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The Impact of Extreme Weather
on Cattle Feeding Profits

Eric J. Belasco, Yuanshan Cheng, and Ted C. Schroeder

While large feedlots commonly hedge corn and fed cattle prices, weather remains the largest
uncontrollable component of production risk. This research examines the economic losses to cattle
feeding associated with extreme weather. Profit losses are assessed using nonlinear regressions
that relate weather outcomes, based on the Comprehensive Climate Index (Mader, Johnson, and
Gaughan, 2010), and their impact on production variables. Actuarially fair insurance premium
rates are derived for an insurance product designed to mitigate the potential cost of extreme
weather. Finally, we discuss additional issues associated with using weather-index insurance
products and insuring feedlot cattle against adverse weather.
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Introduction

Cattle feeders in the United States are particularly susceptible to weather events, which can
cause sizable losses from animal deaths and adversely impact production efficiency. Despite this
susceptibility, no well-developed weather-related risk management products exist for cattle feeders
to mitigate this risk. Over 70% of the approximately 25 million head of fed cattle marketed annually
in the United States are finished in the Plains region, comprising Texas, Kansas, Nebraska, and
Colorado (U.S. Department of Agriculture, National Agricultural Statistics Service, 2013). This
region experiences highly variable temperatures with strong winds that result in extremely cold
winters and hot summers. While hedging corn and fed cattle prices using forward, futures, and
options contracts are common practices for large feedlot operations for mitigating price risk,
additional factors—including genetics, breed, animal health programs prior to feeding, management,
facilities, and weather—influence profit outcomes. Of these factors, local weather impacts are the
most uncertain, can have devastating outcomes, and are not generally insurable.

Extreme weather conditions can cause substantial livestock production losses through increased
animal mortality and reduced feeding efficiency and productivity. For example, the severe heat waves
of 1995 and 1999 in the Midwestern states caused nearly 5,000 animal deaths in each year (Busby
and Loy, 1997; Hahn and Mader, 2002; Hahn et al., 2001). In the Northern Plains states, greater than
normal snowfall and wind in the winter of 1996/1997 caused losses of up to 50% of newborn calves
and over 100,000 head of cattle (Mader, 2003). In the winter of 2000/2001, feedlot cattle weight
gain efficiency and daily weight gain decreased approximately 5% and 10% from previous years as
a result of late-autumn and early-winter moisture combined with prolonged cold stress (Hoelscher,
2001). The exceptional drought in the Southern High Plains that began in the fall of 2010 caused
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large economic losses, as calves were forced to be placed earlier than normal in feedlots and breeding
animals to be culled at much higher rates than normal or moved to regions where grass and hay were
more readily available (Strom, 2013).

While many studies have focused on price hedging in cattle production, only a few studies
have analyzed the link between weather-related risks and cattle feeding profits. This may be partly
due to the fact that price accounts for more variation than production risk in cattle feeding profits
(Belasco, 2008). Additionally, production data are proprietary, and collecting a panel data series with
sufficient time and production details to observe a range in weather conditions is especially difficult.
Using 15,836 pens of feedlot cattle over a twenty-year span, this research is the first to evaluate
the magnitude of weather-related risk in fed cattle production in the United States and provide a
framework for computing the maximum amount that a risk-neutral producer would be willing to
pay to eliminate this risk.

Motivated by the rise in producer involvement in crop insurance as a means to stabilize incomes
for major grain producers, past research has focused on the relationship between weather and crop
production risk. Because much of the variability in crop yields emanates from weather-related
events, index insurance products have been developed to address this risk (Turvey, Weersink,
and Celia Chiang, 2006). Effective index insurance relies on the assumption that weather largely
determines crop yield variability with high correlation between adverse weather and low yields.
Due to the relatively high correlation, crop losses can be identified using a measure outside of the
producer’s control, minimizing moral hazard.

In order to characterize a relationship between weather and agricultural production, weather
indices are generally based on continuous variables, such as the amount of rainfall, average
temperature, or a discrete count of days outside of an optimal threshold (Turvey, 2005). Weather
indices are particularly useful for computing a single measure that accounts for the interaction
between a set of weather variables and cattle production. The use of weather indices has been
applied to livestock in the United States with the development of the Pasture, Rangeland, and Forage
(PRF) insurance product for feeder cattle, which is triggered based on one of three indices (rainfall,
vegetation, or hay production). One of the complexities of livestock insurance is that there is not a
single set of growing days or even a growing season within the year, as is the case with most crops.
Because of this, the PRF product is available for different sets of month increments specified by the
producer.

Weather-based index insurance products have also been proposed in developing countries.
These products would allow participants to collect an indemnity when the index (e.g., rainfall or
Normalized Difference Vegetation Index) falls below a specified level. As noted in Chantarat et al.
(2013), many index products have been proposed to insure livestock in developing countires due to
the mitigation of moral hazard and low cost of implementation and monitoring. Giné, Townsend, and
Vickery (2008) notes that many of these products have experienced sluggish adoption. While efforts
to develop index-based livestock insurance products in developing countries (e.g., Eithiopia, India,
Kenya, Malowi, and Mongolia) have been numerous (see Barnett, Barrett, and Skees, 2008), research
efforts to evaluate and develop livestock production insurance products in the United States have
been scarce. The lack of livestock production insurance in the United States is especially surprising
when one considers the large number of reliable weather stations operating and the well-established
insurance networks and heavy reliance on insurance for major grains already in place.

