leveraged to inform problem solving process. But like critical

thinking, these processes are distinct, high-ordered levels of thought. Problem solving uses

specific strategies in developing solutions that overcome a problem to reach the goal state.

These strategies are informed by a person’s knowledge, critical thinking, and cognitive

14

abilities. Wang and Chiew offer a summative collection of problem solving strategies can be

seen from:

 Direct facts – finding a direct solution path based on known solutions.

 Heuristic – adopting rule of thumb or the most possible solutions.

 Analogy – reducing a new problem to an existing or similar one for which solutions

have already been known.

 Hill climbing – making any move that approaches closer to the problem goal step by

step.

 Algorithmic deduction – applying a known and well defined solution for a problem.

 Exhaustive search – using a systematic search for all possible solutions.

 Analysis and synthesis – reducing a given problem to a known category and then

finding particular solutions (Wang & Chiew, 2010).

Arguably, some of these strategies could be considered critical thinking and vice versa.

The same could also be said about computational thinking. For example, hill climbing can be

related to being incremental, analogy to abstraction, algorithmic deduction to algorithmic

thinking, etc. It is important to note, however, that these comparisons can be true only within a

finite set of defined problems. Abstraction, for example, will typically only be used in one or

two layers in most disciplines and cognitive processes. However, CT typically emphasizes

many layers of abstraction, as well as the relationship between them. For example, the OSI

model used by all internet-connected technologies involves seven distinct layers of abstraction.

The real essence of CT is that it is about the idea and way of thinking, not the application,

product, or artifact. Voskoglou and Buckley describe CT as a hybrid mode of thinking,

leveraging logical, abstract, and constructive thinking. By synthesizing critical thinking and

15

existing knowledge, these modes of thinking are essential in solving real-life, complex

problems (Voskoglou & Buckley, 2012). Thus, PS can be described as an activity that

combines various components of cognition (Voskoglou & Buckley, 2012; Green & Gilhooly,

2005). CT, as well as critical thinking, can be seen as a prerequisite to overcoming problems

in certain problem spaces. Concluding, CT is treated as a distinctive cognitive process used to

overcome types of problems in conjunction with existing knowledge and critical thinking

skills.

 Computational Thinking Assessments

Clearly and definitively defining computational thinking within existing methods and

domains (as with problem solving) remains to be an open problem. As such, there is no clear

pathway to measuring computational thinking. Several approaches, however, exist, ranging in

theme and methodology. Many focus using evidence-centered design (Snow, Haertel,

Fulkerson, Feng, & Nichols, 2010) when creating assessments, while others study the

psychological state of students using cognitive science and self-efficacy (Ramalingam,

LaBelle, & Wiedenbeck, 2004). Developed curricula vary for assessments, but video games

seem to be a very common theme as it provides a high level of interest for students, especially

in K-12. For example, Wilson evaluated an eight-week course on game programming in

Scratch for primary grades in Scotland (Wilson, Hainey, & Connolly, 2012). Games were

encoded under three main categories: programming concepts, code organization, and

designing for usability. Each of these contained sub categories which were coded for the

presence/absence of or to the extent of which that sub category was used ranging from zero to

three. Another study looked at a semester long gaming course using Alice by analyzing the

presence of abstraction, control structures, and events. Denner et al. also looked for presence

16

of computer science concepts in an after-school program for game programming in Stagecast

Creator, a rule-based visual programming language (Denner, Werner, & Ortiz, 2012).

Repenning et al. measured student’s learning of CT as patterns rather than concepts using

Agent Sheets (Koh, Basawapatna, Bennett, & Reppening, 2010). This led to an automatic

analysis tool using latent semantics to determine student growth in CT. Recently, the same

group created a system entitled Real-Time Evaluation and Assessment of Computational

Thinking (REACT), a real-time assessment tool allowing teachers to get immediate feedback

on what students are struggling with or where they are succeeding (Basawapatna, Repenning,

& Koh, 2015). Seiter developed the Progression of Early Computational Thinking model

(PECT) (Seiter & Foreman, 2013). The PECT model combined evidence of programming

concepts in Scratch projects with levels of proficiency (basic, developing, and proficient) in a

set of design patterns to understand student ability in CT. Other works focused on assessing

concepts through rubrics (Franklin, et al., 2013) and creating and validating traditional

computer science assessments within the visual programming domain (Buffum, et al., 2015).

Apart from evidence-centered assessments, Yadav et al. created an open-ended

questionnaire, as well as an attitude survey to understand if introducing computational thinking

material in pre-service education courses influenced pre-service teachers’ understanding of CT

and attitudes toward computing (Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). Bean et

al. developed a two-part self-efficacy survey for a pre-service teacher training program (Bean,

Weese, Feldhausen, & Bell, 2015). The first measured the pre-service teachers’ confidence

that they are capable of incorporating computer programming into their classroom, as well as

recognizing how programming concepts relate to NGSS and CCSS. The second survey delved

into their self-efficacy in their understanding of CT concepts in relation to programming. In

17

another related project, Bell conducted a CT intervention as part of an art-based program

component of a summer STEM institute; his experimental approach served as a basis for this

work (Bell, 2014).

Chapter 3 - Outreach

Outreach programs vary in theme, as well as target audiences, ranging from primary

and secondary education to in-service and preservice teachers. These programs are essential

for both student and professional development, exposing them to topics and training they

otherwise would not have access to. This chapter outlines effective teaching methods and

curricula in STEM, targeting computational thinking. Some, such as Brennan and Resnick,

present CT as referenced in their problem domain (Scratch), while others, such as the

Computer Science Teachers Association (CSTA) and the College Board for AP CS, present

CT concepts for application across K-12 curricula (Seehorn, et al., 2011; College Board, 2016;

Seehorn, et al., 2016). These definitions of CT that are described in detail in Chapter 2 serve

as the foundations for the curricula and instruments presented in this chapter. Effects of a

STEM institute for 5th-9th grade students are presented, as well as the adaptation for the next

iteration of that institute. Outreach efforts with the Girl Scouts of America and a STEM

program called Starbase are also discussed.

 Visual Based Programming

Visual based programming tools have become largely popular due to their ease of use

for beginner programmers in not only K-12, but also higher education. These block-based

programming languages have made their way into many Science, Technology, Engineering,

and Math (STEM) outreach programs to train both students and educators. Code.org

(Code.org, 2015) has been a major leader advocating for CS in the K-12 classroom by

18

providing materials for educators, as well as providing interactive tutorials on programming

using Blockly (Fraser, 2015). Most recently, Code.org released two new programming

tutorials themed around the popular game, Minecraft, and up and coming release of Star Wars

VII. These were in preparation for the Hour of Code, an event encouraging children and adults

alike to program for one hour during computer science education week. Touch Develop,

Agent Cubes, codeSpark, Lightbot, Tynker, and Scratch are popular visual programming

platforms that also developed Hour of Code exercises for kids as young as four years old.

The Hour of Code has been the largest computer science outreach effort with nearly

200,000 events around the world and over 240 million participants since its inception. CS

outreach programs have a large range of focus. Scalable Game Design (SGD), for example,

developed CT tools using AgentSheets and AgentCubes which enabled middle school students

to develop video games (Repenning, et al., 2015). The tools increased student understanding

of CT concepts, which then allowed them to apply their new skills on scientific simulations,

not just video games. While still using block-based programming tools, another outreach

program, GK12 INSIGHT, worked with K-12 teachers and graduate students to incorporate

embedded systems and sensor technology with emphasis on CT in K-12 curriculum (Neilsen,

Shaffer, & Johnson, 2015). Other researchers have focused on creating various outreach

programs, such as Computer Science for High School (CS4HS), that emphasize training

teachers in computer science (Blum & Cortina, 2007). Another CS4HS workshop focused on

the measurement of the ability of teachers to incorporate CT concepts into lesson plans (Bort

& Brylow, 2013). While Bort & Brylow developed a rubric for general CT concepts (i.e.

abstraction, algorithms, etc.), they did not measure the teacher’s own understanding of CT.

Bean et al. created a workshop targeting pre-service teachers (Bean, Weese, Feldhausen, &

19

Bell, 2015). During this workshop, pre-service teachers went through Scratch exercises to

learn not only CT concepts, but how to incorporate CT into their future classrooms. Similarly,

Bell created a Scratch curriculum for Music in a STEM outreach program for 5th-9th grade

students (Bell, 2014). Pre-service teachers also participated in this program by observing and

assisting in the Scratch activities (Bell, 2014).

 Methods

While the interventions vary in theme, both center on the same learning and

scaffolding theory. One of the major challenges of teaching CT concepts through computer

programming in both K-12 and higher education environments is that students quickly become

overwhelmed with learning a new language. By starting with text-based languages, beginning

programmers spend more time struggling with the syntactic structure of programming

languages instead of learning the core concepts like algorithms, abstraction, and data analysis.

By using Scratch, a block-based language, students can learn the language quickly. This

provides more focus on teaching CT concepts, rather than giving drawn out instructions on

how to use the programming language. This is especially important because, like most

outreach programs and school districts, time to work with students about CT and CS is

extremely limited.

Using a block-based programming language effectively reduces the students’ cognitive

load. Cognitive Load Theory (CLT) (Plass, Moreno, & Brunken, 2010) supports the

hypothesis that an individual’s ability to learn is compromised when the intake of a learning

task exceeds their working memory capacity. Morrison et al. developed sub goal labels in

worked examples which reduced cognitive load in text-based programming (Morrison,

Margulieux, & Guzdial, 2015). Aa similar approach is used by using seed Scratch programs

20

for the intervention activities. The seed programs are partially completed. This skeleton

outlines the structure of the program and complete low learning potential portions of the

program (for example, have sprites, costumes, and backgrounds already created), which

focuses on any new CT skills or computer science principles in a limited timeframe while

reducing cognitive load.

The cognitive load continues to be reduced, specifically extraneous load (Morrison,

Margulieux, & Guzdial, 2015), by putting scaffolding in place for each activity or project in

the interventions. Scaffolding is a support structure put in place for learners to accomplish

tasks that they could otherwise not complete (Bliss & Askew, 1996). The approach of

instructional scaffolding, which correlates to programming tutorials, is used. However, as

Repenning notes, direct instruction can limit student motivation, especially in females

(Repenning, et al., 2015). Problem-based Learning (PBL) (Savery, 2009), alongside Inquiry-

based Learning (IL) to keep students motivated, are used. PBL is a ‘learner-centered approach

that empowers learners to conduct research, integrate theory and practice, and apply

knowledge and skills to develop a viable solution to a defined problem.” (Savery, 2009). IL is

like the PBL approach, but in IL, the facilitator acts as a provider of information. In PBL, this

is left to the student. Kirschner argues that PBL and IL do not provide enough guidance for

students to learn based on human cognition (Kirschner, Sweller, & Clark, 2006); Hmelo-Silver

refutes this statement by providing evidence that PBL and IL have enough scaffolding to be

effective learning practices (Hmelo-Silver, Duncan, & Chinn, 2007). The coding activities in

day 1 use mostly direct instruction scaffolding (step-by-step instruction of what blocks to use),

but as the class progresses into later projects, guided discovery or inquiry-based learning is

used, which has been shown to increase student abilities in scientific literacy (Wu & Hsieh,

21

2006; Gormally, Brickman, Hallar, & Armstrong, 2009) as well as students’ motivation to

learn (Repenning, et al., 2015). As the intervention progresses, PBL is also utilized. This

allows the researchers to let students who are progressing quickly in activities to work ahead

or on their own while assisting others who are struggling. By asking the students questions

about the task, often relating it to real world or previous classroom experiences, they will often

discover how to use the blocks available to them in Scratch to solve the task. Throughout the

intervention, scaffolding is removed until the last day where students are tasked with their final

project.

The goal of the methodology is to maximize the increase in student self-efficacy. Self-

efficacy can be defined as “an individual’s belief that they can accomplish a particular task”

(Bean, Weese, Feldhausen, & Bell, 2015). Measuring self-efficacy relative to CS and even

more so in CT is required, because there does not yet exist any widely-adopted standardized

assessments which measure student progress (apart from AP CS). Bandura notes that self-

efficacy can by improved through enactive attainment, vicarious experiences, verbal

persuasion, and psychological state (Bandura, 1982). PBL enables the students to achieve

tasks on their own without direct instruction. This relates to enactive attainment (individual

mastery of skills), although the problems are structured carefully so that they are not too easy

(students will get bored) or too difficult (increased anxiety). This is also referred to as the

zones of proximal flow and development (Repenning, et al., 2015). Verbal persuasion occurs

in the intervention through IL. Though IL is indirectly guiding the student (asking the right

questions), students are convinced that they can solve the tasks at hand, whether it’s difficulty

with a CT concept or a technical problem with placing the correct blocks in Scratch. Vicarious

experiences are achieved through group activity. During activities, students are encouraged to

22

talk to their neighbors about how they solved the programming tasks, and in others, students

are partnered up for group projects. Finally, a stable psychological state is achieved through

the scaffolding and use of a block-based language to reduce the cognitive load. By designing

the interventions around Bandura’s methods of improving self-efficacy, powerful and

achievable learning experiences are crafted.

 Summer STEM Institute 2015

This section, published in part by (Weese, Feldhausen, & Bean, The Impact of STEM

Experiences on Student Self-Efficacy in Computational Thinking, 2016) describes a summer

STEM institute where the Manhattan-Ogden Unified School District 383 has partnered with

the Department of Education at Kansas State University. This program lasts four weeks and is

designed to expose STEM careers and subjects to 5th-9th grade students through hands-on

activities. The program covers a large range of areas, including robotics, computer

programming, agriculture, food science, unmanned aerial vehicles, clean energy, and

construction science. Educators, who are experts in the subject matter, are paired with small

groups (2-4) of pre-service teachers to run each class (maximum size of 18). This allows pre-

service teachers to get practical, hands-on experience, as well as to learn new STEM activities

to include in their own future classrooms. This also gives an excellent teacher to student ratio,

providing a one-on-one learning experience for program participants.

This chapter will cover new interventions with similar pedagogy implemented for the

institute which focuses on video game design and robotic agents. Each intervention used the

visual programing language Scratch (Resnick, et al., 2009) as a tool to seed CT and CS

concepts in both institute participants and pre-service teachers. A self-efficacy instrument

used to measure STEM experiences, 21st century learning skills, and CT is described. The

23

importance of this research is to discover whether past STEM activities and experiences will

transfer to student self-efficacy in CT or not, as well as develop a method for delivering and

measuring CT skills in the K-12 environment.

 Mission to Mars

Students in the lower grade levels (5th, 6th, and 7th grade) attended a program called

Mission to Mars. The goal of this intervention design was to introduce students to CT through

many different activities revolving around tasks that must be completed to send an

autonomous rover to Mars. Each session of the program consisted of four days of activities

(each day being 3 hours long).

The first day consisted primarily of an introduction to the Scratch visual programming

language. The students were led through many short activities to familiarize themselves with

the language, culminating in a challenge to draw regular polygons (Bean, Weese, Feldhausen,

& Bell, 2015) using methods very similar to the turtle graphics features of the classic Logo

programming language. As the students slowly built shapes with more sides, concepts such as

iteration, variables, user input, and mathematical operators were introduced, leading to a

generalized program that could draw any regular polygon. This program also demonstrated a

fundamental theory of calculus.

The second day focused on using computers to simulate real-world ideas. The students

began by playing with human-powered compressed air rockets (Stomp Rockets). While doing

so, they plotted the distance each rocket traveled and discussed reasons for the wide variance

of results. This led to a discussion of the scientific method, independent and dependent

variables, and how to design an accurate experiment. Afterwards, students were led through an

activity to simulate a rocket’s trajectory in Scratch, using the launch angle as the independent

24

variable. With that knowledge, students were introduced to high-performance computing as a

way to solve even bigger problems, such as the trajectory of a real rocket, and were given a

guided tour of a nearby supercomputer. Students then learned how to create a simple acceptor

finite state machine that accepts a secret key though a series of clicks.

The third day introduced the concept of artificial intelligence (AI). First, students were

led through a project to recreate three of the four enemy AI ghosts from the classic Pac Man

arcade game. In doing so, they were introduced to a two-step artificial agent pattern of

perceiving the environment and acting based on that perception. Following that, students were

assigned an activity to explain how more complex AI, such as neural networks, can be trained.

After completing that activity, the students were introduced to the final project: building an AI

for an autonomous Mars rover. The concept was first shown to them as a game, where they

were challenged to get the highest score possible. This required planning ahead to find the

best path and learning how the rover operates. These activities drew on many areas of CT,

including modeling and simulation, abstraction, and data representation.

On the fourth day, the rover was re-introduced as a game, but this time the rover could

only see the squares immediately adjacent to it. This required students to “sense” their

surroundings and act based on limited information, just as the rover would. This helped

reinforce the “perceive” phase of an artificial agent and forced the students to adjust their

thought process to match that of an algorithm. Finally, the students were given a rover project

that allowed them to build an AI following the perceive-and-act model previously used. They

worked independently but with some guidance on how to build the best rover AI possible, and

compared their results with other students.

25

 Game Design

The second intervention was for the 8th and 9th grade students. This intervention

focused on video game design within Scratch. While game design contains a significant

amount of established theory, the focus was only on a small subset of common principles of

game design inspired by 100 Principles of Game Design (Despain, 2013) and a popular

YouTube series (snomaN, 2015). While the delivery focus of this intervention was game

design principles, the development of different games in Scratch was used to teach CT

concepts. Like Mission to Mars, this program consisted of four days of activities.

Day one began with an introduction to game design principles. These consisted of

seven principles: (1) Principle of isolation: introducing new elements in a way that allows

players to familiarize with new enemies or mechanics before they are set in a real situation. (2)

Principle of accomplishment: gives players a sense of motivation and direction either through

story progression or the mastering of skills. (3) Teach without teaching principle: help players

learn by doing instead of relying on step-by-step tutorials. (4) Growing stronger principle: a

game storyline can often be rewarding alone; however, progression can be improved by letting

the player grow stronger and accomplish tasks that they could not earlier in the game. (5)

Silent storytelling principle: allow the player to experience the story for themselves instead of

having it spelled out. (6) Hidden reward principle: give the player extras (bonus levels,

collectables, etc.) to add an extra feeling of accomplishment beyond the original

gameplay/story. (7) Balance principle: gameplay must have a good balance between boredom

and anxiety to keep the player interested and coming back. These principals were chosen due

to their relation to educational theory and how the scaffolding is constructed. Examples of

these principles were discussed in popular video games. Students were also asked to give

26

examples of the principles from games that they play at home. This discussion was followed

by an introduction to scratch using shapes as mentioned in day one of the Mission to Mars

intervention. Students were then asked to split off into pairs or groups of three to brainstorm

their own game for as a final project of the course.

The second day focused on introducing basic AI concepts, an important aspect of video

games. Students were asked to think about what it means to be intelligent. Most responses

tended to be things like “smart.” After describing intelligence as reasoning, problem solving,

ability to construct knowledge, planning, learning, and perception (of which all relate back to

the core concepts of CT), students were presented with the Turing test and how computers

could be considered “intelligent.” The importance of AI in video games is emphasized, and

then, the first game tutorial called Cat and Mouse was started. This is a partially completed

game where students are walked through implementing a basic AI for a cat that chases a

mouse, the player, which tries to eat pieces of cheese. After they had a working game,

students were presented a problem to improve the AI to exhibit more complex behavior. As a

follow up, students were worked with to complete the starter AI for the game Strikers 1945.

The day ended with time for students to complete storyboards for their final project.

The theme of day three was dungeon crawlers, a classic game style. To demonstrate

this, students were given a starter project for One Tap Quest, a simple, yet popular dungeon

crawler/RPG. This game was used to illustrate all the game design principles taught since the

first day. One Tap Quest requires only a single click from the player and their hero starts off

on a quest through a randomized set of enemies to slay for experience and power-ups to collect

before reaching the boss. Researchers walked students through setting up randomization of

the first level of monsters. They were then tasked with adding another level of monsters, as

27

well as a power-up. The rest of the day was left for students to work in their group on their

final project. Before students left for the day, a discussion was led on career options in the

video game industry.

The final day was reserved time for groups to work on their projects while researchers

walked around to assist. At the end of the day, groups got up in front of the class to

demonstrate their games and describe what game design principles they used. Groups could

use any of the seed projects used any of the previous days, as long as they added additional

content or mechanics. Some groups did use the seed projects, but most designed their own

game and used what they learned from programming the seed projects as the basis for their

mechanics. To encourage the students to continue to collaborate, all projects from each week

were added to a Scratch studio.

 Instrument Design

A hybrid instrument was developed, combining the questions 6-17 from the Self-

Efficacy for Computational Thinking (SECT) survey (with the addition of a question about

Boolean operations) (Bean, Weese, Feldhausen, & Bell, 2015) with questions extracted from

the math (27, 28, 31,and a new question: “I can apply math concepts to other subjects”),

science (35-37, 40, 42), engineering and technology (44 – changed products to things, 45, 50-

52), and 21st century skills (38, 44, 46, 48, and a new question “I am confident I can manage

my time wisely when working in a group”) sections in a survey built for measuring attitudes

towards STEM (Faber, Unfried, Corn, & Townsend, 2012). The new questions were added for

better coverage of the interventions. Additional questions were asked about the student’s

previous experience in STEM activities (if they attended this institute before or any other

STEM-related outreach activities), as well as whether they had previous experience

28

programming in the Hour of Code, Scratch, Blockly, TouchDevelop, text-based languages, or

any other computer language. A teacher survey was also created in a similar fashion by

extending the Teacher Self-Efficacy for Computational Thinking (TSECT) survey from (Bean,

Weese, Feldhausen, & Bell, 2015) to include teachers’ background in STEM activities, interest

in teaching STEM, and experiences with programming languages. The full surveys can be

found in the appendix STEM Institute 2015 Survey.

 Mission to Mars Game Design Total

Grade
Level

5th 6th 7th Total 8th 9th Total

Week 1 0 8 5 13 8 2 10 23

Week 2 3 7 3 13 6 3 9 22

Week 3 1 9 6 16 6 5 11 27

Week 4 0 5 3 8 5 6 11 19

Total 4 29 17 50 25 16 41 91

Table 1: Number of students (after survey exclusion) in each intervention

Pre-surveys were administered online at the beginning of each week-long session. The

post-survey (excluding initial background questions) was given on the last day of each session

(day four) after ending discussions. While both the student survey and the teacher survey were

optional, the student survey was administered during each session, and the teacher survey was

only emailed each session. Out of 94 surveys sent to all educators and pre-service teachers

involved with the institute, only 33 responded to the pre-survey and fewer than 10 responded

each week for the post-survey. For this reason, results for the teacher survey are excluded

from analysis. Student response rate (after exclusions) can be seen broken down in Table 1.

Out of 101 student respondents, 7 were excluded for not taking the post-survey (absent those

days), one was excluded for not taking the pre-survey (absent), and two were excluded for

29

incomplete surveys (the missing data in these responses were classified as MCAR). The

reliability of the instrument was confirmed with a Chronbach’s Alpha of .908.

 Findings

Part of the instrument was to gather background information in STEM, including

programming experience as seen in Table 2. Surprisingly, over 30% of students had been

exposed to a text-based programming language. Over 59% of students had experienced some

sort of block-based programming language, and half had participated in the Hour of Code.

Less than half of those who participated in the Hour of Code (which is written using the

Blockly language) knew that they were using Blockly. From students who had previously

attended some sort of STEM program before the institute, 70% of them had used Scratch.

This shows that most outreach programs in this geographic area highly favor the Scratch

language. With more than 80% of students having used some programming language, it shows

that all students are being exposed as much to computer programming at home or school as

those who participated in outreach programs. However, the low level of exposure is reflected

in the self-efficacy in CT concepts. Students who had previously attended outreach programs

improved more in CT concepts such as algorithms, procedures, parallelization, data collection,

and data representation, as shown in Table 3(this includes students who attended this institute

before as well as those who attended other outreach programs). This hints that even though

both samples of students had about the same amount of experiences using programming

languages, STEM outreach programs have better success in seeding CT skills in students,

compared to exposures in school or at home.

