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INTRODUCTION

Linear programming was developed in the early 50's. Since

then, it has become a powerful mathematical tool in solving a

number of military, economic, and industrial problems. Prima-

rily, linear programming helps in selecting a best schedule of

actions among many conflicting alternatives and may be applied

to systems having the following characteristics:

1. Some objective to be optimized, such as maximum

profit or minimum cost.

2. There are a number of variables to be considered

simultaneously.

3. In addition to many variables, there are a number

of constraints on the system which the solution

must satisfy. These restrictions are linear and

may represent such quantities as production

capacity or limited sales.

In general, linear programming problems are solved by the

simplex method. In some situations, the simplex solution which

allows for fractional values of the variables may not provide

the solution that is desired. For example, in an airline sched-

uling, it makes little sense to speak of an optimal solution in

terms of fractional units of planes or people. It is important

to note that the integer solution obtained by rounding off the

fractional values does not usually constitute an optimal integer

solution. This fact led to the development of integer linear

programming in 1959, which guarantees an optimal integer solution.



In some situations, the variables in the integer solution

may take only a zero or one value. This may occur in scheduling

and machine sequencing. 3ecause of the special form of the solu-

tion and because of computational difficulties with the current

integer programming algorithm, much work has been done to find

an efficient algorithm for solving the zero-one integer program-

ming problem. The purpose of this paper is to review some of

the better known zero-one algorithms and discuss their respec-

tive advantages and disadvantages. A number of practical prob-

lems can be classified as zero-one integer programming problems

.

The following are examples of these type of problems:

a. Scheduling of jobs through a production facility.

b. The machine loading or sequencing problem.

c. Problems where decision A or B must be made,

but not both A and 3.

These problems are special cases of linear programming

problems in which the decisions are of the "either - or" type

and where a linear objective function is to be optimized and the

system is subject to restraints. To simplify the discussion, the

zero-one problem is presented in the manner of the linear pro-

gramming (L.P.) problem. As mentioned earlier, the objective

of a linear programming problem is to maximize or minimize a

linear objective function subject to a set of linear equality

or inequality constraints governing the system.



Linear Programming

The general form of a linear programming problem is stated

as:

minimize Z - CX

subject to AX \ b (1)

X >.

where C, X and b are vectors and A is an n-dlmensional matrix

and Z is a scalar.

From elementary algebra, it is known that a system of lin-

ear equalities either has a unique solution or has no solution

at all. However, a system of linear inequalities may have an

infinite number of solutions or a finite number of basic solu-

tions. A basic solution to a linear programming problem having

m constraints and n variables, where n > m, is the one in which,

at most, m variables take values greater than zero and the re-

maining variables are set equal to zero. It is important to

note that a solution mu3t be non-negative or feasible, that is

x
j * 0» J

** 1, 2, 3 n. A feasible solution which

yields a maximum or minimum value for the objective function is

called an optimal solution to the linear programming problem.

If X' is an optimal feasible solution, then Z* = CX' , X' >.

and AX' -b>0.
•"-

where Z » the optimal value of the objective function.

Generally linear programming problems are solved by the simplex

method developed by Dantzig /K7

.



Integer Programming

A linear programming problem becomes an integer programming

problem when one or more of the variables are required to have

Integer solution values. Hence it can be shown that the problem

(1) becomes an integer programming problem when the following

restriction is added:

x
j

=
[
x
j

: x
j

' °' 1
'

2
' ' • ' *' J £ J

]
(2)

where J C N , N - ^1, 2, 3, . . . , n] .

Beale Equations

To better understand the methods of integer programming, it

Is helpful to review Beale Equations. E. M. L. Beale f§7 was

the first to represent the linear programming problem by equal-

ities in non-negative variables. If a slack vector X2 is intro-

duced into problem (1), it can be rewritten as

minimize a a X,
oo o 1

subject to A^ + IX2 - b (3)

x1( x
2

where a
Q

« ( aoi' is an 1 x n row vector,

X]_ = (x«) is an n x 1 column vector

«
In this paper c Is meant to be for inclusion, where as c.

is for strict inclusion.



X2
=

^ Xn+I^ is an m x 1 slack (column) vector

Al
=

^ a ij"' is an m x n matrix of coefficients

I = an m x m identity matrix

b = (b^) is an m x 1 requirement vector.

3y rearranging the vectors in the above problem, it Is put In

the following form.

Minimize jc
Q

= a00 - a X1

subject to Xo = b - A-jX-i

xlt x2
>. 0.

where x is the value of the objective function.

Now an Integer programming problem can be stated in Beale

Equation form as follows: Find x , x^, X£, . . . , xn , xn+ ]_

,

k with x,,
n+m j'

minimize
n

x„ = 4v_ + 7~
00 '

—

3-1

aoj (-*
5

)

n
xn+l " aio + JZ aij ( -*3 }

3-1 CW

X^

z
i

an integer J e J, J <= N

x. = non-basic variables

xn+i_
= basic variables



aj» - coefficients with Integer values

* 1> 2, 3, . . • , m

J - 1, 2, 3, .... n.

This problem can be solved by the simplex method and If the

solution obtained has the Integer property, it Is the optimal

integer solution. This Is usually not the case, thus other

methods are required to solve this problem. The most common

method is a modification to the simplex method, due to Gomory

/TO, 117 which requires the addition of additional constraints

to the optimal simplex solution and force the solution to be

integer valued. This Is one of the cutting plane methods which

will be discussed later in detail.

Zero-one Integer Programming

A special case of integer linear programming is called

zero-one integer linear programming which is the author's prime

concern In this paper. This special case occurs when one or

more of the variables are restricted to the integers or 1.

For simplicity, this zero-one integer linear programming Is

called the zero-one problem. Now It is evident that problem

(2) becomes a zero-one problem when the following restriction

is added to it.

X
J

" *j : Xj - 0, 1 ;
j.e J . (5)

where J e N
,

{ N -
. 1, 2, 3, . . . , n ] .

Due to the special nature of the problem, the solution space is



restricted to the unit cube in hyper-space for those variables

which are restricted to be or 1. There are a number of algo-

rithms for solving, these zero-one problems and they are classi-

fied into the following four groups . They are

1. Cutting plane methods.

2. Parallel shifts of the objective function

hyper-plane

.

3. Boolen Algebra methods,

li. Combinatorial methods.

Literature Survey

G-omory /To,ll7 was successful in solving problem (2) by

using the cutting plane methods. He developed two algorithms

which guarantee an integer optimal (if one exists) solution in

a finite number of steps. These algorithms can be utilized to

solve zero-one problems simply by adding the additional restric-

tion denoted by (5). The second method involves in obtaining a

non-integer optimal solution by simplex method, and then adding

restraints which forces the solution to integer that is or 1,

and resolving the problem. This additional restraint, at each

iteration, is obtained from the objective function. The idea

is to force the objective function value to be integer and then

find the integer solution (if it exists) which corresponds to

it. This method was developed by Elmaghraby /57.

The boolen algebra methods are due to R. Portet /Jk±J and

R. Camon /I3.7 • These are not discussed in this paper because



of their special nature. The principal combinatorial methods

which are used for solving zero-one problems, are due to 3alas

{TJ and Glover {$,$/.

Purpose

In this paper, an attempt is made to review some of the

above methods which include the cutting plane, parallel shifts

of the objective function hyper-plane and combinatorial methods.

The formulation of a zero-one problem is discussed in the first

section. The second section is devoted to the cutting plane

methods of Goraory £L0,ll7. Elmaghraby's method /g7 is discussed

in the third section. The remaining sections are devoted to a

general discussion of the recently developed combinatorial ap-

proach and the particular algorithm of Balas /I7.



minimize 0" X'

subject to A' X' \ b'

x. «= or 1

J - 1, 2, 3

ZERO-ONE INTEGER PROGRAMMING PROBLEM FORMULATION

The general form of the zero-one integer programming prob-

lem may be stated as follows:

(6)

n.

In this discussion, the constraints are transformed into

inequalities of the form (<) and all the coefficients in the

objective function, which is to be minimized, are transformed

to be positive. This is done in the following manner:

a. Replace all exact equations by two inequalities,

one a greater than or equal to ( i ) and the other,

a less than or equal, to (6 ) .

b. Multiply all greater than or equal to ( 5 ) in-

equalities by (-1)

.

c. Set

Xj for Ci > when minimizing, for

X
i 1 - x . for 0. 6 when minimizing, for

C. >. when maximizing.

Finally by introducing an m-component non-negative slack vector

Y, the problem may be restated in the desired form, that is,

find X which
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minimizes Z = CX

subject to AX + Y b

X, Y i

where X (xj) is an n x 1 column vector

C=(cj)isalxn row vector with C 'i

A (ajj) is an m x n matrix

b (b^) is a m x 1 column vector

Y = (y^) is a m x 1 column vector

N = a set of indices J for the variables x

{ 1, 2, 3, . . . , n
}

5

(7)

It is noted that all the algorithms described in this paper

require the problems be dual-feasible that is all C. ^ 0. The

discussion of the zero-one algorithms to be presented in the

following sections, is based on the above formulation (7) of the

problem.



COTTING PLANE METHODS

Gomory /lb,ll7 developed two algorithms for obtaining an

optimal solution to a general integer linear programming prob-

lem. In these algorithms, the solution obtained is integer not

necessarily zero or one. The first method, called All Integer

Method, was initially developed in 195>8. The second method,

called All Integer Integer Method, was developed in I960. The

basic requirement of both the methods is that any problem to be

solved has to be dual-feasible and must have the coefficient ma-

trix A in integers. It is interesting to note that the second

method maintains integers in the tableaus throughout all itera-

tions, as all the computations are done by additions and sub-

tractions only. However, only the first method, that is All

Integer Method will be discussed in this paper. For the second

method the reader is referred to /Tl7«

The All Integer Method is a cutting plane method. Princi-

pally all cutting plane methods use the simplex algorithm to ob-

tain a non-integer optimal solution. Some type of a constraint

generation technique is then utilized to reduce the solution

space so that the Integer optimal solution is obtained. These

added constraints cut Into the solution space as deeply as pos-

sible without excluding any integer solutions. This is the

reason these methods are called cutting plane methods. As men-

tioned earlier, only the All Integer Method will be described

In this paper.

To use this algorithm it is necessary to formulate the
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problem according to the Beale Equation form (1^) . One must re-

member that If a given problem is not dual-feasible, then it is

necessary to reformulate the given problem into a dual-feasible

problem as explained in the previous section. By adjoining the

constraints x. (-1) (-x<)
, J s N, the above problem can

be stated as

n

minimize Z - z
Q + YL C j("x l'

3=1

n

subject to yt = xn+i » \y^ * £_ a^f-Xj)

3-1

ym+j " xm+n+J
= x " 1 ( ~*j'

Xj a. , all J

This problem may be exhibited in a tableau form. This is shown

in tableau 1. The variables z, yj_, yg, . . . , ym+n are basic

variables where as x-,, x
2 , . . . , xn are non-basic variables.

Since the simplex solution puts no upper bound on the variables,

it is necessary to include constraints Xj < 1, j € H which

represent upperbounds on the variables for the zero-one problem.

These constraints are included in the tableau 1.

The linear programming problem displayed in tableau 1 is

solved by using the simplex method. If the optimal solution is

integer valued, it is then the feasible and optimal solution to

the zero-one problem. Otherwise, a new constraint has to be
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Tableau 1

! i "x
l

1—

>

1

-JU ... -X
2 n

z z
o c

l °2 . . . °n

*1 " b
l

a
ll

S
12

• • • am
y2 b2 a21 a

22 • • . a
2n

• • • . .

• • • • •
,

y
ra

= bm aml a
ra2

. • . amn

^ra+l
" 1 1 . •

^m+2 " 1 1 • •

• • • • .

• • • •

"m+ri
1 . . . 1

x
l " -1 • • •

x
2

= -1

xn " -1

'
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obtained to exclude the non- Integer portions of the optimal solu-

tion, but not any of the feasible solutions to the zero-one prob-

lem. To obtain such a constraint, it is necessary to reformulate

the problem at the optimal or final iteration. Let B be the

basis matrix (the matrix composed of the columns of A correspond-

ing to x» in the solution) for the optimal solution and let R be

the set of
. J corresponding to the non-basic variables (the vari-

ables Xt which are not In the solution and which are set equal

to zero). The coefficients a** in the matrix A are transformed

at each Iteration in obtaining the current basic solution. This

transformation is referred to as updating. Denote y< as the up-

dated column vectors at the final Iteration and Y as the updated

requirement vector (often called as the right hand side vector).

Also let Xr, be a vector containing basic variables for the opti-

mal solution. The set of variables in the solution which may

take values other than zero is called the basis. The number of

variables in a basis corresponds to the number of restrictions

in the problem. At the initial Iteration, the slack vector Y,

constitutes the basis. This basis changes at each iteration as

a variable Is removed from the basis while another non-basic

variable enters the basis. This change results in an increase

In the objective function value for a maximization problem and

a decrease in the value for the minimization problem. This in-

crease or decrease occurs until the optimal solution Is reached.

The optimal solution is a3 follows
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y
J

- B"
1

., J « N

V
-o

B"1 b

XB " Y
o

Furthermore

,

any feasible
isolution X must satisfy

*b
= Y

o
+ r :

f
5

("V (8)

j6 R

There is only one solution to (8) with x. - o , -i| e R, which

is the basic feasible solution XD = Y„ .a o
Xj, - { Xj - 0; j 6 R } .

Suppose that not all components of Y are integers!, in particular

assume y ii3 not an Integt3r . Then consider the u-th equation of

(8) which is

%"1 yuo + H
je R

7uJ f-X,) (9)

Now let

yu j
- 6 uj + fuj , i e R

^uo
! 6 uo + fuo

(10)

where & u . Is the larges't integer less 1;han or €iqual to yu j,

i 6 R and j = o. if yuj > 0, then & U j
^ and - fuj < 1.

On the other hand if yu , -c then S u , ^ 0, but the fraction

fu » remains positive, that is < fu j < 1. Hence f . is always

greater than or equal to -0, Furthermore rno
> ° by the assump-

tion that yuo is not an integer and from the fact that the
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solution Is feasible, yuo is a positive real number. Substitut-

ing (10) into (9), we obtain

XBU
= & uo + Z &uj(-x j)

+ fuo + Z fuj("*J>

or

X
3u

" S u°' £ 6 uj (
"x

j
) " fuo £ V*^ t 11 '

it R J8

Now for any integer feasible solution to (8) (that is all

x 1 -^ 0» 1 S 8 are integers) which may not be optimal or neces-

sarily basic (that is some x, > 0, j e R) to the original prob-

lem, the left hand side of the equation (11)

XB„ " uo " H &uj (
-x j> (12)

Je R

will be an integer. And the quantity in (12) may not necessar-

ily be non-negative because & „-t is an integer and may be less

than zero and x<
, j e R is a non-negative integer from the

feasible solution. Since (12) has an integer value and from

equation (11), we find

fuo + H fUJ<-*j} .

(13)

Jc- R

must also be an integer. Now £L, _ fu j (-Xj) cannot be posi-

tive, since fu » > and Xj ^ 0. Thus from the fact that (13)

is an integer and since •£ f < 1 along with the fact that
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T* f„M (-Xj) 4= 0, the quantity in (12) cannot be a positive
j € R • *

integer. Therefore every feasible solution to an Integer prob-

lem (that is non-negative and integer valued) must satisfy

f
uo

+ Y- V-x
;> * ° (1W

jc-R

-fuo L fuj<-*J> » o d5)

3« a

Clearly the optimal solution to a linear programming problem

does not satisfy (15), since x, » ; jeR. Thus if (15) is

added to the linear programming problem, the new set of feasible

solutions will be smaller than that for the original linear pro-

gramming problem, but still contains all feasible solutions to

the integer problem. The procedure then is to attach (15) to

the linear programming problem and solve the resulting problem

which now has (m+1) constraints.

Let S-|_ be the slack for (15); the subscript 1 indicates

that it is the slack variable for the first cut annexed to the

linear programming problem. Hence,

s l " "fuo " E fuj(-x j> < 16 >

jGR

However, it was observed that for any integer solution to (8),

(13) must be an integer; hence in ea.uation (16), S.. will be an

integer. Thus one need not be concerned about the fact that the
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new variable introduced into the problem may not be integer.

Note that the basis matrix for the augmented problem is now

M
where e

m+1

and

~T

B

—i

is the activity vector corresponding to

S-j_. Thus a basic solution to the augmented problem is

-1

-f,.

This basic solution is not feasible, since -f„ * 0. The

vector containing the cost coefficients corresponding to 3, is

(C
g , 0). Thus, the Za - C. for the augmented problem are

precisely the same as those for the original problem. The y. ,

1
J £ R; for the augmented problem (denoted by y« for the first

cut) are

"J
-f,uj

(17)

Therefore the current Z ; '5 for the new problem are precisely

the same as those for the optimal solution of the original prob-

lem. As a result, we have a basic optimal solution (all Z, -

Cj ^ 0), but not feasible to the augmented problem. Hence the



19

dual simplex algorithm is applied to obtain an optimal feasible

solution. The initial simplex tableau for the augmented problem

is obtained from (17) by adding another row to the tableau cor-

responding to the optimal solution of the original linear pro-

gramming problem. The quantity (-fuo ) is entered in this new

row in the solution or Y column and (-fU j) are entered in the

i (. R columns. Dual simplex algorithm is then applied to the

augmented problem until a feasible solution is obtained. If

this solution has the required integer property, it is then the

optimal feasible solution to the integer problem. Otherwise the

process is repeated by adding another constraint similar to (16)

until an integer feasible solution is obtained. Now the itera-

tive procedure for obtaining a zero-one solution is summarized

below.

Step 1 . Formulate the zero-one problem into a dual-feasible

problem as described in the last section. Arrange the problem

in a tableau form similar to tableau 1.