This is the first paper to develop and evaluate the insurability of feedlot cattle in the United
States by utilizing the recently developed Comprehensive Climate Index (CCI) (Mader, Johnson,
and Gaughan, 2010). The CCI is the first index that accounts for animal stress caused by both hot
and cold weather in the feedlot as well as interactions between ambient temperature, humidity, wind
speed, and solar radiation. In addition, stress thresholds were developed to accompany the CCI in
order to translate index values to weather-related stress in fed cattle. Using this newly developed
index, we are able to relate weather-based animal stress to profitability in order to estimate the
impact of extreme weather on cattle feeding profits.
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Figure 1. Comprehensive Climate Index (CCI) Correction Factors and Interactions

Measuring Adverse Weather

Past research has noted that there are zones of thermal comfort (ZTC) for farm animals, which
vary based on animal-level characteristics such as species or physiological differences, and external
factors such as temperature, relative humidity, wind speed, and solar radiation (Ames, 1980; Berman,
2005; National Research Council Committee on Animal Nutrition, 1981; St-Pierre, Cobanov,
and Schnitkey, 2003). Positive or negative deviations from the ZTC typically lead to a loss of
productivity in livestock and incurring economic losses. Farm animals in the United Statesare often
raised in environments where temperature conditions frequently venture outside the ZTC.

Much research in animal science has been devoted to identifying physiological effects of heat
stress and the mechanisms by which it reduces animal productivity. During periods of heat stress,
cows experience higher mortality rates (Hahn, 1985), a decreased amount of dry matter ingested and
digestibility (Lippke, 1975), and a decreased rate of weight gain (Mitlöhner et al., 2001). The extent
of production loss is often difficult to estimate because heat stress effects are typically embedded
with numerous natural and managerial sources of variation (du Preez, Giesecke, and Hattingh, 1990;
Linvill and Pardue, 1992).

Animals exposed to cold weather require more energy to maintain their body reserves and body
temperatures (Vining, 1990). In the winter, wind can negatively impact cattle performance, and the
effects of wind are magnified when combined with cold temperatures. One way cattle compensate
for colder weather is to increase feed intake. However, cattle are physically limited in how much they
can consume. Once that physical limit is reached, cattle need higher quality feeds and supplements
to compensate for the increased energy requirement.

Prior indices have been applied to account for weather-related animal stress in dairy cows (Deng
et al., 2007) and beef cattle (Gaughan et al., 2008; Ames and Insley, 1975). These applications have
utilized the temperature-humidity index (THI), which accounts for the replationship between heat
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and humidity. This index was advanced by Mader, Davis, and Brown-Brandl (2006) by accounting
for the impacts of wind speed and solar radiation. Past indices characterizing the impact of cold
weather are limited to the windchill index, which was originally developed for humans (Tew, Battel,
and Nelson, 2002). This paper utilizes the recently developed Comprehensive Climate Index (CCI)
(Mader, Johnson, and Gaughan, 2010), which builds on the previously mentioned efforts. The CCI
provides a more flexible index than past efforts because it (1) accounts for both hot and cold
weather-related stress, (2) has been calibrated specifically to feedlot cattle stress, and (3) accounts for
interactions among ambient temperature (Ta), relative humidity (RH), wind speed (WS), and solar
radiation (RAD) through the use of correction factors. Empirical specifications from Mader, Davis,
and Brown-Brandl (2006) and Gaughan et al. (2008) were used to establish initial relationships
among Ta, RH, WS, and RAD. Using these initial relationships as a starting point, the CCI was
developed by collecting a more comprehensive data series, including fifteen years of animal-level
stress indicators and environmental data over nine separate summer periods and six different winter
periods in which extreme stress events occurred (Mader, Johnson, and Gaughan, 2010). The CCI is
computed as

(1) CCI = Ta + Rhc +WSc + RADc,

where RHc, WSc, and RADc are the correction factors to Rh, WS, and RAD, respectively. The
correction factors are

(2) RHc = e0.00182×Rh+(1.8×10−5) × [0.000054× Ta2 + 0.00192× Ta− 0.0246]× [Rh− 30],

(3)

WSc =

 −6.56

e

{[
1

(2.26×WS+0.23)0.45

]
×[2.9+1.14×10−6×WS2.5−log0.3(2.26×WS+0.33)2]

}
− 0.00566×WS2 + 3.33,

(4) RADc = 0.0076× RAD− 0.00002× RAD× Ta + 0.00005× Ta2 ×
√

RAD + 0.1× Ta− 2,

where Ta is measured in celsius, WS is measured in meters/second, and RAD is measured in global
horizontal irradiance in watts/meter. The correction factors account for the impact that these weather
variables have on animal comfort. For example, high humidity exacerbates high temperatures in
animal discomfort, while wind cools animal discomfort under high temperatures but heightens cold
stress in times of low temperatures. Additionally, the solar radition correction factor has a nearly
linear relationship with temperature. The magnitudes of the correction factors and interactions are
illustrated in figure 1 with conversions to standard U.S. units of measurement.