Any
Language

Hour of
Code

Scratch Blockly TouchDevelop
Text-
based

Other

30

No Previous
Attendance in
STEM
Programs (37
students)

83.78% 51.35% 56.76% 18.92% 16.22% 35.14% 35.14%

Previous
Attendance in
STEM
Programs (54
students)

81.48% 51.85% 70.37% 20.37% 18.52% 35.19% 31.48%

Overall –
Mission to
Mars

84.00% 52.00% 58.00% 18.00% 16.00% 32.00% 34.00%

Overall –
Game Design

80.49% 51.22% 60.98% 21.95% 19.51% 39.02% 31.71%

Table 2 Programming experience before the interventions

Abbreviated Question
No Previous
Attendance in
STEM Programs

Previous
Attendance in
STEM Programs

Overall

Mission
to
Mars

Game
Design

21st Century Learning—Math

Math is my worst subject -.132 0 -.117 .024

Consider a career that uses
math

.264 .127 .156 .215

Perform well in other
subjects, but not math

-.193 .050 -.125 .044

Apply math to other
subjects

.058 .020 .129 -.079

Consider a career in math .138 .151 .143 .149

21st Century Learning—Engineering

Like to imagine creating
new things

.036 .098 -.106 .291

If I learn engineering, I can
improve things people use
everyday

.191 .196 .165 .230

31

Would like to use creativity
and innovation in my
future work

.087 .199 .064 .262

Math and science together
will help me invent useful
things

.251 .064 .255 0

I can be successful in a
career in engineering or
technology

.113 -.039 -.021 .077

21st Century Learning—Leadership

Lead others to accomplish
goals

.501 -.023 .198 .181

Work well with others who
have different
backgrounds and opinions

-.033 .135 .097 .030

Make changes when things
don’t go as planned

.036 .098 .132 0

Manage my time wisely
when working on my own

.027 .074 .060 .048

Manage my time wisely
when working in a group

.088 .141 .153 .0798

Computational Thinking

Executes a sequence of
commands

.352 .632 .496 .546

Uses loops to repeat
commands

.641 .785 .683 .779

Responds to events .259 .539 .584 .231

Parallelism .482 .656 .556 .621

Conditional commands .498 .508 .582 .408

Perform math operations .265 .387 .481 .162

Perform Boolean
operations

.606 .626 .626 .608

Store, update, and retrieve
values

.405 .550 .429 .568

Ask user for input .292 .694 .537 .522

32

Iterative development .331 .417 .322 .456

Frequent tests/debugging .519 .481 .533 .452

Share and collaborate with
programs

.337 .573 .445 .517

Break program into parts .537 .412 .448 .482

Table 3 Comparison of effect sizes for the 21st century learning and CT focused

questions

One could say as well that because the students who attended STEM programs

previously had more exposure to Scratch (70.37% vs. 56.76%), they could move more quickly

through the activities and focus more on learning CT concepts rather than the language itself.

Students who had not attended STEM programs previously showed higher pre-survey self-

efficacy than those who had. It is hypothesized that since they may not have been exposed to

CT as much, this led to overconfidence, which is reflected in the amount of improvement

when looking at post-surveys. This shows evidence of the Dunning-Kruger Effect (Kruger &

Dunning, 1999). By comparison with the overall program, the two interventions were less

distinguishable, though students in Mission to Mars had a strong improvement in self-efficacy

in writing programs that respond to events and for being able to perform math operations in

their programs. However, it was found that the mean pre-survey self-efficacy for Mission to

Mars in these questions was much lower than that of the Game Design intervention, although

the mean post-survey responses were nearly equivalent. This verifies that even though the

topic of interest in each intervention is different (as well as the age groups), the end results for

both are comparable.

When looking at 21st century learning skills, improvements were less noticeable as

most of the students came in with high confidence in these areas. For example, over 80% of

students came into the sessions highly confident in math, which led to little improvement.

However, students who had previously not attended STEM outreach programs showed

33

stronger improvement for their value of math and science in inventing new things. Leadership

also showed a strong improvement in these students, which reveals that the STEM outreach

programs are doing well in improving student confidence in leading others to accomplish

goals. Only weak improvements are present when comparing the two interventions, though

Game Design had slightly stronger results in imagination and creativity. This is because the

Game Design intervention offered more room for students to create and implement their own

ideas in their final project video game.

 Conclusions

Though both interventions differed in topics (video games vs. Mars rovers), they

showed similarly strong improvements in student self-efficacy in CT concepts. This pedagogy

shows that it has a positive impact how CT concepts are delivered through CS and computer

programming at the K-12 level. Likewise, by expanding the survey done by Bell, more insight

into specific CT concepts learned by students in a similar environment was gained (Bell,

2014). Furthermore, some lasting impacts that STEM outreach programs have on students

who continue to stay active in science, technology, engineering, and math activities were

revealed. These students who have participated in the outreach programs show greater

capacity in improving their CT skills over those who have not. This important finding cannot

be explained completely with the data collected, though conjectures were made, and warrants

further investigation through revised instruments or longitudinal studies. Background survey

questions also revealed that the STEM outreach in the areas (apart from this summer institute)

does not have large participation by upper middle school and high school students (19 students

in 5th-7th grade vs 4 students in 8th-9th).

34

 Summer STEM Institute 2016

This section describes a continuation of the STEM program described in Summer

STEM Institute 2015 and is published in part by (Weese & Feldhausen, 2017). The focus is on

measuring the impact of two interventions on the program participants. Each intervention

employed similar pedagogy and the Scratch (Resnick, et al., 2009) programming language;

however, one relied heavily on computer science theory and Mars as a theme, while the other

used micro controllers as the basis for the activities. The goals of this research continue from

the 2015 STEM Institute and are as follows: 1. Develop effective curricula for improving

student self-efficacy in CT, 2. Develop a reliable and effective way of measuring student self-

efficacy in CT, and 3. Enforce the notion that CT is not PS, but a component of cognition.

Methods

Teaching programming can be a difficult task when involving students who have no

background in foundational computer science skills. The curriculum emphasizes reducing

cognitive load through scaffolded examples and the Scratch programming environment which

eliminates complex syntax and programming errors. Problem-based learning and inquiry

learning was utilized as described in Summer STEM Institute 2015, effectively improving

student self-efficacy through vicarious experiences, verbal persuasion, enactive attainment,

and psychological state (reducing cognitive load) (Bandura, 1982). From these methods, two

different curricula were created as part of the summer STEM outreach program. The Saving

the Martian (Mars) class was an intervention focused on 5th and 6th grade students and

introduced CT using the Scratch programming environment. Many of the activities were

modeled on situations or ideas taken from The Martian, by Andy Weir, to make them more

interesting and exciting for the students. The Mighty Micro Controllers (MMC) class was an

35

intervention for 7th-9th graders focused on teaching CT through programming Arduino Uno

micro controllers using Scratch, as well as a small exposure to the Arduino IDE and text-based

language. Overall, the format of this class included guided examples on how to create certain

circuits and programs, followed by problem driven exploration to help enforce programming,

electrical, and CT skills. MMC heavily utilized pair programming. Each class consisted of

four days of activities lasting three hours each.

 Saving the Martian

Students were first to the Scratch environment and some basic ideas involved in

programming. The main activity was to build a computer program that could draw an n-gon

(regular polygon with n sides). At first, students were shown a sample program that drew three

lines and were asked to modify it to create a triangle. From there, they further modified the

program to draw a pentagon by adding more lines and adjusting the angles. As the number of

sides grew larger, students were introduced to iteration as a way to reduce the amount of code

in the program. In addition, mathematical concepts such as the geometric formula to calculate

exterior angles of a polygon were used to determine the angles between each line. Finally, the

students modified the program to accept user input, and were encouraged to try and draw

shapes with many sides. As students determined that the shape would appear to be a circle,

they were introduced to other concepts such as the fact that a smooth shape such as circle can

be approximated by an n-gon with a sufficiently large number of sides, which is how most

computer games represent such objects.

For the second day, students were introduced to sorting algorithms. First, the students

participated in a sorting network activity where they followed lines on the floor that

intersected. At each intersection, students would change their direction based on some factor,

36

with all students having a higher value going one direction and all students with a lower value

going the other. Afterwards, students were given some hands-on experience by learning how

to sort decks of playing cards into sorted order using several common algorithms such as

insertion sort and bubble sort. While doing so, students recorded the number of steps needed to

perform the algorithm, and their results were shared on the board. Students were then asked to

use that data to determine which algorithm might be faster than the other, and then were

introduced to a simple form of algorithm analysis which showed that both algorithms

performed similarly. Students were shown the merge sort algorithm, and given information

about why it takes fewer steps than the other two. As part of the discussion around bubble sort,

students were also introduced to the concept of "swapping" two variables in computer

programming by using a third temporary variable. After discussing the algorithms, students

were lead through the first activity of the day to write a computer program in Scratch to

perform the bubble sort algorithm. This built upon their knowledge of iteration from the

previous day while adding in a conditional statement as well. For the second activity, students

were given a situation from The Martian where the main character must determine how to

grow enough food on the surface of Mars with limited resources. In the book, he creates water

by a chemical reaction involving hydrazine (rocket fuel) and oxygen. For the activity, students

were shown how to create a simple simulation program in Scratch to demonstrate how the

chemical reaction would alter the presence of different materials in the atmosphere of the Mars

habitat. The simulation had several pre-built parts that would help visualize the results. Once

the simulation was started, plants would slowly grow, but if the presence of certain materials

became too high, the simulation would stop due to a failure. Students were encouraged to

37

adjust the variables of the simulation to see if they could find a way to grow plants fast enough

to sustain life.

On the third day, students were introduced to the concept of a binary number system.

The activity started with students using small cards to represent different place values in the

binary number system, and they slowly learned how to convert numbers from decimal to

binary and back. The students were also briefly introduced to the way addition in binary works

similarly to addition in a decimal system. Once the students were comfortable with binary,

they were also introduced to the hexadecimal representation of simple binary numbers, as well

as how more complex data such as text or images can be expressed in binary. For the activity,

students were shown the scenario from The Martian where the main character must

communicate with others using only a camera that rotates. He does so by placing sixteen signs

around the camera representing hexadecimal values, and recording the signs that the camera

points to and converting each pair of values to its equivalent ASCII value. Students were given

a similar situation in Scratch, and were lead through the process of translating the data to

ASCII. This involved calculating the angle of the camera, converting it from a degree value to

a hexadecimal value, and then converting a sequential pair of values into an ASCII character.

The activity itself mainly focused on using nested conditional statements as a decision tree to

determine the ASCII character. As an added learning experience, the original version of the

program contained an intentional typo in the message received, leading to ambiguity in the

message. Students were encouraged to describe ways the system could be improved to

minimize or eliminate ambiguous messages.

On the last day, students were introduced to several concepts in artificial intelligence.

The students discussed the Turing Test and how it works, and then participated in an activity

38

that simulates how a neural network learns using training data. Afterwards, students were lead

through an activity to create simple AI agents for an arcade video game following a simple

perceptron model that required decision making using conditional statements based on the

sensed inputs. The final activity built upon that structure by using a situation from The

Martian, where the main character must plot a course around several terrain obstacles while

driving across the surface of Mars. The students were given a program that randomly

generated simple obstacles on a terrain, and upon reaching an obstacle, students had to use a

simple perceptron model to determine how to get around the obstacles while still moving

toward the goal.

 Mighty Micro Controllers

Students were first introduced to the basic principles of electricity. Most had their first

exposure to what electricity really is, as well as the concepts of conductivity and insulation.

By using an example of marbles in a tube (Kuphaldt, 2014), students could visualize and

understand the flow of electricity. Once this basic principle was established, circuits were

introduced. For this intervention, students were introduced to resistance, voltage, and current

(Ohm’s Law), as well as digital, analog, and pulse width modulation (PWM) signals. After

this introduction to electronic circuits, students learned how to make their first basic circuit

using a solderless breadboard, the Arduino Uno, and Scratch. This was the blinking LED

tutorial that most complete their first time using Arduino. Although, before wiring their

circuit, students were required to create a circuit diagram using Fritzing to visualize how the

circuit should be laid out (Knörig, Wettach, & Cohen, 2009). This introduced the idea of the

engineering design process. After everyone completed the blinking LED example, students

were introduced to an activity called “Resistance is Futile.” Students received five resistors

39

ranging in strength from 220 ohms to 1 million ohms. They were challenged to rank the

resistors in order of strength. By using the previous blinking LED circuit and program,

students could visualize the effects of resistors and how they impede the flow of electrons with

the dimming of the LED.

Then, the single blinking LED was expanded to introduce the idea of abstraction and

other high-level programming and CT skills. Students were challenged to change the single

LED circuit to include five LEDs of different colors. On their own, students needed to create

the circuit, as well as get each LED to blink in succession. This led to a discussion about

abstraction and problem decomposition. The programs created to achieve this task were

duplicated code from the original blinking LED program. The class was guided through the

process to recognize patterns in the program to reduce the number of blocks that were

repeated. This led to using Scratch custom blocks which imitate functions. Students were left

to identify which variables changed between each blink and which ones could be kept the

same. The next activity extended this program to include pushbuttons. Students were given a

circuit diagram and materials to wire a circuit with an LED and a pushbutton. This was a

guided activity focused on teaching analog signals, pull-down circuits, open/closed circuits,

and control flow.

On day three, activities for PWM signals that were introduced on the first day were

done, as well as time to plan for a final project where students could design, build, and

program their own circuits. The first activity of this day utilized RGB LEDs. First, students

wired the circuit from a given diagram. Before being able to program, students needed to

learn how to convert colors to traditional RGB format and how that was translated to the RGB

LED connected to the Arduino. Common anode LEDs were used as well, so the students

40

discovered that they needed to invert the color before sending it to the Arduino. Abstraction

and custom blocks were emphasized to make setting the different intensities of red, green, and

blue simple. Students were guided through this process until they could turn on the red, green,

and blue colors individually. Students were then given a large amount of discovery time to see

what kind of colors they could produce using this circuit. At the end of the activity, a

complete program that gradually changed through all the colors the LED could make was

demonstrated. A video of an RGB LED matrix was also used to inspire students with more

ideas for a final project. The day concluded with a guided activity using small motion sensors,

and the applications of how the sensor could be used in their everyday lives.

The last day featured a guided activity using ultrasonic sensors. This activity used the

Arduino IDE because Scratch was not able to accurately detect distance with the sensor. A

side-by-side comparison was used with Scratch and the Arduino IDE to demonstrate how the

text-based language translated into Scratch blocks. After this activity, students were given

time to complete their group projects. However, they had to produce a design document,

containing a circuit diagram and materials list, before they could start building or

programming. This helped emphasize the engineering design process, as students had to keep

revising their design when they discovered flaws in their original circuit. At the end of the

day, students presented their projects to the class.

 Instrument

To measure student learning, a self-efficacy survey to collect attitudes towards

students’ ability to think computationally was developed. The survey largely expands work

done in the 2016 Summer STEM Institute by adjusting question language to be more age

appropriate with the audience, as well as with the addition of questions assessing student self-

41

efficacy in problem solving (Weese, Feldhausen, & Bean, The Impact of STEM Experiences

on Student Self-Efficacy in Computational Thinking, 2016). These questions are framed to

correlate to appropriate computational thinking skills. As such, the survey is organized in four

main sections: problem solving, computer programming skills, computer programming

practices, and computer programming impact. Within each section, questions are categorized

by relevant CT concept, practice, or perspective as seen in Table 4. Each of these questions

measured self-efficacy on a five-value Likert scale: strongly agree, somewhat disagree, not

sure, somewhat agree and strongly agree. Apart from these questions, the survey also

contained questions collecting information about gender, participation in STEM

activities/camps, and background in computer programming.

When solving a problem I... I can write a computer program which...

1 create a list of steps to

solve it

Algorithms

10

runs a step-by-step

sequence of

commands

Algorithms

2 use math Algorithms

11

does math operations

like addition and

subtraction

Algorithms

3 try to simplify the

problem by ignoring

details that are not

needed (3)

Abstraction

12
uses loops to repeat

commands
Control Flow

4 look for patterns in the

problem

Abstraction

13

responds to events like

pressing a key on the

keyboard

Control Flow

5 break the problem into

smaller parts

Problem

Decomposit

ion

14

only runs commands

when a specific

condition is met

Control Flow

6 work with others to

solve different parts of

the problem at the

same time

Parallelizati

on
15

does more than one

thing at the same time
Parallelization

42

7 look how information

can be collected,

stored, and analyzed to

help solve the problem

Data

16

uses messages to talk

with different parts of

the program

Parallelization

8 create a solution

where steps can be

repeated (8)

Control

Flow 17
can store, update, and

retrieve values
Data

9 create a solution

where some steps are

done only in certain

situations (9)

Control

Flow
18 uses custom blocks Abstraction

When creating a computer program I... When creating a computer program I...

19

make improvements

one step at a time and

work new ideas in as I

have them

Being

Incremental

and Iterative

22

break my program into

multiple parts to carry

out different actions

Problem

Decomp.

20

run my program

frequently to make

sure it does what I

want and fix any

problems I find

Testing and

Debugging
Impact

21

share my programs

with others and look at

others' programs for

ideas

Reuse,

Remix,

Connecting

23 I understand how

computer

programming can be

used in my daily life.

Questioning

Table 4 The four core sections of the self-efficacy survey, denoting which CT skill each

question falls under.

The experiment was carried out in a pre-post survey format. Pre-surveys were

administered online on the first day of each week-long session before any class material was

given. The post-survey, which did not contain demographic or STEM participation questions,

was given on the last day of each session once all projects were finished. Survey participation

was voluntary. Out of 110 students between both interventions, one student was excluded for

opting out of the survey, one student was excluded for missing the pre-survey, and three

students were excluded for having incomplete responses. A Chronbach’s Alpha of .872 on the

pre-survey and .908 on the post-survey shows that the survey described in Table 4 is reliable.

43

% of

Students

Avg. Pre

Mean

Avg. Post

Mean

Avg. Std.

Dev.

Mars 53.33% 3.763 4.187 1.016

MMC 46.67% 3.619 3.884 1.056

Male 65.71% 3.71 4.083 1.048

Female 34.29% 3.661 3.978 1.032

No-STEM 29.52% 3.642 4.016 1.074

STEM 70.48% 3.718 4.058 1.026

OUTSIDE

STEM
35.24% 3.673 4.108 1.043

ANON 27.62% 3.671 4.165 0.988

STEM INST 35.24% 3.764 4.008 1.006

Table 5 The distribution of students included in the survey within each compared group

as well as average pre and post self-efficacy.

Cat Skill Mars MMC Male Female
NO-
STEM

STEM
OUT-
SIDE
STEM

STEM
INST

Star-
base

PS Algorithms 0.400 0.061 0.194 0.306 0.245 0.229 0.269 0.186 0.344

PS Abstraction 0.215 -0.082 0.101 0.036 0.056 0.089 0.058 0.117 0.153

PS
Control
Flow

0.434 0.230 0.299 0.427 0.279 0.371 0.558 0.173 0.645

PS Data 0.082 0.291 0.166 0.178 0.028 0.251 0.349 0.157 0.387

PS Parallel. 0.181 0.037 0.165 0.000 -0.086 0.192 0.203 0.181 0.135

PS
Prob.
Decomp.

0.254 0.154 0.270 0.059 0.090 0.268 0.367 0.173 0.310

CT Algorithms 0.828 0.370 0.667 0.448 0.723 0.538 0.702 0.373 0.878

CT Abstraction 0.501 0.625 0.513 0.639 0.362 0.653 0.545 0.769 0.692

CT
Control
Flow

0.480 0.353 0.361 0.574 0.444 0.408 0.583 0.232 0.682

CT Data 0.728 0.537 0.629 0.642 0.716 0.603 0.818 0.395 0.892

CT Parallel. 0.628 0.513 0.633 0.468 0.706 0.521 0.653 0.381 0.704

CT
Prob.
Decomp.

0.530 0.196 0.371 0.380 0.432 0.344 0.560 0.111 0.621

44

CT

Being
Incremental
and
Iterative

0.229 0.269 0.278 0.189 0.295 0.224 0.274 0.169 0.344

CT Questioning 0.631 0.083 0.478 0.203 0.429 0.339 0.540 0.141 0.752

CT

Reuse,
Remixing,
Connecting

0.248 0.198 0.305 0.054 0.248 0.211 0.024 0.412 0.132

CT
Testing and
Debugging

0.091 0.230 0.167 0.143 0.309 0.093 0.126 0.056 0.176

Table 6 The effect size for each survey question, broken into each comparison group.

Italicized indicates a p-value of ≤ .05, italicized, underlined indicates a p-value of ≤ .01,

and bolded indicates a p-value of ≤ .001.

 Findings

In the analysis of survey results, the 8 groups outlined in Table 5 were investigated:

Saving the Martian (Mars), Mighty Micro Controllers (MMC), male, female, no previous

participation in STEM activities/groups (No-STEM), previously attended this STEM program

(STEM INST), previously attended a different STEM program (Outside STEM), previously

attended Starbase (Star-base), and previously attended any STEM program (STEM). Average

over questions 1-23 pre- and post-means can also be observed in Table 5 Table 6 shows the

effect size (Sullivan & Feinn, 2012), calculated using pooled standard deviation, for each

question, broken down by group. Note that effect sizes of 0.2 are considered small, 0.5 are

medium, and 0.8 are large.

Overall, 70.42% of students had previously attended some STEM related group activity

or program, while nearly all students in the program had used a visual-based programming

language, mostly though Scratch, Hour of Code, and Lego robotics. These results show that in

the area, outreach efforts are beginning to spread through the local K-12 population. Due to

small sample sizes, the groups in Table 6 were not broken down into language background

45

(Scratch vs Lego robotics for example). Students who had never attended any type of STEM

program showed to perform just as well as those who had attended a STEM program, apart

from problem solving skills. The inverse applies when comparing the outside STEM group to

those who had previously attended this STEM program. It is hypothesized that this result is

partially due to a selection bias with this STEM camp and Starbase, which accounts for 78% of

the outside STEM group. Those who had participated in Starbase in the past showed

significantly higher effect sizes on most CT concepts. This could be explained by the

difference in the two programs. The summer camp focuses on getting students having fun in

STEM. While Starbase includes many fun, hands-on activities, it has a richer, deeper focus in

STEM learning outcomes. Also, the Starbase participants are from complete classes, whereas

this STEM camp contains participants who volunteered.

When comparing the two interventions, Saving the Martian had a larger positive effect

on student self-efficacy in all four question sub-areas. This is further confirmed when looking

at the average initial self-efficacy in Table 5, where MMC could not capitalize on its students’

higher potential to learn (lower initial self-efficacy compared to Mars). It is hypothesized that

this was caused by additional overhead from making and controlling circuits, even though the

activities were designed to reduce cognitive load. Breaking down the results to specific

concepts, the Mars curriculum emphasized algorithmic thinking through sorting algorithms,

using CS unplugged to explain sorting before implementing in Scratch. This is shown to be

highly effective compared MMC, which focused on using LEDs as a method to teach

algorithms. MMC focused creating and programming parts of each circuit one component at a

time. For example, to make a circuit with five LEDs, students first had to make a circuit with

only one. Surprisingly, MMC had no significant result for problem decomposition. It was

46

also surprising to see no effect on MMC students’ understanding on how programming can be

used in their daily lives. The MMC curriculum leveraged physical computing to provide

tangible results from programming lights and sensors that could be used at home in practical

applications; however, it was unsuccessful in the context.

Across all groups, the curriculum did not perform well for questions 19-21, when

compared to CT concepts. This shows that CT practices need to be balanced more alongside

the other CT skills. Problem solving skills also performed poorly overall, revealing little to no

effect in many areas. Skills like algorithms and control flow show some relation the effects in

CT skill questions; however, there is no discernable pattern. Results between male and female

were interesting, particularly with conditionals in control flow, though sample sizes were too

small to make conjectures.

 Conclusions

In this section, the application of two interventions applied to a 5th-9th grade STEM

outreach program was discussed. From reviewing the survey results, it was discovered that

using micro controllers as a tool for teaching CT was less effective than a pure computer

science related curriculum. Although MMC was effective at fostering improvement in CT

skills, the curriculum has room to improve when using physical computing. By adjusting the

language from the 2015 summer institute (Weese, Feldhausen, & Bean, The Impact of STEM

Experiences on Student Self-Efficacy in Computational Thinking, 2016) to be more age

appropriate, as well as a smaller Likert scale, a survey that was more consistent within student

responses and effective at measuring self-efficacy in CT was created. Finally, it is shown that

CT framed inside PS is largely decoupled from CT. This may be the starting indicators toward

supporting the goal to show that CT is not PS; however, due to the small sample sizes of the

47

experiment, future studies would be needed to fully confirm that goal. Due limitations of the

STEM program, the research was conducted as transparently as possible. Knowledge-based

assessments would likely provide more insight into the research questions; however, this

would make it feel like a normal classroom and not a summer camp. More so, self-efficacy

has been shown to be a good predictor of student learning outcomes (Lishinski, Yadav, Good,

& Enbody, 2016). Apart from knowledge-based assessments, static analysis on code produced

by students. Since many the activities were heavily scaffolded, most solutions that students

produced were identical leaving little information to be gained.

 Starbase

Starbase is a STEM outreach program open to 4th-6th grade students, primarily funded

by the Department of Defense. Since its inception in 1992, it has engaged thousands of

students in STEM topics. In a study by Wilder Research, long-term effects of the Minnesota

Starbase program showed that high school students who had participated in Starbase showed

high interest in technology and science, as well as engineering and math, when compared to a

control group (Mohr & Mueller, 2012). Moreover, students who had participated in Starbase

were more likely to graduate high school on time and enroll in college or interest in joining the

military. The authors note that while this was not statistically significant, it reveals a potential

longer term track the program may take. For the purposes of this research, only the Starbase

program in Manhattan, KS will be considered, though there are four other Starbase programs

in Kansas.