Step 2 . Obtain an optimal solution using the simplex

method. If the solution is in integers (0 or 1), it is the op-

timal solution to the given problem and the process terminates.

Otherwise go to step 3.

Step 3 . If more than one component of Y_ is non-integral

select the component for which fuo is the largest. This allows

us to make the largest possible cut, but it should be noted that

it may not lead to the integer solution in the minimum number of

cuts. From the row corresponding to maximum f. . form theuo '
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constraint

S
l

= " fuo " T. VV (18)

i £R

and augment to the last tableau (in the first iteration of the

integer algorithm, the last tableau is the one corresponding to

the optimal solution of the original linear programming problem)

,

The large fuo ensures a deep cut, but does not exclude any of

the integer solutions.

In the dual simplex algorithm, the variable which is most

negative is normally selected to leave the basis. However since

there is only one negative basic variable S-j_ •= -?uo , it is

selected to leave. Let the augmented row be denoted as row r.

Thus xg
= S^ and It leaves the basis.

Step k . In the dual simplex algorithm, the variable se-

lected to enter the basis is determined by computing

min
c

3
arj < . (19)

The column k for which equation (19) holds, is selected to enter

the basis.

Step 5 . Form a new tableau, where x^ replaces xg in

the basic solution to the augmented problem. The new solution

may not be primal feasible, in which case the dual simplex algo-

rithm is again applied until the problem is primal feasible. If
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the solution is integer valued, it is then optimal and feasible

to the original integer problem; otherwise return to step 3.

Note . In Gomory's method, when a constraint is generated,

the prior ones can be disregarded since they become redundant in

the reduced solution space. Thus when a second constraint is

generated, the first one can be ignored; when a third constraint

is generated, the second one can be disregarded and so on. Also

when the slack variables (corresponding to the added constraints)

appear in the basis with a positive value, they may be disregarded

from there on; that is the corresponding row and column may be

removed from tableau.

An example problem is solved in Appendix I, illustrating

this algorithm. The author feels that "the all integer method"

described in this section is not a very efficient method for

solving zero-one problems, since it requires the addition of

n-constraints {x, £ 1, j e N) which makes the problem unusually

large. A problem of size m x n becomes (m+n)xn and hence re-

quires excessive computational time. Some of the methods pre-

sented in the following sections appear to be more efficient for

solving these problems.



PARALLEL SHIFTS OP THE OBJECTIVE FUNCTION HYPER PLANE

In 1963, Elmaghraby /57. developed a method by which an

optimal solution can be obtained to the zero-one problem, A3

in cutting plane method of Gomory /JJS]', he uses the simplex

method to obtain a non- integer optimal solution. It was men-

tioned earlier in Gomory' s all integer method that it is neces-

sary to add the upperbound constraints x» £ 1
, J 6 Nj and as

a consequence makes it inefficient for large problems. However

in Elmaghraby' s method, this inefficiency was eliminated to a

large extent by using a modified version of the simplex method

called upperbound technique developed in 1951+.

In an ordinary simplex method, the variables are lower

bounded by zero and hence the variables never become negative.

Similarly in the upperbound technique, the variables do not ex-

ceed the upperbound. For example, if the variables are upper-

bounded by 1 as in the case of the zero-one problem, the vari-

ables do not exceed one. This is the characteristic of the

upperbound technique. However the computational time for the

upperbound algorithm is usually greater than that for the sim-

plex algorithm. The upperbound technique will not be explained

except as it applies to the method of Elmaghraby. For those who

are not familiar with it, a brief review is given in Appendix II

and for a more detailed discussion, the reader is referred to

any standard text on linear programming /Ji.,12/

.

To facilitate the discussion, the zero-one problem (7) is

restated as follows:
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minimize Z - CX

subject to AX + Y = b (21)

X, Y^

x, = or 1
, J e J, J £ N

where all dimensions remain the same as before and where the

solution space of the problem as stated in (21) is an n-dimen-

sional space W. Thus one of the extreme points of W represents

the optimal solution to the linear programming problem from (21) ,

If the integer restriction is removed in (21), we have the fol-

lowing problem:

minimize Z = CX

subject to AX + Y - b (22)

X < 1

X, Y » .

Since (22) is a linear programming problem, an optimal solution

can be obtained using the upperbound version of the simplex

method. Thus having solved problem (22) and if, in the optimal

tableau F the components of X have the integer property, then

the optimal solution to (22) is also optimal for (21). Other-

wise a new constraint is generated to force the solution to an

integer solution.

As discussed in the previous section, Gomory uses one of

the problem constraints to generate the new constraint, SL

- f - fu .(-x,), which reduces the solution space, but do not

exclude any of the integer solutions. In theory, this ensures
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that an optimal integer solution is reached in a finite number

of steps. However, Elmaghraby uses a different approach. In-

stead of formulating the additional constraints from one of the

problem constraints, he uses the objective function to obtain

his new constraint . He claims that this is an efficient approach.

The new constraint to be added to problem (22) is parallel to the

objective function hyper plane Z m CX. The new problem is re-

solved and if the optimal solution obtained has the integer prop-

erty (and is feasible to (21)), it is then the optimal solution

to the integer problem. Otherwise another constraint parallel

to the first one is obtained and the process is repeated until

an Integer feasible solution is obtained.

In summary, the Elmaghraby' s method proceeds in the follow-

ing manner. Initially the zero-one problem, without integer re-

striction, is solved using the upperbound version of the simplex

method. If the optimal solution obtained is integer, it is then

the optimal integer solution to the zero-one problem and the

process terminates. Otherwise the objective function hyperplane

is shifted in steps (parallel to itself) and the solution is

checked at each step. Whenever the solution is integer, it is

then the optimal integer solution to the original problem and

the process terminates.

Before going through the determination of this additional

constraint, it is of interest to understand the concept lying

behind the Elmaghraby's method. In general, an integer problem

may have an integer optimal solution inside the solution space .
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W. Thus any of the extreme points may not constitute an integer

optimal solution. To illustrate this, consider a solution space

W defined by the two dimensional extreme points (0,0), (3,0),

(2.6, l.k), (1.5, 2.0) and (0, 2.5) as shown in Fig. 1. In fact

there are only two integer extreme points and they are (0,0) and

(3,0). The other integer points inside the space W are (0,1),

(0,2), (1,0), (1,1), (1,2), (2 r 0) and (2,1). The integer optimal

solution may correspond to one of these integer points inside the

solution space W. Thus an optimal solution to the integer prob-

lem may not necessarily coincide with one of the extreme points.

However, the solution space W of a zero-one problem must be

within a unit hyper cube in an n-dimensional plane, since the

variables cannot exceed the value 1. A unit hyper cube does not

have any integer points inside its space and as a consequence,

the solution space W of. a zero-one problem does not have any in-

terior integer points. Thus if there exists an integer point in

W, it must be a corner point, that is it must be an extreme

point. From this discussion, it is evident that one of the basic

solutions must constitute an optimal solution to the zero-one

problem (note that an optimal solution to an integer problem may

not necessarily be basic). This property is the special nature

of the zero-one problem which makes the solution process simple.

If we recall the procedure of the simplex method, it is ob-

served that the basis changes at each iteration with an improve-

ment (AZ) in the objective function. Intuitively it means that

the solution point is moving from one extreme point to another
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(2.6, 1.14.)

Fig. 1. Two dimensional solution space for a

hypothetical problom.
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extreme point In the forward direction (that is, with Improved

Z) . This suggests that if the optimal solution to the linear

programming problem derived from the zero-one problem is not

integer, then the nearest integer point from the optimal solu-

tion point which Is clearly an extreme point, must be an optimal

solution to the zero-one problem. Now it is necessary to de-

velop a method by which the nearest integer point can be reached.

After getting a non-integer optimal solution to the zero-

one problem, if the solution point is moved backward from one

extreme point to the next nearest extreme point until an integer

point is found, it is then the optimal integer solution to the

zero-one problem. For any extreme point, there may exist other

extreme points having the same objective function value. Hence

all these extreme points having the same objective function value

lie on the same objective function hyper plane and they are

called alternate extreme points. This suggests that even though

an extreme point (corresponding to the present solution) is not

integer, one of its alternate extreme points may be an Integer.

Thu3, it is necessary to search all alternate solutions and check

for an Integer solution.

So far it is observed that, for any solution, it is first

necessary to search all alternate solutions to obtain an integer

solution and if none exists, the solution point must be moved to

the next nearest extreme point. Now it is necessary to find how

this nearest extreme point may be reached. Since moving the

solution point from one extreme point to another extreme point
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(but not alternate) corresponds to a change in the basis and the

objective function value, the extreme point corresponding to the

minimum change in the objective function is the next nearest ex-

treme point. If this minimum change is denoted by d, then d

represents the distance of the next nearest extreme point from

the present extreme point and often called depth of cut.

Also each alternate extreme point may have a different

nearest extreme point. Hence if there are L alternate extreme

points, then there are L nearest extreme points that is there

are L distances dj, , k = 1, 2, 3, . . . , L , where d, is

the distance from the k alternate extreme point to its next

nearest extreme point. Thus if d'
r
is the minimum of all these

distances dk ; k = 1, 2, . . . , L , the extreme point cor-

responding to d is then the next nearest extreme point to which

the solution point must be moved. Intuitively this extreme

point (corresponding to d ) is the nearest extreme point from

the objective function hyper plane. This ensures that no ex-

treme point is excluded from the search. In one sense d rep-

resents the least change in the objective function value from

the present basic solution to the next basic solution (in other

words, no other basic solution results in a change in the objec-

tive function value less than d ) . In another sense d"* repre-

sents the maximum change in the objective function value before

the present basic solution becomes infeasible; that is, if the

proposed change d Is less than d , the basis remains the same

and If d is greater than d , then the basis becomes infeasible.
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As a consequence, Elmaghraby developed the additional constraint

from the objective function.

To determine how this additional constraint is to be ob-

tained, consider the following equation:

z z
o

+ E <
z
j

" •}) *j + E < 2 j
- Oj) y

J

je R je R

••*•* £ Vj Xj + E Vj
yj

• (23)

je R jeR

where
n

zo " H °j x
j

3-1
and

R = the set of indices corresponding to the
non-basic variables,

N m the set of indicies of all variables.

- { 1, 2, 3, . . . , n, n+1, . . . n+m}

It is clear that in the optimal solution, x, - , i £ FI.

Hence Z « z . Now formulating the objective functi<sn as a con-

straint, we obtain

E c
j
x

j
+ E c

j yj + D = z
o (21;)

Jc N JeB

where D is a slack variable with zero cost and D ^0 . If the

problem (22) is augmented with the equation (2l|) and solved by
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the simplex method (the upperbound technique is implied), the

corresponding equation (21;) in P - tableau (the optimal tableau)

will be

-£_ (°
1

- z
j)*i + Z («« " z

i'
v

i
+ D =

E v
j
x
3

- r v
j yj + D " ° ( 25)

Je R je R

where

at the initial iteration D = Z
Q

and at the final iteration D 0.

This results from the fact that at each iteration the value of

the objective function approaches z . In addition in the opti-

mal solution,

Xj , Yj > ; Vj =
, j c- B

and

Xj - yj ; Vj = , j s R

Also

n cj xj + 2: c
j yj z

o
(2*a)

J ^ B jc-B

and
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Je R jtR

where

B U R - N ("U" means union)

B = Basis.

The substitution of this solution (25a) into equation (2!+) re-

sults in D 0. It is noted that the original constraint equa-

tion (2U) has the final form of equation (25) in the optimal

solution tableau F .

Thus from equation (25), the following constraint is ob-

tained

~ X. v
j
x
i

~ T. Vj y^ + D = - d (26)

jeR jeR

where d a constant £ to be determined later and it repre-

sents the depth of cut perpendicular to the objective function

hyper plane so as to reach the next nearest extreme point.

Equation (26) is referred to as the D-equation. Now the equa-

tion (25) in F - tableau is replaced by the D-equation, where

the new tableau with the D-equation is denoted as the F-l tab-

leau. For d = 0, the F-l tableau is equivalent to F-0 tableau

and the solution is feasible and optimal to the problem (22).

However for d>0, the solution in the F-l tableau is not fea-

sible, since D = -d £. 0. The added constraint (D-equation) re-

duces the convex set W and excludes the optimal non-integer
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solution to the zero-one problem. This is the same concept used

in the cutting plane method. In the cutting plane method, a

constraint from AX + Y = b is used to generate the new con-

straint, where as in the method of this section, the objective

function is used to generate the new constraint.

As mentioned earlier, d represents the depth of cut perpen-

dicular to the objective function plane and moves the solution

point to the nearest extreme point. Hence d, represents the

distance between the first D-equation plane and the objective

function plane, dp the distance between the first D-equation

plane and the second D-equation plane and so on. Thus d rep-

resents the decrease in the objective function value z (for a

maximization problem) between two iterations and the sum of all

these distances represent the total decrease in the objective

function value (that is the decrease in objective function from

the non-integer optimal solution to the integer optimal solu-

tion) . Prom this it is evident that d should be as large as

possible in order to obtain an extreme point which is closest

to the present objective function hyper plane. The basis changes

at the next extreme point. The first time a basis becomes in-

feasible; it represents that a second extreme point is obtained.

This happens when d d". Hence d must be chosen as large as

possible and still maintain a feasible solution. Thus if d is

the maximum decrease in the objective function before the solu-

tion becomes infeasible, then if d 5 d', there is no necessity

to change the basis, while if did, the basic solution becomes
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infeasible and hence the basis has to be changed. Now to deter-

mine d , let

}C = Basis for the non- integer optimal solution.

CR
= Price vector corresponding to the basis X„.

o o

Xg = The new basis when d = d + 6 , s being a
o small positive quantity.

C„ Price vector for Xq .

Bo
3
°

z o
= CB XB •

o o

XB
= Variable leaving from Xg

r o

x m Variable entering the new basis X
k Bo

Assuming that xk enters the basis, then the new value of z
Q

is

° 3o ^o

51 c
Bi *B. + ck xk

i+r

2_ CB
1

xB
t

+ Ck xk ~ CBr
xB

p
is M

^_ „ .
bryik. br bryrk>

*~ B i
Bi yrk

k
?rk

B
r Br yrk

i t M



3k

ten

br - N.xb - 7T z cb, yik + ck r—
i 'rk x >rk

"
z
° " ^k

br

br

•^rk
(„ - v

"-•' br
"

Z
° "

^rk
vk

- * - d*

where

vfV if yrk >

I "r " B
r

if yrk <• °» Br beinS th-8 upper-

bound for Xc .B
r

The change In the objec tive function -=— V,, is set equal to
yr>. *

d . For the basis JC, to remain feasible,

brJL. v . min
yrk i

mir

i

f b iv 1
ij -~J

, y1;j
> and

(bi - Bl )Vj 1
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where

B^ upperbound of xB .

However d
-* has to be determined over all the optimal solutions

(alternate). Suppose that for some j s R, V, = 0. This indi-

cates that there are alternate optimal solutions to F
Q . Let S

be the set of alternate extreme points for the objective func-

tion hyper plane passing through F , the extreme point of the

convex set W, where S = I P«, P_, P., . . . , P-l . The ex-

treme points ?,, e S are obviously extreme points of the orig-

inal solution space W and each is represented by a unique basis 1

Bjj , k = 1 , 2, 3, . . . , L. For each basis Bk , row i e Bk ,

non-basic variable x, ,
- V, <. and yj_j + 0, determine dk .

This is done from the F-l tableau as follows:

d,, = min
* i

b«Vi (b« - Bt)V,
^-J

, f. . > and —* S

—

i

*U
'ij

'13

yij * ° > (27)

where

1 = 1, 2, 3,

j e R

Except in tho case of a degenerate basis (b^ «» alo = 0)

and positive entry yj_j that can serve as a pivot for some

vector j whose V
J

0.
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B* = upperbound on xR

Thus this determines the maximum change in the b vector that is

permissible and yet remain feasible. And djj represents the cor-

responding change in the objective function value. Also, it is

important to note that no basic solution to the original problem

must be excluded by the addition of new constraint. To ensure

this, all the alternate optimal solutions have to be considered

in determining d . Hence

d* ~ mln ( dk > o
] ,

k = l, 2, 3, . . . , L. (28)

Thus having determined d
-

*, the algorithm proceeds in the

following manner, d' is determined for some row r and some

column k with -VL < for some basis B
fe

. Now, yrk is the pivot

element in B, tableau, xB is the variable leaving the basis B

and xk is the variable entering the basis. The simplex algo-

rithm is applied to obtain a new tableau. Then the now solution

to the augmented problem (22) is again feasible. Note that d

in the equation (26) becomes zero, because of the manner in which

it was determined. If the new solution is feasible to problem

(21), it is also optimal. Otherwise, another constraint of the

form (26) is augmented to the F-l tableau and the problem is re-

solved by the simplex method. The process is repeated until an

optimal integer solution is obtained.

The algorithm is summarized as follows:
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Step 1 . Obtain an optimal solution to the zero-one problem

without the integer restrictions (problem (22)) using the sisplex

method and upperbound technique. If the solution that is ob-

tained is a feasible integer solution to (22) then it is also

optimal to (21) and the algorithm ends. Otherwise proceed to

step 2.

Step 2 . Form the D-equation as explained earlier. Deter-

mine d", the pivot row r and the pivot column k. Add the con-

straint

- E Vj xj - E Vj 7j D m -d

i 6 R S « H

to F-0 tableau, where d d* = min (di, > 0).
k

Note . It is necessary to remember that d"' min \ d^ V,

It - 1, 2, 3, . . . , L such that dk > 0. This indicates that

those extreme points for which dk = arc to be excluded in

determining df , d-, can become zero in two ways.

a -
dk ° -H - ° . - Vj^ ° and Xij ^°

Hence dk
= , if and only if bj 0.