Methods and Procedures

Past studies have noted that pen characteristics such as gender, location, entry weight, and season of
placement influence the mean and variance of important animal production performance indicators
(Belasco, Ghosh, and Goodwin, 2009; Lawrence, Wang, and Loy, 1999; Schroeder et al., 1993). We
add to this literature with the inclusion of publicly observable ex post weather variables that can be
used to further inform production outcomes.

Observations are split into twelve subgroups to control for the interaction between gender,
weight, and time of placement observations and create relatively homogenous groups. Subgroups
are split according to two gender groups (steer, heifer), three feedlot placement weight categories
(600–700 lb, 700–800 lb, 800–900 lb), and two seasonal placement categories (September–February,
March–August). Since feedlots in this region typically vary somewhat in the type of cattle they
place at different times of year, we are able to control for breed by creating separate groups for two
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Figure 2. Monthly Average CCI from Nearby Weather Station, 1973–2005

placement periods.1 Further, an animal’s tolerance for exteme weather is influenced by breed and
origin.

Once the data are split into relatively homogenous subgroups, regressions are estimated to
partially explain production variable outcomes (average daily gain, feed conversion, and mortality
rates) with important ex ante variables as well as exogenous weather outcomes. The following model
is used to identify the relationship between production variables and weather outcomes:

Y = βββ 000 + βββ 111HRS + βββ 222HRS2 + βββ 333HRS3 + βββ 444HRS4 +
(5)

βββ 555Season + βββ 666lWEIGHT + βββ 777Loc + βββ 888Yr + ε,

where HRS is the number of Hours in which a “severe” weather threshold as defined in Mader,
Johnson, and Gaughan (2010) was exceeded, based on CCI outcomes, divided by 100; Season is
a categorical variable that distinguishes between fall, winter, spring, or summer placement season;
lWEIGHT is the natural logarithm of entry weight; Loc is a binary variable to distinguish between
the two feedlots; Yr is a linear time trend; Y = [ADG,FC,MORT ] and estimates βββ 000, . . . , βββ 888 are
each 3× 1 vectors. Robust standard errors are also computed in order to account for heteroskedastic
errors.

These regressions enable the relationship between weather and production variables to be
characterized. We use hours instead of days to characterize weather intensity because this is a more
precise measure of weather intensity. The nonlinear model specification is used to provide a flexible
model to account for thresholds that occur in production functions while simultaneously nesting
more linear models. In order to test the utilized model against alternative specifications, which

1 For example, placements in late spring tend to originate from southern climates (including Mexico), while fall-winter
placements tend to come from northern climates and include breeds—such as Angus, Charolias, Limousin, Hereford,
Simmental, and English—that are better suited to handle cold climates. Because breed information is not available, a close
approximation is to separate pens by placement timing and entry weight.
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included other quantile breaks in HRS and polynomial specifications, adjusted R2 and root mean
squared error (in-sample and out-of-sample) were computed.2

Mortality rates are modeled in a slightly different manner due to the censored nature of the
variable. Since nearly half the mortality rate outcomes result in a zero mortality rate, the Tobit
model (Tobin, 1958) is used to consistently estimate the marginal impact of covariates on mortality
rates. This methodology follows that of Belasco et al. (2009).3 Full regression results are reported
in Appendices A–C.

Weather Data

In order to evaluate the impact that extreme weather events have on cattle performance, historical
weather data from the National Oceanic and Atmospheric Administration (NOAA) and the National
Solar Radiation Database (NSRDB)4 are utilized along with proprietary feedlot cattle production
data from two feedlots in Western Kansas.5 Solar radiation data (RAD) were collected from NSRDB
for 1973–2005 and account for global horizontal irradiance (which includes direct and diffuse
radition) in watts per meter. Other weather variables—including ambient temperature (Ta), wind
speed (WS), and relative humidity (Rh)—were collected from NOAA for 1973–2005. Real-time
and hourly historical data are available for all of the weather variables in this index from the
High Plains Regional Climate Center and participating state climate offices. Figure 2 shows the
average daily maximum, minimum, and mean ambient temperatures by month as well as cattle
stress thresholds as defined in Mader, Johnson, and Gaughan (2010). Winter months, especially
December, January and February, show a strong propensity for daily mean CCI beyond the mild
stress level. Additionally, summer months bring excessively high CCI into mild and moderate stress
levels. Both excessively cold and hot conditions are captured in CCI and are used in a similar fashion
in our model. However, classifying cattle pens placed by season allows us to distinguish between a
pen that is placed in fall versus spring and the different unobservable characteristics that might be
implied by these differences (e.g., cattle breed, age, or birth location).

Figure 3 illustrates the median, mean, and ninetieth percentile associated with extreme weather
Hours for each month. Winter months clearly present more extreme days in sestern Kansas, where
the combination of wind and cold temperatures make winter days more uncomfortable. For example,
for pens of cattle placed during early January, one can expect 80–100 hours of cumulative severe
CCI winter weather stress during January alone. Summer months in this region tend to exhibit high
temperatures with reduced stress from low humidity and high wind speed.

After computing the hourly values for all weather variables, weather data are merged into cattle
production data to obtain the exact hours each pen was exposed to weather exceeding the “severe”
CCI threshold.

