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Abstract 

The Kirkwood-Buff (KB) theory of solutions, published in 1951, established a route from integrals over radial (pair) 

distribution functions (RDFs) in the grand canonical ensemble to a set of thermodynamic quantities in an equivalent 

closed ensemble. These “KB integrals” (KBIs) can also be expressed in terms of the particle-particle (i.e., 

concentration or density) fluctuations within grand canonical ensemble regions. Contributions by Ben-Naim in 1977 

provided the means to obtain the KBIs if one already knew the set of thermodynamic quantities for the mixture of 

interest; that is, he provided the inversion procedure. Thus, KB theory provides a two-way bridge between local 

(microscopic) and global (bulk/thermodynamic) properties. Due to its lack of approximations, its wide ranging 

applicability, and the absence of a competitive theory for rigorously understanding liquid mixtures, it has been used 

to understand solution microheterogeneity, solute solubility, cosolvent effects on biomolecules, preferential solvation, 

etc. Here, after using KB theory to test the accuracy of pair potentials, we present and illustrate two extensions of the 

theory, resulting in a general Fluctuation Solution Theory (FST). First, we generalize KB theory to include two-way 

relationships between the grand canonical ensemble’s particle-energy and energy-energy fluctuations and additional 

thermodynamic quantities. This extension allows for non-isothermal conditions to be considered, unlike traditional 

KB theory. We illustrate these new relationships using analyses of experimental data and molecular dynamics (MD) 

simulations for pure liquids and binary mixtures. Furthermore, we use it to obtain conformation-specific infinitely 

dilute partial molar volumes and compressibilities for proteins (other properties will follow) from MD simulations 

and compare the method to a non-FST method for obtaining the same properties. The second extension of KB theory 

involves moving beyond doublet particle fluctuations to additionally consider triplet and quadruplet particle 

fluctuations, which are related to derivatives of the thermodynamic properties involved in regular KB theory. We 

present these higher order fluctuations obtained from experiment and simulation for pure liquids and binary mixtures. 

Using the newfound experimental third and fourth cumulants of the distribution of particles in solution, which can be 

extracted from bulk thermodynamic data using this extension, we also probe particle distributions’ non-Gaussian 

nature. 
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KB theory. We illustrate these new relationships using analyses of experimental data and molecular dynamics (MD) 

simulations for pure liquids and binary mixtures. Furthermore, we use it to obtain conformation-specific infinitely 

dilute partial molar volumes and compressibilities for proteins (other properties will follow) from MD simulations 

and compare the method to a non-FST method for obtaining the same properties. The second extension of KB theory 

involves moving beyond doublet particle fluctuations to additionally consider triplet and quadruplet particle 

fluctuations, which are related to derivatives of the thermodynamic properties involved in regular KB theory. We 

present these higher order fluctuations obtained from experiment and simulation for pure liquids and binary mixtures. 

Using the newfound experimental third and fourth cumulants of the distribution of particles in solution, which can be 
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1. Introduction 

1.1 Motivation 

Liquids and liquid mixtures have turned out to be much more difficult to model than have gases or solids, due to their 

strong intermolecular interactions and high degree of orientational and translational disorder. The desire to interpret 

and be able to predict the properties of liquids and liquid mixtures at both the microscopic and macroscopic levels is 

so general and encompasses so many areas of research that it threatens to lose any potential reader’s interest by its 

very vagueness. However, if a theory were found that could bridge the knowledge gap on how microscopic properties 

give rise to thermodynamic properties, and vice vera, and do so in a way that could be applied to essentially any liquid 

mixture, we students of chemistry may be wise to hold our specific application areas in the back of our minds for a 

moment and to investigate a bit further until we find a catch or a snag in the theory that renders it useless to us. 

 

This dissertation is an attempt to do just that for the Kirkwood-Buff (KB) theory of solutions and 

generalizations/extensions of KB theory called Fluctuation Solution Theory (FST). KB theory was first published in 

1951, and yet many readers may be unfamiliar with it. This is, in and of itself, enough to cast doubt upon its usefulness 

and/or credibility. Indeed, many solution theories have risen and fallen over the decades, and most of today’s chemists 

probably do not feel that they have time to learn the nuances of them all. 

 

What sets KB theory apart is two things. First, it does not make approximations [beyond the usual statistical 

mechanical (SM) approximation of being in the thermodynamic limit] or simplifications. The KB theory equations 

arise from the manipulation and rearrangement of statistical mechanical and thermodynamic relationships without 

making any assumptions and without introducing any parameters. It is exact; meaning, it is exact just as one would 

consider e.g., ΔG = ΔH – TΔS to be exact. Indeed, the KB/FST theory is the only theory available for understanding 

liquid mixtures that can make such claims. Second, it can be applied to any solution regardless of what type of 

molecules it contains, how many components it consists of, or the concentrations of those components. The 

components could be as simple as Lennard-Jones (LJ) spheres, or as complicated as biomolecules; both would be 

treated identically by the theory.  

 

There is one other theory that is a very limiting case of the more general KB theory, namely, McMillan-Mayer (MM) 

theory (McMillan and Mayer 1945). In MM theory, the osmotic pressure of a liquid mixture is expanded in terms of 

the solute concentration and the coefficients of the expansion are called the osmotic virial coefficients. MM theory is 

entirely analogous to the virial expansion for imperfect gases. It is only applicable to cases of (very) dilute solutions. 

Very little is known about the osmotic virial coefficients higher than the second coefficient and the second virial 

coefficient involves cluster integrals of exactly two solute molecules at infinite dilution in pure solvent. Thus, the 

potential range of applications for MM theory is only a very small subset of those for KB theory and we will not be 

considering it further. 

 



2 

 

1.2 What is KB Theory? 

As published in 1951 (Kirkwood and Buff 1951), KB theory provided a one-way route from a set of integrals over 

center of mass based radial distribution functions (RDFs) to a set of thermodynamic properties that one could measure 

in the wet laboratory. For binary mixtures the relationships are  
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where the Gijs are called the Kirkwood-Buff integrals (KBIs), gij are the center of mass based RDFs, κT is the isothermal 

compressibility, R is the gas constant, T is the temperature, iV  is the partial molar volume of component i, ρi = < Ni > 

/ V is the number density of species i, and μij is the derivative of the chemical potential of species i with respect to the 

number of molecules of species j while holding fixed the number of molecules of species i. The RDFs  are labeled 

with a superscript μVT to denote that the KBIs are defined in terms of RDFs in the grand canonical ensemble (constant 

set of chemical potentials, constant V, and constant T). If one calculates the KBIs within closed systems by integrating 

up to some distance R beyond which the RDFs have all converged to unity instead of integrating over all space (as 

will be done in this dissertation), then they will be calculating a closed KBI that differs from the open KBI by on the 

order of one over the number of molecules, which is considered a trivial difference. 

 

Since RDFs are short-ranged functions that converge to unity on the order of a few molecular diameters and since 

thermodynamic properties are clearly bulk, global properties, KB theory therefore provided a means to understand 

how the microscopic properties of a specific mixture at a specific state point give rise to that mixture’s unique 

macroscopic properties. 

 

Note that the KBIs may also be written in terms of particle fluctuations 
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Where V is the volume of the grand canonical ensemble, < > denotes time or ensemble averages, and 
i i iN N N    

is the instantaneous number of molecules of species i within the fixed volume minus the average number present. 

 

KB theory has not achieved the level of popularity that one might assume based upon the long list of strengths it seems 

to have. One reason for this is that it requires RDFs as input. At the time of its publication, computers were not 

available for the simulation of RDFs, and many research endeavors at the time were instead specifically focused on 
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how to calculate an RDF. This diminished the attractiveness of the theory immensely, since the input was generally 

unavailable. Another reason for the lack of interest initially was that there was controversy for some time as to whether 

or not KB theory could be applied to salt solutions. It can, but it was not immediately obvious to the research 

community and it took some time to sort this out.  

 

In 1977, Arieh Ben-Naim established the inversion of KB theory, meaning that if one knew the relevant 

thermodynamic properties of the mixture of interest, one could go “backwards” to obtain the integrals over the RDFs 

(Ben-Naim 1977). The RDFs themselves could not be determined, only the KBIs. This means that one does not obtain 

distance dependent information from the inversion procedure, but does obtain the net affinity of i for j at the local 

level by measuring the local composition near a central i molecule relative to the bulk composition. A large positive 

Gij thus means that there must have been a net ordering of j around i, or equivalently aggregation of j and i, whereas 

negative values for Gij indicate that j was not strongly associated with i. For a binary mixture (composed of species 1 

and 2), the inversion procedure is given by 
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where δij is the Kronecker delta function (δij = 1 if i = j, δij =0 if i ≠ j) and ρ = ρ1 + ρ2.   

 

1.3 A Very Brief History of Solution Theories 

Prior to MM and KB theories, there were really no competitive theories of liquid mixtures. Figure 1.1 provides a 

timeline of some of the key developments in solution theory. Recently, Mazo described solution theory history in 

terms of an “Ancient” period, an “Early Modern” period, and a “Modern” period (Smith et al. 2013). Mazo marks the 

start of the Ancient period with the discovery of Henry’s law, due to it being the first quantitative law explaining the 

properties of solutions (Henry 1803). During this time van der Waal’s thesis was also published and the Lorentz and 

Berthelot combination rules were developed (Gubbins 2013), which were an attempt to improve intermolecular 

potentials when they were applied to mixtures (van der Waals 1873). Mazo suggests that the Ancient period ended 

with the discovery of Raoult’s law (Raoult 1878, 1882, 1887, 1888). This was approximately the same time that van’t 

Hoff was deriving the equation relating the concentration of a solute to a solution’s osmotic pressure and just after he 

had discovered three of the colligative properties (Van't Hoff 1887, 1894).  

 

The Early Modern period involved the work of Gibbs, who began developing SM in the early 1900s (Gibbs 1902; 

Gibbs 1948). During this period. SM proved to be very successful for gases, but less so for liquids and liquid mixtures 

(Smith et al. 2013). The first attempt to approxiate the excess Gibbs free energy of mixing was also published (by van 

Laar) during this period (Van Laar 1906), but it was tied to the VDW EOS and, therefore, had quite limited accuracy. 

In the late 1920s, Hildebrand’s Regular Solution Theory was developed (Hildebrand and Sharma 1929), which broke 

away for the VDW EOS but has many assumptions itself, including that the RDFs expressed as a function of reduced 

separation distances (σij) are independent of the species (Gubbins 2013). During this period, success was also being 

achieved for the understanding of solids (Gubbins 2013). Development of the Ising model led to attempts to use lattice 
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theories as models for liquids as well (Ising 1925). Ultimately this was considered very unsuccessful, since we now 

know that liquids are very unlike solids (Gubbins 2013). In the 1930s, Mayer derived the virial equation for imperfect 

gases, which would later lead to his and Mayer’s development of the analog for solutions, MM theory (McMillan and 

Mayer 1945; Smith et al. 2013).  

 

The ultimate goal in solution theory would be that all one would need to use as input to a theory would be the molecular 

properties of the constituent molecules in a mixture (as well as the conditions such as the temperature and pressure) 

and that from that input, one could explain and predict all of the mixture’s properties (Ben-Naim 2006). The above 

attempts from the Ancient and Early Modern periods largely fall into that category, but were generally unsuccessful. 

However, during the Early Modern period Kirkwood (and others) were developing the correlation function approach 

(Kirkwood 1935; Smith et al. 2013). Ultimately these would be used in less ambitious (but more successful) theories 

of solutions (Ben-Naim 2006). Instead of only requiring information about the properties of the molecules that make 

up a solution mixture, now additional input in the form of the correlation functions could be used. 

 

The development of KB (and MM) theory is what marks the beginning of the Modern period of solution theory 

according to Mazo (Smith et al. 2013). Unlike all of the previous theories (and those that were not mentioned here), 

KB theory does not make assumptions such as stating that certain excess properties of mixing are zero, that the 

components of the mixture must be atomic or that they must be nonpolar, etc. (see e.g, (Hildebrand and Sharma 1929)). 

It requires absolutely no knowledge about how the molecules interact with each other (the intermolecular potentials), 

not even that the interactions be pairwise additive. It says nothing about the shape of the molecules (such as, that they 

must be spherical) and it makes no requirements that the must be rigid, etc. In this sense, it is not appropriate to group 

KB theory with the other types of theories mentioned above. It is simply done here in an attempt to provide a bit of 

historical perspective. 

 

A short while later, the very first computer simulations of hard spheres (HS) and Lennard-Jones (LJ) spheres were 

reported (Smith and Lea 1960; Singer 1969). It was not until the development of sufficiently sophisticated computers 

and computational techniques that would allow for the simulation of RDFs that KB theory could be used without the 

inversion procedure. In 1990 a monograph was published filled with examples of KB theory’s uses (Matteoli and 

Mansoori 1990), followed by a second monograph in 2013 that was filled with updates such as applications to 

biomolecules (Smith et al. 2013), which were nonexistant in the 1990 monograph. 

 

One modern theory that is experiencing a lot of success is the Statistical Associating Fluid Theory (SAFT) (Chapman 

et al. 1989, 1990), which is an EOS for mixtures that has been used widely in the chemical engineering community 

and has been applied to over one hundred pure fluids and their mixtures, including molecular and polar liquids. SAFT 

is based upon Wertheim’s off-lattice theory called “Fluids with Highly Directional Attractive Forces” and it involves 

an expansion in the activities of a mixture’s components (Wertheim 1984b, 1984a; Gubbins 2013). Numerous 
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extensions to SAFT have been proposed. It is an active area of ongoing work, the ultimate success of which it is 

probably too early to decide; however, it really falls into a separate category from KB/FST theory. 

 

Traditional KB theory is an isothermal theory. Building upon previous work of Buff and Brout and of Debenedetti 

(Buff and Brout 1955; Debenedetti 1986, 1987a, 1987b, 1988; Debenedetti 1989), in 2011 Paul E. Smith published 

the analog of the KB inversion procedure with the removal of the isothermal restriction. This dissertation will illustrate 

the first attempts to use this new extension (see Chapters 4 and 5).  

 

To our knowledge, no new theories of solution mixtures have appeared that offer as many advantages as does KB/FST 

theory. FST has now been widely used to understand the basic properties of solutions (Matteoli and Mansoori 1990), 

to understand the effects of additives on the solubility of solutes (from small hydrocarbons to proteins) and 

biomolecular equilibria (O’Connell 1971a; Chialvo et al. 1996; Chitra and Smith 2001a; Ruckenstein and Shulgin 

2002; Shimizu and Smith 2004; Shulgin and Ruckenstein 2005; Mazo 2006), to investigate the local composition of 

solutions in the context of preferential solvation (Marcus 1989), to study the effects of additives on the surface tension 

of liquids (Chen and Smith 2008), to study critical behavior (Cochran et al. 1987; Debenedetti 1987a; O’Connell and 

Liu 1998; Baird and Kim 2003), to interpret computer simulation data (Smith 1999; Chitra and Smith 2001a; 

Weerasinghe and Smith 2003a; Ganguly et al. 2011), to develop models for many of the above effects (Smith 2004b), 

and to provide expressions for the volume, enthalpy, compressibility and heat capacity corresponding to simple 

association equilibria (Gee and Smith 2009; Jiao and Smith 2011). This list is not exhaustive.
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Figure 1.1 Timeline of selected advancements in solution theory. References within the timeline that are not included in the text include the following: 

(London 1930; Fowler and Guggenheim 1939; Prigogine 1957; Rowlinson and Swinton 1982). The references for the Lorentz and Berthelot combination 

rules may be found within (Gubbins 2013). For conformal theories see e.g., (Longuet-Higgins 1951). For PT see e.g., (Zwanzig 1954; Buff and Schindler 

1958; Mazo 1958).  
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1.4 Problems with KB/FST Theory 

It is never a good idea to list all of the strengths of a thing and to not discuss its weaknesses just as plainly. The issues 

with KB/FST Theory are not theoretical, but there are often practical issues with its use. These are enumerated here. 

 

When going in the direction of the {RDFs} to the {KBIs}, one still has the question of how to obtain the input RDFs. 

Experimental RDFs are available for some liquids and very few liquid mixtures, but generally not the liquid mixtures 

in which we are actually interested (mixtures composed of molecular and/or polar liquids). Therefore, we perform 

molecular dynamics simulations of the systems we are interested in and use the simulated trajectories to obtain the 

RDFs. This means that the accuracy of the simulated RDFs that we obtain will depend upon the accuracy of the force 

field that was used to generate the trajectories of the molecules within the system. The force fields that are used are 

simple models that have been created to balance the need for accuracy with the need for computational efficiency and 

are themselves filled with approximations. However, one can develop force fields intelligently to reproduce the KBIs, 

which gives increased hope that the intermolecular potentials used in the simulation are of increased accuracy and the 

RDFs will be as well. The method to do so, pioneered by Smith, is discussed in Chapters 2 and 3. 

 

Assuming that one has an accurate description of the intermolecular potentials, the second issue with the simulation 

of the RDFs/KBIs is their relatively slow convergence with respect to time and distance. This means that one may 

need to simulate systems for on the order of tens of nanoseconds in order for the KBIs to converge and that one may 

need to use relatively large simulation boxes. For binary mixtures of small molecules, examples might be on the order 

of tens of nanoseconds and ~6-10 nm in length simulation boxes. The exact requirements will depend upon the specific 

system studied. Less ideal systems and systems with larger molecules will generally need comparatively larger boxes 

and longer simulation times than those of more ideal systems and/or smaller molecules. Additionally, solutes that are 

at low concentrations require larger system sizes and longer simulation times to converge than would a mixture of the 

same components at more equally balanced compositions. This is simply an issue of poor statistics for the species 

with fewer molecules present. These issues are discussed in Chapter 2 and are especially well illustrated in Chapters 

3 and 6. We generally have been able to overcome the issues in this paragraph; it simply requires a bit of extra 

simulation effort. 

 

Lastly, it is largely unknown how precisely one can obtain the KBIs from the experimental thermodynamic data. This 

is addressed to some extent in this dissertation (see Chapters 3 and 6); however, more work in this area is certainly 

worth pursuing. The KBIs are sensitive to the experimental excess Gibbs free energy (GEx) data from which the 

chemical potential composition derivatives shown in Equation 1.3 are obtained. In addition to having experimental 

error in the raw T-p-x-y Vapor-Liquid Equilibria data (p is the pressure, x is the liquid phase mole fraction and y is the 

gas phase mole fraction) that is used to obtain the Gibbs free energy, there is a second potential kind of noise/error, 

which arises from the requirement for an analytical expression to be used to go from GEx to μij. The researcher often 

has a few different correlating equations to choose from. Their decision of a specific equation will impact, to some 
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extent, the value of the KBIs obtained from the inversion procedure. The degree to which this is an important issue 

versus a potential problem is almost entirely unknown at this point in time.  

 

With these practical issues in plain view, we still view KB/FST theory as the most powerful theory of liquid mixtures 

available. The simulation issues mentioned above will probably greatly diminish with time due to continuing increases 

in computational power.  

 

It is our view, then, that it is better to use the principled KB/FST theory, with its current but diminishing practical 

implementation issues, than it would be to use a theory that could be solved for analytically, but contained significant 

approximations and/or simplifications.  

 

1.5 Organization of Dissertation 

Chapters 2 and 3 deal with traditional KB theory. In Chapter 2 we test modern biomolecular force fields’ abilities to 

reproduce the experimental KBIs for a few important mixtures. We argue that if a force field cannot reproduce the 

experimental KBIs well, then it is not correctly describing the association of molecules in solution, nor the 

thermodynamic properties of the solution. We then show how force fields can be parameterized to reproduce KBIs 

over a full range of compositions in binary mixtures and suggest that this gives more confidence that the force field 

will then describe both structural and thermodynamic properties of simulated systems with improved accuracy. In 

Chapter 3 we then compare a force field that explicitly accounts for electronic polarization to a non-polarizable force 

field that was parameterized to reproduce the KBIs. Polarizable force fields are theoretically superior to non-

polarizable force fields. In Chapter 3 we test if this theoretical superiority necessarily leads to a practical superiority. 

 

Chapters 4 and 5 deal with the above mentioned extension of KB theory to make it a non-isothermal theory. This 

extension necessarily involves considering other fluctuations that occur in the grand canonical ensemble besides 

fluctuations in the number of particles within a fixed volume (those appearing in Equation 1.2). Specifically, it 

involves particle – energy and energy – energy fluctuations, which leads to our use of the term FST instead of KB 

theory. Chapter 4 only presents the results for the inversion procedure i.e., where we have analyzed bulk 

thermodynamic data and from it extracted the local, fluctuating properties. Chapter 5 pairs the analysis of experimental 

data with results from molecular dynamics simulations. 

 

In Chapter 6 we investigate how the particle-particle fluctuations depend on composition and pressure. Their 

dependence on temperature is of great interest to us as well, but that will appear elsewhere. (Furthermore, the 

analogous dependence of the particle-energy and energy-energy fluctuations on temperature, pressure, and 

composition are of great interest, but will not be presented here.) The pressure and composition derivatives of the 

particle-particle fluctuations involve triplet particle-particle-particle fluctuations that are non-zero. These triplet 

fluctuations are the third cumulant (or third central moment) of the distribution of particles in solution. The fact that 

they are non-zero allows us to draw some conclusions about the way particles are distributed in solution (i.e., it cannot 
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be a symmetric distribution such as the Gaussian distribution). We also test whether or not it is possible to simulate 

these higher fluctuations precisely, since it is sometimes difficult to achieve adequate precision for the simulation of 

the traditional KBIs.  

 

Chapter 7 is actually not about KB theory or FST. Here we test the ability to precisely simulate infinitely dilute partial 

molar quantities of proteins using a thermodynamically rigorous approach, the (experimentally well known) apparent 

molar approach. We are unaware of prior applications of this general approach to computer simulations. Traditional 

computational methods to calculate these properties are scarce for all but the infinitely dilute partial molar volume, 

which has typically been calculated using subjective approaches. The reason for the inclusion of Chapter 7 in a 

disseration on FST is that we are in the process of testing an FST-based approach to also calculate these same 

properties. The FST-based approach has several advantages over the apparent molar approach presented here, and is 

briefly described at the end of Chapter 7. 

 

Chapter 8 provides a summary of what we have learned so far and of our future directions. 
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2. Accurate Force Fields for Molecular Simulation*† 

 

Abstract 

The analysis of thermodynamic data concerning solutions using Fluctuation Solution Theory (FST) has provided a 

deeper understanding of local composition in solution mixtures. Over the past decade, we have used this data to help 

improve the description of intermolecular interactions implemented in common force fields for molecular simulation, 

with an emphasis on solutes of biological interest. A comparison between experimental and simulation data for small 

solute-solvent mixtures provides a clear indication of the quality of the force field, provides access to solute (and 

solvent) chemical potential derivatives with respect to composition, and thereby helps to ensure that the correct balance 

between solute-solute, solute-solvent, and solvent-solvent distributions is attained. Here we discuss the advantages 

and disadvantages of using such an approach for force field design and parameterization, and provide simulation 

results for a series of representative solution mixtures obtained with a variety of currently available biomolecular force 

fields. 

 

  

                                                           
* Republished with permission of Taylor and Francis Group LLC Books, from “Accurate Force Fields for Molecular 

Simulation” by Elizabeth A. Ploetz, Samantha Weerasinghe, Myungshim Kang, and Paul E. Smith appearing as 

Chapter 5 of Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics, 

Edited by Paul E. Smith, Enrico Matteoli, and John P. O’Connell, Copyright 2013; permission conveyed through 

Copyright Clearance Center, Inc. 

 
† Designed by PES and EAP, written by EAP, edited by EAP and PES. Simulations were similar to those previously 

performed and analyzed by MK that had remained unpublished and used shorter simulation times, smaller simulation 

systems, and fewer systems. 
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2.1 Introduction 

Computer simulation is used for a wide range of purposes, from exploring experimentally inaccessible phenomena, to 

providing an alternative when the corresponding experiment would be prohibitively costly, time-consuming, difficult, 

dangerous, or controversial. From a biomolecular perspective, molecular modeling techniques are commonly used for 

rational drug design, for protein structure prediction, and in a host of other scenarios where the atomic level resolution 

they provide can lend valuable insights into the systems of interest. Using computer simulation, one can even study 

processes that are impossible or unphysical in real life (e.g., computational alchemy). Thus, the potential of 

biomolecular computer simulation is undeniable. 

 

Despite the many exciting uses of molecular simulation, there is no formal guarantee that the results will reflect reality. 

The quality of a Molecular Dynamics (MD) or Monte Carlo (MC) simulation depends on the degree of sampling 

achieved during the simulation, which we shall not consider here, together with a satisfactory description of the intra- 

and intermolecular interactions in the system, that is, an accurate force field (FF). Decades have passed since the first 

MD simulations were performed, but the effort to continuously improve the quality of the underlying FFs continues 

to this day (Cheatham and Brooks 1998; Wang et al. 2001; Mu et al. 2003; Mackerell 2004; Allison et al. 2011; 

Schmid et al. 2011; Zhu et al. 2012). It has been expressed that both the general philosophy and the parameters for 

biomolecular FFs are probably converging (Wang et al. 2001). However, we argue and demonstrate here that there is 

still significant room for improvement and that a markedly different parameterization philosophy is probably 

necessary.  

 

2.2 Currently Identified Force Field (FF) Challenges 

Two of the main biomolecular FF challenges are: (i) The generation of accurate torsional potentials for peptides and 

proteins and (ii) improved parameters for the description of nonbonded interactions. A commonly cited example of 

the former is Simmerling’s (and others) exposure of a bias toward the α-helical secondary structure in the AMBER 

ff94 and ff99 FFs (Okur et al. 2003). Simmerling was able to achieve an improved balance between the possible 

secondary structure propensities through modification of the torsional potentials, resulting in the AMBER99sb FF 

(Hornak et al. 2006). While incorrect torsional potentials may have contributed to other reported artifacts (Mu et al. 

2003; Allison et al. 2011), they are not addressed here because FST will not help with this part of the parameterization. 

Our focus will only be on the use of FST/KB theory to help improve intermolecular nonbonded interactions for simple, 

effective charge, nonpolarizable FFs.  

 

One strict test of the quality of the nonbonded parameters is the ability to reproduce appropriate protein-ligand 

association interactions and binding free energies. In FF-based computational drug design, it is notoriously difficult 

to predict binding free energies quantitatively or to rank ligands based upon their binding affinities, even in cases 

where the correct ligand-receptor pose has been predicted (Lazaridis 2002; Bonnet and Bryce 2004). Consequently, it 

has been suggested that the nonbonded parameters may be deficient (Lazaridis et al. 2002). This issue extends further 

to question the quantitative features concerning assembly and aggregation equilibria. 
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Furthermore, because many proteins are only marginally stable (Dill et al. 2011), a correct description of nonbonded 

interactions is necessary for attaining quantitative conformational equilibria, melting temperatures, and other 

thermodynamic properties associated with protein folding. For example, it was reported that a 28-residue miniprotein 

that adopts a ββα motif had a simulated melting temperature 84 K higher than experiment using OPLS-AA (Feng et 

al. 2009), while the native structure of the Trp-cage miniprotein has been shown to be less stable than the unfolded 

state when using the OPLS-AA FF (Juraszek and Bolhuis 2008). The melting temperature of the Trp-cage protein was 

also overestimated by 130 K using AMBERff94 (Paschek et al. 2008), but was in reasonable agreement with 

experiment when using the AMBER99sb FF due to an apparent cancellation of errors in which the enthalpy and 

entropy contributions were both a factor of two or more smaller than experiment (Day et al. 2010; Zhang and Ma 

2010; Paschek et al. 2011). The Trpzip2 miniprotein simulated with AMBER99sb has also been reported to have an 

enthalpy and entropy of unfolding about half the magnitude of the experimental values, and a heat capacity change 

about 1/10th the experimental value (Nymeyer 2009; Zhang and Ma 2010). Interestingly, we have not found a 

simulated folding equilibrium where both the melting temperature and the underlying entropy and enthalpy 

contributions agreed with experiment. Considering that protein folding is currently a popular area of biomolecular 

simulation (Bowman et al. 2011), it seems prudent to place the nonbonded interactions under further scrutiny. 

 

Our interest in the quality of FFs grew naturally from a longstanding effort to understand the effects of cosolvents on 

biomolecules. Examples from the 1990s include Smith and Pettitt’s observations of interesting salt-biomolecule 

interactions in light of the Hofmeister series (Smith and Pettitt 1991, 1992; Smith et al. 1993). Unfortunately, it was 

unclear if some of the results described in these early studies represented real physical behavior or were simply 

artifacts of the FF (Smith et al. 1993).  

 

Consequently, in the early 2000s the Smith group analyzed several solution mixtures from a KB point of view seeking 

to decipher if the mainstream biomolecular FFs could be used to quantify the preferential interactions occurring in 

ternary systems of a solvent, biomolecule, and cosolvent. Specifically, Chitra and Smith simulated aqueous mixtures 

of a series of cosolvents including 2,2,2-trifluoroethanol, urea, guanidinium chloride, sodium chloride, and ammonium 

sulfate with several commonly available FFs. These studies indicated a general inability of the available FFs to 

reproduce the experimental KBIs (and hence the chemical potential composition derivatives), resulting from a 

tendency for the effective solute-solute and solvent-solvent interactions to be too favorable (Chitra and Smith 2001a, 

2001c, 2001b). These studies also implied that established small molecule FFs would not be able to model the correct 

distributions of common cosolvents around biomolecules (Kang and Smith 2007). The general conclusion from these 

studies was that, while it was common for different FFs to provide similar accuracy for properties such as densities, 

diffusion constants, dielectric properties, and so forth, the resulting KBIs usually varied greatly (Chitra and Smith 

2000, 2001b). 
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Others have confirmed the general inability of biomolecular FFs to consistently reproduce the experimental KBIs. For 

example, Perera and coworkers studied acetone-water mixtures with both OPLS and the acetone FF of Klein (Ferrario 

et al. 1990) and found that, while both FFs were able to acceptably reproduce the enthalpies, densities, and diffusion 

coefficients of the mixtures, neither of the models could reproduce the solution KBIs. Indeed, both models phase 

separated in the acetone mole fraction range of ~0.3-0.7 (Perera and Sokolic 2004). Furthermore, alternative force 

fields for urea have been observed to exhibit different quantitative behavior concerning their interactions with small 

peptides (Horinek and Netz 2011). One of the main advantages of studying solutions using KB theory is the access to 

chemical potentials, in the form of their composition derivatives. 

 

We note that instead of using KB theory, thermodynamic integration or particle insertion methods could be used to 

calculate the chemical potentials (Kokubo et al. 2007; Joung and Cheatham 2008, 2009). However, these methods 

often do not have the precision required to detect the typically small changes in the chemical potential with 

composition, which can often be less than a kJ/mol, without a significant computational investment. Additionally, we 

emphasize that the chemical potential derivatives with respect to composition, not the chemical potentials themselves, 

are directly related to the preferential interactions generally used to quantify cosolvent effects on biomolecular systems 

(Record et al. 1998; Timasheff 1998). Finally, while infinite dilution free energies or enthalpies of solvation probe 

solute–solvent interactions, they do not provide a check of solute–solute interactions. Thus, we prefer to use KB theory 

as a guide, because it provides a framework to determine the chemical potential changes for solutes of any size 

throughout a range of compositions. 

 

Current FFs typically have very similar bonded terms. The VDW parameters are usually developed to reproduce the 

density and enthalpy of vaporization of pure liquids and the crystal structure dimensions. Most of the variability and 

uncertainty lies in the Coulomb term. Usually, gas phase charges from ab initio calculations of the geometries and 

minimum interaction energies between dimers are scaled to mimic condensed phase charges, and are then tested to 

ensure that they reproduce the experimental data for pure liquids. Alternatively, condensed phase partial charge 

distributions are simply adopted from gas phase values that were calculated using a basis set that created erroneously 

large gas phase charge distributions. We have argued that the primary reason that many current force fields struggle 

to reproduce the experimental KBIs lies in the approximate nature of the effective charge distributions used to describe 

solute polarity, that is, the unknown degree of polarization of a solute in a polar solvent (Weerasinghe and Smith 

2003a). Consequently, instead of seeking effective pair potentials that reproduce the KBIs, one could pose the 

legitimate argument that explicitly polarizable FFs should naturally reproduce the KBIs better than any nonpolarizable 

FF. We agree with this argument in theory. In practice, the increased computational demand of explicit polarization 

may prohibit those investigators seeking to reach long simulation timescales (a significant subset of the community) 

from adopting polarizable FFs (Freddolino et al. 2010). This would be especially true for those interested in implicit 

solvent simulations where explicit polarization is more difficult to include. Polarizable FF are currently available and 

examples include Ponder’s Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) FF, 
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which is currently only available for organic molecules (Ren et al. 2011), and the CHARMM polarizable FF for 

proteins, nucleic acids, and lipids, which is nearly completed (Zhu et al. 2012). 

 

2.3 Simulated Binary Mixture Kirkwood–Buff Integrals for Popular Biomolecular Force 

Fields: A Case Study 

Our previous studies have investigated a range of FFs for simple cosolvents that often interact with peptides and 

proteins. Here, we ask the question: how well do current biomolecular FFs reproduce the binary solution properties 

for small solutes representative of amino acid sidechains? Biomolecular force fields are designed such that a protein 

is simply a sum of its parts, that is, small solutes can be studied to develop the parameters required for description of 

functional groups commonly found in proteins. Hence, parameters are assumed to be additive and transferable. To 

this end, we present the results of a case study showing the KBIs for four binary mixtures that were each simulated 

using some of the most commonly used biomolecular FFs—AMBER99sb (Hornak et al. 2006), CHARMM27  

(Mackerell et al. 2004; Bjelkmar et al. 2010), OPLS-AA (Jorgensen and Tirado-Rives 1988; Kaminski et al. 2001; 

Jorgensen and Tirado-Rives 2005), and GROMOS54a7 (Schmid et al. 2011). Thus, for a given FF we will interpret 

the results from these mixtures as a general indicator of how successful the FF may be at reproducing solute–solute, 

solute–solvent, and solvent–solvent distributions, which presumably relates to the quality of the underlying interaction 

potentials. 

 

It is worth noting when the most recent nonbonded updates were published for each of these FFs. The AMBER99sb 

release only involved updates to the torsional parameters of AMBER99ff (Hornak et al. 2006). Among other changes, 

AMBER99ff (Wang et al. 2000), based upon AMBER94ff (Cornell et al. 1995), did include updates to the partial 

charges and the addition of a few new atom types. CHARMM’s nonbonded parameters were most recently updated 

with the release of the CHARMM22 protein FF (Mackerell et al. 1998). GROMOS modified their N–H, C=O 

repulsion with the release of GROMOS 54A7 (Schmid et al. 2011) and, prior to that, refined their nonbonded 

parameters for oxygen-containing functional groups with the release of the GROMOS 53A6OXY parameter set (Horta 

et al. 2011). Following the extensive nonbonded OPLS-AA parameterization for all amino acids (Jorgensen and 

Tirado-Rives 1988), the cysteine and methionine nonbonded parameters were updated in the latest OPLS-AA protein 

FF (Kaminski et al. 2001). 

 

The systems studied here were methanol (MOH) + water (HOH) at xMOH = 0.5 at 300 K, benzene (Ben) + MOH at 

xBen = 0.5 and xBen = 0.75 at 308 K, N-methylacetamide (NMA) + HOH at xNMA = 0.1 and xNMA = 0.2 at 313 K, and 1 

m and 3 m aqueous zwitterionic glycine (Gly) at 300 K. The aqueous simulations were performed with the appropriate 

water models: TIP3P (Jorgensen et al. 1983) for AMBER and CHARMM, TIP4P for OPLS (Jorgensen et al. 1983); 

SPC (Berendsen et al. 1981) for GROMOS; and SPC/E (Berendsen et al. 1987) for the KBFF models. The MOH + 

HOH system was chosen as an example of a solution containing two polar molecules. Benzene is representative of 

aromatic amino acid sidechains, and mixtures of Ben + MOH display interesting features in the KBIs as a function of 

composition, namely aggregation of MOH at low xMOH. Here, we also argue that FFs that reproduce the composition 
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dependence of the KBIs for Ben + MOH mixtures are also more likely to correctly model the behavior of both solvent-

exposed and buried phenylalanine. NMA was chosen because it is often used as a model for the peptide group. Low 

NMA compositions were studied because they are more representative of physiological protein backbone 

concentrations than high NMA compositions would appear. The current compositions may very roughly mimic 

peptide–peptide interactions in the presence of large amounts of water and may be very loosely analogous to the 

peptide interactions present in the denatured state. Finally, zwitterionic Gly (aq) was chosen because, despite being 

electrically neutral as a whole, Gly contains features similar to a mixture of salt-bridge forming ions. All of these 

choices were also driven by the availability of the required experimental data. 

 

2.4 Analysis of Experimental Data and Molecular Dynamics Simulations 

The analysis of the experimental data has been presented by us before (Weerasinghe and Smith 2005; Kang and Smith 

2006; Gee 2010; Ploetz and Smith 2011a; Karunaweera et al. 2012). All simulations were performed using classical 

MD techniques and the GROMACS 4.5.3 simulation package (Hess et al. 2008). Molecules were randomly inserted 

in 10 nm in length cubic simulation boxes to create the desired mole fraction based on the experimental density. Each 

system was minimized for >1,000 steps using the steepest descent algorithm and then equilibrated for 100 ps in the 

NVT ensemble followed by 10 ns in the NpT ensemble and 100 ns of production in the NpT ensemble. All NpT 

simulations were at a p of 1 bar. MOH + HOH and Gly (aq) were simulated at 300 K, Ben + MOH at 308 K, and 

NMA + HOH at 313 K. These Ts were chosen to correspond with the experimental activity data. The Berendsen weak-

coupling technique was used to modulate the T and p, with relaxation times of 0.1 ps and 0.5 ps, respectively 

(Berendsen et al. 1984). A 4.5 × 10‐5 bar‐1 compressibility was used for all systems. Periodic boundary conditions and 

the minimum image convention were employed. All bond lengths were constrained using the Settle (Miyamoto and 

Kollman 1992) and Linear Constraint Solver (Hess et al. 1997) algorithms for water and non‐water molecules, 

respectively. The use of bond constraints allowed for a two fs time step to be used for the integration of the equations 

of motion, which was performed using the Leap‐Frog algorithm (Hockney et al. 1974). The particle‐mesh Ewald 

(PME) technique was used to calculate electrostatic interactions (Darden et al. 1993; Lange et al. 2010). van der Waals 

interactions were calculated with the Lennard-Jones 6-12 functional form for all FFs. Cutoff distances for the real 

space electrostatic/van der Waals interactions were 0.8 nm/0.8 nm for AMBER (Hornak et al. 2006), 1.0 nm /1.5 nm 

for CHARMM, 0.8 nm /1.4 nm for GROMOS (Schmid et al. 2011), and 1.0 nm /1.5 nm for OPLS, respectively. 

CHARMM and OPLS do not use a consistent set of cut-offs, thus these values were chosen somewhat arbitrarily. The 

PME convergence parameter was 3.12 nm‐1 for CHARMM and OPLS and 3.90 nm‐1 for AMBER and GROMOS. 

Cubic interpolation and tinfoil boundary conditions (Darden et al. 1993) were used. The maximum fast Fourier 

transform grid spacing was 0.12 nm for the reciprocal space sum. The neighbor list was updated every ten steps. 

 

The KBIs are defined as integrals over RDFs in the μVT ensemble, but μVT ensemble simulations are nontrivial to 

perform. We circumvent this issue by performing simulations in the NpT ensemble and approximating the μVT RDF 

by the NpT RDF (they differ by a term on the order of N-1). We then truncate the KBIs at some distance Rc beyond 

which the RDFs are assumed to be unity. If the KBIs are not truncated they cannot be used, because they will be equal 
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to zero for unlike pairs and minus one for like pairs. This is discussed in more detail elsewhere (Chitra and Smith 

2001b). One can check the appropriateness of both the specific choice of Rc and the truncation approximation in 

general such that internally consistent partial molar volumes (PMVs) are achieved by calculating the PMVs from the 

simulated KBIs and comparing them with the PMVs obtained from the composition dependent system volume data 

(Chitra and Smith 2001c). Here, the simulated values of the KBIs that have been plotted in comparison with 

experiment were obtained by averaging the simulated KBIs between 0.95 and 1.2 nm for MOH + HOH; between 2.0 

and 2.5 nm for Ben + MOH; and between 1.2 and 1.6 nm for NMA + HOH and Gly + HOH based upon our previous 

studies of these same systems (Weerasinghe and Smith 2005; Kang and Smith 2006; Ploetz and Smith 2011a).Note 

that perfect agreement with our previous results is not achieved here due to the current studies use of much larger 

simulation boxes and much longer simulation times compared to our previous publications.  

 

There are technical issues surrounding the determination of KBIs from simulations of closed systems (Schnell et al. 

2011; Smith et al. 2013). We do not contend that the truncation (with averaging) type of approach described above is 

the most accurate. However, in the absence of more formal and accurate approaches, which were not available when 

we first investigated these integrals, we believe it has provided reasonable approximations to the true integrals. 

Certainly, it has allowed us to distinguish major flaws in many force fields, flaws that cannot simply be explained by 

inaccuracies in the integration procedure. Some examples of these flaws are described later. 

 

Further technical details can be found in our previous work (see Table 2.2 for references) and will be supplemented 

in a future publication, which will additionally expand the set of thermodynamic and physical properties compared 

across the FFs and the mole fractions studied.  

 

2.5 FF Implementation 

The number of excluded interactions for each molecule is listed in Supplementary Table 2.1. The parameters for each 

molecule for each FF are provided in Supplementary Table 2.2 (non-bonded) and Supplementary Table 2.3 (bonded). 

Supplementary Table 2.4 shows the combination rules and the 1-4 pair interaction scaling rules used for each FF. 

Although each FF was developed with different methods to truncate non-bonded interaction potentials, we have used 

a straight cut-off for van der Waals interactions for each FF and PME (Darden et al. 1993) for the treatment of long-

range electrostatics. It has been shown that all FFs generally perform better with PME (Lange et al. 2010).  

 

2.5.1 AMBER99sb 

The AMBER99sb implementation in GROMACS has been validated (Sorin and Pande 2005). A building block for 

NMA was constructed based upon the blocked termini (acetyl and N-methyl) groups’ parameters. A building block 

for zwitterionic Gly was constructed based upon the charged C- and N-terminal Gly entries provided in the residue 

database. The TIP3P (Jorgensen et al. 1983) model was used for all water simulations. Because AMBER FFs have 

not been developed with the charge group concept, atomic charge groups were used. 
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2.5.2 CHARMM27 

MOH (by A. D. MacKerell), Ben (by A. D. MacKerell), and NMA (by Louis Kuchnir) parameters were adopted 

directly from the CHARMM22 toppar_all22_prot_model.str file. Zwitterionic Gly was constructed from the provided 

database entries for the Gly residue and the charged termini. The TIP3P model (Jorgensen et al. 1983) was used for 

all water simulations. Because CHARMM FFs have not been developed with the charge group concept, atomic charge 

groups were used.  

 

2.5.3 OPLS-AA 

We used the MOH topology file provided in the OPLS-AA force field folder of GROMACS-4.5.3 (Jorgensen et al. 

1996). The Ben topology was built based upon the toluene topology built for use in GROMACS (Jorgensen and 

Tirado-Rives 2005; Caleman et al. 2012). The NMA topology was taken directly from the literature (Jorgensen and 

Tirado-Rives 2005; Caleman et al. 2012). Zwitterionic Gly was constructed from the provided database entries for the 

Gly residue and the charged termini. The TIP4P model (Jorgensen et al. 1983) was used for all water simulations. 

 

2.5.4 GROMOS54a7 

The GROMOS54a7 FF is not supported in GROMACS-4.5.3. The complete set of GROMACS-compatible FF files 

for GROMOS 54A7 was obtained from the Automated Topology Builder and Repository (Malde et al. 2011). These 

files include a topology for MOH (rigid), which was used. Ben was constructed based upon the phenylalanine 

topology. A building block for NMA was constructed based upon the blocked N-terminus (acetyl) parameters and the 

N-H parameters used in the residue building blocks, which then created only one option for the CH3 (charge) 

parameter. Zwitterionic Gly was constructed from the provided database entries for the Gly residue and the charged 

termini. The SPC model (Berendsen et al. 1981) was used for all water simulations. 

 

2.6 Assessment of KB Integrals from Established Biomolecular FFs  

Figure 2.2 displays the excess coordination numbers Nij = ρjGij for the four systems and the four FFs. All of the models 

performed reasonably well for MOH + HOH, but there was a wide variety of results for the other systems.  

 

N11 or N22 values of ~100 typically indicate a mixture that is approaching immiscibility (Matteoli and Lepori 1984). 

The GROMOS NMA + HOH N11 values are, indeed, very large for the compositions studied. Furthermore, snapshots 

from the simulations gave a visual indication that the GROMOS NMA + HOH systems appeared to phase separate at 

both NMA compositions studied. Hence, the RDFs for the GROMOS NMA + HOH mixtures could not be considered 

as converged. Therefore, the values reported in Figure 2.1 are only shown for comparison purposes. 



18 

 

 

 

Figure 2.1 Comparisons of the excess coordination numbers for mixtures of methanol + water, benzene + 

methanol, N-methylacetamide + water, and zwitterionic glycine + water using four commonly used 

biomolecular force fields. Error bars are not shown for clarity. The GROMOS NMA + HOH points were 

calculated using unconverged RDFs.   
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It is interesting to note that, while some FFs appeared to reproduce the Nijs reasonably well for certain systems, none 

of the FFs were able to reproduce the Nijs for all four systems. Additionally, in each aqueous solution, all deviations 

from experiment were in the direction of too much self-association between the solute molecules, that is, large positive 

N22 values. In many cases, the deviations from experiment were quite large. Clearly, in these cases the models are not 

capturing the correct balance of solute–solvent, solute–solute, and solvent–solvent interactions. It was exactly these 

types of results, albeit for different systems, that prompted us to investigate what the reasons were for the lack of 

consistency among the FFs, why the results were sometimes in such poor agreement with experiment, and if FFs could 

be systematically improved. 