This indicates that the solution is degenerate. Hence if d > 0,

then the variable Xg goes negative and the solution becomes

infeasible. Thus it is necessary to remove xB from the basis

and eliminate degeneracy. Exclude this solution in determining
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d* and proceed to the alternate optimal solutions.

(b« - B±)Vt
b. dk

- — ^ = , - V. C and yt j ^ 0.

yi j

This happens if and only if bj^ - Bj 1 (note that for slack

variables the upperbound • + oo J, This Indicates that if

d > 0, the basic variable xB would exceed its upperbound.

Thus it is necessary to remove xB from the basis. Since it

has to become non-basic at its upperbound (in standard simplex,

all non-basic variables are set equal to zero), make transforma-
t

tion xn » 1 - xn and change the sign of the price coefficient
B i

Di

C3 of xB (that it becomes - CB Instead of CB ) . Now xB ^

replaces Xr, with zero value. As a consequence, the solution
B
i

becomes degenerate and hence eliminate degeneracy by pivoting on

the variable xn . This is illustrated in the example problem
3 i

in Appendix III.

Step 3 . It was noted previously that if

.* *>rVk

Yrk

then xB leaves the basis and the variable x^ enters the
r

basis. However, this criterion (for replacing xB by xk in

the basis) cannot be applied since the problem (22) augmented

with the D-equation is not primal feasible. Consider the
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augmented constraint (D-equation)

,

- k vi-i- z v
s?!

+ o --*

The requirements for a problem to be primal feasible is that the

b« > for all i. However corresponding to the above constraint,

b +1
- d 4t 0. . Therefore the ordinary simplex algorithm cannot

be applied to solve the new augmented problem (22). Hence it is

necessary to use the dual-simplex algorithm. In this algorithm,

the criterion for selecting a variable to leave the basis is to

select the row corresponding to the most negative b^. The only

equation which has a negative b.j_(i = m+l) is the D-equation.

Therefore the pivot row is the one corresponding to the D-equa-

tion. However the variable entering the basis is xk as deter-

mined from

d
* brvk

yrk

Hence the pivot row is the (m+l)th row (the added D-equation)

and the pivot column is k. The usual simplex method is now ap-

plied to obtain the new tableau.

Step y. . The new solution is again feasible to the augmented

problem. If this solution is a feasible solution to problem (21),

it is then the optimal solution. If not, return to step 2 and

repeat the process until an optimal zero-one solution is obtained.

Thus a different approach for the solution of a zero-one
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problem is introduced in this section. An example problem is

solved in Appendix III. It seems that the algorithm of this

section is an efficient method for obtaining an optimal zero-one

solution, provided the problem does not have many alternate op-

timal solutions. However this information is not available be-

forehand. Thus the computational time may become excessive if

this is the case. This uncertainity regarding the computational

time has led to the development of the combinatorial methods

which are introduced in the following sections.
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The two methods discussed earlier use the simplex method

as a basis to obtain an optimal zero-one solution. 3asioally

both methods use the simplex to obtain a non- integer optimal

solution and then try to force the solution to an integer op-

timal solution. However the approach discussed in this section

is an enumerative procedure which consists of evaluating all or

a subset of the 2
n possible solutions and selecting the one

which provides the best solution. The problem of the previous

section is again stated as follows:

minimize z « CX

subject to i, AX + Y = b
(29)

ii, X. - or 1, j e H

iii, X, T>0,

3ecause there are n variables and each may take the value zero

or one, then are 2
n

possible solutions to this problem. The

above problem is labeled 'P' . There exists an (a+m) dimensional

vector U = (X, Y) which is called a solution, if it satisfies

1, and iii, constraints; a feasible solution, if it satisfies

i, 11, and iii, constraints and an optimal feasible solution if

it satisfies (29). In the vector U * (X, X), X is the activity

vector and Y is the slack vector. The exhaustive enumeration

technique consists of enumerating all 2
n possible solutions ex-

plicitly. "Truncated or partial enumeration technique consists

of enumerating only those groups of solutions which are feasible
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and which could lead to a better solution than those previously

evaluated. The solutions to problem (29) can be represented by-

means of a solution tree. The branches or arcs of the tree are

joined together by nodes. Hence the junction of any two branches

is a node. A value of or 1 is assigned to various components

of the activity vector X which then forms the branches of the

tree. There is a solution to the original problem associated

with each node. In some methods, an auxiliary problem is sub-

stituted for the original problem at each node and it turns out

that a solution to the original problem is also a solution to

the auxiliary problem.

The following definitions and conventions which are used

in the discussion are now given.

Chain : A chain is a path through two or more nodes.

In special situations, a chain may consist of only one node.

If there is a chain passing from node h to node k, h is called

a predecessor of k and k is called a successor of h.

Arc : A path connecting two nodes is called an arc.

If (h, k) is an arc of the tree, then h is an immediate

predecessor of k and k is an immediate successor of h. The

solution tree has the following properties:

1. The initial node of any chain is the node 0.

2. Each node except node has a unique immediate

predecessor.

3. A chain has the property that for any two nodes

h and k in the tree, there can be only one chain
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having h and k as end points

.

It, If there exists a chain from h to k, this chain

then includes the node 0.

5. Each arc of the tree represents the assignment of

a specific value (x. or 1) to some component of

the activity vector X.

6. From any node k, there can be only two distinct

arcs (k, h) and (k, V) where h # V.

7. If an Xj, jeS is chosen to be assigned a value on

the two arcs leaving node k (denote this variable

*>y Sv), then the variable ~Xj = gk = is assigned

for one arc and Xi » gk = 1 is assigned for the

other arc.

8. If h and k are two distinct nodes, h + k, lying on

the same chain from node 0, the variable gk at node

k must not reappear at node h, thus gj, # g^.

9. For each arc of the chain from node to node k,

some ii, J £ N (not being assigned before along this

chain) is assigned a value zero or one. The vector

u is then defined to be the vector containing the

set of variables from the vector X that were assigned

from node to node k.

Note that the variable x,, j 1, 2, 3, . . . , n is assigned

to node k, k 0, 1, 2, . . . , P and k need not correspond to

j. Also it is noted that the chain Joining nodes and k may

not necessarily contain all nodes V, between and k, where
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V = 0, 1, 2, . . . , k.

For example, consider a chain joining the nodes 0, 3, 6,

7, 15 an<i 20 and where there are 10 variables in the vector X.

Let the x.. and 1, j = 9 be assigned to the two arcs leaving

node 3 respectively. Then g-j = xq = is assigned along one arc

from node 3 and g^ Xg = 1 is assigned to the other arc. Thus

the index j does not correspond to the index k. Also k may not

be a continuous integer along a chain. This is evident from the

above example in which k = 0, 3, 6, 7j 15 and 20 along the chain

under consideration. Now it is useful to define another index

r which takes continuous integers along a chain. The index

r 1 represents the first node along a chain, the index r « 2

represents the second node, and so on. Thus in the above exam-

ple r = 1 corresponds to k = 0, r = 2 corresponds to k 3,

r * 3 corresponds to k = 6, r = k corresponds to k 7 and so

on.

If x2 = is assigned on the arc (0,3), x_ = 1 is assigned

on the arc (3,6) and x^ = 1 is assigned on the arc (6,7), then

u° = {x2 ) ,
.u° - {x

2
= O}

u3 - j" x2 ,x
g

'J

, u3 - { x2 - 0, x
9

1
J

I

x
2 '

x9' x5} » "
9 =

{
x
2

"* °' *9
= 1

'
X
5 " 1

]
*XX° * J Xo.Xo.X

b
Now using the index r, we define ur as the variable that has

been assigned a value at r"n node (the number of node in serial

order from node 0) along the chain joining nodes and k. Hence
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for k = 3, there are 2 nodes along the chain that is r = 1, 2

and u3 = x~ and u « x_. And for k = 1S>, r= 1, 2, 3, h, 5

and u-5 = x„, u » x , u = x_, and so on. Also the corre-
1 2' 2 9' 3 5

sponding assigned values are denoted by u_ and as a conse-

k — k
quence u£ * ur .

Thus u , vi is the solution to the problem associated

with the node k. This problem is denoted as P and is stated

minimize C
k
X
k

+ C
k

o

subject to A
k
X
k

+ & = b
k

(30)

Xk = or 1

Yk ? .

where

X is the vector obtained from the vector X by
deleting the assigned variables which are
contained in the vector u^.

A is the submatrix of A obtained by deleting
the columns associated with the variables in
uk.

The problem P is obtained by adjusting the constraints to ac-

count for the previously assigned variables x« , j £ N. The

solution procedure continues by assigning values to the remaining

unassigned variables according to the adjusted problem. Let m

be the components of C, the cost coefficient vector, associated

with the assigned variables x, which make up u and let W. be



¥>

the columns of A associated with the same variables. Now

C
k

- mk uk

and

bk m b - Mk u
k

Y* - b
k - A

k Xk

Consider the following definitions which pertain to the

solution at the node k. Let

TV be the set of indicies of the variables in
the vector u^.

Jk be the set of indicies of the variables
from Tk) which were assigned a value 1.

Hk be the set of indicies of the variables
from Tk , which were assigned a value 0.

Since the variables can only take a value or 1,

Jk H
k

= Tk (3D

k
Also since the variables not in the vector u , are free to be

assigned a value either or 1, they are called free variables.

And hence X is a vector consisting of free variables. Let Qk
v

bo the set of indicies of the variables in X . Therefore

Tk V Qk = (Jk U Hk ) V \ = N (32)

where

* - {}, Xj '> 3 ' 1, 2, 3 n}

The solution to the problem (30) {*) at node k can be represented
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by tT
k = (u

k
, Xk , Yk )

where

Yk = b - Mk uk >

Xk = or 1 (33)

and

uk = uk

In other words

f
l , 3€ J

k

*j-j '
, :u Hk

or k , 3 « Qje

and (31;)

Yk = b - £. A
3

3« Jk

To understand the at>ove discussion more thoroughly, let us con-

sider the following example and Pig. 2.

Minimize

5xx + 7x2 + 10x, + 3x.

subject to

- Xj + 3x_ - 5x
3

- % * h - -2

2x
]
_
- 3x2

+ 3x
3

+ 2x^ + y2
=0

- 2x2 - I4.X3 + 5x^ + y
3

- -5

x, = or 1
, i C 8 - {l, 2, 3, It] (35)

Y » , that is, y1 y2
= y^ 0.



W

This is a dual-feasible problem since c. > for all J. Sup-

pose the initial solution is TJ° - { u°, X°, Y° ] (Since no

variables are assigned a value, the set u° is empty, that is

Tk » 0) , where

X° = X -

Y° = b

f!
= empty set

.

In other words

U°=
[ Xl =x

2
= x

3
-^. 0, Y° = -2,

y° = 0, y° = -5
}

Jo - H - T
Q

-

Q = N - (l, 2, 3, 1;}

In Fig. 2, beginning with node o, the succeeding nodes of the

tree are numbered in an order in which they might be generated

by solving the problem with some hypothetical algorithm. (The

details of a well known algorithm by Balas (1) for solving the

problem is to be covered in the next section of this paper.)

At node 0, the problem is the original problem (35) as stated

above. Proceeding from node to node 1, assume the algorithm

indicates that the variable x, is selected to be set equal to

1. Therefore at node 1,

T l Jl u Hl - { 3 }
.
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Hence the solution at node 1 and consequently the solution to

P° is

*3

1 J-e *x - fi)

I h%={l,2^| .

Y1 = b - A
3

»i " c
o
k = c^ x-j = 10

or

V1 - {ul, X1 , Y1
}

- {x
3
- I,- XX - j£

-"^ - 0, y];
= 3, 7* = -3,

Y^-l]

Now the problem associated with node 1 is P 1 and Is stated as:

minimize z C^-Tl + 10

subject to AXXl + Y1 - b
1

X1 «= or 1

Y1 h 0.

where

A is the submatrix of A obtained by deleting A,

from A /?} - (A
x , A

2
, A^.

X is the vector obtained from X by deleting x-,.

Y1 is the slack vector corresponding to problem P1 .

b1 - b - M1 u1

« b - A, , since M » A, and u « 1.
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Hence the example becomes

minimize

5x
x

+ 7x
2

4 3x. + 10

subject to

" x
l

+ 3x
2

- x
h + *{ - 3

Zxx
- 3x

2
+ 2r% *A - -3

- ZXZ + $K^ + ,1 - -!

(36)

x
l>

x2> ^ = or 1, Y1 ^

Proceeding to the next node 2, assume the variable x2 is selected

and assigned a value 1 (according to the hypothetical algorithm)

.

Thus at node 2, X% * 1 and x2
= 1.

J2
- { 2, 3 } , H

2
=

f> , T
2

- J
2

U H
g

- { 2, 3 } ,

$2 - { 1 ( . k ) .

The solution at node 2 is

fl . jt J2

[0 , jc C2

Y2 - Y
1

- A
2

- Y° - A3 - A
2

or

U2 . { u2 , X2, Y2 }

=
j
x
3

- x
2

- 1, x-
L

- x^ - 0, y
2 - 0, y

2
= 0, yj = 1

j



The new problem at node 2 which is P is

minimize z = 5^^ + 3xr + 17

subject to " x
l " x

l;
+ yf

o

2x
l

+ Z\ + y2 = o

% + y| -'l

Xj_, x, = or 1; Y^ i; 0.

Proceeding to node 3, by the hypothetical algorithm, assume xk

is assigned a value xj. » 0, which results in

J3 = { 2 ' 3} ,
H
3

= {*)

T
3

- J
3

H
3

= ( 2, 3, fc ]
and Q3 = { 1 ] .

The solution at node 3 is

r

*j-<

1 , 3 e J
3

or

y3 . Y2 - A. x. - Y2

TJ
3 = f u3 , X3, Y3

}

i
x
3

1, ^ " 0, X
1

- 0, YJ

•3

Again the new problem at node 3 which is PJ is

minimize z ^x^ + 17
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subject to ~ xl +7? =

2*1 + y| =0

+ Y3 = 1

X]_ = or 1,

.
Y3 ^. .

Assume that the tests applied to the node 3 (from the hypothet-

ical algorithm) reveal that if x-^ - 1, some constraint is vio-

lated and hence the solution is infeasible at this point in the

tree. This is indicated by putting crossed marks on the arcs

such as on arc (3,W of Fig. 2. A triangle is used instead of

a circle (which represents a node) to indicate that one cannot

proceed along that path. Thus node k is closed and hence another

node such as $ is tested. Starting at node 3, we would proceed

to node $ by setting x, = 0. The solution at this node is

1
, 3 « 3$ ' { 3,2

}

Y^ - Y^ - A
1
x
1

= Y*4- = Y3

U* -
{ u$, X$, Y*

=
j
x
3

- x
2

= 1, x
x

- x^ - 0, Y5 - £ = Y3 | .

The solution is tested for feasibility and it is feasible

at node 5. This is indicated by a square. Note that the solu-

tion is feasible at node 2 itself, but the search continued in
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the hope of getting a better solution until all possibilities

are exhausted along that chain. It is important to note that

when the appropriate tests, applied to a node, indicates a 'stop

signal' such as no feasible solution along that chain, no further

search is needed along that chain. It is then necessary to back-

track to a node at which further search is possible along a dif-

ferent chain. Hence if this occurs at node o (that is in the

beginning), all possible solutions have been implicitly evaluated

and the search terminates. Otherwise the search proceeds as ex-

plained earlier. At the end, all feasible solutions are compared

and the one which gives the minimum value for the objective func-

tion is taken as the optimal solution to the given problem. In

the example problem, the feasible solutions at nodes J>, 11 and

17 would be compared and the best one would be selected.

Trial Solutions

In general, it is not always necessary to assign values to

all the x<'s in X along a chain before checking for feasibility.

Some combinatorial methods /I, SJ use trial solutions to reduce

the search process and speed up the computations. These trial

solutions may yield a feasible or even an optimal solution to

original problem 'P', before all the values for the components

of X have been specified in the solution tree. The trial solu-

—

k

tions to problem (30) are denoted by X" at node k. Upon spec-

ifying a trial solution X to problem (30), a corresponding trial

solution is determined for the original problem ? from the
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relations Xk = Xk and u
k - uk . This trial solution to P is

denoted by X(k) . There are four principal types of trial solu-

tions to problem (30) P that are considered.

i, 7^ = ^ = See references (1) and (8).

ii, Xk = Xk X , 0< Xi 1 See reference (9)

iii, Xk = Xk

where

—

k

X is an optimal solution to problem (30) or to
a problem that results by relaxing some of the
constraints of problem (30) or by adding some
additional constraints to the problem (30).

iv, X X , which is the same as in ii, or iii,
,

except the non- integer components of X"^

are "rounded off" to integer values.

The above trial solutions are used in various algorithms to test

for different things. A trial solution determined by i, can be

used to check for feasibility to Pk which has to be true for a

solution to be feasible to P. The feasibility of Xk » for P
k

is assured by biO, The trial solution determined by iii, is

useful, because it yields a test for indication which solutions

should not be considered further. Thus if the trial solution

Xk to P also yields a feasible solution X(k) to P, then there

can be no other better solution along this chain satisfying

u u which improves the objective function (c & 0) . Hence

node k may be disregarded in the process of adding new arcs to

the tree. Another feature of the trial solution determined by

iii, is that it provides the basis for the "least cost" solution,
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so that other solutions which yields a cost which is greater

than the "least cost" can also be disregarded.

Open and Closed Nodes

From the above discussion, the nodes of a partially gener-

ated tree can be divided into two classes. A node k will be

said to be closed if a test determines that there is no feasible

solution beyond that node. For example, this occurs when the

arcs (k,q) and (k,j) exhaust the two values of the variable gy.

v
= and 1. There would then be no feasible solution to V , since

all solutions have been implicitly enumerated beyond the node k.