2 Initially, this study used nonparametric regressions in order to avoid any unnecessary functional form or distiributional
assumptions and capture nonlinear relationships and possible thresholds. However, the identification using a nonlinear
regression model provided more robust and less overfit results. Nonparametric results were incredibly sensitive to bandwidth
specification, which often resulted in overfit models when most bandwidth selection models were used.

3 While we anticipate that the residuals in each of these equations will be correlated, this is not a concern of this study
since the object of interest is the expected profits, which are a function of each of the production outcome variables and will
be characterized in a later section.

4 http://rredc.nrel.gov/solar/old_data/nsrdb/
5 The production data used in this analysis is augmented with data from a weather station twenty miles from each feedlot.

The weather station reports NOAA data that includes hourly ambient temperature, relative humidity, and wind speed. Solar
radiation was measured as the total amount of direct and diffuse solar radiation (METSTAT-modeled) received on a horizontal
surface during the sixty-minute period ending at the timestamp. More details about METSTAT can be found in Maxwell
(1998). Solar radiation data were only available from 1991–2005. Two weather stations with full RAD data series prior to
1991 were used to predict the necessary RAD values. Values were predicted by running a regression from 1991–2005 to
relate the station of interest to nearby stations, which were then used to predict missing RAD values plus a standard error
correction in order to preserve the given standard error of the series. The adjusted R2 from the given regression was 0.98.
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Figure 3. Monthly Boxplot for the Number of Severe Hours According to CCI, by Month,
1973–2005

Feedlot Production Data

Proprietary cattle data were obtained from two large commercial feed yards in western Kansas.
The production data include entry and exit information for 15,836 pens of cattle on feed between
March 1980 and November 1999. One feed lot contains around 5,000 pens while the other—which
is around fifty miles away—represents over 10,000 pens. Table 1 reports summary statistics from
the data sample. Animal placement and exit information is collected at the pen-level, allowing for
an evaluation into the productivity of each pen with covariate ex ante variables of interest such
as gender, date of arrival, date of departure, and entry and exit weights. In addition, we collect
information on death loss percentage (MORT) and productivity measures of feed conversion (FC)
and average daily gain (ADG) for the cattle in each lot.

Mean ADG is 3.14, indicating an average of 3.14 pounds of weight gained per head per day.
Average FC of 8.46 indicates that, on average, 8.46 pounds of feed (as fed) is needed to add a
single pound of weight gain. MORT indicates the percentage of mortalities in the pen, relative to the
number of head entering the feedlot in the pen. Nearly half of mortality values are censored at 0,
meaning no death losses. The mean mortality rate for all pens is 0.76% and is 1.53% for pens with
non-zero death losses.

Table 2 illustrates the difference in mean statistics by the weather cattle experienced while on
feed. Results confirm our hypothesis that animal production performance suffers notably as weather
intensity increases: ADG falls while FC and MORT rise. For example, when relative weather
intensity moves from ‘Low’ to ‘High’in light weight pens (600–700 pounds), ADG decreases
from 3.11 to 2.80 (−10.0%), FC increases from 8.06 to 8.86 (+9.9%), and MORT increases from
0.77% to 1.27% (0.50 percentage points). Each of these weather-related cattle production influences
adversely impacts profits, as cattle gain weight at a slower rate (lower ADG), require more feed to
gain weight (higher FC), and suffer greater death losses (higher MORT).
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Table 1. Summary of Cattle data (n=15,836), 1980–1999
Variable Description Mean Std Dev Min Max
ADG Average daily gain (lbs gain/day) 3.14 0.42 1.39 4.95
FC Feed conversion (lbs feed/lb gain) 8.46 1.12 5.41 16.71
MORT Percentage of pen that die, censored observations

(n=7,999, 50.51%)
0.76 1.26 0.00 18.75

lWEIGHT Average weight per head of cattle upon entrance (lbs) 743.59 72.31 600.00 899.85
DOF Days on feed 129.69 20.21 46.00 240.00
Hours Number of hours beyond “severe” threshold 93.76 108.10 0.00 514.00

Gender Percentage of sample Steer 74.97% Heifer 25.02%
Season Percentage of sample Spring 26.77% Summer 24.83%

Fall 27.36% Winter 21.05%

Table 2. Mean Summary Statistics by Weather Intensity Level
Weather Intensity n ADG FC MORT WEIGHT

600–700 lbs
Low 1,232 3.11 8.06 0.77 660.94
Mid 1,575 3.03 8.28 0.87 658.22
High 1,963 2.80 8.86 1.27 655.92

700–800 lbs
Low 2,383 3.31 8.06 0.55 750.05
Mid 2,487 3.22 8.32 0.60 748.65
High 2,303 2.96 9.01 0.88 747.20

800–900 lbs
Low 1,412 3.45 8.26 0.55 840.20
Mid 1,298 3.34 8.60 0.57 838.74
High 1,183 3.08 9.30 0.72 838.33

Notes: Weather intensity levels were determined based on tertiles, where the “Low” intensity includes the lower third of the data where Severe
Hours were less than 21, “Mid” includes the middle third which is 21–96 hours, while “High” intensity includes over 96 hours.

