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Abstract 

Avian influenza (AI) is a zoonotic disease that has garnered much attention in recent 

years due to its detrimental effects on poultry, producers and potentially human health. This 

disease can be extremely fatal to domestic poultry, killing as high as 90-100% of the flock. This 

virus has the potential to cause devastation to and loss of entire flocks. AI is typically spread 

between wild fowl and domestic poultry with a zoonotic potential to also affect human health as 

well as other animals. Its spread also has a massive economic impact due to the decreased 

amounts of available poultry products to consumers around the world. This report will examine 

the worldwide history and epidemiology of highly pathogenic avian influenza (HPAI). In the last 

ninety-two years, there have been five recorded outbreaks of HPAI in the United States (US). 

Globally, notable outbreaks have occurred in Italy (1997-2001), the Dutch region of Europe 

(2003), Canada (2004), and more recently, in Asia.  

Preventative measures will be examined in this report. In particular, biosecurity, 

quarantine, surveillance, and eradication are some of the most widely recognized and accepted 

ways to help prevent and control HPAI outbreaks. However, none of these methods are failsafe 

strategies to completely prevent or control the spread of HPAI. This report will focus on an 

additional preventative measure - currently available and potential future vaccination programs. 

There is a global shift toward procuring poultry that are AI-free as well as unvaccinated for AI. 

This is, in part, due to the limitations of currently available vaccines in completely ridding 

poultry of this disease. Vaccinations may reduce the amount of virus in infected birds, but this 

does not prevent birds from becoming infected.  

When addressing the control and eradication of HPAI, some future challenges include 

viral mutations, intermingling of domesticated and wild birds, and vaccine development. 



Because of the current limitations of vaccines and future challenges in controlling the spread of 

infection, there is no one single solution to this problem.  It will require a multi-faceted 

approach.  
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Chapter 1 - Introduction 

 Background 

Avian influenza (AI) is a zoonotic disease that has garnered much attention in recent 

years due to its detrimental effects on the economy and human health. Much of this increased 

attention is due to the fact that the impact of AI outbreaks have sharply increased over the past 

few years. This impact could be attributed to the number of birds affected as well as the escalated 

economic costs related to controlling the disease.  

AI may be characterized into two different biotypes, strains of a virus which inflict 

different physiologic symptoms.  These biotypes are Low Pathogenic Avian Influenza (LPAI) 

and High Pathogenic Avian Influenza (HPAI). The differences between these two biotypes is 

based mainly on differences in their virulence. (Rebel, 2011) HPAI was first defined in domestic 

poultry in 1959. (Clark, 2006) According to the Office International des Epizooties (OIE),  

“high pathogenicity avian influenza viruses have an intravenous pathogenicity index 

 (IVPI) in six-week-old chickens greater than 1.2 or, as an alternative cause at least 75 

 percent mortality in four-to-eight-week-old chickens infected intravenously. H5 and H7 

 viruses which do not have an IVPI or greater than 1.2 or cause less than 75 percent 

 mortality in an intravenous lethality test should be sequenced to determine whether 

 multiple basic amino acids are present at the cleavage site of the haemagglutinin (sp)

 molecule (HA); if the amino acid motif is similar to that observed for other high 

 pathogenicity avian influenza isolates, the isolate being tested should be considered as 

 high pathogenicity avian influenza virus. Low pathogenicity avian influenza viruses are 

 all influenza A viruses of H5 and H7 subtypes that are not high pathogenicity avian 

 influenza viruses.” (Infection, 2013 p.492)  
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HPAI has been limited to H5 and H7 subtypes, even though not all viruses that include 

these subtypes inflict disease. The remaining viruses can inflict a minor, mainly respiratory 

disease. (Alexander, 2000) Most known HPAI viruses have emerged by mutation after a LPAI 

precursor has been introduced into poultry from the wild bird reservoirs. Throughout this 

disease’s documented history, the factors that underlie the mutation from LPAI to HPAI are 

unknown. It is recognized that generally all HPAI viruses should have a LPAI progenitor, even if 

this has only been found and documented in a small number of cases. (Capua, 2013). For the 

purposes of this report, HPAI will be the main focus.  

 Classification 

Influenza viruses belong to the viral family Orthomyxoviridae. There are three types of 

influenza – influenza viruses A, B, and C. These viruses are distinguishable based on alterations 

in their nucleoprotein antigen. Both influenza viruses A and B have the ability to initiate genetic 

variation. Influenza C virus, on the other hand, is antigenically stable. (Couch, 1996) All forms 

of avian influenza are exclusively classified as influenza virus A. (Clark, 2006) 

 Properties 

Influenza is an enveloped, negative-sense, single-stranded ribonucleic acid (RNA) virus. 

(Clark, 2006) These viruses are about 80 to 120 nm in diameter. (Couch, 1996 and CIDRAP, 

2013) The virus is generally spherical in structure; however, filamentous forms have been 

discovered. (Couch, 1996) The genome is comprised of eight segments. (Wu, 2012) The genome 

can encode for different proteins; eight structural proteins – one nucleocapsid protein (NP), two 

surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), two matrix proteins (M1 

and M2) and three transcriptases (PA, PB1, and PB2), as well as, two nonstructural proteins - 

NS1 and NS2. (CIDRAP, 2013)  
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“The three largest RNA segments (RNA 1, 2, 3) code for subunits of the viral RNA 

 polymerase (PB2, PBl, and PA, respectively) and are responsible for transcription and 

 amplification of the viral genome. A "cap-snatching" function of the viral polymerase, 

 where the 5' methylated ends of cellular mRNAs are cleaved and used as primers for 

 transcription of viral mRNAs, is a unique feature of these viruses.” (Clark, 2006 p.6) 

Viral proteins, HA, NA and M2, are embedded within the lipid envelope of the virus. As 

illustrated in Figure 1.1. HA and NA will be discussed in more depth later on; however, it should 

be noted that M2 is a transmembrane protein that is crucial for viral replication. During cell entry 

and viral maturation, M2 assists to equalize pH across both the viral and trans-Golgi membranes 

of infected cells. (Pielak, 2011)   
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Figure 1-1 Structure of influenza A virus virions. 

 Two glycoprotein spikes, HA and NA, and the M2 protein are embedded in the lipid 

bilayer derived from the host plasma membrane. The RNP consists of a viral RNA segment 

associated with the NP and the three polymerase proteins (PA, PB1, and PB2). The M1 protein is 

associated with both RNP and the viral envelope, while NS2 is associated with RNP through 

interaction with M1. NS1 is the only nonstructural protein of influenza A virus. Adapted from 

Horimoto, T., & Kawaoka, Y. (2001). Pandemic Threat Posed by Avian Influenza A Viruses. 

Clinical Microbiology Reviews, 14(1), 129-149. Retrieved February 24, 2016. 
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Nomenclature 

HA and NA are essential membrane proteins. HA is involved in helping the virion bind to 

host cells as well as assists in fusion between the two. NA is involved with virus budding and 

shedding, binding, and host-range determination. Both HA and NA are highly variable and are 

significant pathogenicity determinants. Based on these two viral proteins, influenza virus A can 

be further classified into subtypes. HA has 16 different subtypes, H1 through H16, whereas NA 

only has 9 subtypes, N1 through N9. (Clark, 2006) Table 1.2 identifies the subtypes of HA, NA 

and the predominant host of each subtype for influenza virus A. 
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       Table 1.2 Natural Hosts of Influenza A Viruses  

Hemagglutinin Neuraminidase 

Subtype Predominant Hosts Subtype Predominant Hosts 

H1 Human, pig, birds N1 Human, pig, birds 

H2 Human, pig, birds N2 Human, pig, birds 

H3 Birds, human, pig, horse N3 Birds 

H4 Birds N4 Birds 

H5 Birds, (human) N5 Birds 

H6 Birds N6 Birds 

H7 Birds, horse, (human) N7 Horse, birds 

H8 Birds N8 Horse, birds 

H9 Birds, (human) N9 Birds 

H10 Birds N10 Bats 

H11 Birds N11 Bats 

H12 Birds    

H13 Birds    

H14 Birds    

H15 Birds    

H16 Birds     

H17  Bats   

H18 Bats   
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Table 1-1 Natural hosts of influenza A viruses. 