 

Due to the issues mentioned previously surrounding the unknown polarization of molecules in condensed phases, we 

believe condensed phase charge distributions cannot, in general, be determined from a simple scaling of the QM 

calculated electrostatic potential. In our opinion, optimization of the effective charge distribution should be performed 

when studying the properties of liquid mixtures, not from quantum calculations for molecules in the gas phase. This 

is rarely attempted. Biomolecular FFs are usually designed to reproduce the properties of pure liquids and/or infinitely 

dilute solutes, with the assumption that mixtures of these molecules, in any ratio, will produce reasonable solution 

properties. For example, the most recent GROMOS partial charges were parameterized to reproduce the hydration 

free enthalpies of amino acid analogs in water (Oostenbrink et al. 2004). However, it is clear that this FF does not 

produce the correct balance of solute–solute, solute–solvent, and solvent–solvent interactions for NMA + HOH at the 

compositions studied. We believe that it is more desirable to base the partial charge parameterization on properties of 

mixtures across a large range of compositions. This is not a particularly new concept, but finding data that is sensitive 

to changes in composition is just as important and has been difficult. 

 

2.7 The Kirkwood–Buff Derived Force Field Approach 

We have above seen that current FFs do not necessarily reproduce the KBIs, and that generally the properties of 

solution mixtures are not typically taken into account during the parameterization procedure. Because different FFs 

produce such widely varying KBIs, and because the greatest variation in their parameters comes in the form of their 

charge distributions (Weerasinghe and Smith 2003a), it seems that the simulated KBIs are very sensitive to the choice 

of the charge distribution and that this distribution could be optimized to reproduce the KBIs. Armed with this 

philosophy, we set out to create a peptide / protein FF, known as the Kirkwood-Buff derived force field (KBFF), which 

attempts to reproduce the KBIs for small molecules representative of the building blocks of proteins and their mixtures 

with solvents such as water and methanol. The focus is centered on determining reasonable effective condensed phase 

charge distributions for polar solutes. More details of the philosophy can be found in Table 2.1 and elsewhere (Ploetz 

et al. 2010a; Weerasinghe et al. 2010). Table 2.2 shows the models we have parameterized to date. 

 

Recently, approaches relying on KB theory have also been used by other groups for the parameterization or testing of 

several small molecule FFs (Lee and van der Vegt 2005; Zhong and Patel 2010; Horinek and Netz 2011). Additionally, 

outside of the biological FF community, there has been significant work to develop FFs that reproduce solution 
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activities, which is a key aim of the KBFF models. Notably the TraPPE models, developed by the Siepmann group, 

are specifically designed to model vapor-liquid coexistence curves (Maerzke et al. 2009). TraPPE has been developed 

primarily for thermodynamic and engineering purposes, and it cannot be directly applied to biomolecular systems in 

its present form. 

 

Before indicating the type of results one can obtain using the KBFF philosophy, we briefly summarize the advantages 

and disadvantages of the approach. 

 

Table 2.1 Strategy behind the KBFF 

Philosophy Action 

The functional form of the FF should be simple and 

efficient to allow for the simulation of large systems for 

long timescales. 

Develop a non-polarizable, united atom FF. 

Adopt the GROMOS functional form (geometric 

combination rules for σ and ε). 

Adopt the best (at the time the work was initiated) 

three-site water model, SPC/E. 

Bond and angle parameters are reasonably well known.  Adopt the GROMOS bond and angle parameters. 

Dihedral potentials can be obtained from gas-phase QM 

calculations. 

Modify dihedral potentials to fit gas-phase QM 

calculations. 

Because hydrocarbons are non-polar, their charge 

distributions play a relatively minor role. 

Adopt the GROMOS nonbonded parameters for 

electrically neutral united atom hydrocarbons. 

A correlation has been determined between atomic 

polarizabilities and atomic sizes (Miller and Savchik 

1979). 

Assign LJ 6-12 parameters for polar atoms using a 

simple scaling scheme between atomic size and atomic 

polarizabilities (Miller and Savchik 1979; Weerasinghe 

and Smith 2003c). 

The charge distribution of polar groups is highly variable 

among FFs and is the major deficiency. 

Iteratively parameterize the charge distributions of a 

solute to reproduce its experimental KBIs. 

The FFs generated should provide accurate descriptions of 

the changes in the cosolvent chemical potentials as a 

function of cosolvent concentration. 

Perform simulations of mixtures over as wide a range 

of compositions as possible. Consider all these 

compositions when fitting the KBIs; however, be aware 

of areas prone to statistical uncertainty experimentally 

and in the simulations (G11 at low x1 and G22 at low x2). 

 

Table 2.2 Completed KBFF models 

Solute Solvent Relevant species Reference 

Acetone Water Cosolvent Weerasinghe and Smith (2003b) 

Urea Water Cosolvent Weerasinghe and Smith (2003c) 

NaCl Water Cosolvent Weerasinghe and Smith (2003d) 

Guanidinium chloride Water Cosolvent, Arg Weerasinghe and Smith (2004) 

Methanol Water Ser Weerasinghe and Smith (2005) 

Amides Water Asn, Gln, peptide group, blocked 

termini 

Kang and Smith (2006) 

Thiols, sulfides Methanol Met, Cys, disulfide Bentenitis et al. (2009) 

Aromatics, aromatic alcohols Methanol Phe, Tyr Ploetz and Smith (2011a) 

Heterocycles Methanol 

or Water 

Trp, His (charged and  neutral) Ploetz and Smith (2011a) 

1º , 2º , 3º alcohols Water Thr, cosolvent Jiao et al. (2014) 

Amine salts, carboxylates Water Lys+1, Asp-1, Glu-1, termini+1/-1 Gee and Smith (2012) 

Amines, carboxylic acids Water Cosolvent, Lys0, Asp0, Glu0, termini0 Dai et al. (2014) 
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2.7.1 Advantages of using KB Theory in FF parameterization 

1. It is an exact solution theory, that is, it has no free parameters, requires no approximations, and makes no 

assumptions except that the system is in the thermodynamic limit. 

2. Due to the complexities of the condensed phase, FF developers often must resort to using gas phase data to 

parameterize condensed phase FFs. KB theory allows condensed phase experimental data to be used. 

3. The theory can be applied to solutions composed of any number of molecules of any size and complexity as long 

as the solution is stable with respect to composition. 

4. It does not assume that the interactions are pairwise additive when expressing thermodynamic properties in terms 

of KBIs, but instead it takes into account the true many-body interactions in solutions.  

5. One can decompose KBIs into distance dependent effects, which is difficult to do experimentally. 

6. KBIs are a sensitive probe of the molecular distributions observed for different solutions and can be used to 

distinguish between models with otherwise similar characteristics. 

 

2.7.2 Disadvantages of using KB theory in the parameterization approach 

1. Relatively large simulation boxes (≥6 nm) may be necessary for systems with large molecules and/or in 

aggregating systems. The need for a large box may be anticipated if the experimental Gijs show large deviations 

from their symmetric ideal values (Ploetz et al. 2010b). 

2. Relatively long simulation times (tens of nanoseconds) are needed in order for the RDFs and Gijs to converge. 

3. The search for a charge distribution is more or less random. Our models have been developed based upon ~30 or 

fewer iterations (Bentenitis et al. 2009). 

4. For some mixtures, the experimental data needed to conduct the KB inversion procedure is not available or is 

often unreliable. 

 

The KBFF simulations followed the same protocol as the simulations for the other four FFs. The water model used in 

KBFF is SPC/E (Berendsen et al. 1987). Cutoff distances for the real space electrostatic/van der Waals interactions 

were 1.0 nm/1.5 nm. The PME convergence parameter was 3.12 nm‐1. The KBIs for each system were averaged over 

the same distances as were used for the other FFs.  

 

Figure 2.2 displays the KBFF results compared to the results for the FF that came closest to reproducing the 

experimental Nijs for a given system. To a certain extent the superior ability of the KBFF models to reproduce the 

KBIs is not surprising, as the parameters of the other FFs have not been optimized to reproduce this data, while the 

KBFF models were specifically parameterized to do so. But, we use it here as an indication of how this type of data 

can be improved with a reasonable degree of effort.We note that for MOH + HOH, GROMOS appears to have a  
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Figure 2.2 Comparisons of the excess coordination numbers using the Kirkwood-Buff Force Field and 

whichever force field best reproduced the excess coordination numbers. Error bars show the standard 

deviation on five twenty-nanosecond subaverages.   
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slightly better agreement than KBFF. However, this may not be true across the full composition range. For the current 

comparison, we have picked the composition (xMOH = 0.5) in which the KBFF model shows the largest deviation from 

experiment (Weerasinghe and Smith 2005). 

 

The results indicate that several of the FFs are competitive with the KBFF models for one of the systems, but none 

exhibited the overall balance between solute–solute, solute–solvent, and solvent–solvent distributions for all the 

solutes as provided by the KBFF models. The NMA and water results are particularly concerning due to the central 

role of peptide–peptide interactions in determining the balance between folded and unfolded protein conformations. 

The observation that all the FFs display a significantly more positive solute–solute excess coordination number 

compared to experiment also suggests a possible explanation for the imperfect thermodynamic behavior mentioned in 

Section 2.2. 

 

Figure 2.3 shows the Gijs as a function of distance for the NMA + HOH xNMA = 0.1 system. While our choice of where 

to average the Gijs is somewhat arbitrary, it is clear that the conclusions concerning the accuracy of the FFs are 

independent of the method used to obtain the exact values. For all FFs, the value of G11 and G22 are positive, indicating 

a degree of aggregation; however, the magnitude varies widely depending upon the FF. The values of the KBIs also 

tend to a constant limiting value for the systems in which the solute self-association was not too excessive. The absence 

of issues surrounding the integration of the RDFs is probably due to the large systems adopted here (involving between 

10,000 and 33,000 molecules). The patterns displayed in Figure 2.3 for NMA and HOH was similar for all the systems 

studied here. 

 

Figure 2.4 shows the solute-soute and solute-solvent RDFs for all five FFs at one composition for each mixture. 

Similar results were obtained for the other compositions. For MOH + HOH and Ben + MOH, there appears to be 

qualitative agreement among the RDFs for different FFs, despite their quantitative differences. This agreement is 

observed for both the short-ranged and the long-ranged structure. The NMA + HOH and Gly + HOH RDFs do not 

show qualitative agreement among the FFs. For NMA + HOH, similarities are evident in the shape of the RDFs for 

all FFs excluding GROMOS. However, the height of the first maximum in the RDFs differs among all FFs. Note that 

the GROMOS NMA + HOH gNMA-NMA does not tend toward unity due to the excessive self-aggregation of NMA in 

this simulation. For the Gly + HOH system, the solute-solute RDF does not appear to display a similar shape among 

the five FFs. This indicates that the Gly-Gly pairing differs substantially among the FFs, although the FFs do provide 

the same excluded Gly-Gly distance. The long-range structural behavior is also different among the FFs for the Gly + 

HOH system, although not to the degree exhibited for NMA + HOH mixtures. 

 

The simulated KBIs are dependent on the choice of water model used with each solute FF, but the effect is minimal 

compared to the differences observed for different solute FFs (Chitra and Smith 2001a; Weerasinghe and Smith 2003d, 

2003c, 2003b, 2004, 2005; Kang and Smith 2006). Based upon our previous studies of the KBI dependence on the 

water model, we predict that the results would not be significantly different on switching to a different model. 
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Figure 2.3 The Kirkwood-Buff integrals (Gij, units of cm3/mol) as a function of distance for the N-

methylacetamide (NMA) + water system at xNMA = 0.1 for the five force fields tested. The thin horizontal line is 

the experimental value. For each force field, the multiple lines correspond to five twenty-nanosecond 

subaverages. The GROMOS NMA + HOH Gijs were calculated using unconverged RDFs. 

 

2.8 Summary and Conclusions 

The key conclusions we have drawn from our present and past work include the following: 

1. A KB analysis provides more data for testing and development of FFs. The KBIs are very sensitive 

to the charge distributions. The major advantage of the KBFF approach is that by developing an FF 

that reproduces the KBIs, it is assured that the corresponding solution thermodynamics (including 

the activity of the solute) will be well described. This then further ensures the correct balance 

between solvation and self-association of solutes.  
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Figure 2.4 The center of mass based radial distribution functions (RDF) for five force fields for the mixtures 

methanol + water at xMOH =0.5, benzene + methanol at xBen = 0.75, N-methylacetamide + water at xNMA =0.1, 

and 1 m zwitterionic glycine (aq). Please note the different y-axis scales. The data represent the average RDF 

from 80 to 100 nanoseconds of production simulation after 10 nanoseconds of equilibration. The RDFs are 

converged with respect to time. 



26 

 

2. The KBFF approach is designed to specifically reproduce the experimental KBIs for small solutes 

in solution mixtures. This is an important property to model correctly, but if it were only attainable 

by sacrificing agreement with experiment for other properties that are commonly reproducible, it 

would be of little use. Fortunately, this does not appear to be the case (Weerasinghe and Smith 

2003c, 2003d, 2003b, 2004, 2005; Kang and Smith 2006; Bentenitis et al. 2009; Gee et al. 2011; 

Ploetz and Smith 2011a). 

3. We consider the improvements made to be essential if one wants to quantitatively understand 

phenomena such as conformational or association equilibria in quantitative detail, despite the 

disadvantages of needing relatively long simulation times and relatively large system sizes during 

the parameterization procedure. 

4. The actual charge distribution, not merely the solute polarity (dipole moment), appears to be what 

balances the solvation, thus it is not enough to simply scale up gas-phase charge distributions to 

mimic condensed-phase charge distributions (Weerasinghe and Smith 2003a). 

5. In all aqueous solutions we have tested (excluding MOH + HOH, which was reasonable for all the 

FFs tested), whenever there has been a large deviation from the experimental KBIs, it has always 

been toward an overfavoring of the solute-solute interactions, and thus too much self-aggregation. 

For FFs that overstabilize peptide-peptide group interactions, this likely leads to protein simulations 

that have low RMSDs from experimentally determined structures, and thus may give a false 

appearance of being reliable. However, they would not be able to reproduce conformational 

equilibria accurately, resulting in a tendency to exaggerate the stability (melting temperature). 

6. The KBIs are most sensitive to the accuracy of the activity data used during the analysis, and least 

sensitive to the accuracy of the compressibility data. Often it is even assumed that the 

compressibility of the solution is ideal, and this is a reasonable assumption in the absence of real 

compressibility data as is the use of isentropic compressibility data (Matteoli and Lepori 1984). 

Compressibility uncertainties as high as 50% have been shown to have insignificant effects on the 

values of the KBIs (Matteoli and Lepori 1984). 

7. The KBIs should reach a plateau value at the distance that the RDFs tend toward unity. Although 

the procedure for choosing a distance over which to take the average of the KBIs is somewhat 

arbitrary, it is able to capture the significant differences in the degree of molecular association 

between different FFs. 

8. Although, in theory, there should be multiple RDFs that, upon integration, could provide the same 

value of Gij, and thus multiple solutions to the charge distribution, we have never found this to be a 

practical concern. In fact, it has been difficult to find one set of partial charges (or one set of RDFs) 

that reasonably reproduce the three KBIs. 

 

In our opinion, the results presented here clearly show that conventional FFs can possess a significant imbalance of 

solute solvation and self-association in solutions. Fortunately, this problem can be overcome by adjusting the effective 
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molecular charge distributions of the solutes during the parameterization procedure. In our opinion, the KBFF models 

represent an often dramatic improvement over the currently used protein FFs and should be seriously considered if 

one wishes to study conformational or association equilibria with reasonable accuracy. 

 

2.9 Supplementary Materials 

Supplementary Table 2.1 Number of exclusions 

 All-atom United-atom 

Molecule AMBER CHARMM OPLS GROMOS KBFF 

HOH All All All All All 

MOH All+pairs All+pairs All+pairs All All 

BEN 3+pairs 3+pairs 3+pairs 4 All 

NMA 3+pairs 3+pairs 3+pairs All+pairs All+pairs 

GLY 3+pairs 3+pairs 3+pairs 3+pairs 3+pairs 

 

Supplementary Table 2.2 Non-bonded parameters 

Water TIP3P  TIP4P SPC SCP/E 

σ (Å)      

O 3.151  3.154 3.167 3.166 

H 0.000  0.000 0.000 0.000 

M   0.000   

      

ε (kJmol-1)  10      

O 6.364  6.485 6.502 6.506 

H 0.000  0.000 0.000 0.000 

M   0.000   

      

q (|e|)  10      

O -8.340  0.000 -8.200 -8.476 

H 4.170  5.200 4.100 4.238 

M   -10.400   

      

Methanol AMBER CHARMM OPLS GROMOS KBFF 

σ (Å)      

O 3.066 3.154 3.120 3.177 3.192 

H(O) 0.000 0.400 0.000 0.000 1.580 

C 3.400 4.054 3.500   

H(methyl) 2.650 2.352 2.500   

CH3    3.601 3.748 

      

ε (kJmol-1)  10      

O 8.803 6.364 7.113 5.500 6.506 

H(O) 0.000 1.925 0.000 0.000 0.880 

C 4.577 0.837 2.761   

H(methyl) 0.657 0.921 1.255   

CH3    10.172 8.672 

      

q (|e|)  10      

O -6.497 -6.600 -6.830 -6.740 -8.200 

H(O) 4.215 4.300 4.180 4.080 5.200 

C 1.166 -0.400 1.450   

H(methyl) 0.372 0.900 0.400   
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CH3    2.660 3.000 

 

Benzene AMBER CHARMM OPLS GROMOS KBFF 

σ (Å)      

C 3.400 3.550 3.550 3.581 3.810 

H 2.600 2.420 2.420 2.373 1.580 

      

ε (kJmol-1)  10      

C 3.598 2.929 2.929 2.774 3.300 

H 0.628 1.255 1.255 1.184 0.880 

      

q (|e|)  10      

C -1.305 -1.150 -1.150 -1.400 -1.300 

H 1.305 1.150 1.150 1.400 1.300 

 

N-Methylacetamide AMBER CHARMM OPLS GROMOS KBFF 

σ (Å)      

H(methyl) 2.650 2.352 2.500   

C(methyl) 3.400 3.671 3.500   

CH3    3.747 3.748 

C(O) 3.400 3.564 3.750 3.581 3.360 

O 2.960 3.029 2.960 2.760 3.100 

N 3.250 3.296 3.250 3.137 3.110 

H(N) 1.069 0.400 0.000 0.000 1.580 

C’(methyl) 3.400 3.671 3.500   

H’(methyl) 2.471 2.352 2.500   

CH3’    3.747 3.748 

      

ε (kJmol-1)  10      

H(methyl) 0.657 0.920 1.255   

C(methyl) 4.577 3.347 2.761   

CH3    8.672 8.672 

C(O) 3.598 4.602 4.393 2.774 3.300 

O 8.786 5.021 8.786 12.791 5.600 

N 7.113 8.368 7.113 6.398 5.000 

H(N) 0.657 1.925 0.000 0.000 0.880 

C’(methyl) 4.577 3.347 2.761   

H’(methyl) 0.657 0.920 1.255   

CH3’    8.672 8.672 

      

q (|e|)  10      

H(methyl) 1.123 0.900 0.600    

C(methyl) -3.662 -2.700 -1.800   

CH3     0.000 0.000 

C(O) 5.972 5.100 5.000  4.500 6.200 

O -5.679 -5.100 -5.000 -4.500 -6.200 

N -4.157 -4.700 -5.000 -3.100 -7.000 

H(N) 2.719 3.100 3.000  3.100 3.600 

C’(methyl) -1.490 -1.100 0.200  0.000  

H’(methyl) 0.976 0.900 0.600   

CH3’    0.00 3.400 
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Zwitterionic Glycine AMBER CHARMM OPLS GROMOS KBFF 

σ (Å)      

N 3.250 3.296 3.250 3.137 3.370 

H(N) 1.069 0.400 0.000 0.000 1.580 

C(methylene) 3.400 3.875 3.500   

H(methylene) 1.960 2.352 2.500   

CH2    4.070 4.070 

C(O) 3.400 3.564 3.750 3.581 3.360 

O 2.960 3.029 2.960 2.626 3.500 

   

ε (kJmol-1)  10   

N 7.113 8.368 7.113 6.398 5.620 

H(N) 0.657 1.925 0.000 0.000 0.880 

C(methylene) 4.577 2.301 2.761   

H(methylene) 0.657 0.920 1.255   

CH2    4.105 4.105 

C(O) 3.598 2.929 4.393 2.774 3.300 

O 8.786 5.021 8.786 17.250 6.047 

   

q (|e|)  10   

N 2.943 -3.000 -3.000 1.290 5.000 

H(N) 1.642 3.300 3.300 2.480 0.000 

C(methylene) -1.341 1.300 0.900     

H(methylene) 0.976 0.900 0.600   

CH2    1.270 5.000 

C(O) 7.231 3.400 7.000 2.700 1.000 

O -7.855 -6.700 -8.000 -6.350 -1.000 
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Supplementary Table 2.3 Bonded parameters 
Methanol AMBER CHARMM OPLS GROMOS (rigid) KBFF (rigid) 

Bonds  Harmonic  Harmonic Harmonic Fourth power Fourth power 

 req (nm) req (nm) req (nm) req (nm) req (nm) 

C-H(C) 0.1090 0.1111 0.1090   

C-O 0.1410 0.1420 0.1410   

O-H(O) 0.0960 0.0960 0.0945 0.1000 0.0945 
CH3-O    0.1530 0.1430 

CH3-H(O)    0.2077 0.1948 

      

Angles Harmonic Urey-Bradley Harmonic Cosine based Cosine based 

 θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1)/r13 (nm)/kUB (kJmol-1) θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1) θeq (deg)/kθ (kJmol-1) 

H-C-H 109.5/292.9 108.4/297.1/0.2/4518.7 107.8/276.1   

H-C-O 109.5/292.9 108.9/384.1/0.0/      0.0 109.5/292.9   

C-O-H 108.5/460.2 106.0/481.2/0.0/      0.0 108.5/460.2   

      
Proper Dihedrals Periodic, Mult. Simult. Fns. Periodic, Mult. Simult. Fns. Ryckaert-Bellemans Periodic Periodic 

 φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. C0/C1/C2/C3/C4/C5 (kJmol-1) φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. 

H-C-O-H 0/2.1/3 0/0.6/3 0.9/2.8/0/-3.8/0/0   

      

Benzene AMBER CHARMM OPLS GROMOS  KBFF 

Bonds  Harmonic  Harmonic Harmonic Fourth power Fourth power 

 req (nm) req (nm) req (nm) req (nm) req (nm) 

C-H  0.1080  0.1080  0.1080  0.1090 0.1090 
C-C  0.1400  0.1375  0.1400 0.1390 0.1390 

 

Angles Harmonic Urey-Bradley Harmonic Cosine based Cosine based 

 θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1)/r13 (nm)/kUB (kJmol-1) θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1) θeq (deg)/kθ (kJmol-1) 
H-C-C 120/418.4  120/251.0/0.2/18409.6  120/292.9 120/505 120/505 

C-C-C 120/527.2  120/334.7/0.2/29288.0  120/527.2 120/560 120/560 

      

Proper Dihedrals Periodic, Mult. Simult. Fns. Periodic, Mult. Simult. Fns. Ryckaert-Bellemans Periodic Periodic 

 φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. C0/C1/C2/C3/C4/C5 (kJmol-1) φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. 
C-C-C-C 180/15.2/2 180/13.0/2 30.3/0.0/-30.3/0.0/0.0/0.0   

H-C-C-C 180/15.2/2 180/17.6/2 30.3/0.0/-30.3/0.0/0.0/0.0   

H-C-C-H 180/15.2/2 180/10.0/2 30.3/0.0/-30.3/0.0/0.0/0.0   

      

Improper Dihedrals Periodic Harmonic Periodic Proper Harmonic Harmonic 
 φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) ξeq (deg)/kξ (kJmol-1rad-2) 

C-C-H-C 180/4.6/2  180/4.6/    2.0 0/167.4  

H-C-C-H 180/4.6/2     

C-C-C-C   180/4.6/    2.0 0/167.4 0/167.4 
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N-Methylacetamide AMBER CHARMM OPLS GROMOS KBFF 

Bonds  Harmonic  Harmonic Harmonic Fourth power Fourth power 

 req (nm) req (nm) req (nm) req (nm) req (nm) 

C(methyl)-H 0.1090 0.1111 0.1090   

C(methyl)-C(O) 0.1522 0.1490 0.1522   

C(O)-O 0.1229 0.1230 0.1229 0.1230 0.1224 
C(O)-N 0.1335 0.1345 0.1335 0.1330 0.1386 

N-H 0.1010 0.0997 0.1010 0.1000 0.1000 

N-C(methyl) 0.1449 0.1430 0.1449   

CH3-C(O)    0.1530 0.1520 

N-CH3    0.1470 0.1468 
      

Angles Harmonic Urey-Bradley Harmonic Cosine based Cosine based 

 θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1)/r13 (nm)/kUB (kJmol-1) θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1) θeq (deg)/kθ (kJmol-1) 

H-C(methyl)-H 109.5/292.9 108.4/297.1/0.2/  4518.7 107.8/276.1   

H-C(methyl)-C(O) 109.5/418.4 109.5/276.1/0.2/25104.0 109.5/292.9   
C(methyl)-C(O)-O 120.4/669.4 121.0/669.4/0.0/        0.0 120.4/669.4   

C(methyl)-C(O)-N 116.6/585.8 116.5/669.4/0.0/        0.0 116.6/585.8   

O-C(O)-N 122.9/669.4 122.5/669.4/0.0/        0.0 122.9/669.4 124/730 121.8/502.1 

C(O)-N-H 120.0/418.4 123.0/284.5/0.0/        0.0 119.8/292.9 123/415 110.4/292.9 
C(O)-N-C(methyl) 121.9/418.4 120.0/418.4/0.0/        0.0 121.9/418.4   

H-N-C(methyl) 118.0/418.4 117.0/292.9/0.0/        0.0 118.4/318.0   

N-C(methyl)-H(methyl)  109.5/431.0/0.0/        0.0 109.5/292.9   

CH3-C(O)-O    121/685 124.1/502.1 

CH3-C(O)-N    115/610 114.1/502.1 
C(O)-N-CH3    122/700 119.6/502.1 

H-N-CH3    115/460 130.0/376.6 

      

Proper Dihedrals Periodic, Mult. Simult. Fns. Periodic, Mult. Simult. Fns. Ryckaert-Bellemans Periodic Periodic 

 φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. C0/C1/C2/C3/C4/C5 (kJmol-1) φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. 
H(methyl)-C(methyl)-C(O)-O 180/  0.3/3 and 0/3.4/1 180/  0.0/3     0.0/  0.0/   0.0/0.0/0/0   

H(methyl)-C(methyl)-C(O)-N     0/  0.0/0     0/  0.0/3     0.0/  0.0/   0.0/0.0/0/0   

C(methyl)-C(O)-N-H 180/10.5/2 180/10.5/2   20.5/  0.0/-20.5/0.0/0/0   

C(methyl)-C(O)-N-C’(methyl) 180/10.5/2     0/  6.7/1   30.3/-4.8/-25.5/0.0/0/0   
O-C(O)-N-H 180/10.5/2 180/10.5/2   20.5/  0.0/-20.5/0.0/0/0   

O-C(O)-N-C(methyl) 180/10.5/2 180/10.5/2   25.5/  0.0/-25.5/0.0/0/0   

C(O)-N-C(methyl)-H(methyl)     0/  0.0/0     0/  0.0/3    -0.3/-0.9/   0.0/1.2/0/0   

H-N-C(methyl)-H(methyl)     0/  0.0/0     0/  0.0/3     0.0/  0.0/   0.0/0.0/0/0   

C(O)-C(methyl)-N-O   180.0/  4.6/2   
N-H-C(O)-C’(methyl)   180.0/  4.6/2   

CH3-C(O)-N-CH3’    180/33.5/2 180/33.5/2 

      

Improper Dihedrals Periodic Harmonic Periodic Proper Harmonic Harmonic 

 φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) ξeq (deg)/kξ (kJmol-1rad-2) 
C(O)-C(methyl)-N-O 180/4.6 0/1004.2    

N-H-C(O)-C’(methyl) 180/4.6 0/  167.4    

C(O)-CH3-N-O    0/167.4 0/167.4 

N-C(O)-CH3’-H    0/167.4 0/167.4 
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Zwitterionic Gly AMBER CHARMM OPLS GROMOS KBFF 

Bonds  Harmonic  Harmonic Harmonic Fourth power Fourth power 

 req (nm) req (nm) req (nm) req (nm) req (nm) 

N-H 0.1010 0.1040 0.1010 0.1000 0.1000 

N-C(methylene) 0.1471 0.1480 0.1471   

C(methylene)-H 0.1090 0.1080 0.1090   
C(methylene)-C(O) 0.1522 0.1522 0.1522   

C(O)-O 0.1250 0.1260 0.1250 0.1250 0.1250 

N-CH2    0.1470 0.1470 

CH2-C(O)    0.1530 0.1530 

      
Angles Harmonic Urey-Bradley Harmonic Cosine based Cosine based 

 θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1)/r13 (nm)/kUB (kJmol-1) θeq (deg)/kθ (kJmol-1rad-2) θeq (deg)/kθ (kJmol-1) θeq (deg)/kθ (kJmol-1) 

H-N-C(methylene) 109.5/418.4 109.5/251.0/0.2/16736 109.5/292.9   

N-C(methylene)-H 109.5/418.4 107.5/431.0/0.0/        0 109.5/292.9   

N-C(methyl)-C(O) 111.2/669.4 110.0/365.7/0.0/        0 111.2/669.4   
H-C(methylene)-H 109.5/292.9 115.0/301.2/0.0/        0 107.8/276.1   

H-C(methylene)-C(O) 109.5/418.4 109.5/418.4/0.0/        0 109.5/292.9   

C(methylene)-C(O)-O 117.0/585.8 118.0/334.7/0.2/41840 117.0/585.8   

O-C(O)-O 126.0/669.4 124.0/836.8/0.2/58576 126.0/669.4 126.0/770 126.0/770 
H-N-CH2    109.5/425 109.5/425 

N-CH2-C(O)    109.5/520 109.5/520 

CH2-C(O)-O    117.0/635 117.0/635 

      

Proper Dihedrals Periodic, Mult. Simult. Fns. Periodic, Mult. Simult. Fns. Ryckaert-Bellemans Periodic Periodic 
 φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. C0/C1/C2/C3/C4/C5 (kJmol-1) φs (deg)/kφ (kJmol-1)/mult. φs (deg)/kφ (kJmol-1)/mult. 

H-N-C(methylene)-H(methylene) 0/0.7/3     0/  0.4/3 0.5/1.6/0/-2.2/0/0   

H-N-C(methylene)-C(O) 0/0.7/3     0/  0.4/3 0.7/2.2/0/-2.9/0/0   

N-C(methylene)-C(O)-O 0/0.0/0 180/13.4/2 0/0/0/0/0/0   

H-C(methylene)-C(O)-O 0/0.0/0 180/  0.2/6 0/0/0/0/0/0   
H-N-CH2-C(O)    0/3.8/3 0/1.8/3 

N-CH2-C(O)-O    0/0.4/6 0/5.7/1 

      

Improper Dihedrals Periodic Harmonic Periodic Proper Harmonic Harmonic 
 φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) φs (deg)/kφ (kJmol-1)/mult. ξeq (deg)/kξ (kJmol-1rad-2) ξeq (deg)/kξ (kJmol-1rad-2) 

C(O)-C(methylene)-O-O 180/43.9/2 0/803.3 180/43.9/2   

C(O)-CH2-O-O    0/167.4 0/167.4 
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Supplementary Table 2.4 Combination rules and 1-4 interactions 

Force Field Combination Rule Generate Pairs Scale LJ 1-4 Scale qq 1-4 

AMBER Lorentz-Berthelot Yes 50% 83.33% 

CHARMM Lorentz-Berthelot Non-uniform scaling 

OPLS-AA Geometric Yes 50% 50% 

GROMOS Geometric Non-uniform scaling 

KBFF Geometric Yes 10% 50% 
Lorentz-Berthelot combination rules: σij = ½(σi + σj), εij = (εi + εj)

1/2 

Geometric combination rules: σij = (σi + σj)
 1/2, εij = (εi + εj)

1/2 , or Cij = (Ci + Cj)
 1/2, Cij = (Ci + Cj)

1/2 for GROMOS 
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3. To Polarize or Not To Polarize? Charge-On-Spring (COS) versus KBFF 

Force Fields for Water and Methanol Bulk and Vapor-Liquid Interfacial 

Mixtures* 

 

Abstract 

Simulations of water and methanol mixtures using polarizable force fields (FFs) for methanol (COS/M and CPC) and 

water (COS/G2) were performed and compared to experiment and also to a nonpolarizable methanol (KBFF) model 

with SPC/E water in an effort to quantify the importance of explicit electronic polarization effects in bulk liquid 

mixtures and vapor-liquid interfaces. The bulk liquid mixture properties studied included the center of mass radial 

distribution functions, Kirkwood-Buff integrals (KBIs), volumetric properties, isothermal compressibility, enthalpy 

of mixing, dielectric constant, and diffusion coefficients. The vapor-liquid interface properties investigated included 

the relative surface probability distributions, surface tension, excess surface adsorption, preferred surface molecule 

orientations, and the surface dipole. None of the three FFs tested here was clearly superior for all of the properties 

examined. All the force fields typically reproduced the correct trends with composition for both the bulk and interfacial 

system properties; the differences between the force fields were primarily quantitative. The overall results suggest that 

the polarizable FFs are not, at the present stage of development, inherently better able to reproduce the bulk and 

interfacial properties. In fact, the specific parameterization of the FF appears to be just as important as the class of FF.   

                                                           
* To be submitted. Project designed by Paul E. Smith and Daan P. Geerke. Polarizable simulations by Ariën S. 

Rustenberg and EAP. Nonpolarizable simulations by EAP. Analysis by EAP. Written by EAP excluding part of the 

introduction and part of the conclusions, which were written by Daan P. Geerke. 
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3.1 Introduction 

Computer simulation has become one of the most popular theoretical approaches available for the study of molecular 

interactions in solution (Allen and Tildesley 1987; Frenkel and Smit 2002). In particular, biomolecular simulations 

have provided a wealth of information concerning complicated systems of biological interest (Orozco and Luque 2000; 

van Gunsteren et al. 2006). At the center of all simulation studies lies the collection of equations and parameters used 

to quantify the interactions within the system; collectively known as the force field (Hünenberger and van Gunsteren 

1997; Mackerell 2004). The quality of the force field, together with the degree of sampling achieved, determines the 

accuracy of the simulation results (van Gunsteren et al. 2006). For biomolecular systems, where long time scales are 

prevalent, the force field is typically empirical in nature to ensure a computationally efficient approach (Cornell et al. 

1995; Jorgensen et al. 1996; van Gunsteren et al. 1996; Mackerell et al. 1998; ). Hence, one often has to strike a 

balance between force field accuracy and efficiency. 

 

When a molecule is taken from the gas phase to the liquid phase, the electron density in the molecule becomes 

polarized, especially if the solution contains polar molecules like water. This polarization effect is well known and 

generally leads to an increase in the polarity of the molecule in question according to the polarizability of the molecule 

and the solution environment. Traditionally, this effect is accounted for in biomolecular force fields by using 

“effective” fixed charges on the atoms to model the polarized electron density in solution (Cornell et al. 1995; 

Jorgensen et al. 1996; van Gunsteren et al. 1996; Mackerell et al. 1998). These charges are typically larger than the 

values obtained from quantum mechanical calculations performed in the gas phase, in order to mimic the expected 

polarization effects in solution (Yu and van Gunsteren 2005). Alternatively, the polarization effect can be treated 

explicitly by using induced dipoles, or other similar approaches, to solve the electrostatic contribution to the interaction 

energy (Warshel and Levitt 1976; Vesely 1977; Van Belle et al. 1987; Straatsma and McCammon 1990; Rappé and 

Goddard 1991; Rick et al. 1994; Halgren and Damm 2001; Rick and Stuart 2002; Yu and van Gunsteren 2005; Warshel 

et al. 2007). In this way, the molecular interactions are dependent on the particular environment of the molecules. It 

should be noted that there are three types of polarization: electronic, geometric, and orientational. The only one that 

is not accounted for in nonpolarizable FFs is the electronic polarization, since the geometry of the molecules is 

(generally) not fixed (although it is common for small molecules, such as those studied here, to be kept rigid) and the 

orientation of molecules is generally not fixed. Efforts to develop polarizable force fields have been pursued over the 

last few decades (see for example references 26-74 in reference (Geerke and van Gunsteren 2007a)). More recently, 

polarizable FF parameters have been developed and optimized for a wide variety of building blocks relevant to proteins 

and other biomolecules (Kaminski et al. 2002; Ren and Ponder 2002; Baucom et al. 2004; Patel and Brooks 2004; 

Patel et al. 2004; Anisimov et al. 2005; Maple et al. 2005; Vorobyov et al. 2005; Babin et al. 2006; Yang and Zhang 

2006; Anisimov et al. 2007; Xie et al. 2007). 

 

The (often stated) advantages of polarizable force fields are the expected increase in accuracy and better transferability 

of force field parameters (Dang et al. 1991; Meng et al. 1994; Jorgensen et al. 1995; Borodin et al. 2001; Grossfield 

et al. 2003; Noskov et al. 2005; Patel and Brooks 2005; Patel and Brooks 2006; Rivera et al. 2006; Geerke and van 
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Gunsteren 2007a; Harder et al. 2008). The (often stated) disadvantages are generally the increased computationl cost 

and the fact that polarizalbe FFs are less established and have not, therefore, been as thoroughly tested as popular 

nonpolarizable FFs. Nonpolarizable, fixed-charge, force fields have the advantage that they are more efficient, are 

well established, and are inherently pairwise additive. The primary disadvantage is an inability to mimic changes in 

the molecular charge distribution due to changes in the local environment. Several studies have attempted to compare 

the properties of both polarizable and nonpolarizable force fields (Dang et al. 1991; Meng et al. 1994; Jorgensen et 

al. 1995; Borodin et al. 2001; Grossfield et al. 2003; Noskov et al. 2005; Patel and Brooks 2005; Patel and Brooks 

2006; Rivera et al. 2006; Geerke and van Gunsteren 2007a, 2007b; Harder et al. 2008). Generally these studies favored 

the use of polarizable approaches. 

 

Recently (see Table 2.2), a series of simple, nonpolarizable force fields for small solutes in water have been developed 

in an effort to reproduce the properties of solution mixtures (Weerasinghe and Smith 2003a, 2003b, 2003c, 2004, 

2005; Kang and Smith 2006). These differ from common approaches in that the charge distributions are not obtained 

from quantum calculations, but are varied to improve the agreement with the liquid mixture properties. The major 

property of interest is the chemical potential composition derivatives, which are monitored by determining the 

Kirkwood-Buff (KB) integrals between species pairs (Ben-Naim 1987). The advantage of this approach is that the 

parameterization is directed by the liquid mixture properties, an not by quantum calculations in the gas phase (albeit 

corrected to mimic the condensed phase) or the commonly targeted data of only pure liquid and/or infinitely dilute 

properties. The resulting KB derived force fields (KBFF) also perform well for more traditionally parameterized  liquid 

properties, so one does not have to sacrifice agreement for one set of properties with agreement for another set 

(Weerasinghe and Smith 2003a, 2003b, 2003c, 2004, 2005; Kang and Smith 2006; Smith 2006). Inherent in the KBFF 

approach is that the degree of polarization at each atomic site is the determining (unknown) factor. In particular, 

comparison of the KBFF partial charges with other established nonpolarizable force fields suggests that quantum 

calculations generally do not accurately mimic the degree of polarization at each specific site.  

 

In light of these developments one may ask the question, “When is explicit polarizability required for computer 

simulations?” The results for dielectric properties of liquids, solution interfaces, and small clusters of polar or ionic 

molecules are typically considered to improve when treated by polarizable approaches. Alternatively, it is possible 

that many mixtures of similar molecules may be safely treated with nonpolarizable force fields. However, the exact 

systems for which the inclusion of explicit polarization is absolutely required to obtain accurate results are still 

unknown.  

 

The major aim of the current study is to compare a variety of results of simulations using well-parameterized 

polarizable force fields (based on the Charge-On-Spring model (Straatsma and McCammon 1990; Yu et al. 2003), a 

derivative of the Drude Oscillator, DO, or Shell polarization approach) with their corresponding nonpolarizable KBFF 

models. It should be noted that the parameterization of the applied COS model was primarily based on the properties 

of pure liquids, whereas aqueous mixture properties, specifically the KBIs, were explicitly included in the 
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parameterization of the KBFF model. As an initial attempt to answer the above question, we have simulated bulk 

liquid and vapor-liquid interfacial methanol and water mixtures. At the outset, we hypothesized that the polarizable 

force fields would perform better for all systems, but most especially for the interfacial systems in which the cosolvent 

molecules are exposed to extreme differences in the dielectric environment, ranging from the bulk aqueous enironment 

to a vacuum. 

 

3.2  Force Fields 

Table 3.1 shows the FF parameters used for the molecules simulated. The KBFF rationale is explained in Chapter 2. 

The KBFF methanol model is a rigid, united atom model consisting of three atomic sites and three point charges. 

 

Table 3.1 Force field parameters for the water models 

Water 

Property Units SPC/E COS/G2 

qO e -0.84760 0.00000 

qH e 0.42380 0.52650 

qvirtual, core e -- 6.94700 

qCOS, shell e -- -8.00000 

dO−H nm 0.10000 0.09572 

dO-virtual nm -- 0.02200 

dH−H nm 0.16333 0.15139 

αmol 10−3nm3 -- 1.25500 

σO nm 0.31660 0.31960 

O kJ/mol 0.65060 0.76105 

qi is the partial charge of site i, O is oxygen, H is hydrogen, COS is the Charge-On-Spring, d is the bond distance, αi is the polarizability of site i, 

σi and i are the Lennard-Jones VDW parameters of site i. 

  

Table 3.2 Force field parameters for the methanol models 

Methanol 

Property Units KBFF COS/M CPC 

qO e -0.82000 −0.53000 −0.55000 

qO,core e -- 7.47000 7.45000 

qO,shell e -- -8.00000 -8.00000 

qH e 0.52000 0.36000 0.34000 

qCH3 e 0.30000 0.17000 0.21000 

q CH3,core e -- -- 8.21000 

q CH3,shell e -- -- -8.00000 

dO−H nm 0.09450 0.10000 0.10000 

dCH3−O nm 0.14300 0.14300 0.14300 

dH−CH3 nm 0.19480 0.19880 0.19880 

αO 10−3nm3 -- 1.32000 1.10000 

αCH3 10−3nm3 -- -- 0.95000 

σO nm 0.31920 0.32373 0.31498 

σH nm 0.15800 -- -- 

σCH3 nm 0.37480 0.36012 0.37069 

O kJ/mol 0.65060 0.49206 0.57033 

H kJ/mol 0.08800 -- -- 

CH3 kJ/mol 0.86720 1.01724 1.20030 

qi is the partial charge of site i, O is oxygen, H is hydrogen, CH3 is the united methyl group COS is the Charge-On-Spring, d is the bond distance, 

αi is the polarizability of site i, σi and i are the Lennard-Jones VDW parameters of site i. 
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The water model that KBFF has been parameterized with is the SPC/E model. SPC/E is rigid and consists of three 

interaction sites and three point charges. 

 

The Charge-On-Spring approach is a derivative of the Drude Oscillator (DO) or Shell polarization approach. Other 

than DO, the two additional main classes of polarization implementations are Fluctuating Charge and polarizable Point 

Dipole approaches. In the DO approach, a point charge (shell) is attached via a harmonic potential (spring) to another 

interaction site (core) (Vosmeer et al. 2012). The force constant for the harmonic potential depends upon the 

polarizability parameter, αi. The displacement of the shell with respect to the core particle due to the presence of the 

electric field E arising from the surrounding molecular environment determines the instantaneous magnitude and 

direction of the induced dipole moment of the core particle. In the COS scheme the inducible dipole moment μi is 

assigned to heavy atoms i through μi = αi(4π0)E(ri), where 0 is the permittivity of free space (Vosmeer et al. 2012). 

This relationship has assumed a linear response between the induced dipole moment and the electric field. All standard 

electrostatic treatments, such as Particle Mesh Ewald (PME), may still be employed with COS since the electrostatic 

interactions all still arise from point charges (Vosmeer et al. 2012). To implement COS models, an iterative energy 

minimization is performed at each point in time during which the shell particle is moved. For the COS models, this 

results in a 2-3 fold increase in the computational cost compared to a comparable non-polarizable simulation (Vosmeer 

et al. 2012). 

 

3.2.1 COS/G2 water model 

COS/G2 (Yu and van Gunsteren 2004) was a reparameterization of an earlier polarizable water model also by van 

Gunsteren, COS/B2 (Yu et al. 2003). The focus of the reparameterization was to correct COS/B2’s overestimation of 

the dielectric permittivity. The new model moved the core and shell off of the oxygen atom and used a massless virtual 

site as the core site, in order to reproduce the water monomer quadrupole moments. The specific hydrogen atom partial 

charges and position of the virtual site, which bisects the H-O-H angle, were parameterized to reproduce the molecular 

dipole and quadrupole moments of the monomer in the gas phase. The molecular polarizability and the oxygen 

Lennard-Jones parameters were parameterized to reproduce the experimental values for the heat of vaporization and 

the density of liquid water under ambient conditions. COS/G2 is a rigid, 5 site water model, with a single polarizable 

center located on the virtual site connected to the oxygen atom and with Lennard-Jones parameters only on the oxygen 

atom. It was parameterized to reproduce properties of liquid water well and gas phase water reasonably. The COS/G2 

water model has a geometry taken from quantum mechanical calculations and uses gas phase charges. COS/G2 uses 

a condensed phase, isotropic polarizability parameter obtained from QM fitting of α, because gas phase polarizability 

leads to molecular dipole moments that are too large and fluctuate too much (overpolarization). 