Estimation Results and Discussion

Parameters are estimated using least squares estimation with robust standard errors to account for
the presence of heteroskedasticity. For brevity, goodness-of-fit statistics are presented in table 3 to
provide indicators regarding the ability of included covariates to explain variation in production
outcomes. Goodness-of-fit measures include R2 and Root Mean Squared Error (RMSE) for each
of the three animal performance models and ten cattle weight × gender × placement season
subgroups.6 Full regression results are available in Appendices A–C.

Results in table 3 are based on randomly selecting two-thirds of the subsample for estimation
and using the remaining one-third of the subsample to examine out-of-sample predictive power. This
sampling procedure is repeated ten times to provide results robust to outliers. For out-of-sample
analysis, the entire one-third is used to compute the “full out-of-sample,” while the severest 20%
of weather outcomes from the out-of-sample portion is used to evaluate the “tail out-of-sample”
portion. Comparisons between these two measures indicate that predicted tail observations, which
are often the main emphasis of insurance products, are consistent with the model’s ability to predict

6 Regressions for pens containing heifers with average weights between 800–900 pounds at entry were excluded due to
the relatively small number of observations.
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Table 3. In-Sample and Out-of-Sample Goodness of Fit Statistics Based on Repeated Random
Sampling (m=10), by Subsample

In-Sample Statistics
Pen Characteristics Adjusted R2 RMSE (in-sample)

Entry Weight
(cwt.) Gender Placement

Season n ADG FC MORT ADG FC MORT

6–7 Steer FW 965 0.290 0.276 0.086 0.320 0.837 1.249

7–8 Steer FW 1,803 0.200 0.256 0.064 0.326 0.865 1.015

8–9 Steer FW 1,057 0.144 0.138 0.053 0.365 1.014 0.836

6–7 Steer SS 680 0.251 0.218 0.057 0.309 0.699 0.918

7–8 Steer SS 2,007 0.204 0.182 0.029 0.306 0.604 0.776

8–9 Steer SS 1,280 0.146 0.126 0.045 0.347 0.682 0.751

6–7 Heifer FW 710 0.193 0.276 0.058 0.299 0.901 1.185

7–8 Heifer FW 416 0.102 0.133 0.053 0.343 1.022 1.201

6–7 Heifer SS 825 0.138 0.157 0.050 0.268 0.670 1.023

7–8 Heifer SS 555 0.103 0.092 0.031 0.297 0.751 0.846

Out-of-Sample Statistics

Pen Characteristics RMSE
(Full Out-of-Sample)

RMSE
(Tail Out-of-Sample)

Entry Weight
(cwt.) Gender Placement

Season n ADG FC MORT ADG FC MORT

6–7 Steer FW 482 0.326 0.855 1.317 0.353 1.046 1.355

7–8 Steer FW 902 0.328 0.884 1.066 0.358 1.184 1.142

8–9 Steer FW 528 0.369 1.027 0.923 0.406 1.247 0.849

6–7 Steer SS 340 0.364 0.721 1.021 0.478 1.060 1.203

7–8 Steer SS 1,004 0.309 0.614 0.796 0.291 0.664 0.898

8–9 Steer SS 640 0.341 0.673 0.767 0.320 0.759 0.726

6–7 Heifer FW 355 0.299 0.922 1.200 0.344 1.260 1.163

7–8 Heifer FW 208 0.356 1.048 1.237 0.411 1.356 1.082

6–7 Heifer SS 413 0.273 0.678 1.087 0.317 0.858 1.266

7–8 Heifer SS 278 0.300 0.757 0.981 0.306 0.752 1.036

Notes: Based on ten random samples of two-thirds of subsample with remaining one-third used for prediction. Root Mean Squared Error is
based on the square root of the summed mean squared difference between actual and predicted values. Figures reported are averaged across
ten random samples. Placement Seasons “FW” and “SS” indicate Fall/Winter and Spring/Summer, respectively. For Tobit regressions, the
pseudo-R2 measures based on McKelvey and Zavoina (1975) are used and shown in Veall and Zimmermann (1994) to outperform other

pseudo-R2 measures with censored data. This measure can be written as R2
mz =

∑(ŷ∗i −ŷ∗i )
2

∑[(ŷ∗i −ŷ∗i )2+σ2 , where ŷ∗i is the predicted latent variable and ŷ∗i
is the mean of the predicted latent variable. Figures from “tail out-of-sample” are computed from a portion of out-of-sample in top 20% in
weather severity.

the the remaining observations. Further, we compare in-sample and out-of-sample RMSE in order
to ensure that the model selected is not overfitting the data. Based on these results, overfitting does
not appear to be an issue.