Thus it is necessary to backtrack to node (k-1) . The efficiency

of any truncated or partial enumeration technique largely depends

on its ability to carry out this one test that is to determine

that the problem P has no feasible solution. A node is termed

open if it is not closed. If a node is closed, there is no need

to search the path beyond this node.

Redefinition of the Constraint Set

A partial enumarative algorithm can be made more efficient

by adding additional constraints to the problem P or by relax-

ing some of the original constraints. The reasons for this may

be as follows:

1. It may be possible to adjoin certain constraints to

the problem P that are Implied by the constraint

k Jc k k
set A x + Y = b and the integer restrictions
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on x . This would be revealed from the algorithm

used to solve the problem.

For example, the algorithm might reveal that a

component Xjk of Xk cannot be 0; then x^k must be

eaual to 1 and this restriction would be added to

the problem Pk .

It may be possible to omit some of the constraints

of Ak Xk + Yk = b
k

, either because they are redun-

dant or because they may not assist in obtaining a

feasible solution to the problem P .

Once an arc from node k has been generated it need

not be generated again at a later stage along that

path. To avoid this, it is useful, for notational

purposes, to conceive of those arcs as being stated

in the form of constraints explicitly associated

with the node k. For example, uk = uk would be

added as a constraint set.

Information obtained after the generation of node k

may yield other constraints applicable to that node.

For example, as indicated above, by adjoining the

constraint CX ^ CX* whore Xs denotes the best

v k
feasible solution found, up to this point (C X +

Ck &. CX* at node k) .

o

General Procedure for Generating
a Sequence of Solutions

Let us summarize briefly what has been discussed so far.
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At node k, the partial solution to problem P can be stated as

C i , JtJk

*s
o, i 6 ak

and

Xj or 1
, j £ Q.k .

Since the R variables in the set Qjj can take either or 1, there

are still 2R solutions to be implicitly or explicitly enumerated

at node k. Note that R is the number of elements in the set Q.-^.

For example, if we take node II4. in Pig. 2, the partial solution

obtained is (X3 0, x-\ = 1) . Therefore if we explicitly enu-

merate all the solutions at node Jig, we get

(x
3

- 0, x1 - 1, x
k - l«

x
2

= 1)

(x
3

= 0, *1 "
i » \ = 1

'
x
2

= 0)

(*3 - o, x
x

- 1, x
h

- 0, x
2

- 1)

(x
3

- 0, x
x

= 1,.
*k

= °» x
2

- 0)

Since there are two free variables at node (ll+), there are

2=1+ possible solutions at that node. Suppose a check reveals

that the nods (li|.) is closed, then there is no need to enumerate

the above 1+ solutions explicitly. When it is known that the node

(II4.) is closed, all four possible solutions beyond this node have

been enumerated implicitly. Hence it is necessary to backtrack

to a open node. Let the set of values that the variable x»,
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i €. &, can take be Sk where Sk »£o,l | . If an x» (g^) from

X is selected to be assigned a value equal to zero at node k,

then the number zero is cancelled from the set Sk , in other

words, Sk f 1 \ . 'Hence whenever Sk » 0, it is meant that all

solutions have been exhausted at node k and the node k is closed.

Conversely whenever the node k is closed, Sk = $. If a feasible

solution is obtained for the original dual- feasible minimization

problem, the succeeding nodes on that path are closed, that is

S. i m where k^ > k along that path. This states that the

first feasible solution is the "least cost" solution on that

path. Consequently there is no need to search further.

Now the general procedure of the enumerative methods are

summarized as follows:

1. The starting node is specified and the tree is

constructed according to the algorithm.

2. If there are no free variables that can be selected

to enter the solution, the process terminates.

Otherwise go to step 3.

3. If all nodes in the tree are closed, the process

terminates. (If the node is closed, the solution

is trivial and unique and it is U° = (u°, X°, Y )).

Otherwise go to step 1+.

l;a. Select an open node k.

b. Select a variable from X for which a value is to

be assigned.

$. Now form a new arc leaving the node k by assigning
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a value to x, (gk ) from Sk . Tost the trial solu-

tion for feasibility.

6. If node (k+1) is not closed, and §•_.» is not empty,

return to step l^.. Otherwise go to step 7.

7. If Sk f5, backtrack to node (k-1) and return to

step 3. Otherwise go to step l|.b.

The above procedure is shown in a flow chart on the next

page. Thus the underlying approach to combinatorial methods has

been introduced in this section. An example of a specific com-

binatorial method is discussed in the next section.
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1

START

w

k =

;.

Is Qk = ?
yes

No

Is node k closed ?

*lNo

yes
J implies [ J

k = k-1

Select gk from X

No

yes

Is node (k,-l) closed?;*"
No

Is k 0?

yes

Assign a value to gjj from S^

Ho

Select the best
feasible solution
No solution if none
exists

Is the solution feasible?

yes

A i-

END

t yesJ Record the solution
Is the solution dual-feasible?

j

-i W and backtrack

4-

Is Sfc « ?

yes

No
yes

Is Qk+i - T

No

yes
Is node (k+1) closed?

No

k - k + 1

Fig. 3. A Plow Chart for the general combinatorial procedure,



ADDITIVE ALGORITHM OF BALAS (WITH SOME MODIFICATIONS)

In the previous section, the general features of combina-

torial algorithms were discussed. In the discussion, it was

assumed that some hypothetical algorithm dictated the steps of

the solution procedure. In this section one of the combinato-

rial algorithms due to 3alas /I7 is presented for solving the

zero-one problem. Another algorithm due to Glover fiSJ is very

similar, but will not be discussed in this paper.

3alas' algorithm is applicable to problems which can be

formulated as problem "P" which is dual-feasible (C>;0). Balas

uses the trial solution Xk - that is / Xj = 0, J £ \ j for

problem P
k at node k and if this results in a feasible solution

to P
k

, then a feasible solution has been found to the original

problem P. This then closes the node k. This feasible solution

is an optimal solution to P
x and a local optimal solution to P.

^To determine if the solution to P
k

is feasible, the algo-

rithm proceeds in the following manner. The current solution

at node k, u
k = uk is substituted into the original problem to

obtain

A
k Xk + M* u

k
+ Y

k
= b

Ak x
*

+ y
k . b _ Mk

-k . b
k

_ (3?)

Now this trial solution to (37) Xk = Xk » results in either

a. an optimal feasible solution to Pk , if r = b > 0.

b. an infeasible solution to P
k if any y^ - bk < 0.
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Note that if the optical feasible solution to P is substituted

into P, it is feasible, but may not be optimal.

As was pointed out above, if the solution corresponds to

a., then. node k is closed. On the other hand if the solution

results in b., that is if some b? -£ 0, then the coefficients

in those equations are checked to determine if

£ Hj
k > b i

k
( 38 )

where £ aT,k are the sum of all negative a,,51 in the itb.

row. If (38) holds, then the problem P does not have a feasible

solution, because the b.^ can only become positive if the sum of

these negative coefficients can offset the degree of negativity

in bjk. That if £ aY<
k > b. k , it is impossible to obtain

1

a feasible solution, thus there is no feasible solution to P

and node k is closed. This points out that node k is open if

it is at all possible to obtain a feasible solution along this

path.

From the above discussion, a necessary condition for a node

k to be open is that the relationship JT a,* £. b must hold.

i

The search process continues until a feasible solution or another

stop signal is encountered. The third signal indicating that a

node k is closed, arises from the situation in which the follow-

ing relationship holds:
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0j
k + C

k > 0*5 , J^u, (39)

That Is, If CXf' is the value of the objective function for the

best feasible solution obtained so far, and if the value z at

node (k+1) exceeds CX*, then node k is closed, because any other

solution to P exceeds CX* on this particular path by virtue of

the problem formulation.

The fourth and the final stop signal for closing node k

arises from the situation where

b
k ^ and &,k * for all i e \ (lj.0)

This Indicates that it is impossible to make bk * 0, since all

a*k » 0, thus there is no reason to continue on this path. In

summary then the stop signals for closing node k in Balas algo-

rithm arise when:

1. A trial solution X^ «= yields a feasible solution

to P
k

.

2. The trial solution Xk = does not yield a feasible

solution but the relation JT &i_^ > bk holds

for some row with a negative bj^.

3. The relation c k + C k > OH* holds.

1|. A situation arises where bk <. and a** ^. for

all 3 <l Qk .

A possible modification to Balas' algorithm as suggested

by Glovar fifj 13 now discussed. This modification reduces the

number of combinations to be searched and accelerates the solu-
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tion process. In the previous section, it was mentioned that

the addition of some additional constraints might be desirable

when certain information is implied in the constraint set

A X + Y " b . To understand this more clearly, consider the

equation 2x, - 3*p + 2xh — " 3. It is impossible to have Xg

and still obtain a feasible solution. Hence x2 must take a

value 1. Now consider a second inequality of the form

- 3X], - 2x
2

- Ipc^ + 5x, & - 8 (1|1)

where all variables except Xi, must be equal to 1 to have a fea-
H-

sible solution. Note that the sum of the negative coefficients

do not exceed the right hand side (relation (38) does not hold),

that is 21 a i * " where a.* are the negative coeffi-

i

cients. Thus an additional constraint x~ 1 is added to the

first inequality and the constraint x, = x, x, • 1 is added

to the second inequality. It is evident that this addition

accelerates the solution process. Now a couple of rules which

exploit the above information (if exists) will be discussed.

Note that they are not the stop signals, but yield some informa-

tion (which can be expressed in the form of additional constraints)

that is implied in the constraint sot of the problem P and speed

up the computation.

If a situation occurs where a node k is not closed by (38)

but would be closed by the following relation
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Z a,k - a" k > bk (1)2)

where

a k max (a,-
k

) and b < .

Relation (U2.) then implies that X,* » 1 for all J correspond-

ing to a.11
/; 0. Otherwise there would be no feasible solution

to P
k

. In the above inequality (Ij.1), £ a^k - a
q
k = - 9 - (-2)

- 7 > - 8. Therefore x, » Jfe «• X» * 1. There is also a

corresponding situation where all x* would equal to zero, that

is i.k - for all j for which a»k > 0. This would occur when

relation (38) is not satisfied, but the following relation holds

JT ajfe + a
3
k > bk (14-3)

i

min j a ,
k

5. j and b
k <

where

a.k - «

i

To observe this consider the inequality

2x
1

- Zx
z

- lpt,"+ Sxj, ^ - 5 (W+)

2; a
3

k + a
s
k = (- 2 - 1+) + 2 = - h > - 5 .

Hence x»k » 0, for j where a,k > 0, thus x-^ x^ - as im-

plied in the inequality (1^3). Note that the relations (lj.2) and

(I4.3) are suggested by Glover /Wf . Thus this implied information

V k -

k

is included in u which is used as a constraint set u u
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at the succeeding nodes.

Balas algorithm for solving a zero-one integer linear pro-

gramming problem utilizes the )+ stop signals and the modifica-

tions discussed above. The algorithm follows t he procedure of

the general combinatorial approach discussed in the previous

section. A brief summary of the algorithm is given to give the

reader a better understanding of the procedure. A more thorough

treatment of the details is presented later along with the steps

of the algorithm.

Balas Algorithm

Balas algorithm starts with a dual-feasible (C fe 0) linear

programming problem P° with the initial solution V° (u
,

X°, Y°) (0, 0, b). This solution corresponds to node 0.

Throughout the algorithm, the activity vector X remains non-basic

and the slack vector Y remains basic. Initially, X and

Y° b. Since a trial solution to Pk is feasible when Yk = bk

:> 0, the goal is to obtain a non-negative basis vector. This

is the criterion used in the algorithm to form a new arc at node

k. The set of variables from K which reduce the negativity of

bk (that is force the b^'s to be positive) form a subset N
$ ,

called the set of Improving vectors. The variable which reduces

the negativity condition of the basis vector b the greatest

amount is selected to enter the solution vector u .

The variables from N
s

are then introduced one at a time

into the solution in an attempt to force b* to be non-negative
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k
and obtain a feasible solution to P . The method for doing this

is explained as follows: calculate the vector b * by introduc-

ing each x*k , j a N into the solution to see which variable

should be selected for assigning a value 1 at node k. Thus for

k+3
each J in K there is a corresponding vector b , which is

calculated from the relation,

b
^+l _ b

k . a
.k

fj^j

Now define the set

Vjk = E bi
k+1

, j c Hs (1|6)

1 6M

where 21 6"
i
k+1 is the sum of all negative b^* 4-1

.

Compute Vjk for each j e N
3

for which b
+

is also cal-

culated. Compare all Vjk , j e Ns and select the variable

x,k associated with the max V,k , j 6 B
s

and set equal to

Xjk
+i

, that is

xf = ( x,k : max V,k , J £ J, J Utf

)

Jk+1 L J J s
J

is selected to enter the solution with a value equal to 1. In-

tuitively this means that the value Vi is computed as though

each variable x* , j e N
s

is introduced into the solution to

reach node (k+1) and all the resulting solutions (there are as

many solutions as there are number of j's in N
g ) are compared
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to select the one which has the least negativity which refl sets

in Vjk . This criteria for selection of variables with the solu-

tion seems to lreduce the negativity condition of t he v e c:tor b*

at the fastest rate.

The above discussion is summarized as follows: If for some

I, yj^ ^ 0, the variable Xi
Jk+1

is selected from Xk by rela-

tion (lj.7) and introduced into the solution. Thii3 point is illus-

trated as foll<3WSS If k 0,

3.1
{*?' T 1- J « * }

where

Jl - {h}i H
l

=
' '

T
i

=
{ h] and Qi " N ••{ h]

The solution 1;s then

U1 = (u1 , X1 , Y1 ),

where

u1 - {Xj ')
, X1 =

and

Y1 -
.0 .o .1
b - A. » o .

J l

The problem P is

minimi ze C1 X1 + c,
J l
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subject to A1 X1 + Y1 - b 1

X*1 - or 1 J <k \
j - 1 J

- h
Y1 » .

/

If the solution vector TJ still contains some negative compo-

nents, the algorithm continues and problem P is solvecI. Another

variable x^ is selected from X , as de terrained by (I4.5)

,

. tk&)

and (I4.7) and the solution to problem P is

V2 * (u
2

, X
2

, Y2 ) = {xj • X, = 1, X2 = 0, Y2 = Y1 - A 3
: ) .

^2

If this solution U2 is not feasible, then the
2

problem P is

formulated as follows:

2 2
minimize C X + c< + c.

subject to A
2

X
2

+ Y
2

- b
2

• Y1-4
xj - 1, i £ J2 , J2 '{•h > h]

Xj or 1
, i £ Q2

Y2 >- .

This procedure is repeated until the solution Us is fea-

sible or evidence is obtained that such a solutj.on to P
s does

not exist. If in the process, a non-negative scilution U
3 =

(us , Xs , Ys
) is obtained, it is then an optimal solution to prob-

lem P s
. It is noted that this is a feasible scilution but it may
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not be the optimal solution to the original problem P. A non-

negative solution Us closes the node s and the search back-

tracks to another open node P {? < ] and the search continues

along some other chain. The new value of the objective function

z s is checked to determine if z 3 < B* U* corresponds to the

best feasible solution obtained up to this point) and if so, then

z s is set equal to **, z* = z
g

. The search continues for a

better value of Z* until all nodes are investigated. During the

algorithm, only the vector b is changed at each node and the co-

efficient matrix A remains unchanged. This preceeding discus-

sion briefly summarizes the algorithm of Balas . 3efore proceed-

ing to a more detailed discussion, it is necessary to define a

number of quantities. This is done in the following section.
.

Notations and Definitions

The following notations and definitions are used in the

discussion of 3alas algorithm. A solution sequence is repre-

sented by V° - (u°, X°, Y°), U
1

- (u
1

, X1 , Y1 )
UP -

ivP, XP, YP), . . . , Us - (u
3

, Xs
, YS ), . . . ;

where u, X,

and Y with superscripts represent the solution vectors of a par-

ticular solution in the sequence. U° is the solution at node 0,

TJ
1 is the solution at node 1 and so on. The nodes, as they are

generated in the algorithm, are numbered in ascending order

starting from 0. As mentioned earlier, there is a solution as-

sociated with each node. All these solutions, in order, form a

solution- sequence. Thus XP represents a vector which contains
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all free variables (those which have not been assigned a value

of zero or one) at node p, xP is the vector consisting of the

variable which were previously assigned a value of zero or one

and which form the chain connecting the nodes and p. The se-

quence of solutions which are generated by Balas algorithm are

denoted according to the above notation. Thus the s-th term of

this sequence is denoted as II" = U { 3\, J2j J3J • • • j Jr'
=

(us , Xs
, Ys

), where (Ja , j2 , . . . , j r ) forms the set J
s ,

that is, J3
= I J

J

3 € H , Xj • 1 j .

The variables which were previously assigned a' value zero

are contained in the set H where H is' defined by

{3 !

0* 6 » , Xj = ] .

In the solution Us
, us is the vector which consists of the set

of variables whose indicies are in T
s

where T is defined by

S s s

and where

Xs - ,

x8
' - b .- £ A

j
•

The value of the objective function for the solution U is

denoted by z_. Let Z„ be the set of z for all feasible SOlU-
ti 3 ——————

-

tions obtained prior to and including the solution at node s,

that is,
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- { z
|

p < b, u? ^ } (UB)

Note that Up $: indicates that the solution is feasible at

node p. If the set Z
g

is not empty, then the solution asso-

ciated with the smallest element is termed the "best" solution

and has a value equal to Z , On the other hand if Z
s

is empty,

then there is no feasible solution to P in this sequence of solu-

tions and Z~ = 00 . Hence

Z* mi '
ik9)

{ min z
p

I p /l s if Z + .

denotes the "best" value of the objective function up to this

point.