 

3.2.2 COS/M methanol model 

COS/M (Yu et al. 2006) was developed by van Gunsteren and coworkers using the Charge-On-Spring technique to 

be compatible with the COS/G2 water model. COS/M is a rigid, three atomic interaction site (united methyl) model 

for methanol, which has one polarizable center located on the oxygen atom. The oxygen Lennard–Jones parameters 
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together with the molecular polarizability were parameterized to reproduce the experimental heat of vaporization and 

density of liquid methanol at 298K and 1 atm. The partial charges were assigned to reproduce the gas phase dipole 

moment. The parameterized molecular polarizability is less than the experimentally known gas phase value. 

 

3.2.3 CPC methanol model 

The development of the CPC model by Geerke and coworkers (Vosmeer et al. 2012) was based upon a combined 

QM/MM effort in which an ensemble of MM configurations were sampled. Post MM simulation, the trajectory was 

reanalyzed with one of the molecules being treated quantum mechanically, specifically using DFT. The response of 

the QM solute’s electron configuration (electrostatic potential) to the electric field generated by the surrounding MM 

solvent point charges was calculated for each configuration. The inducible atomic dipole moment was then fitted to 

reproduce the electrostatic potential. From the fitted dipole moment the atomic polarizability parameters were 

determined, using the knowledge of the electric field at each atomic center and under the assumption of linear 

response. This process was performed for an infinitely dilute methanol molecule in pure water, in pure methanol, and 

in pure chloroform and also for an infinitely dilute water molecule in pure water. 

 

The CPC model uses the COS/M geometry (rigid) and gas-phase estimated partial charges, but has two polarizable 

centers, one on the oxygen and one on the carbon. The polarizability of the carbon center and the van der Waals 

parameters were parameterized to reproduce the experimental density and enthalpy of vaporization for pure methanol. 

The CPC model has three atomic interaction sites.  

 

3.3 Methods 

All molecular dynamics simulations were carried out using Gromacs 4 (Hess et al. 2008). Newton’s equations of 

motion were integrated based on the Leap-Frog algorithm (Hockney 1970), with a time step of 2 fs. Bond lengths of 

methanol were constrained to their minimum-energy values using the LINear Constraint Solver (LINCS) (Hess et al. 

1997) algorithm. Water bond lengths were constrained using Settle (Miyamoto and Kollman 1992). A grid-based 

neighbor list was used and updated every ten steps for the KBFF simulations. The polarizable simulations did not use 

a list. All simulations used three dimensional periodic boundary conditions. The van der Waals interactions were 

truncated at 1.5 nm.  

 

In the polarizable simulations, the energy minimization tolerance for the shell relaxation was 10 kJ/mol/nm and the 

maximum number of shell relaxation iterations was 20. For the polarizable simulations, the energy was computed and 

summed over all processors every step (‘ntcalcenergy = 1’), because global communication is needed when the energy 

is optimized with respect to the shell positions. 

 

Although the polarizable models were parameterized using reaction field electrostatics, the particle-mesh Ewald 

(PME) technique was used here to calculate electrostatic interactions with a real space cutoff distance of 1.0 nm for 

the nonpolarizable simulations and 1.5 nm for the polarizable simulations. To simulate a vapor-liquid interfacial 
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system using a reaction field, which uses a fixed bulk dielectric constant for the whole system, would be inappropriate. 

The bulk mixture results for the polarizable simulations, obtained using both reaction field and PME electrostatics, 

were found to be identical to within the statistical errors (results not shown). The PME implementation cubic 

interpolation, a maximum fast Fourier transform grid spacing of 0.12 nm for the reciprocal space sum, and tinfoil 

boundary conditions (Darden et al. 1993). 

 

After steepest descent energy minimization and an equilibration period of at least 10 ns using the appropriate force 

field, production simulations of 40 ns were carried out for the nonpolarizable simulations, 20 ns  for the bulk 

polarizable, and 10 ns for the interfacial polarizalbe. Energies and atomic coordinates were written out every 5 ps and 

diagonal elements of the pressure tensor every 0.1 ps. The bulk simulations were ran in the NpT ensemble while the 

interfacial simulations were ran in the NVT ensemble. The temperature and (in the simulations of the bulk mixtures) 

the pressure were maintained at an average value of 300 K and 1 bar using the weak-coupling method of Berendsen 

(Berendsen et al. 1984), with coupling times of the temperature and pressure baths set to 0.1 and 0.5 ps, respectively. 

Separate temperature coupling groups were used for methanol and for water. In the NpT simulations the isothermal 

compressibility was set to 4.5  10-5 bar-1 and the pressure coupling was isotropic. No other differences exist in the 

simulation parameters for the bulk and interfacial system. Unless otherwise noted, the estimated error bars shown in 

the Results section were obtained from the standard devation of 10-ns block-averages (thus, error bars are not reported 

for the polarizable interfacial systems). Based upon previous simulations of the polarizable simulations using slightly 

different simulation settings and much longer simulation timescales (results not shown), this is an acceptable 

assumption. 

 

3.3.1 Bulk Systems 

The bulk systems consisted of 6 nm in length cubic boxes in which the molecules were initially assigned random 

positions. Simulations of the bulk aqueous mixtures were performed at nine different mole fractions methanol (xMOH 

= 0.00, 0.125, 0.250, 0.375, 0.50, 0.625, 0.750, 0.875, and 1.00).  

 

3.3.2 Interfacial Systems 

As shown in Figure 3.1, the interfacial systems consisted of 6  6  36 nm simulation boxes in which molecules were 

initially assigned to random positions within the cental 6  6  12 nm box leaving the flanking 6  6  12 nm boxes 

on both ends of this region to serve as the vapor regions. The compositions studied were xMOH = 0.000, 0.125, 0.250, 

and 1.000. No long-range corrections to the surface tension were included. These corrections are non-trivial for 

mixtures, and we consider the cutoffs to form an integral part of the force field model. As a test, we increased the van 

der Waals cut-off from 1.5 nm to 2.5 nm for the pure SPC/E water and pure KBFF methanol systems. The surface 

tension increased by 2.5% and 12.5%, respectively, and provided improved agreement with experiment in the case of 

water, but worse agreement with experiment for methanol..  

 



41 

 

 

 

Figure 3.1 Diagram of the simulated interfacial systems. The surface lies in the xy plane perpendicular to the 

z-axis. In the KBFF simulations, only negligible evaporation occurred, while in the polarizable simulations, one 

or two large droplets (not shown) repeatedly formed in the vapor phase and re-condensed containing on the 

order of ten to one hundred molecules out of the total system of on the order of 10,000 molecules. The droplets 

contained both methanol and water molecules.   
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3.3.3 Determination of bulk properties 

The experimental KBIs were calculated from the KB inversion procedure. The simulated KBIs were obtained using 

the Schnell approach in which the linear region was taken at 1/L = 0.5-1.7 nm-1 (Schnell et al. 2011). Briefly, this 

involves using the particle fluctuation definition of the Kirkwood-Buff integrals (see Equation 1.2) instead of the 

integrated RDF definition (see Equation 1.1). Computationally, Equation 1.2 is implemented by picking a random 

coordinate within the simulation box and keeping track of how many molecules of each type are found as a function 

of distance (linearly or radially) away from the random point. For each configuration, a user-specified number of 

random origins for this calculating can be chosen. In this respect, it offers a potential statistical advantage over the 

“integrated RDF” definition of the KBIs, because when using the integrated RDFs, the number of origins for the 

calculation is fixed at the number of molecules in the system. Another advantage of the particle fluctuation 

determination of the KBIs is that they plateau with distance sooner than do the integrated RDFs, which necessarily 

have oscillations at short distances and eventually converge/plateau at larger radii. Conversely, this is also a 

disadvantage of the approach, because the microstructural information about the mixture is lost using the particle 

fluctuation equation.  

 

After calculating the local KBIs using the particle fluctuation method, the Schnell approach involves the linear fit of 

the fluctuations as a function of local box length, L, according to the expression, Gij (L-1) = mL-1 + Gij(0), where m is 

the slope. The fit involves a subset of the points that are deemed to be linear, followed by extrapolation to the infinite 

system (thermodynamic) limit to provide, Gij(0), as the appropriate value for the KBI. The points that deviate from 

linearity, and must therefore be dropped, include those at both small and large L. At small L, deviations from linearity 

can be attributed to having only a few molecules within the local volume. At large L, not enough bath particles exist 

to allow for correct sampling of a local µVT ensemble from within the closed simulation system. 

 

For situations where the KBIs have not completely converged, the Schnell approach has been touted as being more 

rigorous than averaging the KBIs over a range of distances corresponding to approximately one solvation shell 

(Schnell et al. 2011). Our experience, however, has been that there is an equal amount of ambiguity in determining 

which points correspond to the “linear” region and which do not as there is in choosing where to average when using 

the integrated RDF approach. In this work, we chose the linear region that gave internally consistent values for the 

partial molar volumes and isothermal compressibilities when calculated from the simulated (V/Ni)T,p,{N}´ (where 

{N}´ is the set of Nj excluding Ni) or from (-1/Vm)( Vm/p)T,p, respectively.  

 

The simulated excess (Ex) volume of mixing was calculated from 
Ex o o

m 1 1 2 2V V V x V x    where Vm is the molar 

volume of the mixture and the o superscript denotes the pure liquid. The simulated partial molar volumes ( iV ) were 

calculated from  (V/Ni)T,p,{N}´ and from  
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Figure 3.2 Internal consistency of partial molar volumes guided choice of linear region for Schnell approach 

determination of the Kirkwood-Buff integrals. The linear region taken as 0.50-1.70 nm-1. {N}´ is the set of all 

Nj not equal to Ni. 

 

where the partial molar volume of species 1 can be obtained by a simple change of indices. For the KBFF simulations, 

the agreement between these two methods is shown in Figure 3.2. The linear region used gave the best agreement for 

all models, not just the KBFF models. Similarly, the isothermal compressibility (κT) was obtained from (-1/Vm)( 

Vm/p)T,p for xMOH = 0.00, 0.25, 0.50, 0.75, and 1.00 by performing additional simulations at pressures of 250, 500, 

750, and 1,000 bar for 1 ns (polarizable simulations and pure compositions of nonpolarizable simulations) or 10 ns 

(nonpolarizable mixture simulations) of production after 100 ps of equilibration. The V versus p data was fitted to a 

quadratic polynomial to obtain κT. κT was also from the KBIs via 
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It was confirmed that these two methods were in very resonable agreement, further justifying the choice of the linear 

region used in the Schnell approach (shown for KBFF only in Figure 3.3). 

 

The simulated excess heat of mixing was calculated from 
Ex o o

m 1 1 2 2H H H x H x    where H was actually taken to be 

the potential energy instead of the enthalpy, which is reasonable since the pV term is negligible at 1 bar and assuming 

the kinetic energy contributions cancel in the mixture and the pure liquids. The simulated diffusion coefficients were 

obtained using the Gromacs ‘g_msd’ analysis tool, which calculates the mean square displacement (MSD) of 

molecules from their starting positions and then fits the linear region of the MSD versus time plot and uses the Einstein 

relation to determine the diffusion coefficients.   



44 

 

 

Figure 3.3 Internal consistency of isothermal compressibility, κT × 105 (bar-1), guided choice of linear region for 

Schnell approach determination of the Kirkwood-Buff integrals. The linear region taken as 0.50-1.70 nm-1. 

 

3.3.4 Determination of interfacial properties 

The surface relative probability plots, gi(z), are plateaued at large z (see Results), indicating that the simulation boxes 

were large enough that a that a central bulk mixture region was obtained. The surface tension γ was calculated from 

the simulations according to  
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z zz xx yyL P P P      3.3 

where Lz = ~36 nm is the box dimension in the extended (z) dimension and Pαα  are the diagonal elements of the 

pressure tensor. 

 

The expression for the excess surface adsorption of species 2 (methanol) over species 1 (water), Γ2,1, was derived from 

summing the Gibbs-Duhem equations for the interface (*), bulk gas phase, and bulk liquid phase at constant T, 
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  3.4 

where A is the surface area of the interface. No Vdp term appears in the above equation, because the volume of the 

interface is negligible compared to the volume of the bulk phases. The above equation then leads to 

 1 1 2 2N d N d Ad        3.5 
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where 
* bulk ( ) bulk ( ) * bulk v l

i i i i i iN N N N N N     . The dμ1 term may then be eliminated by summing the second and 

third Gibbs-Duhem equations in Equation 3.4 leading to 
bulk bulk 

1 2 2 1/d N d N    , which can then be substituted into 

Equation 3.5 to yield 
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N

     3.6 

Ni(Z) is the total number of molecules of species i found between z = 0 and z = Z. The bulk liquid phase region was 

taken to be the central 6  6  6 nm region of the condensed phase; the bulk vapor phase region was taken as z = 0 – 

10 nm and z = 26 – 36 nm nm (Figure 3.11). Bulk liquid and vapor densities were determined from averaging over 

these respective regions. 

 

Equation 3.6 requires the determination of the simulated bulk densities before the calculation of the Γ2,1 and it requires 

a decision of the extent of the bulk liquid and gas phases. Having to make the decision of where the bulk phases start 

and stop is not ideal, but it is not prohibitive as long as one avoids getting too near to the interfacial region. If significant 

evaporation does not occur, then the deviation of the bulk liquid composition from the total composition may be 

accounted for on the fly without a user defined definition of the extent of the bulk regions (Chen and Smith 2008).  

 

The experimental Γ2,1 is calculated from the composition derivative of the experimental surface tension (see below). 

Thus, an analytical form must be chosen for the correlation of surface tension with composition. The semi-empirical 

Connors-Wright equation (Connors and Wright 1989) was chosen due to its simple, two-parameter functional form 

and its established success and continued use for binary aqeous – organic liquid mixtures (Alvarez et al. 2003; Blanco 

et al. 2013). Many determinations of the surface tension for water-methanol mixtures exist in the literature. All sources 

at 298 K and 1 bar that were deemed to be without spurious results and had data points over the full composition range 

were used, in an attempt to measure the experimental error on the surface tension and how that error propagates into 

the experimental Γ2,1 values. The Connors-Wright equation is (Connors and Wright 1989):  

 
* o o o

1 1 2 2 1 1( ) / ( ) [1 ( ) / (1 )]x ax bx             3.7 

where the superscript o denotes the pure liquid, γ denotes the surface tension of the mixture, and thus the superscript 

* denotes the reduced surface tension. The values of a and b are given in Table 3.3 for the six different raw surface 

tension data sets used. From our comparison of raw data sets and possible correlating equations, we found that the Γ2,1 

values depended more on the functional form used to fit γ(x2) than they did on the raw data set itself, at least for this 

system.  

 

Table 3.3 Connors-Wright parameters for fitting the surface tension dependence on composition 

Reference a b 

Maximino (2009) 0.878 0.799 

Vazquez et al. (1995) 0.871 0.830 

Cheong and Carr (1987) 0.905 0.748 

Hu et al. (2007) 0.913 0.798 

Teitelbaum et al. (1951) 0.894 0.766 

Bandyopadhyay et al. (2010) 0.916 0.743 
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Upon fitting γ(x2), the experimental Γ2,1 is then provided by 

 2

2,1

2 ,T p

x

x

  
    

  
  3.8 

where η = ρ1 + ρ2 + ρ1ρ2ΔG12, ΔG12 = G11 + G22 – 2G12, β=1/RT, and ρ = N / <V> = Σiρi. η, ρ, and Gij all correspond 

to experimental properties from the bulk solution, not properties of the vapor-liquid interface. 

 

Using the KBFF simulations, we tested for convergence of the results with respect to system size and simulation time 

by comparing the (KBFF) 40 ns of production results to simulations of 100 ns in length for both the bulk and interfacial 

systems and by extending the interfacial systems to sytems of size 10  10  60 nm (results not shown). It was 

determined that the system sizes and simulation lengths chosen were adequate.  

 

 

Figure 3.4 Center of mass based radial distribution functions (RDFs). 
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3.4 Results and Discussion 

3.4.1 Simulations of the bulk water-methanol mixtures 

The center of mass based radial distribution functions (RDFs) are shown in Figure 3.4 for a subset of the compositions 

studied. As the mole fraction of methanol increases, all three RDFs become more structured, indicating a less random 

distribution of molecules for x2=0.750 than for x2=0.250. The relative height of the first solvation shell increases with 

composition for g11 and g12, while for g22 a peak grows in as the composition of methanol increases. Most of the 

differences occur when comparing the nonpolarizable results to the polarizable results, whereas the two polarizable 

results give relatively consistent results. All three force fields produce the same general features and the same trends 

with composition. 

 

Figure 3.5 presents experimental and simulated values for the KBIs. The dashed lines show the results for the mixture 

if it were ideal on the mole fraction concentration scale (symmetric ideality), in which the excess properties are all 

zero and the activity coefficients are unity at all concentrations. It is important for FFs to be able to reproduce KBIs, 

because these quantities sensitively probe the intermolecular interactions within mixtures e.g., they allow one to 

determine if the appropriate balance is obtained between solute-solute, solute-solvent, and solvent-solvent 

interactions. If the KBIs are well reproduced, then one has increased confidence in the simulated microstructural and 

thermodynamic properties.  
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Figure 3.5 Bulk KBIs (cm3/mol). Symbols correspond to the simulated data. Experimental data were taken 

from the literature. All analysis was performed with the same density data (Douheret et al. 1989). Several data 

sets and fitting functions for GEx were explored: Black lines – Redlich-Kister equation (Butler et al. 1933); Red 

lines – modified Redlich-Kister equation (Hu et al. 2003); Green lines – Wilson equation (Soujanya et al. 2010); 

Blue lines – Wilson equation (Gmehling et al. 1991); and Yellow lines – Wilson equation (Gmehling et al. 1991). 

Dashed lines represent the corresponding symmetric ideal results. 

 

Without the context provided by comparing the results of Figure 3.5 to those of other binary mixtures, it may appear 

that there is tremendous dispersion in the experimental KBIs depending upon the raw excess Gibbs free energy data 

set and/or the correlating equation used (Redlich-Kister, Wilson, etc.) (and similarly the force field used). While the 

dispersion does confound the comparison of the FFs, it should be noted that the water-methanol mixture KBIs are 

relatively small and relatively ideal compared to many of the other systems we have examined (Ploetz and Smith 

2011a; Jiao et al. 2014). Additionally, it is well known that the experimental and simulated Gii will be statistically 

more noisy at low mole fraction of i since fewer i molecules are present. This explains why the spread in the simulated 

and experimental results for G11 are greatest at low x1 and for G22 are greatest at low x2. 
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Figure 3.6 Molar volumes, excess molar volumes, and partial molar volumes (cm3/mol). Solid lines: 

experimental values, points: simulation values. 

 

From Figure 3.5, it can be seen that the CPC and KBFF models were always within the spread of the different 

experimental determinations, excluding the values at x2 = 0.875. The slightly too positive G11 and G22 values, leading 

to the too negative G12 values, in the simulations of the COS/G2 + COS/M mixtures at x2  0.375 indicate that the net 

methanol-methanol and water-water interactions are slightly too attractive or water-methanol interactions are slightly 

too repulsive. It should be noted that all three models give very reasonable results for the KBIs even though, in contrast 

to the COS-based models, the KBFF models were specifically parameterized to reproduce the KBIs. However, one 

would expect that the polarizable FFs might inherently perform better at reproducing the KBIs. The principle focus of 

the KBFF philosophy has been to develop effective partial charges that can best describe the composition dependent 

properties from one extreme (e.g., pure water) to another (e.g., pure methanol). As this flexibility is inherent to 

polarizable FFs, it is not too surprising that reasonable results are also obtained for the KBIs from polarizable models. 

 

Figure 3.6 presents experimental and simulated volumetric data. KBFF and CPC both reproduce the excess volume 

of mixing well, whereas COS/M values are too negative, which is consistent with previous results (Vosmeer et al. 

2012). The absolute value of the partial molar volume of methanol is best reproduced by the polarizable models, with 

KBFF reproducing the correct trend with composition but being consistently too large. The partial molar volume of 

water as a function of composition was best reproduced by COS/G2 + CPC and SPC/E + KBFF, while COS/G2 + 

COS/M, gave partial molar volumes of water that were consistently too small. 
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Figure 3.7 shows that KBFF gave very reasonable, but consistently too small, values for the isothermal 

compressibility, whereas COS/M was too high and CPC was too low as the concentration of methanol increased. 

 

Figure 3.8 (top panel) shows the enthalpy of mixing results. Both the KBFF and the CPC models agree well with 

experiment, with the KBFF results being slightly closer to experiment. In the COS/M simulations, the enthalpy of 

mixing values were too positive. Note that Patel and co-workers (Zhong et al. 2008) found too negative values (by 

1-2 kJ mol-1) for the heat of mixing when using the polarizable CHARMM-based fluctuating charge force field. 

 

The second panel in Figure 3.8 indicates that the KBFF model best reproduced the experimental dielectric constant, 

while both polarizable FFs reported dielectric constants that were systematically too large at high mole fractions of 

water. This is in contrast to the dielectric constant for pure COS/G2 water reported in the literature. The time 

dependence of the dielectric constant was investigated and, when using short (ps) time scales like those reported in 

the publication of the COS/G2 model, agreement with the literature value of 88 was approximately achieved. However, 

that lower dielectric constant was not converged with respect to time in the current simulations. 

 

 

 

Figure 3.7 Isothermal compressibility, κT × 105 (bar-1), obtained from pressure dependence of the system 

volume. Solid lines: experimental values, points: simulation values. 
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Figure 3.8 Enthalpy of mixing (dimensionless), static dielectric constant (dimensionless), and translational self-

diffusion constants  109 (m2s-1). Solid lines: experiments, points: simulation values (typical error on diffusion 

constant is < 3.510-11 m2s-1). 

 

The bottom two panels in Figure 3.8 indicate that CPC yielded the best diffusion coefficient values, while KBFF and 

COS/M both struggled to reproduce the correct trends with composition, but still gave very reasonable magnitudes.  

 

3.4.2 Simulations of the water-methanol mixtures at the vapor-liquid interface 

The polarizable simulations of the vapor-liquid interface led to a significant amount of evaporation, whereas 

evaporation in the KBFF simulations was negligible. Many more methanol and water molecules evaporated with the 

polarizable FFs than would be expected from an ideal gas treatment of the vapor phase. Using a vapor phase volume 

corresponding to that of our simulation box, Vvapor = 24  6  6 nm, T = 298 K, and NA = 6.0221023 molecules/mole,  

Ni,vapor = βpi,vaporVvaporNA was calculated for each composition. Vapor partial pressures, pi,vapor, for this calculation were 

taken from the 298 K isothermal vapor liquid equilibria data of Hu et al. (2003). Table 3.4 shows the number of 

molecules in the vapor phase averaged over the full production run versus the number expected using the above ideal 

gas treatment of the vapor phase. The simulation that exhibited the most evaporation, COS/G2 + CPC at xMOH = 0.125, 

corresponds to an evaporation of less than 4% of the total molecules in the system. 

 

Table 3.4 Average number of water(1) or methanol(2) molecules in the vapor phase. 

 x2 = 0.000 x2 = 0.125 x2 = 0.250 x2 = 1.000 

 H2O H2O CH3OH H2O CH3OH CH3OH 

COS/M 349 27 16 26 25 10 

CPC 349 301 102 241 106 6 

KBFF 0 0 0 0 0 1 

Expected 1 1 1 1 1 4 
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Figure 3.9 Relative surface probability gi(z) as a function of z (nm) for the interfacial systems. Values were set 

to g1(z=0.0nm)=0.5 (all compositions except pure methanol) or g2(z=0.0nm)=0.5 (pure methanol only). 

Figure 3.10 Raw experimental (points without error bars), fitted experimental (lines), and simulated (points 

with error bars) surface tension, γ (dynes/cm = mN/m), versus mole fraction of methanol, x2. All experimental 

determinations were at 298 K and 1 bar (Teitelbaum et al. 1951; Cheong and Carr 1987; Vazquez et al. 1995; 

Hu et al. 2007; Maximino 2009; Bandyopadhyay et al. 2010). The non-linear decrease in the surface tension as 

x2 increases indicates adsorption of methanol in the interface region. 
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In Figure 3.9 the relative surface probability gi(z) plots are displayed as a function of z. For the pure liquids, no peak 

is observed, but in the mixtures there is a single peak in the methanol distribution, located at the interface. The peak 

is located at smaller z values than is the rise in the water probability, which indicates that the methanol preferentially 

adsorbs at the interface. No further structure (second or subsequent peaks) is observed, indicating that the ordering of 

methanol molecules at the interface is not long-ranged. At large negative z-values (vapor phase), non-zero gi(z) values 

for the polarizable force fields are due to evaporation. 

 

The surface tension results are shown in Figure 3.10. We have plotted six raw experimental determinations (points 

without error bars) at 298 K and 1 bar. We chose to fit the surface tension data (lines) with a functional form that is 

established in the literature, the Connors-Wright equation (Connors and Wright 1989). From our observations, 

differences in the surface excess (see Figure 3.12) were more dependent upon the functional form of the analytical 

equation used to describe the dependence of the surface tension on composition than they were on the raw surface 

tension data, at least for water-methanol mixtures. 

 

The calculated surface tension value (Figure 3.10) from the pure COS/G2 simulation is much closer to the 

experimental value than is the surface tension of SPC/E. However, the surface tension for the KBFF simulations are 

quantitatively in better agreement with experiment than are the polarizable simulations for both mixture compositions 

studied, especially when compared to the CPC simulations. For pure methanol, KBFF has a slightly too high surface 

tension and COS/M has a slightly too low surface tension, while the CPC surface tension is comparatively much too 

high.  

 

The computed excess surface adsorption, Γ2,1 as a function of distance is shown in Figure 3.11. Z = 0.0 nm denotes 

the edge of the vapor phase furthest from the liquid, with increasing Z approaching the interface and passing through 

it, entering the liquid phase, and eventually reaching the center-most point of the bulk liquid region at Z = 18.0 nm 

(see 25% opacity underlay of the system in Figure 3.11). Non-zero values of Γ2,1 at low Z were observed for both 

polarizable FFs, but not for the nonpolarizable simulations, due to the evaporation that occurred in the polarizable 

simulations. The values of Γ2,1 increase until there is no longer any excess of molecule 2 (methanol) over molecule 1 

(water) (after normalizing for the overall composition), at which point Γ2,1  plateaus. The simulated values have not 

plateaued perfectly, but tests of the KBFF simulations using a larger interface system of 10  10  60 nm showed no 

statistically significant differences (not shown), indicating the system size is probably large enough. Similarly, 

extension of the simulation times to 100 ns (KBFF simulations only) also showed no statistically significant 

differences, suggesting that the simulation lengths used here were probably sufficient. Our tests with KBFF indicate 

that extensions to longer simulation times or larger system sizes may change the quantitative numbers slightly, but 

would not change the qualitative differences observed among the force fields when comparing them to each other or 

to experiment. The values of Γ2,1 at Z = 18.0 nm were taken for comparison with the experimental Γ2,1 values (as shown 

in Figure 3.12). 

  



54 

 

 

 

Figure 3.11 Simulated excess surface adsorption, Γ2,1 (molecules/nm2), as a function of Z (nm) for x2=0.125 (top) 

and x2=0.250 (bottom) vapor-liquid interface systems. Due to the symmetry of these systems, in this analysis 

the systems were folded in half about the center (z = 18 nm) of the liquid phase as illustrated by the 25% opacity 

schematic of the system in the bottom panel. Non-zero values at small Z are due to evaporated molecules in the 

polarizable simulations. 

Figure 3.12 Excess surface adsorption, Γ2,1 (molecules/nm2), vs. x2. Lines: experiment, points: simulation. 

.  
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In Figure 3.11 it is clear to see that the values of Γ2,1 were the lowest at both mole fractions in the KBFF simulations. 

This explains why the compositions in Figure 3.10 are the closest to the bulk values in the KBFF simulations (they 

are only slightly less than 0.125 and 0.250), whereas the simulated bulk mole fractions of methanol are smaller for 

CPC and COS/M. 

 

In Figure 3.12 we show the experimental excess surface adsorption as a function of composition for the six 

experimental surface tension data sets correlated with the Connors-Wright equation and the simulated Γ2,1 values. We 

did not propagate the experimental dispersion in the bulk KBIs (as shown in Figure 3.5 into the measure of the spread 

in the excess surface adsorption. Due to the combination of KBIs that appear in the calculation of Γ2,1 (Equation 3.8), 

it is likely that some of the dispersion would cancel when propogated into Γ2,1.  

 

KBFF did not show as high of an excess surface adsorption of methanol molecules at the vapor-liquid interface as was 

observed experimentally. The KBFF simulated values reported here agree with the previous results for the KBFF 

model (Chen and Smith 2008). It appears that the low KBFF Γ2,1 values may be due to the low surface tension of pure 

SPC/E water more than a problem with the KBFF methanol or even the mixtures, which complicates any possible 

conclusion about the need for polarization. The CPC and COS/M methanol models are both within the spread of the 

experimental determinations. 

 

 

Figure 3.13 Relative surface probabilities, gi(z), in the interface region. Values were shifted to g1(z=0.0nm)=0.5 

(all compositions except pure methanol) or g2(z=0.0nm)=0.5 (pure methanol only).  
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Figure 3.14 Cosine of the angle of the dipole moment to the positive z-axis, <cosθ>, for methanol and water as 

a function of distance from the interfacial region (located at z = 0.0 nm). 0 ≤ θ ≤π radians. Values are averaged 

over the full production simulation and over all molecules of species i. The z-axis was shifted so that 

g1(z=0.0nm)=0.5 (all compositions except pure methanol) or g2(z=0.0nm)=0.5 (pure methanol only). Non-zero 

values for z-values less than ~-1 nm are noise from the relatively few evaporated molecules. There appears to 

be a change in angle for water and for methanol on going from the neat liquids to the mixtures.  

 

Figure 3.13 shows the relative probability plots of methanol and of water in the interface region for the four 

compositions studied. The adsorption of methanol molecules gives rise to a strong peak in the relative probablity at 

the interface in the mixture and the peak occurs at smaller z values than the plateau in the water probablity plot, 

showing the adsorption of the methanol. The peak was greater for the lower mole fraction of methanol, but upon 

integration, it gives rise to a lower excess surface adsorption. 

 

In Figure 3.14 the cosine of the average angle, 0  θ  π radians, that the dipole moment of each molecule is making 

with the positive z-axis is plotted after averaging over all molecules of a given species and over the full production 

simulation. All the force fields indicated the same qualitative changes with respect to composition. 
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Figure 3.15 Total system charge (units of the elementary charge, e) as a function of z. The z-axis was shifted so 

that g1(z=0.0nm)=0.5 (all compositions except pure methanol) or g2(z=0.0nm)=0.5 (pure methanol only). 

 

The most remarkable (but well-known) feature from these plots is that neat water ordering is different from the 

ordering of water in the presence of the amphipathic methanol molecule. It is also known, and our results agree, that 

neat water has two layers with different structures. On the vapor side of the interface, the dipoles are tilted towards 

the vapor phase (negative <cosθ>). On the liquid side of the interface, the dipoles are (subtly) tilted towards the liquid 

phase (small, positive <cosθ>). Pure SPC/E exhibited more (less) ordering than pure COS/G2 on the vapor (liquid) 

side of the interface. 

 

For neat methanol, our results showed that the dipole moment was pointed toward the bulk on the vapor side of the 

interface and very subtly towards the vapor on the liquid side of the interface. KBFF methanol was the most ordered 

on the liquid side of the interface and CPC was the most ordered on the vapor side of the interface. 

 

In the mixtures, the ordering of each component slightly increased as its concentration decreased, as has been observed 

before. Considering the water orientation in the mixtures, our results showed that the dipole moment of the interfacial 

waters was pointing toward the bulk (positive <cosθ>), as has also been observed. The most ordered water distribution 

was observed for COS/G2 when mixed with CPC, followed by COS/G2 when mixed with COS/M, making SPC/E 

mixed with KBFF methanol the least ordered water distribution. Considering the methanol orientation from the 

mixtures, our results indicated that the dipole moment of methanol was orientated towards the vapor phase (negative 

<cosθ>). The most ordered methanol distribution from the mixtures was observed for the KBFF simulations, whereas 

the COS/M model exhibited the least ordered methanol distribution. 

 

In Figure 3.15 the total charge of the system, qtotal, is plotted in units of the elementary charge (e) as a function of z. 

Again, the FFs all indicate the same trends with composition, but have different quantitative magnitudes The results 

show the presence of a surface dipole with the water hydrogens or methanol methyl group closest to the interface 

(presumably the smallest penalty to pay) to maximize the number of hydrogen bonding partners in the liquid phase. 
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While our results for bulk mixture and interfacial properties do not indicate that polarizable FFs are fundamentally 

better than nonpolarizable FFs, our study is certainly not the first to attempt to answer this question, nor is it the first 

to end up concluding that the results were mixed. As a few examples, results from calculations on the surface tension 

of liquid ethanol (Patel and Brooks 2005) and at the hexane-water interface (Patel and Brooks 2006) were found to be 

better reproduced using polarizable force fields instead of nonpolarizable ones, and a simulation study of Rivera et al. 

(Rivera et al. 2006) pointed out the importance of polarization contributions to the surface tension of liquid water. 

However, this conclusion was debated by Voth and co-workers (Iuchi et al. 2007), who found nearly identical values 

for the surface tension of water in simulations using the polarizable TTM2-R model or a nonpolarizable model 

parameterized based on bulk TTM2-R water simulations. A quantitative comparison of computed surface tensions for 

water-methanol mixtures in previous simulation studies (Matsumoto et al. 1993; Chang and Dang 2005; Paul and 

Chandra 2005; Partay et al. 2008) with nonpolarizable or polarizable force fields did not give a clear picture of the 

importance of explicitly including electronic polarization effects. Two of the studies (Matsumoto et al. 1993; Paul and 

Chandra 2005) that made use of nonpolarizable models gave too negative values for the surface tension when 

compared to experiment, whereas another one (Partay et al. 2008) showed values that were significantly too large for 

the surface tension of the pure liquids and values close to experiment at intermediate compositions. Chang and Dang 

(Chang and Dang 2005) reported slightly too large values for the surface tension of aqueous methanol solutions when 

using a polarizable force field based on the inducible dipole model. 

 

3.5 Conclusions 

We have compared two polarizable force fields for the water-methanol mixture to a nonpolarizable force field and 

looked at both bulk properties and those at the vapor-liquid interface for a few compositions. It is difficult to compare 

the FFs and determine an overall “winner” and/or “loser.” The differences in the results between the two polarizable 

methanol molecules, which were in some cases just as large as the differences between the polarizable and the 

nonpolarizable results, indicate that there is no fundamental guarantee that a polarizable FF will be inherently better 

that a non-polarizable FF. The results seem to depend first and foremost upon the quality of the individual FF 

parameterization. As shown here, at least some nonpolarizable FFs are capable of producing reasonable results for the 

vapor-liquid interface. This may be because a nonpolarizable simulation still accounts for the first-order effect of 

having a lack of molecules on one side of the interface and an abundance of molecules on the other side of the interface. 

 

We, as a community, still need to test more systems and more FFs to truly answer the question of when polarization 

needs to be explicitly included. The force field comparison presented here, and most of those in the literature, are 

confounded by the fact that the force fields under scrutiny were all parameterized differently. Depending upon the 

quality of the individual parameterizations and what properties were specifically parameterized, it is difficult to draw 

any strong conclusions. In the future, we plan to investigate the ability of a polarizable variant of TIP3P water that 

reproduces the properties of nonpolarizable (regular) TIP3P water under ambient conditions (Leontyev and 

Stuchebrukhov 2012). This would remove the afore mentioned confounding variables; however, this study would not 

allow for the testing of mixture properties and is, therefore, greatly limited in its own way.   
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4. Local Fluctuations in Solution Mixtures*† 

 

Abstract 

An extension of the traditional Kirkwood-Buff (KB) theory of solutions is outlined that provides additional fluctuating 

quantities that can be used to characterize and probe the behavior of solution mixtures. Particle-energy and energy-

energy fluctuations for local regions of any multicomponent solution are expressed in terms of experimentally 

obtainable quantities, thereby supplementing the usual particle-particle fluctuations provided by the established KB 

inversion approach. The expressions are then used to analyze experimental data for pure water over a range of 

temperatures and pressures, a variety of pure liquids, and three binary solution mixtures – methanol and water, benzene 

and methanol, and aqueous sodium chloride. In addition to providing information on local properties of solutions it is 

argued that the particle-energy and energy-energy fluctuations can also be used to test and refine solute and solvent 

force fields for use in computer simulation studies. 

 

  

                                                           
* Reprinted with permission from “Local fluctuations in solution mixtures,” by Elizabeth A. Ploetz and Paul E. Smith. 

J. Chem. Phys. 135, 044506 (2011); http://dx.doi.org/10.1063/1.3615718. Copyright 2011, AIP Publishing LLC. 
† PES derived the extension of KB theory and designed the project and wrote the paper. EAP analyzed the experimental 

data and made the figures.  

http://dx.doi.org/10.1063/1.3615718
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4.1 Introduction 

Kirkwood-Buff (KB) theory, more generally known as the Fluctuation Theory (FT) of solutions, has provided a wealth 

of data concerning the properties of solution mixtures (Kirkwood and Buff 1951; O’Connell 1971b; Matteoli and 

Mansoori 1990; Ben-Naim 2006; Pierce et al. 2008). Specific examples include studies of preferential solvation in 

binary solutions (Matteoli and Lepori 1984; Matteoli and Mansoori 1990; Marcus 2001; Ben-Naim et al. 2008), 

transfer free energies and the solubility of solutes (O’Connell 1971a; Chialvo 1993; Mazo 2006), surface tension and 

free energy changes due to the addition of additives (Chen and Smith 2008; Smith 2010), cosolvent effects on both 

small solutes and proteins (Chitra and Smith 2001b; Aburi and Smith 2004; Shimizu 2004; Smith 2004a; Ruckenstein 

and Shulgin 2006), and the investigation of protein-protein interactions (Pjura et al. 1995). The approach has also 

been used as a basis for the generation of improved force fields for computer simulation (Ploetz et al. 2010a; 

Weerasinghe et al. 2010). In all these examples KB theory provides a rigorous statistical mechanical formulism used 

to provide a link between thermodynamic data concerning the system of interest, and integrals over the underlying 

molecular distributions corresponding to local regions within the system. 

 

The primary quantities of interest which help to characterize and quantify the above effects are the KB integrals (KBIs) 

between the different species present in solution. The KBIs (Gij’s) can be expressed in terms of either radial 

distribution functions (gij) between species i and j, or as particle-particle fluctuations corresponding to local regions 

within the system of interest (Kirkwood and Buff 1951), 
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where δij is the Kronecker delta function, and δNi = Ni – < Ni > is the deviation in the number of i particles from the 

average number of i particles in the fixed volume (V) for each member of the grand canonical ensemble. Combinations 

of the KBIs and number densities then provide expressions for thermodynamic properties - such as chemical potential 

derivatives, partial molar volumes and isothermal compressibilities - in essentially any ensemble with the same 

average properties as the open system. Alternatively, given an appropriate set of experimental data as a function of 

composition one can invert the whole procedure and extract the experimental KBIs (Ben-Naim 1977), thereby 

providing information concerning the local distribution of species in solution. KB theory is particularly attractive in 

this regard as the expressions are exact, they can be applied to any stable solution mixture involving any type of 

molecule at any composition, and the resulting KBIs can be obtained relatively easily from computer simulation data. 

 

The vast majority of experimental data analyzed by the KB inversion procedure involve binary or ternary systems at 

constant pressure (p) and temperature (T) where the results are presented in terms of local particle-particle correlations. 

Far less attention has been paid to the study of local particle-energy and energy-energy fluctuations in mixtures which 

naturally arise for thermodynamic temperature derivatives such as the thermal expansion and constant pressure (or 

volume) heat capacities. The main studies of relevance to the present work include the development of expressions 

for the partial molar energies and constant volume heat capacity in terms of molecular distribution functions provided 

by Buff and Brout (Buff and Brout 1955), and a series of papers by Debenedetti outlining the calculation of partial  
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Figure 4.1 Local fluctuations in solution mixtures. The local region of interest is surrounded by the macroscopic 

bulk solution and therefore has the same intensive thermodynamic parameters (pressure, temperature, molar 

energy, molar volume, number densities, chemical potentials, etc.) as the bulk solution. Fluctuations in the 

number of particles and energy occur within the fixed local volume, which can be considered to be under the 

thermodynamic constraints associated with the grand canonical (µVT) ensemble. The extent of the local region 

will depend on the pressure, temperature, composition and the nature of the solution components. However, 

the exact size of this region is irrelevant as long as it is large enough that the region displays the same intensive 

properties as the bulk solution – typically 3-5 solvation shells. 

 

molar energies (and thereby enthalpies) from computer simulation (Debenedetti 1987b, 1988; Debenedetti 1989). 

However, to our knowledge, the corresponding local fluctuating quantities for mixtures have not been extracted from 

available experimental data. This is the major aim of this study. 

 

In the following sections we outline the theory behind a general fluctuation description of solutions. The current 

approach is somewhat different from previous approaches (Buff and Brout 1955; Debenedetti 1987b), but is used here 

as it provides a simple formulation of the inversion process {experimental data} → {fluctuating properties} for 

multicomponent systems. The overall approach is then illustrated using available experimental data for a variety of 

solutions and solution mixtures, including salt solutions. 

 

4.2 Theory 

The basic aim is to develop expressions for properties of local regions within solution mixtures by reference to the 

equations of the grand canonical ensemble. Hence, the angular brackets used here signify an ensemble average in the 

grand canonical ensemble unless stated otherwise. The resulting expressions, involving fluctuations in the energy and 

number of particles, can then be related to local (µVT) regions within systems corresponding to a variety of different 

ensembles possessing the same average properties, although the NpT ensemble will be the one of primary concern. 

 

In our previous and subsequent discussions we continually refer to the concept of local fluctuations within the solution 

mixture of interest. Hence, it is important to be clear exactly what is meant by the term “local”. Clearly, Equation 4.1 

does not appear to represent a property characterizing a local region in the solution. However, the integration to infinity 

actually represents the extent of the open system. In the case of closed systems, one can consider finite microscopic 

regions within the solution to represent the open system of interest, the extent of which is dictated by the requirement 
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that all gij are unity at large distances. The fluctuations observed within this microscopic region are the “local” 

fluctuations of interest here. This is illustrated in Figure 4.1. It should be noted, however, that the extent of this 

microscopic region is generally unknown. For the majority of solutions under ambient conditions the local region may 

merely extend over a few nanometers. Alternatively, for solutions approaching a critical point the extent of the region 

will become macroscopic in size and therefore may no longer be considered as “local”. As the majority of solutions 

fall into the former category, and to help distinguish the present fluctuations from the bulk system fluctuations, we 

have used “local” to describe the fluctuations provided by the current analysis. 

 

In the grand canonical ensemble the average number of i molecules (< Ni >) is a function of the set of chemical 

potentials ({βµ}), the volume, and the temperature (β = 1/RT), where R is the Gas constant. Hence, one can write the 

following differential for these independent variables, 
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where the summation is over all j components in the mixture and the prime in the subscript indicates that all βµ except 

for the one of interest are held constant. The above thermodynamic derivatives can be related to their corresponding 

fluctuating quantities using the equations for a classical grand canonical ensemble (Davidson 1962), 
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where Q is the classical canonical partition function provided by, 
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and {dp} and {dq} are the generalized momenta and coordinates associated with the molecules, respectively. The 

internal partition function (
int

iq ) of molecule i contains the contribution from all the intramolecular degrees of freedom, 

which are assumed to be decoupled from the intermolecular degrees of freedom. Using the above equations one can 

show that the required derivatives are given by the following expressions (Buff and Brout 1955; Debenedetti 1987b), 
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Here, E is the total internal energy for each member of the ensemble, and includes any intramolecular contributions 

from the internal partition function. Hence, combining Equations 4.2 and 4.5 one finds that, 
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for any species in any multicomponent mixture and where we have defined the energy-number fluctuations by, 
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The Fμ’s are intensive quantities that represent correlations between the energy and the number of i particles in the 

region of interest. The Nij = ρjGij quantities can be considered as either particle number fluctuations for the same local 

region, or as an excess coordination number, i.e. the change in the number of j particles resulting from the introduction 

of an i particle to the reference volume compared to the number of j particles observed in the same volume of the bulk 

solution. If the temperature is kept constant the above set of equations reduce to a series of simultaneous equations 

which, after taking the appropriate derivatives, generate the expressions obtained from the traditional KB theory 

approach for solution mixtures (Kang and Smith 2008).  

 

A more convenient form of Equation 4.6 for the analysis of experimental data can be obtained by defining an excess 

internal energy (ε) for each member of the ensemble such that, 

 o

j j

j

E N E     4.8 

where Ejº is a convenient reference energy per particle. For completely miscible mixtures it is natural to take this 

reference energy as the average molar internal energy in the pure liquid j at the temperature and average pressure of 

interest. However, for solid solutes it may be more convenient to use the internal energy of the solute at infinite dilution 

in the primary solvent. In either case one can write,  
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where,  
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Equation 4.9 represents a series of source equations which can be used to obtain expressions for various properties of 

solution mixtures in terms of number-number, number-energy, and energy-energy correlations characterizing local 

microscopic regions within the solution of interest.  