 The table indicates the subtypes of hemagglutinin (HA) and neuraminidase (NA), and the 

hosts in which they have been identified. Adapted from Lamb RA, Krug RM. Orthomyxoviridae: 

the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE et al., editors. Fields 

Virology, 4th edn. Lippincott Williams & Wilkins, 2001; pp. 1487–1531.  

Modes of Transmission and Pathogenesis 

Within the wild bird population, AI is generally a mild or insignificant disease. Very few 

cases of severe disease or mortality have been reported. (Clark, 2006)  In fact, many wild fowl 

are a primary reservoir for AI, serving as a healthy carrier of the disease. Susceptible birds can 

become exposed to HPAI either directly or indirectly. According to Mubareka et al., “Potential 

modes of transmission of influenza virus include direct contact with infected individuals, 

exposure to virus-contaminated objects (fomites), and inhalation of infectious aerosols.” (2009 

p.858) 

Most commonly, contaminated bodies of water aid in the spread of HPAI through the 

fecal-oral route. Domestic poultry are in jeopardy of contracting HPAI anytime a water source is 

shared with wild birds. Disease-ridden birds can shed the virus in their feces into the water, other 

birds can then contract HPAI by consuming the contaminated water. Halvorson et al, also 

demonstrated that contamination of surface-water ponds may be due to the viral contamination 

of nearby groundwater supplies and vice versa. This contamination may result due to using 

contaminated manure to fertilize fields etc. (1984) Alternatively, the inhalation of aerosolized 

fecal dust can be another form of transmission. Through this route, the bird can become infected 

through the oral and or respiratory routes. However, this is a less effective mode for infection. 

(Clark, 2006) 

http://www.rapidreferenceinfluenza.com/chapter/B978-0-7234-3433-7.50009-8/aim/classification-and-nomenclature-of-influenza-viruses#bib1
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AI viral replication is restricted to the intestine and respiratory epithelium. Once the virus 

has gained entry, it will begin to rapidly replicate producing large quantities of virus progenies. 

These progenies are consequently released from cells and shed from the host. (Lekcharoensuk, 

2008) To provide an example, if the virus were to initiate replication within the epithelial tissue 

of the intestine, this process could take between two to fourteen days after ingestion. Once the 

virus has produced enough progenies, the infected bird will subsequently start shedding the virus 

through the cloaca. This process, in particular with regard to viral replication within the intestine, 

is important for the transmission of HPAI virus to spread through the fecal-oral route. (Clark, 

2006) 

Symptoms 

For domestic poultry species, AI symptoms can vary among different breeds of birds, 

such as chickens, ducks and turkeys. HPAI has an incubation period of three to five days, with 

symptoms potentially developing once its incubation is complete. (Clark, 2006)  These symptoms 

can vary from cyanosis of the comb and waddles, a decrease in egg production, diarrhea, edema 

in the head or face, an excessive flow of tears, respiratory signs, ruffled feathers, sinusitis and 

distress upon the central nervous system, such as, head tilt or a lack of coordination,. (Horimoto, 

2001) In addition to these symptoms, upon onset of disease, these birds may also experience 

fever and lethargy. (Clark, 2006) This disease can lead to death within hours of the onset of 

clinical symptoms and mortality rates can be as high as one hundred percent. (Clark, 2006 and 

Horimoto, 2001) Currently, there are no specific treatment plans for HPAI infections in poultry. 

Those flocks infected with the virus are generally eradicated. 
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 Zoonotic Potential 

AI epidemics pose risks to not only domestic poultry but humans and other animals as 

well. In 1997, Hong Kong had the first documented case of an individual contracting H5N1 from 

a chicken. Humans contracted the disease by coming into close contact with infected birds or 

their feces. This was primarily through the inhalation of aerosolized fecal dust or contaminated 

water. There are very few cases of this strain of AI spreading through human-to-human 

transmission. By December 1997, the outbreak had resulted in the hospitalization of eighteen 

individuals and six deaths. Since that initial outbreak, there have been multiple incidents of 

humans contracting AI from domestic poultry. Other human cases of AI have been recorded 

since the 1997 outbreak. These cases involved a variety of strains such as: H5N1, H7N2, H7N3, 

H7H7 and H9N2. (Imperato, 2005) Most recently, a H7N9 strain was reported in China. The 

impact these outbreaks could have on public health has called for an increase in surveillance of 

wild and domestic birds, improved communication with officials, educating the public on 

potential effects of the disease and working toward improving medical treatment.  

AI can present a variety of symptoms in humans. These symptoms can range from 

classical influenza symptoms, including cough, fever, muscle aches and fever. However, 

symptoms as severe as “eye infection, pneumonia, acute respiratory distress syndrome (ARDS), 

multiple organ failure, lymphopenia, elevated liver enzyme levels and abnormal clotting 

profiles” can occur. (Weir, 2005 p.785) 

The main cause for concern is the potential for AI to participate in cross-species 

transmission, leading to reassortment of the virus. (Ferguson, 2004) Reassortment is the 

recombination of the virus’ genetic material, and can be performed through antigenic variation. 

In fact the classic hallmark of influenza is its ability to undergo antigenic variation. Antigenic 
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variation can present itself in the form of antigenic drift and antigenic shift. (Treanor, 2004) 

Antigenic drift develops gradually over a period of time. It can occur in both influenza virus A 

and B. (Treanor, 2004) Antigenic drift occurs due to faults within the viral replication process, 

over time these mutations allow subtypes of the virus to adapt and cross species. Fortunately, 

antigenic drift does not normally increase the pathogenicity or virulence. (United, 2015) 

Antigenic shift can express variations in host susceptibility, pathogenicity and virulence. It can 

occur in a multitude of ways, but most commonly as direct species adaptation and genetic 

reassortment. Direct species adaptation is that process in which a species previously unknown to 

be affected by a particular subtype now has that strain circulating within its species and may 

subsequently become infected with the disease. (United, 2015) Host cells that are co-infected 

with two different viral strains of AI virus can result in the genetic reassortment of the virus, 

producing an entirely new virus. (United, 2015) 

Concurrent infections of human and avian influenza could, in principle, produce novel 

influenza viruses. “These hybrid viruses would have the potential to express surface antigens 

from avian viruses to which the human population has no preexisting immunity.” (Kaye, 2005 

p.108) Overall, these hybrid viruses could instigate a devastating pandemic and amplify already 

high rates of mortality. (Ferguson, 2004) 

 Purpose 

 Historically, HPAI is a globally devastating disease and currently continues to have a 

massive impact. The purpose of this report is to understand avian influenza by examining its 

background, history and epidemiology. Furthermore, it is necessary to explore the available 

preventative measures and future challenges of controlling HPAI outbreaks. Such a synopsis is 

essential to set the stage for researchers to continue to combat its effects. 
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Chapter 2 - Worldwide History and Epidemiology of HPAI 

This chapter of the report will focus on notable HPAI outbreaks worldwide. These 

outbreaks have caused a significant impact on the health of domestic poultry as well as financial 

losses. In the last ninety-two years, there have been five recorded outbreaks in the US. Outbreaks 

have also occurred in Italy (1997-2001), the Dutch region of Europe (2003), Canada (2004), and 

more recently, Asia. To add, other previously reported outbreaks of HPAI are displayed in table 

2.1. 
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Table 2.1 Previous Outbreaks of Highly Pathogenic Avian Influenza 

Worldwide 

Year Country/Area Domestic Birds Affected Strain 

1959 Scotland Chicken H5N1 

1963 England Turkey H7N3 

1966 Ontario, Canada Turkey H5N9 

1976 Victoria, Australia Chicken H7N7 

1979 Germany Chicken H7N7 

1979 England Turkey H7N7 

1983–1985 Pennsylvania, United States Chicken and Turkey H5N2 

1983 Ireland Turkey H5N8 

1985 Victoria, Australia Chicken H7N7 

1991 England Turkey H5N1 

1992 Victoria, Australia Chicken H7N3 

1994 Queensland, Australia Chicken H7N3 

1994–1995 Mexico* Chicken H5N2 

1994 Pakistan* Chicken H7N3 

1997 New South Wales, Australia Chicken H7N4 

1997 Hong Kong (China)* Chicken H5N1 

1997 Italy Chicken H5N2 

1999–2000 Italy* Turkey H7N1 

2002 Hong Kong, China Chicken H5N1 

2002 Chile Chicken H7N3 

2003 Netherlands* Chicken H7N7 

*Outbreaks with significant spread to numerous farms, resulting in great economic losses. Most 

other outbreaks involved little or no spread from the initially infected farms. 