The Manhattan Starbase consists mainly of 5th grade students, though some 4th and 6th

graders participate in the program later in the academic year. Students who participate in a

week (spread throughout a month) of hands-on experiments. These cover the engineering

48

design process (EDP), Newton’s Laws of Motion, fluid mechanics, aerodynamics, basic

chemical reactions, nanotechnology, rocketry, computer aided drafting using Creo (CAD

program made for primary grades), robotics with Lego EV3, and many other experiments.

However, the Manhattan Starbase have a unique partnership with Kansas State University’s

Department of Computer Science. This partnership gives participants an opportunity to learn

Scratch programming. This activity focuses on algorithmic design and parallel computing by

having students translate the song “Ode to Joy” by Beethoven to Scratch (Bean, Weese,

Feldhausen, & Bell, 2015). Students are shown how to program the first couple notes in

Scratch, then they are tasked with translating as much of the song as they can with their

partner (pair programming). Students are given scales with note letters if they are unfamiliar

with reading music and are asked to swap roles with their partner during the activity (one

programs while the other translates). They are also split into groups and get guided tours of

Beocat, the supercomputing cluster at KSU. At the end of the activity, students are asked

“Are you computer programmers?” Many are hesitant to raise their hands, but with some

encouragement, they usually all say yes. The motivation behind this question is to help

students connect computer programming to more than just lines of code. Whether they are

making their robot move (they also program in their EV3 challenges) or telling their computer

how to play Ode to Joy, they are still programmers. This helps students connect computing to

the technology people use in their daily lives and realize the endless applications of

computing.

Findings

Starbase is assessed in a pre- and post-test with questions over material covered in the

experiments done by participants. The surveys also contain a small number of self-efficacy

49

questions, some of which were done in consultation with the group at KSU. These questions

can be found in the appendix: Starbase Post. The goals of this research are complimentary

with the work done with the USD 383 summer STEM Institute, looking at the effects of

experience and knowledge in STEM on student ability in CT. Data is collected anonymously

from the Manhattan Starbase as existing data, as such, the KSU researchers do not have

control over survey questions or administration. Data has been collected during the spring

2016, fall 2016, and spring 2017 semesters and contains anonymized student demographics

and responses from individual survey questions. Data from 309 students have been

transcribed; 35 were excluded for not taking the pre- or post-surveys, leaving 274 students for

data analysis. Gender and demographic information of these students can be found in Table 7.

Findings between comparisons of genders and race, while informative, are unable to be

explained with current data. Future work will be needed, such as student interviews, to

investigate these findings.

Male Female Caucasian
African-
American

Asian
Native
American

Hispanic Multinational Other

131 143 176 23 3 1 17 37 17

Table 7 Distribution of Starbase student democraphics and race.

Male Score Math Science Tech Prog
Group
Work

Prog.
Robot

Outside
CS

Pre 8.786 1.191 1.260 1.191 1.351 1.076 1.336 1.305

Post 14.145 1.687 1.267 1.168 1.229 1.191 1.130 1.183

STDV 1.819 1.819 1.819 1.819 1.819 1.819 1.819 1.819

Effect 2.946 0.273 0.004 -0.013 -0.067 0.063 -0.113 -0.067

P 0.00000 0.00000 0.87948 0.61396 0.02593 0.00493 0.00005 0.02593

Table 8 Starbase test results for male students.

Female Score Math Science Tech Prog
Group
Work

Prog.
Robot

Outside
CS

50

Pre 8.028 1.168 1.112 1.168 1.490 1.028 1.406 1.392

Post 14.706 1.874 1.224 1.238 1.343 1.252 1.196 1.140

STDV 1.904 1.904 1.904 1.904 1.904 1.904 1.904 1.904

Effect 3.507 0.371 0.059 0.037 -0.077 0.118 -0.110 -0.132

P 0.00000 0.00000 0.01533 0.23329 0.01910 0.00000 0.00032 0.00002

Table 9 Starbase test results for female students.

Caucasian Score Math Science Tech Prog
Group
Work

Prog.
Robot

Outside
CS

Pre 8.443 1.210 1.148 1.210 1.415 1.040 1.403 1.313

Post 14.955 1.778 1.216 1.199 1.250 1.210 1.136 1.148

STDV 1.846 1.846 1.846 1.846 1.846 1.846 1.846 1.846

Effect 3.528 0.308 0.037 -0.006 -0.089 0.092 -0.145 -0.089

P 0.00000 0.00000 0.08326 0.80340 0.00216 0.00001 0.00000 0.00149

Table 10 Starbase test results for Caucasian students.

ALL
Other

Score Math Science Tech Prog
Group
Work

Prog.
Robot

Outside
CS

Pre 8.296 1.122 1.245 1.122 1.439 1.071 1.316 1.418

Post 13.510 1.796 1.296 1.214 1.357 1.245 1.214 1.184

STDV 1.888 1.888 1.888 1.888 1.888 1.888 1.888 1.888

Effect 2.761 0.357 0.027 0.049 -0.043 0.092 -0.054 -0.124

P 0.00000 0.00000 0.42615 0.16095 0.21879 0.00027 0.05839 0.00032

Table 11 Starbase test results for all races except Caucasian.

In Table 8, Table 9, Table 10, and Table 11, pre- and post-scores are calculated by

grading the knowledge-based questions 1-20 in the Starbase test shown in the Appendix:

Starbase Pre-test and Starbase Post-test Overall, an effect size of 2.946 shows a significant

improvement in students understanding of STEM topics after participating in the Starbase

program. Breaking this down by gender, females saw better improvement compared to males

in understanding of STEM topics. Female pre-scores indicated that they came in with less

knowledge, but ended up scoring higher on the post-test compared to their male classmates.

51

An opposite trend is seen when comparing the scores of Caucasian students and students of

other nationalities. Non-Caucasian students had similar levels of understanding to Caucasian

students; however, they scored significantly lower on the post-test.

 All students devalued group/teamwork at the end of the Starbase program. There are

many activities that are done in pairs and small groups, but this may indicate that the method

of assigning groups needs to be changed. Likewise, these activities may need to be adjusted to

better fit group work over the individual. All students seemed to dislike Math even more after

the Starbase program. Most groups of students’ attitudes towards science and technology did

not change, indicating that they enjoy these areas of STEM; however, female students disliked

Science more after the program. All students showed a significant (except non-Caucasian

students) increase in attitudes toward computer programming, indicating that exercises done

with Lego robotics and Scratch are effective at getting young students interested in computer

programming. All students indicated a better understanding that computer science can be

applied in a variety of areas. This allows students to not see computer science as a closed

field, but as a gateway to many STEM disciplines or even the arts. This is the core philosophy

of computational thinking. Leading students to the realization that they do not have to be

computer scientists to use those tools and techniques, and that they can continue to use what

they learned in whatever they decide to pursue as a career.

 Conclusions

Like the summer STEM Institute, the Starbase program is set in getting young minds

excited about and interested in STEM, but more so in educating them. There are many

activities in Starbase that begin with lecture material and followed up with hands-on

experiments. These always have learning goals in mind, which are apparent in the strong

52

performance from students in the post-test knowledge assessment. However, this traditional

approach in teaching STEM does not seem to captivate student interest in some areas in

STEM, particularly math (all groups) and science (only for females). There was also evidence

of this in comments made by students in the post-survey (see below). As part of the Starbase

program, students are exposed to programming through Lego robotics, as well as Scratch.

Both activities are designed as challenges, rather than lectures or experiments, for students to

overcome with a wide breadth for tinkering and creativity, and have been shown to increase

student self-efficacy as well as attitudes towards programming. These activities also contain

the base constructs for CT, which gives the students from Starbase who participate in the

summer STEM Institute a greater capacity to learn CT. Moving forward, Starbase will need to

change an adapt activities, possibly by taking from the successful model from the STEM

Institute, to captivate student attitudes towards more areas of STEM. When students at

Starbase were asked “When I talk about STARBASE to my family and friends I say…”,

responses were mostly positive, though some did not enjoy the program. Here are a few

samples:

“Starbase was fun and a little challenging but I like it! I would go back. Starbase

is awesome I want to do an experiment at home!”

“We learn about programming engineering, mathematics, we learn about

science and they make learning fun”

“It was amazing to learn about STEM because all the activities told me about

new stuff that my teacher could not tell me”

“I do not like it. It was too much instructions and did not let us be free and do

what we want. But I liked it and liked the rockets”

53

“I like Starbase because we get to use Lego robots, and launch and make a rocket

and we got to go to k-state”

“What I learned that day and please pass the sodium chloride.”

54

Chapter 4 - Computational Thinking in Physics

As stated in Chapter 2 - computational thinking is intended to be a fundamental 21st

century skill; a tool envisioned by Jeannette Wing to be accessible by everyone in a day of

modern technology (Wing J. M., Computational Thinking, 2006; P21 Partnership for 21st

Century Learning, 2015). However, it is important to know where computational thinking

plays its roll in integration with STEAM disciplines and modern 21st century learning

competencies (Dede, Mishra, & Voogt, 2013). Computational thinking should be something

students can learn as a fundamental skill, and not be forced into computer science as a

discipline. Rather, students should learn the roles CT plays in other domains. Hemmendinger

also argues that the aim of CT is not trying to force everyone to think like a computer scientist,

but to “teach them how to think like an economist, a physicist, an artist, and to understand how

to use computation to solve problems, to create, and to discover new questions that can

fruitfully be explored” (Hemmendinger, 2010). Hemmendinger continues that maybe

computer scientists have turned too much focus on computational thinking and less towards

computational doing – being able to implement and carry out new ideas through computational

tools (Hemmendinger, 2010). This also leads into more of the original ideas of Seymour

Papert who promoted computational literacy through “micro worlds” and the LOGO

programming language (Papert, 1980). Scratch continues Papert’s work by emphasizing

creative computing, enabling a wide breadth of access to the ability to create personalized

computational artifacts and ultimately allowing the “development of personal connections to

computing” and the development into “computational thinkers” (Brennan, Balch, & Chung,

Creative Computing, 2014). This begins to bring together the idea that CT extends ordinary

55

human-computer interactions, extending human creativity and intuition into a modern age

(Mishra & Yadav, 2013).

Leveraging its constructionist approaches to teaching programming, Scratch has been

and still is an excellent tool for introducing CT in various disciplines, especially in the arts

(Brennan, Balch, & Chung, Creative Computing, 2014). Scratch is commonly used to

introduce CT through storytelling, letting new learners focus on being creative and telling a

story, all-the-while learning CT concepts like algorithmic thinking, iteration, and conditionals

(Burke & Kafai, 2010). Scratch has also been successful embedding CT in the music domain

(Bean, Weese, Feldhausen, & Bell, 2015). Creativity in engineering though robotics has also

been a prominent area for embedding CT for new learners (Leonard, et al., 2016), particularly

due to robotic systems like LEGO that are controlled using visual-based languages.

Computational thinking has even made its way into the Ethics classroom, making student think

critically and systematically on the choices machines are programmed make, particularly smart

cars, and the moral and ethical ramifications that are associated with those choices (Seoane-

Pardo, 2016). CT has also begun making progress integrating into science and mathematics

through modeling, simulations, and video game design (Weintrop, et al., 2016; Wilensky,

Brady, & Horn, 2014; Sengupta, et al., 2015; Repenning, et al., 2015).

Computation in physics, however, has been very slow to start in higher education.

Content is often tightly packed into courses and pressure on faculty to deliver is high, making

it exceedingly difficult to work in new computational physics material (Roos, 2006).

Likewise, teaching loads, alongside research and service requirements, leaves faculty and

departments with no room to add new courses that emphasize computational thinking (Roos,

2006). Researchers are advocating for the need of introducing CT into physics and looking for

56

various ways to embed it in undergraduate curriculum (Chonacky & Winch, Integrating

computation into the undergraduate curriculum: A vision and guidelines for future

developments, 2008). The Partnership for Integration of Computation into Undergraduate

Physics (PICUP) is community for educators who are looking for ways to incorporate

computation into their physics classrooms (Chonacky & Winch, PICUP, 2017). PICUP

continues to create and publish a large amount of curriculum and resources, ranging from

models, simulations, problem sets, and programming exercises that emphasize computational

thinking in physics.

Others have taken the challenge to embed computation into existing courses. Roos

discusses that “one obvious drawback of integrating computational physics into the traditional

format of physics courses is its potential interference with the course’s core subject matter”

(Roos, 2006). CT in STEM is not necessarily intended to be its on subject matter of a course,

but a tool to enhance students learning and comprehension of course content. Still, depending

on students’ previous experience with technology or programming, faculty may only have time

for shallow coverage, relying on student self-study to learn the selected computational tools

(Roos, 2006). In their university, Roos first looked at using commercial software; however, it

“produced a barrier between students and the direct calculations.” Using black-box

algorithms in languages like MatLab add a level of user friendliness, but also prevents students

comprehending what is really going on in the background. This lead Roos to conclude that

computational physics can be adequately learned using “direct programming,” which

“maximizes computational learning and helps students achieve maximum understanding and

control in numerically solving equations.” On the other end of the spectra, Austin Peay State

University reorganized their physics major to include three new courses that progress from

57

theoretical, experimental, and computational methods (Taylor & King, 2006). Computational

tools introduced to the major were not unique to the new courses, but added throughout the

major’s course offerings. Unlike Bradley University (Roos, 2006), many commercial and GUI

tools were used, such as LabView, MatLab, and Electronics Workbench (Taylor & King,

2006). The curriculum also leveraged the direct programming approach with C++, Fortran,

and C#; however, students are not left to self-study. They required to take two levels of

introductory programming and one object oriented programming course (Taylor & King,

2006).

CT has also made it into K-12 physics. Dukeman et. al. introduced the C3STEM

framework to teach students CT skills in the traffic domain (Dukeman, et al., 2013). Through

C3STEM, students worked to identifying patterns by analyzing real traffic data. The students

had a support system where they had the opportunity to communicate with traffic engineers,

city planners, and members of the research team for guidance and feedback on data analysis

and their initial models. Students then created agent-based models and introduced

interventions in a simulation to study how their decisions affected traffic flow. Farris and

Sengupta used agent-based modeling to bring physics to 5th and 6th graders. In this study,

students learned about kinetics by creating models and simulations in ViMAP, a custom

visual-based programming language that supports “domain specific learning in kinetics”

(Farris & Sengupta, 2014).

 Exploratory Study: Computational Thinking in Electromagnetics

This section outlines an exploratory study in integrating computational exercises into

PHYS 532, Electromagnetic Fields I, at Kansas State University. Embedding computational

thinking into physics classrooms has taken on a slow start. Given the previous examples of

58

attempts in undergraduate courses, there is not a clear consensus on what is the best approach.

The past integrations of computation into physics, including the integration of direct

programming using Fortran and C++ (Roos, 2006) into existing courses and a broader

approach to complete physics major overhaul outlined in (Taylor & King, 2006). Neither of

these approaches have any formal measure to provide empirical justification for one approach

over the other. The approach chosen was to use direct programming using the Python

language through a series of computational problems to reinforce topics covered in lecture.

Python was chosen over the dominant languages Fortran, C++, and MatLab due to its

exceptionally low entry barrier. Python has previously gained popularity as an introductory

language and scientific computing language for many reasons, including:

 Pseudocode-level syntax makes Python English-like, making it much easier to read for

novice programmers

 Free and open source, making it more accessible compared to other popular

commercial tools

 Cross-platform compatibility

 Wide breadth of libraries and modules built for visualization and scientific computing,

including NumPy, SciPy, VPython, and PyQt

 Dynamically typed, allowing fast development and prototyping through a variety of

programming paradigms like imperative, object-oriented, and functional programming

Others have also expressed Python’s viability as a scientific computing language (Oliphant,

2007) and as a viable language in computational physics (Backer, 2007; Borcherds, 2007).

The purpose of this study is to investigate the feasibility of incorporating the Python

59

programming language into an undergraduate physics classroom and how it effects student

self-efficacy in computational thinking.

 Experiment Design

This exploratory study was introduced to the Fall 2016 PHYS 532 course that lasted

sixteen weeks. As part of the traditional course, students were given five computational

thinking problems:

1. CT1 – Pi: Students were asked to calculate pi. Three methods of calculating pi were

given: a) Use of the area of a unit circle and generation of random points between 0

and 1 and comparing the number of points within the circle (𝑥2 + 𝑦2 < 1) to those

outside the circle. b) Averaging the perimeters of a circumscribed square. c) The

MacLaurin series expansion given arctan(𝑥) = ∑ (−1)𝑛 𝑥2𝑛−1

2𝑛+1𝑛=0 . Students were

tasked to write pseudocode for method (a) and for method (b) or (c). Then, by using the

pseudocode as comments, implement the two chosen methods in python to be accurate

to at least six digits.

2. CT2 – Dipole: Students receive a base starting file where they must add comments to

explain what is happening in the code. Afterwards, they make various adjustments to

the plot, different dipole fields, charges, and e-field.

3. CT3 – Bars and Planes: Adjust the code from their solution in CT2 to find and plot the

electric field everywhere from a bar of length L and total charge Q. Then they must

show that the field is appropriate in the limits of infinite length and constant non-

charge density. The code must allow for a location based charge density and able to

find the electric field from a disc.

60

4. CT4 – Capacitors: Using the method of relaxation, find the potential everywhere near

a finite disc capacitor. Then show that the results are reasonable in the limits of large

radiuses, separation, and zero charge. Plot the equipotential and electric field lines.

5. CT5 – Toroidal Ion Trap: Design a toroidal trap which uses electric potential to keep

charged particles in a ring. Show that the trap has a potential profile that could trap

positively charged ions in a ring.

Due to flexibility issues with course curriculum, students were not given training in

programming in Python and were required to rely on any prior experiences and self-study.

Each CT problem lasted approximately one to two weeks, and students could collaborate with

each other and use online resources albeit proper citations. For each problem, students were

required to add sufficient documentation to explain the code they wrote. All CT problems

were assigned and completed by week eight of the course.

Part of the evaluation included qualitative analysis of the code submitted for the CT

problems, this included the course population, which consisted of 20 students: 12 physics

majors (the majority were seniors) and 8 students from 6 other majors including physics

education, computer science, mathematics, and electrical, mechanical, and nuclear

engineering. Other demographic data was excluded to preserve anonymity. The second part

of the evaluation includes results from a modified self-efficacy survey from Summer STEM

Institute 2016 and can be seen in Table 12.This survey was used to measure attitudes towards

computational thinking, problem solving, and the use of computer programming. The survey

was administered before the first CT problem was assigned and at the end of the course. All

20 students responded to the pre-survey; however, 8 were excluded from analysis for not

completing the post-survey and two students opted-out for using their survey data in research.

61

When solving a problem I... I can write a computer program which...

1 create a list of
steps to solve it

Algorithms 10 runs a step-by-step
sequence of
commands

Algorithms

2 use mathematics Algorithms 11 does math operations Algorithms

3 try to simplify the
problem by
ignoring details
that are not
needed

Abstraction 12 uses loops to repeat
commands

Control Flow

4 look for patterns in
the problem to
create an efficient
solution

Abstraction 13 takes input from a
user

Control Flow

5 break the problem
into smaller parts

Problem
Decomposition

14 only runs commands
when a specific
condition is met

Control Flow

6 work with others to
solve parts of the
problem in parallel

Parallelization 15 runs commands in
parallel

Parallelization

7 look how data can
be collected,
stored, and
analyzed to help
solve the problem

Data 16 uses messages and
other information to
talk with different
parts of the program

Abstraction

8 create a solution
where steps can be
repeated

Control Flow 17 can store, update, and
retrieve data

Data

9 create a solution
where some steps
are done only in
certain situations

Control Flow 18 uses custom functions Abstraction

When creating a computer program I... When creating a computer program I...

19 make
improvements one
step at a time and

Being
Incremental
and Iterative

22 break my program
into multiple parts to

Problem
Decomp.

62

work new ideas in
as I have them (1)

carry out different
actions (4)

20 run my program
frequently to make
sure it does what I
want and fix any
problems I find (2)

Testing and
Debugging

Impact

23 I understand how
computer
programming can be
used in my daily life.

Questioning

21 share my programs
with others and
look at others'
programs for ideas
(3)

Reuse/Remix,
Connecting

24 I am confident I can
use/apply computer
programming to my
field of study.

Questioning

Table 12 Self-efficacy survey given to students in the E&M class.

Results

This study was not setup to study impact of computational thinking on a student’s

understanding of physics, nor a student’s ability to program in Python. As such, evaluation of

student submissions was done qualitatively and not through static analysis, unit testing, or

grading rubrics. First, levels of abstraction were looked for in student submissions.

Abstraction was chosen over other CT concepts due to its difficulty compared to concepts like

iteration and conditionals, which nearly all students showed basic understanding of. Code

efficiency is considered for CT4 and CT5. No students demonstrated efforts in parallelism.

Comments made in the code were also analyzed, coding for levels of understanding of the

code and the physics/computational concepts covered in the CT problem. Comment codes

were not exclusive. These codes can be found in Table 13. Completion rate of each CT

problem were 85%, 95%, 75%, 70%, and 60% respectively.

General Label Description

Abstraction Python functions, apart from any starter code, were defined and used.

Efficiency Poor algorithmic design that causes the code to run long, mainly due
to inefficient/nested loops.

63

No Comments No effort was made to generate comments.

Code Comments Sufficient comments were made, but only described actions of the
code and not the physics concepts.

Pseudocode
Comments

(basic) The comments made gave an overall outline to what was
happening in the code, along with general description of the physics
involved. (depth) The comments made gave in-depth detail on the
physics concepts and linking them to how the code was executed.

Commented Code Some actual code was commented out, leaving behind evidence of
tinkering.

Table 13 Annotation labels and descriptions used to analyze student code submissions.

Most students did not show understanding of abstraction in their code. The first CT

problem was simple with only two students using functions. These were only single use

functions; however, it indicated that these students had a better understanding of Python and

the ability decompose and organize a problem into smaller, reusable parts. For the second CT

problem, students were given starter code to modify. The starter file contained one function,

but four students introduced more to better organize and reuse code. The upward trend of

students understanding abstraction and the use of functions continued into CT3 with eight

students utilizing functions. Nine students implemented functions for CT4; however, most

(6/9) used only a simple accessor function that was more suitable to be a lambda expression

instead of a function. Students could work together on each of the CT assignments, with each

one having 23.5%, 10.5%, 53.3%, 50%, and 75% of the students who had turned in code

working in small groups, respectively. This ended up having a negative impact on CT4 with

the unnecessary use of abstraction. The negative impact of group work continued into CT5

where only two students used functions. Two other students had poorly optimized solutions

that had many triple and quadruple nested loops, although the method of relaxation used was

inherently inefficient so this finding was not surprising. The rest of the students for CT5

created mostly flat scripts and many hard-coded values. It is believed that group work was one

64

core part of the degradation in quality in both code and CT concepts in CT5; however, many

students did not show mastery of the physics concept in comments. Only 15% of the students

in CT5 had comments that indicated understanding of the physics problem, compared to 60%

and 42.85% in CT3 and CT4 respectively as seen in Table 14. The prevalence of few/simple

comments was also present in CT2, where most of the work done was modifying existing

code. While this gave in to higher completion rate, there was much less effort given to

commenting and understanding the existing code. This was flipped in CT3, where students

had to modify their solution to CT2 but were given more abstract directions. This resulted in a

higher number of in-depth comments explaining the physics concepts that were happening in

code.

Label CT1 CT2 CT3 CT4 CT5

None 0 2 0 2 5

Only Code 3 6 6 3 1

Basic
Pseudocode

3 8 3 6 4

In-depth
Pseudocode

10 3 9 6 2

Commented
Out Code

4 4 3 5 0

Table 14 Number of labels annotated for each degree of commenting made by students in

their CT problem submissions.

Category Skill
Pre-

Mean

Post-

Mean

Pooled

Stdv

Average

Gain

Effect

Size

P

Value

PS Algorithms 3.625 3.667 0.911 0.042 0.029 0.545

PS Abstraction 4.083 3.667 0.919 -0.417 -0.464 0.193

PS Control Flow 4.167 4.083 0.867 -0.083 -0.096 0.777

PS Data 3.292 3.583 0.948 0.292 0.320 0.372

PS Parallel. 3.083 3.333 0.917 0.250 0.273 0.191

65

PS
Prob.

Decomp. 4.167 4.083 0.867 -0.083 -0.096 0.777

CT Algorithms 3.625 4.167 1.215 0.542 0.443 0.129

CT Abstraction 2.458 3.625 1.132 1.167 1.022 0.002

CT Control Flow 3.361 4.056 1.222 0.694 0.572 0.086

CT Data 2.917 3.500 1.238 0.583 0.471 0.027

CT Parallel. 2.333 3.000 0.959 0.667 0.696 0.039

CT
Prob.