 

Taking derivatives with respect to T with p and {N} constant one obtains the following expression, 
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where 
jH  is the partial molar enthalpy of species j, and αp is the thermal expansion coefficient. Some rearrangement 

provides an expression (inversion formula) for each Fi in terms of observable experimental quantities, 
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and κT is the isothermal compressibility provided by Equation 4.9, 
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with 
jV  indicating the partial molar volume of j, and we have used the fact that 

j j jH U pV   and Ex o

j j jU U E  . 

The required excess partial molar energies Ex

jU  can be obtained from the relevant experimental enthalpy of mixing 

and density data. The contributions to Fi and Ex

jU  from the intramolecular degrees of freedom will cancel in Equation 

4.12, even when the intramolecular energy levels corresponding to the mixture are different from those in the reference 

states.  

 

Before leaving this section we note that the thermal expansion coefficient can also be expressed in terms of all the F’s 

by multiplying Equation 4.12 by the volume fraction ( i i iV   ), summing over all i, and then using Equation 4.13 to 

provide, 
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where 
Ex

mU  is the excess molar internal energy of mixing and Vm is the molar volume. The above expression will be 

used later. It also provides a route to the excess energy of mixing from a single simulation when the thermal expansion 

is known, although this issue will not be considered here. 

 

The constant pressure heat capacity can be used to provide information on the local energy fluctuations. Given the 

thermodynamic relationship, 
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and the derivative of the average energy obtained by treating U = < E > as a function of the chemical potentials, 

volume and β in a similar manner to before, and to the approach of Buff and Brout (Buff and Brout 1955), one finds, 
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Manipulation of Equation 4.16 indicates that the local energy fluctuations can be written in terms of experimentally 

obtainable properties as, 
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where the F’s are given by Equation 4.12. The value of β2∆m obtained from the above expression includes 

contributions of ½ from each molecular translational degree of freedom, and additional contributions of ½ from each 

classical intramolecular potential and kinetic quadratic degree of freedom.  
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Equations 4.12 and 4.17 contribute to a general theory of local solution behavior in terms of experimentally observable 

properties. Alternatively, the calculation of the number-number, energy-number, and energy-energy fluctuations, from 

theory or computer simulation, provides a route to a series of experimental properties. For completion we include the 

corresponding expression obtained for the constant volume heat capacity previously presented by Buff and Brout 

(Buff and Brout 1955), 

 

2

2 Ex Ex m

m ,m m( )V i i i i i i

i iT

V
RT C F xU U F

RT

 
      

  
    4.18 

The two previous expressions can be shown to satisfy the known thermodynamic relationship, 

2

,m ,m m /p V TpC C TV     after some algebra and the use of Equation 4.14. 

 

Using Equations 4.12 and 4.17 we have investigated the local fluctuations for a variety of solutions as obtained from 

the relevant experimental data. These fluctuations can be used to either characterize the properties of solutions, as 

demonstrated by the traditional KB approach, to help rationalize changes in properties such as the compressibility, 

thermal expansion and heat capacities, or as target data for the testing and evaluation of force fields developed for 

molecular simulation. 

 

 

Figure 4.2 The general scheme for obtaining local fluctuating properties from the available experimental data. 

Here ρ is the solution mass density and the definitions of the other symbols are provided in the main text.  
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4.3 Methods 

Pure water was analyzed at six pressures (1, 200, 400, 600, 800, and 1,000 bar) over the subset of temperatures between 

273-1,073 K for which a given p,T point was in the liquid region of the water phase diagram (Wagner and Kretzschmar 

2008).  Experimental data was analyzed for several n-alcohols (methanol through decanol) (Kiyohara and Benson 

1979; Lide 1990; Garcia et al. 1996; Segatin and Klofutar 2004; Han et al. 2006; Uosaki et al. 2006; Zorebski et al. 

2010), linear alkanes (hexane through tetradecane) (Diazpena et al. 1979; Aicart et al. 1981; Garcia et al. 1988; Lide 

1990; Aicart et al. 1995; Valencia et al. 2009), 1-alkenes (hexene through octene) (Lide 1990; Aicart et al. 1995), 

alkylamines (propy-, butyl-, hexyl-, and octylamine, diethylamine through dibutylamine, and triethylamine through 

tributylamine) (Oswal et al. 2004), and aromatics (benzene and methylbenzene through propylbenzene) (Aicart et al. 

1995; Fujii et al. 1995; Cibulka and Takagi 1999; Watanabe and Kato 2004). For all liquids, excluding pure water, 

the T and p were fixed at 298 K and 1 bar, respectively.  The molar volume of each liquid was calculated from the 

molecular weights and densities (Lide 1990).  

 

The general outline for the analysis of solution mixtures is provided in Figure 4.2. We have followed a sequential 

approach whereby the usual KB analysis is performed first to obtain the KBIs, this data is then combined with the 

thermal expansion and excess partial molar energy data to provide the F’s, and finally the heat capacity data is used 

to obtain ∆m values. Experimental data for the methanol + water system at a T of 298 K and p of 1 bar was analyzed 

over the full composition range.  The Redlich-Kister power series equation was used to fit the density data (four 

parameters) (Douheret et al. 1989), excess Gibbs energy (GEx) data (three parameters) (Butler et al. 1933; Hu et al. 

2003), enthalpy of mixing (HEx) data (four parameters) (Benjamin and Benson 1963), αp data (six parameters) (Reis 

et al. 2008), and Cp data (four parameters) (Reis et al. 2008). T was approximated to display ideal behavior.  Data for 

the benzene + methanol system at 308 K and 1 bar was analyzed over the full composition range.  GEx was fit using 

the Wilson equation and the enthalpy of mixing was fit using the Redlich-Kister power series equation with six 

parameters (Wilson 1964; Rajendran et al. 1989).  All other properties were approximated to be ideal (Gorbunova et 

al. 1982; Hruby et al. 1993; Vercher et al. 2007; Tripathi et al. 2010).  Aqueous sodium chloride data at 298 K and 1 

bar was studied up to 4m NaCl due to a lack of αp data at higher salt concentrations.  The solution Vm was fit to a cubic 

polynomial (Heyrovska 1996). Experimental activity data was fit to the form 

s s sln ( ) / (1 ) ln(1 )A m B m Cm       in which ms is the salt molality, γ± is the molal salt activity coefficient, and 

the other symbols are fitting constants (Robinson and Stokes 1959; Smith 2004a).  Polynomials were used to model 

the enthalpy of mixing (cubic) (Beggerow 1976), αp (quadratic) (Rogers and Pitzer 1982), Cp (quartic) (Perron et al. 

1981), and T (quadratic) (Rogers and Pitzer 1982). After a fit to the data for each solution was obtained, the first 

derivatives of Vm were determined to provide the partial molar volumes for use in the calculation of the KBIs and F’s, 

while second derivatives of GEx were used for use in the calculation of the KBIs, and first derivatives of the enthalpy 

of mixing were taken to obtain 
Ex

iH . From 
Ex

iH , the excess partial molar energies of mixing were calculated according 

to 
Ex Ex Ex

i i iU H pV   for use in the calculation of the F’s. The solution αp, Cp, and T were used directly in the KBI, 

Fi, and Δm calculations. 
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4.4 Results 

4.4.1 One Component Solutions 

The fluctuation quantities for a one component fluid (1) are provided by the following equations where the superscript 

(o) denotes the pure liquid values, 
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  4.19 

and are in agreement with previous literature values (Schofield 1966; Adams 1975). We have evaluated the 

corresponding local fluctuating properties for water over a range of temperatures and pressures. The results are shown 

in Figure 4.3. As expected the curves peak in the vicinity of the critical temperature (647 K) and critical pressure (220 

bar) (Mishima and Stanley 1998). The βF curves are dominated by the thermal expansion term. This also results in all 

the pressure curves adopting the same value of βF = -0.06 at ≈ 292 K, in a similar manner to the raw thermal expansion 

data (Bridgman 1913; Navia et al. 2010). The fact that dF/dp = 0 at this temperature implies a relationship between 

the higher local fluctuating moments of the liquid. These moments can be determined (Jiao and Smith 2011), but this 

is beyond the scope of the present work.  

 

An analysis of the data concerning simple pure organic liquids at 298 K and 1 bar is presented in Figure 4.4. All 

liquids studied here displayed a systematic decrease in the number fluctuations (compressibility) (Ben-Naim 1977), 

and a corresponding increase in F and ∆m values, as the number of carbons is increased. The energy fluctuations 

display essentially a linear dependence on the number of carbons, which is to be expected from the relationships 

observed for the heat capacities of hydrocarbons (Hadden 1970; Matulis 2001), and the dominating contribution from 

Cp,m at this temperature and pressure. 

Figure 4.3 Local fluctuating properties for pure liquid water over a range of T and p.  
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Figure 4.4 Local fluctuating properties of pure liquids at 298K and 1 bar. The number of carbons for the 

aromatic molecules was taken as the total number of carbons including the ring atoms, while the number of 

carbons for the di and trialkyl amines was taken as the number of carbons in a single alkyl chain. 

 

 

 

 

 

 

 

Figure 4.5 A fluctuation analysis of water (1) and methanol (2) mixtures at 298 K and 1 bar. The solid lines 

correspond to the experimental data, while the dotted lines represent the SI solution values.  
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4.4.2 Binary Solutions 

One natural application of the above theory is to deepen our understanding of the local microstructure of binary 

mixtures. For a binary mixture of a solvent (1) and solute (2) one finds the following expressions apply,
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where mi and xi are the molality and mole fraction of i, respectively. The first four expressions correspond to the 

traditional KB inversion approach. The N’s and F’s can be eliminated from the last two expressions if desired, but we 

retain them here for simplicity. Figures 4.5-4.7 display the results from a fluctuation analysis of three binary solutions. 

It is known that the KBIs for solutions under ambient conditions are most sensitive to the solution activities, relatively 

insensitive the partial molar volumes, and essentially unaffected by the precise value of the isothermal compressibility 

(Matteoli and Lepori 1984). The F values presented here were sensitive to the partial molar enthalpies (energies), with 

a significant but relatively constant contribution from the thermal expansion coefficient, and an essentially negligible 

contribution from the compressibility term. 

 

The results from an analysis of methanol and water mixtures at 298 K and 1 bar are presented in Figure 4.5. A KB 

analysis of this system has already been presented (Matteoli and Lepori 1984; Weerasinghe and Smith 2005). At this 

temperature and pressure the experimentally extracted F’s closely mirror the partial molar excess enthalpies (data not 

shown). The F’s and ∆m functions display nontrivial variations with mole fraction. Hence, they provide insights into 

the behavior of solution mixtures which can be used to characterize the solution in terms of local fluctuating properties. 

However, to obtain a deeper insight into these variations with composition one probably requires a similar analysis of 

computer simulation data. 

 

In contrast to methanol and water mixtures an analysis of methanol and benzene solutions at 308 K and 1 bar indicates 

a substantial degree of methanol self association at low methanol compositions. This is illustrated in Figure 4.6. The 

F’s no longer closely mimic the partial molar enthalpies, as was the case for methanol and water, primarily due to the 

relatively large values of the KBIs (see Equation 4.20). The energy-energy fluctuations are essentially the same as the 

ideal values as, at these temperatures and pressures, the ∆m term is dominated by the heat capacity contribution and 

this was taken to be ideal in nature. The large values of F for methanol at low methanol mole fractions coincides with 

the increased self association of methanol molecules (increase in N22) albeit at a lower benzene mole fraction for the 
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Figure 4.6 A fluctuation analysis of methanol (1) and benzene (2) mixtures at 308 K and 1 bar. The solid lines 

correspond to the experimental data, while the dotted lines represent the SI solution values.  
 

latter (Ploetz et al. 2010a).  

 

Many potential applications involve systems where one component (2) is at infinite dilution (∞), as is the case with 

many biological problems for example. Under these conditions F1 is given by Equation 4.19 and F2 by the expression, 

 o 2 o Ex,

2 2T pF pRT RT U        4.21 

Hence, there is a direct link between F2 and the excess partial molar energy at infinite dilution, i.e. between a local 

fluctuating property and a thermodynamic derivative of the solution. The value of F2 at infinite dilution expressed in 

terms of fluctuations reduces to, 

 o o

2 1 1 22 o 2 2
F E N E E          4.22 

where the subscripts 2 and o refer to ensemble averages obtained for regions containing the solute molecule, or for 

regions in the pure solvent, respectively. For classical pairwise additive potentials this can be expressed as,  

 o o

2 22 21 11 1 1 22 2
F E E E N E E        4.23 

where E22 is the intramolecular (potential and kinetic) contribution to the energy from the solute. E21 is the solute-

solvent potential energy, and E11 is the solvent-solvent potential and kinetic energy. The 
o

1E  term represents the total 

energy that the same number of local solvent molecules would have in bulk solution. Hence, the solute F has been 

reduced to a series of simple ensemble averages for a region in the vicinity of the solute under these conditions. 

Furthermore, these averages quantify the energy of the solute and the interaction with the solvent, and how the solute 

perturbs the solvent-solvent interactions from those observed in bulk solvent, all relative to the solute reference energy. 
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4.4.3 Salt Solutions 

The study of electrolyte solutions by fluctuation theory is slightly complicated by the electroneutrality constraints that 

are often invoked for these solutions (Friedman and Ramanathan 1970). If we consider a salt (    )
z z

n nM X 

 
 which 

completely dissociates to provide n+ cations and n– anions, and therefore n total ions, one can relate fluctuations 

involving any indistinguishable ion (I) to that of the cations and anions via the expressions, 
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which were obtained from a simple substitution of NI = N+ + N– into Equations 4.1 and 4.10 (Gee and Smith 2009).  

Further imposing the electroneutrality conditions (Friedman and Ramanathan 1970; Kusalik and Patey 1987; Chitra 

and Smith 2002), 
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provides the following relationships, 
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and indicates that there is only one unique (independent) solute KBI and F value for a salt solution. Hence, in practice 

it is often easier to treat the solution as a mixture of a solvent and a collection of indistinguishable ions (2 = I) in which 

case the following relationships should be used, 
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in Equation 4.20 to provide the required GII, GI1, and FI values. Here, the subscript s refers to the traditional salt 

concentration, volume or partial molar excess energy, and γI = γ± is the mean molal ion activity coefficient. 
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The results from a fluctuation analysis of NaCl solutions at 298 K and 1 bar are provided in Figure 4.7. We have 

included the results obtained from two different reference states for the salt: namely, the salt crystal and an infinitely 

dilute solute. The choice of reference state does not significantly affect the values of F for water or the energy-energy 

fluctuations, while the salt F value is significantly shifted and displays a slightly different dependence on composition. 

The trend in the ion F with composition is the same for both reference states and indicates a decrease in the ion-energy 

correlation with increasing ion concentration. The local energy-energy fluctuation displays a similar decrease with 

salt concentration. 

 

4.4.4 Ideal Solutions 

Ideal solutions represent interesting reference states for comparison to real solutions. Symmetrical ideal (SI) solutions 

are defined by the fact that µi = RT ln xi and 
Ex

iU  = 0 for all i species. The local fluctuations exhibited by symmetric 

ideal solution mixtures involving any number of nc components are then given by (Ben-Naim 2006; Ploetz et al. 

2010b),  
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In this case the F values vary with composition, but are the same for each component (as would be expected). The SI 

results have been included on Figures 4.5 and 4.6 to help indicate deviations from ideal behavior. 

 

4.4.5 Bulk System Fluctuations 

It is well known that fluctuations in the properties of bulk systems can be related to various experimental properties. 

For systems at constant {N}, pressure and temperature the experimental properties are the compressibility, thermal 

expansion and constant pressure heat capacity. The appropriate relationships can be obtained directly from the 

isothermal-isobaric partition function (Allen and Tildesley 1987), 
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Figure 4.7 A fluctuation analysis of water (1) and sodium chloride (2) mixtures at 298 K and 1 bar. The solid 

lines correspond to the experimental data using the crystal reference state, while the dashed lines correspond 

to the experimental data using the infinitely dilute salt reference state.  

 

These relationships are different from the ones presented here as they represent fluctuations in the properties of bulk 

closed systems and not local open regions within these systems. It is interesting to note that the local fluctuation 

relationships (Equations 4.13, 4.14 and 4.17) can be generated from the corresponding bulk expressions by use of the 

following transformations, 

                 i i i i

i i

V V N E pV E H N           4.30 

followed by some algebra and a subsequent transformation of E to ε using Equation 4.8. 

 

4.5 Conclusions 

We have outlined a method for extracting information concerning local energy-particle and energy-energy fluctuations 

in solution mixtures from experimental data. The resulting local fluctuations can be used to help characterize the 

properties of solution mixtures in much the same way as the traditional KB/FT approach. Another possible use of the 

experimentally derived fluctuations is for the evaluation and development of accurate force fields for molecular 

simulation, where the fluctuating quantities serve as additional experimental data for the parametrization procedure 

(Ploetz et al. 2010a; Weerasinghe et al. 2010). In addition, the same type of approach can be applied to understand 

the effects of temperature on chemical equilibria in terms of energy-particle and energy-energy fluctuations. Studies 

along these lines will be published separately (Jiao and Smith 2011; Weerasinghe and Smith 2014). 
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5. Local Fluctuations in Solution: Theory and Applications*† 

 

Abstract 

We derive a general fluctuation theory of solutions that relates fluctuating quantities in the grand canonical ensemble 

to thermodynamic properties of solutions under isothermal isobaric conditions and apply the theory to a variety of 

binary systems, which we investigate by analyzing available experimental data and by molecular dynamics 

simulations. We additionally analyse the local fluctuations in terms of a multivariate Gaussian distribution with 

examples from computer simulation and present the role that higher moments of the distributions play in understanding 

the effects of temperature, pressure, and composition on the fluctuating quantities.  

  

                                                           
* Ploetz, E. A. and Smith, P. E. (2013) “Local Fluctuations in Solution: Theory and Applications,” in Advances in 

Chemical Physics, Volume 153 (Eds S. A. Rice and A. R. Dinner), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 

10.1002/9781118571767.ch4 Advances in Chemical Physics by Wiley. Reproduced with permission of Wiley in the 

format Republish in a thesis/dissertation via Copyright Clearance Center. Four sections plus one subsection that were 

either not fully relevant to this dissertation or were very similar to Chapter 4 were removed. 

 
† PES derived the extension of KB theory and designed the project and wrote the paper. EAP performed the 

simulations, analyzed the data, and made the figures.  
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5.1 Introduction 

Liquids are complicated. Liquid mixtures are even more complicated (Prigogine 1957). While our knowledge of gases 

and solids is quite extensive, and in many cases can be considered essentially complete, a deep understanding of the 

properties of solutions remains elusive. The major problems involve our simplistic understanding of how molecules 

interact, especially at high densities, and how these interactions are affected by changes in the conditions – usually 

temperature, pressure and composition. Even in the absence of strong intermolecular interactions, our ability to 

rationalize the packing of molecules in solution remains rather rudimentary. One possible solution to this problem 

involves the use of molecular simulation (Allen and Tildesley 1987). Computer simulations have now advanced to a 

stage where they have provided a wealth of information using reasonably accurate models of liquid solutions. The 

ability to investigate the properties of solution mixtures is clearly aided by computer simulation and research in this 

direction will continually evolve. However, consistent comparison with experiment is still required in order to validate 

many of the results. Furthermore, our ability to relate the properties of solution mixtures to the underlying interactions 

between the molecules is still in its infancy. For instance, when a particular model (or force field) provides an incorrect 

description of a given thermodynamic property, for example the isothermal compressibility or the enthalpy of mixing, 

it is often extremely difficult to trace this to a specific incorrectly modeled interaction between molecules. Conversely, 

it is also difficult to predict the thermodynamic consequences arising from variations in the intermolecular interactions. 

Both issues limit the effectiveness of computer driven research.  

 

Another, more subtle, problem arises when attempting to analyze experimental data concerning solution mixtures. 

Experimental data is typically obtained under isothermal isobaric conditions where the system is closed to matter 

exchange. This is clearly the most convenient and relevant set of conditions for most experiments and real systems. 

However, it is well known that the thermodynamic constraints placed on a system affect the behavior of the system 

(Munster 1970). The statistical thermodynamics of large systems ensures that ensemble averages between systems 

under the same average conditions are equal (Hill 1956). In fact, many theories of solutions have traditionally been 

developed starting from the grand canonical ensemble where the required manipulations are often much easier to 

perform. However, this equivalence does not hold for fluctuating quantities. Fluctuations depend on the ensemble. We 

will see here that fluctuations characteristic of open systems can be used to help understand solution behavior in closed 

systems. In this type of approach the fluctuations then represent the fluctuations associated with a relatively small 

local volume of solution. We will argue that these local fluctuations should be much easier to understand and probe 

compared to fluctuations of the system as a whole. One then simply needs to relate these local fluctuations to 

thermodynamic properties of the solution under the appropriate thermodynamic constraints. This is the role that the 

Fluctuation Theory (FT) of solutions seeks to play. 

 

Fluctuations play an important role in the properties of systems. This was well established by the work of Einstein and 

others (Callen 1960). However, this work has primarily focused on the fluctuations in bulk systems under different 

thermodynamic constraints. A major step forward was provided by Kirkwood and Buff when they related particle 

number fluctuations and integrals over molecular distribution functions to the properties of closed systems - 
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specifically the changes in chemical potentials, partial molar volumes and isothermal compressibility - and to changes 

in the osmotic pressure for semi-open systems (Kirkwood and Buff 1951). This approach is generally known as the 

Kirkwood-Buff (KB) theory of solutions. However, the theory lay relatively unused for over 25 years. Presumably, 

this initial lack of interest was because the theory appeared to be unsuited for the study of salt solutions (Friedman 

and Ramanathan 1970; Kusalik and Patey 1987), and/or the theory required radial distribution functions, which are 

generally unknown, as input data. 

 

More recently, KB theory has developed into a powerful tool for probing the microstructure of solution mixtures 

(Matteoli and Mansoori 1990; Ben-Naim 2006; Pierce et al. 2008; Smith et al. 2013). This can be attributed to two 

main factors. First, the development of the KB inversion procedure by Ben-Naim (Ben-Naim 1977), whereby the 

experimental data can be used to obtain the integrals over the RDFs, the so called KB integrals (KBIs). Second, the 

ability of modern computer simulations to provide realistic RDFs as input for the theory has improved significantly. 

These two factors have prompted the development of approaches to investigate the local microstructure in solutions, 

i.e. deviations in the local composition from the bulk distribution, which has in turn led to a rigorous description of 

preferential solvation (Ben-Naim 2006). Fluctuation Theory has now been widely used to understand the basic 

properties of solutions (Matteoli and Mansoori 1990), to understand the effects of additives on the solubility of solutes 

(from small hydrocarbons to proteins) and biomolecular equilibria (O’Connell 1971a; Chialvo et al. 1996; Chitra and 

Smith 2001a; Ruckenstein and Shulgin 2002; Shimizu and Smith 2004; Shulgin and Ruckenstein 2005; Mazo 2006), 

to investigate the local composition of solutions in the context of preferential solvation (Marcus 1989), to study the 

effects of additives on the surface tension of liquids (Chen and Smith 2008), to study critical behavior (Cochran et al. 

1987; Debenedetti 1987a; O’Connell and Liu 1998; Baird and Kim 2003), to interpret computer simulation data (Smith 

1999; Chitra and Smith 2001a; Weerasinghe and Smith 2003a; Ganguly et al. 2011), to develop models for many of 

the above effects (Smith 2004b), and to provide expressions for the volume, enthalpy, compressibility and heat 

capacity corresponding to simple association equilibria (Gee and Smith 2009; Jiao and Smith 2011). The general 

formulation and application of KB theory has been outlined in detail by several workers (Matteoli and Mansoori 1990; 

Ben-Naim 2006; Pierce et al. 2008; Smith et al. 2013). 

 

KB theory is restricted to the use of particle number fluctuations. It was recognized quite early that one could extend 

this type of approach to include particle-energy and energy-energy fluctuations (Buff and Brout 1955). Further work 

by Debenedetti has also highlighted the additional insight this provides for computer simulations (Debenedetti 1986, 

1987b, 1988). However, a direct link to experimental data was absent until very recently when Ploetz and Smith 

provided a framework for the analysis of additional solution properties - specifically the excess partial molar 

enthalpies, the thermal expansion coefficient and the constant pressure heat capacity - all as a function of solution 

composition (Ploetz and Smith 2011b). Furthermore, all the fluctuating properties can also be obtained directly from 

available experimental data. The approach has since been extended to treat molecular association and conformational 

equilibria (Jiao and Smith 2011).  
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Here, we outline a practical general theory of solution fluctuations, representing local regions within a solution, which 

relates the local fluctuations to thermodynamic properties of bulk closed isothermal isobaric systems. We argue that 

this type of approach leads to a much simpler, though certainly not trivial, description of the behavior of solution 

mixtures. Furthermore, this appears to be the most appropriate and convenient approach for analyzing a variety of 

computer simulation data.  

 

5.2 Outline, Notation and General Remarks 

The outline of this review is as follows. Some basic background material in the areas of thermodynamics (Section 5.3) 

and statistical thermodynamics (Section 5.4) is presented with an emphasis on the Gibbs (NpT) and grand canonical 

(µVT) ensembles of the latter. This is followed by the derivation of a general fluctuation theory of solutions (Sections 

5.5-5.7) involving any number of components, which relates fluctuating quantities in the grand canonical ensemble to 

thermodynamic properties of solutions under isothermal isobaric conditions. The theory is essentially complete at the 

end of Section 5.7, but the specific forms relating to various applications are not always obvious. Thus, this leads to 

several sections outlining the application to a variety of binary (Section 5.8) systems. This is illustrated by an analysis 

of experimental data corresponding to representative binary mixtures (Section 5.8). This is followed by an analysis 

and discussion of the local fluctuations in terms of a multivariate Gaussian distribution with examples from computer 

simulation (Section 5.9). The role of higher moments of the distributions in understanding the effects of temperature, 

pressure, and composition on the fluctuating quantities provided by FT is then presented (Section 5.10). Finally, we 

discuss some technical issues surrounding the implementation of the theory for the analysis of computer simulation 

data. We conclude with a summary and future outlook. 

 

In presenting the expressions below it quickly becomes apparent that a general matrix formulation is possible in many 

cases, but this often suffers from a lack of transparency. Hence, in many places we provide expressions involving a 

combination of local fluctuating and bulk thermodynamic quantities. We believe this provides clarity to the situation 

and often helps during subsequent manipulations that might be of interest, e.g. infinitely dilute conditions. 

 

Throughout this work we refer to a collection of species (1, 2, 3, . . .) in a system of interest. We consider this to 

represent a primary solvent (1), a solute of interest (2), and a series of additional cosolutes or cosolvents (3, 4, …) 

which may also be present in the solution. It should be noted that when we refer to solutions we are primarily concerned 

with liquid mixtures. FT can, however, be applied to mixtures of gases. The summations appearing here involve sums 

over all thermodynamically independent components (nc) in the mixture unless stated otherwise. The composition of 

the solution is denoted by either mole fractions (xi = Ni/N), dimensionless molalities (mi = Ni/N1), or number densities 

(ρi = Ni/V), where Ni and N are the number of molecules of i and the total number of molecules, respectively. The 

classic definitions of molalities and molarities can be obtained by a simple scaling of the dimensionless molalities and 

number densities, respectively, but this does not affect the final relationships provided here. Our formulation will 

focus on the use of β = (kBT)-1 rather than the absolute temperature as an independent variable, where kB is the 

Boltzmann constant. The former is much more convenient for statistical thermodynamic derivatives involving 
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temperature. The temperature derivatives can be obtained by simple substitution, –kBT2 dβ = dT, although second 

derivatives are more involved. 

 

Derivatives of the chemical potentials with respect to composition form a central component of the theory. 

Unfortunately, these derivatives can take many forms depending on the concentration scale of interest. This is further 

complicated if one switches to a particular activity coefficient. Hence, we choose to use chemical potentials and define, 
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  5.1 

as our primary derivative of interest. Using this definition we also have Ni µij = Nj µji. Our focus in this work will be 

on fluctuating properties of solutions. A general fluctuation in a property X is written as δX = X – < X >, where the 

angular brackets denote an ensemble or time average. All ensemble averages will refer to the grand canonical ensemble 

unless stated otherwise. We use the symbol E to represent the instantaneous internal energy for each member of the 

ensemble, or each configuration of a simulation trajectory, whose average value is the thermodynamic internal energy 

(U). In many applications we are interested in the expressions for an infinitely dilute solute. These are denoted with 

an infinity superscript, while the pure solvent properties are indicated by a zero superscript. Finally, the Kronecker 

delta function (δij) is used consistently during the theoretical development and is equal to unity when i = j, and zero 

otherwise.   

 

5.3 Thermodynamic Background 

In this section we define many of the thermodynamic properties of interest to FT, and also present several useful 

relationships which aid in the development and application of the theory. The experienced reader may skip this section. 

Our focus will be on two types of systems. In the first type of system the independent variables are the number of 

particles ({N}), the absolute temperature (T), and the pressure (p), while in the second type of system the independent 

variables are the chemical potentials ({βµ}), the volume (V), and temperature. Starting with the entropy formulation 

of Gibbs’ fundamental equation and then transforming to the above sets of variables provides (Munster 1970), 

 

i i

i

i i

i

d G Hd Vdp dN

d pV Ud pdV N d

    

     




  5.2 

The first set of variables corresponds to the most common situation of experimental interest, while the second set refer 

to a system that is open to matter exchange with its surroundings. The above equations dictate the response of the 

system at equilibrium to changes in the independent variables. The enthalpy (H = U + pV), volume, and chemical 

potentials are therefore provided by first derivatives of the Gibbs free energy (G = H – TS) for our closed system, 

while the internal energy, the pressure, and the average number of particles are provided by derivatives of the 

thermodynamic function (pV) characterizing our open system. 
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Several global properties of solution mixtures will be relevant to FT. These include the isothermal compressibility 

(κT), the isobaric thermal expansion coefficient (αp), and the constant pressure molar heat capacity (Cp,m) given by the 

following derivatives, 
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where ρ is the total particle number or mass density and Xm is the corresponding molar quantity, Xm = < X >/N. All 

three properties can be obtained directly from experiment. They involve second derivatives of the Gibbs free energy. 

It is the second derivatives of the Gibbs free energy shown above that one can express in terms of second derivatives 

of the thermodynamic function (pV) for open systems. Second derivatives are typically related to fluctuations in the 

system as we shall see below. 

 

Chemical potentials are central to our understanding of material and phase equilibrium and phase stability. However, 

the vast majority of the studies using the FT of solutions involve a single stable phase with multiple components. Here, 

we are concerned with the relationships between the chemical potentials (and their derivatives) and the solution 

properties. Thermodynamically, we have from Equation 5.2 that, 
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Hence, the chemical potential quantifies the change in the Gibbs free energy on addition of a single particle of species 

i while keeping p, T, and the number of all other species constant (indicated by the prime superscript). There are 

additional useful relationships between the partial molar quantities which can be obtained from interchanging the 

second derivatives of the Gibbs free energy. These are provided in Table 5.1. 

 

 

 

Table 5.1 Schematic relationship between second derivatives of the Gibbs free energy. 

 βG 

 βμi = ∂/∂Ni V = ∂/∂p H = ∂/∂β 

∂/∂Nj μij 
jV  jH  

∂/∂p 
iV  κT αp 

∂/∂β 
iH  αp Cp 
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The application of Euler’s Theorem to the extensive properties (X = U, S, V, H, G and Cp) of a system at constant T 

and p indicates that (Davidson 1962), 

 m
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where iX  is known as a partial molar quantity. All the extensive quantities depend on T, p, and composition and hence 

one can write differentials of each X quantity which, when subtracting the differential obtained from Equation 5.5, 

provides a series of relationships between partial molar quantities. The most useful being when X = G, 

 0i i

i

Vdp Hd N d       5.6 

which is known as the Gibbs-Duhem (GD) equation. At constant T and p the above expressions indicate that changes 

in the partial molar quantities are not independent. 

 

In practice, many of the extensive functions (U, S, H, G), and their corresponding partial molar quantities, can only 

be determined up to an additive constant. Hence, their values are expressed with respect to a set of well-defined 

reference states. These are typically taken as the pure solutions of each component at the same T and p. One can then 

define a series of mixing quantities such that, 

 o o
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This concept is also often applied to the volume of the solution even though absolute molar volumes are clearly 

available. A series of excess quantities may then be defined using the properties of ideal solutions such that, 

 Ex id Ex

m mix m mix m i i

i

X X X x X      5.8 

where the excess mixing quantities are expressed in terms of the corresponding excess partial molar quantities. It is 

these excess quantities (X = G, V, H, S) that are normally available experimentally and are typically represented as a 

function of composition by a suitable fitting function. First derivatives of the fitting function with respect to 

composition then provide the corresponding excess partial molar volumes, enthalpies, and chemical potentials, while 

second derivatives of the excess Gibbs energy with respect to composition then provide derivatives of the chemical 

potentials.  

 

In many cases it is necessary to transform the derivatives of the chemical potentials between different concentration 

units. This can be achieved by use of the following relationships, 
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which apply to solutions with any number of components and where i i iV    are the volume fractions. 
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Figure 5.1 A schematic illustration of the local versus bulk representations of solution behavior. Both the local 

and bulk regions are characterized by the same average pressure and temperature. However, in the bulk region 

the number of particles is fixed and the chemical potentials are obtained as ensemble averages. In the relatively 

small local region molecules are free to enter or leave in an effort to maintain a set of constant chemical 

potentials, determined by the bulk composition, which acts as a matter bath. 

 

The above expressions are all that we require for the manipulation of the available experimental data. Most of the 

relationships correspond to closed systems which are of primary interest to the vast majority of researchers. FT will 

be used to provide expressions for many of these closed system quantities in terms of fluctuations in an equivalent 

open system. This open system can then be considered as a local region of fixed volume within the bulk system that 

possesses the same average pressure and temperature, but allows matter exchange in order to maintain the same 

chemical potentials. This is illustrated in Figure 5.1. The spatial extent of the local region will depend on the nature 

of the components, the solution composition, and the particular values of temperature and pressure concerned. 

 

5.4 Statistical Thermodynamics Background 

Statistical thermodynamics is used to provide the characteristic functions in terms of the appropriate partition 

functions, which will formally involve a sum over the microscopic states available to the system. It is also used to 

provide relevant expressions for the fluctuations under one set of variables, which can then be used to rationalize the 

thermodynamic properties of a system characterized by a different set of variables (Hill 1956). Again, the experienced 

reader may skip this section. 

 

Our application of statistical thermodynamics will focus on the grand canonical ensemble, where we shall develop 

expressions for the local fluctuations, and the isothermal isobaric (or Gibbs) ensemble, which is representative of most 

experimental conditions. The characteristic functions provided in Equation 5.2 can be expressed in terms of the 

corresponding classical multicomponent partition functions such that (Hill 1956), 
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where E is the internal energy for a particular set of molecular positions {r} and momenta {p}, int

iq  is the internal 

molecular partition function, h is the Planck constant, and we have used the shorthand notation μN = μ1N1 + μ2N2   

for simplicity. It should be noted that the focus on classical systems does not imply that FT is invalid for quantum 

systems, but is merely an acknowledgement that these are the most common systems of interest. 

 

Using these expressions in Equation 5.3 and evaluating the derivatives leads to expressions for the compressibility, 

thermal expansion, and heat capacity in the Gibbs ensemble. The results are, 
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where all the ensemble averages correspond to the NpT ensemble. It is important to note that the above formulas 

represent fluctuations in the properties of the whole system, i.e. bulk fluctuations. Expressions for the chemical 

potentials, partial molar enthalpies and volumes, and also derivatives of the chemical potentials can (in principle) also 

be provided in terms of properties of the whole system. They are valuable expressions, but they provide little or no 

information concerning fluctuations in the local vicinity of atoms or molecules. It is these local quantities that will 

prove more useful.  

 

If we turn to the grand canonical ensemble, one finds the expressions provided in Table 5.2. Several of the second 

derivatives involve particle-particle, particle-energy, or energy-energy fluctuations, and will play a central role in the 

FT of solutions. We emphasize that the expressions in Table 5.2 can be used to describe an ensemble of systems in 

the grand canonical ensemble, in which case they correspond to bulk properties, or to small regions of any bulk system 

in any ensemble at constant T, in which case they represent local fluctuations in a much larger bulk system. 

 

Finally, before leaving this section we briefly discuss the use of the pseudo chemical potential and associated quantities 

developed by Ben-Naim (Ben-Naim 2006). The pseudo chemical potential (pcp) formulation offers certain advantages 

over other traditional approaches to understanding the properties of solutions. The reader is referred to the detailed 

discussions of Ben-Naim for further information (Ben-Naim 2006). The pseudo chemical potential 
*

i  of species i is 
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Table 5.2 First and second derivatives in the grand canonical ensemble. 

 βpV 

 < Ni > = ∂/∂βμi –< E > = ∂/∂β βp = ∂/∂V 

∂/∂βμj < δNiδNj > –< δEδNj > < Nj >/V 

∂/∂β –< δEδNi > < δEδE > –< E >/V 

∂/∂V < Ni >/V –< E >/V 0 

 

defined by, 

 
* 3ln Λi i i i       5.12 

where Λ is the thermal de Broglie wavelength. The major advantage of this definition is that one separates the total 

chemical potential into contributions from the translational degrees of freedom (the ln term) and contributions from 

specific interactions with the other molecules in the system (the pseudo chemical potential term). Using the above 

definition and taking the appropriate derivatives one also finds,   
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which provide the pseudo volume and enthalpy, and derivatives of the pseudo chemical potential. Derivatives of the 

pcp are most closely related to changes in the molar activity coefficient. Standard thermodynamic transformations 

then provide relationships to Lewis-Randall (mole fraction) activity coefficients and the rational (molal) activity 

coefficients. The pcp is also closely related to the excess chemical potential often determined from computer 

simulation using, for example, the Widom particle insertion approach (Allen and Tildesley 1987). Here, we find,    

 
* Ex intlni i iq      5.14 

In many applications the changes to the internal partition function are neglected, in which case changes to the pcp are 

equal to the changes in the excess chemical potential. 

 

5.5 A General Fluctuation Theory of Solutions 

5.5.1 Theory 

Many derivations of the principle expressions involving only particle-particle fluctuations have appeared in the 

literature (Kirkwood and Buff 1951; Hall 1971; O’Connell 1971b; Newman 1994; Ben-Naim 2006; Nichols et al. 

2009; Blanco et al. 2011). They all start with expressions valid for the grand canonical ensemble, followed by a series 

of transformations to provide expressions for properties representative of the Gibbs ensemble. Here, we will present 

a relatively simple derivation that attempts to reduce many of the thermodynamic manipulations appearing in other 

approaches. The general approach for multicomponent systems will involve the manipulation of a few matrices. 

However, for binary and ternary systems the expressions can be obtained directly from a few simultaneous equations. 

This offers greater transparency for those less familiar with matrix operations and their properties. 
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The average number of particles of species i and the average internal energy can be considered a function of the 

temperature, volume and set of chemical potentials. Using the expressions provided in Table 5.2 the following set of 

differentials can be written, 

 j j

j

X
d X X E d dV X N d

V
           5.15 

where X = Ni or E. In the traditional formulation of KB theory, T remains constant (Kirkwood and Buff 1951). Hence, 

the dβ term disappears and one has a series of simultaneous differentials, one for each component, which can be solved 

after taking the appropriate derivatives. Here, we wish to include temperature related effects and therefore our 

expressions will involve energy fluctuations. We now define a set of fluctuating quantities and, in order to make these 

more compatible with experimentally available data, we choose a reference energy equal to the enthalpy of the pure 

components such that, 
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where  corresponds to an excess energy for each member of the ensemble. We note that the above definitions are 

slightly different from the ones used in the original study (Ploetz and Smith 2011b). However, the new definitions 

lead to a significant simplification of the resulting expressions. With these steps our differentials can be written, 
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The last expression for the enthalpy was obtained by a combination of Equations 5.2 and 5.15. We note that the 

following relationships follow directly from the above expressions, 
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  5.18 

where ρ = N/V is the total number density. Equations 5.17 and 5.18, coupled with the Gibbs-Duhem equation, are all 

that is required to derive the basic theory and provide a series of relationships between fluctuating quantities and 

thermodynamic properties. All the properties on the right hand side of the above expressions involve fluctuations or 

properties that can also be expressed in terms of fluctuations. 

 

A general formulation for the chemical potential derivatives and partial molar volumes is most easy if one first 

considers the constant temperature case and transforms to molalities. Using component 1 as the primary solvent and 

noting that d ln mi = d ln ρi – d ln ρ1 provides, 
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Using this expression, the GD relation at constant T and p, and the expressions provided in Equation 5.18, it is a simple 

process to obtain relationships for µ22, 2V , and κT using a few simple steps. However, for ternary or higher solutions 

a series of matrices becomes more convenient. We write the number fluctuations in the above expression in matrix 

form where we also include the number densities (GD expression) in the first row, 
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This will prove to be a central matrix for the development of FT. Therefore, if we signify the above matrix as M, then 

take derivatives of Equation 5.19 with respect to molality at constant p (and T), and also take derivatives with respect 

to p with composition (and T) constant, the results can be expressed in the form, 
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i.e. the expressions or values for the partial molar volumes and activity derivatives are just the elements of the inverse 

of the M matrix, which can also be expressed in terms of cofactors of the M matrix. This also leads to an expression 

for the compressibility, 
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T
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k T

M
    5.22 

where NN is the matrix of δij + Nij elements. At this point we have a matrix formulation for the chemical potential 

derivatives, partial molar volumes, and isothermal compressibility. This is essentially the theory of Kirkwood and 

Buff.  

 

To complete the general theory we require expressions for the partial molar excess enthalpies. The excess enthalpies 

can be obtained from the expressions provided above (Equation 5.18), or in matrix form as HEx = M-1 F, where F is 

a vector with elements 
Ex

1 m 1i iH F F   . A general expression for the enthalpies then becomes, 

 Ex Ex

mi i j ij

j

H V H F      5.23 

after the use of Equation 5.21 and some rearrangement via the GD expression. The fluctuation expressions for the 

partial molar volumes and chemical potential derivatives could be inserted into the above equation. However, the 

expression becomes rather complicated. We prefer the above form as the limiting expressions at low concentrations  
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Figure 5.2 A general scheme for obtaining local fluctuating quantities from bulk thermodynamic properties.  

See text for the definition of the symbols. All properties are composition dependent. 

 

are easily obtained. The fluctuation expressions for the thermal expansion and heat capacity then follow from Equation 

5.18.  

 

In this section we have related a series of properties for solution mixtures to fluctuations in local regions of the solution. 

The expressions are somewhat complicated, especially as the number of components increases. However, this is 

primarily due to closure of the bulk system to matter exchange. The corresponding fluctuations for local regions are 

much simpler in form and do not change with the number of components – there are simply more fluctuating quantities. 

This suggests that a focus on the local properties may prove more beneficial to our understanding of solution mixtures 

than a focus on bulk properties. 

 

5.5.2 Inversion of FT 

The KB inversion procedure is the process of obtaining expressions for the particle number fluctuations in terms of 

experimentally available (isothermal isobaric) data (Ben-Naim 1977). Again, there are multiple approaches to the 

inversion procedure (Ben-Naim 1977; Smith 2008). Analysis of Equation 5.18 indicates that an inversion to obtain 

particle-energy and energy-energy fluctuations is rather trivial once one has the particle-particle formulas. Arguably, 

the simplest approach to obtain these involves the pseudo chemical potential and partial molar volumes. First, we note 

that one can add the expressions for ik k kV   and Bk Tk T  , provided in Equation 5.18, and then convert to pcp 

derivatives using Equation 5.13 to give, 

 * *( )( )ik i k ij ji kj kj

j

V N         5.24 



87 

 

 

This can then be expressed in matrix form, 
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to provide a simple expression for the elements of the transpose of the NN matrix (and thereby the KBIs) in terms of 

a matrix containing just the pseudo partial molar volumes and the inverse of a matrix containing just the pseudo 

chemical potentials, both of which can be expressed in terms of experimental data. Other approaches are also available 

(Smith 2008). The particle-energy and energy-energy fluctuations are then easily obtained from Equation 5.18. The 

overall inversion process is outlined in Figure 5.2. 

 

In summary, FT provides a link between fluctuating properties in the grand canonical ensemble and thermodynamic 

properties of systems in the Gibbs ensemble. This is illustrated schematically as, 

          Ex
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For an nc component solution there are nc(nc + 1)/2 unique particle number fluctuations, nc unique particle-excess 

energy fluctuations and one excess energy-energy fluctuation. These can be used to provide, or can be extracted from, 

nc(nc – 1)/2  independent chemical potential derivatives, nc – 1 independent partial molar volumes, nc – 1 independent 

excess partial molar enthalpies, together with the compressibility, thermal expansion and heat capacity. Alternatively 

speaking, (nc
2 + 3nc)/2 + 1 fluctuating quantities are related to the same number of independent thermodynamic 

properties. All of these properties vary with composition. 

 

5.6 Fluctuations in Terms of Molecular Distribution Functions 

The previous expressions involve particle number (and energy) fluctuations. It is more common, and totally 

equivalent, to use distribution functions to replace the number fluctuations. However, in doing so one has to remember 

that these distributions correspond to a system volume that is open to all species. Consequently, integration over the 

system volume does not lead to the trivial results observed for closed systems (Ben-Naim 2006). In the grand canonical 

ensemble the probability that any N1 molecules of species 1, and N2 molecules of species 2, and so on, are within d{r} 

at {r} is given by 
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r dr  where (Hill 1956), 
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the product is over the different species in the mixture, and ni is the number of i molecules in the n particle probability 

distribution. Hence, we can evaluate the following integrals,  
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where the integrals are over all possible positions of the particles. Various combinations of the above integrals are 

generally encountered in statistical thermodynamic theories of solutions (Hill 1956; Davidson 1962). The two most 

common integrals are, 
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The required integrals expressed as fluctuations are therefore given by, 
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These fluctuations can then be expressed in terms of a set of distribution functions g(n) for species i, j and k defined 

with reference to the bulk distributions by, 
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The integrals can then be related to the distribution functions where we have integrated over the position of the central 

particle and only consider the inter-particle distance r12 = |r2 – r1|, 
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At this point we have related the particle number fluctuations to integrals over radial distribution functions in the grand 

canonical ensemble. FT does not require information on the angular distributions for pairs of molecules as these are 

averaged out in the above expressions. The RDFs correspond to distributions obtained in a solution at the composition 

of interest, after averaging over all the remaining molecular degrees of freedom. The Gij’s are known as Kirkwood-

Buff integrals (KBIs) and are the central components of KB theory.  