  



13 

Table 2-1 Previous Outbreaks of Highly Pathogenic Avian Influenza Worldwide. 

 Adapted from Avian influenza A (H5N1) - update 31: Situation (poultry) in Asia: Need 

for a long-term response, comparison with previous outbreaks. (2004, March 2). Retrieved 

February 26, 2016, from http://www.who.int/csr/don/2004_03_02/en/  

 United States 

Before the most recent outbreak in 2016, the US has had only four recorded outbreaks of 

HPAI in the last ninety-two years: in 1924, 1983, 2004, and 2015.  

  Outbreak in 1924  

In June 1924, the first HPAI outbreak was recorded in the US. Throughout this outbreak, 

two subtypes were in circulation, H7N1 and H7N7. (Swayne, 2013) Prior to this outbreak, HPAI 

was not acknowledged to be present in the country. It began with an undiagnosed high rate of 

mortality affecting birds in the East Coast live bird markets. This primarily occurred in the state 

of New York. By August of 1924, the disease had spread within poultry to both New Jersey and 

Pennsylvania. In December, New York began rejecting chickens imported into the live bird 

markets from numerous Midwestern states. Officials wrongly believed that these birds were the 

source of infection. The rejected chickens were then sent to other regions, continuing to spread 

the disease through different means, such as contaminated crates and the railway system. There 

was no indication that wild birds played a role in the transmission of this particular outbreak. In 

addition, no human cases of infection were reported. By January and February 1925, six more 

states were affected by the disease: Connecticut, Illinois, Indiana, Michigan, Missouri, and West 

Virginia.  Eventually, through preventative measures, such as biosecurity, depopulation and 

quarantine, the United States Department of Agriculture (USDA) was able to control the multi-

state outbreak and the disease was eradicated that spring. It has been estimated that within New 
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York City alone, 500,000 to 600,000 chickens died. Furthermore, the financial impact of this 

outbreak was projected to be one million dollars.  (Halvorson, 2009) 

 Outbreak in 1983 

In April 1983, a LPAI H5N2 infection was detected in a Pennsylvania flock. Symptoms 

observed were typical to an LPAI infection, including the initial onset of respiratory symptoms 

followed by a reduction in egg production and low mortality rates. As the disease carried on, 

there was an increase in the severity of symptoms, including a decline in food consumption, 

dehydration, lethargy, edema, cyanosis and hemorrhages. This raised the concern of whether the 

initial LPAI infection had converted into an HPAI virus. Diagnostic tests were performed and the 

virus was isolated as a HPAI H5N2 virus. This is the first documented case within the United 

States of LPAI mutating into HPAI.  

The disease continued to spread to flocks in Pennsylvania (HPAI and LPAI), New Jersey 

(LPAI), and Virginia (LPAI). Similar to the outbreak in 1924, the infection was accredited to 

have spread through contaminated equipment, coops and trucks used to transport birds. 

Contaminated eggs, feed and water were also thought to have contributed to the spread.  Again 

no zoonotic cases of disease were reported. By November 1983, biosecurity, containment and 

eradication efforts were instituted by the USDA; however, it was not until February 1984 that the 

decision to eradicate all flocks that exhibited signs or symptoms of H5N2 infection was 

finalized. More significantly than the outbreak of 1924 with the destruction of 500,000 to 

600,000 chickens, this outbreak resulted in the depopulation of 17 million birds throughout 448 

flocks. The economic impact of this outbreak was estimated to be fifteen million dollars in non-

insured losses for poultry producers and sixty-three million dollars for the government. 

(Halvorson, 2009) 
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 Outbreak of 2004 

In February 2004, the USDA confirmed the presence of a HPAI H5N2 outbreak near 

Gonzalez, Texas. The disease affected one farm of approximately 6,600 chickens. Observations 

were made that the infection arose due to poultry species returning to the farm from live bird 

markets. Clinical symptoms presented were similar to an LPAI infection with respect to 

respiratory symptoms and low mortality rates. Those infected and at-risk birds were culled as 

directed by the USDA and the outbreak was controlled by April. There was no indication that 

wild birds played a role in the transmission of this particular outbreak. Nor were any cases of 

human infection reported. (Lee, 2005 and Halvorson, 2009) 

 Outbreak in 2015 

 In December 2014, in Douglas County, Oregon, the first case of HPAI was confirmed. It 

occurred in a backyard operation, consisting of approximately 130 mixed species of poultry. 

(Newton, 2015) Throughout mid-January 2015, the USDA identified fourteen more cases of an 

Asian-origin HPAI strain. Of the fourteen HPAI cases identified, several strains were detected, 

including H5N1, H5N2 and H5N8. (Jhung, 2015) Five months after the initial outbreak, a ‘state 

of emergency’ had been declared in Iowa, Minnesota and Wisconsin. Preventative measures 

were implemented to control this outbreak including, biosecurity and eradication. (Greene, 2015) 

The final detected case of HPAI came on June 17th.  

 It is believed that the epidemic was transmitted by wild birds migrating from Eurasia. 

These birds traveled along the Pacific flyway and continued to move into the Central and 

Mississippi flyways. Flyways represent the predispositions of wild birds to confine their 

movements within expansive geographic bounds. (Clark, 2006) They most commonly utilize 

these routes when traveling from their breeding grounds to winterized areas. Additionally, 
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APHIS advised that gaps in preventative measures, such as biosecurity could have also 

contributed to the spread of this disease. (Greene, 2015) This outbreak devastated domestic egg 

and poultry producers affecting more than 48.8 million birds within 21 states. The economic 

impact from this outbreak was estimated to be 3.3 billion dollars, classifying it as one of the 

worst animal diseases in US history. (Greene, 2015 and USDA, 2015) 

 Outbreak in 2016 

 On January 15, 2016, APHIS confirmed the year’s first case of HPAI in Dubois County, 

Indiana. The H7N8 strain was discovered in a commercial turkey flock and different than the 

HPAI strain that resulted in countless numbers of outbreaks in 2015. Officials immediately 

began the quarantine and depopulation of the affected area. (United, 2016) Furthermore 

additional surveillance and testing of birds within the affected area was implemented. These 

methods included epidemiologic, geospatial, genetic, and wildlife investigations. APHIS began 

the testing and sampling of wild birds within the region, no detection of H7N8 has been found. 

(USDA, 2016) At the present time, this outbreak has been considered contained.  

 Italy  

From October 1997 to February 2001 two extremely devastating HPAI epidemics 

affected regions of Italy. 

 Outbreak of 1997 

In October 1997, unexpected high mortality rates of rural flocks were being reported. 