Now it is of interest to determine the set N
g

which rep-

resent the set of vectors which can improve the solution. At

each node k, a set of values of V-k for each J |
j 6 % is

calculated for the solution TJ
k

, where Nk is the set of im-

proving vectors at node k. These V

-

k will be used for deter-

mining which variable from the set Nk is to be introduced into

the solution. When a variable is introduced into the solution,

the corresponding V,k is cancelled from the sot S^,. Also more

V»k 's may be cancelled at subsequent nodes as more information

is gained. Thus the set Nk at node k may get reduced in later

iterations of the algorithm. In essence the set of unassigned

variables at node k which were thought to be helpful to improve
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the solution V , is subject to be reduced at nodes beyond k. At

subsequent nodes it becomes clear that some of the variables from

N^ are not useful anymore to improve the solution u at node k

and consequently they will be cancelled from Njj. This is partic-

ularly helpful when backtracking to this node k and searching

along other branches of the tree. The variables that were elim-

inated from node k need not be considered later on other branches

of the tree, which include node k. The rules which permit this

cancellation will be explained later when the procedure of the

algorithm is summarized.

A new set cf (k<s) is introduced which includes the set of
k

'j's that correspond to those ?i * s that are cancelled from Njj

starting at node (k+1) till reaching node s. That is the vari-

ables that are cancelled from N^ at node k from the information

gained at nodes k+1 through s comprise the set C-^. The determina-

3
k

2

tion of the C{! is illustrated in the following example. Suppose

that N2 {2, 3, 5, 6} and that V^ are calculated for J
= 2, 3,

3 2
5, and 6. For the solution U , J, is selected such that V., =

max 7,. Thus at iteration 3, J3 is cancelled from N
2

and included

in the set cf . Hence C^ { J ^ . Similarly additional elements

from N- may be cancelled in iteration I4. and so on up to s. Thus

all the cancelled elements from iteration 3 to s are included in

the set C . For example, assume that j, * 3 and elements 5 and 6

have been cancelled from Ng prior to reaching the 9th iteration

(node); therefore c| {3, 5, 6 } . From the above discussion

y
^k

= $ > because elements may only bo cancelled at subsequent
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nodes (iterations). Thus by definition C^ jzf , an emp ty set.

In similar manner, a new set C
s

is introduced whi ch con-

tains the set of those j's from all of the sets K_, wilere p < s

and J
p
c J

s
(J
p

ls the set of j's corresponding to X
j

= 1 at

node p) have been cancelled prior to obtaining the scilut ion U3
,

that is

cS " ^p Js
P
c J

s
C
p

(50)

Stated another way, C
s

is the union of all Cp for p =; 0, 1, 2,

. . , , (s-l) such that J is strictly contained in J_

.

P o
For ex-

ample consider node 9 in Fig. 1. It is necessary to determine

the values of p for which J c J. Since

3 = 9, J ^ Jg» Jj_ cr J„
,

J2' J3> \> J
5'

J6> J
8 $ J9' and J

7
c J

9

Henoe for p = 0, 1, and 7, J, c Ja . Therefore
P s

c 9 = c 9 u C
9

TJ C
9

(p jt»).

This is intuitively clear, since at any node s, in de ter mining

C
s

, we are concerned only with the nodes which lie ori the chain

joining nodes and s, that is the path being invest! gated for

a feasible solution. Thus to obtain C at node s, it I is neces-

sary to obtain a set which is the union of the sets
«J

at all

prevj.ous nodes along the chain joining nodes and s. I n ref-

erence to Fig. 2, it is clear that the nodes 2, 3, k, 5, 6 and
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8 are not predecessors (preceeding nodes) of node 9, where as

nodes 0, 1 and 7 are predecessors.

Determination of Set of Improving Vectors N

Now the method for determining the set of improving vectors

N s for improving the solution II
s

will be discussed. This is

the set of variables which may possibly yield a better feasible

solution to problem P
s

if introduced into the solution. A new

set R is defined as the complement of Ns where R
s + N_

S, This set of variables from R3 cannot improve the solution

3 S
TJ at node s. Thus N - R «= N the set of improving vectors

for the solution Us+1 .

As mentioned earlier, C s corresponds to the set of vectors

which will not improve the solution. It consists of the j's for

the 2i which are in the solution and as well as those which are

subsequently determined undesirable for the solution and whose

V^ (k < s) are cancelled. It is obvious then that C
s

is in-

cluded in R
s

.

Another set of variables which will not improve the solution

are those which may not improve the objective function. Rela-

tion (39) can be utilized to obtain this set, denoted as D
g ,

which correspond to the I. =1, ] t (N - C E ) for which the ob-

jective function will exceed the 2 value. Thus if z is
s

the value of the objective function for the solution U s
, then

D
3

- { j |
j € (N - C

S
), zs+1

= z
s *«j > Z*\ (51)
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Similarly another set of variables exist which cannot lead

to a feasible solution. This set denoted by E
s , corresponds to

relation ( 1+0 ) and consists of those variables *» * 1, j £ /^ -

(C
3 V D

s17 which would not force the negative y? < to-

wards a positive value that is yj
S % y?. Thus

Es " { i
i

3 «: » - (C
S

TJ D
g ), yf <c and A^ b oj . (52)

Another way of considering Es is to note that the vector b

s+1
must be non-negative in order for a solution to U to be

feasible. But as stated above,, the variables in the vector E
g

tends to increase the negativity, since Aj ^0. Thus the vari-

ables in E s
do not lead to a feasible solution and are placed

in the same category as the variables in C
s and D . Now the

set R
s

corresponding to the variables which will not improve

the solution, is defined as

R
s

- C
s

V D3 E s (53)

and as a consequence the set of variables in N which may improve

the solution are defined by

Ks - N - R
s

- K - (C
s V D

s
U E

g
) . (51;)

It is noted that each node k has a set of improving vectors Njj

according to i5h) • This set may be reduced as more information

is obtained at succeeding nodes. This Njj is continuously
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being updated during the solution process.

The sets as stated in relation (5!+) are determined as the

algorithm proceeds forward from one node" to the next. If on the

other hand a stop signal is encountered at some node s, it is

necessary to backtrack to an open node k (k ^ s).

There may exist a set D. corresponding to the set of Xi,

j £ (N
s

- Ck ) such that if x. were introduced into the solu-

s+1
tion at their upperbounds (that is x* • 1), the solution V

from node k is not as good as the best solution obtained up to

this point, that is Z g+^ would exceed Z^ where J_.-i =

Jk U { 5 | • Thus it is possible to eliminate the set

°£
-'

{ 5 \ i £<*- <£) , z
k

c . = Zj+1 > 2*
J

(?5)

in the search for a better solution.

Thus as the algorithm progresses, it is necessary to con-

sider the set Kjj (5k), the set of improving vectors for improv-

ing the solution u at node k. However when backtracking to

node k from nodes at a later stage, the information gained from

nodes k through s indicate that some of the variables in Njj do

not actually improve the solution U at node k. As discussed

earlier, this is evident from the sets Ck and ~D? which com-

prise of the variables that were found to be not useful in im-

proving the solution U at node k. Thus it is necessary to

define another sot N. , the new set of improving vectors at node

k (k is] after backtracking from node s. Only the set N,
s is
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considered in obtaining the solution TJ at node k and this

set is determined by

K
k

= \ ' (Ck U Dk>»
k * s and Jk <= J

s • (?6 >

The sets H s and Njj. play a central role in this algorithm.

Whenever a solution U is reached, only the improving vectors

for that solution are considered for introducing into the solu-

tion. Whenever the set N is void at the node s, this is in-

trepreted as a 'stop signal', which means that no feasible solu-

tion TJ exists such that Js c. J^ and z
t
^ Z'"", thus the node

t is closed. In this situation, the algorithm backtracks to an

open node k on the same chain, where the set of itrproving vectors

S B
N, is to be considered for improving the solution V .

The four stop signals previously discussed are incorporated

in the method for determining N and N^ . Encountering a

stop signal results in either N
s or Ng being empty ( = 0) .

This is explained below in the steps of the algorithm which will

now be presented. Finally an example problem is solved illus-

trating the technique in Appendix IV.

The Algorithm

Before proceeding with the algorithm, a review of some of

the sets used will now be presented. Suppose that at the s-th

iteration, the solution is

U
S

" SUl, 32 , ... , lr ) - (u
S

,
X
s

,
Y3 )
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and

J_ = a set of j for which z« 1 at node s.

H. = aJ = a set of J for which Xt = at node s.
s , j

T
s

= a set of j for which x, were assigned a

value from node to node s along the chain

connecting these two nodes.

- Js U H
s

Qg = a set of j for which x, are free to be

assigned a value at node s.

= N - T s

K = the set of J for which Xi may improve the

solution U .

B k
Ck

= the set of j corresponding to Vj that were

cancelled from node k to node s.

U
P

I

J
p
C J

s °P

= the set of j for which all V»p / i j r J )

are cancelled along the chain joining nodes

and s before reaching node s.

« the set of j for which if x, were introduced

into the solution will not improve z.

- the set of j for those x> that, if introduced

into the solution, will not lead to a feasible
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solution.

D, = the set similar to D. , but considered at
k s

node k in backtracking.

N? = the set similar to Ks , but considered to

be desirable to improve the solution in

backtracking to node k.

= the set of constraints. * | 1, 2, 3, • . • > w} •

* the set of j corresponding to x- in X = J 1,

2, . . . , nj .

1 . 3 g Js

*? - •( , J 6 H.s

o
'"',

j * or - t s )

Y
S

- b - Z A
j

3£J 8

E c

J e J
s

Now the procedure at s starts with the initial solution

U°, in which X° - 0, Y° b and z - 0. The procedure then

continues as follows:

Step 1 . Chock y° & 0, i 6 M.

la . If yf ^ 0, i 6 M, set z
s

= Z . If this happens for

U°, then U is the unique solution and the algorithm ends.

Otherwise, this indicates that a feasible solution for P" exists
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and Ug = ft. This is true s ince the solution is dual-feasible

(c. J for all j ). Now ba<:ktrack to a preceeding node k and

form the sets K fo r all :k < s, starting with the immediate

prediscessor. Cancel all Vj k for j c- D^ where

°/» {*
!

i S (N -
,s. * ^

Slnc<3 the set
»s

is not useful in improving the solution it is

necessary to cance i :3, from N^.. Now pass to step S>.

lb. If there exists an i, such that ~| < 0, pass to

step 2.

Step 2. Obta in (the set of improving vectors !TS for the

node s, from

N
s

= H - (c
s

TJ D TJ
s V

where

c Vj J
P
c J

s

C
P

D
s {* 1

3 £ (N - C
s
), z

3
+ oj » Z*

j

Es - {3 1* E /J - (C
s

U D
EJ7, y* .£ and

A,*.©}.

2a. If Ns , there are no improving vectors for Z
s

9

or the node s l8 C losed. Hence pass to step 5.

2b. If N =
fi ,

pass to step 3.
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Step 3. Check the relations

£ a
13 £ y* U | 7? * 0) (57)

3eN
s

where a., are the negative elements of A.

IS- If there exists an i for which the above relation (57)

does not 1Sold, pass to step 5. This means the node s is closed.

The above relation is derived from relation (38).

3b. If all relations in (57) hold, then check the relation

£ I
13

+ min (a. j ^ 0) < y? , (i
| tt ^ 0) (58)

|« N
s

2*- i, If all the relations in (58) hold, pass to step

3c

ii, If one or more of the relations in (58) do not

hold, then lot Mx be the subset of M for which

(58) does not hold and cancel all those J,

3 e N
s

where Sj, fe
and 1 € %. Add this

set Mx to H
s

and C^
+1

. .This states that

x^ = 0, for J £ N
s

whore a^ :> and i £ Mj.

Now pass to step 3c.

22.- Check the relation
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£ a
13

- max Ujm < 0) < yf , (i
| ^ * 0) (59)

Jews

3£. 1, If all relations in (56) hold, compute the values

V^ for all J £ HL , and choose J . , so that
J

V
1

S

"
J s+1

max T V.
s

|

where

v
! - E ^+1

i e M

cancel V.
J s+1

from N and pass to step 8.
s r

«• If all relations in (57) hold, and there exists

a subset Ms of M such that the relations in (59)

do not hold for i e Ms
,
pass to step k-

Step It, In this step it is necessary to force all the

variables which have negative coefficients in the subset M into

the solution at the same time. This is clear from the relations

s+1
y? - E a, , i , i £ MS

(60)

i^s

and

„s+1 -
7i - y" - £_ Hi " max ^ a ij * °' ~ °»

icnS
' 6l '

i 6 Ns
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The trial solution is feasible if all x* for which

tM'C are introduced into the solution simultaneously. This

is evident from relation (60). On the other hand if all the X,

are not introduced for which a,. < 0, the trial solution is not

feasible. This is evident from relation (61).

3efore introducing the above mentioned variables into the

solution, it is necessary to check if • z s +x ^ ^'
. Kence the

relation

z
s + E c.. < Z" (62)

C- Ps

is checked, where F =
\ j |

J g N , aj_ , <c 1 for at least

one it Ms . To obtain a feasible solution along the current

branch, it is necessary to set x. = 1, j g F .

j s

l|.a . If (62) holds, cancel the V, for all j t ?
s

from

N_. When (62) holds, z ,, is less than the least cost obtained
3 S+J.

thus far, therefore z . will become the 'least cost' Z .

Hence set

Js+1 = Js IT F
s

compute

zs+l
= z

s
+ £ c

j

and the slack variables
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S+l g

7i - ?l " Z a
ij > i e M

t '- Fs

for the solution

us+1 - (u
s+\ x

s+1
, y

s+1
).

3+1
The value of x. In the vector u will be either 1 or 0,

depending whether or not it is in Js or Hs respectively. In

other words

X
J

Jll 5 € Js

[ , j £ Hs

x
s+l _

Q
(

^s+l „ b
s +1 ,

Now pass to the next iteration by starting again at step 1.

lib . If (62) does not hold, it means this solution increases

the value of the objective function beyond the least cost, there-

fore cancel all the V^ for j c N
g

. This situation' indicates

that the node s is closed. Now pass to step 3>.

Step £ . This step arises from situations la, 2a, 3a and

I;b. Since the node s is closed in all these cases, N * .

Hence it is necessary to backtrack to a predecessor k (proceed-

ing node k) where k | J^ d J„ and search for a better solu-

tion. By proceeding from la to this step, it means a feasible

solution exists and it is necessary to search for a better solu-

tion. 3y proceeding from 2a, 3a, or 2j.b, to this step, it indi-
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cates that there is no feasible solution along the current path.

At this point all possible solutions have been enumerated im-

plicitly by this fact. Hence it is necessary to search elsewhere

for a feasible solution.

Now to determine which node k to backtrack to, compute the

set of improving vectors N? jfj, - (C^ TJ Q?) at each preceed-

ing node k where k s„ s and Jjj d J
s

in the decreasing order

of k until either of the following occurs:

1, a number k^ is found such that Jy. d J
s

and Nj, = jZ? or

2. N^ for all k such that Jk C J
s

-

ga . If Iff = for all k where Jk C J
g , it indicates

that all nodes are closed and the algorithm has come to an end.

In this case, If Z
s
« , P has no feasible solution. On the

other hand if Z s
= 0, then the least cost Z^ is the optimum

value of the objective function.

5b . If N|[ « for a particular node k « k^_ , J^ C J„
,

pass to step 6.

Step 6 . Check the relations

„k ,, ,
Jt

•UN*
*li £ yj , (i

I y; < o) (63)

for It • ki , Here again, it is necessary to check whether node



k, is closed.

6a. If any of the relations in (63) do hold for k • k^ ,

it is clear that the node k
x

is closed. Hence cancel Vj for

all 3 G %S
and repeat step 5 for k < k1( noting k

£
instead

of kx in steps 5 and 6. Whenever step $ is repeated for k ^ k^ ,

note k ., instead of k? in steps 5 and 6.

If (63) does not hold for any k such that \ «= 0, k < s
>

the algorithm has ended, with the same conclusion as in 5a.

6b. If all relations (63) hold, check the relations

£ Sj + mm ( ftlj > ou 7i
kl

C* I ?i
k
< °> (6^

then proceed as follows:

6b. i, If all the relations (61;) hold pass to step 6c.

ii If one or more of the relations (6)4.) do not hold,

let Mi be the subset of M for which (6)4.) does not

hold, then cancel all those

{ J
I

J e K >
a
ij * ° »

i c M
i 1

from N
'

Add this sot of the cancelled values to Hs and

C
s+1

. This states that x s - 0, i 6 Jf£ and
3 J

a
1

?s , i e M1 ,
hence pass to step 6c.
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jc. Check the relation

Y_ «ij - max (a
i;j

< 0) <. yf (i
[ ji < 0) (65)

5 C N
k
s

and proceed as follows:

6c. i, If all relations (65) hold for k k,, compute the

values V* 1 for all J, a N? and select a j ^

such that

V4kl, = max ( V,
kl

1 . (66)

J £ Nk
x

Cancel < 3 a+i [
from W^ and pass to step 8.

ii, If all the relations in (63) hold, and there exists

a subset KjJ of M for which the relation (65) does

not hold, pass to step 7.

Step 7 . This is the same situation as in step 1;. There-

fore if

Fkx
« { J

I
J « £. Hi < j

for at least one i £ Mk
s

, then it is necessary to Introduce all

the variables in Fj/ into the solution simultaneously. Before

doing this, check the relation
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k. + Z 'i < z
*

o c- Pk
3

(67)

and proceed as follows:

7a. If (67) holds, cancel V J*1 for all J « »fc{". Set

JS+1 = \ U F
kJ

Compute the value, of the objective function

z s+l % + £ c
j

(68)

5 « Fk*

and of the slack variables

V S+1 kl V" t , MYi = 7i
X

" Z a ij. '
iCM (69)

i i *£

for the new solution

S
S+1

= („
8+1

, X
S+1

, Y
S+1

)

S+1
where the vector u is determined by

f i
, i cj

s+1

I . ^ H
3 +l

s+1
X =
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Pass to the next iteration starting again at step 2.