Decomp. 3.083 3.667 1.178 0.583 0.495 0.306

CT

Being

Incremental

and Iterative 2.750 3.917 1.167 1.167 1.000 0.019

CT Questioning 4.083 4.375 1.015 0.292 0.288 0.392

CT

Reuse,

Remixing,

Connecting 2.500 3.667 1.128 1.167 1.034 0.023

CT
Testing and

Debugging 3.833 4.083 1.163 0.250 0.215 0.571

Table 15 Self-efficacy pre- and post-survey results.

 In the analysis of survey results, most students had no direct-programming

background; however, three students had a class on Java programming and showed high initial

self-efficacy in CT. Otherwise, background in MatLab or Octave accounted for 75% of the

prior programming experience among students and had no correlated effect in reported self-

efficacy. Results showing the pre-post self-efficacy in CT and PS concepts and practices can

be found in Table 15. CT concepts reported mostly medium effect sizes; however,

abstraction had a significantly large effect. Abstraction is arguably one of the most important

and difficult CT concepts, yet without being explicitly taught, students demonstrated varying

levels of abstraction in code as well as their self-efficacy. Breaking down abstraction, self-

efficacy for creating a program that uses custom functions was 1.195 (𝑝 = .002). Couple this

with question 16 (using messages and information to talk with different parts of the program)

66

that reported an effect size .849 (𝑝 = .002) and it shows that students not only understood how

to create functions, but also understood parameter passing and return values. This could also

be attributed to the starter code given in CT2 where students were required to provide

comments to explain the function given, as well as the number of libraries students used to

create and visualize models. This also works well with using variables (store, modify, and

retrieve data) that had significant results; however, with the large emphasis on models and

usage of variables in the code turned in, a larger post self-efficacy score was expected. A

dynamically typed language, like Python, can be a great benefit to new programmers because

data types are not required and variables are quite flexible. This can also have a negative

impact, particularly in complex applications or problems, where students are not explicitly

forced to learn data structures or types and how to utilize them as in statically typed languages.

Iteration had significant, large effect in student self-efficacy, but some of the later CT

problems showed inefficient use of for-loops. There were no significant results from CT

concepts framed as problem solving skills, though data and iteration had a medium and large

effect size respectively. Similar disconnection between PS and CT was seen in the Summer

STEM Institute 2016 survey, but further studies, including student interviews that target

problem solving skills, will be required to make any significant claim.

 Apart from CT skills, students reported significantly higher self-efficacy in CT

practices like being iterative and incremental, as well as reusing, remixing, and connecting.

This is supported by student collaboration on the CT problems as previously noted.

Consequently, by the end of the CT problems, students began to rely too heavily on the

collaborative aspect and hindered their understanding of the problems and the uniqueness of

their solutions. Iterative development can also be seen in student solutions through code that

67

students comment out. Students expressed that they had good understanding of how computer

programming could be used in daily life, but experienced a significant increase in self-efficacy

in apply programming to their field. This is corroborated by student’s expectation of using

programming in the future where students reported that they would sometimes use

programming as part of a class, work or hobby (3.5 𝜎 = 1.17, 3.5 𝜎 = 1.09 and 3.08 𝜎 =

1.44) and would usually use programming (3.92 𝜎 = 1.17) as part of research. Some students

expressed that they liked having programming as part of the class; however, most students

struggled learning a programming language:

“I think that getting us involved in programming is a great idea but the way that

we were taught how to do so was an unmitigated disaster. When over 60% of our

class had never programmed before this class and we weren't even taught basic

languages or why we need to import files to make our program work it was

unbelievably frustrating. I accept the fact that programming is/will be very

important for some of our futures but this is not the correct class to introduce us

to it. There simply wasn't enough class time.”

This was a common theme among student, both the lack of class time dedicated to the CT

problems and little to no support given to learning how to program in Python:

“It would have been much more beneficial to me if we did more in class work on

the computational problems rather than being left to figure it out ourselves.”

“More guidance, maybe in the form of an online video series, would be welcome.

The lack of information at the beginning of the course made the projects very

difficult.”

68

Teaching yourself how to program in a new language, especially if you have never

programmed before, can also be very difficult to overcome. Some students expressed a mix of

success in trying to find help online for their problems:

“It would be nice if we actually had time in class to be taught the syntax and

functions we need to know to complete the assignment. Only one person in the

class had seen Python before, but the homework assignments were pretty much

Google it yourself and figure out how to do it.”

“While I did learn a lot of the basics and could really easily write pseudocode. I

found that I had an incredibly hard time making the actual code. While google

did solve a few problems I often didn't know what to search to find the answer

that I was looking for.”

Another student found it difficult not only to be able to learn programming, but also the added

difficulty and overhead in applying programming within physics:

“I think it would be better to take a course on programming before dealing with

it in a physics context. It was difficult to learn a new language (and programming

in general for some people) and apply physics without coercion, which was using

physics to avoid programming. I think a class before would have helped me know

what to do and be more efficient/comfortable. Also, we spent a total of two class

days for five assignments which took, at a minimum, five hours. This made them

feel unimportant.”

However, not all students had a completely negative experience:

69

“Programming is awesome, I can't wait until I actually become natural at putting

this knowledge to use.”

Conclusions

Introducing computational thinking into undergraduate curriculum has been shown to

be a difficult task. Similar problems found in the literature, particularly being able to fit new

concepts and techniques into an already bloated curriculum. The approach of using direct

programming has promise. Students could demonstrate levels of abstraction and algorithmic

thinking, as well as CT practices like reusing/remixing and being incremental and iterative in

their Python code, as well as their self-efficacy. While students expressed a general

understanding of the benefits of incorporating computational physics into the class, they found

the lack of support for learning the Python programming language debilitating. To continue

incorporating CT into existing physics curricula, supplemental material, such as video lectures,

will be required to alleviate some of the cognitive load from the students. Another area for

future study is focusing on how introducing CT effects student comprehension of the physics

content. In the experiment conducted, some levels of this were present in the comments of

student code; however, this does not capture how CT effects student learning outcomes in

other homework, exams, or labs.

70

Chapter 5 - The Data Explorer

This chapter, published in part in (Weese & Hsu, Work in Progress: Data Explorer –

Assessment Data Integration, Analytics, and Visualization for STEM Education Research,

2016), describes the primary components of an analytics system for STEM education research,

developed for the American Association for Physics Teachers (AAPT). The purpose of this

data exploration system is to allow instructors to comparatively assess student performance in

intraclass, longitudinal, and interinstitutional contexts. The interface allows instructors to

upload course data including student demographics and exams to a secure site, then retrieve

descriptive statistics and detailed visualizations of this data. For Physics Education Research

(PER), the Data Explorer will be one of the largest repository of assessment data. This enables

research on significantly larger populations and diverse groups, while providing users of the

Data Explorer detailed comparisons and analysis, as well as expert recommendations tailored

for teaching physics in their own classrooms.

 Automated Assessment Extraction

While some work focuses on automatic analysis of programs (Koh, Basawapatna,

Bennett, & Reppening, 2010) for evaluating student performance, others use sentiment

analysis and topic modeling of things like student comments to predict student performance

(Sorour, Goda, & Mine, 2015). However, in CS, little work is done modeling students by

using student assessments. This section presents various approaches from table extraction

schema inference for the assessment extraction research in this dissertation. One approach,

exemplified in the previous work of Doan, Domingos, and Halevy, uses machine learning to

produce classifiers for schema matching (Doan, Domingos, & Halevy, 2003). Cafarella et al.

extend this approach by targeting relational schema and using constraints on relational well-

71

formednesss (Cafarella, Halevy, Wang, Wu, & Zhang, 2008). More recently, Venetis et al.

infer semantic properties of web data by using observed weak typing constraints (is-A

relations, also known as hyponymy) in online knowledge sources (Venetis, et al., 2011). In a

variation on this general approach, the research done in this chapter also uses pattern matching

heuristics and constraints, but restricts the matching to type constraints such as enumerative

types on multiple-choice questions.

Another approach, holistic information extraction from tables, is characteristic of

systems such as that of Nagy et al., which use syntactic elements of tables – header paths in

particular – to extract relational tuples (Nagy, et al., 2011). This approach subsumes tabular

data cleaning. For example, Fang, Mitra, Tang, and Giles use supervised inductive learning to

learn the concept of a genuine table (as opposed to spacers and decorative elements), and

empirically validate heuristics for physical structure analysis (table segmentation, which is

obviated in the task) and logical structure analysis (Fang, Mitra, Tang, & Giles, 2012).

Suchanek and Weikum examine how to capture such tables in the wild, e.g., as embedded in

articles on the web or in print; some relevant ideas from this approach are how to use rule-

based data transformations to segment uploaded data (remove headers, trim extraneous

elements) and validate them against known good tuples (Suchanek & Weikum, 2013). Adelfio

and Samet specifically address the chief problem of schema extraction for tabular data by

using a conditional random field (CRF) classifier learned from data; this approach has

achieved marked success in shallow parsing tasks such as named entity recognition in text

(Adelfio & Samet, 2013). Finally, Zhang re-examines the problem of capturing relations in

tables using a combination of named entity recognition and the kinds of semantic constraints

applied by the second approach (Zhang, 2014).

72

 Data Flow

The first component consists of a rule-based system for pattern analysis that infers

multiple common assessment formats with minimal metadata, and in some cases without

headers. This paper describes the incremental development of a priority-based inference

mechanism with matching heuristics, based on real and synthetic sample data, and further

discusses the application of machine learning and data mining algorithms to the adaptation of

probabilistic pattern analyzers. Early results indicate potential for user modeling and adaptive

personalized recognition of document types and abstract type definitions.

The second component is an information retrieval and information visualization

module for comparative evaluation of uploaded and preprocessed data. Views are provided for

inspection of aggregate statistics about student scores, comparison over time within one

course, or comparison across multiple years. These visualizations include tracking of student

performance on a range of standardized assessments. Assessments can be viewed as pre- and

post-tests with comparative statistics (e.g., normalized gain), decomposed by answer in the

case of multiple-choice questions, and manipulated using prespecified data transformations

such as aggregation and refinement (drill down and roll up). The system is designed to

support inclusion of a range of supervised inductive learning methods for schema inference,

unsupervised learning algorithms for similarity-based retrieval, supervised learning for

regression-based time series prediction, and Bayesian models for causal inference on the

decision support end.

73

Figure 2 Data flow for importer of Data Explorer.

The users of the system who are usually Physics educators upload their historical

assessments through an iterative data upload interface. The data upload interface accepts

assessment files that are in a limited set of formats in the current system. The accepted file

formats are xls, xlsx, and csv. Simplistic file requirements, which include having a header row

and one student per data row, help assure extraction of the correct headers and student data

while allowing users to upload a wide range of data formats. Apart from accepting and

verifying the integrity of the uploaded files the data upload interface prompts the user to

specify meta information (“Add Meta Data” in Figure 2), such as approximate number of

students that took the assessment and whether the file contains either pre-, post-, or pre- and

post-test assessment data. Some of these assessment features are required, while others are

optional. The assessment specific information, such as assessment name and assessment type

(belief survey or standard multiple choice), provide a rough estimate of the number of

questions (usually represented as columns) that are present within the uploaded, whereas the

number of students gives an estimate of the number of rows with student scores. The data

upload interface checks the integrity of the file and extracts all the data that is present within

the various file types. The extracted data is saved as a data frame, a two-dimensional data

structure, where the atomic data items present in the input file are stored in individual cells of

74

the data frame. The row-column relationships of the data items in the uploaded files are

preserved in the data frame.

 Parsing Data

The objective of the file parser is to identify the boundaries of the assessment scores

within the data frame, as well as identify the location of the headers. The presence of other

extraneous legacy information within the data makes the task of extracting payload data from

the data frame a complicated exercise. Some of the various kinds of information that is

available within these files, apart from the payload, could be the rubric or the scoring criteria

for the particular assessment; it could also have information dealing with aggregate student

demographic information and other extraneous data. Considering all these variabilities, a

heuristics based parser that takes the meta information that is provided during the file upload

process to extract the valid assessment payload from the test data is created. The presence of

both pre- and post-assessment scores within the same data frame is another degree of freedom

that adds to the complexity of the parsing approach.

Heuristic (𝛼) Description Condition to Count (𝜎) Contributed
Value (𝛾)

String cells The number of cells in
a row that are text.

> 𝑡ℎ𝑟𝑒𝑠ℎ 1

Integer cells The number of cells in
a row that contain
integers.

> 𝑡ℎ𝑟𝑒𝑠ℎ 1

Float cells The number of cells in
a row that contain
floating-point
numbers

< 0 -1

Duplicate cells The number of
duplicate cells in a
row

> 𝑡ℎ𝑟𝑒𝑠ℎ 1

75

Unique cells The number of unique
cells in a row

< 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 -1

Pre/Post Detects whether or
not the row contains
“pre” or “post”

> 0 1

Long question
number

Detects the number
of large question
numbers (helps when
assessment data is
outputted by online
tools)

> 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 − 10

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑖𝑜𝑛𝑠 > 0
1

Max consecutive
number

Detects the largest
consecutive number
series in a row after
stripped of alpha
characters (Q1, Q2,
Q3, etc.)

> 𝑡ℎ𝑟𝑒𝑠ℎ 3

Unique markers The number of unique
known headers
(Student ID, Gender,
etc.)

> 1 2

Repeated markers The number of
repeated known
headers (question,
ques, q, pre, post)

> (𝑡ℎ𝑟𝑒𝑠ℎ − 3) 2

Table 16 Heuristics for identifying the header row

To identify the boundaries of the payload within the data, the header row of the

payload is identified. The header row consists of column names of the various columns

available in the assessment scores. These could be student particulars such as name, identifier,

or gender, or the particular assessment information, such as grade, question number, or

aggregate score. The model consists a series of heuristics that score rows and columns for

identifying which row contains column headers, and which rows contain the student data.

This helps eliminate user added calculations and miscellaneous data, and extracts relevant

student information. Table 16 shows the heuristics for determining the header row, where

76

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 is equal to the number of questions in the assessment (collected in the

add metadata phase) and 𝑡ℎ𝑟𝑒𝑠ℎ = ⌊𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 − (𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 ∗ .2)⌋.

This threshold gauges an approximate number of columns to expect for questions; the

buffer adds tolerance for poorly formatted files. From Table 16, the header row is defined as

∀𝑟 ∈ 𝑟𝑜𝑤𝑠 max (∑ 𝛾𝑖 𝑖𝑓 𝜎𝑖
𝑛
𝛼𝑖,𝑟

 where 𝛼𝑖,𝑟
𝑚 is the heuristics for row 𝑟. The header row is then

used to determine the table boundaries for relevant student data by comparing each row to row

markers from known templates; otherwise, in the case a row is absent of markers, the length of

the row (number of non-empty cells) is compared to 𝑡ℎ𝑟𝑒𝑠ℎ, as defined for Table 16. If a row

is blank, a combination of 80% of the class size (given by the user as metadata) and a two-row

margin to allow small gaps in student data is used. If this margin is exceeded, and the number

rows in the current block of data parsed is less than 80% of the class size, the start of the

student data is moved after the blank rows and parsing continues. This allows the parser to

skip over blocks of precomputed statistics and other user specific information; however, if the

user gives a greatly over or under estimate on class size, files with more than two row gaps in

the data underneath header will be unsuccessfully parsed.

The schema inference model can successfully parse 77/80 testing files (a mixture of

sanitized real data submitted to the project and synthetic data). A file is parsed successfully if

it identified the header row and included all rows of student data. If the parser includes

miscellaneous columns of data, the test can pass as these columns can be excluded in post

processing; 23 tests were passed in this manner. The last three tests failed due to the

assessment answer keys being included as part of the block of student data. This problem can

be solved for templated files; however, for semi-structured files, the answer keys cannot be

differentiated from student responses. Accuracy of the schema inference during beta testing

77

and future production deployment is partly dependent on user feedback (missing student rows

or columns), as well as the headers that are verified by the user (columns thought to be student

data but was not).

 Guesser

The guesser module (position in system as “File Mappings” in Figure 2), uses a hybrid

similarity measure to detect approximate matches between candidate header strings and

template strings. This consists of a convex combination of two edit distance functions

(Levenshtein and Jaro-Winkler), both computed by dynamic programming. The weights are

calculated using a generalized logistic function:

𝒘 = 𝒀(𝒕) = 𝑨 +
𝑲 − 𝑨

(𝑪 + 𝑸𝒆−𝑩(𝒕−𝑴))
𝟏
𝝂

 Equation 1

where 𝐾 = 𝐶 = 1, 𝐴 = 0.3, 𝑄 = 𝜈 = 𝑀 = 5, 𝐵 = 2.7, and 𝑡 is the Levenshtein distance. 𝐴 is

the lower asymptote, 𝐾 is the upper asymptote, 𝐵 is the growth rate, 𝑀 is the baseline distance

(input), 𝝂 is a skew parameter (for controlling the inflection point), and 𝑄 is the baseline

weight (output). The final distance measure for strings 𝒔𝟏 and 𝒔𝟐can then be defined as:

𝒅𝒊𝒔𝒕(𝒔𝟏, 𝒔𝟐) = 𝒘𝒅𝟏 + (𝟏 − 𝒘)𝒅𝟐 Equation 2

where 𝑑1 and 𝑑2 are normalized Jaro-Winkler and thresholded Levenshtein edit distances,

respectively, 𝑑𝐽𝑊 is the raw Jaro-Winkler distance and:

𝒅𝟏 = (𝟏 − 𝒅𝑱𝑾)
𝒕(𝑴−𝑩)

𝑴 Equation 3

The confidence of a column header labeled as a given class is then given by:

𝒄𝒐𝒏𝒇 = 𝟏 − 𝒅𝒊𝒔𝒕(𝒉𝒆𝒂𝒅𝒆𝒓, 𝒍𝒂𝒃𝒆𝒍) Equation 4

If the header and the class label both contain numeric parts (i.e. “Question 24”), then distance

of the numeric and alpha parts are separately compared combined with weights .75 and .25

respectively. This increases the likelihood of labeling alphanumeric question columns with the

78

correct question number. If the confidence of the best candidate label for a column header is

less than .45, the inferred header in the File Mappings is presented to the user as “Unknown,

otherwise the inferred header is shown.

From initial beta testing, inference of column headers shows strong positive results.

Although it can match columns in the synthetic data, the model's performance is judged on the

data which users have uploaded and completed the file mappings process. In order measure

performance, true positives (TP), false positives (FP), true negatives (TN), and false negatives

(FN) are framed within the problem. If the inferred column header is verified as correct by the

user, it is counted as a TP. However, if the inferred header was verified as something different

(inferred header is overridden), it is counted as a FP. This incorrect guess would normally be

counted as a TN; however, while the task is to infer column headers, excluding columns of

extraneous data mingled in with student data is also required. For this reason, if the inferred

column header is “Unknown,” and the user verifies the header as “Do Not Import,” it is

counted as a TN since this column is confirmed to be unnecessary for analysis and

visualization. If a column header is “Unknown,” and the user verifies the column as actual

student data, it is counted as a FN.

Assessmen
t

Dat
a

Sets

Column
s

TP TN FP FN
Accurac

y
Precisio

n
Recall F1

CLASS-
Chem

3 34 16 15 1 2
0.9118 0.9412

0.888
9

0.914
3

CLASS 66 659 516 60 54 29
0.8741 0.9053

0.946
8

0.925
6

BEMA 38 204 117 38 25 24
0.7598 0.8239

0.829
8

0.826
9

FCI 198 1193 711 113 249 120
0.6907 0.7406

0.855
6

0.794
0

79

MEAT 2 4 2 0 0 2
0.5000 1.0000

0.500
0

0.666
7

ChCI 1 8 8 0 0 0
1.0000 1.0000

1.000
0

1.000
0

FMCEv98 10 64 54 3 5 2
0.8906 0.9153

0.964
3

0.939
1

FMCE 68 317 245 13 35 24
0.8139 0.8750

0.910
8

0.892
5

MPEX 6 14 9 0 4 1
0.6429 0.6923

0.900
0

0.782
6

CSEM 18 141 56 2 53 30
0.4113 0.5138

0.651
2

0.574
4

Table 17 Results showing the performance of the base guesser model by assessment.

The results from the initial user testing are found in Table 17. Data was collected

through 84 unique users who have uploaded 410 datasets spread across ten different

assessments. Data shown in Table 17 shows the performance of the guesser module on

student metadata only (demographics, student records, etc.). Question columns were excluded

from analysis due to the system's ability to verify question columns in batches. Once the first

question is verified, the rest of the set for that assessment are automatically verified. There is

also a significantly larger quantity of question columns compared to student metadata, which

inflates the results to be more positive. Still, most assessments maintain a high f1-score.

Some of the assessments cannot be evaluated sufficiently due to lack of datasets. After

inspecting some of the poorly performing files, most of the incorrectly guessed headers are

from ill formatted header rows that contain text not related to the contents of the column.

Though, in some cases, the modified edit distance model does not perform well among target

headers that contain similar text. For example, a raw header with the text ‘Student’ may end

up matching a variety of target headers (‘Student ID’, ‘Student Full Name’, etc.), depending

on the columns that were matched earlier.

80

To overcome this weakness, an active learning approach is used to leverage historical

guesses that are overridden by the user. This adds learning to the edit distance model where

guesses towards a target label are overridden if the raw header has been seen several times (𝛼)

before. If this occurs, the guess is overridden with the most frequently verified target label for

that raw header text. This new model, with sufficient data, can be trained to recognize headers

that are unique to a specific user. However, less than 50% of beta users have uploaded more

than two files and even fewer have sufficient student metadata. Training a model for each user

does provide better results when compared to the original model that has not been trained, but

until the Data Explorer receives more data, models are trained per assessment. Figure 3

compares the original model that has no override to results from training models requiring a

minimum of 1, 2 and 3 historical guesses before override occurs. Leveraging a single

historical guess provided over 10% increase in f1-score. Requiring 2 or 3 historical guesses

still provides an improvement over the original model; however, this increases the number of

datasets to be uploaded before the model is trained. One drawback with this method is when

there are many duplicate raw headers in a dataset. This increases the number of target headers

associated which decreases the accuracy of correctly overriding the original guess. This same

situation arises from generic raw headers like ‘Name’ and ‘Student,’ which can be inaccurate

if they have been verified differently within the same user. This is less likely as the number of

samples seen increases.

81

Figure 3 F1-Score of the base model to the active learning model.

 Visualization

The information visualization facility of the Data Explorer contains a variety of

functions implemented using the D3.js JavaScript library (Bostock, Ogievetsky, & Heer,

2001). Figure 4 shows how normalized (Hake) gain is plotted, with order statistics (mean and

median) and standard deviation, for a class’s performance on an assessment. Figure 5 shows

how the visualization services also allow drill-down (“breakdown”) by question, an important

type of analytical query that results in the display of a distribution of answers for each question

and facilitates comparative analytics for pre- and post-instructional assessments. The objective

of these visualizations is to provide instructors with actionable insight concerning: topics

covered; the impact of instruction and classwork on student learning as assessed formally

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 None

F1
-S

co
re

Number of historical guesses

Guesser - Active Leaner

Assessment

User

82

using tests such as FCI, FMCE, and BEMA; and longitudinal trends of concern. In continuing

work, additional ways to drill down into multidimensional assessment data, such as using the

TableLens visualization (Rao & Card, 1994), are being explored.

83

Figure 4. Data visualizer component of the Data Explorer, displaying a histogram of

normalized gain for a hypothetical class on the Force Concept Inventory (FCI)

assessment.

84

Figure 5. A "Breakdown by Question" view, showing drill-down for a single question

and multiple-choice responses, together with the distribution of student responses, on a

post-instructional assessment question (also for the FCI).

85

Figure 6. Visualization of student performance on pre- and post- assessment, organized

by classification of question. Class labels are assigned by subject matter experts (physics

education researchers).

 Continuing Work: Information Retrieval and Data Mining

A further capability, designed to facilitate instructor exploration of assessment data, is

that of grouping questions by known or discovered category. Figure 6 shows the results of

visualizing hand-labeled categories (which are known as classes in machine learning, clusters

in statistics, and segments in business analytics). Work in progress aims at using unsupervised

learning to perform clustering of assessment questions (by topic modeling or by other

similarity-based learning). The key capability that this future work aims at is that of retrieving

classes like mine relative to longitudinal data (short time series) and similarity measures

adapted to such time series. Meanwhile, clustering can also enable similarity-based queries for

86

time series data (Rafiei & Mendelzon, 1997). The time series consists of student assessment

scores and normalized gain measures, and thus admit the same kind of dimensionality

reduction and indexing (Keogh, Chakrabarti, Pazzani, & Mehrotra, 2001). Ultimately, the

goal is to develop a data-driven approach towards concept similarity in assessment data in

STEM education, as Madhyastha and Hunt could do to some degree for diagnostic

assessments (Madhyastha & Hunt, 2009).

Figure 7. Visualization of courses over time: tracking performance across classes in

multiple offerings (semesters and sections) in a longitudinal study.

 Future Work: Instructional Decision Support and Adaptive

Recommendation

Figure 7 includes a visualization of assessments across multiple courses taught at a

single institution, typically by a single instructor under whose login the data are grouped for

87

multiple semester combinations. The visualization subsystem also provides a facility for

drilling down by section. This provides the analytical setting for long-term objectives: to

progress from interactive visualization within this federated display to adaptive decision

support systems and tutoring systems (Brusilovsky & Millan, 2007).