HPAI was suspected and an H5N2 subtype was isolated. This epidemic spread to eight backyard 

and semi-intensive flocks throughout the Veneto and Friuli-Venezia Giulia regions of north-

eastern Italy. Additionally, this region of Italy lies on a major migratory flyway and wetland for 

wild birds and is heavily populated with intensive poultry operations, making it a prime location 
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for this particular strain to spread rapidly. However, control and prevention measures were 

implemented immediately to prevent the further spread of this disease into more well-established 

poultry facilities. The epidemic, affecting approximately 6,503 birds, was declared over by 

January of 1998. (Capua, 1999)  

 Outbreak of 1999 

 One of the most important HPAI outbreaks throughout Europe, the 1999 epidemic 

originated from an LPAI strain. In March 1999, an H7N1 strain was detected in parts of northern 

Italy. Despite attempts to control and eradicate the disease, 199 flocks had become infected. The 

H7N1 strain continued to spread to other facilities until April of 2000. At this point the disease 

was thought to be eradicated. (Monne, 2014) However, by the following August, the disease had 

reemerged and seventy-eight more outbreaks were identified. In November 2000, a vaccination 

program was instituted to prevent further losses. The vaccination program was mainly targeted 

for meat turkeys, due to their increased susceptibility of the disease. In addition, poultry with a 

longer life span, such as layers, were also vaccinated. Through the implementation of this 

vaccination program, there was an immense reduction in the number of outbreaks as well as a 

decrease in the extent of the epidemic. By February of 2001, this devastating epidemic was 

declared over (Monne, 2014), but not before resulting in 415 outbreaks and the loss of 

approximately fourteen million birds. (Alexander, 2007) 

 The Dutch Region of Europe – Belgium, Germany and the Netherlands  

In February 2003, an H7N7 outbreak occurred in the Netherlands. The initial outbreak 

was reported in a heavily populated poultry farm near Geldersei Vallei. (Van Berm, 2014 and 

Alexander, D.J., 2007) The outbreak rapidly spread to a province near the Belgium border. By 

mid-April, eight farms in Limburg on the Belgium-Netherland border had also become infected. 
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Only one farm was affected in Germany. Extensive stamping out procedures were implicated to 

gain control and eradicate this disease. The Dutch epidemic resulted in 241 outbreaks and the 

eradication of twenty-five million birds. (Alexander, D.J., 2007)  

In addition to HPAI H7N7 infections in birds, there were also several zoonotic cases.  

Officials originally thought that the risk of contracting the disease was low; however, an 

investigation was launched and found that eighty-nine individuals developed the disease. In 

addition there was one case fatality, a veterinarian who had visited several of the farms. 

(Koopmans, 2004)  

 Canada 

In February 2004, British Columbia, Canada reported its first case of HPAI. The LPAI 

H7N3 virus shifted to an HPAI strain. The epidemic began at a well-established broiler-breeder 

farm located in Fraser Valley. By mid-February the affected flock had been culled. Despite the 

enactment of control and prevention methods such as surveillance and depopulation, by March 

the disease had continued to spread to other local farms. Eventually, the disease encompassed the 

densely populated valley, which contained approximately 85-90% of the area’s poultry 

production. The decision was finally made to cull all birds that displayed signs of symptoms of 

the disease. The epidemic resulted in 53 outbreaks between commercial and backyard flocks and 

the depopulation of seventeen million birds. (Pasick, 2009) 

 Asia 

This section of the report will not have specific epidemiological statistics nor highlight 

significant years because outbreaks occur frequently in Asia. Thus, bringing to light the almost 

endemic situation that currently faces Asian countries in regard to AI. For example, Capua et al. 

notes about HPAI H5N1:  
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“At the moment it is unclear whether or not HPAI H5N1 is truly endemic in the Eurasian 

 wild bird population or merely limited to spill-over events from domestic birds. If the 

 latter is true, then provided the domestic source of infection is eliminated, and the 

 infections are responsible for the death of the wild avian hosts, presumably the 

 prevalence of infection will gradually be reduced to zero. In contrast, if HPAI infection 

 does not bring about the death of the wild bird host and becomes compatible with normal 

 behavioral patterns and migration in at least some species, this will result in the 

 development of an endemic cycle in wild bird, mimicking the well-known LPAI 

 ecology. The consequences of such a situation are unpredictable.” (Capua, 2007 p.5646) 

 Over the last thirty years, various strains of AI have spread across Asia. Due to lax 

preventative measures, these strains have spread across numerous Asian countries. Alexander 

(2007) qualifies the situation as endemic in many of those countries. Specifically, the HPAI 

H5N1, originally isolated in China in 1996, spread in poultry or wild birds into the rest of Asia, 

Europe, and Africa. Because of this uncontrolled spread, extreme measures, such as eradication 

were employed resulting in the culling of hundreds of millions of birds. Furthermore, this spread 

posed an increased risk to human health via direct species adaptation. Between December 2003 

and February 2004, outbreaks of AI have been reported in Korea, Cambodia, China, Indonesia, 

Japan, Lao People’s Democratic Republic, Thailand, and Vietnam. (Reinhardt, 2004) 

 Due to these events, the H5N1 infections are now considered endemic within the 

commercial poultry in Bangladesh, China, Egypt, India, Indonesia, and Vietnam. Even though, 

other countries have also reported outbreaks of the disease.  “This unprecedented situation has 

occurred certainly via the trade of infected poultry and poultry products, but infection of wild 

birds has also most probably contributed to carrying the virus over large distances.” (Capua, 
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2007 p.5646) The poultry industry has experienced devastating consequences due to the various 

strains of AI reaching endemic qualities. These consequences include economic issues, negative 

public opinion, the creation of human health issues, such as a pandemic zoonotic virus, and the 

loss of millions birds through culling. (Capua, 2007) 
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Chapter 3 - Preventative Measures 

Naturally, the best method for reducing the catastrophic effects of a HPAI epidemic is to 

avoid having any outbreaks to begin with. There is no single solution to controlling the spread of 

the HPAI virus.  It will require using a variety of programs and interventions simultaneously. 

Some of the most effective approaches to date have included: 1) enhancements in biosecurity, 2) 

quarantine of suspected HPAI cases, 3) surveillance of wild birds, 4) eradication of affected 

flocks, 5) efforts to communicate and educate professionals in the poultry industry and 6) 

vaccination.  These measures will be discussed in detail, including the strengths and weaknesses 

of each approach. 

 Biosecurity 

When assessing potential preventative measures for HPAI outbreaks, biosecurity may 

appear to be an obvious solution. According to the Food and Agriculture Organization of the 

United Nations (FAO), “Biosecurity is the implementation of measures that reduce the risk of the 

introduction and spread of disease agents. Biosecurity requires the adoption of a set of attitudes 

and behaviors by people to reduce risk in all activities involving domestic, captive exotic and 

wild birds and their products.” (Biosecurity, 2008 p.1) However, this solution can be difficult to 

implement. Biosecurity requires additional planning and understanding. For example, in the 

outbreak in Indiana in 2016, the USDA launched a questionnaire to examine biosecurity 

measures of the infected farms. The initial investigation found that while some measures were 

implemented others were not. This investigation is ongoing and will look at those farms that 

were not affected. This analyses should be able to help determine the cause of the outbreak in 

regards to the lack of biosecurity. (USDA, 2016)   
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The concept of biosecurity encompasses three basic principles: segregation, cleaning and 

disinfection. Segregation is the practice of keeping one flock away from another flock. In the 

instance that both flocks are housed on the same farm, it may be required of personnel to shower, 

and change scrubs before moving from one flock to the other. Cleaning is a very important 

aspect of biosecurity. Influenza is easily inactivated by most soaps and disinfectants. This 

principle must be performed on all equipment. This may include: feeders, waterers, nest boxes, 

perches and crates. Disinfection can be performed through thoroughly spraying the equipment 

and room or by fogging.   