 

The KBIs quantify deviations from a random distribution surrounding a central molecule summed over all space. In 

this respect they are more informative than the particle fluctuation formulation as they can then be decomposed and 

interpreted in terms of spatial contributions – using computer simulation data, for example. They clearly resemble the 

integrals one encounters in the study of imperfect gases and the McMillan-Mayer theory of solutions (McMillan and 

Mayer 1945). However, the KBIs do not form part of a virial expansion and are relevant at any solution composition 

– not just infinitely dilute solutes in the gas phase or a primary solvent. 
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Figure 5.3 Radial distribution functions, Kirkwood-Buff integrals, particle-excess energy and excess energy-

energy fluctuations obtained from a simulation of methanol (2) and water (1) mixtures (x2 = 0.25) at 300 K and 

1 bar. The properties are displayed as a function of distance (r) and integration distance or sphere radius (R) 

in nm. The KBIs obtained from integration of the RDFs correspond to the oscillating (thin) curves in the bottom 

left panel, while those from the particle-particle fluctuations correspond to the smooth (thick) lines. 

 

Multiplying the KBIs by number densities (concentrations) one obtains an alternative picture of the KBIs. The 

quantities, Nij = ρjGij, are referred to as excess coordination numbers and quantify the change in the number of j 

molecules observed in an open volume of solution on introduction of a central i molecule, from that observed for the 

same volume of bulk solution in the absence of the i molecule (Hall 1971). The integrals can be related to the 

fluctuation densities via, 
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The triplet correlations will become important when discussing third derivatives of the thermodynamic potentials that 

arise when we consider the variations in the KBIs and chemical equilibria with temperature, pressure and composition. 

Hence, there are two complimentary viewpoints. The first is provided by integrals over molecular distribution 

functions and quantifies any deviation from a random distribution (Equation 5.31). The second is provided by particle 

number fluctuations and describes the degree of correlation between the various particle numbers (Equation 5.32). 
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An example of the fluctuating quantities obtained from computer simulation is provided in Figure 5.3. The results are 

specifically for a mixture of methanol and water at 300 K and 1 bar at a methanol mole fraction of 0.25, but are merely 

used here to illustrate the typical behavior observed for many solutions. The RDFs display the usual oscillatory  

 

behavior, which is dampened as one moves further away from the central molecule until all RDFs approach unity as 

the random bulk distribution is reached. The resulting KBIs also display a similar oscillatory behavior as the 

integration distance is increased. This is both an advantage and disadvantage. Clearly, any structure arising from the 

different solvation shells is apparent in the KBIs. However, these oscillations extend over many solvation shells, often 

more than appears in the original RDF due to the r2 weighting in Equation 5.31, which can hinder the assignment of 

a final limiting value. The same oscillatory behavior is not observed by direct simulation of the fluctuations in a 

spherical region of space of the same volume, but not centered on a particular molecule. The values appear to converge 

much more rapidly with distance and reasonable estimates can be obtained for spherical radii of as small as 0.5 nm or 

so. As required, the KBI and fluctuation approaches tend to the same values. 

  

Finally, we note that particle number fluctuations increase, and many properties diverge, as one approaches a critical 

point. O’Connell and others have shown that one can still apply FT under these circumstances by adopting integrals 

over direct correlation functions (DCF) (O’Connell 1971b; Chialvo 1993), and not integrals over the total correlation 

function as adopted in the standard KBIs (O’Connell and Liu 1998). The advantages of the DCF approach include the 

ability to treat systems close to critical points and a general simplification of the expressions provided above. The 

disadvantages are that the DCFs cannot be calculated directly, only through the defining Ornstein-Zernike expression, 

and that they appear to be more difficult to interpret than the KBIs. We will not consider the DCF approach here. 

 

5.7 Limiting Expressions for the Fluctuating Quantities 

In many cases one is interested in a particular fluctuating quantity as the concentration of a species tends to infinite 

dilution. The limiting behavior of the chemical potential derivatives is such that μij  δij as ρj  0. The behavior of 

the Nij’s and Fi’s under these conditions is the easiest to follow and is one of the reasons we adopted this particular 

formulation. It is clear that Nij tends to zero as ρj tends to zero. However, the same is not true for Nij and Fi when ρi 

tends to zero. Under these circumstances the following limiting expressions are found, 
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The interpretation of the above expression is as follows. The first term represents the average number of j molecules 

observed in a given local volume centered on a single infinitely dilute i particle, compared to the number of j particles 

observed in the same volume of solution in the absence of the i particle. The exact size of the local volume is 

unimportant as long as it is large enough to extend beyond the influence of the central i particle. When this condition 

is met, the difference between the two extensive quantities should be intensive with respect to the local volume. 

Correspondingly, for the Fi’s we have, 



91 

 

 

 
1

lim
i

i i

i iN
i

N N
F

N





  
       5.34 

which quantifies the difference between the average excess energy in the local region surrounding the i particle and 

the average excess energy in the same volume of solution in the absence of the i particle. The above expression can 

be expanded further to give, 

   o o( )i i j j j i ij ij ji
j j

F E E N N H E E N H             5.35 

which is more convenient and useful for the analysis of computer simulations. Hence, the fluctuations have essentially 

disappeared and we find only the difference between average properties in various regions of the solution. The value 

of Δm remains a fluctuation representative of the bulk solution under these conditions. 

 

The triplet correlations that appear in later sections have a more interesting limiting behavior. If we define the 

following fluctuating quantities, 
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and then use a similar approach as above one finds that as ρj tends to zero we have, 
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where δNj = Nj – < Nj >, etc. The limiting expressions for the fluctuations involving the excess energy can be obtained 

by a simple substitution of Nj or Nk with ε.  

 

5.8 Application to Binary Mixtures 

5.8.1 Bulk Thermodynamic Properties in Terms of Local Fluctuating Quantities 

Binary mixtures are the most common type of system studied using FT. The expressions for the bulk properties in 

terms of local fluctuations are of both conceptual interest and also useful for the practical analysis of theoretical or 

simulation results. If we consider a binary mixture of a solvent (1) and a solute (2) and then define two additional 

variables, 
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one finds the following results,  
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Other chemical potential derivatives can be found by application of the GD expression. All the quantities on the right 

hand side involve local fluctuations or properties that can be expressed in terms of local fluctuations using a previous 

expression. In principle, they can be obtained from a single simulation. Hence, one can determine, given a set of 

fluctuating quantities, all the properties on the left hand side by a stepwise process. The above expressions can be 

manipulated further to provide relationships for changes in the various activity coefficients, 
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which may be of more interest for certain applications. 

 

At this point it is worth pausing to remind ourselves what we have accomplished here. The above expressions 

correspond to thermodynamic properties of solutions that are amenable to experiment. The expressions involve 

fluctuating quantities for an equivalent open system in which the average particle numbers are equal to the fixed 

number of particles per unit volume used in the experiment. The same argument holds for the chemical potentials, 

except in the opposite direction, and for the volume and the pressure, i.e. we are invoking the equivalence of ensembles 

approach. In addition, the open regions can be thought of as finite local regions in an essentially infinite bulk solvent. 

Hence, the approach provides information on local structure and fluctuations within the system. These local 

fluctuations are different from the bulk fluctuations characteristic of isothermal isobaric systems. 

 

Examination of the above expressions clearly demonstrates that, even for binary mixtures, one requires combinations 

of multiple fluctuating quantities to provide the thermodynamic properties. This illustrates that the thermodynamic 

properties considered here are rather complex and will be difficult to relate to the underlying microscopic picture of 

molecular interactions and association. In contrast, focusing on the fluctuating quantities representative of local 

regions in the solution provides a simpler picture of solution behavior. It is more probable that one can explain the 
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fluctuating quantities – in terms of molecular distributions or interactions, hydrogen bonds, hydrophobic interactions, 

etc. – than one could explain the trends in the excess partial molar enthalpies, for instance. This is the argument we 

presented in the introduction.   

 

In many cases one is interested in the limiting behavior when the solute concentration approaches zero. The limiting 

expressions are then, 
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The limiting activity coefficient derivatives are provided by, 
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and can be used to analyze Henry’s law, for instance (Shulgin and Ruckenstein 2002). The above expressions represent 

all the thermodynamic quantities typically provided by FT that are relevant for binary solutions. If one has access to 

the fluctuating quantities then it is possible to predict or rationalize the experimental properties. The main sources of 

the fluctuations would appear to be computer simulation and integral equation methods (Imai et al. 2000). Hence, one 

can determine the fluctuating quantities and use this information to make contact with real experimental data. This 

can thereby provide added confidence in the theoretical results. 

 

5.8.2 Local Fluctuating Quantities in Terms of Bulk Thermodynamic Properties 

Most investigations of closed binary systems have involved the determination and examination of the three KBIs, 

possibly followed by some description of local composition or preferential solvation, as a function of composition. 

The fluctuating quantities in terms of experimentally available properties can be obtained from Equation 5.25. It is 

more common, however, to express the particle fluctuations in terms of partial molar volumes, the compressibility  
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Figure 5.4 A fluctuation theory analysis of water (1) and alcohol (2) mixtures as a function of composition at 

298 K and 1 bar. The panels correspond to methanol (left), ethanol (center), and n-propanol (right) mixtures, 

respectively. Experimental data were taken from the literature (Benjamin and Benson 1963; Douheret et al. 

1989; Hu et al. 2003; Liltorp et al. 2005; Reis et al. 2008), and analyzed using Equation 5.43. The data are 

displayed as number-number (Bij), number-excess energy (ρiFi), and excess energy-energy (ρΔm) fluctuation 

densities in units of mol/L. Solid lines correspond to the experimental analysis and the dashed lines to the 

symmetric ideal values (see Section 4.4.4). The dotted lines appearing on the number-excess energy and excess 

energy-energy fluctuation plots correspond to the experimental 
Ex

βρ
i i
H  and -1

,m B
ρ

p
C k  data, respectively.  

 

and chemical potential derivatives, rather than the pcp approach (Ben-Naim 1977). Hence, we provide the more 

common relationships here. The final expressions are, 
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All the data on the right hand side of the above expressions can be obtained from experiment or involve fluctuating 

quantities which can be expressed in terms of experimental data.  

 

5.8.3 Fluctuation Theory Analysis of Experimental Data 

To illustrate the usefulness of the above expressions we have analyzed the experimental data for several binary solution 

mixtures. The results are presented in Figure 5.4 for a series of small primary alcohols in water at 298 K and 1 bar. 

The fluctuating quantities obtained from the experimental data using Equation 5.43 are displayed as fluctuation 

densities as a function of composition. The three top panels provide KBI related quantities and have been investigated 

before. The bottom three panels, which all involve excess energy fluctuations, have only become available recently. 
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The data indicate increasing values of B22 and B11 for the central regions, with a corresponding decrease in the B12 

value, and an increasing trend with alcohol chain length. The trend with chain length is to be expected, as an increase 

in hydrophobic character would tend to promote local solute-solute and solvent-solvent self association or aggregation. 

This is manifested in an increase in the Bij values and, therefore, an increase in the width of the solute-solute particle 

distribution. The Bij values for water and propanol mixtures display a large peak or inverted peak around x2 = 0.2 (note 

the scale change in this graph). The next alcohol in the series (n-butanol) phase separates in this region. What is most 

interesting is that no similar behavior is observable in the raw experimental data. This is usually the case. However, 

on extracting the particle number fluctuations, one immediately sees that the solution behavior in this composition 

region is the most noticeable feature of the mixture and, presumably, deserves the most attention.  

 

The energy fluctuations display similar features. The excess energy-energy fluctuations (Δm) for methanol and ethanol 

mixtures with water are rather simple. The fluctuations vary slowly from those of pure water to those of pure methanol. 

They are somewhat similar to the values expected for ideal mixtures, and very similar to the values obtained from just 

the heat capacity term in Equation 5.43. However, this is not true when one examines the propanol and water mixtures. 

Clearly, the large particle number fluctuations significantly influence the energy-energy fluctuations in the region of 

0.2 mole fraction. The energy fluctuations increase in this region. This is to be expected as the particle fluctuations 

are the ultimate source of the energy fluctuations, although the energy of each particle can vary significantly. The 

excess energy-particle number fluctuations also exhibit the same behavior. The values for the mixture of methanol 

and water are somewhat similar to the ideal values, and to the excess partial molar enthalpies. However, as one moves 

to ethanol and then propanol the local fluctuations again display interesting features that are not apparent in the 

experimental data used for extracting these values. 

 

The data in Figure 5.4 indicate changes in the local properties of solution mixtures. In many cases, this can be 

expressed in terms of changes in the local composition of the mixture. This has proved to be a very successful approach 

to understanding solution structure and has led to the concept of preferential solvation (Ben-Naim 1988; Matteoli and 

Lepori 1995; Marcus 2001). Preferential solvation can be defined by use of the KBIs for both binary and ternary 

mixtures (Ben-Naim 1989, 1990), although only qualitative results are typically reliable as the size of the local region 

is generally unknown when examining experimental data. It may be possible to consider the energy fluctuations in a 

similar way, but we know of no such approach. 

 

Another series of interest is the poly alcohols. A FT analysis of methanol, 1,2-ethanediol, and glycerol with water is 

presented in Figure 5.5. Clear trends in the particle number fluctuations are observed as the number of hydroxyl groups 

is increased. The general trend is towards solutions that mix “better” with water at the local level, as evidenced by the 

decrease in Bii values. A shift in the positions of the maxima and minima to lower alcohol compositions also occurs. 

The excess energy-particle number fluctuation densities are more varied and specific   
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Figure 5.5 A fluctuation theory analysis of water (1) and alcohol (2) mixtures (left panel) and solvent (1) and 

acetone (2) mixtures (right panel) as a function of composition at 298 K and 1 bar. The left panel contains data 

for methanol (solid lines), 1,2-ethanediol (dotted lines), and glycerol (dashed lines). The right panel contains 

data for the solvents water (solid lines) and chloroform (dashed lines). Experimental data was taken from the 

literature (Mueller and Kearns 1958; Benjamin and Benson 1963; Coomber and Wormald 1976; Murthy and 

Subrahmanyam 1977; Apelblat et al. 1980; Villamanan et al. 1984; Villamanan and van Ness 1984; Akamatsu 

et al. 1987; Vannhu et al. 1987; Huot et al. 1988; Douheret et al. 1989; Grolier et al. 1994; Auslander et al. 1995; 

Marcus 2002; Hu et al. 2003; Reis et al. 2008), and analyzed using Equation 5.43. The data are displayed as 

number-number (Bij), number-excess energy (ρiFi), and excess energy-energy (ρΔm) fluctuation densities in 

units of mol/L.  

 

trends depend on the composition of interest. The values for 1,2-ethanediol are relatively insensitive to composition, 

whereas the methanol solutions displayed the largest variation. 

 

A final example is provided by mixtures of acetone as a solute with water or chloroform as a solvent. Again, this 

probes the effects of changes in the solvent polarity on the fluctuating quantities and their composition dependence. 

The results are also displayed in Figure 5.5. A significant degree of local water self association (a large positive B11) 

is observed for most compositions with acetone. In contrast, mixtures of chloroform and acetone display no such 

behavior. The acetone and chloroform mixtures are clearly more ideal, whereas aggregation is observed in acetone 

and water mixtures due to an inability of acetone to donate hydrogen bonds. A similar trend is observed for the excess 

energy related fluctuations. While these trends are not particularly surprising, FT provides a clear and meaningful way 

to quantify these effects. 

 

The analysis of experimental data in this form is well established for the KBIs and their related number fluctuation 

densities (Matteoli and Mansoori 1990). Alternatively, one can use the KBIs to define and quantify local composition 

and the degree of preferential solvation of one species by another in solution (Ben-Naim 1989; Marcus 2001; Ben-

Naim 2006). In contrast, the analysis of the excess energy fluctuations is relatively new and the exact meaning of the 
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variations in the fluctuations still needs to be explored. What is clear from Figure 5.4 and Figure 5.5 is that features 

not present in the bulk properties become clear in the local fluctuations. The fluctuations in the excess energy provide 

a measure of the movement of particles in and out of the local region, coupled with how energetic these particles are. 

The shape of the F1 and F2 data curves presented in the previous examples are essentially mirror images of each other. 

This probably reflects the fact that (on average) a fluctuation of one of the molecules will tend to increase the excess 

energy of the local region, while a change in the number of the other type of particle will therefore decrease the excess 

energy of the local region. This is simply related to the differences in the single particle excess energies. This issue 

will become clearer following the results presented in Section 10. 

 

5.8.4 Cosolvent Effects on Surface Tension 

The distribution of solutes at the solution/vapor interface has important consequences in chemistry and chemical 

engineering (Richmond et al. 1988; Jungwirth and Tobias 2006). Consequently, a variety of experimental and 

theoretical approaches have been used to help understand surface adsorption or exclusion. It is well established that 

an increase in the surface tension of a solution due to the addition of a solute indicates exclusion of that solute from 

the interface region, and vice versa. Unfortunately, it has been difficult to fully quantify such structural and 

thermodynamic changes using computer simulation data so that they may be compared with experimental data on 

surface adsorption. A recent application of FT to this problem has provided a solution to this problem (Chen and Smith 

2008). 

 

Analysis of the GD expressions for the surface and bulk solution regions provides a differential for the surface tension 

(γs) of a liquid-vapor interface (Tronel-Peyroz et al. 1989). From this one can obtain the standard Gibb absorption 

expression for the change in surface tension on addition of a cosolvent, 
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where the sum is over all components except for the primary solvent, and one could use any concentration derivative 

on both sides of the expression. The chemical potential derivative is a property of the bulk solution away from the 

interface, while the Γsj values quantify the surface adsorption of j molecules relative to the primary solvent. For a 

simple binary mixture this reduces to, 
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The activity derivative must be positive for stable solutions and hence the direction of the surface tension change is 

dictated by the sign of Γs2. The activity derivative is provided by FT as indicated in Equation 5.39. The surface 

adsorption can be related to the number of molecules within the interface region, or in terms of surface probability 

distributions by, 
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where z is the direction perpendicular to the surface of area (A). The integration over gj – g1 should be performed to a 

distance at which the integral remains unchanged, i.e. gj = g1 = 1, which may involve many solvation shells away from 

the surface. This type of formulation has proved useful in obtaining a consistent picture of solute effects on surface 

tension as provided by computer simulation (Chen and Smith 2008). 

 

5.8.5 Force Fields for Molecular Simulation 

Fluctuation theory provides information on local fluctuations in solution and may be used to characterize the properties 

of mixtures. The fluctuations or integrals provided by FT are also relatively easy to obtain from computer simulation. 

Clearly, the results obtained from a computer simulation should agree with the experimentally extracted fluctuations 

providing that the description of the intermolecular interactions, i.e. the force field, is sufficiently accurate and one 

has adequate sampling of the solution distributions. Therefore, one can use FT results to test and improve the quality 

of force fields used for molecular simulation (Weerasinghe and Smith 2003b; Lee and van der Vegt 2005). We have 

taken this approach to help develop new, hopefully improved, force fields for the simulation of liquid mixtures 

(Weerasinghe and Smith 2003b, 2003d). 

 

Force fields, especially in the biomolecular simulation area, have traditionally been developed with the aid of quantum 

calculations (Kaminski et al. 2001; Hornak et al. 2006). The calculations involve properties of molecules in the gas 

phase. These properties change in the condensed phase. This is, of course, a rather well known effect. However, 

exactly how one has to adjust the description of intermolecular interactions to account for the role of molecular 

polarization in liquids is still unknown. Furthermore, many force fields only test the resulting models using properties 

of pure liquids. This is a necessary, but not sufficient test, to establish the quality of a force field. More recently, 

thermodynamic data such as the solvation free energies of solutes have been used to improve the quality of many force 

fields (Schmid et al. 2011). Unfortunately, this quantity does not depend on an accurate description of the solute-

solute interactions. We have found that relatively poor agreement with the KBIs is observed for many solution 

mixtures (Chitra and Smith 2001a; Weerasinghe and Smith 2003d; Kang and Smith 2006). This clearly indicates an 

incorrect balance between solute-solute, solute-solvent, and solvent-solvent distributions which arises due to an 

incorrect description of the interactions. The main problem appears to be related to the choice of effective charges 

characterizing the polarity of a molecule or ion. 

 

In an attempt to improve current force fields, we have designed a set of solute-solvent models that specifically aim to 

reproduce the experimentally derived KBIs, and thereby ensure a reasonable balance in the molecular distributions. 

These are termed Kirkwood-Buff derived Force Field (KBFF) models. Several recent reviews highlight our progress 

in this area (Ploetz et al. 2010a; Weerasinghe et al. 2010). In developing these new models our main focus has been 

on modifying the charge distributions assigned to the solutes and solvents. This has led to a series of models for small 

solutes representative of the functional groups found in peptides and proteins, together with various cosolvents of 

biological interest. The result is a complete force field for the simulation of peptides and proteins based on the KBFF 

approach (http://kbff.chem.k-state.edu). It is hoped that these models provide a   

http://kbff.chem.k-state.edu/
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Figure 5.6 A fluctuation theory and computer simulation analysis of water (1) and methanol (2) mixtures as a 

function of composition at 298 K and 1 bar. Experimental data (solid lines) was taken from the literature and 

analyzed using Equation 5.43 (see Figure 5.4 caption). The simulated data (closed circles) were determined 

from simulations using the KBFF model for methanol (Weerasinghe and Smith 2005), together with the SPC/E 

water model. The data are displayed as number-number (Bij), number-excess energy (ρiFi), and excess energy-

energy (ρΔm) fluctuation densities in units of mol/L.  

 

significant degree of improvement for the accurate computer simulation of biomolecular systems. Others have taken 

a similar approach for small solutes (Lee and van der Vegt 2005; Klasczyk and Knecht 2010). 

 

As an example of the quality of data that can be obtained from a computer simulation, we present the results of a FT 

analysis of methanol and water mixtures in Figure 5.6. The simulations employed the KBFF model for methanol 

(Weerasinghe and Smith 2005), the SPC/E model for water (Berendsen et al. 1987), and were performed in periodic 

unit cells of 6 nm for simulation times of 50 ns with the same protocols as our other recent studies (Ploetz and Smith 

2011a). The simulations were then analyzed to determine the fluctuating quantities and compared with the analysis 

performed for Figure 5.3. The particle number and energy fluctuations are very well reproduced with all the same 

observed trends. The agreement is quantitative for most compositions. The models did not perform so well for the 

particle-energy fluctuations. This is somewhat surprising considering the excess enthalpy of mixing is very reasonable, 

although not perfect (Weerasinghe and Smith 2005), compared to many other methanol models. It appears that the 

partial molar enthalpies, which are related to derivatives of the excess enthalpy of mixing are more sensitive indicators 

of the quality of a particular model. Nevertheless, the particle-energy fluctuations are of the appropriate magnitude. 

This provides some confidence in the quality of the distributions provided in Section 5.9. 

 

5.9 Particle Number and Energy Distributions in Solution 

The fluctuasting quantities outlined in the previous sections are related to the moments of the particle number and 

energy probability distribution P = P(N1, N2, . . ., E or ε). For systems far away from a critical point a multivariate 

Gaussian distribution in the energy and particle numbers is often assumed. Hence, one can write, 

  
  c

T 1

( 1)/2

1 1
exp ( ) Σ ( )

22 Σ
n

P Y Y Y Y Y



 
    

 
  5.47 
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where Y is a vector of the form Y = (N1, N2, . . ., E or ε) and Σ is a symmetric correlation matrix of the form, 
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  5.48 

This matrix is clearly related to the matrices provided earlier. In this section we investigate the above multidimensional 

distribution in more detail. It should be noted that various previous studies along this line have appeared in the 

literature. Kirkwood and Goldberg provided an elegant analysis of light scattering in multicomponent systems, which 

focused on composition fluctuations using a multivariate Gaussian approach (Kirkwood and Goldberg 1950). More 

recently, Mazo has analyzed the eigenvalues of the B matrices for a series of binary systems and observed that most 

systems, over large composition ranges, can be described by B matrices that contain a large eigenvalue and a small 

eigenvalue, to the extent that the smaller eigenvalue can almost be neglected when attempting to understand the system 

properties (Mazo 2008; Mazo et al. 2009). We will relate the current findings to these results. We could find no such 

analysis that included the particle-energy and energy-energy distributions. 

 

Using computer simulations one can extract not only the number of particles of each type in a local region of space, 

but also the energy of that region. This latter quantity requires a pairwise decomposition of intermolecular interactions. 

Fortunately, this is the approach adopted by most (even polarizable) force fields for liquid simulations.  

 

In Figure 5.7 we provide the natural logarithm of the number and energy distributions for methanol and water mixtures. 

It is immediately clear that the distributions are not Gaussian in nature. While the energy distribution appears to be 

essentially symmetrical, the N1 and N2 probability distributions display significant asymmetry. The fact that there are 

differences between the assumed Gaussian distribution and the true distribution was recognized some time ago 

(Greene and Callen 1951). Fortunately, it appears that the second moments are the same in both cases. 
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Figure 5.7 Natural logarithm of the number, energy, and excess energy probability distributions for methanol 

(2) and water (1) mixtures at 300 K and 1 bar obtained from computer simulation. The distributions correspond 

to local spherical regions with a radius of 1.5 nm. The raw data are displayed in the top panel, while the 

transformed quantities of Equation 5.50 are displayed in the bottom panel. The probabilities are in arbitrary 

units. Energies and ξH are in units of kJ/mol, with ξV in units of L/mol.  Only the intermolecular energies are 

used in the analysis. The solid, dotted, and dashed lines correspond to methanol mole fractions of 0.25, 0.50 and 

0.75, respectively.  

 

In Figure 5.8 we provide scatter plots for the particle number and energy distributions obtained from simulations of 

methanol and water mixtures. It is clear that the data are correlated, i.e. when N1 is smaller than the average then N2 

is larger than the average. This leads to particle number correlations with negative slopes. This correlation also appears 

in the energy probability distributions, but the slope can have either sign. In this system the energy of the region (E) 

tends to become lower in energy when fluctuations increase the number of water molecules, and vice versa. This is a 

result of the more favorable average energy per molecule for water compared to methanol. 

 

The results follow the trends described by Mazo for his analysis of particle-particle fluctuations (Mazo 2008). In 

particular, fluctuations in the various particle numbers are related through Equation 5.18. This indicates that the 

fluctuation in the number of N1 and N2 particles are related to the respective partial molar volumes and the 

compressibility. For liquids approaching zero compressibility, albeit an impossible situation, the fluctuations are 

simply given by, 

 
1 1

B 1 1 1 1 1 2 1 2 0Tk T N N N V N N N V
 

          5.49 

and therefore suggests that 1 1 2 2N V N V    on the average. This simply states that, for an incompressible fluid, 

exchanges of particle numbers occur in order to maintain the same total volume. 
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Figure 5.8 Number-number and number-energy distributions for methanol (2) and water (1) mixtures at 300 

K and 1 bar obtained from computer simulation. The distributions correspond to local spherical regions with 

a radius of 1.5 nm. In the top panel, the reduced number, δN´i = δNi / < Ni >, and energy, δE´ = δE / |E|, 

fluctuations are provided. In the bottom panel, the transformed quantities of Equation 5.50 are displayed as 

reduced properties δξ´2 = δξ2 / < N2 >, δξ´V = δξV / V, and δξ´H = δξH / |E |. All axes range from -1 to +1 with lines 

drawn through x = 0 and y = 0. Only the intermolecular energies are used in the analysis.  

 

Diagonalization of the above matrix provides a series of eigenvalues and eigenvectors – three in the case of a binary 

solution. The eigenvalues correspond to the magnitude of the principle components of the various fluctuations. The 

eigenvectors form the components of a 33 rotation matrix, which transform the orthogonal fluctuating quantities into 

the observed results (Equation 5.48). To our knowledge, general expressions for the eigenvectors and eigenvalues 
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have not been obtained. However, for binary systems one can diagonalize the number fluctuation matrix as illustrated 

below, and thereby partially diagonalize the full fluctuation matrix. 

 

The above type of analysis was generalized by Kirkwood and Goldberg for particle number fluctuations (Kirkwood 

and Goldberg 1950). They observed that one could decouple the composition and density fluctuations by 

transformations of the form, 
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The final transformation was prompted by our recent work (Jiao and Smith 2011; Ploetz and Smith 2011b). Using 

these transformations one can show that, 

 

2

2

B B

2 2

2 2 B

22

2 2

                0               

            

              

0

V H

V V T H H p

V H p

V H

V pV

Vk T k T C

N
Vk T

      

      

       


     

  5.51 

It should be noted that the first and last transformations in Equation 5.50 can also be used to transform the Gibbs 

ensemble expressions for the compressibility, thermal expansion and heat capacity (Equation 5.11) into the 

expressions provided in Equation 5.51 (Ploetz and Smith 2011b). For binary systems the transformations provided in 

Equation 5.50 generate a diagonal correlation matrix for the particle number fluctuations. One of the eigenvalues is 

related to the compressibility of the system, while the other is related to a single chemical potential derivative 

(Kirkwood and Goldberg 1950). The former is the small eigenvalue from the analysis performed by Mazo (Mazo 

2008). However, the matrix displayed in Equation 5.48 is not diagonal using the above transformations, due to the 

cross correlation in the energy and volume transformations. Furthermore, even the number fluctuation matrices for 

ternary or higher component systems are not diagonal with the above transformations. 

 

Application of the above transformations to computer simulation data is also provided in Figure 5.7 and Figure 5.8. 

The ξH and ξV  probability distributions provided in Figure 5.7 are very close to symmetrical. Furthermore, the ξV  

distribution in Figure 5.7 is no closer to being symmetrical than the individual particle number distributions. In Figure 

5.8 one observes that the collective particle number (ξ2) and density (ξV) fluctuations are clearly orthogonal, as are the 

collective particle number and energy fluctuations (ξH), although the excess energy and volume fluctuations still 

present a degree of correlation related to the thermal expansion coefficient. In principle, one can fully diagonalize the 

above matrix of fluctuations. However, the corresponding transformations are unknown, even for binaries, and it is 

not clear that this is even required. The partially diagonalized matrix of number fluctuations was satisfactorily used 

by Kirkwood and Goldberg to study light scattering in multicomponent systems  
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Figure 5.9 Number-number and number-energy distributions for the alcohol (2) and water (1) mixtures at 300 
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K and 1 bar obtained from computer simulation. The distributions correspond to local spherical regions with 

a radius of 1.5 nm. Data are displayed for mixtures of water with methanol (top panel), ethanol (center panel) 

and n-propanol (bottom panel) as a function of alcohol mole fraction. The reduced number, δN´i = δNi / < Ni >, 

energy δE´ = δE / |E|, and excess energy δε´ = δε / |ε| fluctuations are provided. All axes range from -1 to +1, 

with the exception of the δε´ axis which ranges from -10 to 10 for methanol and from -30 to 30 for ethanol and 

n-propanol. Lines are drawn through x = 0 and y = 0 for reference. Only the intermolecular energies are used 

in the analysis.  

 

(Kirkwood and Goldberg 1950), and hence it appears that other potential applications may be viable with a partial 

diagonalization. 

 

In Figure 5.9 we compare the fluctuations in particle, energy, and excess energy obtained from simulation for the 

linear alcohols in water. The number-number fluctuations all display a negative slope, as indicated above, the 

magnitude of which increases with alcohol size and composition. The former trend is also a consequence of the 

approximate relationship provided by Equation 5.49. The reason for the latter trend is less obvious. The energy-number 

distributions also vary in magnitude and shape as one changes composition and system. The change in slope for the 

energy-alcohol number distributions is understandable. On average the local energy will become more unfavorable as 

the number of alcohol molecules in the region increases (pure water has a higher energy density than the pure alcohols 

in our models), while the pure solutions will display a negative slope if there is a net cohesive energy. 

 

Also shown in Figure 5.9 are the fluctuations in the excess energy of the region. It is clear that distributions involving 

the excess energy and the particle number are almost orthogonal. This is due to the fact that the transformation to the 

excess energy is numerically very close to the transformation of Equation 5.50. The difference involves the excess 

enthalpies, which are typically small in magnitude compared to the pure enthalpies. Interestingly, it is only in the 

excess energy distributions that one observes features that may help explain the changes observed in the experimental 

fluctuations in the region of x2 = 0.2 for propanol. The change in shape and character of the simulated distributions 

appears to suggest that, at low propanol compositions, the energy fluctuations increase substantially and become much 

less correlated with either particle number fluctuation. It is precisely these types of features which may help to deepen 

our understanding of changes in solution properties with composition. Clearly, additional work needs to be performed 

on more systems to fully appreciate this type of behavior. In our opinion, the combination of computer simulation and 

FT will play a major role in this area. 

 

5.10 The Effects of Temperature, Pressure and Composition on Local Fluctuations 

The local fluctuations or KBIs are dependent on temperature and pressure in addition to composition, although the 

composition dependence appears to be the most significant. In Section 5.1 we illustrated how one can use derivatives 

of the average particle numbers and energy to provide expressions involving fluctuating quantities. The same approach 

can be applied to the resulting fluctuations. Substituting the fluctuations for X in Equation 5.15 one can determine the 

required derivatives (Jiao and Smith 2011). The simplest expressions involve the Bij’s and provide, 
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for any number of components. The first two expressions have been simplified by using the transformations for 
V  

and 
H provided in Equation 5.50. Some of the chemical potential derivatives can also be eliminated using the GD 

expression if desired. All the above derivatives involve triplet correlations. It is immediately apparent, therefore, that 

if the distribution of particle numbers and excess energy were truly characterized by a multivariate Gaussian, then the 

above derivatives would all be zero. Hence, the observed variations of the Bij’s with temperature, pressure and 

composition probe the nature of the underlying true (non-Gaussian) distribution. 

 

In principle, the experimental data required to compute the above derivatives is available for many systems. However, 

we know of very few (experimental or simulation) studies in this direction for all but infinitely dilute solutes (Matteoli 

and Lepori 1984; Huot et al. 1988). The most relevant is a recent analysis of the composition dependence of the 

osmotic pressure for binary systems (Karunaweera et al. 2012), where the expressions are somewhat simpler to 

develop. It is highly probable that such an analysis is numerically challenging. Given the sensitivity of the KBIs to the 

quality of the activity data, the additional derivatives required for the triplet correlations could be problematic. 

Furthermore, it is unlikely that the KBIs vary dramatically with pressure, unless one examines very high pressures. 

The interpretation of the above derivatives is also complicated by the presence of many terms, although all the terms 

could be determined. 

 

The last expression in Equation 5.52 does, however, provide some insight in to the nature of the composition 

dependence of the Bij’s. For many binary mixtures one observes maxima and minima in the Bij’s as a function of 

composition. Using the GD expression it is possible to show that this maxima or minima occurs when N1ij = N2ij. The 

significant changes of the Bijs with composition observed in many systems suggest the particle number fluctuations 

cannot be Gaussian or symmetric in nature. 

 

Matteoli and Lepori have investigated the experimental data for aqueous methanol and ethanol mixtures as a function 

of temperature (Matteoli and Lepori 1984). The alcohol KBIs (G22) are essentially independent of temperature until 

one reaches low solute concentrations. In this region the G22 values systematically increase with temperature for both 

alcohols. This clearly indicates a positive sign for the triplet fluctuation at low alcohol concentrations according to 

Equation 5.52. However, the small changes of the properties with temperature suggests that the distribution must be 

close to 
2 2 HN N    symmetric in nature. 
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The other primary fluctuating quantities can also affected by temperature, pressure and composition. The variations 

in the Fi’s are provided by, 
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whereas the variation in Δm is provided by, 
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However, we know of no studies that have attempted to characterize these variations. 

 

For binaries solutions it is possible to introduce the definition of 
2  to simplify the above expressions. A further 

simplification is provided if one considers the activity derivative. The final expressions are then, 
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Hence, the activity dependence of the fluctuating quantities probes the nature of the correlation between the 

transformed particle number fluctuation and the original fluctuating quantities.  

 

5.11 Analysis of Computer Simulation Data 

It is clear that computer simulations represent one of the better approaches to determining the local fluctuations. There 

are, however, some technical difficulties which can arise during a typical analysis. We discuss some of these issues 

here. Most evaluations of the KBIs have used the integration approach, in contrast to the actual particle number 

fluctuations. Furthermore, as the vast majority of simulations are performed for closed periodic systems, one is 

naturally limited to performing the integration out to some cutoff distance from the particle of interest. It is then 

assumed that that the RDFs are essentially unity beyond this distance. In practice, deciding exactly where to truncate 
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the integral can be rather subjective. In our previous studies we usually plot the KBIs as a function of integration or 

cutoff distance. Hence, one can define distance dependent KBIs (and even distance dependent thermodynamic 

functions) such that, 

  (2) 2

0

( ) 4 [ 1]

R

ij ijG R g r r dr     5.56 

A plot of Gij(R) can be very informative. In favorable cases, the integral converges and one observes a limiting constant 

value for the KBI. More typically, there can be significant statistical noise that obscures the real limiting behavior. 

The situation can be improved by simulating relatively large systems (>6 nm box length) for times in excess of 10 ns. 

However, this approach is not always productive. 

 

Several studies have investigated this problem with a variety of suggested solutions (Nichols et al. 2009; Wedberg et 

al. 2010; Schnell et al. 2011). The problem seems to be particularly acute when determining the isothermal 

compressibility, especially if this property is plotted as a function of the integration distance. Slowly converging 

oscillatory behavior is commonly observed. The isothermal compressibility obtained from simple integration should 

be considered questionable at best. Fortunately, the situation is significantly improved when examining the partial 

molar volumes and chemical potential derivatives. This is probably related to the fact that the partial molar volume 

and chemical potential derivative expressions only involve differences in the KBIs. In the majority of our previous 

simulations, we have chosen to extract the final KBI values after averaging the integrals over a short range of distances 

(typically a full solvation shell) where the integrals appear to be converging (Weerasinghe and Smith 2003c). This is 

a subjective approach. However, we have tested the values of the resulting properties with other approaches – typically 

finite difference compressibilities or partial molar volumes obtained from the simulated densities – and found good 

agreement (Weerasinghe and Smith 2005). This provides some confidence in the above approximation. An 

investigation of the activity of urea and water mixtures has also been performed using thermodynamic integration 

techniques (Kokubo et al. 2007), and provides excellent agreement with our own KBI determined values. However, 

care should always be taken to ensure that reasonable estimates for the KBIs are obtained. 

 

A slightly different approach is usually adopted for the particle-energy (Fi) and energy-energy (Δm) fluctuating 

quantities. First, to evaluate these properties one has to determine the energy of a given volume of the solution. This 

is possible if one can assign energies to each particle in the system. Single particle potential energies can be determined 

by assigning one half of the potential energy for the interaction between each pair of molecules (Debenedetti 1987b). 

This is even possible for models that include explicit polarization. In principle, the internal energy should include all 

intramolecular contributions and the kinetic energy of the molecules. In practice, this may be somewhat awkward to 

achieve. It may be safe to assume the intramolecular potential energies cancel in determining the value of ε, i.e. they 

are the same in the mixture and the pure liquids. The kinetic energy contribution to the local energy cancels in the 

calculation of the F’s such that one can use just the potential energies for both the instantaneous internal energies (E) 

and the reference pure solvent values. The kinetic energy contribution to the β2∆m values does not cancel.  For the 

nonlinear molecules studied here this contribution is simply 3 and arises from the three translational and three 
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rotational degrees of freedom. The intramolecular kinetic energy contribution is more problematic as high frequency 

vibrations will not contribute to the heat capacity at normal temperatures. However, heavier molecules at higher 

temperatures could provide a significant contribution. Classical simulations would provide the equipartition values at 

all temperatures for all non-constrained vibrational degrees of freedom. A series of random origins can then be chosen 

and the instantaneous energy and number of particles determined as a function of the volume of a local region centered 

at each origin. The fluctuations observed after averaging over the trajectory provide values of Fi and ∆m as a function 

of local volume (sphere radius). A graph of Fi or ∆m as a function of sphere radius should tend to a constant value for 

radii large enough to approach the bulk solution distributions (see Figure 5.3).  

 

Another issue arises when determining the KBIs, or local distributions, around infinitely dilute solutes. An example 

of this includes our study of the solvent and cosolvent distributions around a single protein solute (Kang and Smith 

2007). As the simulations involve finite systems, it is sometimes necessary to adjust the bulk distribution (m3) during 

the analysis. For instance, the ratio of cosolvent to solvent molecules in the bulk region might not be equal to the ratio 

of total molecules used in the simulation when cosolvent and solvent molecules can exchange with other molecules 

in the local vicinity of the protein. This is especially true for small systems and/or large values of Γ23. In this case the 

value of the preferential binding should be adjusted so that, 
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where the zero superscript indicates the total number of molecules in the system. Hence, as molecules move in or out 

of the local region the bulk ratio is correspondingly adjusted. This adjustment may appear small but is magnified by 

the fact that 
1 2

N  may be very large for biological solutes. 

 

Finally, we note that the problem of choosing a reference energy/enthalpy for the energy fluctuations is not actually 

required for the analysis of computer simulation data. One can, in fact, determine the   iH  values themselves. This has 

the advantage that the expressions for many of the properties described here become much simpler with this 

formulation. More details can be found in the literature (Jiao and Smith 2011). 

 

5.12 Pseudo Chemical Potentials, Volumes and Enthalpies 

As mentioned previously, the pseudo chemical potential and related properties can be used to analyze experimental 

data concerning a variety of processes – transfer free energies, and so on (Ben-Naim 2006). For many applications it 

is advantageous to use general fluctuation based expressions for the pseudo chemical potential, volume and enthalpy 

directly. From Equation 5.18 one finds, 
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after taking the appropriate derivatives. These expressions can also be used directly for the study of changes in 

chemical equilibria (see Section 11.2). 

 

5.13 Summary and Future Directions 

In the previous sections we have attempted to provide a relatively comprehensive summary of the theory and 

applications of a general fluctuation approach to understanding the behavior of solutions. It is quite clear that many 

of the above expressions for “normal” thermodynamic quantities appear to be quite complex. We are arguing that this 

complexity arises due to the constraints implied by the typical thermodynamic conditions of constant temperature, 

pressure, and composition. In contrast, a simpler picture of solutions emerges when one isolates the particle number 

and energy fluctuations corresponding to local regions of the solution, i.e. a microscopic constant volume and 

temperature region open to all matter exchange, for which the average pressure, energy, and number of particles 

corresponds to that of the experimental macroscopic conditions. It seems clear to us that attempting to understand the 

characteristics of solutions using properties of these open local regions is much simpler than focusing on the much 

larger bulk properties. Nevertheless, a simple picture of solution mixtures remains elusive. 

 

At this stage it appears that a general FT of solutions, together with association and conformational equilibria, is 

essentially complete. The expressions provided here are exact and can be applied to any stable solution mixture 

containing any number of components at any concentration. In particular, we envision the application of FT to 

biological systems to continue, especially in the area of conformational equilibria. The natural coupling of FT and 

computer simulation holds great promise for future study. The ability to express changes in the equilibrium constant 

in terms of local properties has led to expressions for the enthalpy, heat capacity changes, etc., which have previously 

been treated in a somewhat ad hoc manner, but are now available through a rigorous approach. Hopefully, this will 

provide significant insight into biological equilibria such as protein denaturation and peptide aggregation.  

 

It is well known that many non-equilibrium effects that are observed in the presence of a perturbation can be related 

to fluctuations observed in the absence of that perturbation, i.e. to equilibrium properties. It seems that the local 

fluctuations described here could be of future use in understanding many perturbing effects on solutions. We anticipate 

future work in this area which will further advance the applications of a general fluctuation theory of solutions. 
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6. Experimental and Simulated Triplet and Quadruplet Particle Fluctuations 

and Probability Distribution Integrals in Multicomponent Solution Mixtures* 

 

Abstract 

The Kirkwood-Buff/Fluctuation Solution Theory (FST) is commonly used to relate particle-particle correlations in a 

grand canonical ensemble to thermodynamic properties in an isothermal-isobaric ensemble. This is potentially useful 

because the analysis of the local, fluctuating properties of an open system that is embedded within a much larger, 

closed system may allow for the elucidation of how the molecular interactions give rise to the bulk properties. 

Interestingly, we present here that, although the probability of observing a particular number of molecules is often 

assumed to follow a Gaussian distribution, relationships from FST show that the composition and pressure dependence 

of the particle-particle fluctuations both involve the third cumulants of the particle number probability distributions. 

Specifically, if the third cumulants were zero (meaning the distribution was symmetric), the particle-particle 

fluctuations would be independent of both composition and pressure. Clearly, this is not the case. To probe the form 

of the underlying, true distribution, we compare the results from computer simulations and an analysis of experimental, 

thermodynamic data. Specifically, we illustrate (1) how to obtain the uni- and bivariate particle number probability 

distributions obtained from computer simulations, (2) how to extract those same cumulants from an analysis of the 

bulk, thermodynamic experimental data, (3) how to calculate the same thermodynamic properties from simulation 

results, and (4) how to obtain experimental probability distributions using the maximum entropy principle and the 

experimentally extracted cumulants. Examples are provided for real systems such as water at a variety of temperatures 

and pressures and binary mixtures over their full composition ranges. A comparison is also made of the results for the 

real systems with their equivalent symmetric ideal systems. 
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6.1 Introduction 

Fluctuation Solution Theory (FST) has provided an alternative view of many solution properties in terms of particle 

number fluctuations (Kirkwood and Buff 1951). The particle number fluctuations can also be related to integrals of 

the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture 

of solutions. Here, we extend this type of approach to derive equations for higher order (triplet and quadruplet) 

fluctuations, and thereby integrals over the corresponding distribution functions, both of which can be obtained from 

existing experimental data. This is essentially the inverse of several expansions which have expressed higher order 

derivatives of thermodynamic properties in terms of higher order fluctuations and their distribution functions 

(Kirkwood and Buff 1951; Buff and Brout 1955; O’Connell 1971b). All expressions are exact. The results are 

compared to the same quantities obtained from simulation. 