For all production outcome (i.e., ADG, FC, and MORT) regressions, lighter weight pens tend
to have higher R2 and lower RMSEs. Conversely, more mature pens are less sensitive to extreme
weather conditions, which may result in the models explaining less of the overall variation. Overall,
R2 levels are consistent with results found in livestock insurance applications in developing countries
when we consider that in this application, samples are separated and thereby conditioned by
placement weight, gender, and placement season prior to running regressions. The reported R2

measures would obviously be much higher if weight class, gender, and season of placement (i.e., FW,
SS) were included as covariates rather than sorting variables. Additionally, as Chantarat et al. (2013)
point out, correlations between livestock production indicators and weather are much stronger under
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adverse weather.7 The full range of production outcomes is also driven by differences in genetics,
animal quality, animal condition when placed on feed, animal health (e.g., respiratory sickness or
other diseases), and other environmental factors (e.g., blizzard, hail, variance in weather, etc.). While
a select few of these aspects may be accounted for with more detailed data, many of these aspects
are unlikely to be revealed or even known by producers who would insure against weather-related
production risk for a feedlot. Therefore, it is reasonable to expect a high degree of unexplained
variation in these regressions, as would be the case when one compares area versus individual crop
insurance plans for major grains. Additionally, typical insurance applications (e.g., health, life, and
auto) require a relatively small amount of individual-level information, often amounting to at most
20% explanation of overall variability in outcomes (van Vliet, 1992). Moreover, as we show below,
even with a low amount of variation explained or accounted for, the models reveal economically
important differences in weather intensity impact across the subgroups, which a properly designed
insurance product could affectively address.

The range of R2 provides insights into how well index-based insurance products would predict
livestock losses under adverse weather. Basis risk, which occurs when insurance payments and
observed losses do not occur simultaneously, can present a significant obstacle for widespread usage
of weather-based insurance products. Thus, a model that relates weather to production outcomes
with a relatively low degree of unexplained variation will also decrease basis risk. In this application,
pens placed between 600–800 pounds can be more accurately estimated, while heavier placements
of 800–900 pounds are more difficult to insure due to the increased basis risk. This result is likely
the result of heavier placements being more robust to extreme weather, while lighter placements can
be more vulnerable to extreme weather.

Figure 4 shows the fitted values for a fixed amount of DOF and variable Hours, assuming a
steer pen placed in fall with mean statistics from each subgroup. It is apparent that once a threshold
of 200 hours of extreme weather is reached, pen-level returns experience adverse impacts from
exponentially increasing FC, decreasing ADG, and increasing MORT . These three impacts work to
magnify the impact on profits. It is also apparent from figure 4 that the functional form assumed
allows us to identify these threshold impacts.

Weather Insurance Application

This section uses an example pen and computes the corresponding expected losses related to
weather. Expected losses are important in insurance applications as they is equal to the premium
rate in an actuarially fair insurance product, which is the maximum amount a risk-neutral producer
is willing to pay to eliminate risk. Over the last thirty years, federal crop insurance has become
a major tool for insuring individual crop producers against yield and price risk. Area-based crop
insurance products, such as Group Risk Plan (GRP) and Group Risk Income Protection (GRIP),
have been introduced by the RMA to insure yields and revenue, respectively, based on county-
level yield realizations. GRIP is a revenue insurance version of GRP, with guarantees and payments
based on the product of county-level yields and futures market prices (Skees, Black, and Barnett,
1997). Recently, the federal government has developed new livestock insurance products such as
PRF, which is based on hay production. This is similar to how area crop insurance plans limit moral
hazard by tying insurance triggers to a weather index or area-wide measure.

In many crop insurance applications, there may be moral hazard and adverse selection if
production is based directly on the production outcomes of the insured. In order to mitigate moral
hazard, index insurance is often used, which uses an objective third-party measure as a proxy for
individual losses. Most past literature in this area has been focused on developing precipitation or

7 Chantarat et al. (2013) use a regime-specific linear regression to estimate the relationship between herd mortality rates
and a collection of transformed Normalized Difference Vegetation Index (NDVI) variables. The authors also use separate
regressions for “good” and “bad” weather regimes and find that adjusted R2 improves by 50% in “bad” weather regimes
relative to “good” weather regimes.
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Figure 4. Predicted Values of Dependent Variables from Fall Steer Placements, by Weight
Class

heat indexes for crop insurance (Barnett and Mahul, 2007; Deng et al., 2008; Martin, Barnett, and
Coble, 2001; Turvey, 2005; Vedenov and Barnett, 2004).

Weather-based insurance products provide an indemnity payment to the insured agent when
the observed outcome is above a specified strike. Similarly to crop insurance applications, the strike
could be specified by the insured agent and influences both the premium rate and expected indemnity.
In our application, the indemnity is based on the number of hours the CCI threshold exceeds the
strike. This type of an insurance product would be provided to compensate fed cattle producers in
the event of production losses due to extreme heat or cold weather. In order to compute the premium
rate associated with such a product, we need to determine the product of the probability of the
event occurring and the expected loss given that the event occurs to determine the actuarially fair
premium. To compute the expected losses given extreme weather, we use a regression technique
similar to that in Vedenov and Barnett (2004), who regress yields on average monthly temperature,
monthly precipitation, and the interaction between the two for the months of June, July, and August.
In this application, the use of the CCI to determine the existence of extreme heat or cold weather is
supported by the research provided by Mader, Johnson, and Gaughan (2010), which was calibrated
using times when extreme cold and heat were experienced.