Simply put, segregation is a matter of keeping one flock of birds completely separate 

from another. It is crucial to keep wild birds and domestic flocks from intermingling. It is also 

important to ensure that barriers to limit exposure are maintained. For example, when working 

with two flocks of birds housed separately, it is essential to follow protocol on the following 

principles of cleaning and disinfecting so that the segregation remains in place. The basic 

principle of cleaning involves ensuring that all materials potentially infected by passing through 

a virus site must be cleaned. Typically, if all visible dirt is removed, the majority of the virus will 

also be removed. The last basic principle is disinfection. This principle typically occurs after 

cleaning because if one attempts to disinfect an item without first removing the visible debris, the 

process will be ineffective at removing the virus. Most disinfection agents do require appropriate 

proportions when added to another liquid and a certain amount of contact time before it can 

completely kill the virus. For example, sodium hypochlorite needs at least ten minutes of contact 

time to ensure the material is fully sanitized. Also, for appropriate sanitation, the concentration 

of sodium hypochlorite in liquid form depends on targeted microorganism and the object being 
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sanitized. Therefore, a different proportion of sodium hypochlorite to water may be required to 

be effective against AI than for other diseases. (Biosecurity, 2008) 

As a preventative measure, absolute biosecurity is nearly impossible to achieve. 

However, attaining a level of biosecurity that reduces the risk of infection is possible. This 

measure is critical for preventing disease, as well as hindering its continuing spread. 

(Biosecurity, 2008)  

 Quarantine 

Quarantine may prove to be an additional preventative measure with significant value. 

This is due to the fact, that by establishing a quarantine it controls the movement and spread of 

the disease. According to the Centers for Disease Control and Prevention (CDC), quarantining 

“separates and restricts the movement of people who were exposed to a contagious disease to see 

if they become sick.” (2015) Animal quarantine works exactly in the same manner. When 

applying this concept to an HPAI outbreak, it may possibly prevent the further spread of disease 

from those infected to susceptible birds. The quarantine period depends on a variety of factors 

which can include; the amount of virus a bird is exposed to, the mode of transmission, the 

species affected and the presentation of clinical signs. However, for international regulatory 

purposes the OIE recognizes twenty one days as the incubation period for AI. This time frame 

may differ from what is actually implemented in the field. These differences are due to a 

different interpretation of incubation period. More specifically, in the field incubation period is 

defined as the period from exposure to the initiation of clinical disease. (Swayne, 2013) 

There are a variety of serological diagnostic tests available to test birds for the presence 

of an HPAI infection. Agar gel immunodiffusion (AGID) tests, enzyme-linked immunosorbent 

assays (ELISA), hemagglutination inhibition (HAI), and neuraminidase inhibition (NAI) assays 
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have all been utilized to detect HPAI. (OIE) These tests are utilized to identify, type and 

characterize an AI infection. Additionally, rapid detection tests have been made available to 

detect the presence antigens, specifically H5, H7 and N1. However these have low to moderate 

sensitivity. And are more highly utilized when there are multiple birds showing symptoms. 

(Swayne, 2008) Diagnostic tests such as virus isolation, genetic sequencing, and real time 

reverse transcription polymerase chain reaction (rRT-PCR) have also been highly utilized. If 

those quarantined birds are found to be infectious, it is to be expected that the rest of the flock 

would be culled. (Biosecurity, 2008) 

As with biosecurity there must be strict boundaries between quarantined and non-

quarantined zones. This would include, but are not limited to, using clothing, footwear, personal 

protective equipment (PPE) and other supplies at separate locations. These materials would also 

need to undergo cleaning to ensure quarantine remains unbroken. In some cases, laborers may be 

assigned to designated areas so that no cross-contamination occurs. Without this separation, 

HPAI can easily spread to the remaining birds in the flock. (Biosecurity, 2008) 

The effectiveness of this preventative measure was tested and demonstrated in England in 

2005. This outbreak resulted due to an Asian-Origin HPAI H5N1 strain, and resulted in the 

quarantine of caged birds. These birds had displayed a high rate of mortality due to the disease 

which led to trade restrictions within the European Union (EU) and beyond. (Capua, 2013) 

 Surveillance 

Additional means of preventing HPAI may be through the implementation of 

surveillance. Surveillance is an essential preventative measure that can effectively contribute to 

the planning, implementation and potential control of a future outbreak. This process can be 

performed through the constant sampling, analysis and interpretation of data. (Introduction, n.d.) 
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Samples are generally collected from cloacal swabs of live wild birds, wild fowl killed by 

hunters during hunting seasons, or other unexplained wild bird deaths. (Robert, 2009) 

Surveillance should be targeted at those susceptible poultry within a particular region with the 

goal of identifying the disease and/or infection. (Infection, 2013) Surveillance, while an ongoing 

process, can be categorized into two types; passive and active surveillance. Passive surveillance 

relies on collecting data from previously reported cases. (Introduction, n.d.) Alternatively, active 

surveillance conducts current sampling from those points, which may be affected by an outbreak. 

(Phan, 2013) According to the OIE, active surveillance should be performed every six months at 

the minimum. (2013) 

Surveillance has become globally recognized as a means to detect HPAI early within the 

poultry population, and prepare for potential future threats. More notably, using surveillance on a 

global scale, while studying AI, may give new insight as to the variations in where the disease 

spreads to and how much time the disease takes to circulate. (Munster, 2006) These results, 

whether discovered due to research or from government surveillance, are shared through online 

databases and scientific journals. Often times, these studies may lack standardization and some 

results may not be reported due to its negative findings. This can reduce the value of these 

reports, slowing the prevention and control of a future outbreak. Luckily, there are a couple of 

online databases, such as GenBank and the Influenza Research Database, that provide detailed 

and accurate reporting. Nonetheless, despite the benefits of surveillance, there is unfortunately 

no standardized, comprehensive reporting system. (Machalaba, 2015) 

 Munster and colleagues bring up a good point when stating the benefits of utilizing wild 

bird studies as an early warning system. (2006) Early warning systems are most often utilized to 

quickly identify the introduction or rapid surge in the occurrence of disease. These systems are 
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mainly based on surveillance and accurate reporting of collected data. (Martin, 2006) For 

example, if the person facilitating the study places some “sentinel” birds (unvaccinated) within 

each flock, it is surmised that once one of these sentinel birds contracts the disease, the facilitator 

can act accordingly and report it to the authorities. Therefore, the authorities are warned much 

earlier than in other situations. This early action can help prevent further spread or mutation. 

(2006) (Capua, 2007) Currently organizations such as the OIE, FAO and the EU have been 

actively monitoring AI. For example, the FAO uses a web-based program to record, analyze and 

monitor the AI situation. This program monitors both wild and domestic birds. Other programs 

that are effective with early warning systems are the Global Early Warning and Response 

System. This works to monitor transboundary animal diseases. (Martin, 2006) 

An understanding of animal movements is important to prevent and control future HPAI 

outbreaks. By gaining a better understanding of these movements, surveillance techniques can 

become more targeted in their approach. This is of note for those countries that do not have the 

resources to conduct detailed surveillance plans. These countries include Cambodia, China, 

Hong Kong, Thailand and Vietnam. Surveillance in these countries has proved effective by 

establishing that a HPAI H5N1 strain is circulating in live bird markets. (van Kerkhove, 2009) 

 Eradication 

Eradication appears to be the only practical resolution to quickly controlling an HPAI 

outbreak. This generally leads to mass depopulation of the infected flock and those flocks within 

that region. According to the American Veterinary Medical Association (AVMA), “mass 

depopulation refers to methods by which large numbers of animals must be destroyed quickly 

and efficiently with as much consideration given to the welfare of the animals as practicable.” 

(2016) The most common means to depopulating a flock are cervical dislocation, avicide 
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poisoning, gas and water-based foam. Cervical dislocation leads to an immediate state of 

unconsciousness due to the dislocation of the head and the spinal cord. This procedure requires 

each bird to be handed individually. Additionally each person must be properly trained to ensure 

that they are performing the procedure as humanely as possible. Avicides are a poison that are 

highly toxic to avian species. This method of depopulation would require the avicide to be 

delivered within the drinking water. This method is much slower, due to the bird needing to 

consume enough poison to be lethal. Depopulation of a flock with gas is typically performed 

with carbon dioxide. This can be achieved by creating a fully sealed chamber and filling it with 

the gas. Water-based foam is a medium that fully covers the birds. This medium lodges within a 

bird’s trachea and inhibits it from breathing. Fortunately, this technique spreads and builds up 

well allowing for a quick and humane method of depopulation. To add, other means of 

depopulation such as electrocution and maceration have been performed but are not ideal. 