 

6.2 Theory 

As is traditional with FST, we start with the equations of the grand canonical ensemble and use various thermodynamic 

transformations to provide properties corresponding to either semi-open osmotic systems, or fully closed isothermal 

isobaric systems. The resulting fluctuating properties can then be considered to represent local fluctuations within 

these systems. In this way, the theory is different from the study of bulk system fluctuations. The fluctuating quantities 

are then related to integrals over distribution functions. 

 

The thermodynamic potential and partition function in the grand canonical ensemble are given by, 
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where 
1

Bβ ( )k T   and 
1 1 2 2μ μN N  μ N . The corresponding differential is, 

 α αα
β β β βμd pV Ud pdV N d      6.2 

and a grand canonical ensemble average property (X) can be written, 
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This leads directly to the following relationships for the internal energy, the pressure, and the number of particles of 

each species, 
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for any multicomponent system (Hill 1956). 

 

The ensemble averages are, therefore, a function of the thermodynamic variables associated with the grand canonical 

ensemble and hence one can write the following general differential,  
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where X is a particle number or energy, or a particle number or energy fluctuation. If we restrict ourselves to the study 

of isothermal changes, the results relate to particle number fluctuations only (energy fluctuations will be included at a 

later date). The final expressions are considerably simplified by defining the following fluctuating quantities, 
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  6.6 

where δX X X   denotes a fluctuation in the value of X. The rhs of the above expressions correspond to the 

cumulants of the multivariate particle number probability distribution. Alternatively, they can be viewed as the mean, 

covariance, coskewness and excess cokurtosis of the same distribution. We note that there are several different 

definitions of skewness and excess kurtosis in the literature. The definition of skewness and excess kurtosis referred 

to here are those provided by αβγ αβγδandVC VD  expressions, respectively. 

 

The required partial derivatives appearing in Equation 6.5 are given by Equations 6.3 and 6.4 such that, 
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where α α β α β γor δ δ or δ δ δY N N N N N N . Therefore, using the above expressions in Equation 6.5 and noting that 

1 2/d X V V d X X V dV    leads to the following differentials, 
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  6.8 

The above expressions are valid for any multicomponent system in any ensemble at constant T. Taking derivatives 

with respect to pressure (indicated with a p superscript), or composition (indicated with an i superscript) provides a 

series of relationships. From the first expression one obtains the common relationships between the partial molar 

volumes and derivatives of the chemical potential (GD relation) at constant temperature and pressure, 
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The second differential provides, 
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and leads to the traditional KB theory of solutions (Kirkwood and Buff 1951), given that α α Bρ ρp

Tk T   and 

α α αρ ρ (δ )i

i i  , and one can thereby relate the two body fluctuations (B’s) to the relevant thermodynamic properties,  

 α α

α αβ

α ββ,{ } β,{ }β, ,{ } β, ,{ }

μ μ1
κ μ

ln
T

N Np N p N

V V
V

V p N p N
 

        
                     

  6.11 

as done previously. The final two differentials provide, 
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and describe the pressure and composition dependence of the two and three body particle number fluctuations or 

distributions. It is clear from these expressions that if the multivariate particle number probability distribution for a 

local region of the solution was Gaussian in nature, then the C’s and D’s would be zero and the B’s would therefore 

be independent of pressure and composition (see Equation 6.6). This is clearly not the case, as noted previously 

(Greene and Callen 1951). We also note that the Central Limit Theorem does not apply to the particle number 

fluctuations, with an exception for the case of an infinitely dilute solute, as they are not random in nature but driven 

by the molecular interactions. 

 

Our aim here is to invert this whole procedure to express the B’s, C’s and D’s, together with the associated molecular 

distribution functions, in terms of experimental data. This is analogous to the standard KB inversion procedure (Ben-

Naim 1977). To do this we define the following matrix, 
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which allows one to express the relationships in Equation 6.12 in matrix form and then invert to provide,  

 1 1 1 1         
α α αβ αβ αβγ αβγ

ρ Z 1 B Z ρ C Z B D Z C   6.14 

where the vectors on the lhs are the required fluctuating quantities, 
1 2(ρ ,ρ , )ρ , 

α1 α2( , , )B B
α

B ,

αβ1 αβ2( , , )C C
αβ

C , and αβγ1 αβγ2( , , )D D
αβγ

D , while the vectors on the rhs contain only experimental properties 

and are given by, (1,0,0, ) 1 , 
2 3

α α α(ρ ,ρ ,ρ , )p 
α
ρ , 2 3

αβ αβ αβ( , , , )pB B B 
αβ

B , and 2 3

αβγ αβγ αβγ( , , , )pC C C 
αβγ

C . The 

above expressions could be made more general by using multidimensional array algebra, but we prefer the simpler 

(more transparent) expressions provided here. The above equations can therefore be solved to provide expressions for 

the fluctuating quantities in terms of experimental data. The explicit expressions are quite cumbersome even for binary 
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solutions. However, a general matrix formulation is possible which involves just a single matrix of experimental 

properties and its derivatives (see Section 6.5.1). 

 

Before discussing some systems of common interest we note that the fluctuating quantities can be related to the 

corresponding distribution functions via the expressions (see Section 6.5), 
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which involve the following integrals over the n-body distribution functions ( )

αβ... 1 2( , ,...)ng r r ,  
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Hence, one can obtain the fluctuating quantities, and thereby the integrals over the two, three and four body correlation 

functions, in terms of experimental data. The integrals over the distribution functions correspond to a particular 

solution composition and are obtained after averaging over all the other molecules in the system. Fluctuation based 

expressions for the G’s are provided in Section 6.5. 

 

The above integrals and probability distributions are often used to provide insight into the “structure” of liquids and 

solution mixtures. The quantity β αβρ G  provides the excess number of β molecules in a given local volume of solution 

surrounding a central α molecule over and above the number of β molecules found in the same volume of bulk solution. 

Hence, a significantly positive value of αβG  suggests an overall net affinity (attraction) between the two types of 

molecules. A similar picture should emerge for the αβγ αβγδandG G values. 

 

6.3 Results 

6.3.1 One Component Systems 

Some of the resulting expressions for pure systems have appeared previously. For instance, it is well known that the 

pressure dependence of the radial distribution function is related to the triplet distribution (Egelstaff 1973). However, 
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we found no relevant quantitative experimental data concerning the local fluctuations in the literature. For single 

component systems the relationships between the fluctuating quantities and the corresponding distribution functions 

are provided by,  
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with, 

 

1 (2)

11 11 1 2

1 (3) (2)

111 111 11 1 2 3

1 (4) (3) (2) (2) (2)

1111 1111 111 11 11 11 1 2 3 4

1

1 3( 1)

1 4( 1) 3( 1)( 1) 6( 1)

G V g dr dr

G V g g dr dr dr

G V g g g g g dr dr dr dr







   

     

          







  6.18 

which can also be expressed in terms of particle number fluctuations, 
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The fluctuating quantities are related to derivatives of the molar volume (V1), or the solution (number) density, as 

indicated in Equation 6.12 and are given by, 
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where the prime indicates a derivative with respect to pressure. The corresponding G’s can then also be obtained. 
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Figure 6.1 Local fluctuations (in M) as a function of pressure and temperature for pure water and several pure 

linear alcohols. Experimental density data were taken from the literature (Kubota et al. 1987) and then fitted 

to the Tait Equation of State (EOS), V1 = V1,o(1-Cln[B+p)/(B+po]), where po = 1 bar (solid lines). The low 

pressure–high temperature data for methanol provided a poor fit in this region so these points have been 

dropped.  We have also included the data for water obtained from the Wagner & Pruss EOS (dashed lines) for 

comparison (Wagner and Pruss 2002). 

 

The results for pure water and some linear alcohols as a function of pressure and temperature are provided in Figure 

6.1 and Figure 6.2. Some initial observations from Figure 6.1 include the following. The moments alternate in sign. 

As expected, the two body fluctuations (B11) generally increase with increasing temperature and decreasing pressure 

for the alcohols. Water displays somewhat unusual behavior in that the number fluctuations do not vary systematically 

with temperature, although the corresponding G’s do. The skewness of the distributions is always negative (a depletion 

of particles in the sample volume is favored over an excess) and the excess kurtosis is always positive (the actual 

distribution is more peaked than a normal distribution). The distributions tend to the normal distribution (B11 is 

constant, C111 = D1111 = 0) as the pressure increases and/or the alcohol chain length is increased. Presumably, this 

indicates a weaker correlation between alcohol molecules as the role of hydrogen bonding decreases. Some initial 

observations from Figure 6.2 include the following. The integrals alternate in sign and increase in magnitude as the 

pressure decreases and/or temperature increases. In contrast to the fluctuations, they tend to increase in magnitude as 

the alcohol chain increases. 
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Figure 6.2 Integrals over the pair (G22 in M-1), triplet (G222 in M-2), and quadruplet (G2222 in M-3) probability 

distributions as a function of pressure and temperature for pure water and several pure linear alcohols. See 

Figure 6.1 for experimental details. 

 

In Figure 6.3 we provide the values of the two and three body fluctuations and distribution function integrals for liquid 

water over a larger region of the phase diagram using the Equation of State (EOS) provided by Wagner & Pruss. This 

analysis is also included in Figure 6.1 and Figure 6.2 and indicates that the fluctuations are somewhat sensitive to the 

EOS used, while the G’s are fairly consistent between the data sets. Figure 6.3 again illustrates that the particle 

fluctuations tend to Gaussian behavior at low temperatures and high pressures. As expected, B11 and G11 tend to 

positive infinity as one approaches the critical point, whereas the C111 and G111 values approach negative infinity in 

this region. 

 

We know of no reason why a similar analysis could not be performed for pure gases, or mixtures of gases, and pure 

solids. For solids we would expect the fluctuations to be very close to Gaussian in nature. Gases would approach ideal 

behavior at low pressure and high temperature, where Bαα = Cααα = Dαααα = ρα and all the G’s and other B’s, C’s and 

D’s are zero, which corresponds to a series of independent Poisson distributions for the particle number fluctuations. 

It should be noted that the Poisson distribution is often considered to approach a Gaussian distribution for large sample 

sizes (
αN  in this case). This is true when characterizing the distribution using the standardized skewness and excess 

kurtosis, but not when using the non-standardized definitions presented in Equation 6.6. 
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Figure 6.3 Contour plots for water obtained from the Wagner & Pruss EOS (Wagner and Pruss 2002). The 

fluctuations are displayed for B11 (top left) and C111 (bottom left) in units of M, while the pair G11 (top right) 

and triplet G111 (bottom right) integrals are displayed in units of M-1 and M-2, respectively. The critical point is 

indicated with a small red cross. Data in the vicinity of the critical point have been removed to allow for better 

contouring. We are still in the process of obtaining the quadruplet terms. 

 

The pressure dependence of the G’s can be obtained by taking derivatives of Equation 6.17 and comparing with 

Equation 6.12. One finds, 

 

1 1

211 111

B 111 11 B 1111 111 11

β, β,

2 3
N N

G G
k T G G k T G G G

p p

    
      

    
  6.21 

The first expression has appeared before (Egelstaff 1973; Gubbins et al. 1978).  

 

6.3.2 Closed Two Component Systems 

Binary solutions are the most common system of interest. The inverse of the Z matrix for binary solutions takes the 

form, 
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The use of this matrix in Equation 6.14 and analysis of the results leads to the following general expressions for the 

fluctuating quantities, 
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The relationships can be solved sequentially or, alternatively, using the matrix approach provided in Section 6.5.1. 

For binary mixtures there are 3 unique B’s, 4 unique C’s and 5 unique D’s. 

 

The results for methanol (2) and water (1) mixtures are shown in Figure 6.4 and Figure 6.5. The fluctuating quantities 

are provided in Figure 6.4. It is important to test the degree to which the experimental data provide reproducible values 

of the cumulants. There are many determinations of GEx (which we assume contains the major source of error in the 

present analysis) for this system. Some examples are included in Figure 6.4 and Figure 6.5. There are clearly 

quantitative differences between the experimental data sets – especially for those using different fitting functions. 

However, the trends appear to be reasonably clear, and consistent results are obtained for the B’s and C’s for most 

compositions, while the D’s clearly show the largest variations between data sets. It does appear that the present type 

of analysis can provide reasonably reliable data for the B’s and C’s, while care would have to be used when drawing 

conclusions concerning the D’s. A similar story is found for the corresponding G’s provided in Figure 6.5. Clearly, 

the G’s also become less reliable as the relevant species concentration approaches infinite dilution.  

 

The expressions provided in Equation 6.12 also indicate the conditions for which there is a maximum or minimum in 

the B’s or C’s as a function of composition, as is commonly observed. Using these expressions followed by application 

of the GD expression provides, 

 
αβ αβ1 1 αβ2 2 αβ2 2 αβ1 2( )i

i i iB C C C m C         6.24 

where 
2 2 1ρ /ρm  . The chemical potential derivative has to be non-zero for stable solutions and hence the derivative 

of Bαβ can only be zero when, 

 α β 2 α β 1n n n n n n         6.25  
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Figure 6.4 Local fluctuations (in M) as a function of solute mole fraction obtained from experimental data on 

methanol (2) and water (1) mixtures at 298 K and 1 bar. Dashed lines represent the corresponding SI results, 

while symbols correspond to the simulated data. For this system, the condition ϕ2 = ϕ1 occurs when x2 = 0.31, 

see Equation 6.26 and subsequent discussion. Experimental data were taken from the literature. All analysis 

was performed with the same density data (Douheret et al. 1989; Papaioannou and Panayiotou 1995; Wagner 

and Kretzschmar 2008).  Several data sets and fitting functions for GEx were explored: Black lines – Redlich-

Kister (RK) (Butler et al. 1933); Red lines – modified RK (Hu et al. 2003); Green lines – Wilson (Soujanya et 

al. 2010); Blue lines – Wilson (Gmehling et al. 1991); and Yellow lines – Wilson (Gmehling et al. 1991). 

 

where we have made the substitution, ni = Ni/<Ni>. Hence, the maximum or minimum in Bαβ occurs when the 

corresponding (reduced) triplet fluctuations are equal for both components. Similar relationships can be obtained for 

maxima or minima for the C’s in terms of the D’s. Conditions that lead to a maximum or minimum in the G’s can also 

be developed but are more complicated and also appear less informative. 

 

A somewhat reasonable physical picture of the two body (and higher) particle number fluctuations can be developed 

for binary systems. In Figure 6.4 the experimental B11 and B22 values appear correlated, while the B12 value appears 

to be anti-correlated with the other B’s. In pure solutions of component 1, the B11 values describe the fluctuations of 

N1 particles in and out of a fixed local volume of solution. The magnitude of these fluctuations is determined by the 

size of the region and the compressibility of the pure solution, which is normally small under ambient conditions. On 

the other hand, when component 1 appears at low dilution the value of B11 tends to zero simply because there are very 

few N1 molecules in a given region of solution. For intermediate compositions one can observe particle number  
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Figure 6.5 Integrals over the pair (Gαβ in M-1), triplet (Gαβγ in M-2), and quadruplet (Gαβγδ in M-3) probability 

distributions as a function of solute mole fraction obtained from experimental data on methanol (2) and water 

(1) mixtures at 298 K and 1 bar. Dashed lines represent the corresponding SI results, while symbols correspond 

to the simulated systems. See Figure 6.4 for experimental details. 

 

fluctuations due to the compressibility of the solution, and also due to exchange of 1 and 2 molecules such that the 

volume of solution remains essentially constant for all compositions (Mazo et al. 2009), 

 1 1 2 2δ δ 0N V N V    6.26 

Hence, the magnitude of the fluctuations can increase due to this additional mechanism. This also helps to explain 

why the B11 (and B22) fluctuations are essentially anti-correlated with the B12 values. This correlation/anti-correlation 

relationship also persists for the higher order fluctuations involving pairs of C’s and D’s that only differ by a single 

species index (C111 and C112, for example). Furthermore, if one multiplies Equation 6.26 by α βδ δn n  and then takes the 

ensemble average one finds the approximate relationship α β 2 2 α β 1 1δ δ δ δ δ δ 0n n n n n n    , which is true when 
αβ

pB  

is small. Using the condition given by Equation 6.25 implies that (at the maxima or minima) not only are the relevant 

fluctuating quantities equal, but they are both close to zero. This type of behavior is observed in Figure 6.4. We have 

also observed that the maxima and minima in the B’s appear close to the composition for which 1 2    (x2 = 0.31 in 

Figure 6.4 and x2 = 0.5 in Figure 6.9), although it is not clear from the previous expressions why this should be the 

case. 
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6.3.3 Closed Three Component Systems 

The explicit expressions for three component systems are significantly more complicated and we only provide some 

of the basic relationships. However, the expressions can be solved numerically using the approach provided in Section 

6.5.1. The inverse of the Z matrix is given by, 
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The use of the matrix in Equation 6.14 followed by significant rearrangement using the GD expressions for ternary 

systems leads to the following relationships, 
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In principle, these expressions can be solved by substitution. In practice, it will be much easier to use the matrix 

formulation provided in Section 6.5.1. 

 

6.3.4 Symmetric Ideal Systems 

Symmetric Ideal (SI) solutions provide an interesting reference solution for the investigation of many thermodynamic 

properties of closed systems. SI solutions are characterized by lnd d x   , with a zero excess volume of mixing 

and an ideal compressibility. The higher order correlations also require knowledge of the pure densities as a function 

of pressure. Expressions for any number of components are possible in this case. The inverse of the Z matrix becomes, 
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Figure 6.6 Particle number probability distributions for SI mixtures of methanol (2) and water (1) at 298 K 

and 1 bar as a function of methanol mole fraction. Experimental density data for the pure liquids was taken 

from the literature (see legend to Figure 6.4). The distributions were generated using the maximum entropy 

method ensuring that the first four cumulants of the distribution are correct. The distributions are provided 

for two sample spherical volumes of the solution with radii of 1 nm (upper) and 10 nm (lower). The 

corresponding probability distributions obtained for real mixtures of methanol and water also display a similar 

behavior. 

 

where 
o

iV  is the molar volume of pure component i. This leads to the following general results, 
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The SI results are also included in Figure 6.4 and Figure 6.5 for comparison. The SI fluctuating quantities oscillate 

with composition. However, the corresponding G’s display a monotonic and a much less profound dependence on 

composition. 

 

As mentioned previously, the B’s, C’s and D’s can be considered as the cumulants of the multiparticle distribution 

function for a given local region of the solution. It is informative to generate probability distributions that possess 

these characteristics. In Figure 6.6 we provide the probability distributions for spherical volumes of solution (radii of 

1 and 10 nm) for a SI mixture of water (1) and methanol (2) generated using the maximum entropy method  
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Figure 6.7 The linear extrapolation method of Schnell et al. applied to the probability distributions. Sample 

results are shown for simulated data obtained from a mixture of methanol (2) and water (1) at 300 K and 1 bar 

and a solute mole fraction of x2 = 0.25. Data corresponding to the pair, triplet and quadruplet distributions are 

displayed as a function of the sample volume (cubic box length, L). The range of data points considered for the 

linear region is highlighted with bold symbols, together with the extrapolated (red) lines obtained from a fit to 

the linear region. The multiple lines correspond to data obtained from the analysis of four 20 ns long sub-

averages of the trajectory. 

 

(Abramov 2007). We restrict our analysis to a description of the single particle distributions (characterized by Bαα, 

Cααα, Dαααα) for simplicity. The deviations from Gaussian behavior are small but clearly visible for the smaller 

reference volume. It is also clear that the distributions (variance and skewness) change significantly with composition 

even for a (presumably) simple model of a solution mixture. Interestingly, as the volume of solution under 

consideration increases, the distribution becomes visually indistinguishable from a normal (Gaussian) distribution. 

However, the values of C and D for this distribution are not zero and are indeed the same as for the smaller volume of 

solution. The fluctuations are significantly larger for water compared to methanol due to the approximate relationship 

provided by Equation 6.26. 

 

6.3.5 Computer Simulation of the Fluctuations 

To make full use of the current type of analysis we envision that computer simulation data will be used to aid in many 

interpretations. Hence, it is important to determine if reliable fluctuations can be obtained from simulation data using 

current computational resources. To do this one needs to have a system where the answers are known for  
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Figure 6.8 Simulated integrals over the pair (Gαβ in M-1), triplet (Gαβγ in M-2), and quadruplet (Gαβγδ in M-3) 

probability distributions for two pseudo binary SI solutions as a function of “solute” mole fraction obtained 

from simulations at 298 K and 1 bar. Dashed lines represent the corresponding SI results, while symbols 

correspond to the simulated systems. Data are shown for an analysis of pure SPC water (black) and pure KBFF 

methanol (red). 

 

the model. Unfortunately, to our knowledge, there are none available. Hence, our first test was to investigate whether 

we could reproduce the fluctuations and integrals for a pseudo SI binary system, i.e. the analysis of a pure liquid as if 

it was composed of two components with identical properties. Simulations were performed of pure water (SPC) and 

pure methanol (KBFF) at 300 K and 1 bar, and at additional pressures of 250, 500, 750 and 1000 bar. Each system 

was then analyzed as a binary mixture of components at different compositions. The G’s are clearly the same for both 

components and correspond to the G’s for pure water or pure methanol according to the FF model. 

 

To determine the fluctuations, and thereby the G’s, we used the recent approach of Schnell et al. in which one plots 

the particle number fluctuations as a function of local volume within the solution (Schnell et al. 2011). This approach 

was also extended to the triplet and quadruplet fluctuations. An example of the type of results one observes is provided 

in Figure 6.7. The fluctuating values are then obtained after linear extrapolation to the 1/L limit. The choice of linear 

region remains somewhat subjective as very small (presumably because small volumes do not sample the larger αδN

fluctuations in a reasonable manner) and very large (as the open region is no longer   
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Figure 6.9 Local fluctuations (in M) for a binary mixture of the SPC (2) and TIP3P (1) water models at 300 K 

and 1 bar as a function of composition. The solid lines represent the SI results, while the symbols correspond 

to the simulated data. 

 

surrounded by sufficient bulk solution) solution volumes do not display this linearity. The main advantage of this 

approach is that the fluctuations determined for the different sample volumes appear to converge with size much faster 

than the corresponding integrated distribution functions centered on a particular molecule. However, all the local 

composition information around a specific molecule is then lost. 

 

All the simulation data provided here was obtained from simulations of molecules in periodic boxes of length 10 nm 

simulated for 110 ns in the isothermal (300 K) isobaric (1 bar) ensemble. Four 20 ns sub-averages from the final 80 

ns of trajectory were used to estimate the statistical significance in the data. The estimated standard deviations from 

the four sub-averages were then divided by ½ to estimate the error for the full 80 ns trajectory. 

 

Using the above approach we obtained the integrals displayed in Figure 6.8 for two pseudo binary mixtures. The 

simulated data clearly agree with the known SI results within the error bars. Again, the errors increase significantly as 

one of the components tends to low concentrations. It was somewhat surprising to us that one could obtain the triplet 

and quadruplet G’s considering that there has been significant discussion concerning the precision of the pair G’s 

obtained from closed system simulations (Wedberg et al. 2010; Schnell et al. 2011). We assume that the use of  
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Figure 6.10 Integrals over the pair (Gαβ in M-1), triplet (Gαβγ in M-2), and quadruplet (Gαβγδ in M-3) probability 

distributions for a binary mixture of the SPC (2) and TIP3P (1) water models at 300 K and 1 bar as a function 

of composition. The solid lines represent the SI results, while the symbols correspond to the simulated data.  

 

large (L = 10 nm) size systems, for long (100 ns) simulation times, followed by the extrapolation analysis has 

dramatically increased the precision of these calculations. We have also analyzed the SPC simulation as a pseudo 

ternary and quaternary SI system. The results (not shown) are in agreement with the known pure solution values and 

are statistically significant for compositions which do not approach infinite dilution. Furthermore, the SI values 

displayed in Figure 6.8 were obtained from the pressure dependence of the pure solution density, and thereby provide 

a model consistent check of the underlying theory.  

 

A slightly less trivial system, but one where the results should also closely follow the SI values, involves a mixture of 

the SPC and TIP3P water models. These models display a minimum in the enthalpy of mixing at -0.02 kJ/mol, clearly 

indicating the solution ideality. In Figure 6.9 we present the simulated fluctuations for this system compared to the 

results expected if this was a true SI solution. The results suggest we can obtain meaningful (precise) simulated values 

for the B’s, C’s, and D’s, although the statistical error does depend on the exact composition of interest. However, to 

a large extent the fluctuating quantities are dominated by the number densities. The corresponding G’s are more 

sensitive to the system properties. The G’s are displayed in Figure 6.10.  Here, one can capture the (very) small 

deviations from SI behavior. The respective integrals systematically approach the correct limiting values, even though 

there are very small differences between the two pure solutions. We should note that this is a trend we have observed 
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in simulations before. That is, the precision of the simulated data appears to be related to the degree of ideality of the 

solution, with the precision increasing as the solution becomes more ideal. 

 

In Figure 6.4 and Figure 6.5 we have also included the simulated moments and G’s for a binary mixture of SPC/E 

water and the KBFF model for methanol. Again, the results suggest that one can obtain reasonably precise values for 

these systems. Of course, the accuracy of the results will ultimately depend on the quality of the FF models. For almost 

all compositions the deviation from SI behavior exhibited by the experimental data is displayed by the simulations. In 

fact, the statistical uncertainty displayed by the simulations is much less than that of the different experimental data 

sets. Unfortunately, the statistical noise in the simulated integrals increases as the molecules approach infinite dilution, 

and yet these values are often of principle interest from a theoretical perspective.  

 

6.4 Conclusions 

We have illustrated how triplet and quadruplet fluctuations, or integrals over triplet and quadruplet distribution 

functions, can be obtained from existing experimental and simulation data. The results could help to provide a deeper 

understanding of solutions and solution mixtures. The only other experimental technique that we know of which 

provides such data for solutions is that of solution scattering studies (Egelstaff 1973). However, these are limited to 

triplet correlations and to relatively simple mixtures. No such limitation is found with the current approach. It appears 

that both the experimental extraction and simulation of these correlations is viable for the triplet correlations, while 

the quadruplet correlations may be more problematic, especially at low concentrations. Fortunately, while the current 

approach does not provide the experimental values of g(3) or g(4) (we know of no such general approach), the 

thermodynamics of the solution are directly related to the integrals over these correlation functions, which are provided 

by the current approach. 

 

Some areas of future study involve: i) extending the current approach to include energy fluctuations; ii) developing 

the expressions for third derivatives of the Gibbs free energy (i.e., partial molar compressibilities, expansivities, and 

heat capacities) in terms of fluctuating quantities; iii) deriving a fluctuation formula that corresponds to the 

superposition approximation; iv) examining more systems using available experimental data; v) deriving expressions 

for the limiting behavior of the G’s in binary or ternary systems; vi) comparing the results for systems with and without 

explicit polarization to results obtained with and without the superposition approximation; and vii) obtaining g(3) from 

our simulations for comparison with the integrated values. 

   

6.5 Appendices 

6.5.1 Analysis of Experimental Data 

The expressions provided above were developed using the chemical potential and Z matrix definitions provided in 

Equations 6.11 and 6.13, respectively. We found these definitions to be most useful for developing the expressions 

that appear in Equation 6.23, for example. However, a more general approach, valid for any number of components, 
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is possible using matrix algebra. To simplify the notation we will redefine the central Z matrix and chemical potential 

derivative such that, 
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We note that these definitions are restricted to this section only. Furthermore, we will express all the required 

derivatives in terms of derivatives of the Z matrix at the expense of additional matrix operations. Hence, this approach 

will be much less suitable for the development of explicit expressions for the fluctuating quantities in terms of 

experimental data, but will be more general and relatively easy to implement on a computer. 

 

Before proceeding we note that there are several useful properties of this new Z matrix which will be utilized later. 

These include, 
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where the superscript a (and later b and c) indicates a derivative with respect to pressure or a specific mole fraction xi. 

The above equations can be used to provide expressions for first, second and third derivatives of the number densities 

with respect to pressure or composition. The results are, 
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which can be solved sequentially. There will be a series of these vectors corresponding to derivatives with respect to 

to each component. Again, these are relatively easy to manipulate on a computer. 

 

Using the above definition of the Z matrix the expressions provided in Equation 6.12 can be written, 
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Note here that 
1 2( , ,...)   I

α
ρ , where the i superscript indicates a derivative with respect to xi. This is not the same 

as the derivatives indicated in Equation 6.33, but this vector can be generated directly from those results. The inversion 

approach then leads to the following expressions for the B’s, C’s and D’s, 
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which can again be solved in an sequential manner. A general expression for the B’s can be written, 
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where the Φ  matrix has elements of ( ) / [ (1 )]x x

             .  

 

Hence, from derivatives of the Z matrix one can generate all the derivatives of the number densities and thereby the 

required derivatives of the B’s and C’s. To determine derivatives of the Z matrix one requires values of GEx and VEx 

as a function of composition, together with the pure volumes and VEx (or the density) as a function of pressure. The 

ideal contributions 
id o ln x       to the chemical potential derivatives are given by, 
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for all components using the mole fractions scale 
id ln f      , where f is the mole fraction scale activity 

coefficient. Derivatives of each f and VEx can be obtained from the usual fitting functions. 

 

In the present analysis of the experimental data for binary solutions we have made one minor approximation. The 

pressure dependence of the solution volume as a function of composition is rarely available in the literature. Therefore, 

we have assumed that, 
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for all solution mixtures. This is equivalent to neglecting the pressure dependence of the excess molar volume or 

excess partial molar volumes. A comparison of the data in Figure 6.1 and Figure 6.4 indicates that the magnitude of 

the C’s obtained for solution mixtures is typically much larger than for the pure solutions. Hence, this approximation 

should be very reasonable under ambient conditions. 
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6.5.2 Distribution Functions 

In the grand canonical ensemble the probability that any Nα molecules of species α, and Nβ molecules of species β, 

etc. are within d{r} at {r} is given by ρ(n)({r})d{r} where (Hill 1956), 
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Here, the product involves the different species (s) present in the solution, while ns is the number of molecules of each 

species in the (n) particle distribution. We require integrals up to and including the four body distribution for a general 

mixture of any number of components. These involve integrals over the following probability density distributions, 
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In analogy with the theory of imperfect gases we define the following integrals (Kirkwood and Buff 1951; Hill 1956), 
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where we have removed the spatial dependencies for clarity. These integrals arise during the common expansions of 

the partition function (see Equation 6.3) employed in gas and solution theory. The first two integrals also appeared in 

the original KB paper (Kirkwood and Buff 1951). The above integrals can be expressed in terms of probability 

distributions via their definitions, 
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A combination of Equations 6.41 and 6.42 followed by some minor rearrangement provides the integrals given in 

Equation 6.16. Furthermore, a combination of Equations 6.40 and 6.41 provides the G’s in terms of fluctuating 

quantities, 
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These expressions can then be rearranged to provide the equivalent fluctuating quantities given in Equation 6.15.  
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7. Apparent Molar Approach for the Calculation of Infinitely Dilute Partial 

Molar Properties of Proteins from Computer Simulation* 

 

Abstract 

A detailed understanding of temperature and pressure effects on an infinitely dilute protein’s conformational 

equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular 

dynamics methodologies generally have not provided a way to calculate these properties without either a loss of 

thermodynamic rigor, the introduction of non-unique parameters, or a loss of information about which solute 

conformations specifically contributed to the output values. Here we implement a simple method that is 

thermodynamically rigorous and possesses none of the above disadvantages and we report on the method’s feasibility 

and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to 

distinguish the thermodynamic differences between a native and a denatured conformation of a designed mini-protein. 

We conclude that simple ensemble average properties can be calculated with very reasonable amounts of 

computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding 

to calculate precisely from a single simulation, although they can be obtained relatively easily by following the 

temperature and/or pressure dependence of the corresponding ensemble averages.  

 

  

                                                           
* Design, derivation, advising, and editing by PES. Simulations, analysis, figures, and manuscript by EAP under the 

guidance of PES excluding the Appendix text, which was almost entirely written by PES. 



135 

 

 

7.1 Introduction 

Equilibrium constants (and their derivatives) that describe the delicate balance between the native and denatured states 

of proteins are frequently measured to understand if and why certain proteins are more stable than others and how 

mutations alter this stability. However, under physiological conditions, the ratio of [denatured]/[native] is very small, 

making it difficult to measure accurately. Often the equilibrium must be perturbed, for example by changing the 

temperature or pressure, in order to achieve an equilibrium constant that is larger in magnitude and can, therefore, be 

calculated more precisely. Afterwards, the results are usually extrapolated back to physiological conditions. Thus, it 

is important to understand the effects of temperature and pressure on the equilibrium constant. One way of learning 

more about these effects is through computer simulation. However, structural properties are usually the sole or primary 

focus of most simulations studies, and the corresponding thermodynamic properties are often ignored. When 

thermodynamic properties are determined from simulation, it is typically by way of a method that does not retain 

information concerning which conformation gave rise to the specific values - meaning the simulation does not really 

provide any more insight than an experiment would - or the properties are calculated from phenomenological 

relationships rather than rigorously derived thermodynamic expressions.  

 

7.1.1 Thermal and pressure effects on conformational equilibria 

Although multiple environmental variables affect a proteins’ conformational equilibrium (Davis-Searles et al. 2001), 

here we limit our scope to thermal and pressure effects. Hence, the effects of cosolvents and pH on protein equilibrium 

are not discussed here, although a theoretical framework for understanding their effects on equilibrium has recently 

been advanced (Smith 2004b, 2004a; Jiao and Smith 2011).  

 

To understand the effects of the environment on a protein’s thermodynamic properties, it is common to study an 

infinitely dilute protein in a single solvent. To keep the situation tractable, we will assume that a protein molecule 

adopts one of only two forms, the native, N, or the denatured, D.
*
 When considering the equilibrium between N and 

D, N⇌D, the standard state Gibbs free energy of unfolding (∆N
DGº, hereafter ΔGº) determines the populations of the 

protein conformations through the usual relationship to the thermodynamic equilibrium constant K=aD/aN, where ai 

is the equilibrium activity of form i, through 

 
o o o

D NlnG RT K        7.1 

where R is the gas constant, T is the temperature, μi is the chemical potential of the protein in conformation i, and the 

superscripted o denotes the standard state (Ben-Naim 1992). The activity coefficients at infinite dilution are assumed 

to be one, which leads to the replacement of the activities with their concentrations in the equilibrium constant 

expression. 

 

                                                           
* The process of classifying a specific conformation as being N or D is subjective, but addressing this subjectivity is 

beyond the focus of this chapter. When studying a specific system’s equilibrium by computer simulation, it would be 

wise to use the same definition as was used experimentally e.g., measuring tryptophan fluorescence, if possible. 
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While ΔGº quantifies the ratio of species at equilibrium, derivatives of ΔGº reveal increasingly more detailed 

information the higher their order. The bivariate Taylor expansion of the standard state free energy change for 

unfolding,    ref

o , ln /G p K K   , up to second order around a reference (ref) inverse temperature (β = 1/RT) 

and pressure (p) provides an avenue to interpret experimental thermal and pressure denaturation data via 

  o T1
,

2!
G p   T

k d d Kd   7.2 

where k is the column vector whose elements are the first derivatives of ln K with respect to β and/or p evaluated at a 

reference β and p and K is the matrix whose elements are the corresponding second partial derivatives of ln K. d is 

the column vector of deviations from the reference β and p, 

 
p

 
  

 
d   7.3 

where ΔX = X- Xref. 
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o o

2 o 2 o

2 o o

  β

β

p p

p T

H V

RT C RT

RT

     

  
  

   

k

K
 7.4 

where H denotes the enthalpy, V the volume, Cp the heat capacity, αp the thermal expansion, and κT the isothermal 

compressibility. The changes are given by  
o o o

D NHH H   , 
o o o

D NVV V   , o o o

,D ,Np p pC C C  , 

o o o o o

D ,D N ,Np p pV V     , and o o o o o

D ,D N ,NT T TV V    .  

 

First order Taylor expansions provide the following temperature and pressure dependencies of ∆Ho, the standard state 

entropy change (∆So), and ∆Vo via, 
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  7.5 

Thus, to use MD simulations to understand how temperature and pressure affect the conformational equilibrium of 

proteins in significant detail, i.e., to map ∆∆Go as a function of β and p, one requires ∆Ho, ∆Vo, o

pC , o

p , and 
o

T

. Similarly, to map ∆Ho, ∆So, and ∆Vo as a function of β and p, one requires o

pC , o

p , and 
o

T .  

 

The second derivative properties can also be expressed as  
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The relationships in Equation 7.6 will be used later. All of the above properties have been standard state properties. 

Standard state properties are usually associated with those of an infinitely dilute protein (for which the activity is 

approximated by the concentration) in either the native or denatured forms (Majer et al. 2004), which is helpful since 

most molecular dynamics simulations model the infinitely dilute case. In fact, the single protein molecules studied by 

simulation should really be considered as pseudo infinitely dilute (but we will drop the use of pseudo for the sake of 

brevity), since the amount of protein in a given volume (the formal or effective concentration) will vary depending 

upon the total system size even though the number of protein molecules is fixed at one. 

 

Most simulations do not readily provide the above infinitely dilute partial molar properties, because the expressions 

relating the output simulation results to these properties have generally been considered unknown. In contrast, it is 

well known that the system fluctuations are related to the compressibility, thermal expansion, and heat capacity of the 

whole system. In the NpT ensemble the corresponding expressions are 
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  7.7 

The angled brackets indicate time or ensemble averages. X X X    and  cov ,X Y XY X Y X Y     , 

where cov is the covariance. We emphasize that these are all bulk system properties, which means that when applied 

to a system containing an infinitely dilute solute, the properties obtained are those of the solvent, perturbed to some 

extent by the presence of the solute molecule. For a binary mixture in which both species 1 and 2 are at finite 

concentrations, the process of extracting partial molar properties is straightforward. One needs only to fit the property 

of interest as a function of composition and then take the partial derivatives with respect to each component (Lewis 

1907). However, for the infinitely dilute case, an appropriate method for determining partial molar properties has not 

been clear or computationally intuitive. 

 

7.1.2 Current computer simulation methodologies for determining partial molar properties 

Computationally speaking, we are only aware of one method in the literature that has been used to obtain all of the 

infinitely dilute partial molar properties and can be considered thermodynamically rigorous, namely, the enhanced 

sampling technique of replica exchange molecular dynamics (REMD). REMD simulations map out the phase space 

and allow one to obtain K by determining the fraction of protein molecules that are folded or unfolded as a function 

of temperature. Once this is known, the free energy of unfolding as a function of temperature can be computed 

according to (Canchi et al. 2010) 
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  7.8 

where ρi is the number density of i (Ni/<V>). After the free energy of unfolding has been computed, the difference 

(unfolded minus folded) in all of the thermodynamic properties may be fitted simultaneously according to the approach 

illustrated by e.g., Garcia (Canchi et al. 2010). Note, however, that all that is obtained using REMD is the difference 

between the thermodynamic properties in the N and D forms, not the values of the thermodynamic properties for each 

of the native and the many denatured states that collectively gave rise to that difference. 

 

Thus, the REMD approach provides an objective way to calculate the change in an infinitely dilute partial molar 

quantity, 2X  , and is extremely useful from a force field validation or a property prediction point of view. What 

remains lacking, however, is the ability to assign thermodynamic properties to specific conformations i.e., the ability 

to rank different conformations according to their 2X 
 values. Many approaches for the determination of partial molar 

quantities of individual biomolecule conformations have been proposed in the literature. 

 

7.1.3 Protein volume and compressibility 

From a computational viewpoint, many subjective definitions of the volume of a protein exist. Levy and co-workers 

used three possible definitions to calculate the volume of fifteen proteins (Murphy et al. 1998). The most striking 

volume variability was, naturally, for the smallest protein they studied, the insulin monomer (51 residues). They 

reported the van der Waals (VDW) volume to be 5.564 nm3, the molecular volume (calculated using a sphere with 

probe radius of 0.14 nm) to be 6.848 nm3, and the excluded volume (also calculated using a sphere with probe radius 

of 0.14 nm) to be 11.142 nm3 (Murphy et al. 1998). This corresponds to a 100% increase in the volume on going from 

a VDW volume definition to an excluded volume definition. Even the largest protein they studied, Carboxypeptidase 

A (307 residues), had a 17% increase in the volume on going from a vdW to an excluded volume definition (reported 

volumes: VDW=33.571 nm3, molecular=42.098 nm3, excluded=58.055 nm3) (Murphy et al. 1998). While there is 

nothing wrong with calculating these quantities and using them to probe the properties of proteins, it is unclear which 

approach best corresponds to the rigorously defined partial molar volume. Unfortunately, for those interested in further 

calculations that depend upon the protein volume, it is unclear which volume definition they should use. This has been 

an issue in some publications (Dadarlat and Post 2001, 2006). 

 

We have found examples where an objective definition of the protein volume has been used via the apparent molar 

approach i.e. (Shing and Chung 1988; Devane et al. 2003; Mitra et al. 2006; Sarupria et al. 2010),  

 *

2 1 1    V V V N     7.9 

Where <V> is the average system volume from an NpT simulation, 
*

1V  is the molar volume of pure 1, 1 N  is the 

number of molecules of species 1, and the angled brackets, again, refer to time or ensemble averages.*  

                                                           
* In all other chapters, pure properties are denoted by the superscript o. This was not used here so that the standard 

state could be denoted by the superscript o, since that is the usual notation.  
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Another rigorous 2V 
 definition comes from the Kirkwood-Buff theory of solutions via the expression 

 
*

2 21TV RT G      7.10 

where the Kirkwood-Buff integral 21G
 is given by 

  2 ,

21 21
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  4 [ -1]VTG r g r dr



      7.11 

and where g21(r) is the radial distribution function of the solvent (1) around the solute (2) defined in the grand canonical 

(μVT) ensemble. Equation 7.10 has been used by several authors (Yu et al. 2010; Jiao and Smith 2011). Due to the 

non-spherical geometry of proteins, the integration in Equation 7.11 is more difficult to perform if one is interested in 

a surface based approach. Similarly, Hirata and collegues have derived statistical mechanical expression for the 

infinitely dilute partial molar volumes using the Reference Interaction Site Model (RISM) integral equation theory 

coupled to KB theory. 

 

It is worth noting that while traditional KB theory provides a rigorous expression for the volume only, the 

generalization of KB theory to Fluctuation Solution Theory (FST) provides rigorous expressions for all of the 

thermodynamic properties considered in this work. However, FST is still in its infancy and therefore, while the 

expressions have appeared, they have not yet been applied to obtain te full set of possible thermodynamic properties 

(Jiao and Smith 2011; Ploetz and Smith 2013). 

 

Most calculations of 
,2T

  we have found cannot be considered rigorous for one of two main reasons. First, they may 

have relied on subjective definitions of the protein volume. Second, they often assume that the equation that relates 

the bulk system compressibility to fluctuations in the volume of the entire system can be applied to a component of 

the system (i.e., the protein) to obtain its compressibility i.e., that 2

,2 2 2( ) /T V V       , (Høiland and Hedwig; 

Cooper 1976; Gekko and Hasegawa 1986; Dadarlat and Post 2001, 2006) where V2 is some measure of the protein 

volume. This may or may not provide a measure of the intrinsic compressibility of the protein, but it is unlikely that 

it corresponds to the thermodynamically defined infinitely dilute partial molar compressibility of the protein. This 

idea has been used in the literature many times, and may have originated from the work of Cooper (1976). It has been 

further supported by Hinz, but has also been strongly contested by Hirata. Furthermore, while many researchers have 

been able to successfully obtain reasonable agreement with the experimental 
,2T

  by breaking the simulated 

compressibility into different contributions, such as the “intrinsic,” “hydrational,” and/or “thermal” components 

(which involves the use of non-unique volume definitions), here we seek to calculate the thermodynamically defined 

property, 
,2T

 . 

 

A few noteworthy exceptions to the above compressibility studies exist, such as the work of Yu and coworkers 

mentioned in the previous paragraphs explaining protein volume calculation methods. Yu used Equation 7.10 and then 
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looked at the pressure dependence of the volume to obtain the corresponding compressibility.  Likewise, Hirata also 

used the pressure derivative of the volume that was obtained from RISM combined with KB theory to obtain the 

isothermal compressibility. In contrast to these studies, we seek a method that can be used to analyze computer 

simulations, does not involve integral equations, and directly provides any first or second derivative of the free energy 

– rather than only providing the volume (obtained from the first pressure derivative of the free energy). 

 

7.1.4 Protein enthalpy, heat capacity, and thermal expansion 

In a computer simulation, the absolute partial molar enthalpy is available, whereas experiments only provide the excess 

partial molar enthalpy. When a single protein conformation is simulated, it is not obvious that there would be any 

value in quoting the absolute enthalpy of that protein form. This may explain why we have found considerably fewer 

attempts to extract 2H 
 or 

,2pC  from simulations than the preceding properties, outside of REMD studies. For 

interesting explanations of the dearth of simulations of 
,2pC , the reader is referred to a review by Prabhu and Sharp 

(2005) and an article by Cooper (2010).  