 Conclusion

This chapter presented a data integration and information management system for

STEM education research. The functionality outlined in the example screen captures is

focused around the continuing research regarding schema inference and educational data

mining from student assessments. The key novel contributions with respect to data integration

are intelligent systems components for schema inference where columns and other elements

are unlabeled, nonstandard, and may include missing data. The novel contribution with respect

to analytics are the interactive information visualization components that both provide insights

into assessment data and generate requirements for similarity-based retrieval and comparative

evaluation of student performance.

88

Chapter 6 - Summary and Future Work

 Summary

Computer science undoubtedly plays a role in all disciplines and daily life, making

computational thinking a necessary 21st century learning skill. As a country, the United States

still lacks the support to embed this skill into the K-12 curriculum. This leaves CS and

education professionals room to only advocate, promote, and create. As part of the research in

this report, multiple curricula and pedagogy have been employed and tested in K-12 outreach

environments. These methods have shown effectiveness at fostering CT, yet maintain an

accessible level for educators who do not have a CS background. Even moving into

undergraduate education, this work shows the possibilities and benefits of incorporating CT

into other discipline like physics.

 Future Work

The work done in this dissertation has room to grow. Work done with the summer

STEM Institute will continue. To further the conclusions drawn from self-efficacy,

knowledge-based questions are going to be introduced to the camp lessons. These will be

introduced through trivia-like games to prevent the class from feeling like ‘school’ and more

like a ‘camp.’ Furthermore, adjustments will be made to some of the microcontroller

curriculum to further reduce cognitive load and to put more emphasis on CT apart from the

electronics. Student interviews will also be needed in the future to corroborate findings in

links or non-existing links between CT and PS. No changes are currently slated for Starbase;

however, the girl scout outreach event is going to be expanded to be a full day event to cover

more topics and will include brownies (2nd-3rd), juniors (4th-5th), and cadettes (6th-8th). CT

work done for undergraduate physics will also continue to be pursued. The work done in this

89

dissertation was only an experimental study to look at feasibility and possible ways of

approaching the incorporation of CT in physics. Moving forward, the direct programming

approach will still be used, but online lecture and support materials will be created to help and

support students as they learn the programming language. Rubrics will be created for the CT

problems to help link the effects of CT on students’ ability to learn physics. Work with

physics and the Data Explorer will also continue as the user feedback from the open beta

shapes and improves the visualizations, features, and user experience. Future research in the

Data Explorer includes automatic clustering of assessment data through topic modeling and

student responses, identifying students-like-mine so users can compare their students to similar

data across the entire site, and expansion of assessment support, including custom assessments

that can be made within the Data Explorer.

 Girl Scouts

This section discusses material used for a three-hour, artificial intelligence-themed

Scratch event for Girl Scout Juniors (4th and 5th grade), as well as observations made during

the event and future goals for the program. Underrepresented groups in STEM have been a

large focus in college recruitment, as well as outreach programs. Females in particular, are a

largely underrepresented group in computer science (Pivkina, Pontelli, Jensen, & Haebe, 2009;

Vekiri & Chronaki, 2008). Research has shown that girls cope equally well with computer

science as boys; however, self-efficacy in computers and value in computers is significantly

lower in females vs males (Vekiri & Chronaki, 2008). Some outreach programs, designed

specifically for young women, have had success in teaching computer science concepts

(Pivkina, Pontelli, Jensen, & Haebe, 2009; Denner, Werner, & Ortiz, 2012; Webb & Rosson,

2013). Webb and Rosso also designed an outreach program for young women and showed

90

that scaffolded examples are an efficient method for teach computational thinking to women

(Webb & Rosson, 2013). The Girl Scout event drew from a mixture scaffolding theory and

direct instruction, very similar to the work done at the summer STEM Institute as K-State.

Attendance consisted of 25 Girl Scout Juniors, as well as three Brownies (2nd and 3rd grade)

and one Daisy (Kindergarten and 1st grade). The younger scouts were brought by parents with

Juniors and were allowed to participate. Only five or six scouts mentioned they had used

Scratch before.

 Activities

The first lesson involved a guided exploration of Scratch. In this activity, students

were shown how to place, move, and delete blocks, how to move, draw, and use basic loops,

and how to modify, add, and delete Sprites and Backdrops. Scouts who had used Scratch

before, as well as those who were catching on much faster than others, were encouraged to

work ahead and explore what they could find in the language. After this introduction, scouts

participated in an activity to draw regular shapes similar to the activity outlined in (Bean,

Weese, Feldhausen, & Bell, 2015). At this time, the class was split into two groups. One went

on a guided tour of K-State’s computing cluster, Beocat, while the others worked on the shape

exercise.

Once the groups got to complete the program and the tour, the scouts participated in a

CS unplugged activity centered on artificial neural networks (ANNs). In this activity, students

were given a paper with segments of ten different pictures. Their task was to guess, solely on

their fragment, if a picture was a cat or a dog. Ten numbers were lined around the room with

everyone starting at one number in the beginning. If they guessed the picture correctly, they

moved up a number, if wrong, they moved down a number. This slowly introduced the basic

91

understanding of how the brain works. As the activity moved on, different groups started to

form that knew certain knowledge of cats and dogs (similar segments of the picture). In the

middle of the activity, the students are tricked by being shown a picture of a bear. This

initiates a discussion about how humans and computers are only able to make conjectures

based on current knowledge, and in this case, students were only given knowledge that they

were looking at a picture segment of a cat or a dog. At the end of the activity, there are

generally many smaller groups and a couple large groups. Discussion about how the larger

groups (generally the students who get segments of pictures with more details like a nose) are

more reliable in guessing if a picture is a cat or dog and that their vote carries more weight if

the vote for pictures was as a whole, rather than individually.

The theme of artificial intelligence was carried into the last activity, where scouts

programmed an AI in a game called Cat and Mouse. The lesson plan for this activity can be

found in the Appendix: Introduction to AI: Cat and Mouse Lesson Plans. Before scouts started

to program, they were asked what it means to be intelligent. While the most common answer

is “being smart,” it opens discussion about constructed knowledge, learning, planning, and

sensing. Scouts were then asked to link human intelligence to artificial intelligence. After the

opening discussion, scouts were directed through how to program a basic completed Cat and

Mouse game. Then they were prompted to openly discuss how they could improve the AI (the

cat) to make the game more interesting. The event was then wrapped up with the video from

Code.org entitled “What Most Schools Don’t Teach,” allowing a brief discussion on what

computer science can do for them as a career.

 Summary

92

Overall, this event was received way beyond what was originally planned. The girls,

as well as parents who stayed, were highly engaged and maintained that excitement throughout

the time they were there. Many scouts went above and beyond the activities by exploring what

they could do in Scratch to make the programs their own. One observation with the Brownies

and Daisy that attended was that they did not require any special attention to stay caught up in

the activities. This was unexpected, especially with the Daisy scout, although the younger

scouts did exhibit some shyness when compared to their older peers. Because this event went

over so well, a larger, full day workshop is being organized for 2017. The Girl Scouts of

America, especially the size of the organization, provides a great partnership to get girls

excited about STEM.

 Computational Thinking: Qualitative to Quantitative

Current work for this dissertation has centered on mostly qualitative analysis of CT

though self-efficacy. While self-efficacy has been shown to be an accurate measure for

computational thinking (Bell, 2014; Bean, Weese, Feldhausen, & Bell, 2015) and computer

programming (Ramalingam, LaBelle, & Wiedenbeck, 2004), this report proposes to combine

self-efficacy with quantitative analysis, such as static analysis of programs. The motivation

for this connection is that previous self-efficacy work (discussed in the Summer STEM

Institute 2015 chapter) showed that attitude surveys are not a reliable measurement for CT

when students have not had previous exposure to computer science. Students were

overconfident in their abilities in the pre-survey, leading to a net loss in the post-test after

being introduced to the topics. Some inconsistencies are also present in student answers from

within each survey and from pre to post, most likely due to confusion in language or not

understanding the question. With these observations in mind, the proposed research will use

93

quantitative analysis of student problem solving traces and programs. The hypothesis here is

that quantitative analysis will reveal students’ overconfidence and provide a basis for mapping

students’ actual ability throughout the course to students’ self-efficacy in the post-test. In

other words, this will most likely lead to opposing qualitative and quantitative results early in a

class, with quantitative results fluctuating as concepts are introduced and plateauing once the

concept is learned, and finally converging with post-test self-efficacy.

 Scratch to Blockly

Program logging and analysis, including compilation and programming process, is

present in current text-based programming literature, such as Blackbox (Altadmri & Brown,

2015), a data logging system from the popular IDE BlueJ used in CS0 and CS1 courses, and

CloudCoder (Spacco, et al., 2015), a web based programming exercise delivery system. With

these systems in mind, a translation from Scratch to Blockly is proposed. While Scratch is a

mature visual programming tool, it is not supported by mobile devices or iPads (a fairly

common device in K-12 classrooms). Blockly is developed using JavaScript which is cross

platform and runs well on mobile devices. While containing the basis for a lot of visual

programming language functionality, it does not provide similar sprite and animation

functionality that is present in Scratch and other popular visual based languages. Touch

Develop by Microsoft provides cross platform and mobile support, as well as sprite

functionality; however, after inspecting source code of both Blockly and Scratch, Blockly’s

code base was a better option for reskinning and tooling for the purposes of this research.

Blockly also implements blocks as a ‘toolbox.’ This makes it a great platform for not only

creating custom blocks, but also gives the ability to limit blocks, providing educators a way to

target CT concepts without distracting students with extraneous options. Once Scratch

94

functionality has been added into Blockly, a new layer will be added to allow fine-grained

logging. This will include user interactions with the Blockly interface (button clicks, opening

and closing of the block toolbox, switching views, etc.), and more importantly, logging block

placement, deletion, movement, and length of time between these actions. The overarching

goal of this data logger is to gain an understanding on how students solve programming

problems and to detect when they may be having difficulties with a particular concept. This

quantitative analysis will provide the basis for interpreting student self-efficacy, as well as a

potential predictor of performance.

The current development progress of this tool has been done by a group of senior

undergraduate CS students. While the tool has not been completed, the following are some of

the major features that have been implemented:

 Blocks have been skinned to look more like scratch. This gives it a more vibrant color

and a familiar feel.

 Motion, Pen (drawing), and Scratch control loop blocks have been added

 Basic Stage and Sprite functionality, as well as a console for program output

A major component missing are message blocks. These are used to communicate between

scripts and sprites in Scratch and are essential for a multithreaded program. Since Blockly

generates JavaScript from blocks and executes it within a sandboxed environment (unlike

Scratch which uses Adobe Flash), it will require some major improvements to its interpreter.

JavaScript is natively a single threaded programming language, so to execute a Blockly

program, the Blockly interpreter must share the execution environment with the web browser.

The proposed solution to increase the efficiency of Blockly’s execution is to implement a

scheduling policy, as well as execute blocks in chunks rather than one at a time. By also using

95

a timer, this will allow more execution time for Blockly (currently each block command is

queued and yields until the browser stack is empty) without starving the UI thread.

Once this functionality is complete, the Scratch to Blockly translation will be piloted in

the CS0 course at Kansas State University which currently uses Scratch as its programming

language. Self-efficacy will be collected using pre- and post-surveys at the beginning and end

of the semester, respectively. Data will be logged from the course programming assignments

and tracked throughout the semester. This data will be analyzed using a modified PECT

framework (Seiter & Foreman, 2013) to fit the programming assignments, as well as compared

to student course grades. Machine learning tools like regression models and Bayesian

networks will also be used with features generated from the modified PECT framework to

study whether student performance the course and CT can be predicted. To dive deeper in

understanding transfer and self-efficacy of CT, future work will also include studying the

move from block-based to text-based programming language (Weintrop & Wilensky, Using

Commutative Assessments to Compare Conecptual Understanding in Block-based and Text-

based Programs, 2015), which is also why Blockly was chosen as the base tool as it provides a

block to text-based language translation. This, as well as potential intelligent tutoring system

implementations, will be reserved for future work.

96

Chapter 7 - References

Adelfio, M. D., & Samet, H. (2013). Schema Extraction for Tabular Data on the Web. 39th

International Conference on Very Large Data Bases, (pp. 421-432).

Altadmri, A., & Brown, N. C. (2015). 37 Million Compilations: Investigating Novice

Programming Mistakes in Large-Scale Student Data. Proceedings of the 46th ACM

Technical Symposium on Computer Science Education - SIGCSE '15, (pp. 522-527).

Backer, A. (2007). Computational Physics Education with Python. Computing in Science &

Engineering, 9(3), 30-33.

Bandura, A. (1982). Self-Efficacy Mechanism in Human Agency. American Pyschologist,

37(2), 122-147.

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking : A Digital Age Skill for

Everyone. Learning & Leading with Technology, 5191, 20-23.

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is

Involved and What is the Role of the Computer Science Education Community ? ACM

Inroads, 2(1), 48-54.

Basawapatna, A., Repenning, A., & Koh, K. H. (2015). Closing The Cyberlearning Loop.

Proceedings of the 46th ACM Technical Symposium on Computer Science Education -

SIGCSE '15, (pp. 12-17).

Bean, N., Weese, J. L., Feldhausen, R., & Bell, R. (2015). Starting From Scratch: Developing

a Pre-Service Teacher Program in Computational Thinking. Frontiers in Education.

Bell, R. S. (2014). Low Overhead Methods for Improving Capacity and Outcomes in

Computer Science. Manhattan, KS: Kansas State University.

Bennett, V., Ioannidou, A., Repenning, A., Kyu Han, K., & Basawapatna, A. (2011).

Computational Thinking Patterns. American Educational Research Association.

Bliss, J., & Askew, M. (1996). Effective Teaching and Learning: Scaffolding Revisited.

Oxford Review of Education, 22(1), 37-62.

Blum, L., & Cortina, T. J. (2007). CS4HS: An Outreach Program for High School CS

Teachers. Proceedings of the 38th SIGCSE technical symposium on Computer science

education , (pp. 19-23).

Borcherds, P. (2007). Python: a language for computational physics. Computer Physics

Communications, 177, 199-201.

97

Bort, H., & Brylow, D. (2013). CS4Impact: measuring computational thinking concepts

present in CS4HS participant lesson plans. Proceeding of the 44th ACM technical

symposium on Computer science education.

Bostock, M., Ogievetsky, V., & Heer, J. (2001). D3: Data-Driven Documents. IEEE

Transactions on Visualization and Computer Graphics, 17(12), 2301-2309.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development

of computational thinking in interactive media design. Vancouver, BC, Canada:

American Educational Research Association.

Brennan, K., Balch, C., & Chung, M. (2014). Creative Computing. Harvard Graduate School

of Education.

Brusilovsky, P., & Millan, E. (2007). User Models for Adaptive Hypermedia and Adaptive

Educational Systems. In The Adaptive Web: Methods and Strategies of Web

Personalization (pp. 3-53). Berlin: Springer.

Buffum, P. S., Lobene, E. V., Frankosky, M. H., Boyer, K. E., Wiebe, E. N., & Lester, J. C.

(2015). A Practical Guide to Developing and Validating Computer Science Knowledge

Assessments with Application to Middle School. Proceedings of the 46th ACM

Technical Symposium on Computer Science Education - SIGCSE '15, (pp. 622-627).

Burke, Q., & Kafai, Y. B. (2010). Programming & Storytelling: Opportunities for Learngin

About Coding & Composition. Proceedings of the 9th International Conference on

Interaction Design and Children - IDC '10. Barcelona, Spain.

Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E., & Zhang, Y. (2008). Uncovering the

Relational Web. Proceedings of the 11th International Worksop on Web and

Databases.

Chonacky, N., & Winch, D. (2008). Integrating computation into the undergraduate

curriculum: A vision and guidelines for future developments. American Journal of

Physics, 76(4), 327-333.

Chonacky, N., & Winch, D. (2017, March 8). PICUP. Retrieved from Compadre:

http://www.compadre.org/PICUP/webdocs/About.cfm

Chuang, H.-C., Hu, C.-F., Wu, C.-C., & Lin, Y.-T. (2015). Computational Thinking

Curriculum for K-12 Education-A Delphi Survey. International Conference on

Learning and Teaching in Computing and Engineering (pp. 213-214). IEEE Computer

Society.

Code.org. (2015). Code.org. Retrieved from https://code.org

Code.org. (2017, 03 28). Dig Deeper into AP Computer Science. Retrieved from Code.org:

https://code.org/promote/ap

98

Code.org. (2017, 3 28). Promote Computer Science. Retrieved from Code.org:

https://code.org/promote/ks

College Board. (2016). AP Computer Science Principles Including the Curriculum

Framework. New York, NY: CollegeBoard. Retrieved 04 02, 2017, from

https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-

principles-course-and-exam-description.pdf

Dede, C., Mishra, P., & Voogt, J. (2013). Working Group 6: Advancing computational

thinking in 21 st century learning. EDU Summit 2013 TWG6.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:

Can they be used to measure understanding of computer science concepts? Computers

& Education, 58(1), 240-249.

Despain, W. (2013). 100 Principles of Game Design. New Riders.

Doan, A., Domingos, P., & Halevy, A. (2003). Learning to Match the Schemas of Data

Sources: A Multistrategy Approach. Machine Learning, 50(3), 279-301.

Dukeman, A., Caglar, F., Shekhar, S., Kinnebrew, J., Biswas, G., Fisher, D., & Gokhale, A.

(2013). Teaching computational thinking skills in C3STEM with traffic simulation. In

H. A., & P. G., Human-Computer Interaction and Knowledge Discovery in Complex,

Unstructured, Big Data. Lecture Notes in Computer Science. (pp. 350-357). Berlin,

Heidelberg: Springer.

Faber, M., Unfried, A., Corn, J., & Townsend, L. W. (2012). Student Attitudes toward STEM:

The Development of Upper Elementary School and Middle / High School Surveys.

Friday Institute for Educational Innovation.

Falkner, K., Vivian, R., & Falkner, N. (2015). Teaching Computational Thinking in K-6: The

CSER Digital Technologies MOOC. Australian Computing Educaiton Conference, 27-

72.

Fang, J., Mitra, P., Tang, Z., & Giles, C. (2012). Table Header Detection and Classification.

Proceedings of the National Conference on Artificial Intelligence, (pp. 599-605).

Farris, A. V., & Sengupta, P. (2014). Perspectival Computational Thinking for Learning

Physics : A Case Study of Collaborative Agent-Based Modeling. Proceedings of the

International Conference of the Learning Sciences, (pp. 1102-1106).

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., . . . Waite, R. (2013).

Assessment of Computer Science Learning in a Scratch-Based Outreach Program.

Proceeding of the 44th ACM technical symposium on Computer science education -

SIGCSE '13, (pp. 371-376).

Fraser, N. (2015). Retrieved from Blockly: https://developers.google.com/blockly/

99

Giannakopoulos, A. (2012). Problem solving in academic performance: A study into critical

thinking and mathematics content as contributors to successful application of

knowledge and subsequent academic performance. unpublished Ph.D. Thesis,

University of Johannesburg, South Africa.

Google. (2016, April 1). Computational Thinking Concepts Guide. Retrieved from Google for

Education: https://docs.google.com/document/d/1i0wg-

BMG3TdwsShAyH_0Z1xpFnpVcMvpYJceHGWex_c/edit#heading=h.ld02iaxpskpn

Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of Inquiry-based

Learning on Students’ Science Literacy Skills and Confidence. International Journal

for the Scholarship of Teaching and Learning, 3(2).

Green, A. J., & Gilhooly, K. (2005). Problem Solving. In N. Braisby, & A. Gellatly, Cognitive

Pychology. Oxford: Oxford University Press.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the

Field. Educational Researcher, 42(1), 38-43.

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4-7.

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and Achievement in

Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark

(2006). Educational Psychologist, 42(2), 99-107.

Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. (2001). Dimensionality Reduction for

Fast Similarity Search in Large Time Series Databases. Knowledge and Information

Systems, 3(3). doi:10.1007/PL00011669

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During

Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery,

Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist,

41(2), 75-86.

Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing – A tool for advancing electronic

prototyping for designers. Proceedings of the 3rd International Conference on

Tangible and Embedded Interaction - TEI '09 (pp. 351-358). New York, NY, USA:

ACM Press.

Koh, K. H., Basawapatna, A., Bennett, V., & Reppening, A. (2010). Towards the Automatic

Recognition of Computational Thinking for Adaptive Visual Language Learning. IEEE

Symposium on Visual Languages and Human-Centric Computing, (pp. 59-66).

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing

one's own incompetence lead to inflated self-assessments. Journal of personality and

social psychology, 77(6), 1121-1134.

100

Kuphaldt, T. R. (2014, Feb). Lessons in Electric Circuits. Retrieved 2016, from

allaboutcircuits: http://www.allaboutcircuits.com/textbook/

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah,

S. (2016). Using Robotics and Game Design to Enhance Children’s Self- Efficacy,

STEM Attitudes, and Computational Thinking Skills. Journal of Science Education

and Technology, 25(6), 860-876.

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to Program: Gender

Differences and Interactive Effects of Students' Motivation, Goals, and Self-Efficacy

on Performance. Proceedings of the 2016 ACM Conference on International

Computing Education Research (ICER '16) (pp. 211-220). New York, NY, USA:

ACM.

Madhyastha, T., & Hunt, E. (2009). Mining Diagnostic Assessment Data for Concept

Similarity. Educational Data Mining, 1(1), 72-91.

Mishra, P., & Yadav, A. (2013). Of Art and Algorithms: Rethinking Technology and

Creativity in the 21st Century. Tech Trends, 57(3), 10-14.

Mohr, C., & Mueller, D. (2012). STARBASE Minnesota long-term follow-up study STARBASE

Minnesota long-term follow-up study. Wilder Research.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, Context, and Worked

Examples in Learning Computing Problem Solving. Proceedings of the eleventh

annual International Conference on International Computing Education Research -

ICER '15 (pp. 21-29). Omaha, NE: ACM.

N. G. (2010). Common Core State Standards. Washington, DC: Authors.

Nagy, G., Seth, S., Jin, D., Embley, D. W., Machado, S., & Krishnamoorthy, M. (2011). Data

Extraction from Web Tables: the Devil is in the Details. Proceedings of the 20011

International Conference on Document Analysis and Recognition, (pp. 242-246).

National Academy of Sciences. (2010). Report of a Workshop on The Scope and Nature of

Computational Thinking. National Academies Press.

Neilsen, M. L., Shaffer, J., & Johnson, N. (2015). Time Lapse Photography for K-12

Education. Int'l Frontiers in Education: CS and CE, 201-207.

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States.

Washington, DC: The National Academies Press.

Oliphant, T. E. (2007). Python for Scientific Computing. Computing in Science &

Engineering, 9(3), 10-20.

P21 Partnership for 21st Century Learning. (2015, November). Retrieved from

http://www.p21.org

101

Papastephanou, M., & Angeli, C. (2007). CT Beyond Skill. Educational Philosophy and

Theory, 39(6), 604-621.

Papert, S. A. (1980). Mindstorms: Children, Computers, And Powerful Ideas. New York:

Basic Books.

Pivkina, I., Pontelli, E., Jensen, R., & Haebe, J. (2009). Young Women in Computing: Lessons

Learned. SIGCSE Bull., 1(41), 509-513.

Plass, J. L., Moreno, R., & Brunken, R. (2010). Cognitive Load Theory. Cambridge University

Press.

Polya, G. (1973). How I solve it: A new aspect of mathematical method. New Jersey: Princeton

University Press.

Rafiei, D., & Mendelzon, A. (1997). Similarity-Based Queries for Time Series Data.

Proceedings of thje ACM SIGMOD International Conference on Management of Data,

(pp. 13-24).

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and Mental Models in

Learning to Program. ACM SIGCSE Bulletin, 36(3), 171-175.

Rao, R., & Card, S. K. (1994). The Table Lens: Merging Graphical and Symbolic

Representations in an Interactive Focus+Context Visualization for Tabular

Information. Proceedings of the SIGCHI Concerence on Human Factors in Computing

Systems, (pp. 318-322).

Repenning, A., Webb, D. C., Kho, K., Nickerson, H., Miller, S. B., Brand, C., . . . Repenning,

N. (2015). Scalable Game Design: A Strategy to Bring Systemic Computer Science

Education to Schools though Game Design and Simulation Creation. ACM

Transactions on Computing Education, 1-31.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., . . .

Kafai, Y. (2009). Scratch: Programming for All. Communications of the ACM, 52(11),

60-67.

Roos, K. (2006). An Incremental Approach to Computational Physics Education. Computing

in Science & Engineering, 8(5), 44-50.