(Webster, 2007) Ideally, through means such as surveillance, the detection and potential 

eradication of a HPAI infected flock should be performed as quickly as possible. Through 

eradication, the reduction of HPAI virus in the environment can be achieved thus preventing the 

spread to other flocks. 

Unfortunately, eradication does have its faults in attempting to control an HPAI outbreak. 

According to Song et al., “the eradication of HPAI virus-infected poultry is a temporary measure 

to prevent virus exposure to humans, but ducks and geese in nature are asymptomatically 

infected with these avian influenza viruses making it impossible to completely avoid contact 

with the virus.” (2009 p.3145) Generally, the culling of birds that are considered healthy and un-

infected, but also at risk of HPAI infection, may be considered a fault of eradication. This is 

primarily due to the fact that it can cause economic constraints on the poultry industry and can be 
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a cause for public concern. For example in Egypt in 2006, educational programs were deployed 

to various groups such as poultry industry officials, the media, and veterinarians to deal with 

alarm reactions in the public. Later, door-to-door education was implemented by volunteers. 

(Abdelwhab, 2011) 

 Communication and Education 

In today’s global economy, it is not sufficient for countries to only focus on controlling 

HPAI outbreaks within their country. In order to control the devastating effects of HPAI, a 

continuing strategy involving multiple invested parties will be necessary. (Alders, 2007) As 

Alders and colleagues point out, “a common understanding of the problem and effective 

education and communication components are important elements of the control strategy.” (2007 

p.143) Effective communication must be clear, consistent, credible, practical and correct. If 

communication is unclear, it could slow the response to an HPAI outbreak. (Alders, 2007) With 

multiple countries working together, they can preemptively prepare for, control and eradicate 

future HPAI outbreaks. (USDA, 2015, April) To date, there is no universal procedure to report 

results of other preventative measures such as surveillance. This limits the clear communication 

between agencies, state officials and/or poultry producers needed for controlling outbreaks. 
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Chapter 4 - Vaccination Programs 

A strong vaccination program is one of the most important prevention strategies when 

looking to reduce the likelihood of a HPAI outbreak from occurring; however it is highly under-

utilized. Vaccines provide numerous benefits including:  1) increasing resistance in poultry to 

developing HPAI infection, 2) reducing the environmental load and transmission of HPAI, 3) 

reducing viral replication, 4) preventing illness and death of infected birds, and 5) reducing 

human exposure and infections. (Swayne, n.d.) Due to its importance as a preventative strategy, 

HPAI vaccines and the current state of vaccine development will be discussed in detail, 

including the worldwide implications of different vaccine strategies. 

 Available Vaccines 

Currently, birds are inoculated with vaccines by needle injections - intramuscularly or 

subcutaneously. This requires vaccinations be done by hand, which takes many hours. Studies 

are being conducted to research the efficacy of administering vaccines through either air or water 

supplies, or via egg injection. These studies are promising in that entire flocks of birds can be 

vaccinated in a short amount of time. For example, researchers are working to develop an AI 

vaccine that would be capable of differentiating infected from vaccinated animals (DIVA). This 

vaccine could be administered through water and would protect birds against Newcastle Disease 

virus (NDV) as well as H5N1, H5N2 and H5N8. Furthermore, the vaccine has the potential to be 

administered in ovo, resulting in automatically vaccinated chicks. This study was initiated in 

2015 at Kansas State University. (Prairie, 2016) 

Ideally, after initial vaccination, a vaccine should be able to prevent future infections as 

well as induce lifelong immunity to the disease.  (Rahn, 2015) Unfortunately, no such vaccine is 

currently available. The inactivated whole virus vaccine, is widely available and accepted to 
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control HPAI infections and outbreaks. Even though this type of vaccine is widely used, it is by 

no means a universal vaccine as vaccines tend to be strain specific. (Rahn, 2015) It must be 

noted that reassortment can be a cause for a potential vaccine to be ineffective, which leads to the 

need to constantly develop new vaccines.  

  Inactivated Vaccines 

Inactivated vaccines are the most commonly used vaccines, and they are commercially 

available.  Although they do reduce the spread and transmission of the virus, there are limitations 

in their use. Unfortunately, inactivated vaccines are inefficient against maternal antibodies. In 

birds, chicks absorb maternal antibodies through the yolk. While these antibodies serve as a 

source of passively acquired immunity, they can also inhibit vaccines from inducing an immune 

response. (Forrest, 2013) Additionally, inactivated vaccines have to be subtype specific. For 

example, a vaccine for H5N1 would not be effective for an outbreak of H7N1. This leads to the 

constant development of vaccines that will be effective against each strain. Another significant 

concern of using this type of vaccine is interference due to vaccine-initiated antibodies when 

employing surveillance to predict how the disease spreads. (Lee, 2004) 

Inactivated vaccines are usually administered at about three weeks of age and can require 

between two to four injections. These injections are administered approximately three weeks 

apart, and if given properly, these vaccines can confer adequate immunity. However, immunity 

takes approximately seven to ten days to develop, and would not become sterilizing. (Capua, 

2013 and USDA, 2015) Inactivated vaccines for H5, H7 and H9 virus subtypes are commercially 

available. These vaccines have been approved for use in numerous countries, such as China, 

Egypt, Indonesia and Vietnam to name a few. (Capua, 2013 and Roth, 2012) 
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  Experimental Vaccines 

Other vaccines that are being studied and are gaining momentum as novel approaches to 

controlling HPAI in poultry, include live attenuated vaccines, DNA-based vaccines, RNA 

replicon particle-based vaccines, subunit vaccines, virus-like particles and vectored vaccines. 

These experimental vaccines are capable of producing antibodies, which then provide protection 

against losses associated with decreased egg production, disease, and death. Live attenuated 

vaccines initiate antibodies on system-wide and mucosal levels. Mucosal immunity works to 

protect the host from pathogen invasion within the mucus membranes. Additionally, the immune 

system can elicit a systemic response throughout the host body generally in response to a 

pathogen. They can also elicit a significant cellular immune response. Therefore, live attenuated 

vaccines can provide widespread and consistent influenza protection. (Wu, 2010) Additionally, 

vectored vaccines are a type of modified live attenuated virus obtained by utilizing reverse 

genetics technology. Researchers in this field are becoming more inclined to use vectored 

vaccines as they have a strong ability to combat interference from maternal antibodies. 

(Kapczynski, 2015) More so, they can effectively stimulate the immune system through cell 

mediated immunity. 

In order to be successful, the vectored vaccine needs to be effective against a wide range 

of host species and there should be no preexisting antibodies against the vector within the host. 

(Rahn, 2015) The host range of the vectored vaccine coincides with the ability of the virus vector 

to successfully infect the animal. For example, if the virus vector has a wide host range, there is a 

greater chance of protecting a large number of birds from HPAI than a virus vector that has a 

narrower host range. Additionally, the animal should not have preexisting antibodies to the 

vector as this can hinder the effectiveness of the vaccine. 
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  Differentiation of Infected from Vaccinated Animals (DIVA) Strategy 

The DIVA strategy allows for immunological differentiation of infected from vaccinated 

animals.  This is most often achieved by a vaccine based upon a different strain than the outbreak 

strain. A DIVA strategy uses the aforementioned inactivated whole virus vaccine, which contains 

the same HA subtype as the HPAI causing an outbreak but uses a different NA subtype. For 

example, vaccinating for H5N2 when the outbreak is truly being caused by H5N1. Overall, this 

strategy works to induce an immune response to the vaccinated strain. By means of an ELISA 

test, researchers can differentiate between the vaccine strain and the outbreak strain. 