In
7b. If (67) does not hold, cancel the values V. x for

all J £ Hjj2 and repeat step ?, for k < k]_. If no k < k-j_

exists, that is if k^ = 0, the algorithm has ended with the

same conclusion as in 5a.

Step 8 . This step arises from 3c and 6c. In both situa-

tions, a single variable enters the solution.

In 3c, the situation is encountered where a single variable

is introduced into the solution at node s and we proceed to node

(s+1) on the same branch or path. However In 6c, the situation

is encountered where the algorithm backtracks to a node k (k < s)

and a single variable is introduced into the solution at node k

and we proceed to node (s+1) along a new branch.

Now set

Js+1 - Jp
u

{ ^s+1 j

where

p = s, by proceeding from 3° *° this step

the last vali

kr
x

" (p c s)

p = the last value cancelled, V.

Compute the value, of the objective function and the slack vari-

s+1
ables for the new solution U" at node (s+1), as follows:

t-.-t z_ + o« n > c

,

(70)
s+1 p Js+i '—

i £ Js+1
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and

.s+1
7i

= 71* " a^ s+i

SI b
i "

J 6 J
s+1

Xs+1 -

us+1 =
-3+1

a
13 , 1 c- M (71)

—s+1
where u is determined by

x
j

Therefore

yS+1 „ (nP+l
(
XS+1

;

yS+1)

and now pass to the next Iteration starting again at step 1.

Note. The algorithm in the section yields one optimal

solution (if such a solution exists). However by setting >

instead of ^ in (51) and (55) and £ instead of < in (62) and

(67), it gives all existing optimal solutions.

This algorithm seem3 to be an efficient method for solving

zero-one problems when there are few variables. Freeman /5"7

reported very good results when there are 30 or less variables.

However this approach becomes less efficient, as the number of
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variables increase. Recently Glover /S7 developed "Multiphase

dual-algorithm" which parallels Balas algorithm. He claims

that his algorithm is more efficient than a number of other

methods in solving a number of test problems.



SUMMARY

Linear programming problems can be solved by using either

the standard simplex method or the dual simplex method. However

these methods do not yield optimal solutions to problems, where

integer solutions are desired. It is necessary to solve these

integer programming problems by using different techniques such

as Gomory's cutting plane method. There is also a special class

of integer programming problems which require zero-one integer

solutions. Gomory's cutting plane methods can be used to solve

these zero-one problems, but they are somewhat inefficient.

Other methods for solving these problems utilize the special

structure of the zero-one problems. This paper investigates the

various approaches that were developed to solve zero-one problems

which are divided into three different categories as follows:

1. Cutting plane methods.

2. Parallel shifts of the objective function

hyperplane

.

3. Combinatorial methods.

A brief survey of each of the three approaches is presented

in this paper. Most of the discussion is devoted to the combina-

torial methods which the author believes are most efficient.

Gomory's cutting plane method is presented along with Elmaghraby's

method which falls into the second category. A general combina-

torial approach is presented followed by a specific combinatorial

algorithm developed by Balas. Sach algorithm is described in de-

tail and the solution process of two problems is illustrated in

appendices

.



CONCLUSION

It is interesting to note that both the cutting plane method

and parallel shifting of the objective function hyperplane method,

use additional constraints to cut the solution space W in order

to exclude as many of the non-integer solutions as possible, but

not any of the integer solutions are excluded. Goraory's cutting

plane method generates the additional constraint from one of the

problem constraint, where as Slmaghraby's method generates this

additional constraint from the objective function.

As explained earlier, Goraory's method is very inefficient

to solve zero-one problem, since the problem size is increased

when constraints of the form X, £ I, j € N are added to the

original problem. The computational tine increases very rapidly

as the number of variables increase. Elmaghraby's method seems

to be more efficient when compared with the cutting plane method.

The upperbound technique which is incorporated in this method

takes care of the upperbounded constraints x* < 1, J « H and

hence no constraints of this form are needed. But this method

is inefficient from the fact that all alternate optimal solutions

have to be considered.

The combinatorial approach seems to yield very good results.

Its efficiency depends on the tests which exclude the non-fea-

sible solutions. Freeman £GJ modified Balas algorithm [\J to

include some of the tests developed by Glover /ZJ and reported

very good results when there are less than 30 variables. 3alas

method seems to be somewhat less efficient with more than 30
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variables. In conclusion, more research is needed on zero-one

integer programming algorithms since none are well suited for

solving large practical problems.
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APPENDIX I

Problem

Minimize 2x, + x, + ipc,

subject to - x + x_ - 2x, 4

2x3^ - 2x2 + x, a -1

xl + x2 + x
^ ~ ^

x^, x2 , x, or 1

Solution

Converting the above problem into Beale Equation form, we

obtain

Maximize z z + 2(-x, ) + (-x„) + k(»X.)
o 1 d. J

yx • - (-x
x

) + (-x
2

) - 2(-x
3

)

y2
--1 + 2(-xx ) - 2(-x

2 ) + (-x^)

y3
= 2 + (-x

1 ) + (-x2 ) + (-x»)

Hi,
1 + (-3^) +0+0

yj 1 + + (-x2 ) +

y6 =l+ 0+ 0+ (-x
3

)

X, = - • (-x1 ) + +

x2 + - (-x2 ) +

X* - + + (-X3)

Now arranging this problem in a tableau form similar to tableau
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1, we obtain

1 2 3

-b "*1 -x
2

-X3

z 2 1 k

1 yx o -1 1 -2

2 72 -1 2 -2* 1 «t—

3 y3
a 1 1 1

1+ \ 1 1

$ 75 1 1

6 76 1
• 1

7 x -1

8 xz
-1

9 x^

t

-1

The ordinary simplex method cannot tle applied to the above

tableau since it is not primal feasible, that is all bj_ £ 0,

1 € M which is a necessary condition to solve any linear pro-

gramming problem using this method. Hence the dual simplex al-

gorithm is applied to obtain a non-integeip optimal solution.

The dual simplex algorithm starts with an initial solution Y

b, X = and z = 0, where Y is called the i basis vec tor, X non-

basic vector and z the value o:r the objec;tive function. At each

iteration, a non-basic variabli3 replaces a basic variable with

an improvnent in tha objective function value. The1 row corre-

sponding to the basic variable leaving the basis is called the
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pivot row and the column corresponding to the variable entering

the basis is called the pivoted column. This change of basis is

done by transformation of the tableau applying the procedure of

the simplex method. The pivot row is denoted by r and the pivot

column by k. The selection of pivot row is made by choosing the

most negative bj_, that br min b
i#

Thus xs , the variable

from the basis Xg corresponding to the row r, leaves the basis.

The pivot column k is determined by

°k
= mm

ark
a,, 4

azj |
• 2;

This process of changing basis and improving z-value continues

till a primal feasible solution, that is all yj_ (transformed

value of bjj ^ 0, is obtained. The solution then represents

an optimal feasible solution to the linear programming problem,

but not to the zero-one problem. The iterative procedure is now

as follows:

Iteration 1 . The pivot row corresponds to the most negative

bj_, i = 1, 2, 3, li, 5> and 6. As there is only one negative b,,

1=2, the pivot row r 2 for which br -1. The pivot

column k is determined by

:k • °3mm —-

—

*rk .
I

a
2j

a
2J

* °

Again there is only one negative a?1> J
= ^. Hence the pivot

column k = 2 and the pivot element ark = ag2 -2. In the
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tableau, the pivot row and pivot column are shown by arrows,

while the pivot element is shown with a star. Thus x2 replaces

y2 in the basis. The new tableau is obtained through the follow-

ing relations

i

A. =
J J ark

• arj 3 t k. that is J - 0,1,3.

and , A
5

|

a
rki

' 3 = k 2 .

where A, is a (m + 2n + 1) x 1 column vector of elements &< .,

i » o, i, a, . . . , in + 2n. Through the above transformation,

the following tableau is obt!lined.

-b "x
l "?2 "x

3

Z . -1/2 3 1/2 9/2

*i
-1/2 1/2 -3/2* «—

. y2
' -1

?3 3/2 2 1/2 3/2

*k 1 1

y5
1/2 1 1/2 1/2

76 1 1

xl
-1

x
2

1/2 -1 -1/2 -1/2

x
3

-1

t
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Iteration 2 . At each iteration, it is necessary to check

if the solution is primal feasible. However, the solution in

the new tableau is not primal feasible since b]_ = -1/2. Also

since this is only the negative element in the b vector, it is

the pivot row r. Furthermore, there is only one negative ele-

ment aj_ • (j = 1, 2, 3) In the pivot row and it is a
1 , = -3/2.

Hence r = 1 and k = 3, while the pivot element a
rlc

= a, , = -3/2-

The transformed tableau is shown below.

-b -x
l -*2 -^1

z -2 3 2 3

?i
-1

?2 -1

?3 1 2 1 l

*k
1 1

y$ 1/3 1 2/3 1/3

?6 2/3 1/3 2/3

*1 -1

x2 2/3 -1 -2/3 -1/3

x
3 1/3 -1/3 -2/3

sl -2/3 -1/3 -2/3* -«—

t

Iteration 3 . As the new b vector is non-negative, the solu-

tion is primal feasible and optimal to the linear programming

problem obtained by removing the integer restriction from the
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zero-one problem. Since the solution is not integer valued, it

is necessary to add an additional constraint. Thus the first

two steps in the summary (of the cutting plane method) are com-

pleted and the algorithm proceeds to step 3.

Step 3 . As more than one component of Y (b) is non-nega-

tive, the component having the largest fraction f is to be

selected to form the additional constraint. Prom the optimal

solution tableau, it is evident that y^, y^, x2 and x, are

non- integers. The fraction f. is obtained from the relation

b i »>1 =
io + *lo

where &. is the largest integer less than y. and f, is a
io x 10

positive fraction which if added to &
j_

equals to b^. It is

clear that bg and bo have the largest fractions

f60 - f80 * 2/3 •

When there is a tie, either one may be selected. Hence by se-

lecting the row 8 for obtaining a new constraint, we obtain the

new constraint as

sl " " f
8o " f

8l (
-x

l> * r
82

(
"y2

> " f
8 3

(
"y

i
)

where the fa, are to be determined from row 8 which is stated

below.

x
2

- 2/3 - (-x
x ) - 2/3 (-y

2
) - 1/3 f-yx )

Now
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f8o
= b

e
&

8o
= 2/3 - = 2/3

L

81 a
8l " & 81

- 1 (-1)

*82 - a82 " b 82 " " 2/3 - (-D - 1/3

[

83 " a
83

- &
83

1/3 - (-D - 2/3

Therefore the new constraint to be added to the last tableau Is

Sl = - 2/3 - - 1/3 (-y
2

) - 2/3 (-y
1

) .

This row is shown on the bottom of the last tableau. Now the

variable leaving the basis is S. since it is the only variable

taking negative value, that is S^ « - 2/3 b-^g .

Step k . The column k entering the basis is

(3
|

arj A 0)
°k

- min
c
3

arjark

°2
-

2

a
102 - V3

°3 3

1103 2/3
-k 1/2

and

"103 l
102

Hence k 3. Y, replaces S, . The pivot element is a - 2/3.
* * 103

Step $ . The new tableau is shown on the next page.
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"b
l

-x
l

-y
2

- s
l

z -5 3 1/2 9/2

n l 1/2 -3/2

?2 -1

?3 2 1/2 3/2

*k
1 1

?$ 1 1/2 1/2

76 1

x
l

-1

x2 .1 -1 -1/2 -1/2

*3 1 -1

s
l

-1

Iteration I4. . Prom the new tableau It Is evident that the

solution Is primal feasible and integer valued. Hence it is the

optimal zoro-one solution which is stated below.

*! - yx
- 1 J

k
= 1

x
2

- 1 y2 - y^ -

X3 - 1 73 - y6 -

Minimum value of the objective function z 5.
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UPPERBOUND TECHNIQUE

The upperbound technique is a modified form of the simplex

method. This method is utilized to solve any linear programming

problem in which some of the variables are upper-bounded, that is

they cannot exceed a certain value. As explained earlier, the

upperbound technique cuts down the computational time consider-

ably when solving these type of problems. The problem to be

considered in this section is stated as follows:

n

maximize

n

z r
.5=1

°5 *J

subject to

5-1

aa

i

i

b
l

U
J

M

K

where

U , m upperbound on the variable x<

= 1 in the case of zero-one variables

o co j.f the variable x< is not upperbounded

M = { 1, 2, 3, . . . , m }
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N { 1, 2, 3, • . . , n
}

Problem (1) is a standard linear programming problem. The sim-

plex method is used to solve this problem and it yields a solu-

tion in which

a, at most m variables (called basic variables) take

values greater than zero and

b, the remaining (n-m) variables (called non-basic

variables) take values equal to zero.

This solution is termed basic solution. In short, any basic

solution to a linear programming problem has (n-m) non-basic

variables at lower bounds (equal to zero), while the remaining

m basic variables take positive values. However a basic solu-

tion to a problem with upperbounded variables, denoted by (2)

consists of
;

a, m variables with 6 Xj '£ V* , j t N

b, k variables with x. = TT»
, J c- 5 and

c, n - (m + k) variables with x, , J c N .

It is noted that the initial solution to problem (1) is

the same as that of problem (2), since k = for the initial

solution. The procedure for solving problem (2) is the same as

that of problem (1) except for the selection of i, the variable

entering the basis and ii, the variable leaving the basis. Also

the optimality criterion for problem (2) is different from that

of problem (1). Therefore only these modifications will be

summarized in this section. For detailed explanation,
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the reader is referred to /S7 and /127. Now consider the solu-

tion to problem (2) at p-th iteration (p 0, for the initial

solution)

,

value of the1 ob3ective function

m m+k

= Z = JT °
3l ^ + H C

5
V

1

i=l 3=m+1

and m+k

Bi
- bp - B;

.
' E *i3

U
3

3=m+l

whe:re

i

b
i

= B
_1

b<
;

( P - 0)

?3
= B e.i

1

Now it is 1lecessary to find the variable x
s

entering the basis

and Xo be the variable leaving the basis. The opt3r
imality cri-

ter:Lon for the upper technique is satisfied when,

1, z
3

- Oj 4 0, 3
= m + 1, m + 2, . . . , m + k; (for

non-baslo varisibles at upperbounds) and

2
>

Z
i

- Cj 5t 0, J,
= m + k + 1, m + k+2, . . . ,

n ;

(for non-basic variables at zero) .

If these two condition: ! are not satisfied, the soluti on to prob-

lem (2) is not optimal and hence the procedure is to be repeated

to find a ilew basis with an improvement in the value of the ob-

jec tive function. For this, it is necessary to find the variable
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entering the basis

.

Selection of the variable x entering the basis: Find

min I - (z , - fl ) . - (z „-c ),...,
L m+1

Y
m+1 ' m+2 m+2

(z
m+k " °m+k''

Z
m+k+l "

°m+k+l'

zm+k+2 " c
m+k+2' * * ' '

z
n " cn }

*

In otherwords, multiply z, - c, by (-1) for the non-basic vari-

ables at their upperbounds that is Xa V, and select the min

(z.. - Cj)
, J £ R where R is the set of indices corresponding

to non-basic variables. For a non-optimal solution, min(zj - c,)

must be negative. This insures an improvement in the objective

function value. The corresponding variable x3 enters the basis.

Thus having found x
s , it remains to find the variable xg

leaving the basis which depends on the value of x
s .

Selection of x3 : A, if x
g

= 0. Find
-T

br
*+1

f
b? b? - uBi

. mm J _^—
, y > and

yrs i [
yis

ln yis

^is^ °

where

TJB upperbound on the variable x3

There are two cases that can arise in the determination of

br
P+1

vrs
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If

b/+1
br

P

yrs
yM > °>'M

then xR leaves the basis and becomes a non-basic variable

with zero value at (p+l)th iteration. The solution at (p+l)th

iteration consists of

a, m variables with ^ x-n < U„ , i 6 MB i B i

b, k variables with x. = Ui , j e N and

n - (m+k) variables with :> « , j e N .c

2. If

br
P+1 *r - ttBt .

y^s yrs
'rs

then xr> leaves the basis and becomes a non-basic variable atOp

upperbound at (p+l)th iteration. The solution at (p+l)th itera-

tion consists of

a, m variables with ^ Xn 4 0, . i £ M' 3 i ~ s
i

'

b, k+1 variables with Xi = Vt
, J c N and

c, n- (m+k+1) variables with x. «
, j c N .

B, if x
g

- U . Find

max -< , yig < and
y« i 1 yl8

b? + yisus - uBi
. ?is > °

'is



114

Here again there are two cases arising in the determination of

1. If

,
P+1 b? 7„°.

^rs 'rs
£. ,

then the non-basie variable with x « Us becomes a basic vari-

able with a value -l x„ c U_ and the basic variable x_— s s Bp

leaves the basis to become a non-basic variable with zero value

at (p+l)th iteration. The solution at (p+l)th iteration consists

of

a, m variables with < xg ^ Ug , i c- M

b, (k-1) variables with jc, « V, , ] t J and

c, n-(m+k-l) variables with x» = , ;) t N .

2. If

7rs

then the non-basic variables with x
s

TJ
3

becomes a basic

variable with < xs < U and the basic variable with <. xg

< Up leaves the basis to become a non-basic variable with

xB Ug at (p+l)th iteration. The solution at (p+l)th itera-

tion consists of

a, m variables with < xn < Un . i 6 M .' — 3* — Oj_ *
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b, k variables with x* • V, , J e N and

c, n - (ra+k) variables with x, , j c N .