Royal Society. (2012). Shut Down or Restart? The way Forward for Computing in UK

Schools. The Royal Academy of Engineering. Retrieved from

https://royalsociety.org/topics-policy/projects/computing-in-schools/report/

s. G. (2015). Snowman Gaming: Home of Good Game Design. Retrieved from YouTube:

https://www.youtube.com/channel/UCmY2tPu6TZMqHHNPj2QPwUQ

Savery, J. R. (2009). Overview of problem-based learning: Definitions and Distinctions.

Interdisciplinary Journal of Problem based Learning, 1(1), 269-282.

102

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-Cunniff, D., . . . Verno, A.

(2011). CSTA K-12 Computer Science Standards. New York: Association for

Computing Machinery. Retrieved March 31, 2016, from

http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Seehorn, D., Pirmann, T., Lash, T., Batista, L., Ryder, D., Sedgwick, V., . . . Uche, C. (2016).

Interim CSTA K-12 Computer Science Standards. New York, NY: Association for

Computing Machinery.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational

thinking of primary grade students. Proceedings of the ninth annual international ACM

conference on International computing education research - ICER '13, (pp. 59-66).

Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015).

Programming in K-12 Science Classrooms: Introducing students to visual

programming as a pathway to text-based programming. Communications of the ACM,

58(11), 33-35.

Sengupta, P., Kinnebrew, J. S., Biswas, G., & Clark, D. (2013). Integrating computational

thinking with K-12 science education using agent-based computation: A theoretical

framework. Education and Information Technologies, 18(2), 351-380.

Seoane-Pardo, A. M. (2016). Computational thinking beyond STEM: an introduction to

“moral machines” and programming decision making in Ethics classroom. Proceedings

of the Fourth International Conference on Technological Ecosystems for Enhancing

Multiculturality - TEEM '16 (pp. 37-44). Salamanca, Spain: ACM.

Snow, E., Haertel, G., Fulkerson, D., Feng, M., & Nichols, P. (2010). Leveraging Evidence-

Centered Assessment Design in Large-Scale and Formative Assessment Practices.

Denver, CO: National Council on Measurement in Education.

Sorour, S. E., Goda, K., & Mine, T. (2015). Correlation of Topic Model and Student Grades

Using Comment Data Mining. Proceedings of the 46th ACM Technical Symposium on

Computer Science Education - SIGCSE '15, (pp. 441-446).

Spacco, J., DennyPaul, Richards, B., Babcock, D., Hovemeyer, D., Moscola, J., & Duvall, R.

(2015). Analyzing Student Work Patterns Using Programming Exercise Data.

Proceedings of the 46th ACM Technical Symposium on Computer Science Education -

SIGCSE '15, (pp. 18-23).

Spradling, C., Linville, D., Rogers, M., & Clark, J. (2015). Are MOOCs an appropriate

pedagogy for training K-12 teachers computer science concepts? Computing Sciences

in Colleges, 30(5), 115-125.

Suchanek, F., & Weikum, G. (2013). Knowledge Harvesting in the Big-Data Era. Proceedings

of the ACM SIGMOD International Conferance on Management of Data, (pp. 933-

938).

103

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value is Not Enough.

Journal of Graduate Medical Education, 4(3), 279-282.

Taylor, J., & King, B. (2006). Using Computational Methods to Reinvigorate an

Undergraduate Physics Curriculum. Computing in Science & Engineering, 8(5), 38-43.

Vaughn, L. (2008). The Power of Critical Thinking: Effective Reasoning about Ordinary and

Extraordinary Claims. N.Y.: Oxford University Press.

Vekiri, I., & Chronaki, A. (2008). Gender issues in technology use: Perceived social support,

computer self-efficacy and value beliefs, and computer use beyond school. Computers

and Education, 51(3), 1392-1404.

Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., . . . Wu, C. (2011).

Reovering Semantics of Tables on the Web. Proceedings of the 37th International

Conference on Very Large Data Bases, (pp. 528-538).

Voskoglou, M. G., & Buckley, S. (2012, September). Problem Solving and Computers in a

Learning Environment. Egyptian Computer Science Journal, 36(4), 28-46.

Wang, Y., & Chiew, V. (2010). On the cognitive process of human problem solving. Cognitive

Systems Research, 11(1), 81-92.

Webb, H. C., & Rosson, M. B. (2013). Using Scaffolded Examples to Teach Computational

Thinking Concepts. Proceeding of the 44th ACM technical symposium on Computer

science education - SIGCSE '13, (pp. 95-100).

Weese, J. L. (2016). Mixed Methods for the Assessment and Incorporation of Computational

Thinking in K-12 and Higher Education . Proceedings of the 12th International

Computing Education Research Conference (ICER 2016). Melbourne, VIC, Australia.

Weese, J. L., & Feldhausen, R. (2017). STEM Outreach: Assessing Computational Thinking

and Problem Solving. Proceedings of the 124th American Society for Engineering

Education Annual Conference and Exposition (ASEE 2017). Columbus, OH.

Weese, J. L., & Hsu, W. H. (2016). Work in Progress: Data Explorer – Assessment Data

Integration, Analytics, and Visualization for STEM Education Research. Proceedings

of the 123rd Annual American Society for Engineering Education Annual Conference

and Exposition (ASEE 2016). New Orleans, LA, USA.

Weese, J. L., Feldhausen, R., & Bean, N. H. (2016). The Impact of STEM Experiences on

Student Self-Efficacy in Computational Thinking. Proceedings of the 123rd American

Society for Engineering Education Annual Conference and Exposition (ASEE 2016).

New Orleans, LA, USA,.

Weintrop, D., & Wilensky, D. (2015). Using Commutative Assessments to Compare

Conecptual Understanding in Block-based and Text-based Programs. Proceedings of

104

the eleventh annual International Conference on International Computing Education

Research - ICER '15, 101-110.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining Computational Thinking for Mathematics and Science Classrooms. Journal

of Science Education and Technology, 25(1), 127-147.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Education Fostering Computational

Literacy in Science Classrooms: An agent-based approach to integrating computing in

secondary-school science courses. Communications of the ACM, 57(8), 24-28.

Wilson, A., Hainey, T., & Connolly, T. (2012). Evaluation of Computer Games Developed by

Primary School Children to Gauge Understanding of Programming Concepts.

Proceedings of the European Conference on Games Based Learning, (pp. 549-558).

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational Thinking and Thinking about Computing. 22nd IEEE

International Parallel and Distributed Processing Symposium (pp. 3717-3725). The

Royal Society.

Wing, J. M. (2011, March 6). Research Notebook: Computational Thinking--What and Why?

(J. Togyer, Ed.) The Link Magazine. Retrieved March 29, 2016, from

http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Wu, H.‐K., & Hsieh, C.‐E. (2006). Developing Sixth Graders’ Inquiry Skills to Construct

Explanations in Inquiry‐based Learning Environments. International Journal of

Science Education, 28(11), 1289-1313.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational

Thinking in Elementary and Secondary Teacher Education. ACM Transactions on

Computing Education, 14(1), 1-16.

Zhang, Z. (2014). Towards Efficient and Effective Semantic Table Interpretation. The Sematic

Web - ISWC, 487-502.

105

Appendix A - STEM Institute 2015 Survey

 Student Survey

 A * notes questions inspired by or used from (Faber, Unfried, Corn, & Townsend,
2012), and ** notes questions inspired by or used from (Bean, Weese, Feldhausen, &
Bell, 2015).

 Background – STEM Camp

0 Which grade will you be in
this coming school year?

5th 6th 7th 8th 9th

1 How many previous
summers have you
attended the STEM camp?

0 1 2 3 4

1.1 What STEM activities did
you participate in?

Free text

2 Which classes are you
taking during this STEM
camp?

Four drop down boxes or a list of
check boxes for the sessions:

----5-6th grade ------

CSI: Undercover

Electronic Textiles

GPS and Secret Hideouts

Hollywood Science

Mission to Mars

Monster Storms

Outdoor Biology

Robotics 1 at STARBASE

Robotics 2 at STARBASE

Rockin’ and Rollin’ Coasters

Solar Construction

Science of Sports

Vet Med

Wind Energy

-----7-9th grade------

3D Printing

Chemistry of Candy

City of Minecraft

Exploring Drone
Technology

Feed Your Head
with Tech Ed

Flour, Food, and
Fido

Need for Speed

Game Design

106

3 Which classes have you
already taken during this
STEM camp?

Same as above question.

4 Have you participated in
other STEM camps,
groups, or activities
outside of this program?

Yes No

4.1 If so, please list. Free text

 Background – Computer
Technology

5 Please check all that apply
with the location
associated. Have you …

5.1 participated in the hour of
code?

School
Activity

In the
Classroom

Home Outside
Event

Other

5.2 programmed using
Scratch?

School
Activity

In the
Classroom

Home Outside
Event

Other

5.3 programmed using
Blockly?

School
Activity

In the
Classroom

Home Outside
Event

Other

5.4 programmed using Touch
Develop?

School
Activity

In the
Classroom

Home Outside
Event

Other

5.5 programmed using a text
based language?

School
Activity

In the
Classroom

Home Outside
Event

Other

5.6 programmed using
languages not listed
above?

School
Activity

In the
Classroom

Home Outside
Event

Other

 Background – Math Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly
Agree

6 *Math has been my worst
subject.

7 *I would consider
choosing a career that
uses math.

8 *I can handle most
subjects well, but I cannot
do a good job with math.

107

9 I can apply math concepts
to other subjects.

10 I would consider a career
in math.

 Background – Science Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly
Agree

11 *I am sure of myself when
I do science.

12 *I would consider a career
in science.

13 *I expect to use science
when I get out of school.

14 *I know I can do well in
science.

15 *I can handle most
subjects well, but I cannot
do a good job with
science.

 Background – Engineering
and Technology

Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly
Agree

16 *I like to imagine creating
new things.

17 *If I learn engineering,
then I can improve things
that people use every day.

18 *I would like to use
creativity and innovation
in my future work.

19 *Knowing how to use
math and science together
will allow me to invent
useful things

20 *I believe I can be
successful in a career in
engineering or technology.

108

 Background – Leadership
and Group ….. (21st
Century Learning**)

Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly
Agree

21 *I am confident I can lead
others to accomplish a
goal.

22 *I am confident I can work
well with students with
different backgrounds and
opinions.

23 *I am confident I can make
changes when things do
not go as planned.

24 *I am confident I can
manage my time wisely
when working on my own.

25 I am confident I can
manage my time wisely
when working in a group.

 Programing – I can write a
computer program which
…

0 25 50 75 100

26 **Executes a step-by-step
sequence of commands

27 **Uses loops to repeat
commands

28 **Responds to events like
pressing a key on the
keyboard

29 **Does more than one
thing at the same time

30 **Only executes
commands when a specific
condition is met

109

31 **Perform math
operations like addition
and subtraction

32 Perform Boolean
operations like 5 < 10 < 15

33 **can store, update, and
retrieve values

34 **can ask for input from
the user

 Programing – When
creating a computer
program I …

0 25 50 75 100

35 **Make improvements
one step at a time, and
work new ideas in as I
have them

36 **run my program
frequently to make sure it
does what I want, and fix
any problems I find

37 **share my programs with
others and look at others’
programs for ideas

38 **break my program into
multiple parts to carry out
different actions

 Teacher Survey

 A * notes questions inspired by or used from (Faber, Unfried, Corn, & Townsend, 2012),
and ** notes questions inspired by or used from (Bean, Weese, Feldhausen, & Bell,
2015).

 Background –
STEM Camp

110

0 Check those that
apply: I am a …

College
Student

Pre-
Service
Teacher

Primary
Teacher

Secon
dary
Teach
er

Collegiate
Instructor
/Professor

Administ
rator

1 Is this your first
time teaching at
the summer STEM
camp?

Yes No

1.
1

If not, how many
previous summers
have you taught?

1 2 3 4 5

1.
2

What STEM
activities did you
teach?

Free
text?

2 Which classes are
you teaching
during this STEM
camp?

Four drop down boxes or a list of check
boxes for the sessions:

----5-6th grade ------

CSI: Undercover

Electronic Textiles

GPS and Secret Hideouts

Hollywood Science

Mission to Mars

Monster Storms

Outdoor Biology

Robotics 1 at STARBASE

Robotics 2 at STARBASE

Rockin’ and Rollin’ Coasters

Solar Construction

Science of Sports

Vet Med

Wind Energy

-----7-9th grade------

3D Printing

Chemistry of Candy

City of Minecraft

Exploring Drone
Technology

Feed Your Head with
Tech Ed

Flour, Food, and Fido

Need for Speed

Game Design

3 Which classes have
you already taught
during this STEM
camp?

Same as above question.

4 Have you
participated in
other STEM

Yes No

111

camps, groups, or
activities outside
of this program?

4.
1

If so, please list. Free text

 Background –
Computer
Technology

5.
1

participated in the
hour of code?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
2

programmed using
Scratch?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
3

programmed using
Blockly?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
4

programmed using
Touch Develop?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
5

programmed using
a text based
language?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
6

programmed using
languages not
listed above?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

5.
1

participated in the
hour of code?

School
Activity

In the
Classroom

Home Outsid
e
Event

Other

 Background –
Teaching

Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly Agree

6 I am comfortable
in teaching Math.

7 I am comfortable
in teaching
Science.

112

8 I am comfortable
in teaching
Technology.

9 I am comfortable
in teaching
Engineering.

10 Which areas do
you teach?

11 Which areas would
you like to teach?

 Background –
Engineering and
Technology

Strongly
Disagree

Disagree Neither
Agree or
Disagree

Agree Strongly Agree

12 *If I learn
engineering and
technology, then I
can I integrate it
into my classroom.

13 *I would like to
use creativity and
innovation in my
classroom.

14 *Knowing how to
use math and
science together
will allow me to
better integrate
engineering and
technology into
my classroom.

 Background –
Leadership and
Group ….. (21st
Century
Learning**)

0 25 50 75 100

15 *I am confident I
can lead others to
accomplish a goal.

113

16 *I am confident I
can teach students
with different
backgrounds and
opinions.

17 *I am confident I
can make changes
when things do
not go as planned.

18 *I am confident I
can manage my
time wisely when
working on my
own.

19 I am confident I
can manage my
time wisely when
working in a
group.

 Teaching –
Programming

0 25 50 75 100

20 **I feel confident
writing simple
programs for the
computer.

21 **I know how to
teach
programming
concepts
effectively.

22 **I can promote a
positive attitude
towards
programming in
my students.

23 **I can guide
students in using
programming as a
tool while we

114

explore other
topics.

24 **I feel confident
using
programming as
an instructional
tool within my
classroom.

25 **I can adapt
lesson plans
incorporating
programming as
an instructional
tool to meet my
students' learning
level.

26 **I can create
original lesson
plans
incorporating
programming as
an instructional
tool.

27 **I can identify
how programming
concepts relate to
Common Core
Standards.

28 **I can identify
how programming
concepts relate to
Next Generation
Science Standards.

Appendix B - STEM Institute 2016 Survey

 ** notes questions inspired by or used from (Bean, Weese, Feldhausen, & Bell, 2015).

 Background – STEM

Institute

115

0 What is your gender? Male Female

1 Which grade were you in

at the time you enrolled

for the STEM Institute

5th 6th 7th 8th 9th

2 How many previous

summers have you

attended the STEM

Institute?

0 1 2 3 4

2.1 What STEM activities

did you participate in?

Four drop down boxes or

a list of check boxes for

the sessions:

----5-6th grade ------

CSI: Undercover

Electronic Textiles

GPS and Secret Hideouts

Hollywood Science

Mission to Mars

Monster Storms

Outdoor Biology

Robotics 1 at STARBASE

Robotics 2 at STARBASE

Rockin’ and Rollin’

Coasters

Solar Construction

Science of Sports

Vet Med

Wind Energy

-----7-9th grade------

3D Printing

Chemistry of Candy

City of Minecraft

Exploring Drone Technology

Feed Your Head with Tech

Ed

Flour, Food, and Fido

Need for Speed

Game Design

3 Which classes are you

taking this year at the

STEM Institute?

Four drop down boxes or a list

of check boxes for the sessions:

----5-6th grade ------

Biomechanical Engineering

CSI: Uncovering the Truth

Electronic Textiles

Hollywood Science

Monster Storms

Robotics 1 at STARBASE

Robotics 2 at STARBASE

Rockin’ and Rollin’ Coasters

-----7-9th grade------

3D Printing

Chemistry of Candy

City of Minecraft

Engineering with

Nanotechnology

Exploring Drone

Technology

Fill Your Toolbox

Introduction to Passive

Architecture

116

Rube Goldberg Challenge

Simulating the Martian

Solar Construction

Science of Sports

Vet Med

Wind Energy

Grain and Bakery

Science

Mighty Micro

Controllers

Robotic Design and

Programming

4 Have you participated in

other STEM camps,

groups, or activities

outside of this program?

Yes No

4.1 If so, please list. Free text

 Background – Computer

Technology

5 Please check all that

apply with the location

associated. Have you …

At School At Home At a STEM camp,

group or activity

Other

 participated in the hour

of code?

 programmed using

Scratch?

 programmed using

Blockly?

 programmed using

Touch Develop?

 programmed using a text

based language?

 programmed using

languages not listed

above?

 When solving a problem

I …

Strongly

Disagree

Disagree Not

Sure

Agree Strongly

Agree

 Create a list of steps to

solve it.

 Use math operations.

 Try to simplify the

problem by ignoring

117

details that are not

needed.

 Look for patterns in the

problem.

 Break the problem into

smaller parts.

 Look at how information

can be collected, stored,

and analyzed to help

solve the problem.

 Break problem into parts

to be solved by different

people at the same time.

 Create a solution where

steps can be repeated

 Create a solution where

certain steps are only

done when a condition is

met

 Programing – I can write

a computer program

which …

Strongly

Disagree

Disagree Not

Sure

Agree Strongly

Agree

 **runs a step-by-step

sequence of commands

 **Uses loops to repeat

commands

 **Responds to events

like pressing a key on the

keyboard

 **Does more than one

thing at the same time

 **Only executes

commands when a

specific condition is met

 **Perform math

operations like addition

and subtraction

118

 Uses messages to

communicate with

different parts of the

program

 **can store, update, and

retrieve values

 **can ask for input from

the user

 Programing – When

creating a computer

program I …

Strongly

Disagree

Disagree Not

Sure

Agree Strongly

Agree

 **Make improvements

one step at a time, and

work new ideas in as I

have them

 **run my program

frequently to make sure it

does what I want, and fix

any problems I find

 **share my programs

with others and look at

others’ programs for

ideas

 **break my program into

multiple parts to carry

out different actions

Appendix C - Starbase Pre-test

1. What is the first step in the engineering design process?
A. Create a prototype

B. Choose the best solution

C. Define the problem

D. Select the best Computer-Aided Design (CAD) software to use

2.

119

Based on the graph above, which prediction is the most logical for the reaction
shown?

A. The temperature of Chemical “A” and Chemical “B” will both increase.

B. The temperature of Chemical “A” will increase; Chemical “B” will decrease.

C. The temperature of Chemical “A” will decrease; Chemical “B” will remain

constant.

D. The temperature of Chemical “A” will decrease; Chemical “B” will increase.

3. When measuring the volume (or amount) of a liquid, what standard unit of
measurement would you use?

A. Liter

B. Gram

C. Celsius

D. Meter

120

4. Which of the following statements is NOT true about air?

A. Our air is made up of mostly oxygen.

B. Air takes up space.

C. Air has weight and mass.

D. Air can easily change its shape, be separated, poured, and flows; therefore, it

is a fluid.

5. Which of the following statements is NOT true about the Periodic Table of
Elements?

A. It is a list of all the chemical elements found in our universe.

B. The elements are arranged in alphabetical order.

C. Everything we know of is made of some combination of the elements on the

periodic table.

D. It is a way of organizing the elements based on their properties.

6. A scientist is studying an object on the nanoscale with a scanning electron
microscope. Objects on the nanoscale measure 1 to 100 nanometers in size.
1 nanometer = 10 –9 meter. Which object would the scientist be viewing?

A. A stick of gum

B. The width of a DNA helix

C. A human hair

D. A dust mite

7. Which of the following would be a good reason to use latitude and longitude
coordinates?

A. Find a specific point or location

B. Analyze the weather pattern of a region

C. Determine the terrain of an area

D. Determine the depth of a canyon

8. One carbon atom (C) and two oxygen atoms (O) chemically bond together to form
carbon dioxide (CO2). CO2 is best described as…

A. a nucleus.

B. a compound or compound molecule.

C. an atom.

D. an element.

121

9. Examine the bar graph below. Determine which two schools combined had one
fewer Eggbert survivor than Hillsdale Elementary School.

A. Lincoln and Skyview

B. Pinegrove and Skyview

C. Lincoln and Pinegrove

D. Skyview and Hillsdale

10. Which of the following is NOT a chemical reaction, but rather is a physical
change?

A. Baking a cake

B. Mixing two compounds together producing bubbles

C. Freezing water

D. Burning paper

11. At sea level air presses down 14.7 pounds on every square inch of our bodies.
The reason we don’t feel this pressure is…

0

1

2

3

4

5

6

7

8

9

10

Lincoln Hillsdale Pinegrove Skyview

Eggbert Results

Survivors

Elementary Schools

Number
of

Eggberts

122

A. the air is thinner closer to the ground than up in space.

B. the atmosphere cushions the weight of the air.

C. our bodies push out 14.7 pounds on every square inch to equalize the

pressure.

D. we are in a building so we don’t feel it.

12. If you launched three similar rockets, using the same force, which rocket would
go the highest?

A. The rocket weighing 50 grams goes the highest.

B. The rocket weighing 100 grams goes the highest.

C. The rocket weighing 150 grams goes the highest.

D. They all go the same height.

13. Which of the following Newton’s Law of Motion makes it important to wear a seat
belt?

A. Newton’s Law of Motion which explains that the greater the mass of an object,

the greater the force needed to accelerate it.

B. Newton’s Law of Motion (Inertia) which explains that an object in motion will

stay in motion unless acted upon by an outside force.

C. Newton’s Law of Motion which explains that for every action there is an equal

and opposite reaction.

D. None of the Above

14. One reason an airplane is able to produce lift is because the air moving across the
top of the wing…

123

A. exerts more pressure on the wing than the air moving along the bottom.

B. exerts the same amount of pressure on the wing as air moving along the

bottom.

C. exerts less pressure on the wing than the air moving along the bottom.

D. does not exert any pressure on the wing.

15. When you sprain an ankle, you need to apply an activated cold compress to
relieve the swelling. Which of these does the activated cold compress produce?

A. a hydrophobic reaction

B. an endothermic reaction

C. an exothermic reaction

D. a hydrophilic reaction

16. Which of the following machines is NOT a robot?

A. Television digital video recorder (DVR)

B. da Vinci Surgical System

C. Electric pencil sharpener

D. Dimension 3-D printer

17. Two boats are heading upstream and water is flowing downstream. Based on the
Bernoulli Principle, fast moving water between the boats will cause the boats to...

A. move further apart.

B. come closer together.

C. continue on the same path.

D. none of the above

18. Which point is located at the coordinates (5, -5)?

1 2 3 4 5 6
-1

124

A. A

B. B

C. C

D. D

19. In which way would an engineer most likely use a Computer-Aided Design (CAD)
program?

A. To write a proposal for a project

B. To determine the cost of labor for a building project

C. To design a bridge

D. To communicate with other engineers via email

20. H2O can exist in several states of matter. In which form do H20 molecules have
the most kinetic energy or motion?

A. Ice

B. Water

C. Steam

D. Snow

21. Right now,

A. I enjoy math.

B. I think math is okay.

C. I don’t enjoy math.

22. Right now,
 A. I enjoy science.
 B. I think science is okay.
 C. I don’t enjoy science.

23. Right now,
 A. I enjoy technology.
 B. I think technology is okay.
 C. I don’t enjoy technology

-2

-3

-4

-5

-6

C D

B A

125

Appendix D - Starbase Post-test

1. What is the first step in the engineering design process?
E. Create a prototype

F. Choose the best solution

G. Define the problem

H. Select the best Computer-Aided Design (CAD) software to use

2.

Based on the graph above, which prediction is the most logical for the reaction
shown?

E. The temperature of Chemical “A” and Chemical “B” will both increase.

F. The temperature of Chemical “A” will increase; Chemical “B” will decrease.

G. The temperature of Chemical “A” will decrease; Chemical “B” will remain

constant.

H. The temperature of Chemical “A” will decrease; Chemical “B” will increase.

126

3. When measuring the volume (or amount) of a liquid, what standard unit of
measurement would you use?

E. Liter

F. Gram

G. Celsius

H. Meter

4. Which of the following statements is NOT true about air?

E. Our air is made up of mostly oxygen.

F. Air takes up space.

G. Air has weight and mass.

H. Air can easily change its shape, be separated, poured, and flows; therefore, it

is a fluid.

5. Which of the following statements is NOT true about the Periodic Table of
Elements?

E. It is a list of all the chemical elements found in our universe.

F. The elements are arranged in alphabetical order.

G. Everything we know of is made of some combination of the elements on the

periodic table.