Commercially, this means the poultry industry could actually be able to identify which poultry 

are infected by the outbreak, wild-type strain versus those that have been vaccinated.  The 

poultry industry can then act accordingly to effectively control the current outbreak through 

eradication, quarantine, and/or biosecurity. The effectiveness of this strategy was tested in Italy 

during the LPAI H7N1 outbreak that occurred between 2000 to 2002. The vaccine administered 

was a H7N3 strain that helped to supplement additional control measures to eradicate the 

disease. (Lee, 2004) 

There are some limitations to utilizing the DIVA strategy. It is imperative that the 

combination of influenza subtypes for the vaccine are different from the outbreak. Also, the 

vaccine should closely match the challenge strain; otherwise, having too many differences in the 

HA protein will reduce the effectiveness of the vaccine (i.e., reduced cross protection). The 

DIVA strategy works best when there is only one NA subtype difference from the NA subtype of 

the vaccine currently in the field. It is problematic, in endemic countries, where several NA 

subtypes of the AI virus circulate at the same time and wild bird reservoirs continue to introduce 

new NA subtypes. The increasing use of vaccines can create more subtypes of the virus within 
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the bird population, thus decreasing the efficacy of the readily available vaccines through 

antigenic drift. This is why it is important, as highlighted in the Italy example, that a vaccine 

bank be created in order to quickly respond when outbreaks occur. (Lee, 2004) Unfortunately, 

the use of this strategy is not ideal, specifically in unindustrialized countries whose main concern 

is to contain the outbreak. (Peyre, 2008) 

 Current State of Vaccine Development in the United States 

Vaccination is an effective preventative measure that could help control and eradicate 

HPAI infections. Within the poultry industry, “universal” vaccines do not exist for the 

prevention of this disease. It is clear that no single vaccine is entirely safe and/or efficacious on 

its own, nor is this ideal vaccine available. As of September 2015, the United States had six 

vaccines commercially available. Of the six vaccines, four of them are fully licensed and the 

remaining two have conditional licenses. Those that do have full licenses are two inactivated 

vaccines, a live herpesvirus-vectored vaccine and a fowlpox-vectored vaccine. The remaining 

two conditionally licensed vaccines are both inactivated. All of these vaccines have label claims 

to deliver protection within chickens, but not in turkeys. (USDA, 2015) 

There are many experimental vaccines in development. The studies being performed 

show promise in regard to novel approaches to vaccine technology.  Potential vaccines that may 

be developed include an inactivated vaccine developed from the most recent HPAI outbreak, an 

LPAI seed virus that utilizes reverse genetics, an RNA particle vaccine as well as DNA and other 

live-virus vectored vaccines. Promise has been shown in the development of the many of these 

vaccines. The inactivated vaccine has proven to be effective in preventing HPAI infections as 

well as reducing shedding. The LPAI seed vaccine uses reverse genetics inserting the HA 

molecule from the 2015 outbreak, and has provided adequate protection in both chickens and 
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turkeys. The RNA particle vaccine has previously demonstrated protection of AI. Other potential 

vaccines are still under investigation. (USDA, 2015) With these studies and the current 

knowledge on AI, researchers are well on their way to, as Rahn et al. opines, developing “a safe 

and efficacious vaccine with a very broad reactivity against several subtypes, with DIVA-

features and which allows mass application e.g. by oral immunization, (which) would be the 

perfect tool in the future.” (2015 p. 2420) While researchers are on their way to developing this 

vaccine technology, there is still much work to be done before this can be scientifically proven.  

In the future, the ultimate goal is to develop a universal HPAI vaccine. Ideally, this 

vaccine would not be hindered by maternal antibodies. It would provide sterilizing immunity 

after one injection as well as mucosal and systemic responses. It would be protective against a 

broad range of AI subtypes, providing protection against many strains of the disease. 

Additionally, administration of this vaccine would be performed quickly and efficiently.  
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Chapter 5 - Future Challenges 

There are many challenges facing the control and eradication of the HPAI virus in poultry 

around the world. Among these challenges are: 1) antigenic variation, 2) climate change, 3) 

intermingling of domesticated and wild birds, and 4) the current state of vaccine development. 

 Antigenic Variation 

The classic hallmark of influenza is its ability to undergo antigenic variation. As 

previously mentioned over time antigenic drift and antigenic shift will allow for the adaptation of 

the virus and allow it to have the potential to cross species. Furthermore, antigenic shift will 

allows for these variations to influence host susceptibility, pathogenicity and virulence. It must 

also be noted that host cells that are co-infected with two different viral strains of AI virus can 

result in the genetic reassortment of the virus, producing an entirely new virus. (United, 2015) 

Within the wild bird population, numerous AI strains exist and are continuing to interact 

and evolve. When a new mixed origin virus emerges, it is unpredictable in  its emergence, yet 

not unanticipated. Antigenic variation can allow the AI virus to escape immunity previously 

established by vaccination or an earlier infection. Immunity induced in a bird is solely dependent 

upon the strain they are exposed. This can prove to be problematic when developing AI vaccine 

technologies. Thus the exploration of antigenic variation is imperative for the selection of strains 

vaccines are developed. (Smith, 2004) 

 Climate Change 

Climate change can prove to be challenging when assessing control measures of HPAI. 

Research suggests that there may be a link between climate change and the likelihood of an 

HPAI outbreak in poultry. This can be attributed to climate change directly altering 

environmental conditions in which the virus can thrive within and transmit the disease. Lowen 
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and colleagues provided experimental evidence that influenza is most favorable in conditions in 

which there is low relative humidity, between 20-30%, and colder temperatures, around 41 °F.  

Furthermore they proved that transmission of influenza was entirely blocked when relative 

humidity reached 80% or temperatures warmed to 86 °F. (2007)  To summarize, AI can persist 

longer in the environment and maintain its infectivity in these climates. (Clark, 2006) 

Additionally, it was suggested that seasonal outbreaks of influenza could attribute to these two 

factors. (Lowen, 2007)  

Climate change, particularly colder temperatures, could also indirectly contribute to 

alterations in the migration pattern of wild birds. The migration patterns, otherwise known as 

flyways represent the predispositions of wild birds to confine their movements within expansive 

geographic bounds. Birds most commonly utilize these routes when traveling from their breeding 

grounds to winterized areas. Globally there are nine recognized flyways, these are displayed in 

Figure 5.1.By altering their traditional patterns, wild birds could carry and introduce HPAI into 

new regions. In Russia and Mongolia, circumstantial evidence was provided that indicated the 

spread of disease was in fact due to the migratory patterns of wild birds. These birds became 

infected with HPAI and then traveled extended distances prior to dying. (Mu, 2014).  
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Figure 5-1 Nine major migratory water bird flyways largely based on shorebirds 

 Adapted from The Flyway - East Asian-Australian Flyway Partnership. (2016). Retrieved 

March 27, 2016, from http://www.eaaflyway.net/about/the-flyway/ Intermingling of 

Domesticated and Wild Birds 

 Intermingling of Domesticated and Wild Birds 

Preventing the intermingling of domesticated and wild birds would be an effective, yet 

difficult in significantly reducing HPAI outbreaks. The fact that wild birds can serve as healthy 

asymptomatic carriers and reservoirs of HPAI presents a significant challenge in achieving this 

separation. This does not necessarily mean direct contact of domestic and wild birds, in fact 

indirect contact can prove to be just as challenging to avoid. As previously mentioned, the fecal-

oral route is the most common mode of transmission of AI. Alexander and colleagues confirm 

this: 
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“This may not necessarily involve direct contact as infected waterfowl may take the 

 viruses to an area and these may then be introduced to poultry by humans, other types of 

 birds or other animals, which do not need to be infected but may transfer the virus 

 mechanically in infective feces from the waterfowl.” (2007 p.5640) 

Through the development of preventative measures, such as biosecurity, outbreaks 

initiated by the intermingling of domestic and wild birds may be significantly reduced. Possible 

biosecurity measures to reduce interactions between wild and domestic birds, include keeping 

domestic flocks either indoors or in fenced in areas. In 2012, a study performed in Chile, 

analyzed the segregation and biosecurity measures implement to keep backyard poultry systems 

separate from wild birds within the flyway. Their study concluded that most farms consisted of 

small flocks that used mixed/partial confinement with little to no biosecurity. If systems had 

been implemented there would likely be a decrease in direct contact between backyard flocks 

and wild birds. (Hamilton-West, 2012)  

 The Challenges and Controversy of Vaccines 

Despite the fact that there are many benefits to developing a safe, effective and widely 

accepted vaccine for HPAI, there are also several challenges in its development. 