 

Shing and Chung (1988) did calculate the internal energy of an infinitely dilute LJ sphere in a LJ binary mixture by 

the finite difference of the system internal energy in the absence or presence of the infinitely dilute solute. However, 

the method was not generalized to all properties or other types of systems such as biomolecules. As we will show 

here, it is trivial to make these generalizations, but the literature from the intervening years suggests that this approach 

has not been popular. In the same vein, Smit and coworkers recently calculated the enthalpy of a lipid bilayer, with 

respect to the enthalpy of the solvent background, in order to make a connection to differential scanning calorimetry 

experiments (Rodgers et al. 2012). Unlike nucleic acids, proteins, and polysaccharides, lipids are not polymeric. 

Therefore, Smit calculated the (extensive) enthalpy of a lipid aggregate, not an (intensive) infinitely dilute partial 

molar lipid enthalpy. However, their method is in the same spirit as the method used in this work and it could be 

applied to any infinitely dilute solute (considering the lipid aggregate as a single object) and to any property, not just 

the enthalpy. 

 

Lastly, very few examples of protein thermal expansion values calculated from computer simulations studies can be 

found. They have all used non-unique protein volume definitions and/or decomposed the thermal expansion into 

different contributions, such as the “intrinsic,” “hydrational,” and/or “thermal” components, which introduces several 

additional subjective parameters (Mitra et al. 2006; Mitra et al. 2008; Brovchenko et al. 2010). 

 

7.1.5 Aim of this study 

The purpose of this chapter is to investigate the computational feasibility of using a general method for extracting the 

thermodynamically defined 2X 
 that does not result in a loss of information about the conformational states of the 

protein that gave rise to these properties. The significance of this work is that it allows MD simulations to better fulfill 
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their claim of providing exquisite details about systems, often unavailable from experiment, and to do so using 

thermodynamically exact relationships and approaches.  

 

As mentioned in the introduction, obtaining thermodynamically rigorous partial molar properties for species whose 

concentrations are finite is trivial by computer simulation. However, finite concentrations are typically not feasible 

for biological system simulations. Thus, it is the infinitely dilute limit that is of primary interest for this work. The 

approaches we have found in the literature to calculate all of the above properties are reasonable and are often rather 

involved. In comparison, we show here that it is often simpler to use a thermodynamically rigorous apparent molar 

approach. 

 

7.2 Theory 

As discussed in the Introduction, obtaining partial molar properties is, in principle, straightforward when all species 

are at finite concentrations. For a multi-component system of 1  solvent, 2  solute, 3, …, n  cosolvents, a molar 

property is defined as Xm=X/N, where X is the corresponding extensive thermodynamic property of interest and N is 

the total number of molecules in the system. Here we will be focused on X = H, V, Cp, VκT, and Vαp only, where we 

have multiplied the κT and αp by the system volume. In addition, we have also investigated results for the kinetic 

energy, K, but only as a test of the procedure, so as to ensure that the equipartition results were achieved. The partial 

molar property of 2 is then obtained from 

  2

2 { } , ,

{ }, ,

N p T

X
X N p T

N


 
  

 
  7.12 

where the {N}' indicates all N other than N2.  

 

Now consider that 2 is a protein plus its counter-ions. Generally, it would not be feasible to perform simulations in 

which one varies the number of protein molecules, because the system sizes would become elephantine rather quickly. 

Furthermore, researchers are often more interested in the infinitely dilute system where the inclusion of protein-protein 

interactions would be undesirable. A finite difference approach can be used if N2 is set equal to zero and to one in two 

separate simulations where {N} is held fixed. As mentioned in the Introduction, this finite difference calculation has 

been used for calculations of a LJ sphere’s volume and internal energy, for determining protein volumes, and for 

determining lipid aggregate enthalpies. It has also been noted that such an approach can suffer from large statistical 

errors. 

 

We instead have constructed a series of infinitely dilute systems in which we vary x2 by changing N1, where N2 is 

always one. If we choose systems such that even the smallest system contains water that is beyond the “sphere of 

influence” of the protein i.e., some waters exhibit the thermodynamic properties of bulk water, then the addition of 

more waters will correspond to a simple dilution process, and the corresponding plot of Xm vs. x2 will be linear. An 

example plot (created using real data), which illustrates the method, is shown in Figure 7.1. Due to the linearity, it is 

easy to fit Xm. The line is given by  
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*

m m 2X X ax    7.13 

where 
*

mX  is the molar property of pure 1 (always water here), and a is the slope. After taking the partial derivative 

of Equation 7.13 with respect to N2, multiplying both sides by N, and then taking 
2 0
lim
x 

, one finds that  

 
*

2 ma X X    7.14 

Thus, a linear regression of Xm provides a and subsequently 2X  , the thermodynamicall rigorous infinitely dilute 

partial molar property of the protein plus its counter-ions. Rearrangement of Equation 7.13, after substituting Equation 

7.14 in for a, indicates that this method is equivalent to the apparent molar approach often used experimentally, 

 *

2 m 1X X X N     7.15 

Although we have seen a few molecular dynamics studies that use this approach to calculate 2V 
 (Devane et al. 2003; 

Mitra et al. 2006; Sarupria et al. 2010; Yu et al. 2010; Jiao and Smith 2011), to our knowledge it has never been 

presented generally or applied for the determination of higher derivatives.  

 

In using Equation 7.13, one has a choice of fitting both 
*

mX  and a, or of fixing the y-intercept and only fitting the 

slope. We have chosen to fix the y-intercept for the following two reasons: (1) So that we could use the same values 

of 
*

mX  regardless of the protein under study and (2) because we have performed the pure water simulation for four 

times longer than the simulations of systems containing proteins, in an effort to increase the precision on the molar 

properties of water. It should be noted that one could use this method with any number of components as long as the 

ratio of 1:3:…:n is held constant and only the ratio of 2:(N-1) varies. 

 

The advantages of the approach include the following: 

 It involves an interpolation between pure water and some value of x2, not an extrapolation. 

 It is thermodynamically exact. 

 No subjective definitions are required. 

 

Figure 7.1 Illustration of apparent molar approach used to calculate infinitely dilute partial molar properties. 

A protein is simulated in various box sizes so that a plot of Xm vs. x2 may be achieved from which 2X 
 may be 

calculated. (Simulation boxes not to scale.) 
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 It can be applied to extract any partial molar property for any solute in any solvent system, regardless of the 

number of components. 

 Partial molar properties can be assigned to specific conformations. 

 

However, regardless of the quality of the approach, in computer simulations the ultimate arbiter remains the quality 

of the force field and the need for sufficient sampling of the relevant phase space. Errors in our results will be due to 

these factors. Specifically, there will be errors in our results due to a classical treatment of those X which have 

significant quantum mechanical contributions, such as the constant pressure heat capacity.  

 

The disadvantage of the approach is that, as alluded to above, multiple simulations are required to obtain a good fit 

for the calculation of 2X 
. Since it is a linear fit, in principle, only two compositions are required, namely a pure water 

box and one protein system. However if any noise is present in the results, it can be better identified when multiple 

compositions are used. Furthermore, systematic deviations from linearity in the plot of Xm vs. x2 would indicate that a 

simulation box is too small, such that bulk water is not present. Figure 7.1 schematically illustrates the use of multiple 

simulation boxes. 

 

 

 

 

 

Figure 7.2 Trp-cage denatured conformations simulated. The denatured conformation was obtained after 

clustering a 100 ns, 500 K, NVT simulation using the AMBER99sb force field. Subsequent simulations of this 

structure using KBFF and AMBER99sb resulted in the denatured conformations shown. The three structures 

for each force field correspond to the structures from the three compositions (i.e., the three system sizes) 

studied. 
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7.3 Methods 

7.3.1 Systems Studied and Molecular Dynamics Simulations 

We illustrate the method using basic pancreatic trypsin inhibitor (58 amino acids, PDB ID 5pti), abbreviatd as BPTI, 

and hen egg white lysozyme (129 amino acids, PDB ID 4lzt), abbreviated as HEW lysozyme. These proteins are 

relatively small, which allows smaller simulation boxes to be used, and experimental data is available for several of 

the partial molar properties for comparison with the simulated results. 

 

The initial structures for BPTI and HEW lysozyme were each centered in a series of truncated octahedron boxes where 

the distances between any two parallel box faces were 8, 9, 10, 11, and 12 nm. The titratable residues were protonated 

to correspond to neutral pH and counter-ions were added to create neutral systems (6 Cl- for BPTI systems, 9 Cl- for 

HEW lysozyme systems). A pure water system, consisting of a truncated octahedron box (with the distance between 

any two parallel box faces equal to 7 nm) was used to calculate the corresponding molar properties of the pure solvent. 

 

All simulations were performed using classical MD techniques at a temperature of 300 K and pressure of 1 bar unless 

otherwise noted. In an effort to ensure that the simulations would sample from the NpT ensemble and the 

corresponding system fluctuations would be correct, the Nosé-Hoover (chain length of one) and Parrinello-Rahman T 

and p baths were used. The protein and ions were modeled using the Kirkwood‐Buff Force Field (http://kbff.chem.k-

state.edu, KBFF) (Pierce et al. 2008; Ploetz et al. 2010a; Weerasinghe et al. 2010) in explicit solvent with the SPC/E 

water model (Berendsen et al. 1987). Following 25 ns of production simulation for each system size, the average Cα 

root mean squared deviation (RMSD) for the final BPTI (lysozyme) structures, after a translational and rotational fit 

to the initial structure, was 0.22 nm (0.27 nm). These values correspond to the average over the final structure from 

each of the different system sizes. Additional details of the simulations are provided in the Supporting Information. 

 

Due to the promising results for BPTI and HEW lysozyme, and due to our overarching questions, we also asked 

whether the method could be used to distinguish between different conformations of a protein i.e., if it could be used 

to determine 
D

N 2Δ X 
. To test this, we simulated a native and an extended denatured conformation of trp-cage (PDB 

ID 2jof, construct TCb10) using the KBFF models (see Supporting Information). Trp-cage is a twenty amino acid 

designed mini-protein. The system setup was the same as for BPTI and HEW lysozyme, except that the distance 

between any two parallel box faces was 7, 8, 9, and 10 nm for the native conformation, and 8, 9, and 10 nm for the 

denatured conformation. The simulation protocol for trp-cage was similar to that for BPTI and HEW lysozyme. The 

specific trp-cage construct used here is neutral, so no counter-ions were added to the systems. Following 25 ns of 

production simulation, the average Cα RMSD for the final trp-cage native structures, after a translational and rotational 

fit to the initial structure, was 0.17 nm. 

 

http://kbff.chem.k-state.edu/
http://kbff.chem.k-state.edu/
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In addition to modeling trp-cage using the KBFF in explicit solvent with the SPC/E water model, we performed 

identical trp-cage simulations with the AMBER99sb force field and the TIP3P water model to allow for a force field 

comparison (Hornak et al. 2006). A TIP3P truncated octahedron box, with the distance between any two parallel box 

faces equal to 7 nm, was used to calculate the properties of pure water for the AMBER99sb simulations. Following 

25 ns of production simulation, the average Cα RMSD for the final trp-cage native structures, after a translational and 

rotational fit to the initial structure, was 0.09 nm using AMBER99sb. 

 

The initial and final denatured conformations are shown in Figure 7.2. Since the experimental 
D

N 2Δ X 
 corresponds to 

a difference between properties of an ensemble of native and denatured states, our goal here was not necessarily to 

match the experimental value, although certainly that is of long-term interest. In this study, we instead specifically 

sought to establish how precisely the differences could be calculated, and to see if we achieved the correct sign and 

order of magnitude for the values using only two conformations. 

 

7.3.2 Extracting Xm from Simulations 

The properties Um, Km, Hm, and Vm were extracted from the Gromacs energy file since they simply correspond to time 

averages of system properties. The other properties (Cp,m, κT, and αp) were calculated from their bulk system 

fluctuations definitions in Equation 7.7. The standard deviation for each property was calculated using block averages 

where the block size was 5 ns.  

 

The system fluctuations had a large standard deviation (see Results). In an effort to increase the signal to noise ratio, 

we additionally calculated these properties using the expressions in Equation 7.6 (where the standard state superscript 

should be removed). To do this, each composition was run at four additional temperatures (290 K, 295 K, 305 K, 310 

K) and four additional pressures (250 bar, 500 bar, 750 bar, 1000 bar) for 10 ns per new state point. The Cp,m, κT, and 

αp were then obtained by fitting the simulated molar volumes or enthalpies to a polynomial function and taking the 

derivatives of the polynomial at the temperature or pressure of interest (300 K or 1 bar). Quadratic fits were used for 

the calculation of κT and αp. Linear fits were used for the calculation of Cp,m. The standard deviations for each property 

using this “polynomial fitting method” were calculated using block averages where the block size was again 5 ns.  

 

Although the production simulation lengths for the system fluctuation approach (25 ns) and polynomial fitting 

approach (10 ns per state point) are not equal and correspond to 25 ns per property for the system fluctuation approach 

and 50 ns per property for the polynomial fitting approach, the reported error estimates (see Results) indicate that the 

polynomial fitting method greatly reduced the noise beyond the type of noise reduction one would see by doubling 

the simulation length alone. 
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Figure 7.3 System properties used to calculate the infinitely dilute partial molar properties of basic pancreatic 

trypsin inhibitor (BPTI) and hen egg white (HEW) lysozyme in pure water at 300 K and 1 bar according to 

Equation 7.14. Black: BPTI. Red: HEW lysozyme. Circles: The property at each composition. Lines: Linear 

fits (fixed y-intercept) through the set of points. The properties shown correspond to time averages from the 

simulations: the molar internal energy, Um (kJmol-1), kinetic energy, Km (kJmol-1), volume, Vm (nm3102), and 

enthalpy, Hm (kJmol-1).  

 

7.4 Results/Discussion 

Figure 7.3 shows that ensemble average properties were well behaved for both BPTI and HEW lysozyme. In contrast, 

there was significant noise in the three properties that are obtained from fluctuating properties. This is clearly 

illustrated by the scattering of the filled points around the solid lines in Figure 7.4. 

 

It is well known that the isothermal compressibility of proteins is less than that of pure water. Lines with negative 

slopes in the top panel of Figure 7.4 correspond to protein partial molar isothermal compressibilities that are less than 

the isothermal compressibility of pure water. If the slope is too negative (see e.g., the system fluctuation result for 

BPTI), then the compressibility of the protein will actually become negative (Table 7.2). It is known that the isothermal 

compressibilities of zwitterionic amino acids are negative. So, in general, this is not an impossible result. However, 

most reported isothermal compressibilities of proteins are positive.  
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Figure 7.4 System properties used to calculate the infinitely dilute partial molar properties of basic pancreatic 

trypsin inhibitor (BPTI) and hen egg white (HEW) lysozyme in pure water at 300 K and 1 bar according to 

Equation 7.14. Black: BPTI. Red: HEW lysozyme. Results from the bulk system fluctuations are shown as solid 

lines with filled circles, while results from the polynomial fitting method are shown as dotted lines with open 

circles. The property at each composition is shown as a circle, and the linear fits through the set of points, in 

which the y-intercept was fixed, is shown as a line. The top panel corresponds to VmκT (nm3bar-1106), the middle 

panel to Cp,m (Jmol-1K-1), and the bottom panel to Vmαp (nm3K-1105). 

 

Tables 7.1 and 7.2 show the values and standard deviations of the 2X 
 obtained for BPTI and HEW lysozyme. While 

the internal energy, kinetic energy, and enthalpy of the proteins are not comparable to experiments, it may be of 

interest to study trends in these properties with e.g., protein mass for a given force field. One application of such a 

study might be that these trends could provide an additional metric for the characterization of protein force fields. It 

is possible that such a characterization, for a given force field, could be used to distinguish between folded and 

unfolded conformations using thermodynamic, rather than structural, criteria. The simulated protein kinetic energy 

agreed with the predicted equipartition result in every case, calculated as 2K 
 = ½kBT(3Natoms-Nbonds), where Natoms is 

the number of protein + ion atoms and Nbonds is the number of constrained bonds in the protein. 

 

The simulated BPTI volume, 8.164(8) nm3, was larger than the value calculated based upon the amino acid 

composition, 7.8 nm3 (Squire and Himmel 1979). This difference of 0.364 nm3 corresponds to approximately 12 waters 

(the volume of an SPC/E water molecule is ~0.03 nm3). The simulated HEW lysozyme volume, 18.00(3) nm3, was 

larger than the experimental volume, 16.92(2) nm3 (experimental measurement was of isoionic lysozyme in 

completely deionized and distilled water at 25 ºC) (Gekko and Noguchi 1979). This difference of 1.08 nm3 for HEW 

lysozyme corresponds to approximately 36 waters. For both BPTI and HEW lysozyme, the disagreement with the 

literature results is partly due to the inclusion of counter-ion volumes in our simulated values (6 for BPTI, 9 for HEW 

lysozyme). For HEW lysozyme, this is clearly not the only issue. 
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Table 7.1
 2K 

, 2H 
, and 2V 

 of native BPTI and Lysozyme in pure water at 300 K and 1 bar 

  BPTI Lysozyme 

  Sim. Exp./Pred.* Sim. Exp./Pred.* 

2K 
 kJ/mol×10-3 1.515(8) 1.511* 3.309(8) 3.306* 

2H 
 kJ/mol×10-4 -1.725(1)  -3.655(5)  

2V 
 nm3 8.164(8) 7.8 18.00(3) 16.92(2) 

Error estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages. The “experimental” BPTI volume 

is actually a calculation based upon BPTI’s amino acid composition (Chiou et al. 1979). The experimental HEW lysozyme volume was measured 
using a solution of isoionic lysozyme in distilled and deionized water (Gekko and Noguchi 1979). Simulations were performed using the KBFF 

force field. For reference, the volume of a single SPC/E water molecule is ¬0.03 nm3 and 1 nm3/molecule is 602.2 cm3/mol. 

 

Table 7.2 
,2pC , 

,2T

 , and 
,2p

  of native BPTI and Lysozyme in pure water at 300K and 1 bar 

  BPTI Lysozyme 

  S.F. P.F. Exp. S.F. P.F. Exp. 

,2pC  kJ/mol/K 7(15) 11.2(4) 9.5 33(38) 23.39(9) 17.97, 21.22 

,2T

  bar-1×106 -25(32) 5(2) O(1-10) 8(13) 12(4) 7.73 

,2p

  K-1×104 0(22) 4(4) 6 6(12) 5(1) 4.26 

S.F.: System Fluctuations; P.F.: Polynomial Fitting. Error estimates are reported in parentheses and correspond to the standard deviation from 5 ns 

block averages. Experimental BPTI heat capacity value from Makhatadze et al. (1993), and thermal expansion value from Lin et al. (2002). 
Experimental Lysozyme heat capacity values from Gekko and Noguchi (1979) and Yang and Rupley (1979), isothermal compressibility value from 

Gekko and Hasegawa (1986), and thermal expansion value from Gekko and Noguchi (1979). Simulations were performed using the KBFF force 

field. 

 

Using the system fluctuation method, the fluctuating properties for both proteins displayed too much noise to 

determine if there was good agreement with experiment or not (Table 7.2). To increase the signal to noise ratio, we 

used a second approach, in which we looked at the system volume and enthalpy as a function of pressure and or 

temperature and calculated the κT, Cp,m, and αp using their partial derivative definitions instead of their fluctuation 

definitions (see Methods). This greatly reduced the error (shown visually in Figure 7.4 and tabulated in Table 7.2). 

 

The BPTI and HEW lysozyme Cp,m over-predict the experimental values. Since our simulations were classical and 

there are significant quantum corrections to the heat capacity, perfect agreement with experiment, if achieved, may 

have been for the wrong reasons. Specifically, real molecules store energy in low frequency bonds, whereas all bonds 

were constrained in our simulations. Secondly, in real molecules only the low frequency bond angles would store 

energy, whereas all angles (except those in water) are flexible and store energy in our simulations. Quantum 

corrections could be made (Berens et al. 1983), but they are difficult for proteins and have not been made here.  

 

The thermal expansion and isothermal compressibility were in reasonable agreement with experiment, but displayed 

large error bars. The magnitude of the errors on the fluctuating properties is a downside of our approach that has not 

been observed using more subjective methods (Dadarlat and Post 2001, 2006).  

 

Literature values are available for all of the pure water (SPC/E) properties. However, since it is critical that all of the 

simulation conditions are consistent, we simulated a pure SPC/E system instead of simply quoting previously reported 

SPC/E properties. The reason for the difference between the pure SPC/E values obtained using the system fluctuation 
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method versus the polynomial fitting method for both the isothermal compressibility and thermal expansivity is 

currently unknown (Figure 7.4). However, the value obtained using the polynomial fitting method is in better 

agreement with experiment [polynomial fitting: 4.48(2)×10-5 bar-1, system fluctuation: 4.75(3)×10-5 bar-1, experiment: 

4.525×10-5 bar-1]. 

 

The results for the trp-cage simulations with both force fields and with both methods (the system fluctuation and the 

polynomial fitting method) are summarized in Tables 7.3 and 7.4. As shown in Table 7.3, the KBFF results suggest 

that the native state has a larger volume than the denatured state by a value of approximately one water molecule or 

~1% of the protein volume, regardless of whether or not the denatured conformation was position restrained. This is 

the typical sign observed for the volume change of a protein upon denaturation. In contrast, the AMBER99sb 

simulations produced no statistically significant volume change. 

 

The KBFF simulation produced the correct sign for the change in enthalpy upon denaturation. The enthalpy of the 

denatured state was more positive, or unfavorable, than the enthalpy of the native state, as expected for heat 

denaturation. The average KBFF result was in better agreement with experiment when the position restraints were 

removed, although the difference was not statistically significant and the native state was slightly over-stabilized in 

both cases. Since the starting conformation for both simulations was taken from a 500 K simulation using the 

AMBER99sb force field (see SI text), better agreement with experiment may be achieved if the KBFF simulations 

were extended to allow for more conformational rearrangements. The AMBER99sb result was within the error of the 

experimental value with or without position restraints on the denatured conformation. 

 

Globular protein heat capacity changes upon denaturation are typically positive; a positive (negative) change is 

considered to be due to apolar (polar) solvation upon denaturation. Since trp-cage is considered globular and its name 

stems from its buried tryptophan side chain, one might predict that the sign of D

N ,2Δ pC  would be positive. Indeed, the 

experimental D

N ,2Δ pC  for the original trp-cage construct (TC5b) was reported to be small and positive (0.3±0.1 kJmol-

1K-1). However, the experimental results of Barua et al. were small and negative ( D

N ,2Δ pC   = -0.2±0.1 kJmol-1K-1) for 

the trp-cage construct simulated here (TC10b), indicating that considering tryptophan exposure is not enough to 

predict the correct sign.  

 

While the statistical uncertainty in our results was too great to determine whether or not the correct sign was obtained, 

our results may suggest that the KBFF and AMBER99sb simulations provide opposite signs (negative and positive, 

respectively). It is encouraging that the KBFF simulations may be able to detect this atypical D

N ,2Δ pC  sign. The positive 

sign for the AMBER results reported here agrees with the recent 1 μs per replica REMD simulations of the TC10b 

construct by English and Garcia, who also used the AMBER99sb/TIP3P force fields and reported D

N ,2Δ pC  = 0.35±0.51 

kJmol-1K-1. 
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The results for the isothermal compressibility and thermal expansion changes upon denaturation are too noisy to 

determine the simulated sign; however, the error was greatly reduced using the polynomial fitting method. 

 

Visualization of the denatured trp-cage trajectories showed that the KBFF and AMBER99sb denatured simulations 

without position restraints behaved differently from each other. The KBFF denatured trp-cage conformation remained 

more fully extended throughout the 25 ns, whereas the AMBER denatured trp-cage collapsed quickly and remained 

collapsed for most of the simulation (although it became more extended at the very end of the simulation). The final 

snapshot of the denatured simulations is shown in Figure 7.2. Despite this, the two force fields gave similar enthalpy 

differences [Experiment: 
D

N 2 65(2)Δ H    kJmol-1, KBFF: 
D

N 2Δ 90(20)H    kJmol-1, AMBER99sb: 
D

N 2Δ 50(20)H    

kJmol-1]. Certainly, the simulations did not access all the denatured conformations with only 25 ns of production, so 

it was remarkable that the 
D

N 2Δ H 
 values were so close to the experimental value.  

 

To test whether or not the different denatured conformations that were sampled in the simulations of trp-cage with 

these two different force fields accounted for their different enthalpy differences, we ran a new set of denatured 

simulations for both FFs using soft harmonic position restraints (100 kJmol-1nm-2) on the Cα atoms of trp-cage. The 

average position restraint energy was small, approximately 2 Jmol-1, so we did not repeat the simulations of the native 

trp-cage with position restraints. Thus, we assumed that any artifacts from the addition of the position restraints were 

negligible when calculating the 
D

N 2Δ X 
 using simulations of the native structure without position restraints. The 

D

N 2Δ X 
 results were the same with and without position restraints to within the statistical error. This is consistent with 

a two-state folding pathway in which the energy landscape is relatively flat for the (high free energy) unfolded 

conformations and drops down into one minimum for the folded conformation. Remarkably, the enthalpy differences 

remained essentially correct when calculated from difference between the native conformation and just one restrained 

denatured conformation. 

 

 

 

Table 7.3 2H 
 and 2V 

 of native (N) and denatured (D) Trp-Cage in pure water at 300 K and 1 bar  

 

 

 

 

 

 

 

 

 

 
 

Error estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages. The kinetic energy contributions 

agreed with the equipartition results and were the same, within statistical uncertainty, for the native and denatured conformations. Experimental 
D

N 2Δ H   from Barua et al. (2008). 

  KBFF 2X 
 AMBER 2X 

 Exp. 

  N D D

NΔ  N D D

NΔ  
D

N 2Δ X 
 

No Position Restraints: 

2H 
 kJ/mol×10-3 -5.120(8) -5.03(2) 0.09(2) -1.817(9) -1.77(2) 0.05(2) 0.065(2) 

2V 
 nm3 2.524(3) 2.496(7) -0.028(8) 2.375(8) 2.377(6) 0.00(1)  

Position Restraints on Denatured Conformation: 

2H 
 kJ/mol×10-3  -5.00(1) 0.12(1)  -1.74(2) 0.08(2) 0.065(2) 

2V 
 nm3  2.48(2) -0.04(2)  2.37(1) 0.00(1)  
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Table 7.4 
,2pC , 

,2T

 , and 
,2p

  of native (N) and denatured (D) Trp-Cage in pure water at 300 K and 1 bar 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages, excluding the 1 μs simulation, which 
corresponds to the standard deviation on ~333 ns block averages. For the 1 μs simulations, the error on the y-intercept (pure water value) was taken 

as zero. S.F.: System Fluctuations, P.F.: Polynomial Fitting. P.R.D.: Position Restrained Denatured conformation. Experimental 
D

N ,2Δ pC
 from 

Barua et al (2008). 

 

7.4.1 Error Analysis 

Lin et al. and references therein have reported that typical magnitudes for the volume change associated with protein 

unfolding were <0.5% of the protein volume (Lin et al. 2002). Using pressure perturbation calorimetry, Lin determined 

the 
D

N 2Δ V 
 was -0.06% of the volume of native BPTI in water at pH 4 and -0.08% of the volume of native HEW 

lysozyme in water at pH 2.5 (Lin et al. 2002). The errors on our 
D

N 2Δ V 
 for BPTI and HEW lysozyme were 0.1% and 

0.2%, thus simulations longer than ours would be necessary to calculate 
D

N 2Δ V 
 with precision for these proteins. The 

corresponding D

N ,2Δ p

  values reported by Lin were 0.5  10-4 K-1 and 1.4  10-4 K-1 for BPTI and HEW lysozyme, 

respectively. To calculate D

N ,2Δ p

  with precision using the polynomial fitting method, we would need to reduce the 

error on 
,2p

  by a factor of eight for BPTI, which would require simulations approximately 64 times as long i.e., 640 

ns at each temperature, assuming that the error  1/tsim
1/2. With the current simulation time, the 

,2p

  value for HEW 

lysozyme was at the minimal precision necessary for detection of D

N ,2Δ p

 , if simulations of denatured conformations 

were performed. 

 

In a compendium of protein thermodynamic properties, Makhatadze reported that BPTI 
D

N 2Δ H 
= 130 kJmol-1 and 

D

N ,2Δ pC = 3.0 kJK-1mol-1 at 298 K (Makhatadze 2007). These numbers are larger than the uncertainty on the native 

enthalpy and native heat capacity calculated here, 10 kJmol-1 and 0.4 kJmol-1K-1, respectively. The same source reports 

  KBFF 2X 
 AMBER 2X 

 

  N D D

NΔ  N D D

NΔ  

,2pC  kJmol-1K-1       

Exp.    -0.21   -0.21 

S.F.  14(21) 23(18) 9(28) 19(6) 18(16)      -1(17) 

P.F.  3.6(1) 3.5(5) -0.1(5) 5.8(5) 6.4(1)      0.6(5) 

P.F. P.R.D.  3.6(1) 3.23(5) -0.4(2) 5.8(5) 6.1(4) 0.3(6) 

P.F.(1 μs)     6.2(1)   

,2T

  bar-1×106       

S.F.  9(72) -100(100) -100(100) -78(168) 65(160) 144(233) 

P.F.  3(8) 33(11) 29(13) -16(10) -12(9) -9(10) 

,2p

  K-1×104       

S.F.  30(40) 20(40) -10(60) -10(50) 40(70) 50(90) 

P.F.  6(6) 8(15) 2(16) 7(2) 6.7(2) -1(2) 

P.F. P.R.D.  6(6) 8(5) 2(8) 7(2) 6(3) 2(4) 

P.F.(1 μs)     8.6(4)   
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that HEW lysozyme 
D

N 2Δ H 
 = 242 kJmol-1 and D

N ,2Δ pC  = 9.1 kJmol-1K-1 at 298 K (Makhatadze 2007). Again, these 

numbers are larger than the uncertainty on the native HEW lysozyme enthalpy and heat capacity calculated here, 50 

kJmol-1 and 0.09 kJmol-1K-1, respectively. Thus, we predict that similar length simulations of either of these proteins 

in their denatured conformations would allow for 
D

N 2Δ H 
 and D

N ,2Δ pC  to be calculated with statistical precision. The 

challenge in these situations, heightened as the number of residues in the protein of interest increases, would be in 

choosing protein conformations that were “representative” of the denatured state. Although the trp-cage results from 

these simulations surprisingly showed that the values were not sensitive to the protein conformation, much more work 

on different proteins would be necessary before confirming that behavior as a general conclusion. Indeed, one would 

anticipate that it is not generally true. However, Shaw and coworkers recently reported similar observations for 

ubiquitin (Piana et al. 2013). 

 

We could have simulated all of the systems for even longer periods of time. However, even a multiplication of the 

production simulation length by 4 would only result in a noise reduction by a factor of 2 (assuming that the error  

tsim
-1/2), which would not be sufficient in most cases to determine these properties with precision. So, in an effort to 

estimate how long one would need to simulate trp-cage in order to obtain the heat capacity and thermal expansion 

with sufficient precision, we only extended the AMBER99sb native trp-cage simulations to 1 μs at temperatures of 

290 K, 295 K, 300 K, 305 K, and 310 K.  Since we had already established the linear behavior of Xm vs. x2 for the 7, 

8, 9, and 10 nm box sizes, we only extended the simulations for the 8 nm box. Extension of a simulation from 10 ns 

to 1 μs is an increase of tsim by a factor of 100, thus we would have predicted a reduction in the noise by a factor of 

10. As shown in Table 7.4, the errors were actually reduced by only a factor of 5 for 
,2pC and 2.5 for 

,2p

 . 

 

7.5 Conclusion 

We have investigated the ability of a simple method to extract infinitely dilute partial molar properties of biomolecules 

from molecular dynamics simulations using basic pancreatic trypsin inhibitor and hen egg white lysozyme as our test 

case proteins. We then used the method to distinguish between the protein volume and enthalpy of a native and a 

denatured trp-cage conformation with sufficient precision. The method is most similar to that used recently by Smit 

to determine the enthalpy of a lipid aggregate, and to Shing and Chung’s work in the late 1980s for the infinitely dilute 

partial molar volume and enthalpy of a Lennard-Jones solute, but to our knowledge it has never been used or presented 

for any general solute and for any general partial molar property. The strengths of the approach are that it is 

thermodynamically exact, no ambiguous parameters are introduced, and knowledge of the specific conformations that 

contributed to the output values is retained. The method is general and this approach may be used to calculate any 

partial molar property of any solute in any solution. It could be employed in the future as a test of the quality of a FF.  

 

The current limitation of the approach is the high level of noise in the isothermal compressibility and thermal 

expansion coefficient results, and the moderate level of noise in the isobaric heat capacity results. To increase the 

signal to noise ratio, a polynomial fitting method was used. Clearly, the system fluctuation approach was not the 
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method of choice for the calculation of the fluctuating properties, and the polynomial fitting method provided higher 

precision results. However, we were still unable to precisely distinguish between native and denatured trp-cage 

conformations’ heat capacities, thermal expansions, and isothermal compressibilities.  

 

Based upon our results, we predict that for a protein the size of HEW lysozyme (129 residues), the following amounts 

of time are needed to calculate specific thermodynamic properties with statistical precision: 
D

N 2Δ V 
, ~200 ns; 

D

N 2Δ ,H 
 

achieved necessary precision using 25 ns simulation; D

N ,2Δ pC , achieved necessary precision using 10 ns simulations 

at each of 5 temperatures; D

N ,2Δ T

 , difficult to predict due to large noise; D

N ,2Δ p

 , achieved necessary precision using 

10 ns simulations at each of 5 temperatures. Currently the methods that rely upon subjective definitions, if they can 

be trusted, are more competitive than our approach for the isothermal compressibility due to the high amounts of noise 

in the current method. Continued increases in computational power should make the method presented here more 

usable, with ease, over time.  

 

Lastly, the method presented here does not provide a means of directly decomposing the thermodynamic properties 

into specific contributions, from specific surface groups for example. The solute-solute and solute-solvent energy 

terms decay as a function of distance away from the solute, which makes them directly calculable. Since the solvent-

solvent contribution does not, it must be solved for indirectly. This is a commonly encountered issue see e.g., 

McCammon and co-workers (Setny et al. 2010). We are currently working to develop and test a method to calculate 

all of the above properties that uses expressions from Fluctuation Solution Theory and is decomposable, analogous to 

the group contribution for partial molar volumes already achieved using traditional Kirkwood-Buff theory. 

 

This second approach is also thermodynamically exact and will allow for distance dependent infinitely dilute partial 

molar properties to be determined from a single simulation of a protein instead of the multiple compositions 

recommended here to determine linearity in the Xm vs. x2 plots. The approach and preliminary results using this 

alternative method are discussed for the volume and compressibility only in Section 7.7. The other thermodynamic 

properties are our ongoing work and will be presented later; however it should be noted that the expressions have 

already been derived by Smith (Jiao and Smith 2011; Ploetz and Smith 2013). 

 

7.6 Supporting Information: Additional details of the simulation methods 

7.6.1 BPTI and HEW lysozyme 

All the BPTI and HEW lysozyme simulations were performed using the GROMACS 4.0.5 simulation package (Hess 

et al. 2008). Each system was minimized for over 1,000 steps using the steepest descent algorithm and then 

equilibrated for 100 ps at p = 1 bar and T = 100 K, 100 ps at 1 bar and 200 K, and 100 ps at 1 bar and 300 K, with 

position restraints on all the heavy atoms during each equilibration. 25 ns of production simulation (100 ns for pure 

water) without position restraints was performed for each system at 300 K and 1 bar in the isothermal-isobaric (NpT) 

ensemble. In an effort to ensure that the simulations would sample from the NpT ensemble and the system fluctuations 
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would be correct, the Nosé-Hoover (chain length of one) and Parrinello-Rahman T and p baths were used, with 

relaxation times of 0.5 ps and 2.5 ps, respectively, as advised by the Gromacs 4.5 manual. A 4.5 × 10 ‐5 bar-1 

compressibility was used for all systems. Periodic boundary conditions and the minimum image convention were 

employed. All bond lengths were constrained using the Settle (Miyamoto and Kollman 1992) and LINear Constraint 

Solver (LINCS) (Hess et al. 1997) algorithms for water and non‐water molecules, respectively. The use of bond 

constraints allowed for a two fs time step to be used for the integration of the equations of motion, which was 

performed using the Leap‐Frog algorithm (Hockney et al. 1974). The particle‐mesh Ewald technique was used to 

calculate electrostatic interactions with cutoff distances of 1.0 nm and 1.5 nm for the real space electrostatic and van 

der Waals interactions, respectively, a convergence parameter of 3.123 nm‐1, cubic interpolation, a maximum fast 

Fourier transform grid spacing of 0.12 nm for the reciprocal space sum, and tinfoil boundary conditions (Darden et al. 

1993). The grid-based neighbor list was updated every ten steps.  

 

7.6.2 Trp-cage 

We simulated two conformations of trp-cage using KBFF. We chose the first NMR structure in PDB ID 2jof, a 

stabilized mutant of the original sequence, as our initial structure for the native conformation. The starting denatured 

conformation for the KBFF simulation was selected from a 100 ns canonical (NVT) simulation at 500 K ran using the 

AMBER99sb force field. The reason for using AMBER99sb was that this trajectory had previously been generated 

for a separate project. The conformations were clustered using the Gromacs program g_cluster and, specifically, the 

algorithm of (Daura et al. 1999). The initial structure was taken from a cluster that was nearly fully extended and had 

little secondary structure.  

 

The denatured trp-cage conformations were equilibrated for 100 ps at 300 K followed by 25 ns of production. The 

native conformations were equilibrated for 100 ps at p = 1 bar and T = 100 K, 100 ps at 1 bar and 200 K, and 5 ns at 

1 bar and 300 K, with position restraints on all the heavy atoms during each equilibration. They were then equilibrated 

for 5 ns at 300 K and 1 bar with position restraints on the α-carbons and 5 ns at 300 K and 1 bar without position 

restraints, followed by 25 ns of production simulation without position restraints.  

 

For the AMBER99sb + TIP3P trp-cage simulations, Gromacs version 4.5.3 was used, the particle‐mesh Ewald cutoff 

distance was 1.2 nm for both the real space electrostatic and van der Waals interactions, and the convergence parameter 

was 2.603 nm‐1. The pure TIP3P production simulation was 100 ns. All other details were the same as those for the 

KBFF + SPC/E simulations. 
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7.7 Appendix: Towards a Fluctuation Solution Theory-Based Approach for the Calculation 

of Infinitely Dilute Partial Molar Properties of Proteins from Computer Simulation* 

7.7.1 Fluctuation Solution Theory (FST) 

Here we provide progress towards a combination of Fluctuation Solution Theory (FST) and computer simulation 

studies to access the thermodynamic properties of infinitely dilute proteins. Just like the apparent molar approach 

presented in the main text of this chapter, the FST-based approach is exact; however, using the FST-based approach 

properties may be obtained from a single simulation instead of multiple simulations, which was recommended for the 

apparent molar approach. Furthermore, the FST-based expressions allow for a decomposition of the properties into 

spatial contributions, whereas the apparent molar approach provided no such decomposition. Like the apparent molar 

approach, the FST-based approach may be used to obtain conformation-specific properties (not shown here). 

 

FST was described thorougly in Chapters 4 and 5 and will not be completely repeated here. Our previous work has 

involved the use of FST to understand the properties of solution mixtures (Gee and Smith 2009; Jiao and Smith 2011; 

Ploetz and Smith 2011b). In particular, the combination of FST and computer simulation provides a very powerful 

analysis tool. The two most important advances related to the present work involve the inclusion of local energy 

fluctuations in a manner that promotes comparison with experiment, and the development of expressions for the study 

of conformational transitions and molecular association (Pierce et al. 2008; Gee and Smith 2009; Jiao and Smith 

2011). In all cases, the aim has been to relate second and third derivatives of the Gibbs free energy to second and third 

derivatives in the grand canonical ensemble, which then provide local descriptions of the particle and energy 

distributions. Recall that the open distributions and fluctuations relevant to FST are considered to represent local 

regions of a much larger bulk solution (see Figure 7.5). These approaches have recently formed the basis of a 

comprehensive review (Ploetz and Smith 2013), and an edited book outlining the details and applications of the current 

approach (Smith et al. 2013). 

 

7.7.2 Expressions for the Pseudo Volume and Compressibility 

In this Appendix, we specifically focus on the infinitely dilute partial molar volume and isothermal compressibility to 

the neglect of the other properties of interest (enthalpy, heat capacity, thermal expansion), but all of the expressions 

have recently been established (Jiao and Smith 2011; Ploetz and Smith 2013) and calculations of the other properties 

from computer simulations are ongoing and will be presented in the future. 

 

FST can be applied to any number of components at any composition. However, if we consider an infinitely dilute 

biomolecule (2) in a primary water solvent (1) that undergoes a transition from a native (N) to a denatured (D) state 

with an equilibrium constant K = ρD/ρN, where ρi = <Ni>/V, then the derivatives of the equilibrium constant under the 

                                                           
* For this Appendix, we recommence with the notation used throughout the rest of this dissertation that was disbanded 

solely for the main text of Chapter 7. That is, a superscript asterisk will again indicate a pseudo property and a 

superscript o will return to denoting a pure property. Standard state properties are not necessary for this Appendix, 

due to the use of the pseudo properties in FST. 
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Figure 7.5 An illustration of the FST approach for the analysis of simulation data for an infinitely dilute solute 

(2) in a mixture of solvent (1) and cosolvent (3). FST quantifies the local distribution of particles and energy in 

the vicinity of the protein for the conformation of interest. The local particle and energy distributions (denoted 

by the l superscript) differ from the bulk (b) distributions due to the influence of the solute. Here we use a 

protein solute, but the solute could be of any size or shape. The range of influence of the solute is indicated by 

the virtual dashed boundary and is generally unknown; however, this does not affect the results as long as one 

includes any and all deviations from the bulk distribution. The local region can be considered to be a virtual 

grand canonical region of the solution for which the energy and number of particles can fluctuate. These 

fluctuations are then related to the thermodynamic properties of the original closed system. 

 

influence of changes in pressure (p) can be written as (Jiao and Smith 2011; Ploetz and Smith 2013) 

 

2

*, *,

D N

β,

ln
β( )

m

K
V V

p

  
   

 
  7.16 

The asterisk superscript indicates a pseudo volume (V) of the biomolecule and refers to the concept of the pseudo 

chemical potential developed by Ben-Naim (Ben-Naim 2006). The above expressions are essentially standard 

thermodynamic relationships. The quantities appearing in Equation 7.16 can be obtained from FST and can be 

expressed in terms of a series of fluctuating quantities, or integrals over radial distribution functions (RDFs), gij(r), 

defined as,   

 2

0

δ δ δ
4π [ ( ) 1]

i j ij

ij ij

ii j

N N
G V g r r dr

NN N

 
    
  

   7.17 

where δij is the Kronecker delta function and δX = X - <X> represents a fluctuation in the property X. The RDFs 

correspond to distributions obtained in a solution, at the composition of interest, after averaging over all the remaining 

molecular degrees of freedom. The Gij’s are known as Kirkwood-Buff integrals (KBIs) and are the central components 

of KB theory. 

 



157 

 

 

The KBIs quantify deviations from a random distribution surrounding a central molecule summed over all space. In 

this respect they are more informative than the particle fluctuation formulation as they can then be decomposed and 

interpreted in terms of spatial contributions – using computer simulation data, for example. They clearly resemble the 

integrals one encounters in the study of imperfect gases and the McMillan-Mayer theory of solutions (McMillan and 

Mayer 1945). However, the KBIs do not form part of a virial expansion and are relevant at any solution composition 

– not just infinitely dilute solutes in the gas phase or a primary solvent. After multiplying the KBIs by number densities 

(molar concentrations), one obtains an alternative picture of the KBIs. The quantities, Nij=ρjGij, are referred to as 

excess coordination numbers and quantify the change in the number of j molecules observed in an open volume of 

solution on introduction of a central i molecule, from that observed for the same volume of bulk solution in the absence 

of the i molecule (Hall 1971; Newman 1994). They can be used to define and develop the concepts of local solution 

composition and preferential interactions (Ben-Naim 1988; Marcus 2002). It should be noted that FT does not require 

information on the angular distributions for pairs of molecules, as these are averaged out in the above expressions.  

 

The RDF formulation in Equation 7.17 is quite cumbersome for irregular shaped objects such as proteins. Fortunately, 

the fluctuations do not suffer from this drawback. In fact, at infinite dilution of a protein solute the above fluctuations 

become simple averages such that, 

  *, o

N N1 1 1 1N
V G N N V        7.18 

where the subscript N or o represents an ensemble average in the vicinity of the native protein, or in bulk solvent, 

respectively. Similar expressions can be written for the denatured state. It should be noted that each of the ensemble 

averages in the above expressions is actually extensive, depending on the size of the local volume of interest, but the 

difference between the two ensemble averages is independent of the size of the local volume as long as it is large 

enough that the solvent distribution is beyond the influence of the protein solute. 

 

The above expression deserves more discussion. It is exact. It provides a thermodynamically rigorous description of 

the protein volumes associated with the conformational equilibrium in terms of the local distribution of water 

molecules, which can be determined as a function of distance from the protein center of mass (or protein surface) 

using computer simulation data. This volume is “measured” by determining the average number of water molecules 

in the local vicinity surrounding the protein and then subtracting the number of water molecules one would observe 

in the same volume of bulk solution in the absence of the protein, both scaled by the molar volume of pure water (V1
o). 