H. It is a way of organizing the elements based on their properties.

6. A scientist is studying an object on the nanoscale with a scanning electron
microscope. Objects on the nanoscale measure 1 to 100 nanometers in size.
1 nanometer = 10 –9 meter. Which object would the scientist be viewing?

E. A stick of gum

F. The width of a DNA helix

G. A human hair

H. A dust mite

7. Which of the following would be a good reason to use latitude and longitude
coordinates?

127

E. Find a specific point or location

F. Analyze the weather pattern of a region

G. Determine the terrain of an area

H. Determine the depth of a canyon

8. One carbon atom (C) and two oxygen atoms (O) chemically bond together to form
carbon dioxide (CO2). CO2 is best described as…

E. a nucleus.

F. a compound or compound molecule.

G. an atom.

H. an element.

9. Examine the bar graph below. Determine which two schools combined had one
fewer Eggbert survivor than Hillsdale Elementary School.

E. Lincoln and Skyview

F. Pinegrove and Skyview

G. Lincoln and Pinegrove

H. Skyview and Hillsdale

10. Which of the following is NOT a chemical reaction, but rather is a physical
change?

0

1

2

3

4

5

6

7

8

9

10

Lincoln Hillsdale Pinegrove Skyview

Eggbert Results

Survivors

Elementary Schools

Number
of

Eggberts

128

E. Baking a cake

F. Mixing two compounds together producing bubbles

G. Freezing water

H. Burning paper

11. At sea level air presses down 14.7 pounds on every square inch of our bodies.
The reason we don’t feel this pressure is…

E. the air is thinner closer to the ground than up in space.

F. the atmosphere cushions the weight of the air.

G. our bodies push out 14.7 pounds on every square inch to equalize the

pressure.

H. we are in a building so we don’t feel it.

12. If you launched three similar rockets, using the same force, which rocket would
go the highest?

E. The rocket weighing 50 grams goes the highest.

F. The rocket weighing 100 grams goes the highest.

G. The rocket weighing 150 grams goes the highest.

H. They all go the same height.

13. Which of the following Newton’s Law of Motion makes it important to wear a seat
belt?

E. Newton’s Law of Motion which explains that the greater the mass of an object,

the greater the force needed to accelerate it.

F. Newton’s Law of Motion (Inertia) which explains that an object in motion will

stay in motion unless acted upon by an outside force.

129

G. Newton’s Law of Motion which explains that for every action there is an equal

and opposite reaction.

H. None of the Above

14. One reason an airplane is able to produce lift is because the air moving across the
top of the wing…

E. exerts more pressure on the wing than the air moving along the bottom.

F. exerts the same amount of pressure on the wing as air moving along the

bottom.

G. exerts less pressure on the wing than the air moving along the bottom.

H. does not exert any pressure on the wing.

15. When you sprain an ankle, you need to apply an activated cold compress to
relieve the swelling. Which of these does the activated cold compress produce?

E. a hydrophobic reaction

F. an endothermic reaction

G. an exothermic reaction

H. a hydrophilic reaction

16. Which of the following machines is NOT a robot?

E. Television digital video recorder (DVR)

F. da Vinci Surgical System

G. Electric pencil sharpener

H. Dimension 3-D printer

17. Two boats are heading upstream and water is flowing downstream. Based on the
Bernoulli Principle, fast moving water between the boats will cause the boats to...

130

E. move further apart.

F. come closer together.

G. continue on the same path.

H. none of the above

18. Which point is located at the coordinates (5, -5)?

E. A

F. B

G. C

H. D

19. In which way would an engineer most likely use a Computer-Aided Design (CAD)
program?

E. To write a proposal for a project

F. To determine the cost of labor for a building project

G. To design a bridge

H. To communicate with other engineers via email

20. H2O can exist in several states of matter. In which form do H20 molecules have
the most kinetic energy or motion?

E. Ice

F. Water

G. Steam

H. Snow

21. Right now,

D. I enjoy math.

E. I think math is okay.

F. I don’t enjoy math.

22. Right now,
 A. I enjoy science.
 B. I think science is okay.
 C. I don’t enjoy science.

23. Right now,

1 2 3 4 5 6
-1

-2

-3

-4

-5

-6

C D

B A

131

 A. I enjoy technology.
 B. I think technology is okay.
 C. I don’t enjoy technology

24. STARBASE made learning fun:
 A. Yes
 B. No

25. I want to come back to STARBASE:
 A. Yes
 B. No

26. After studying math and science at STARBASE, I want to learn even more about
math and science:
 A. Yes
 B. No

27. Finish the following sentence. “When I talk about STARBASE to my family and

friends I say… __

___.”

1. The Engineering Design Process (EDP) can be repeated more than once for the same

problem

a. Yes

b. No

2. I think working in groups:

a. Helps me solve problems and complete tasks

b. Does not help me solve problems or complete tasks

3. I am confident that I can program a robot to navigate and complete a task.

a. Yes

b. No

c. I’m not sure

4. I can apply and use computer programming in areas other than Computer Science and

Engineering.

a. Yes

b. No

c. I’m not sure

5. Right now

a. I enjoy computer programming

b. I think computer programming is OK

132

c. I don’t enjoy computer programming

Appendix E - Introduction to AI: Cat and Mouse

Lesson Plans

 Lesson

Cat and Mouse – An Introduction to Artificial Intelligence

 Time

45-60 minutes, depending if the optional extra material is presented.

 Group Size

Can be done with any number of students. It is intended for individuals; however, it can be

done in pairs.

 Materials

 www.scratch.mit.edu

o An offline version can also be used

 The starter project is located here: https://scratch.mit.edu/projects/21341974/

 The completed project is located here: https://scratch.mit.edu/projects/21319246/

 A slightly expanded completed project is located here:

https://scratch.mit.edu/projects/23787898/

o This project is an example of what students can do to expand and enhance the

game from the basic, completed program.

 Objectives

 Introduce the basics of Artificial Intelligence (AI) and what it means to be intelligent

 Introduce what an agent is in computer science

 Computational Thinking concepts:

o Data – Students will learn how to keep score and control the speed of the sprites

by using variables. An advanced concept in Scratch, known as cloning, will

also be introduced. This creates copies of sprites which makes it difficult to

conceive.

o Parallelization – Students will have to manage multiple sprites as well as

maintain a consistent state.

o Flow control – Students will be introduced to message passing, along with other

concepts like conditionals, loops, and blocking (wait blocks).

http://www.scratch.mit.edu/
https://scratch.mit.edu/projects/21341974/
https://scratch.mit.edu/projects/21319246/
https://scratch.mit.edu/projects/23787898/

133

o Algorithmic thinking – Students will need to recognize the order in which

events have to happen to make the game work as intended (when to get points,

when the game is over, when to create clones, etc.)

o Patterns – Students will need to recognize the patterns present in the game’s

design in order to enhance them if the time permits.

 Students will get a feel for basic game design and how to write AI in Scratch

 Introduction

The goals of this lesson is to introduce students to the idea of AI, the study and design of

intelligent agents (software that exhibits intelligent behavior). Advanced concepts in Scratch

are also introduced, such as message passing (broadcast) and cloning. To start this lesson,

present the class with the question “What does it mean to be intelligent?” The responses to

this question will vary, but a general consensus will usually be that to be intelligent, you must

be smart. This is a common misconception across many students. While it’s common to use

smart and intelligent interchangeably, smart is generally a status achieved once someone has

had advanced experience in a subject matter. On the other hand, intelligence refers back to our

primal skills. Intelligence can include many different skills and traits, but the following are the

main abilities:

 Reasoning and problem solving – Our ability to overcome complex situations and to

think logically

o A good running example of this is the classic children’s puzzle with the

different blocks to place in various shaped holes. Use this as a running example

when explaining the rest of the intelligent concepts.

 Perception – Our ability to sense things from our environment

o See and feel the difference in shapes. As a side example, we can also link

touching a hot pan on the stove to constructing knowledge and learning.

 Construct knowledge – Our ability to gather and store information we perceive (our

experiences).

o We begin to store information on each block we pick up and attempt to put

through the different shaped holes. Likewise, we remember that the pan on the

stove is hot, as well as the associated pain with it.

 Learning – Our ability to learn from the knowledge and experiences. We can now

recognize that each block is different. We can recognize the difference between shapes

(circles, squares, etc.) from our experience in trying to place blocks in the wrong

shaped holes. Likewise, we learn not to touch things that are extremely hot, like a pan

on the stove.

 Planning – Our ability to premeditate our actions. From our learned

concepts/experiences, we can construct detailed instructions to achieve certain tasks,

like putting various blocks in the correctly shaped hole. Another example to include in

this description would be going to the grocery store. As kids, we go with our parents to

buy groceries and slowly learn what it entails. Discuss how we start out by making a

134

list, drive to the store, and collect the items we need at the store, pay for them, drive

home, and put those items away.

 Procedure

1. Open up the starter project and give the class a minute to run it to see what it does.

a. Talk through the game: control the mouse using the arrow keys to eat as many

pieces of cheese before the cat gets you

b. Discuss the starter script in the mouse sprite. The controls for the mouse are

already programmed, to save time; however, these can be removed and done

during the activity if time permits.

c. Point out the variable that controls the mouse’s speed

d. When I receive Move acts as the starting point for the game. The green flag

acts as an initialization step for the game

2. Switch to the Cat sprite and add a “forever” block from the control pallet to “when I

receive move” and add a “point towards” block (make sure you point towards the

mouse sprite) inside the “forever” block:

a. Stop and let the students run the program to see how it works now. The cat

sprite should now always face the mouse wherever it goes on the stage

3. Next, connect a “move 10 steps” block to the “point towards” block. Then place the

“catMove” variable block from the data pallet in the move block. Make sure help the

class recognize that “catMove” is a variable (data storage). The value is set to 5 when

the green flag is pressed.

a. Pause to make sure the cat sprite chases after the mouse. The cat may look like

it glitches if it catches the mouse, but this will be solved in the next steps.

4. Once the cat catches the mouse, it needs to stop! Place an “if” block from the control

pallet after the move block. If the class has not been introduced to “if” blocks before,

discuss what a conditional is (The diamond portion of the “if” block will be evaluated

it be true or false. If it is true, the blocks inside the “if” portion of the conditional will

be executed).

a. Place a “touching ?” block in the diamond of the “if” and select “Mouse”

https://scratch.mit.edu/projects/21341974/

135

b. Inside the “if” block, put a “set to” block from the data pallet. Set the variable

catMove to 0

c. Pause and run the program. The cat should now stop once it touches the mouse.

5. From the looks pallet, place a “think” block after the “set catMove to 0” block and

change “Hmm” to “Meow!!”

a. After the “think” block, place a “broadcast” block from the events pallet and

select the gameOver message. This sends the gameOver message to all the

sprites, which can choose to either catch the message or ignore it. The mouse

sprite is the only one that catches the message and stops the game.

b. Pause to allow students to test their program. Make sure that if the cat catches

the mouse, the game properly ends.

6. Now we will work on letting the mouse eat pieces of cheese to gain points. Switch to

the cheese sprite and discuss the “when green flag clicked” script. This is another

example of variables. We use cheeseX and cheeseY to set the coordinates of the cheese

sprite on the stage. Note that the stage is an XY coordinate system where X ranges

from -240 to 240 and Y ranges from -170 to 170. This is why we use these numbers

when picking random numbers for the cheese location. It allows the cheese to appear

randomly anywhere on the stage. The ranges can be slightly reduced in order to

prevent the cheese spawning on the edges; however, that is not necessary for this

exercise. After picking a random XY location, the “go to x: y:” block changes the

location of the cheese sprite on the stage. Then the sprite is made visible only to be

cloned, and then hidden for the remainder of the game. This applies to the original

cheese sprite. The created clone is a copy of the original, including its visibility and

variables. Having the mouse interact with a clone of the cheese sprite allows us to

136

continuously generate new pieces of cheese as the mouse eats it; all the while

introducing students to a complex mechanism in Scratch eats them. Make sure the

students connect to the notion that “when I start as a clone” only modifies properties

and variables for that clone (in CS the term this is used), not the original sprite.

7. Connect a “wait until” block from the control pallet to “when I start as a clone.” This

block forces the script to pause until the condition inside the diamond becomes true.

This can also be referred to as blocking in CS terms and is a commonly used technique

in parallel programming.

a. Place a “touching ?” block inside the diamond of the “wait until” block and

select the Mouse sprite from the dropdown menu. This pauses the script until

the Mouse sprite touches the cloned cheese.

8. This is the point where we want to give the Mouse a point for “eating” a piece of

cheese. Place a “change by” block from the data pallet right after the “wait until

touching Mouse?” block. Select the noms variable from the dropdown menu of the

“change by” block and make sure the value is 1. Remember that the code after the

“wait until touching Mouse?” block will execute once the Mouse sprite touches the

cloned cheese.

a. After the score (noms) is updated, we want to set a new random location for the

cheese since the mouse is “eating” this piece. Luckily, we already have most of

this code done underneath the “when green flag is clicked” hat block in the

cheese sprite. To make copies of code blocks in Scratch, right click the first

block of the portion of code you wish to copy, and then click “duplicate.” In

our case, right click the first “set to” block under the “when green flag is

clicked” hat block and duplicate. Connect this cloned code to the “change

noms by 1” block and delete the “show,” “hide,” and “stop this script” blocks

from the cloned code. This can be done by dragging the blocks to the area

137

underneath the block pallets on the left of the script area.

b. We now should be getting new pieces of cheese showing up at random

locations once the mouse touches the cheese; however, after the first time the

mouse gets a piece of cheese, the clones won’t disappear. Place a “delete this

clone block” to the end of the “when I start as a clone” script in order to

simulate the mouse “eating” the cheese once it catches one.

9. The game is now complete! Let the student run the program to test, and play as time

permits.

 Assessment

This simple activity allow students to expand and improve the game. If time permits,

encourage students to improve the AI. Before letting them modify the game, discuss possible

changes. For example, the advanced cat and mouse game (listed in the Materials section)

works by increasing the difficulty of the game after the player has 10 noms. The speed of the

cat gradually increases every nom after 10 until the cat moves as fast as the mouse. This

greatly reduces the room for error by the player and gives the cat a better chance in catching

the mouse. Give the students 15 mins (more or less depending on constraints) to modify their

Cat and Mouse game to see what they can improve or change about the AI behavior. After

time is up, openly discuss each student’s solution.

138

Appendix F - STEM 2015 Lesson Plans

These lesson plans were generated in by the co-teachers from USD 383 for the camp.

 Game Design

Day 1

Teacher: Mr. Peters and Mr. Weese

Date:

Subject / grade level: 7-9

Materials:
Computers, paper, pencils,

NC SCOS Essential Standards and Clarifying Objectives

 Define the criteria and constraints of a design problem with sufficient
precision to ensure a successful solution, taking into account relevant
scientific principles and potential impacts on people and the natural
environment that may limit possible solutions.

Lesson objective(s):
1. Identify the basic principals of game design.
2. Perform basic operations in the Scratch program, including move, sound, control, and sensing blocks.

ENGAGEMENT
 Icebreaker: “Fact or Fiction” – (Instructors will of course introduce themselves to the students) Students will be asked to write down two facts about

themselves and one fiction. They will read those things to the class and the rest of the students will determine which one is fiction.

 Set expectations for students during the week.

 Students will also introduce themselves to the class in general: Name and school they attend at least.

 Student Survey on Computer Coding

EXPLORATION
 Whole Group: Instruction on principles of game design.

o What makes a game…a game? Students will be given instruction on story, characters, mechanics, and other game design principles.
o Principals (presentation)

 Basic Overview / Review of Scratch
o Hopefully most of the students have some familiarity with Scratch. We will do a basic review of the Scratch components and programming

blocks needed.
o Stage, blocks, variables

139

EXPLANATION
 Artificial Intelligence Focus

o One of the most important aspects of a video game are the opponents. Most enemies or opponents in games are not played by another
human character, but by the computer. How does that work?

o We will use a simple AI program called “Cat and Mouse” to have students work specifically with the control, motion, and sensing blocks in
the program.

 How can we use the motion and sensing blocks to get the cat to chase the mouse on its own? What kind of Artificial
Intelligence is this?

ELABORATION
 Game Design Teams (Random assign because they will take forever to pick someone and others will be left out.)

o Students will be placed in a team of 2-3 depending on the size of the class.
o These groups will begin discussing what kind of games they play and what kind of game they want to build.

 How will it look? What will the story be? What main sprits / characters will be needed?
 What category of game do you want to make?

EVALUATION
 We will have student groups share out their ideas on their games and provide feedback to any potential problems that we can see.

 Students will have written their ideas on paper and turn them in at the end of the day so they can be reviewed.

Day 2

Teacher: Mr. Peters and Mr. Weese

Date:

Subject / grade level: 7-9

Materials:
Computers, paper, pencils, storyboard templates, Scratch block laminated pages

NC SCOS Essential Standards and Clarifying Objectives

 Define the criteria and constraints of a design problem with sufficient
precision to ensure a successful solution, taking into account relevant
scientific principles and potential impacts on people and the natural
environment that may limit possible solutions.

140

Lesson objective(s):
3. Identify the basic principals of game design.
4. Perform basic operations in the Scratch program, including move, sound, control, and sensing blocks.

ENGAGEMENT
 Review from yesterday’s lesson

o How does the game Pacman work? How does that game use artificial intelligence?

EXPLORATION
 Pacman: “Intelligent Agents”

o Students will play the Pacman game on Scratch. We will have them identify the game design components.
o We will then look over the code with the students to see how the game works.

EXPLANATION
 Strikers 1945 “Scrolling Shooter”

o We will have students play this new type of game. They should now fully understand the required components of a game.
o How does the AI work in this game? What is different about this game?
o We will walk through helping students complete the different portions of this game.

ELABORATION
 Game Design Teams

o Game teams will be working on their video game storyboards. Teachers will circulate around the room to assist students in their
development.

EVALUATION
 Student teams will turn in their video game storyboards for review. If there is time we will have the groups share out their plans so far for their games.

Day 3

Teacher: Mr. Peters and Mr. Weese

Date:

Subject / grade level: 7-9

Materials:
Computers, paper, pencils, storyboard templates, Scratch block laminated pages

NC SCOS Essential Standards and Clarifying Objectives

141

Lesson objective(s):
5. Create a video game that implements the core game design principles.
6. Identify careers that are related to the computer science field.

ENGAGEMENT
 What is a Dungeon Crawler? We will show examples of dungeon crawler games.

EXPLORATION
 Game Teams

o Students will work on their video games that they have planned.
o Teachers will move around the different groups to help where needed and to remind students that they need to meet the basic criteria of

game design.

EXPLANATION
N/A

ELABORATION
 Career Discussion

o We will show a video that explains to students what opportunities are in the computer science field.
o We will also explain that most jobs that involve coding are not related to video games.

EVALUATION
 Students will continue to work on their games and we will ask each group what they have left to accomplish for tomorrow.

Day 4

Teacher: Mr. Peters and Mr. Weese

Date:

Subject / grade level: 7-9

Materials:
Computers, paper, pencils, storyboard templates, Scratch block laminated pages

NC SCOS Essential Standards and Clarifying Objectives

142

Lesson objective(s):
7. Create a video game that implements the core game design principles.
8. Identify careers that are related to the computer science field.

ENGAGEMENT
 Students will use the first part of class time to finish their video games.

EXPLORATION

EXPLANATION
N/A

ELABORATION

EVALUATION
 Students will present their video games to the rest of the class.

 STEM Survey

 Coding to Mars

Day 2

Teacher: Brooke Snyder Class: Coding/Mission to Mars

Lesson Title: Rocket Trajectory Simulation

Lesson Objectives: Students will create a computer based simulation on Scratch to further
explore trajectory modeled by stomp rockets

143

Anticipated Learner Outcomes: Students will describe the relationship between angle and
trajectory and explain them as dependent and independent variables. Students will realize
that many variables need to be constant and the use of a controlled environment
(simulation) will create more reliable and valid data.

KCCR Standards Math: CCSS 8.F.B.4 Use functions to model relationships between
quantities. , CCSS 7.EE.B.4 Solve real life and mathematical problems using numerical and
algebraic expressions and equations.

KCCR Standards Science: NGSS Grades 9-12 Use a computer simulation to model the
impact of proposed solutions to a complex real-world problem with numerous criteria and
constraints on interactions within and between systems relevant to the problem.

Materials: Stomp Rockets, open field, computers with internet access, Scratch
(scratch.mit.edu), Women in Computer Engineering presentation, pencils, paper, sticky
notes.

Learning activities

Engage (describe how teacher will capture students’ interest): Ask students to do a round robin and
provide as many characteristics, abilities, attributes of rockets. List student responses on
the board. Tell them they will be doing one type of simulation, stomp rockets.

Explore (describe hands-on/minds-on activity students will be doing): Take students to an open field.
They will line up behind two stomp rockets. Ask students what considerations we should
make in order to have successful trajectory. All students several times to try their stomp
rocket, encouraging manipulation of the angle. Have them count in paces the distance
their rocket traveled. After a significant amount of exploration, have students return to
the room. Ask them to talk at their tables the variables that accounted for a successful or
unsuccessful flight. Start to discuss the independent and dependent variables (angle,
applied force, and trajectory) and the other variables that should remain constant (position
of flight pad, wind/resistance, applied pressure, paces to measure).

Explain (list questions & strategies that allow students to communicate what they learned): Click here to
enter text.

Elaborate (describe how students expand on concepts & make connections): Students will sense that
it takes a lot of computers and programming to create a simulation and record data for
numerous rockets. Ask students how that could be possible. Elicit conversation, then
support thinking about a super computer. Tour BeoCat , a super computer located in
Nichols Hall. Show them the many components and the research tracking capabilities of
this computer.

Evaluation (describe how students will demonstrate their learning): Students will do a stand
up/hand up, pair up (Kagan Structure) to discuss what they learned for the day. We will
visit the Parking Lot/schema-misconception chart.

144

Vocabulary or topics discussed

Science = variables, independent, dependent, constant, trajectory, acceleration

Technology = simulation,

Engineering = coding, infinite machines.

Mathematics = x,y variables, functions, equations to determine acceleration

Which STEM careers were highlighted? = Computer Programming and Coding (Women in

Computer Engineering)

Day 3

Teacher: Brooke Snyder Class: Coding/Mission to Mars

Lesson Title: Artificial Intelligence

Lesson Objectives: Students will compare and contrast the abilities of Artificial Intelligence
and Human Sources and Receivers

Anticipated Learner Outcomes: Students will code an AI on a drafted PacMan stage.
Students will experiment with their created scripts to determine success. Scripts contain
conditionals and variables.

KCCR Standards Math: CCSS 8.F.B.4 Use functions to model relationships between
quantities. , CCSS 7.EE.B.4 Solve real life and mathematical problems using numerical and
algebraic expressions and equations.

KCCR Standards Science: NGSS Grades 9-12 Use a computer simulation to model the
impact of proposed solutions to a complex real-world problem with numerous criteria and
constraints on interactions within and between systems relevant to the problem.

Materials: clip of Big Hero Six (?) Turing Test diagram/picture, Chinese room example,
picture clips with corresponding cell table on computer, paper signs with numbers 1-5,
pencils, paper, computers, Scratch (scratch.mit.edu)

Learning activities

Engage (describe how teacher will capture students’ interest): Ask students what artificial means
and follow up with what it means to be intelligent. Show them a trailer from Big Hero Six.
Ask then how BaMax may fit the profile of an AI. Have them discuss in their groups. Tell
then that coders can create AI’s. What questions would you ask to determine if who/what
you are dealing with is an AI? (look for questions that elicit emotion, consistent answers
the entire time, many possible outcomes). Introduce them to the “turing test” and Chinese
Room experiment (on saved presentation).

145

Explore (describe hands-on/minds-on activity students will be doing): Tell students they are going to
take a ‘turing test’ in which they will process input as an AI would. Pass out picture grid
cards. Tell students the cards contain cut up pictures of a cat or dog. Tell them they will
look at their clip, determine if it is a cat or dog. Then, tell them to close their eyes and
raise their hand if it is a cat or dog. Write down how many of each got cat dog, then reveal
the entire image. Continue this process for all of the images. One image is of a bear. Why
did you only answer cat or dog? (they were “coded” at the beginning to only choose cat or
dog). Why did you believe this image could be a cat or dog (fur, beady eyes, nose, etc). Tell
them because an AI is coded to determine only certain outcomes, it did not pass the turing
test. After looking at the data on the board from cat/dog responses, coordinate responses
on a corresponding grid. Mark grids for correct responses with Y and N for incorrect. Ask
students to determine any patterns in the grid. Hopefully they will see there are more Y’s
in the middle of the grid (where the animal’s most determining features would be) and N’s
in the borders (vague details). How did this simulation resemble a turing test?

Explain (list questions & strategies that allow students to communicate what they learned): Explain to
students that an AI will be able to navigate through a game independently if coded
correctly. Give them the link for the PacMan game. Tell them the basic controls for each
sprite. Allow them to play the game. After some time, they will notice that only PacMan
moves and the ghosts stay in their spot. Have them code Blinkly (Russ has the step by step
for this, along with Pinky and Clyde). Students will be creating variables, move, perceive,
and act blocks for each ghost.