We first compute the expected loss, conditional on the adverse event occuring. This is a bit
trickier that it would seem at first glance since there can be an array of hours over the threshold. Since
extreme hours are measured discretely, we construct the expected loss function in the following



296 May 2015 Journal of Agricultural and Resource Economics

manner:

(6) E[loss|hours > D] =
H

∑
h=1

pr[hours = D + h]× E[loss|hours = D + h],

where h is the number of hours over D and H is the maximum hours considered and may be thought
of as an upper limit after which additional hours have no marginal influence on production variables
or is sufficiently close to a zero probability of occurance. We next focus on estimating expected
losses conditional on weather using production data from 1980–1999 and the probability of loss
using weather data from 1973–2005.

Expected Losses from Extreme Weather Events

ADG, FC, and MORT are all functionally dependent on HRS. For this reason, the impact of an
additional hour of extreme weather on profits has a nonlinear impact that is related to the impact
of HRS on ADG, FC, and MORT as well as the profit function. Because of this we can estimate
the impacts of a one-unit change in Hours on profits by using a baseline scenario and a treatment
scenario where we increase Hours and hold other placement variables constant. This allows us to
identify the lost profit due to extreme weather.8

In order to examine the expected loss, we first use a profit function based on Belasco (2008).
This profit function can be specified as

P = T R− FDRC − YC − FC − IC −VCPH;(7)

T R = FP×CSW × (1−MORT );(8)

CSW = (0.96)×CPW + ADG× DOF ;(9)

FDRC = FRP×CPW ;(10)

YC = (0.40)× DOF ;(11)

FC =CP×
{DMFC

0.88 [CWS× (1−MORT )−CPW ]
}

;(12)

where P are per head profits, T R is the total revenue per head from cattle feeding, FDRC is the per
head cost of purchasing feeder cattle, YC is the per head fixed cost (yardage cost) of feeding cattle,
FC is the per head feed cost, IC is an interest cost, VCPH are the per head costs associated with
veterinary care, FP is the price per hundredweight ($/cwt) of fed cattle, CSW is the average sell
weight of the finished cattle, FRP is the price per hundredweight ($/cwt) of feeder cattle, CP is corn
price, CPW is the average weight of the feeder cattle at placement, and DOF is the number of days
the pen of cattle is in the feedlot. This profit function assumes a 4% live-weight shrinkage factor
to reflect the expected loss in weight during transportation from feedlot to packing plant, a fee of
$0.40 per head per day for custom feeding (YC), and 12% moisture contained in the corn-based feed
ration.9 Based on this function, we can see that the performance indicators impact cattle sell weight
(CSW ), total revenue (T R), and feed cost (FC).

We now provide a specific example. We assume a steer pen, placed on feed averaging 750
pounds, on feed for 130 days, and placed in fall. The assumed price of corn is $4.00/bushel, the fed
cattle price is $140/cwt, and the interest rate is 5.0%. While these variables are all held constant in

8 There are likely to be additional impacts of weather on quality that we are not able to estimate with the given data. Thus,
the presented results may slightly understate total losses due to weather.

9 The given shrink rate is consistent with ranges presented in related studies (Coffey et al., 2001; Gill, Barnes, and Lalman,
2014). These given shrinkage rates reside on the low end of the observed shrinkage rates due to increases in shrinkage that
occur due to distance traveled, diet, and weather, among others (Gonzalez et al., 2012). Yardage fees are estimated to be
$0.40 per head per day, which is also consistent with related studies (Gill, Barnes, and Lalman, 2014; Kumar et al., 2012).
The marginal results presented in the present study are robust to substantial changes in yardage cost and shrink rates.
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Table 4. Scenario Results from Example Pen to Examine the Impact of Hours on Profitability
Scenario 1 Scenario 2

Metric Units Hours = 200 Hours = 400 Change
Sell Weight lbs 1,085.18 1,027.84 −57.33
E(ADG|Hours) lbs/day 3.06 2.58 −0.48
E(FC|Hours) lbs feed/lbs gain 8.81 10.37 1.56
E(MORT |Hours) mortalities/head 0.82% 0.95% 0.12
Revenue $/head 1,506.75 1,425.37 −81.38
Feed Cost $/head 114.96 111.25 −3.71
Interest Cost $/head 1.33 1.30 −0.03
Profit $/head −77.64

this analysis, we compare our sample pen when Hours = 200 and Hours = 400, which approximately
corresponds to the empirical median and eighty-eighth quantile for the subsample of interest. We
can think of the median Hours within this subgroup as the anticipated ex ante returns from a normal
weather-related year. The results are shown in table 4. Adverse weather is expected to decrease
ADG by nearly half a pound (0.48) per day, increase FC by 1.56 pounds of feed needed for each
pound of weight gain, and a substantial increase in MORT by 0.12 percentage points. Each of these
performance changes negatively impacts cattle feeding profits. For this particular simulation, the
incremental increase of 200 additional Hours of extreme weather results in a profit reduction of
$77.64/head. Revenue is reduced by $81.38/head from reduced ADG and increased MORT, which
is a 5.4% reduction in revenue. Feed costs and interest costs also have slight impacts.

Based on twelve years of historical feedyard net returns (January 2002–April 2014), Tonsor
(2014) estimates the average return per head is −$33 for steers and −$21 for heifers. Thus, the
loss of $78/head is a relatively large loss for a business based on low margins and high volume.
Additionally, the losses from weather are aggregated across the pen, which in this data averages
around 135 head. Using the case of a 135-head pen, a per head loss of $78 translates into substantial
losses of around $11,646/pen.