Hence, the pseudo volume of the protein is determined by the volume of water molecules surrounding it. This can also 

be related to the partial molar volume using standard expressions obtained from the application of FST to binary 

solutions (Ben-Naim 2006). This expression has been used before to help understand peptide and protein volume data 

(Imai et al. 2007; Yu et al. 2010). Higher derivatives of the equilibrium constant are also provided by FST. Second 

derivatives of ln K correspond to third derivatives of the Gibbs free energy and can be expressed in terms of third 

derivatives in the grand canonical ensemble. These then involve triplet particle correlations. For an infinitely dilute 

solute they become pair fluctuating quantities in the local vicinity of the protein and are given by (Ploetz and Smith 

2013), 
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where 
2 2

N N Nδ δX X X X        represents a local fluctuation in the property X. The isothermal compressibility 

of the pure solvent  o

,1κT  can also be expressed in terms of local fluctuations (Ploetz and Smith 2011b). However, 

this term is very small compared to the term contained in the square brackets, and could even be safely neglected 

under ambient conditions (Jiao and Smith 2011). Similar expressions can be written for the denatured state. Hence, 

the second derivative of ln K with respect to p is related to the relative fluctuations, compared to the same fluctuations 

in bulk solution, in the number of local water molecules, as provided by the last term in the above expression. This 

expression clearly resembles the bulk system expression for compressibility (Jiao and Smith 2011). They are, however, 

different. More importantly, the bulk expression is approximate when applied to proteins at infinite dilution, whereas 

the local expression is exact.  

 

7.7.3 Initial Pressure Denaturation Studies 

As the application of FST to pressure denaturation is relatively new, it is important to demonstrate that the results are 

indeed reasonable. Unfortunately, the simulation results will also depend on the force field employed, and there are 

no known results for proteins using formally correct expressions; however, we have been able to illustrate reasonable 

behavior. Our initial studies have focused on the compressibility of a native protein, which can be obtained directly 

from the pressure derivative provided in Equation 7.19.  

 

The water distribution and local water fluctuations around native lysozyme have been analyzed and the results for the 

volume and compressibility of native lysozyme are presented in Figure 7.6 as a function of radial distance from the 

center of mass of the protein. The water distribution, g21 is relatively featureless and increases steadily with distance 

(r) until the bulk distribution is reached between 2.0-2.5 nm. This rather large distance is probably due to the spherical 

nature of the analysis performed here. The distribution from the surface of the protein may converge much faster and 

still needs to be investigated. It should be noted, however, that both types of analysis, center of mass or surface based, 

should produce identical overall results. However, it is safe to say that large systems are required to ensure a significant 

bath region beyond the influence of the protein. The simulated protein volume as a function of local volume radius 

(R) is also displayed in Figure 7.6. A constant value for the volume is obtained for distances beyond which the the 

solvent distribution reaches the bulk random distribution. The corresponding water  
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Figure 7.6 Simulated water distribution and fluctuations around native lysozyme at 300 K and 1 bar obtained 

using the AMBER99SB-ILDN force field. Top: The water RDF as a function of distance from the protein center 

of mass (r). Middle: the protein pseudo volume as a function of local solution volume radius (R). Bottom: The 

difference in water fluctuations as a function of local solution volume radius (R). The shaded area represents 

distances less than the radius of gyration, while the vertical dashed line indicates the distance of the furthest 

backbone atom from the center of mass. The dotted horizontal lines indicate the experimental values. 

 

fluctuations also converge to a reasonably constant “plateau” value at a similar distance. The time convergence of the 

local water fluctuations is indicated in Figure 7.7. For this system it appears that at least 100-200 ns of simulation time 

are required to obtain converged results. 

 

The experimental and preliminary simulated compressibilities of water and lysozyme are displayed in Figure 7.8. 

First, we note that the compressibility of the water model used here is quite large compared to the experimental value. 

This could affect the quality of the results. Nevertheless, the simulated volume and compressibility of lysozyme is in 

very good agreement with experiment. The low (compared to pure water) experimentally observed protein 

compressibility is reproduced by the current approach and simulations. We have also investigated the effect of 

applying restraints to the protein atoms in an attempt to elucidate the possible reasons for the low compressibility of 

proteins in general. The compressibilities obtained after restraining all protein atoms (PR) and all protein Cα atoms 

(PRC) are also displayed in Figure 7.8. The application of all atom restraints, which removes the protein volume 

fluctuations, caused a significant drop in compressibility. This difference, 1.8 × 10-5 bar-1, corresponds to the intrinsic 

compressibility of the protein, which has been estimated between 1.0-3.0 × 10-5 bar-1 with a most probable value of 

2.5 × 10-5 bar-1 (Taulier and Chalikian 2002). Hence, we are in very reasonable agreement with these estimates. 

Furthermore, by applying restraints to just the Cα atoms, one can eliminate the protein volume fluctuations while 

retaining the dynamics of surface sidechains. This effect seemed to be relatively small, suggesting it is probably the 
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Figure 7.7 The convergence (running average) of the fluctuation difference with time for a local spherical 

volume of radius r = 2.5 nm. The horizontal dashed line indicates the experimental value. 

 

Figure 7.8 Simulated and experimental partial molar compressibilities. The simulations of lysozyme were 

performed using no restraints (free), with all atoms restrained (PR), just Cα atoms restrained (PRC), and with 

Cα atoms restrained and the charged groups neutralized (PRC-Q).   
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global protein volume fluctuations that dominate the intrinsic compressibility value. Finally, we also determined the 

effect of neutralizing all the charged residues of the protein, while applying restraints to the Cα atoms to avoid 

significant changes in structure (labelled PRC-Q). The change in compressibility compared to the PRC simulation 

suggests a contribution from the charged groups of around -1.6 × 10-5 bar-1. Hence, even though we still have to 

perform a more rigorous statistical analysis, the picture that emerges from this combination of simulation and FT is a 

significant positive compressibility from the protein volume dynamics, with a counter balancing negative contribution 

from surface charges due to electrostriction effects. These few simulations illustrate the potential power of the 

approach. 

 

We have also simulated zwitterionic glycine at infinite dilution in water. This represents an interesting system as the 

experimental partial molar compressibility is actually negative with a value of -4.9 × 10-5 bar-1. Our simulations 

provided a value of -14.4(4) × 10-5 bar-1. Hence, although the magnitude of the compressibility is significantly different 

from experiment, the correct sign for the compressibility was obtained. This is important as many phenomenological 

models often struggle to permit even the possibility of negative compressibilities, especially for small solutes. It also 

illustrates that the current method can be applied to molecules of any size. (As an aside, many phenomenological 

models would also struggle to be able to calculate the volume and/or compressibility of a denatured conformation, 

due to the subjective volume calculations used, whereas the FST-based method has no difficulty with the denatured 

state.) 

 

The FT expressions are exact, but whether one can obtain the required properties from simulation with sufficient 

precision (and hopefully accuracy) still has to be established. The results provided here suggest that they can. The first 

derivative properties should not be a major problem as these are simple ensemble averages. However, the second 

derivative properties could converge slowly with simulation time as they correspond to local fluctuations. Fortunately, 

one can (if necessary) change the pressure and investigate how the first derivative properties respond. Furthermore, it 

is possible to decompose these differences into distance dependent contributions (not shown). We believe these 

possibilities demonstrate the power of the approach.  

 

A series of simulations are ongoing to investigate the nature of the water and energy distributions surrounding an 

interesting test set of infinitely dilute proteins in water and mixed solvents. Additional simulations are being performed 

of different denatured conformations of ubiquitin, using the denatured state ensemble generated by Shaw and 

coworkers (Piana et al. 2013). We argue that analysis of all of these simulations will provide insights into the complete 

set of thermodynamic properties of interest – partial molar volumes, enthalpies, compressibilities, heat capacities, and 

thermal expansivities – and how these properties relate to the nature of proteins in general. The results in Figure 7.6 

and Figure 7.8 indicate that these simulations are feasible. The results in Figure 7.7 suggest the simulations have to 

extend to 100 ns or more. The requirement of a significant bath region, as depicted in Figure 7.5, implies that these 

simulations need to be larger than normal to ensure the properties of a solvent bath are fully realized. We argue that 

this FST-based approach will be superior to the apparent molar approach presented in the body of this chapter.  
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8. Conclusions & Future Directions 

 

Chapters 2 and 3 showed that popular biomolecular force fields are often unable to reproduce the Kirkwood-Buff 

integrals for important liquid mixtures. These chapters also showed that force fields may be parameterized (KBFF)  

to reproduce the Kirkwood-Buff integrals that are competitive with the standard force fields. Two polarizable models 

were compared to the (nonpolarizable) KBFF water and methanol models and were not found to be necessarily 

superior to KBFF. Ongoing work related to Chapter 2 involves the simulation of additional compositions for the 

mixtures presented, as well as simulations of the guanidinium-acetate ion pair in water for all of the force fields, 

followed by a KB analysis. We are additionally in the process of comparing a number of other properties for these 

mixtures. Future work directly related to Chapter 3 is not planned beyond the comparisons of polarizable and non-

polarizable water in the ability to reproduce accurate local fluctuating quantities. 

 

This dissertation has investigated two key advancements to KB/FST theory, housed in Chapters 4-6. First (Chapters 

4 and 5), it showed how to extract particle-energy and energy-energy local fluctuations from bulk, experimental, 

thermodynamic data and how to simulate these quantities as well. The resulting local fluctuations can be used to help 

characterize the properties of solution mixtures in much the same way as the traditional KB approach. Another possible 

use of the experimentally derived fluctuations is for the evaluation and development of accurate force fields for 

molecular simulation, where the fluctuating quantities serve as additional experimental data for the parametrization 

procedure. Ongoing work will continue to quantify how well current force fields perform at reproducing these new 

properties, in an effort to see if further force field parameterization is necessary or unrequired. In addition, the approach 

presented here may be applied to understand the effects of temperature on chemical equilibria in terms of particle-

energy and energy-energy fluctuations. We envision the application of FST to biological systems to continue, 

especially in the area of conformational equilibria. The natural coupling of FST and computer simulation holds great 

promise for future study.  

 

Second (Chapter 6), this dissertation showed how to extract pressure and composition derivatives of the particle-

particle fluctuations from bulk, experimental, thermodynamic data, and how to simulate the resulting triplet and 

quadruplet fluctuating quantites. In so doing, new information was obtained about the way molecules are distributed 

in solution. The results could help to provide a deeper understanding of solutions and solution mixtures. The only 

other experimental technique that we know of that provides such data for solutions is that of solution scattering studies. 

However, these are limited to triplet correlations and to relatively simple mixtures. No such limitation is found with 

the current approach. It appears that both the experimental extraction and simulation of these correlations is viable for 

the triplet correlations, while the quadruplet correlations may be more problematic, especially at low concentrations. 

Fortunately, while the current approach does not provide the experimental values of g(3) or g(4) (we know of no such 

approach), the thermodynamics of the solution are directly related to the integrals over these correlation functions, 

which are provided by the current approach. Some areas of future study involve: i) extending the current approach to 

include energy fluctuations; ii) developing the expressions for third derivatives of the Gibbs free energy (i.e., partial 
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molar compressibilities, expansivities, and heat capacities) in terms of fluctuating quantities; iii) deriving a fluctuation 

formula that corresponds to the superposition approximation; iv) examining more systems using available 

experimental data; v) deriving expressions for the limiting behavior of the G’s in binary or ternary systems; vi) 

comparing the results for systems with and without explicit polarization to results obtained with and without the 

superposition approximation; and vii) obtaining g(3) from our simulations for comparison with the integrated values. 

 

We additionally presented and tested a way to calculate infinitely dilute partial molar properties of solutes (here 

proteins) using the apparent molar approach (Chapter 7). The strengths of the apparent molar approach as compared 

to literature approaches are that it is thermodynamically exact, no ambiguous parameters are introduced, knowledge 

of the specific conformations that contributed to the output values is retained, and the method is general. It may be 

used to calculate any partial molar property of any solute in any solution. The current limitation of the approach is the 

high level of noise in the isothermal compressibility and thermal expansion coefficient results, and a moderate level 

of noise in the isobaric heat capacity results. Continued increases in computational power should make the method 

presented here more usable over time. However, the apparent molar approach does not provide a means of directly 

decomposing the thermodynamic properties into specific contributions and requires multiple simulations.  

 

We are currently working on an FST-based alternative to the apparent molar approach, discussed preliminarily at the 

conclusion of Chapter 7. The FST-based alternative promises to offer advantages over the apparent molar approach. 

This second approach is also thermodynamically exact. Furthermore, it will allow for distance dependent infinitely 

dilute partial molar properties to be determined from a single simulated system instead of requiring multiple 

compositions.  
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recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.

8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.

8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.

8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.

8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to

javascript:void(0)


the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.

v 1.1
If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check
or money order referencing your account number and this invoice number
copyright.com501261955.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-
978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

mailto:customercare@copyright.com


Step 3: Order Confirmation

Confirmation Number: 11168162
Order Date: 03/18/2014

If you paid by credit card, your order will be finalized and your card will
be charged within 24 hours. If you choose to be invoiced, you can
change or cancel your order until the invoice is generated.

Elizabeth Ploetz 
ploetz@ksu.edu 
+1 (913)7080567 
Payment Method: n/a 

Thank you for your order! A confirmation for your order will be sent to your account email address. If you have
questions about your order, you can call us at +1.855.239.3415 Toll Free, M-F between 3:00 AM and 6:00 PM (Eastern),
or write to us at info@copyright.com. This is not an invoice.

Payment Information

Order Details  

Permission type: Republish or display content
Type of use: reuse in a thesis/dissertation

Requestor type Author (original article)

Format Print and electronic

Portion Excerpt (> 800 words)

Will you be translating? No

Title of your thesis /
dissertation

Fluctuation Solution
Theory

Expected completion
date Apr 2014

Estimated size (number
of pages) 400

Order detail ID: 64531907
Order License Id: 3352101351794

Article Title: Local fluctuations in solution mixtures
Author(s): Ploetz, Elizabeth A. ; Smith, Paul E.
DOI: 10.1063/1.3615718
Date: Jan 01, 2011
ISSN: 0021-9606
Publication Type: Journal
Volume: 135
Issue: 4
Start page: 044506
Publisher: AMERICAN INSTITUTE OF PHYSICS.
Author/Editor: AMERICAN INSTITUTE OF PHYSICS

The Journal of chemical physics

Permission Status:  Granted

Note: This item will be invoiced or charged separately through CCC's RightsLink service. More info $ 0.00

Advances in Chemical Physics

mailto:info@copyright.com
https://www.copyright.com/contextualHelp.do?operation=defaultOperation&helpTitleId=contextualHelp_title_1682118236&helpBodyId=contextualHelp_body_1682118236


Permission type: Republish or display content
Type of use: Republish in a thesis/dissertation

Requestor type Author of requested
content

Format Print, Electronic

Portion chapter/article

Number of pages in
chapter/article 63

Title or numeric
reference of the
portion(s)

Chapter 4

Title of the article or
chapter the portion is
from

Local Fluctuations in
Solution: Theory and
Applications

Editor of portion(s) Stuart A. Rice and Aaron
R. Dinner

Author of portion(s) Elizabeth A. Ploetz and
Paul E. Smith

Volume of serial or
monograph 153

Page range of portion Ch. 4

Publication date of
portion 27 MAR 2013

Rights for Main product

Duration of use Life of current edition

Creation of copies for
the disabled no

With minor editing
privileges yes

For distribution to United States

In the following
language(s)

Original language of
publication

Order detail ID: 64531945
Order License Id: 3352101353446

ISBN: 978-1-118-47786-1
Publication Type: Book
Publisher: Wiley

Permission Status:  Granted



With incidental
promotional use no

Lifetime unit quantity
of new product 0 to 499

Made available in the
following markets Academia

The requesting
person/organization Elizabeth A. Ploetz

Order reference number

Author/Editor Elizabeth Anne Ploetz

The standard identifier Dissertation

Title Fluctuation Solution
Theory

Publisher Elizabeth Anne Ploetz

Expected publication
date Apr 2014

Estimated size (pages) 400

Note: This item will be invoiced or charged separately through CCC's RightsLink service. More info $ 0.00

Permission type: Republish or display content
Type of use: Republish in a thesis/dissertation

Requestor type Author of requested
content

Format Print, Electronic

Portion chapter/article

Number of pages in
chapter/article 11

Title or numeric
reference of the
portion(s)

pages 2758-2768

Order detail ID: 64531954
Order License Id: 3352101355778

ISSN: 1097-0134
Publication Type: e-Journal
Volume:
Issue:
Start page:
Publisher: JOHN WILEY & SONS, INC.

Proteins

Permission Status:  Granted

https://www.copyright.com/contextualHelp.do?operation=defaultOperation&helpTitleId=contextualHelp_title_1682118236&helpBodyId=contextualHelp_body_1682118236


Title of the article or
chapter the portion is
from

Flexible connection of the
N-terminal domain in ClpB
modulates substrate
binding and the aggregate
reactivation efficiency

Editor of portion(s) N/A

Author of portion(s)

Ting Zhang, Elizabeth A.
Ploetz, Maria Nagy,
Shannon M. Doyle, Sue
Wickner, Paul E. Smith,
and Michal Zolkiewski

Volume of serial or
monograph 80

Issue, if republishing
an article from a serial 12

Page range of portion 2758-2768

Publication date of
portion 15 SEP 2012

Rights for Main product

Duration of use Life of current edition

Creation of copies for
the disabled no

With minor editing
privileges yes

For distribution to United States

In the following
language(s)

Original language of
publication

With incidental
promotional use no

Lifetime unit quantity
of new product 0 to 499

Made available in the
following markets Academia

The requesting
person/organization Elizabeth A. Ploetz

Order reference number



Total order items:  3 Order Total: $ 0.00

Author/Editor Elizabeth A. Ploetz

The standard identifier Dissertation

Title Fluctuation Solution
Theory

Publisher Elizabeth A. Ploetz

Expected publication
date Apr 2014

Estimated size (pages) 400

Note: This item will be invoiced or charged separately through CCC's RightsLink service. More info $ 0.00

This is not an invoice.

https://www.copyright.com/contextualHelp.do?operation=defaultOperation&helpTitleId=contextualHelp_title_1682118236&helpBodyId=contextualHelp_body_1682118236


Confirmation Number: 11168162

Special Rightsholder Terms & Conditions
The following terms & conditions apply to the specific publication under which they are listed

The Journal of chemical physics 
Permission type: Republish or display content 
Type of use: reuse in a thesis/dissertation 

AIP Publishing LLC -- Terms and Conditions: Permissions UsesAIP Publishing LLC ("AIPP") hereby grants to you the non-
exclusive right and license to use and/or distribute the Material according to the use specified in your order, on a one-
time basis, for the specified term, with a maximum distribution equal to the number that you have ordered.  Any links or 
other content accompanying the Material are not the subject of this license.1. You agree to include the following copyright 
and permission notice with the reproduction of the Material:"Reprinted with permission from [FULL CITATION]. Copyright 
[PUBLICATION YEAR], AIP Publishing LLC."  For an article, the copyright and permission notice must be printed on the 
first page of the article or book chapter.  For photographs, covers, or tables, the copyright and permission notice may 
appear with the Material, in a footnote, or in the reference list.  2. If you have licensed reuse of a figure, photograph, 
cover, or table, it is your responsibility to ensure that the material is original to AIPP and does not contain the copyright 
of another entity, and that the copyright notice of the figure, photograph, cover, or table does not indicate that it was 
reprinted by AIPP, with permission, from another source. Under no circumstances does AIPP, purport or intend to grant 
permission to reuse material to which it does not hold copyright.3. You may not alter or modify the Material in any 
manner. You may translate the Material into another language only if you have licensed translation rights. You may not 
use the Material for promotional purposes.  AIP reserves all rights not specifically granted herein.4. The foregoing license 
shall not take effect unless and until AIPP or its agent, Copyright Clearance Center, receives the Payment in accordance 
with Copyright Clearance Center Billing and Payment Terms and Conditions, which are incorporated herein by 
reference.5. AIPP or the Copyright Clearance Center may, within two business days of granting this license, revoke the 
license for any reason whatsoever, with a full refund payable to you. Should you violate the terms of this license at any 
time, AIPP, AIP Publishing LLC, or Copyright Clearance Center may revoke the license with no refund to you.  Notice of 
such revocation will be made using the contact information provided by you. Failure to receive such notice will not nullify 
the revocation.6. AIPP makes no representations or warranties with respect to the Material. You agree to indemnify and 
hold harmless AIPP, AIP Publishing LLC, and their officers, directors, employees or agents from and against any and all 
claims arising out of your use of the Material other than as specifically authorized herein.7. The permission granted herein 
is personal to you and is not transferable or assignable without the prior written permission of AIPP. This license may not 
be amended except in a writing signed by the party to be charged.8. If purchase orders, acknowledgments or check 
endorsements are issued on any forms containing terms and conditions which are inconsistent with these provisions, such 
inconsistent terms and conditions shall be of no force and effect. This document, including the CCC Billing and Payment 
Terms and Conditions, shall be the entire agreement  between the parties relating to the subject matter hereof.This 
Agreement shall be governed by and construed in accordance with the laws of the State of New York. Both parties hereby 
submit to the jurisdiction of the courts of New York County for purposes of resolving any disputes that may arise 
hereunder.

Advances in Chemical Physics 
Permission type: Republish or display content 
Type of use: Republish in a thesis/dissertation 

TERMS AND CONDITIONSThe following terms are individual to this publisher:

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies 
(each a �Wiley Company�) or handled on behalf of a society with which a Wiley Company has exclusive publishing 
rights in relation to a particular work (collectively �WILEY�).   By clicking �accept� in connection with completing this 
licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing 
and payment terms and conditions established by the Copyright Clearance Center Inc., (�CCC�s Billing and Payment 
terms and conditions�), at the time that you opened your Rightslink account (these are available at any time at 
http://myaccount.copyright.com).

Terms and Conditions



The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, 
worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process.  This license 
is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of 
republication or reuse granted by this licence must be completed within two years of the date of the grant of this licence 
(although copies prepared before the end date may be distributed thereafter).     The Wiley Materials shall not be used in 
any other manner or for any other purpose, beyond what is granted in the license.   Permission is granted subject to an 
appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also 
duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material.   Permission is also 
granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of 
this Wiley Material.  Any third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no 
part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new 
Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works 
may be made based on the Wiley Materials without the prior permission of the respective copyright owner. You may not 
alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You 
may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone 
basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of 
John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having 
possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this 
Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual 
property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No 
right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its 
licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect 
thereto.

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY 
THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY 
INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF 
MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS 
LICENSORS AND WAIVED BY YOU. 

WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and 
employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any 
breach of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR 
ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER 
CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE 
MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 
TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS 
OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE 
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY 
NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or 
unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the 
original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be 
affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either 
party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be 
deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such 
waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or 
be construed as a waiver of or consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written 
consent.

Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

These terms and conditions together with CCC�s Billing and Payment terms and conditions (which are incorporated 
herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of 
fraud) supersedes all prior agreements and  representations of the parties, oral or written.  This Agreement may not be 
amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the 
parties' successors, legal representatives, and authorized assigns.

In the event of any conflict between your obligations established by these terms and conditions and those established 
by CCC�s Billing and Payment terms and conditions, these terms and conditions shall prevail.



WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you 
and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC�s Billing and 
Payment terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the 
licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without 
regards to such state�s conflict of law rules.  Any legal action, suit or proceeding arising out of or relating to these Terms 
and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the 
State of New York in the United States of America and each party hereby consents and submits to the personal 
jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or 
certified mail, return receipt requested, at the last known address of such party.

Other terms and conditions:

REPUBLICATION IN MAIN PRODUCT, PRODUCT FAMILY, COMPILATIONS OR COLLECTIVE WORKS

Limitations on reuse of Wiley Materials:

 

Where the following additional rights have been granted as part of this Agreement, please note that in no instance may 
the total amount of Wiley Materials used in any Main Product, Compilation or Collective work comprise more than 5% (if 
figures/tables) or 15% (if full articles/chapters) of the Main Product, Compilation or Collective Work.

Product Family: main product AND any product related to the main product

Main Product and related products which are created to supplement or add value to the Main Product, and in which the 
overall content of the Main Product remains substantially the same with relatively minor additions or variations.  
Examples include: ancillaries, instructor guides, testing materials, student subject-driven resources, abridgements, and 
custom editions that are substantially based on a single Main Product.

Other: main product AND other compilations or collective works

 

Main Product and new collective works produced by requestor that do not consist of substantially the same material as an 
individual Main Product.  For example, licensees may wish to acquire rights for use in the Main Product AND for use in 
separate projects within the same subject discipline as the Main Product. This would include, for example, custom editions 
or compilations which incorporate chapters from multiple underlying works within or across disciplines. 

All: main product, AND Product Family AND Other compilations or collective works

This combines the right to republish in the following components: 1) main product, 2) products related to the main 
product (i.e. Product Family) and 3) other compilations/collective works.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. 
Although most of the fully  Open Access journals publish open access articles under the terms of the Creative Commons 
Attribution (CC BY) License  only, the subscription journals and a few of the Open Access Journals offer a choice of 
Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license, Creative Commons Attribution Non-
Commercial (CC-BY-NC) license and Creative Commons Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. 
The license type is clearly identified on the article.

Copyright in any research article in a journal published as Open Access under a Creative Commons License is retained by 
the author(s). Authors grant Wiley a license to publish the article and identify itself as the original publisher. Authors also 
grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, 
citation details and publisher are identified as follows: [Title of Article/Author/Journal Title and Volume/Issue. Copyright 
(c) [year] [copyright owner as specified in the Journal]. Links to the final article on Wiley�s website are encouraged 
where applicable. 

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the 
article and make commercial use of the article. The CC-BY license permits commercial and non-commercial re-use of an 
open access article, as long as the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors, including without limitation the 
right not to have their work subjected to derogatory treatment. It also does not affect any other rights held by authors or 
third parties in the article, including without limitation the rights of privacy and publicity. Use of the article must not 



assert or imply, whether implicitly or explicitly, any connection with, endorsement or sponsorship of such use by the 
author, publisher or any other party associated with the article.

For any reuse or distribution, users must include the copyright notice and make clear to others that the article is made 
available under a Creative Commons Attribution license, linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and without representation or 
warranties of any kind whether express, implied, statutory or otherwise and including, without limitation, warranties of 
title, merchantability, fitness for a particular purpose, non-infringement, absence of defects, accuracy, or the presence or 
absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and 
reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no 
modifications or adaptations are made. (see below)

Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may access, download, copy, display and redistribute 
to colleagues Wiley Open Access articles, as well as adapt, translate, text- and data-mine the content subject to the 
following conditions:

The authors' moral rights are not compromised. These rights include the right of "paternity" (also known as 
"attribution" - the right for the author to be identified as such) and "integrity" (the right for the author not to have the 
work altered in such a way that the author's reputation or integrity may be impugned).

Where content in the article is identified as belonging to a third party, it is the obligation of the user to ensure that any 
reuse complies with the copyright policies of the owner of that content.

If article content is copied, downloaded or otherwise reused for non-commercial research and education purposes, a 
link to the appropriate bibliographic citation (authors, journal, article title, volume, issue, page numbers, DOI and the link 
to the definitive published version on Wiley Online Library) should be maintained. Copyright notices and disclaimers must 
not be deleted.

Any translations, for which a prior translation agreement with Wiley has not been agreed, must prominently display the 
statement: "This is an unofficial translation of an article that appeared in a Wiley publication. The publisher has not 
endorsed this translation."

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission 
from Wiley and will be subject to a fee. Commercial purposes include:

Copying or downloading of articles, or linking to such articles for further redistribution, sale or licensing; 

Copying, downloading or posting by a site or service that incorporates advertising with such content;

 
The inclusion or incorporation of article content in other works or services (other than normal quotations with an 

appropriate citation) that is then available for sale or licensing, for a fee (for example, a compilation produced for 
marketing purposes, inclusion in a sales pack)

Use of article content (other than normal quotations with appropriate citation) by for-profit organisations for 
promotional purposes

Linking to article content in e-mails redistributed for promotional, marketing or educational purposes; 

Use for the purposes of monetary reward by means of sale, resale, licence, loan, transfer or other form of commercial 
exploitation such as marketing products 

Print reprints of Wiley Open Access articles can be purchased from: corporatesales@wiley.com 

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

Other Terms and Conditions:NoneSTANDARD TERMS AND CONDITIONS1. Description of Service; Defined Terms. This 
Republication License enables the User to obtain licenses for republication of one or more copyrighted works as described 
in detail on the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”) grants licenses 
through the Service on behalf of the rightsholder identified on the Order Confirmation (the “Rightsholder”). 
“Republication”, as used herein, generally means the inclusion of a Work, in whole or in part, in a new work or works, 
also as described on the Order Confirmation. “User”, as used herein, means the person or entity making such 



republication.2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with 
respect to a particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the 
person transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been 
duly authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User, and (b) 
shall inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party 
independent of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms and conditions. In 
any event, User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the 
Work in any fashion.3. Scope of License; Limitations and Obligations.3.1 All Works and all rights therein, including 
copyright rights, remain the sole and exclusive property of the Rightsholder. The license created by the exchange of an 
Order Confirmation (and/or any invoice) and payment by User of the full amount set forth on that document includes only 
those rights expressly set forth in the Order Confirmation and in these terms and conditions, and conveys no other rights 
in the Work(s) to User. All rights not expressly granted are hereby reserved.3.2 General Payment Terms: You may pay by 
credit card or through an account with us payable at the end of the month. If you and we agree that you may establish a 
standing account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance Center, Dept 001, 
P.O. Box 843006, Boston, MA 02284-3006. Payments Due: Invoices are payable upon their delivery to you (or upon our 
notice to you that they are available to you for downloading). After 30 days, outstanding amounts will be subject to a 
service charge of 1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise specifically 
set forth in the Order Confirmation or in a separate written agreement signed by CCC, invoices are due and payable on 
“net 30” terms. While User may exercise the rights licensed immediately upon issuance of the Order Confirmation, the 
license is automatically revoked and is null and void, as if it had never been issued, if complete payment for the license is 
not received on a timely basis either from User directly or through a payment agent, such as a credit card company.3.3 
Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-time” (including the editions 
and product family specified in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any and all 
limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the Order 
Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either 
secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall 
render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work 
(except for copies printed on paper in accordance with this license and still in User's stock at the end of such period).3.4 
In the event that the material for which a republication license is sought includes third party materials (such as 
photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as having been 
used by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) 
for, any of such third party materials; without a separate license, such third party materials may not be used.3.5 Use of 
proper copyright notice for a Work is required as a condition of any license granted under the Service. Unless otherwise 
provided in the Order Confirmation, a proper copyright notice will read substantially as follows: “Republished with 
permission of [Rightsholder’s name], from [Work's title, author, volume, edition number and year of copyright]; 
permission conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a reasonably legible 
font size and must be placed either immediately adjacent to the Work as used (for example, as part of a by-line or 
footnote but not as a separate electronic link) or in the place where substantially all other credits or notices for the new 
work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder 
and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified 
in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.3.6 User may only 
make alterations to the Work if and as expressly set forth in the Order Confirmation.  No Work may be used in any way 
that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, privacy, publicity, 
or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene.  In addition, User may not 
conjoin a Work with any other material that may result in damage to the reputation of the Rightsholder.  User agrees to 
inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request 
of CCC or the Rightsholder in connection therewith.4. Indemnity. User hereby indemnifies and agrees to defend the 
Rightsholder and CCC, and their respective employees and directors, against all claims, liability, damages, costs and 
expenses, including legal fees and expenses, arising out of any use of a Work beyond the scope of the rights granted 
herein, or any use of a Work which has been altered in any unauthorized way by User, including claims of defamation or 
infringement of rights of copyright, publicity, privacy or other tangible or intangible property.5. Limitation of Liability. 
UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS 
PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A 
WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total 
liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total 
amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, 
employees, agents, affiliates, successors and assigns.6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED 
“AS IS”. CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. 
CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, 
PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A 
MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER 
MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.7. Effect of Breach. Any failure by User to pay any amount when due, 
or any use by User of a Work beyond the scope of the license set forth in the Order Confirmation and/or these terms and 
conditions, shall be a material breach of the license created by the Order Confirmation and these terms and conditions. 
Any breach not cured within 30 days of written notice thereof shall result in immediate termination of such license 
without further notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice 
thereof may be liquidated by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and 
unlicensable) use that is not terminated immediately for any reason (including, for example, because materials containing 
the Work cannot reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a 
payment of less than three times the Rightsholder's ordinary license price for the most closely analogous licensable use 



plus Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.8. Miscellaneous.8.1 User 
acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and 
conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of 
notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions 
already secured and paid for.8.2 Use of User-related information collected through the Service is governed by CCC’s 
privacy policy, available online here:  http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.8.3 The 
licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or transfer 
to any other person (whether a natural person or an organization of any kind) the license created by the Order 
Confirmation and these terms and conditions or any rights granted hereunder; provided, however, that User may assign 
such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User’s rights in 
the new material which includes the Work(s) licensed under this Service.8.4 No amendment or waiver of any terms is 
binding unless set forth in writing and signed by the parties. The Rightsholder and CCC hereby object to any terms 
contained in any writing prepared by the User or its principals, employees, agents or affiliates and purporting to govern 
or otherwise relate to the licensing transaction described in the Order Confirmation, which terms are in any way 
inconsistent with any terms set forth in the Order Confirmation and/or in these terms and conditions or CCC's standard 
operating procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order 
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate instrument.8.5 The 
licensing transaction described in the Order Confirmation document shall be governed by and construed under the law of 
the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, 
action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at CCC's 
sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any federal 
or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. 
The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.If you have any 
comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-8400 or send an 
e-mail to info@copyright.com.v 1.1

Proteins 
Permission type: Republish or display content 
Type of use: Republish in a thesis/dissertation 

TERMS AND CONDITIONSThe following terms are individual to this publisher:

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies 
(each a �Wiley Company�) or handled on behalf of a society with which a Wiley Company has exclusive publishing 
rights in relation to a particular work (collectively �WILEY�).   By clicking �accept� in connection with completing this 
licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing 
and payment terms and conditions established by the Copyright Clearance Center Inc., (�CCC�s Billing and Payment 
terms and conditions�), at the time that you opened your Rightslink account (these are available at any time at 
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, 
worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process.  This license 
is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of 
republication or reuse granted by this licence must be completed within two years of the date of the grant of this licence 
(although copies prepared before the end date may be distributed thereafter).     The Wiley Materials shall not be used in 
any other manner or for any other purpose, beyond what is granted in the license.   Permission is granted subject to an 
appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also 
duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material.   Permission is also 
granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of 
this Wiley Material.  Any third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no 
part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new 
Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works 
may be made based on the Wiley Materials without the prior permission of the respective copyright owner. You may not 
alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You 
may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone 
basis, or any of the rights granted to you hereunder to any other person.
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The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of 
John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having 
possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this 
Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual 
property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No 
right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its 
licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect 
thereto.

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY 
THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY 
INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF 
MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS 
LICENSORS AND WAIVED BY YOU. 

WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and 
employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any 
breach of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR 
ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER 
CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE 
MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 
TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS 
OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE 
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY 
NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or 
unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the 
original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be 
affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either 
party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be 
deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such 
waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or 
be construed as a waiver of or consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written 
consent.

Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

These terms and conditions together with CCC�s Billing and Payment terms and conditions (which are incorporated 
herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of 
fraud) supersedes all prior agreements and  representations of the parties, oral or written.  This Agreement may not be 
amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the 
parties' successors, legal representatives, and authorized assigns.

In the event of any conflict between your obligations established by these terms and conditions and those established 
by CCC�s Billing and Payment terms and conditions, these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you 
and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC�s Billing and 
Payment terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the 
licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without 
regards to such state�s conflict of law rules.  Any legal action, suit or proceeding arising out of or relating to these Terms 
and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the 
State of New York in the United States of America and each party hereby consents and submits to the personal 
jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or 
certified mail, return receipt requested, at the last known address of such party.

Other terms and conditions:

REPUBLICATION IN MAIN PRODUCT, PRODUCT FAMILY, COMPILATIONS OR COLLECTIVE WORKS

Limitations on reuse of Wiley Materials:



 

Where the following additional rights have been granted as part of this Agreement, please note that in no instance may 
the total amount of Wiley Materials used in any Main Product, Compilation or Collective work comprise more than 5% (if 
figures/tables) or 15% (if full articles/chapters) of the Main Product, Compilation or Collective Work.

Product Family: main product AND any product related to the main product

Main Product and related products which are created to supplement or add value to the Main Product, and in which the 
overall content of the Main Product remains substantially the same with relatively minor additions or variations.  
Examples include: ancillaries, instructor guides, testing materials, student subject-driven resources, abridgements, and 
custom editions that are substantially based on a single Main Product.

Other: main product AND other compilations or collective works

 

Main Product and new collective works produced by requestor that do not consist of substantially the same material as an 
individual Main Product.  For example, licensees may wish to acquire rights for use in the Main Product AND for use in 
separate projects within the same subject discipline as the Main Product. This would include, for example, custom editions 
or compilations which incorporate chapters from multiple underlying works within or across disciplines. 

All: main product, AND Product Family AND Other compilations or collective works

This combines the right to republish in the following components: 1) main product, 2) products related to the main 
product (i.e. Product Family) and 3) other compilations/collective works.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. 
Although most of the fully  Open Access journals publish open access articles under the terms of the Creative Commons 
Attribution (CC BY) License  only, the subscription journals and a few of the Open Access Journals offer a choice of 
Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license, Creative Commons Attribution Non-
Commercial (CC-BY-NC) license and Creative Commons Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. 
The license type is clearly identified on the article.

Copyright in any research article in a journal published as Open Access under a Creative Commons License is retained by 
the author(s). Authors grant Wiley a license to publish the article and identify itself as the original publisher. Authors also 
grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, 
citation details and publisher are identified as follows: [Title of Article/Author/Journal Title and Volume/Issue. Copyright 
(c) [year] [copyright owner as specified in the Journal]. Links to the final article on Wiley�s website are encouraged 
where applicable. 

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the 
article and make commercial use of the article. The CC-BY license permits commercial and non-commercial re-use of an 
open access article, as long as the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors, including without limitation the 
right not to have their work subjected to derogatory treatment. It also does not affect any other rights held by authors or 
third parties in the article, including without limitation the rights of privacy and publicity. Use of the article must not 
assert or imply, whether implicitly or explicitly, any connection with, endorsement or sponsorship of such use by the 
author, publisher or any other party associated with the article.

For any reuse or distribution, users must include the copyright notice and make clear to others that the article is made 
available under a Creative Commons Attribution license, linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and without representation or 
warranties of any kind whether express, implied, statutory or otherwise and including, without limitation, warranties of 
title, merchantability, fitness for a particular purpose, non-infringement, absence of defects, accuracy, or the presence or 
absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and 
reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no 
modifications or adaptations are made. (see below)



Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may access, download, copy, display and redistribute 
to colleagues Wiley Open Access articles, as well as adapt, translate, text- and data-mine the content subject to the 
following conditions:

The authors' moral rights are not compromised. These rights include the right of "paternity" (also known as 
"attribution" - the right for the author to be identified as such) and "integrity" (the right for the author not to have the 
work altered in such a way that the author's reputation or integrity may be impugned).

Where content in the article is identified as belonging to a third party, it is the obligation of the user to ensure that any 
reuse complies with the copyright policies of the owner of that content.

If article content is copied, downloaded or otherwise reused for non-commercial research and education purposes, a 
link to the appropriate bibliographic citation (authors, journal, article title, volume, issue, page numbers, DOI and the link 
to the definitive published version on Wiley Online Library) should be maintained. Copyright notices and disclaimers must 
not be deleted.

Any translations, for which a prior translation agreement with Wiley has not been agreed, must prominently display the 
statement: "This is an unofficial translation of an article that appeared in a Wiley publication. The publisher has not 
endorsed this translation."

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission 
from Wiley and will be subject to a fee. Commercial purposes include:

Copying or downloading of articles, or linking to such articles for further redistribution, sale or licensing; 

Copying, downloading or posting by a site or service that incorporates advertising with such content;

 
The inclusion or incorporation of article content in other works or services (other than normal quotations with an 

appropriate citation) that is then available for sale or licensing, for a fee (for example, a compilation produced for 
marketing purposes, inclusion in a sales pack)

Use of article content (other than normal quotations with appropriate citation) by for-profit organisations for 
promotional purposes

Linking to article content in e-mails redistributed for promotional, marketing or educational purposes; 

Use for the purposes of monetary reward by means of sale, resale, licence, loan, transfer or other form of commercial 
exploitation such as marketing products 

Print reprints of Wiley Open Access articles can be purchased from: corporatesales@wiley.com 

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

Other Terms and Conditions:NoneSTANDARD TERMS AND CONDITIONS1. Description of Service; Defined Terms. This 
Republication License enables the User to obtain licenses for republication of one or more copyrighted works as described 
in detail on the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”) grants licenses 
through the Service on behalf of the rightsholder identified on the Order Confirmation (the “Rightsholder”). 
“Republication”, as used herein, generally means the inclusion of a Work, in whole or in part, in a new work or works, 
also as described on the Order Confirmation. “User”, as used herein, means the person or entity making such 
republication.2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with 
respect to a particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the 
person transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been 
duly authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User, and (b) 
shall inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party 
independent of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms and conditions. In 
any event, User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the 
Work in any fashion.3. Scope of License; Limitations and Obligations.3.1 All Works and all rights therein, including 
copyright rights, remain the sole and exclusive property of the Rightsholder. The license created by the exchange of an 
Order Confirmation (and/or any invoice) and payment by User of the full amount set forth on that document includes only 
those rights expressly set forth in the Order Confirmation and in these terms and conditions, and conveys no other rights 
in the Work(s) to User. All rights not expressly granted are hereby reserved.3.2 General Payment Terms: You may pay by 
credit card or through an account with us payable at the end of the month. If you and we agree that you may establish a 
standing account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance Center, Dept 001, 
P.O. Box 843006, Boston, MA 02284-3006. Payments Due: Invoices are payable upon their delivery to you (or upon our 
notice to you that they are available to you for downloading). After 30 days, outstanding amounts will be subject to a 
service charge of 1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise specifically 
set forth in the Order Confirmation or in a separate written agreement signed by CCC, invoices are due and payable on 
“net 30” terms. While User may exercise the rights licensed immediately upon issuance of the Order Confirmation, the 
license is automatically revoked and is null and void, as if it had never been issued, if complete payment for the license is 
not received on a timely basis either from User directly or through a payment agent, such as a credit card company.3.3 
Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-time” (including the editions 



and product family specified in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any and all 
limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the Order 
Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either 
secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall 
render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work 
(except for copies printed on paper in accordance with this license and still in User's stock at the end of such period).3.4 
In the event that the material for which a republication license is sought includes third party materials (such as 
photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as having been 
used by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) 
for, any of such third party materials; without a separate license, such third party materials may not be used.3.5 Use of 
proper copyright notice for a Work is required as a condition of any license granted under the Service. Unless otherwise 
provided in the Order Confirmation, a proper copyright notice will read substantially as follows: “Republished with 
permission of [Rightsholder’s name], from [Work's title, author, volume, edition number and year of copyright]; 
permission conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a reasonably legible 
font size and must be placed either immediately adjacent to the Work as used (for example, as part of a by-line or 
footnote but not as a separate electronic link) or in the place where substantially all other credits or notices for the new 
work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder 
and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified 
in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.3.6 User may only 
make alterations to the Work if and as expressly set forth in the Order Confirmation.  No Work may be used in any way 
that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, privacy, publicity, 
or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene.  In addition, User may not 
conjoin a Work with any other material that may result in damage to the reputation of the Rightsholder.  User agrees to 
inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request 
of CCC or the Rightsholder in connection therewith.4. Indemnity. User hereby indemnifies and agrees to defend the 
Rightsholder and CCC, and their respective employees and directors, against all claims, liability, damages, costs and 
expenses, including legal fees and expenses, arising out of any use of a Work beyond the scope of the rights granted 
herein, or any use of a Work which has been altered in any unauthorized way by User, including claims of defamation or 
infringement of rights of copyright, publicity, privacy or other tangible or intangible property.5. Limitation of Liability. 
UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS 
PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A 
WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total 
liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total 
amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, 
employees, agents, affiliates, successors and assigns.6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED 
“AS IS”. CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. 
CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, 
PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A 
MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER 
MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.7. Effect of Breach. Any failure by User to pay any amount when due, 
or any use by User of a Work beyond the scope of the license set forth in the Order Confirmation and/or these terms and 
conditions, shall be a material breach of the license created by the Order Confirmation and these terms and conditions. 
Any breach not cured within 30 days of written notice thereof shall result in immediate termination of such license 
without further notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice 
thereof may be liquidated by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and 
unlicensable) use that is not terminated immediately for any reason (including, for example, because materials containing 
the Work cannot reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a 
payment of less than three times the Rightsholder's ordinary license price for the most closely analogous licensable use 
plus Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.8. Miscellaneous.8.1 User 
acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and 
conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of 
notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions 
already secured and paid for.8.2 Use of User-related information collected through the Service is governed by CCC’s 
privacy policy, available online here:  http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.8.3 The 
licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or transfer 
to any other person (whether a natural person or an organization of any kind) the license created by the Order 
Confirmation and these terms and conditions or any rights granted hereunder; provided, however, that User may assign 
such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User’s rights in 
the new material which includes the Work(s) licensed under this Service.8.4 No amendment or waiver of any terms is 
binding unless set forth in writing and signed by the parties. The Rightsholder and CCC hereby object to any terms 
contained in any writing prepared by the User or its principals, employees, agents or affiliates and purporting to govern 
or otherwise relate to the licensing transaction described in the Order Confirmation, which terms are in any way 
inconsistent with any terms set forth in the Order Confirmation and/or in these terms and conditions or CCC's standard 
operating procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order 
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate instrument.8.5 The 
licensing transaction described in the Order Confirmation document shall be governed by and construed under the law of 
the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, 
action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at CCC's 
sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any federal 
or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. 
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The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.If you have any 
comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-8400 or send an 
e-mail to info@copyright.com.v 1.1
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