Elaborate (describe how students expand on concepts & make connections): Students will then be
introduced to the Mars Rover Game. The Game has been scripted for the operator to
move their sprite to collect samples. The operator can only collect samples on smooth
terrain (light grey) and then they can transmit after 3 processes. However, the only 85
moves are allotted, so the operator must think ahead before moving. After allowing time
to experiment with the game, allow students to share strategies for how they obtained
high scores. Some may have said they recoded the amount of moves allotted for their
rover. Ask them if there is a way to code their rover to navigate on its own throughout the
mission. Pay attention to any students that mention artificial intelligence or coding it to do
so.

Evaluation (describe how students will demonstrate their learning): Students will do an
inside/outside circle to discuss the following: What are three careers you think AI’s will be
doing more than humans in the next 50 years? What are three careers/jobs you think
humans will still do more than computers?

Vocabulary or topics discussed

Science = attributes, characteristics

Technology = Artificial Intelligence,

Engineering = perceive, motion, act, variable blocks

Mathematics = Coordinates, outliers, data, probability

146

Which STEM careers were highlighted? = Coding artificial intelligences, turing test creators,

robotics, game coding

Appendix G - STEM 2016 Lesson Plans

These lesson plans were generated in by the co-teachers from USD 383 for the camp.

 Mighty Micro Controllers

Day 1

Day One Lesson Title: Getting into Circuits

Lesson Objectives:
*Students will identify an arduino and how it functions.
*Students will examine the Fritzing program and its connection to circuit boards

Anticipated Learner Outcomes:
*Students will understand the role of waves in information

transmission *Students will understand the role of resistors in a circuit

KCCR Standards Math:

KCCR Standards Science: NC SCOS Essential Standards and Clarifying Objectives

*Define the criteria and constraints of a design problem with sufficient precision
to ensure a successful solution, taking into account relevant scientific principles
and potential impacts on people and the natural environment that may limit
possible solutions.
*Develop or modify a model based on evidence to match what happens if a
variable or component of a system is changed.

* A wave model of light is useful for explaining brightness, color, and the
frequency-dependent bending of light at a surface between media. (MS-PS4-2)

However, because light can travel through space, it cannot be a matter wave,
like sound or water waves. (MS-PS4-2)

*HS-PS4-5. Communicate technical information about how some technological
devices use the principles of wave behavior and wave interactions with matter to
transmit and capture information and energy
*Systems can be designed to cause a desired effect. (HS-PS4-5)

147

Materials: Computers, paper, pencils, arduinos, LEDs

Learning activities

Engage (describe how teacher will capture students’ interest):
*Icebreaker: “Fact or Fiction” – (Instructors will of course introduce themselves to
the students) Students will be asked to write down two facts about themselves and
one fiction. They will read those things to the class and the rest of the students will
determine which one is fiction.
*Set expectations for students during the week.
*Students will also introduce themselves to the class in general: Name and
school they attend at least.

*Student Survey on Computer Coding

Explore (describe hands-on/minds-on activity students will be doing):

*Basic Overview / Review of Scratch

Hopefully most of the students have some familiarity with Scratch. We will do a
basic review of the Scratch components and programming blocks needed.
Stage, blocks, variables
* Resistance is Futile
Experiment what happens when you use stronger resistors
*Students will create a Blinking LED with their arduino.

Explain (list questions & strategies that allow students to communicate what they learned):

*Students Draw diagram for 4-5 LEDs, create their own blinking LED
*What role do the resistors play?
*What evidence do we have of wave behavior?

Elaborate (describe how students expand on concepts & make connections):
*Students experiment with what happens to LEDs when you use stronger resistors

Evaluation (describe how students will demonstrate their learning):

*We will have student groups share out their ideas on their games and provide feedback to
any potential problems that we can see.
*Students will have written their ideas on paper and turn them in at the end of the day so they
can be reviewed.

Vocabulary or topics discussed

Science =resistors, Ohm’s Law, electricity, circuit, waves

Technology =arduino, Fritzing software, LED

148

Engineering = Click here to enter text.

Mathematics = Click here to enter text.

Which STEM careers were highlighted? = Programmer

Day 2

Lesson Title: Day 2—Digital vs. Analog, Open vs. Closed Circuit

Lesson Objectives:
*Students will compare and contrast analog and digital input
*Students will examine how ultrasonic and and motion sensors function

*Students will compare and contrast an open and closed circuit

Anticipated Learner Outcomes:

*Students will understand the role of RGBs in determine color of

LEDs *Students will understand how waves are used in sensors

149

KCCR Standards Science: NC SCOS Essential Standards and Clarifying Objectives

*Define the criteria and constraints of a design problem with sufficient precision
to ensure a successful solution, taking into account relevant scientific principles
and potential impacts on people and the natural environment that may limit
possible solutions.
* MS-PS4-3. Integrate qualitative scientific and technical information to support

the claim that digitized signals are a more reliable way to encode and transmit
information than analog signals.

* MS-PS4-2. Develop and use a model to describe that waves are reflected,
absorbed, or transmitted through various materials.

* PS4.C: Information Technologies and Instrumentation
* Digitized signals (sent as wave pulses) are a more reliable way to encode and

transmit information. (MS-PS4-3)
* HS-PS4-2. Evaluate questions about the advantages of using a digital transmission

and storage of information.
* Information can be digitized (e.g., a picture stored as the values of an array of

pixels); in this form, it can be stored reliably in computer memory and sent
over long distances as a series of wave pulses. (HS-PS4-2),(HS-PS4-5)

* PS4.C: Information Technologies and Instrumentation
* Multiple technologies based on the understanding of waves and their interactions

with matter are part of everyday experiences in the modern world (e.g.,

medical imaging, communications, scanners) and in scientific research. They
are essential tools for producing, transmitting, and capturing signals and for

storing and interpreting the information contained in them. (HS-PS4-5)

Materials: Computers, paper, pencils, arduinos, LEDs, sensors

Learning activities

Engage (describe how teacher will capture students’

interest): *Icebreaker
*Fading LED demonstrations

*Experimenting with sensors

*Review from yesterday’s lesson

150

Explore (describe hands-on/minds-on activity students will be

doing): *Students will use analog input to fade LEDs
*Students will begin constructing ultrasonic and motion sensors
* Students will work with buttons to open and close circuits

Explain (list questions & strategies that allow students to communicate what they

learned): *What is the difference between an open and closed circuit? What

are the advantages of each?
*Students draw diagram on Fritzing to demonstrate fading LEDs

Elaborate (describe how students expand on concepts & make connections):
*Students use knowledge of circuit design from Day 1 to create open/closed

circuits *Students use prior knowledge of digital input to compare with analog

input

Evaluation (describe how students will demonstrate their learning):

*Students demonstrate their fading LEDs

*Students create and demonstrate an open and closed circuit

Vocabulary or topics discussed

Science =open/closed circuit

Technology =sensor, analog vs. digital, pulse width modulation

Engineering =

Mathematics =

Which STEM careers were highlighted? =Traffic controllers, Security engineers

Day 3

Lesson Title: Day 3: Putting it all together

Lesson Objectives:
*Students will use prior knowledge of class content to create their own project,

demonstrating ability to design a circuit, provide coded input, use Scratch code and

Fritzing diagramming software

Anticipated Learner Outcomes:

151

* Students demonstrate ability to use prior knowledge of Scratch and Arduino to

create their own project incorporating use of LEDs, RGB lights, push-button

circuit, motion or ultrasonic sensors.

KCCR Standards Math: Click here to enter text.

KCCR Standards Science:
*HS- ETS1-2. Design a solution to a complex real-world problem by breaking it down
into smaller, more manageable problems that can be solved through engineering.

* NC SCOS Essential Standards and Clarifying Objectives
Define the criteria and constraints of a design problem with sufficient

precision to ensure a successful solution, taking into account relevant scientific
principles and potential impacts on people and the natural environment that
may limit possible solutions.
HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions

to a complex real-world problem with numerous criteria and constraints on

interactions within and between systems relevant to the problem.

Materials: Computers, paper, pencils, arduinos, LEDs, sensors

Learning activities

Engage (describe how teacher will capture students’ interest):
*Icebreaker with pre-service teachers

*Simon Says game
*Individual time to create project

Explore (describe hands-on/minds-on activity students will be doing):
*Students will complete their sensor project and fading LEDs if not already

finished *Students will begin work on their traffic light/Piezzo buzzer/self-

determined projects

152

Explain (list questions & strategies that allow students to communicate what
they learned):

*Why is order of coded commands important?
*How is the timing of a system determined?

*What are the smaller components of a large system and how do they fit together?

Elaborate (describe how students expand on concepts & make connections):

*Students use traffic and buzzer project to connect their prior knowledge of circuits

and sensors and apply it to solve new problems

Evaluation (describe how students will demonstrate their learning):
*Students begin to design their own individual project demonstrating their mastery

of the skills and content covered on Days 1&2.

Vocabulary or topics discussed

Science =

Technology = Click here to enter text.

Engineering = Click here to enter text.

Mathematics = Boolean phrase, conditional statements

Which STEM careers were highlighted? = Click here to enter text.

Day 4

Lesson Title: Day 4: Ultrasonic sensors and Freestyle: Your own project

153

Lesson Objectives:
*Students demonstrate ability to apply previous knowledge of coding,

circuitry, sensors, resistors, etc., to solve a problem with their own individual

plan in a culminating project.

Anticipated Learner Outcomes:
*Students make connections between small-scale circuits from class and larger-

scale, real-world examples of circuits at work

KCCR Standards Math:

KCCR Standards Science:
* ETS1.C: Optimizing the Design Solution
Criteria may need to be broken down into simpler ones that can be approached
systematically, and decisions about the priority of certain criteria over others
(trade-offs) may be needed. (HS-ETS1-2)
* NC SCOS Essential Standards and Clarifying Objectives

Define the criteria and constraints of a design problem with sufficient

precision to ensure a successful solution, taking into account relevant scientific
principles and potential impacts on people and the natural environment that

may limit possible solutions.

Materials: Computers, paper, pencils, arduinos, LEDs, sensors

Learning activities

Engage (describe how teacher will capture students’ interest):

*Ice breaker activity with pre-service teachers

Explore (describe hands-on/minds-on activity students will be doing):

*Students code and wire ultrasonic sensor, Students continue work on final
project *Students interview a professional programmer over Skype

Explain (list questions & strategies that allow students to communicate what they

learned): *How effective was my design strategy?

*How did I use circuitry and coding to solve a problem?
*How did we use math and formulas to determine distance with out sensor?

Elaborate (describe how students expand on concepts & make connections):

*Students connect use of sensors to application in the real-world, including echo-

location

154

Evaluation (describe how students will demonstrate their learning): *Students will

present their final projects to the class

Vocabulary or topics discussed

Science = echo-location, sonar, sound waves

Technology = Click here to enter text.

Engineering =

Mathematics = conversion of units, using algebraic formulas

Which STEM careers were highlighted? = Computer programmer

 Simulating the Martian

Day 1

Lesson Title: Introduction to Scratch and Its Components

Lesson Objectives: Students will be able to successfully navigate through the scratch program
and its components.

Anticipated Learner Outcomes: Students will be able to navigate and use Scratch with a basic
knowledge, build scripts, and draw within the program.

KCCR Standards Math: 5.OA.A.1 Use parentheses, brackets, or braces in numerical expressions
and evaluate expressions with these symbols. 5.G.A.2 Represent real world and mathematical
problems by graphing points in the first quadrant of the coordinate plane, and interpret
coordinate values of points the context of the situation.

KCCR Standards Science: ETS1 Generate and compare multiple possible solutions to a problem
based on how well each is likely to meet the criteria and constraints of the problem –How well
did the solutions meet the criteria and constraints of the design problem-communicate with
peers about proposed solutions, share ideas that can lead to improved designs.

Materials: SlidesSlides: http://people.cis.ksu.edu/~russfeld/presentations/stem2014_day1.html

* Code.org video: https://www.youtube.com/watch?v=nKIu9yen5nc

155

* Scratch Website: http://scratch.mit.edu
* Scratch Wiki on Blocks: http://wiki.scratch.mit.edu/wiki/Blocks
* Scratch Spirograph: http://scratch.mit.edu/projects/21326308/

Learning activities

Engage Brooke Teach Teachers will introduce themselves and share the learning
objectives/outcomes of the day. Go around the room and have each student introduce his or
herself to the group. Present the question prompt of, “ During camp, I wish to learn-------------.”
Give them think time. Then, do hand up stand up, pair up (Kagan Structure) Ask students to
then share their ideas or the ideas of someone they talked to. Direct their attention to the
parking log (area designated for sticky notes). Invite them to put questions, comments,
concerns, ah hah’s in the parking lot to visit during wrap up/reflection time.

Explore: Tell students that one of the reasons we are able to do many things we do is because
of computers. Share that Computer Science is a growing field and computers are vital to the
enhancement of future. Tell them they will be viewing a video from a non-profit organization
entitled, Code.org. Direct their attention to the guiding questions (What are your thoughts on
this video, Do you think learning how computers work is important? Explain your thinking.

156

What are some of the things you do every day that use computers? Can you do them without
computers? Show the video via youtube. Direct their attention back to the questions. Allow
students time to jot down any notes for reflection or further investigation. Facilitate a think,
pair, share. Then, have the students locate the Scratch website (scratch.mit.edu) and click on
the “create” button. Explain the different components of the scratch editor (stage, sprites,
palette, block shapes, and the menu). Allow students to ask questions for clarification before
they are able to explore these components.

Explain (Brooke and Russ Co-teach) Introduce the various blocks in the scratch program. Show
students the properties of each block. Then, allow students to build a simple program. They
will start by gliding the sprite across the screen with motion blocks. Have the sprite bounce if it
hits and edge. Then program it to make a sound when it hits the edge. Create a second sprite
and have it say something when it touches the main sprite. Allow students time to manipulate
and navigate this simple program.

Elaborate (Brooke and Russ Coteach) Now that students are familiar with the basic functions
and components of Scratch, they will be able to draw using the pen and numeric values in
scratch. After experimenting with the drawing functions, they will be directed on how to create
a Spirograph using mathematical equations to create a design. They will be able to manipulate
values and variables using prime numbers. They will be able to share effective values with the
group.

Evaluation Visit the parking lot/evidence of learning spot (On Lino-virtual sticky note) Ask
students to share responses to the following prompts: What did you learn today? What can we
do with this new knowledge? What do we want to learn next? Any other questions?

Vocabulary or topics discussed

Science = manipulating variables.

Technology = Scratch, spirograph

Engineering = Spirograph, wheels, rotational motion, gears interlocking and moving together.

Mathematics = Discussion of coordinate planes, ranges, X, Y coordinates , prime numbers

Which STEM careers were highlighted? = Computer Science and Engineering

Day 2

Lesson Title: Interactive Sorting Networks and Finite Machines

157

Lesson Objectives: Students will create a computer based simulation on Scratch to further
explore how computers interpret and sort input and data.

Anticipated Learner Outcomes: Students will explain how computers can complete parallel
processing with conditional statement commands

KCCR Standards Math: CCSS 8.F.B.4 Use functions to model relationships between quantities. ,
CCSS 7.EE.B.4 Solve real life and mathematical problems using numerical and algebraic
expressions and equations.

KCCR Standards Science: NGSS Grades 9-12 Use a computer simulation to model the impact
of proposed solutions to a complex real-world problem with numerous criteria and
constraints on interactions within and between systems relevant to the problem.

Materials: colored electrical tape, cards or dice, open space (tile floor or smooth carpet) ,
computers with internet access, Scratch (scratch.mit.edu), Lino-Virtual sticky note

Learning activities

Engage (describe how teacher will capture students’ interest): Ask students “ How do you sort items,

objects, numbers? Do you remember sorting buttons in Kindergarten?” Choose 6 students and
hand them a number card. Ask these students to discuss a way to sort their cards. Ask for class
suggestions. Present the term parallel sorting or processing
Explore (describe hands-on/minds-on activity students will be doing): The 6 sorter network will be
previously created before students arrive to sorting area. Explain the sorting network
(directions available mathmaniacs.org) Have the students who had the cards following the
sorting rules as explained.
Explain (list questions & strategies that allow students to communicate what they learned): Students will
utilize If, Then, Else blocks on scratch to code a simulation with 2 or more variables. (Discuss
with Russ for more details on this component). Students will also continue to add insights into
Canvas? or Lino.
Elaborate (describe how students expand on concepts & make connections): Students will sense that it
takes a lot of computers and programming to process and sort data. Ask students how that
could be possible. Elicit conversation, then support thinking about a super computer. Tour
BeoCat , a super computer located in the Computer Engineering Department. Show them
the many components and the research tracking capabilities of this computer.

158

Evaluation (describe how students will demonstrate their learning): Students will do a stand up/hand

up, pair up (Kagan Structure) to discuss what they learned for the day. We will visit the
Parking Lot/schema-misconception chart.

Vocabulary or topics discussed

Science = variables, independent, dependent, constant, trajectory, acceleration

Technology = simulation, parallel sorting, finite machine

Engineering = coding, infinite machines, defining a situation that determines need of sorting.

Mathematics = x,y variables, functions, data and quantity comparison.

Which STEM careers were highlighted? = Computer Programming and Coding (Women in
Computer Engineering)

Day 3

Lesson Title: Data Encoding and Message Decoding-Binary Codes and Communication

Lesson Objectives: Students will utilize binary code within a Scratch simulation to
communicate with NASA

Anticipated Learner Outcomes: Students will explain how computers are coded with binary
codes and patterns and these binary code patterns can be translated into meaningful data.

KCCR Standards Math: CCSS 8.F.B.4 Use functions to model relationships between quantities.
, CCSS 7.EE.B.4 Solve real life and mathematical problems using numerical and algebraic
expressions and equations.

KCCR Standards Science: NGSS Grades 9-12 Use a computer simulation to model the impact
of proposed solutions to a complex real-world problem with numerous criteria and
constraints on interactions within and between systems relevant to the problem.

Materials: Find Someone Who handouts, dot binary cards , computers with internet access,
Scratch (scratch.mit.edu), Lino-Virtual sticky note or Canvas

159

Learning activities

Engage (describe how teacher will capture students’ interest): Tell students that engineers collaborate

and share ideas. Pass out Find Someone Who… sheets. Go over each square in the sheet.

Model how to Find Someone Who with students understanding they are to share and receive
information from peers. After time is up (12-15 min) they will be asked to share their own
knowledge or that learned from someone else highlighting each square. It is anticipated
students will be stuck on the binary code square. Show the students teacher ages in binary.
Explore (describe hands-on/minds-on activity st-udents will be doing): Pass out binary cards. Each card

has powers of 2 represented in dots (1,2,4,8,16,32,64). Tell students that binary code has 0
and 1. Tell students to place their dot cards in order with 64 being the farthest left and 1 on
the right. Write these digits on the board. Tell them that patterns with 0 and 1 can be used to
communicate data. For example1=1, 10=2, 11=3,100=4. Model how you flip the dot cards
over and if they are flipped you use a 1, if not, 0. Continue working through base ten
numbers with binary.
Explain (list questions & strategies that allow students to communicate what they learned) Challenge
students to figure the binary code for 63. Hopefully they realize they need all numbers below
64 so it would be 111111. How is binary different from base 10? Are there any similarities?
Can computers use binary code to interpret and communicate with words?

160

Elaborate (describe how students expand on concepts & make connections): This part is co=taught with

Russ. Students will sense that codes can be combined into infinite possibilities. Binary codes
create numbers and numbers can be combined to represent words –hexadecimal and ASCII
table http://www.asciitable.com/ Students will be directed to a link that has a simulation of a
Mars Rover and Camera. Students will run the program to have the camera communicate
direction and . The output will just be numbers indicating a direction related to degrees on a
coordinate grid. Students will use their knowledge of binary codes and ASCII symbols to
rewrite the code (adding 8 to make positive values) and joining inputs to create a message.
The final message will be MOVE~EEST~MARK.

Evaluation (describe how students will demonstrate their learning): Students will be left wondering if

they were Mark Watney, would they move West or East. Ask students what we do a when
we don’t receive a clear message. We would ask for a repeat. Also, we would expect
reliability as Mark is navigating Mars with only a camera, camera angles, and input from
NASA. If students run the program again, it should read MOVE~WEST~MARK. Students
should make the connection that computers can miscommunicate or have glitches
(autocorrect).

Vocabulary or topics discussed

Science = variables, independent, dependent

Technology = encoding, decoding, programming

Engineering = coding, infinite machines, defining a solution for effective communication using
code

Mathematics = binary codes, hexadecimal, powers of 2, powers of 10,

Which STEM careers were highlighted? = Computer Programming and Coding

Day 4

Lesson Title: Artificial Intelligences and Rover Simulations

Lesson Objectives: Students will compare and contrast the abilities of Artificial Intelligence
and Human Sources and Receivers. Students will create a simulation of a Mars Rover within
Scratch.

Anticipated Learner Outcomes: Students will code an AI on a drafted PacMan stage. Students
will experiment with their created scripts to determine success. Scripts contain conditionals

161

and variables. Students will create bits of code manipulating data and variables to successfully
navigate a Mars roving mission in a simulation

KCCR Standards Math: CCSS 8.F.B.4 Use functions to model relationships between quantities.
, CCSS 7.EE.B.4 Solve real life and mathematical problems using numerical and algebraic
expressions and equations.

KCCR Standards Science: NGSS Grades 9-12 Use a computer simulation to model the impact
of proposed solutions to a complex real-world problem with numerous criteria and
constraints on interactions within and between systems relevant to the problem.

Materials: Pictures of “artificial” objects –wig, turf, Cheetos, food coloring. Kahoot quiz,
Turing Test diagram/picture, Chinese room example, picture clips with corresponding cell
table on computer, paper signs with numbers 1-5, pencils, paper, computers, Scratch
(scratch.mit.edu)

Learning activities

Engage (describe how teacher will capture students’ interest): Students participate in Kahoot quiz
with questions based on content learned from the last three days. Then, show students the
pictures (of artificial items) Ask them to talk to the people around them and share what all the
pictures have in common. Then ask them what are things that cannot be artificial (water,
humans, landforms) Guide students to understand that things that are not artificial can
change with the environment and are ever changing. Ask students what artificial means and
follow up with what it means to be intelligent. Tell then that coders can create AI’s. What
questions would you ask to determine if who/what you are dealing with is an AI? (look for
questions that elicit emotion, consistent answers the entire time, many possible outcomes).
Introduce them to the “turing test” and Chinese Room experiment (on saved presentation).
Explore (describe hands-on/minds-on activity students will be doing): Tell students they are going to
take a ‘turing test’ in which they will process input as an AI would. Pass out picture grid cards.
Tell students the cards contain cut up pictures of a cat or dog. Tell them they will look at their
clip, determine if it is a cat or dog. Then, tell them to close their eyes and raise their hand if it
is a cat or dog. Write down how many of each got cat dog, then reveal the entire

162

image. Continue this process for all of the images. One image is of a bear. Why did you only
answer cat or dog? (they were “coded” at the beginning to only choose cat or dog). Why did
you believe this image could be a cat or dog (fur, beady eyes, nose, etc). Tell them because an
AI is coded to determine only certain outcomes, it did not pass the turing test. After looking
at the data on the board from cat/dog responses, coordinate responses on a corresponding
grid. Mark grids for correct responses with Y and N for incorrect. Ask students to determine
any patterns in the grid. Hopefully they will see there are more Y’s in the middle of the grid
(where the animal’s most determining features would be) and N’s in the borders (vague
details). How did this simulation resemble a turing test?

Explain (list questions & strategies that allow students to communicate what they learned): Can AI’s

actually ‘learn’? What are some reasons AI’s make errors? How do AI’s affect exploration and
travel? Do you think AI’s will ever be able to understand emotion?

Elaborate (describe how students expand on concepts & make connections): Students will then be

introduced to the Mars Roving Simulation. Students will be given the object to get their rover
to the ‘target’ . Their rover will sense a crater and communicate that it ‘can’t go there’.

It has been coded to not move and respond if it senses red (color of craters). Students will
need to manipulate the code with operations blocks, controls –if, then else- and move blocks
to move their rover to the target. Once they reach their target, challenge students to change
the values of the move blocks and rotate blocks for less moves and to conserve power. Pay
attention to any students that mention artificial intelligence or coding it to do so.

Evaluation (describe how students will demonstrate their learning): Students will do an inside/outside

circle to discuss the following: What are three careers you think AI’s will be doing more than
humans in the next 50 years? What are three careers/jobs you think humans will still do
more than computers? These questions will also be posted on Canvas.

Vocabulary or topics discussed

Science = attributes, characteristics, artificial and natural

Technology = Artificial Intelligence, simulation

Engineering = perceive, motion, act, sensing, variable blocks

Mathematics = Coordinates, outliers, data, probability, angles, greater/less than

Which STEM careers were highlighted? = Coding artificial intelligences, turing test creators,
robotics, game coding