As previously mentioned within antigenic variation, AI frequently goes through antigenic 

variation, which makes previously developed vaccines ineffective. As well as allowing those 

developed vaccines only effective for those strains that they are developed for. To provide an 

example, a vaccine for the most recently detected (January 2016) HPAI, H7N8, would not work 

for last year’s outbreak strains, H5N8. Furthermore, Maas et al. mentioned that, “It is important 

to realize that when the antigen dose in an AI-vaccine is suboptimal, vaccination can result in 

clinical protection after a field infection, but may not prevent virus circulations within and 
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between flocks nor potential exposure of people to this virus. Especially when immunity after 

vaccination in a field situation varies and a subpopulation of the vaccinated animals may not be 

optimally protected, virus may circulate in vaccinated flocks unnoticed.” (Maas, 2009 p.3596) 

HPAI vaccines may reduce sickness, clinical symptoms, and death in domestic poultry, 

however they may not completely protect the birds from becoming infected with the AI virus. 

Vaccine may not provide full protection from the disease. Previously conducted studies, have 

discovered unacceptable and variable vaccine protection. For example, a study was performed in 

Egypt HPAI H5N1 is considered to be endemic. To be more specific, in a backyard flock the 

protection induced by a vaccine offered as low as 1% protection and as high as 25-30%. (Capua, 

2013) 

Ideally, vaccination would be able to produce complete protection. Unfortunately, this 

can be difficult to achieve, more practicable is the ability to reduce the amount of virus excreted 

from the bird. Since February 2006, HPAI H5N1 severe outbreaks have been reported in Egypt. 

A recent study demonstrated the ability of a vaccine to reduce the amount of virus shed from 

infected birds. In the experiment, viral shedding was reduced for all groups when compared to 

those groups who were not vaccinated. (Abdelwhab, 2011) Ensuring that vaccines can decrease 

virus excretion to levels inadequate for transmission within poultry flocks is vital to the future 

development of successful vaccination programs.  

AI vaccines are increasingly used as a tool to control HPAI outbreaks. Yet there is some 

controversy on whether these vaccines could be responsible for the further spread of the virus. 

Routine and improper use such as, vaccines not administered as instructed and improper storage, 

may contribute to the “persistence” of the virus in the field. (Roth, 2012) This could be due in 

part to clinical disease becoming less obvious following vaccination, and its continued unnoticed 
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spread in the population of partially immune birds. In those countries that have approved the 

usage of vaccination, HPAI H5N1 has become endemic or continues to persist in the 

environment for lengthy periods of time. (Capua, 2013) 

Stockpiling AI vaccines can prove to be challenging. For example, at this time the USDA 

does not approve HPAI vaccine use as a precautionary measure. Much of this has to do with 

economic reasons, both domestically and internationally. It is more cost effective to use the 

vaccine to curb current outbreaks rather than use the vaccine as a blanket preventative measure 

in healthy flocks. Currently, only the USDA and official state veterinarians can authorize vaccine 

use and monitor its administration once an outbreak occurs. These officials will take the 

following into consideration when authorizing vaccine use: the extent of the outbreak (including 

the spread rate and current response effectiveness), the poultry operations that are affected 

(backyard or commercial), the possible economic impact (i.e., both domestic and internal 

supplies and markets, and the ability to export poultry products overseas), and the availability of 

the vaccine. (APHIS, 2015) However, this is not with great regard for the restrictions that could 

be placed on imports and exports. While many countries do approve the usage of vaccines, 

others such as Angola, China and South Korea do not. These countries will not allow the 

importation of US poultry products that have been moved through regions where HPAI is 

thought to exist either naturally or through vaccination. This can cause severe economic distress. 

For example, in 2015 the ban from these three countries alone cost the US almost $700 million 

dollars. (Plume, 2015) 

All of these challenges and/or controversies can prove to be deterring when attempting to 

produce a vaccine that will aid in the prevention of future HPAI outbreaks. Nonetheless, HPAI 

has proved time and time again that is has the potential of developing to epidemic and endemic 
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proportions, it can lead to serious socio-economic consequences and zoonotic potential. HPAI 

outbreaks continue to display that further efforts are needed to control this disease. 
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Chapter 6 - Discussion and Conclusion 

Recently, avian influenza has garnered much attention due to increased outbreaks over 

the last several years. To truly understand avian influenza, an understanding of its background, 

history and epidemiology are provided in this report. Such a synopsis is essential to set the stage 

for researchers to continue to combat its effects rather than allowing it to continue its economic, 

health, environmental and physical devastation. This devastation is not limited to poultry, but it 

can also affect human health due to its zoonotic potential. 

Multiple preventative measures are available for use, such as biosecurity, quarantine, 

surveillance, eradication, vaccinations and communication/education. As previously noted, there 

is much focus on available vaccines and how they can be improved to create the “ideal” vaccine. 

There is a ways to go before this is realized; however, more promising and novel work is being 

performed. It is clear in the research that no one preventative measure is fully effective by itself. 

For example, surveillance alone would not be as efficacious without communicating the results 

to poultry officials at agencies such as the USDA, OIE, FAO, etc. Each approach to every 

outbreak should involve a multi-faceted approach using as many preventative measures as 

realistic in each outbreak situation.  

In my opinion, there is not a single prevention method that will prevent the occurrence of 

HPAI outbreaks. First and foremost, there must be biosecurity measures in place. It should be 

noted that biosecurity does not just protect the flock. It also protects those individuals who work 

with the flock as well as protecting the spread of disease to wild birds. The effectiveness of other 

prevention methods also depends on sound biosecurity measures. Surveillance can predict the 

occurrence of HPAI, but it cannot solely prevent an outbreak. Eradication is the best means to 
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temporarily rid a region of HPAI during an outbreak. Vaccination has proven to be an effective 

tool to preventing infection, yet there are still many challenges in its development.    

While new and innovative measures, such as vaccines, are designed and implemented, 

researchers must take into account the future challenges of antigenic variation, climate change, 

intermingling domestic and wild birds, and the current challenges/controversy of vaccines. 

Without taking these challenges into account, the history of HPAI outbreaks will continue to 

repeat itself.  
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Appendix A - Acronyms 

AGID - Agar Gel Immunodiffusion Tests 

AI – Avian Influenza 

ARDS – Acute Respiratory Distress Syndrome 

APHIS – Animal and Plant Health Inspection Service 

AVMA – American Veterinary Medical Association 

CDC – Centers for Disease Control and Prevention 

DIVA – Differentiation of Infected from Vaccinated Animals 

DNA - Deoxyribonucleic Acid 

ELISA - Enzyme-Linked Immunosorbent Assays  

EU – European Union 

FAO – Food and Agriculture Organization of the United Nations 

HA – Hemagglutinin Antigen 

HAI - Hemagglutination Inhibition Assays 

HP – Highly Pathogenic 

HPAI – Highly Pathogenic Avian Influenza 

IVPI – Intravenous Pathogenicity Index 

LP – Low Pathogenic 

LPAI – Low Pathogenic Avian Influenza 

NA – Neuraminidase Antigen 

NAI – Neuraminidase Inhibition Assays 

NDV – New Castle Disease virus 

NP – Nucleocapsid Antigen 
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OIE - Office International des Epizooties 

PPE – Personal Protective Equipment 

RNA - Ribonucleic Acid  

rRT-PCR – Real Time Reverse Transcription Polymerase Chain Reaction 

US- United States 

USDA – United States Department of Agriculture 