To provide more general results, figure 5 shows lost profit if we vary severe weather Hours from
200 to 400 over a feeding period. The marginal losses are steep along this range. The next subsection
evaluates the likelihood of such an event occurring in order to compute expected losses.

Distribution of Hours above Extreme Weather Events

We next compute the probability of Hours exceeding D for a certain feeding period. We use an
example of a pen with an average placement weight of 750 pounds that is placed on feed for 130
days from November 1 to March 7 (the average number of days on feed for subsets contained
within this group). Using weather data from 1973–2005 (thirty-two years), the empirical histogram
of Hours is computed for the days in our example pen (figure 6). Given the relatively short time series
used for this weather, we characterize the empirical distribution using a lognormal distribution with
the associated mean and variance from the empirical distribution. Using a lognormal distribution
eliminates some of the lumpiness in the distribution that arises from a relatively small sample and
simplifies the computation of the integrals. The estimated lognormal distribution is also shown in
figure 6. There are more than 200 hours 48.77% of the time, while more than 400 hours occurred
10.98% of the time. Given this information, this type of weather event is relatively unlikely, although
very costly in terms of lost profits.

Using equation (6), we combine the historical weather information with the expected lost profits
to determine the actuarially fair premium rate or expected losses. Results are shown in table 5 with
varying strike levels at 200, 250, 300, and 350 hours, which results in respective premiums of $8.50,
$8.04, $6.22, and $3.27 per head. Each strike level corresponds to the given quantile, which provides
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Figure 5. Expected Losses per Head, Relative to 200 Severe Hours

Figure 6. Empirical Distribution of Hours between November 1–March 7 in Western Kansas
Location, 1973–2005
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Table 5. Premiums Associated with Different Strike Levels from Example Pen
Strike Strike Quantile Premium ($/head)

200 51.33 8.50
250 66.15 8.04
300 76.11 6.22
350 83.99 3.27

Notes: Example pen is a fall steer pen placed with an average weight of 750 pounds, on feed for 130 days, corn price of $4.00/bushel, fed
cattle price of $140/cwt, and an interest rate of 5%.

the probability of an outcome being less than the strike. As expected, higher strikes give the insured
agent a lower chance of an indemnity payment, a lower expected indemnity, and therefore a lower
premium.

Conclusions

This study evaluates the economic impact of extreme hot and cold weather conditions on three cattle
performance variables–ADG, FC, and MORT —using 15,836 pens of cattle in Western Kansas over
twenty years. One difficulty with this research is selecting weather indices to capture extreme hot
and cold weather events. Results indicate that weather stress has economically significant impacts
on cattle feeding profits, especially during times of severe weather. An example pen is used to
illustrate how these results might be used to assess economic losses in feeding cattle associated with
extreme weather. This application then leads to the development of a derivative product to insure
against weather-related livestock losses. The adoption of this new Comprehensive Climate Index
(CCI) provides a promising avenue of further research to develop weather insurance products for
feedlot producers.

While this research provides a framework for evaluating a cattle feeding insurance derivative, it is
not without need for refinement. First, not all weather components that influence animal production
are included in this model. Other variables that may be of interest in a weather index include the
impacts of precipitation and mud. The feedlots in our study are located in an area that is relatively
arid and has a sandy soil, so the issues of excessive precipitation and mud would likely have
more impact in other regions. The question also remains as to how a researcher should incorporate
threshold analysis using an index. For example, is it more important to monitor extreme stress or
continual slight stress?

Second, basis risk is an area of concern in this particular research and has plagued all area-
based insurance products (Smith and Watts, 2009). In order to minimize basis risk, more accurate
weather prediction methods would likely improve the prediction of weather at a point. The main
problem with weather-index products is that weather stations are not installed at all production
areas. So, weather at a point is predicted based on the surrounding weather data, which may not be
adequate. In this region, which is especially dense with feedlots, the closest weather station is fifteen
miles away from the production areas used. Using additional weather station data and incorporating
spatial dynamics may be helpful to minimize basis risk. This issue is more acute in applications
within developing countries where weather stations are more sparsely located.

Third, other measures can be taken to reduce weather-related animal performance impacts in
areas where weather is expected to place stress on animals with more frequency, such as windbreaks
in northern areas and shade in southern areas. While this research provides a framework from which
to evaluate the value of these self-insurance methods, they inevitably would change the production
responses to weather. Results from this research provide insights into the relative costs and benefits
associated with taking such measures to mitigate weather-related effects on production.

Fourth, weather is likely to have a significant impact on quality and yield grade outcomes as well
as dressing percentage of harvested animals. Our research evaluates the impact of weather on live
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weight pricing methods. However, given that many producers utilize grid pricing and dressed weight
pricing methods, additional weather-related risk factors may persist and require additional insight.

Fifth, the demand for domestic livestock insurance is an area of research that has received little
attention. This is surprising given the extensive literature evaluating the demand for crop insurance
in the United States, as well as index-based weather insurance products in developing countries.
Many of those applications have focused on surveys of potential users. While this research does not
evaluate the demand for livestock insurance products, experimental research could provide context
to evaluate potential utilization rates.

[Received November 2014; final revision received May 2015.]
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