Thus having determined the variable leaving the basis and

the variable entering the basis, the simplex method is applied

to obtain the new tableau. If the optimality criterion is sat-

isfied, the solution is then optimal at (p+l)th iteration.

Otherwise, the procedure is repeated until the optimality cri-

terion is satisfied.
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The example solved in Appendix I is arranged in a simplex

tableau as follows:

Tableau 1

-2 h -100

b X, x
2

x
3 *i 7

2
y
3 \

7-l
-1 1* -2 1 <-

-100 y, 1 -2 2 -1 -1 1

o y
3

2 1 1 1

t

1

/

ip enters the basis and yj leaves the ba:sis. The new tableau

is shown below.

Tableau 2

b x-j_ X2 Xj yj y2 7
3

J
k

-1 x
2

-1 1 -2 i

-100
y)4_

1 o 3* -2 -1 1 «-

73 2 2 3 -1 1

Here x-> enters the basis and yt. leaves the basis. Since

yr is an artificial variable leaving the basis, the corresponding

column yj, is dropped from the following tableaus

.



Tableau 3 (FQ-tableau)
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-1 x2

*3

y
3

2/3 -1

1/3

1 2

l -1/3 -2/3 o

1 -2/3 -1/3

11 1

-2 +3 +3 +2

2/3

1/3

-1

+96

Since all z< - oj are positive, the solution is optimal

to the linear programming problem but not to the zero-one prob-

lem since b is not integer. There are no alternate optima for

z = 2, since there is no j such that V» = , j e R where

R =
{ *Li »i# ?2 } •

•

The D-equation to be annexed to P -tableau is

- 3x
a

- 3yx - 2y2 + Dx - -d
1

where the coefficients are -(j. - c.) = -V,

Now it is necessary to determine di, where

d min
i

L

mm \ —11
J I

a
ij

lU > or
(b t - B )Vj

Hi < °

J
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(b x - B
1
)V1 (2/3 - 1)3

a
ll

- 1

(bx
- B-^ (2/3 - 1)3

* - 1/3

(bx
- B1 )V^ (2/3 - 1)2

a
l5 - 2/3

itfjSELisa ] =
(bi ~ Bi)Vi

Note that d Is minimum for J » i and 5. Hence It is indifferent

to select either one. Selecting the first one that Is

minf^"^
i j

an J

1 = 2

(b2 -,BZ)\ =
(1 - 1/3)3

2/3
- 3

(b2 - B
2
)V^

a
2l;

ft

(1 - 1/3)2

1/3
- k

1 * 3

b
3
vl 1x3

e 11.5
l31 2
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b
3
v
5

a
35

x 3

1x2
- 2

Hence

min
i

min
J

So the D-equation is

- 3x
x

- 37l
- 2y

2
+ D

= d

-1

The F, tableau can be formulated as

Ik-

X2 2/3 -1 1 -1/3 -a/3

x
3

1/3 1 -2/3 -1/3

^3 1 2 1 1 1

D
n

-1 -3* -3 -2 1

According to step 3 of the algorithm, the pivot row is the D-

equation, since D, = -1 is negative. The pivot column is

k *> 1, since d'' was found from that column. The ordinary sim-

plex is applied for obtaining the new tableau which is as fol-

lows
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Tableau k

b . XX x
2

x
3 yx y2 y

3
D
1

-1 S
2

1 1 2/3 -1/3

-k x
3

1/3 1 -2/3 -1/3 o

o y
3

1/3 -1 -1/3 1 2/3

-2 x
1 1/3 1 1 2/3 -1/3

*
3

- Cj -3 1

Determination of d ": i = 1

-V. ^C for j « 7 (corresponding to D]_ column)

(b-, - B1)V7 (1 - 1)1
-

a
17 - 1/3

Hence d =

For thi3 tableau d2 ^. 0; if d > d
2

, it is observed from the

tableau that x~ w111 exceed 1. So it is necessary to remove x2

from the basis. For this, let us make transformation x
2

1 - Xp ,
where x_ = 0. Since the elements in the x2 column

are zeros in all rows except the first one, we only need to

transform that row. The eauation corresponding to this row is

x2 + 2/3 n - 1/3 D
x

- 1

Substituting x2 = 1 - x2 , we obtain
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-x'
2

+ 2/3 yx
- 1/3 D

1
-

Multiplying this equation throughout by (-1), we get

x
2 ' 2/3 71

+ 1/3 Dl " °

So the new transformed tableau is as follows (note that the

sign of the cost coefficient of x2 is opposite to that of x_)

Transformed tableau 1).

-2 1 -k

b xl
1

x
2

x
3

yl ?2 y
3

D
l

1
i

x2 1 -2/3 1/5*

-k x
3

1/3 1 -2/3 -1/3

*3 1/3 -1 -1/3 1 2/3

-2 x
l 1/3 1 1 2/3 -1/3

Z
J

" °i
-3 l

2 ^iv7 x 1/3
Again d 6 0, since ——— »

a17 1

This means that for d >• 0, x2 will become negative. To meet

this situation, it is necessary to drive x^ out of basis.

Hence the pivot row is the first row. Since there is only one

positive element (corresponding to non-basic variable) in the

pivot row it i3 selected as the pivot element. Hence r » 1,
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k - 7. The new tableau is:

Table iu lj.a

b x
l *2 *3 71 72 7

3
D
l

D
l 3 -2 1

X3 1/3 1 -2/3 -1/3

y3
1/3 -2 1/3 -1/3 1

x
l 1/3 1 1 1/3 2/3

A cons traint i s redundant, when D * 0. This makesi the

process simplified. In the above tableau, Dx is in the basis

and its value is zero. Hence the fir st row corresponding to the

basic variable D1 and D^ column can t e disregarded from the tab-

leau. This is shown in tableau kb. Note that 1+b is an alter-

nate solution to k..

Tableau k-b

-2 1 -k

b x
l

1

*2 x
3

yl y
2

y
3

-h x
3

1/3 1 -2/3 -1/3

y3 1/3 -2 1/3 -1/3 l

-2 x
l

1/3 1 1 1/3 2/3* -4

Z
i

" e
J

-3 -3 2 (

i

)

*

-Vj <0 for i - k
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The D-equation Is

3x2
- 2yj_ + D

2
-(*

(*1 " B
1
)V

1; «
(1/3 -• 1)

- 2

*lk
- 2/3

*2k

-
1/3 x

1/3

2
- 2

*3\
&
3k

»
1/3 x

1/3

2— - 2

Hence 1
1

- 2 ,

for 1 - 1, 2, 3 and J
» 4. Prom the tableau l+b, It Is observed

that Vj « for the non-basic variable y2 . This indJ.cates

that there is an alternate optimal solution. The pivot element

is a-Jk. 7? en* ers the Da3^ 3 and xi leaves the basis

.

The

alternate solution is shovm In tableau i|A

.

Tableau hfi

-2 1 -ll

b xx Xp x
3

yx y2 y
3

-k x
3

1/2 1/2 1/2 1 -1/2

y
3

1/2 1/2 -3/2 1/2 1

y2 1/2 3/2 3/2 1/2 1

zj - Cj -2 -3 2
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-vi< ° for J - k

The D-equatlon for this itieration is

3x
2

m 27l + D
2

- '

,

(bj_ - B
1
)V

l;
(1/2 - 1)2

2

"^ - 1/2

b2v2

a
2U

1/2 x 2
- 2

1/2

b
3
v2 _

a
2U-

1/2x2
_1 - 2

2

Henco d| « 2 , for 1 - 1, 2, 3 and J - 1+ .

d
2* - min

k
^ , * - .*, a

2 2
Since d]_ " d

2 ,
it makes no difference to select either

2
one. Selecting d* - d^_ for forming D-equation, we obtain the

pivot row r -
I4. corresponding to this D-equation and pivot

column k - k. The new annexed tableau k& obtained from tableau

lib is shown below.
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Tableau lj.d

b *1 x2 x
3 f\ ?2 *3 D

2

*3 1/3 1 -2/3 -1/3

^3 1/3 -2 1/3 -1/3 1

x
l 1/3 1 1 1/3 2/3

D2 -2 3 -2* -1

J. *•

t

The simplex procedure is applied to obtain tableau 5 and is

shown below.

Tableau 5

-2 j 1 -h

b *1 x
2 S3 H y2 y

3
D
2

-1+ x
3

1 -1 1 -1/3 -1/3

y
3

-3/2 -1/3 1 1/6

-2 x
x

1 3/2 2/3 1/6

TX 1 -3/2 1 -1/2

Zj-orl;-l. -5 1

This is the optimal tableau, since b vector 1 is non--negative

and z< - c* » f r all J . Hence the op• tlmal integer solution

to the example problem Is1

•
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b • 1 • I, 1, x, 1

y2 - y3 * °' yi
x
x

•

Z > 1 + k $ .

Note that

Z* Zq _ d
1* - d

2* « - 2 - 1 - 2 - -5

- 1



APPENDIX IV

Previously a small and easy prcbltare is solved . He>wever

this time a large problem with 7 constraints i and 10 vai•iables

is chosen. The problem is to

minimize

6x.. + gxo + x. + 7\ + 2*5 + lpc
6

+ 3*7 + x
8

+ **9 + 3x
io

•

subject to

3x-]_ - 8x2 - 8x, + \ + + + -r x
8

" 6x
9

+ 2x
10 £. -2

+ x
2

- 5x

,

+ -
5*5 + *

6
+ x

?
+ x

8
+ + S -1

2X]_ - 2x2 " x
3

+ + Xij + + - 2x8 + + x10 £. -3

-5xx + 3x2 + x
3

+. + + 4. x
?

+ x8
" x

9
- xio ^ l

+ - 2x, - 3x^ + + lpc. + x
7

5x
8

- 2*9
+ £ -h

- 8x2 + - 6xj, - 6x
5

+ 5x
6

+ + 2*8 " 12x
9

- !ix10 « -7

-?Xj + lpc2 + 3x, - 6x
!+

- 3E- + ?x
?

x
8

" 8x
9

+ S -5

x
j

= or 1 , j
= I, 2, . . . , 10

This problem is arranged in ta;>leau form on the next page

.

First we start with an initial solution V° = (0,b)

Jo i 9
z o

- o K - T o - Qo
* C° -

yx
- b

x
= -2

r * - b° - 1 y6
- b

6
- -7

y| - b° = -l 9 y
5

. b° - -!+, y
7

• *7
- -5

y° - b° - -3
9

'
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1
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1
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1
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i
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1
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1
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1

1
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These are shown in the top middle of the tableiiu 2. The

computations are briefly arranged in the tableau. The super-

scripts on the veilues of V, represent the order of cancellation

at any Itera tion., It is easy to follow the tableau very easily

by the help of the following iterative procedure.

Iteration 1

Step 1. *! /.0 for i - 1, 2, 3, 5, 6, 7 .

So we are ini situation lb. So we pass to step 2.
.,

Step 2. N o
= N - (C° U D

Q
TJ E )

C° - d© - i i

Eo ,

since there is no J such that for all H y^ ^. 0, the correspond-

ing Aj >

Hence N
o
-V - { 1, 2, 3, fe, 5, <&, 7, 8, 9 , 10

]

So we are In case 2b, and pass to step 3.

Step 3. ,
Check the relation

E Hi 6 y£ for I - 1, 2 , 3 , 5, 6, 7 •

JeN

3cH
hi " *12 + *13 + *19 " " 8 •. 8 - « - - 22 < y° - -2

JEN

a
2j

- a
2 , + a

2£
- - 5 - 5 - 10 < y° - -1
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m is.

ra

p) ts.

M is.

co

Q is.

o
o •s.

CM rH
|H J- rH -H

CM CO O CT> \A -rf- o CT> NO rH

> CM
1

rH rH
1 1 1 1

CM
1

r-l

1

rH
1 1

CM
1

u\ 03 00 r- CT- 03 -d- XA -* \A
r-

1 1

(\J

1

CM
1 1 i 1 t 1

r>- «o vf) CM r- r- rH p-l CM r- cr- CN
o

1

l»S CI
1 i i i 1 1

rH
1 i i 1

J- vD vD _e- j* -=t- CM H J" xr\ CM -d-

•H

u\ H
1 1 i i 1 1 1 1 i > i

s

J* rH CM

B f*\ ro XA Xr\ j* \a H CM c\ J- C\ CA rH c\ -d-

rH 1 1 1 i i 1 1 1 1 1 1

r* O O u\ H CM rH cj CM C\l rH r-<

& CM
1

H
1 1 i 1 1 1 1 1 1 1 1

CM O o j* xr\ rr\ CM CM CM C\ -rf-

r-l

1 1

CM
1

rH
1 i 1 1 1 1 1 1

^^ , .

t
o
A\

O
M o

"PI •O *r~> H CM CN -d- XA vf> [-- CO o rH
OiH H •H »H •H i-l i-l •H -H •rl H •H •H iH

t-> Id
O

SB

a!

0)

OJ as a

1 1

0) Si

1 1

a

1

H

1

a)

1

SI

1
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u «<
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a
rH CM C\ J- XA vO t- CO <T- o

m
H o
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in o

S o
Oizi m cm en J* UN vO P- CO O o |H CM e<\ J*
a

I

rH rH H H
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Z I
3J

= a
32

+ a
33

+ a
38

= - 2 - 1 - 2 - - 5 < y° - -3

Je N

>1 a5j - a
53

+ z
$k

+ a
56

+ a^g + a^

= -2-3-l+-5-2 = -l6<y|--l(.

3eN
o

£ %! ' a
62

+ a
6i4.

+ a
65

+ a
69

+
*6lO

= -8-6-6- 12 - H.
- - 36 < yg » -7

I a
7J

= In + 1^ + I
?5

+ I
?7

+ I
78

+ a
?9

. - 7-6-1-5-1-8 = - 28 < y° = -5

As all relations hold, we are in case 3b.

St.* -
£ ai j

+ - - 22 C Jl -2

£ a2 j
+ >= - 10 < y£ " -1

L a
3J

+ = - 5 ^ 73 = -3

£ a
5j

+ - - 16 < y| - -U
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E a
6j

+ = - 36 < yg - -7

J« No

E a
7J

+ - - 28 -c j° - -5

H No

So we are In case 3o

.

3c. Check the relation £ a^. - max (aw4 0) < y°

J N

E *lj
" *19 = - 22 + 6 = - 16 < y° » -2

JeN

E a2 j
- a13

- - 10 + $ - - 5 < y° - -1

J £ N

E *3j " *32 " " 5 + 1-- U < y^ * -3

Jen

E a^j - a^
3

- - 16 + 2 - - II4. < y| - -It

J«»o

E *6
i

~ *6l0 " " 36 + It - - 32 < y£ - -7

J*»0

E a
? j

- ay^ - - 28 + 1 - - 27 < y° - -5

*«»0

So we are in case 3c(i) .

3c i, Now we have to calculate V° for all J e NQ . Com-

puted values of V? is shown in rows 5 through ll; of the tableau
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2, Computation is shown on the next page

.

Js+1 c h = 9
>

tha* is v°„ -
= nax v° ' vo

Therefore the variable chosen on the arc generated from node

is Xo. We assign a value 1 from s = [ 0, 1 \ . Hence cancel

VQ from K and pass bo stop 3.

S tep 8 . Jx
- J : V { 9 } - { 9 } \ m 0, T

x
- { 9 }

z, = z + e_ 5
J. o 9 1

The solution at node 1 is XS = (u , X", T~)

where U (x.)9'

X > \x-^, ^2, x_, x. , x^, x^, "
,

Y1 - Y°

5,
*
10 )

9

7
i

* 7° " a
i9

= ^ • y? - 1 * 1 - 2

72
= y2 " a

29 " _1
.» JfJ - - V + 2 - -2

y; - - 3 - " » -3 , 7} - 7 + 12 - 5

r}, - - 5 + 8 = 3

Iteration 2

Step 1 . yj < for i = 2, 3, $

So we are in caso lb.

Step 2 . JI
1

- N - {C
1

D .
. 'J St )
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i, C
1 = U

P |
J, e. J.

1 p l
C"

Since J «
> i s str ictly included in .\ ; for P = 0, c

1

<£«W-
ti, N -. c

1 - u. 2, 3, It, 5, 6, 7, 8, lo]
.,

= OO
9

z
x

= 5

D
l

- i>\ J« (N-C
1
), 5 + c^ iool

Since there is no j sa ti sfying the above relation,
• °J.

*

ill, S - (o
1 U D.{I - {l, 2, 3, ll, 5, 6, 7, 8, 10]

El rfi
1

J e /ft - (c
1 u d

x27 ;
. 7£ < and V* »}

considering i =
;2, 3, 5 (since for these i, y* < 0) the set of

those j sati.sfying the above relation is E
l " tl. 7. 10} •

Hence the se t of :Lmpro-ring vectors N^ is

Kl = N - (C
1 U D

x
U E]L ) - { 2, 3, h, 5, (•••}

So we are in . case 2b.

Step 3. Checking the relation

z a
iJ < yj , for 1 •- 2, 3, 5

je \
we obtain

I S
2J

=
*23

+ a
25

- - 5 - 5 - - 10 < y2 * -l

jeHj
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I a
3J

" *32 + *
33

+ hB ' - 2 _ l - Z " ' S < y
3

" " 3

£ hi " hi + *& + hb + %e - - 2 - 3 - h - 5

-'
ifc * y| -2

So we are in case 3b.

3b . Check the relation

I hi + mln (a
ij > 0) * A

Since min &m * , for i 2, 3, 5, the above relation is

satisfied. So we are in case 3c.

3c . . Check the relation

2L aj* - max (a
1;j

<. 0) < 7±

3 6%

£ *2J " *23 " " 10 + 5 * " 5 < y2 " _1

2- *3j - *33 " - £ + l " - **• < J* " -3

I a^ - a
53

- - llj. + 2 - - 12 < 75 - -2

So we are in case 3c 1.
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3c i, V
i

=
*1, - £ - -2

J s+1 J2 3

Computed values of V* are shown In rows 19 through 21; of tab-

leau 2. Computiitions are shown on the next page, so cancel V^

from N. and pass to step 8.

Step 8. J
2

= J
l

V i 3 1 - { 9 > 3 1

H
2
?-# , t

2
= {9,3 } , b

2
- s

x
+ 6'

3
- 6

The solution at node 2 is U
2

= (u
2

, X
2

, Y2 )

u2 = (x
9

, x
3

) » 1

X2 = (X-^, X,,, Xj^, X^, X^, Xy, Xg, ^q) "

Y2 = Y1 - A,

A - ?1 - a = k + 8 - 12

4 - -1 + 5 = 14-, y| - -2+2 =

A - 3 + 1 = - 2, y
2

= 5-0 = 5

4 - 2-1 = 1, y
2 = 3 _ 3 =

Iteration 3

Step 1.
2J?40 for 1-3. So we are in lb.

Step 2. K
2

= N - (C
2 U D

2
U E

2 )

I, C
2

= : u
p

|
J
p
c J

2
°p
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Since the nodes and 1 are on the sane chain as the chain from

and 2 , J
Q CZ J

2 ,
J-j_ C J

2 .

Hence C
2

<= C
1 C

2
- {.9,3}

ii, » - C
2

- (l, 2, 1;, 5, 6, 7, 8, 10

}

S V «o
.

,

z = 6

D2 n { J j J £ (N - C
2

) , 6 + c , > oo}

Since there is no j satisfying the above relation, D, •

iii, N - (C
2 U D

2 ) = ( 1, 2, k, ?, 6, 7, 8, 10
]

Considering i 3, for which y* <

Bjj > for J-l, !+, 5, 6, 7, 10

Therefore E
2 | 1, 1+, 5, 6, 7, 10 X

Hence N
2

= N - (C
2

D
2

V Eg) = {2,8 1 So we are in 2b.

Step 3 . Checking the relation ^T a, . <. y?

3« n
2

we get £ *3j - '- 2
1

- 2 - - Jj. < y
2 - -2

3eH2

So we are in 3b.

3b . Checking the relation
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Y. aj_j + min (a
1 j ^ 0) ^ Jj

Since a,.< for j » 2,8 the above relation is satisfied.

So we are in 3c.

3c Checking the relation

*j£_ a. . - max (aj, ^. 0) <. y| , we obtain

JgN2

1 hi
' ¥32 --U + 2--2-yf--2

JtN2

So we are in case 3o (i).

3c i, Calculat A for i - 2,,8

-8 1 12 20 11

1 1 h 3 3

-2

• 3

-2

1

-2

1

B
-2

-5 5

-8 2 5 13 3

k -1

v? - -6

1

Note that for j 8, (y? - a.o) is non-negative for all 1 e M.

2 Z 2. 2
Hence V, = 0. Also max V, • V7 » . So cancel VB from

J
J £ N

2
J 8 8
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No and pass to step 8.

Step 8. J., = J
2

U {8\ = {9,3,8}

H3 -* , T
3

- {9,3,8} ,

z
3

= z2 + cg = 6+1 = 7

The solution at node 3 is U3 - (u3 , X3 , Y3 )

where

» = U9,
'

x
3'

x8' " ^

x3 = («1( X
Z'

x
k.>

x
5>

x
6'

x
7'

x
10 ™ "

Y3 = Y2 -
• A

8

*2 - A - a
l8

= 12 - 1 = 11

il = h - 1 = 3, y| = + 5 = 5

*-:* + 2=0, y3 = 5_ 2 =3

<"»- 1 = 0, y3 = o + l = i

Iteration 1;

5
Step 1. y. ^ for all i OI. So we are in case la.

Set z, 7 i£* Hence Hj = . Node 3 is closed. Hence

it is necessary to
•3

form sets D~ for k 2, 1,

2 '-{j
I

J«<^-«J). z
k

+ =j » z*}

i, k - 2, z
2

= 6 , N2 - {2,8}, C
3 = {8]

N2-C
3 - { 2

}
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>1» - { 3 | 3 e'(»2 - c\), 6 + °j £. z*
}

For j = 2, c_ - 5 , 6 * 5 - II > Z

Hence DX • 2

ii, % = ( 2 , 3, t, 5, 6, 8} ,
c
l

" {3}

N
x
-c3 • 2, J+, S, 6, 8 , Bl « S

D^ - { 3 | J£ (K - 0j>, 5 + Oj >> Z*
}

5 + o2 = 5 + 5 i- Z* - 7, 5 + «$,
- 5 + k V Z* "7

5 -r c^ - 5 + 7 > z* - 7. 5 + c
8

- 5 + l > z* 7

5+c^=5+2 =7 (Z*)

Hence the above relation Is satisfied for j 2, I|, 5, 6

dJ = ( 2 , U, 5, 6}

iii, N = {l, 2, 3, . . . , 10} , CJ - { 9
]

N
o " C

o
=

I
1

'
2

>
3

> *» 5
'

6
'

7
'

8
>

10
}

i5
I

3«U - ej), * + 0j - o ^ & z*
}

The above relation is satisfied for j « %, Hence D^ = { !(. 1

Now we cancel all V3 V3 an a. y from D , D, and V , respec-

tively. We pass to 3tep 5.

Step S . We form the set of improving vectors N~ for the

solution V (at node k) for k = 2
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u| - N2 - (C; TJ d|) - jZf (Since all V3 are

cancelled)

Now let us find K, for k • 1
k

N
l

= N
l " (C

1
U D

?' " ( 8
i

So we are In case 5°

.

Step 6 . We cheok feha relation

3

2- *u ^ 7i (1
I yi < °3 ror i - 2t 3, 5

i

J«n^

£ a
3J " Ss

=
" 2 4 7

3
" " 3

£ S
5J

c r
58 " " 5 < y

5
" " 2

3« NjJ

Since the above relation does not hold for 1=2 and 3, the

to, i 3
node 1 is closed. Hence cancel V. l {V ,) from N, for jc 1

J j 1 1

I.e., cancel Vg from K. , Now we pass to step 5.

Step 5 . k . Now we have to check the set of Improv-

ing vectors Njj for the node or solution U°.

^ - Ki
o

-
(

3 tj D3) „ ( lf 2> 3, 5, 6, 7, 8, 10 I
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So we are again in case 5b.

Step 6. We check the relations

Z Hi < y° for *" - »». «; 3, 5, 6, 7 .

N^ - {l, 2, 3, 5, 6, 7, 8, 10
}

Z Sjj - I
12

+ a
13

= - 8 - 8 - - 16 < y° - -2

J eNo •

£ a
2J

= a
23

+ a25 - - 5 - 5 - -

J.lJ

10 ^ y| - -1

£ *3 j

=
*32 + S3 + *38 " - 2 " 1 - 2 - - 5 < y| - -3

J<- N
o

- - 2 - 3 - k - 5 - - li| < y| - -1+

E »6J
" *62 + S

6U
+ *65 + *610

J<»£

.-8-6- 6 * k- - 2li < y° - -7

Z hi " 5
7i

+
St

+
*75

+
*77

+ *78

-.7.6-1-5- 1 - - 20 < y£ - -5

So we are in case 6b.
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6b. Check the relation

£ fjj + rain
(»ij ^ 0) < y°

J< N
o

Since min a,, = for all i € M, the above relation is auto-

matically satisfied. So we are in case 6c.

6c. Check the relation

£ a^, - max (a^ < 0) £ y° (i
| Jt

< 0)

3 eNo

£ a
13

- a
12

= - 16 + 8 - - 8 < y° - -2

£ a
2 , - a

23
--10+5--5 < y| " -1

£ a
3J

- I_. - - 5 + 1 - - k < J} " -3

J €N
o

J Ijjj - a^
3

- - 11; + 2 - - 12 < y| - -I;

1 « ^

£ a6j - a6l0 " - 21; + 1; - - 20 < y6 - -7

J £No

JT a
7 j

- a^ - - 20 + 1 - 19 < y° - -5

J^o

So we are in case 6c(i).



1U9

60 I, See the tableau 2, rows 5 through lU.

V- 2 m max V,
k2

; k2 0, s - 3
3+1 JCN3

3

o o o _
Vj = max V, » V| « -15

J e n3

Therefore Xr- enters the solution. Hence cancel Ve from 8
5 ? o

and pass to step 8.

st°P 8
- -| " J U Js +1 ' {$\

H^ - { U,9 } , *
k

- (>, 5, 9} ; p - k
2

-

z
li

= z„ + c < -0+2 = 2,* P J s+1

The solution at node h is lA ,« («*, x\ Y*4")

where

u^ = (xjj_ - x
9

- 0, X5 - 1)

3T - (x
x , x

2
, xi, x

6 , x
?

, x
g

, x
1Q

) -

1 " *l " a
i5

:A = Y° - A

& . »» _ . . - . 2 - - -2

y£ - - 1 + 5 " 1+ ,

4 - 1 - - 1 ,

y£ - - k - - -k

j| - - 7 + * - -1
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Iteration 5

AStep 1 . f* 4. .0 , for i = 1, 3, 5, 6, 7

So we are In lb.

Step 2 . \ - K - (CT" TS D^ U E, )

1, C^ = TJ
p

| ^ c , oj
,

for p = 3 J
3
± J^

p = 2 J
2 * J

!;

p - 1 J]L $ J^

p = o j
o C J^

<*-<£-{*. 5. 9}

ii, H - C
1* - (l, 2, 3, 6, 7, 8, 10 } ; Z* = 7, z^ - 2

D
14

" = { i \ i £ (N-cS, z^ + cj = 2 + Cj fc
Z* - 7}

2 + cx = 2 + 6 = 8>7

2 + o
2

= 2 + 5=7 = 7, 2 +c?
= 2 + 3 = 5^7

2 + 0, = 2 + l = 3>7, 2 + eg = 2 + 1 = 3^7

2 + c
6
=2 + )+=6:j>7, 2+o

10
=2 + 3 = 5f7

The above relation is satisfied for J - 1, 2

Hence Dr {-1,2}

iii, N - (C ,+
TJ D^) - { 3, 6, 7, 8, 10

]

Since there is no j satisfying the above relation (that is, there
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is no Aj> 0, for 1-1,3, 5, 6, 7) , \ ~

Hence

\ S - [C
k U D

k
V B

k
) - { 3, 6, 7, 8, 10}

So we are In 2b.

Step 3. We check the relation

I «ij * yj for 1 " l
«

3
'

5
'

6
'

7

t a
XJ

- a
13

- - 8 < yj - -2

21
*3J

" *33
+ ¥

38 " " 1 " 2 m
" 3 * y

3
" *

3 \
.U£ a

5j " %3 + a
56

+ *58 * " 2 " ^ " 5 " " U < y
5

* "*

21 hi " *6io - - 4 < yj - -i

^ a
7 j

- a
??

+ a
?8

- -5 - 1 - - 6 < yj^
- -1;

Since for i - 3, the above relation does not hold, we pass to

step 5.

Step 5 . The node (1). + 1) Is olosed. So we backtrack to

k -C h, and Jjj. d J>
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Only for k - o, J
k
C V S o let us find •the set of

improving vectc

o

irs

No
" *

°S- u 5,9} t Z* = 7

|
Jt(N -<* ), Z

o
+

°j " c
i *

**}

Since there is no j satisfying this relation, D^
' •If

N - *-{! , 2, 3, 6, 7, 8,, 10
}

Step 6. We check the relation

I. aU for i X, 2, 3, 5, 6, 7 .

This relation i s satisfied for i - 1, 2, 3, S, 6, 7 . Hence

we are in case 6b.

6b. Check the relation

hi + min(a.
J * 0)

V»5 I*
1

yi
< 0)

Since min aj* i o. for all i
1 ?i •c 0, the re is no need to

check the relation s.bove. Hence we are in case 6o

6c. Check the relation
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l_ a^ - max (a^ -c 0) < yx ( i
| y± <. 0)

£ *lj
_ 5

12, = -l6+8 = -8 <y° = -2

u o

E hi ' \i
= _ 5 + 5 =

° * y2
"'-1

Since the above relation is not satisfied for 1-2, we are in

case 6o(ii).

Step 7 . We form the set F* as defined by
o *

fJ = (J
|

j E sj , »
13

< 0)

- { 3 ]• for i = 2 .

Before introducing x, into the solution, we have to check

zs+l ^ Z*' But z
o + c

3 " 1 T" z*
•

Therefore x, enters the solution. Cancel V£ from N . Nowj o o

z
5

- z
Q

+ c
3

= 1

J5 - J U {3} - {3} , Hj - [k, 5, 9}

T
5 = { 3, l|., 5, 9

}

The solution at node 5 Is U = (u , X*, Y^)



iSk

where

?, U
3

= 1, *
k

- x
?

= x
9

= 0)

X5. (X-^, Xg, X^, Xy, Xg, JSja* =

y5. Y° - A
3

7° - a - - 2 + 8 = 6

- 1 + $ - I*
, y| - -

If, + 2 = -2

A- - 3 + 1 - -2, y£ - - 7 - - -7

A- 1-1-0 , ^ =

Iteration 6

- S - 3 - -8

Step 1. ji < , for 1-3, 5, 6, 7 .

So we are In case lb.

Step 2. N^ - N - (C V Dg U V
i, °

lUP|^'5
°P ; only for p > 0, j

p
cJ

5

Henoe C* - C* = { 3, it, 5, 9
]

11, N -• c
5

= { i, 2, 6, 7, 8,,
10

}

D$ - { J | J «<» - C5 ), z
5

+ C
J

" 1 +
°1 > z*- 7

}

This relation 1 s satisfied for j » 1 , Hence Dg f 1).

111, N - (C* U D
5

) - { 2, 6, 7, 8, 10
}
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E
5

- { i
|

3 £ ^ - (05 V D
5]7, y^ < and &

±}
>

]

Since there is no j satisfying this relation, B< • ff .

Hence N^ [ 2, 6, 7, 8, 10
J-

. So we are in case 2b.

Step 3. Check the relation

I \} < j{ for i - 3, 5, 6, 7 .

JC-Nj

£ hi
- a

32
+ a

3Q
•= - 2 - 2 » - It <c y| = -2

J«N5

i hi " S
56

+ %8 * - ** - 5 - - 9 < yf " "2

J^N
5

X a
6j " *62 + S610 - - 8 - 1; - - 12 < y| « -7

3c-n
5

H *7J
» a

??
+ I

?8
- - 5 - 1 - - 6 * y^ - -8

JeN
5

The above relation is not satisfied for i * 7. Hence we pass

to step 5.

Step £. The node (5+1) is closed. So we backtrack to

another node k ^ 5 and Jk c JV • Only for k » , J C L

So we form sets Nj? from the relation

- N - (C? U D^)
o



156

4^ {3, h, $, 9} ; N - c* - (l, 2, 6, 7, 8, 10}

D
o " { J

1
J «

< N " c
o> •

z
o

+
°J

" C
J * z*

1

Since there is no J satisfying this relation, vP =
.

Hence Njj « { 1, 2, 6, 7, 8, 10 1 . We are in case 5b.

Step 6. Check the relation
r

H aij 6 y? (i
| "jf A.o)

J tIf
o

H a-y = a12 « - 8 < yf
« -2

J £
.

N
o

21 a2j - 4: y° = -1

5

The above relation is not satisfied for i « 2, also since the

above relation does not hold for any k such that N? - jzf (k < 5)

,

the algorithm has come to an end.

• 3Hence z
g

- z, - Z 7 , for the solution U^ .

•5

Therefore the optimum solution is VJ and

fl , 3 - 3, 8, 9

(
o , j = l, 2, it, 5, 6, 7, 10

yj - li
, yjj - ,
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l\ - 3 , l\ • 5 ,

y^ - , y^ - 3 , y7
° 1

This is optimal for problem •?', The solution tree for this

problem is shown in Pig. !j..
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Linear programming problems can be solved by using either

the standard simplex method or the dual simplex method. However

these methods do not yield optimal solutions to problems, where

Integer solutions are desired. Hence It Is necessary to solve

these Integer programming problems by using different techniques

such as Gomory's cutting plane method. There is also a special

class of integer programming problems which require zero-one

integer solutions. Gomory's cutting plane methods can be used

to solve these zero-one problems, but they are inefficient.

Other methods for solving these problems utilize the special

structure of the zero-one problems. This paper investigates the

various approaches that were developed to solve zero-one problems

which are divided into three different categories as follows:

1. Cutting plane methods.

2. Parallel shifts of the objective function

hyperplane

.

3. Combinatorial methods.

A brief survey of each of the three approaches is presented

in this paper. Most of the discussion is devoted to the combina-

torial methods which the author believes are most efficient.

Gomory's cutting plane method is presented along with Elmaghraby's

method which falls into the second category. It is interesting

to note that both these methods use additional constraints to

cut the solution space W in order to exclude as many of the non-

Integer solutions as possible, but not any of the Integer solu-

tions are excluded. The first approach generates the additional



constraint from one of the problem constraint, where as the

second approach generates it from the objective function. In

Gomory's cutting plane method, the problem size increases as

the constraints of the form Zi (1, j | N are added to the orig-

inal problem and consequently the computational time increases

rapidly. However this difficulty is overcome in Elmaghraby's

method using the upperbound technique.

A general combinatorial approach is presented in later sec-

tions followed by a specific combinatorial algorithm developed

by Balas. This approach seems to yield very good results. How-

ever its efficiency mainly depends on the tests being applied to

exclude the non-feasible solutions. Freeman flaf modified Balas

algorithm /T7 to include some of the tests developed by Glover

/B7 and reported very good results when there are less than 30

variables. But it seems to be somewhat less efficient with more

than 30 variables. In conclusion, more research is needed on

zero-one integer programming algorithms since none are well

suited for solving large practical problems.


