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Abstract

The North American Electric Reliability Corporation (NERC) envisions a smart grid that ag-
gressively explores advance communication network solutions to facilitate real-time monitoring
and dynamic control of the bulk electric power system. At thedistribution level, the smart grid
integrates renewable generation and energy storage mechanisms to improve the reliability of the
grid. Furthermore, dynamic pricing and demand management provide customers an avenue to
interact with the power system to determine the electricityusage that best satisfies their lifestyle.
At the transmission level, efficient communication and a highly automated architecture provide
visibility in the power system and as a result, faults are mitigated faster than they can propagate.
However, such higher levels of reliability and efficiency rest on the supporting communication
infrastructure. To date, utility companies are moving towards Multiprotocol Label Switching
(MPLS) because it supports traffic engineering and virtual private networks (VPNs). Further-
more, it provides Quality of Service (QoS) guarantees and fail-over mechanisms in addition to
meeting the requirement of non-routability as stipulated by NERC. However, these benefits come
at a cost for the infrastructure that supports the full MPLS specification. With this realization and
given a two week implementation and deployment window in GENI, we explore the modularity
and flexibility provided by the low cost OpenFlow Software Defined Networking (SDN) solu-
tion. In particular, we use OpenFlow to provide 1.) automatic fail-over mechanisms, 2.) a
load balancing, and 3.) Quality of Service guarantees: all essential mechanisms for smart grid
networks.

Keywords: Software Defined Networking, OpenFlow, GENI, Traffic Engineering, Quality of
Service

1. Introduction and Motivation

Why study next-generation communication architecture for the Electric Power Grid? For one,
we have experienced moderate-scale failures within the US and abroad, and thus large-scale
failures are inevitable. One classic and riveting example stems from a series of cascading failures
in 2003 that resulted in a blackout in the Northeastern states [1]. In the post-event analysis
conducted by NERC, over 50 million people, and over 400 generators were affected [2]. In
particular, between the period of 15:50 and 16:10, the angular separation leaped from 25 to
115 degrees: 90 degrees from the normal operating condition. On the same token, a similar
Preprint submitted to Special Issue on Future Internet Testbeds December 2, 2013



phenomenon occurred the very same year in Italy that left 56 million residents without power for
9 hours [3].

One common factor during blackouts is the lack of situational awareness [4]. Again, with
the USA/Canada 2003 blackout, the initial stages began well over an hour before the cascading
failures ensued. Nevertheless, with low visibility of the entire power system, both human and
computer reactions were too slow to mitigate a blackout. Several projects including GridStat
are dedicated to increasing grid awareness by augmenting current technologies such as syn-
chophasers with the GridStat middle-ware [5, 6]. However, these technologies all depend on the
communication infrastructure to meet the current demands of continuous availability, reliability,
and efficiency. Consequently, the smart grid communication infrastructure must be adapted and
perhaps re-engineered to meet these disparate demands.

To date, utilities are gravitating towards technologies such as MPLS as it has proven to be
reliable over the years and provides mechanisms for efficient overlay technologies. In particular,
MPLS satisfies NERC’s Critical Infrastructure Protection standard (CIP-002) which stipulates
that traffic to critical assets (assets that if targeted, can affect the bulk power system) should be
sent over Layer 2, as defined by the Open System Interconnection (OSI) model [7, 8, 9, 10].
Additionally, MPLS provides traffic engineering and virtual private network (VPNs) services.
These services rely on multiple protocols such as Open Shortest Path First (OSPF), and Resource
Reservation protocol (RSVP). On the same note, all routers must enable new protocols to support
any new network services. Extensive tests must be conductedto deploy these new services which
can result in service interruptions.

On the contrary, OpenFlow’s programmability facilitates acontrol plane that provides simi-
lar functionalities to MPLS. With increasing support from network providers such as Microsoft,
Google, Amazon and equipment vendors such as NEC, Juniper, and Cisco, OpenFlow’s modular-
ity implies that changes to network services require a simple change in the OpenFlow controller
deployed on the network operating system. Furthermore, with OpenFlow, new services are not
tied to extensions of existing protocols. This is unlike MPLS, in which new services such as
RSVP-TE (RSVP-Traffic Engineering) are tied to RSVP. In addition to these advantages, Open-
Flow’s ability to isolate network traffic ensures that failure of an experimental protocol, service,
or application does not affect other experiments or hinder production traffic. In the same way,
different classes of traffic in the smart grid can be isolated for Quality of Service (QoS) guar-
antees. For these reasons, OpenFlow may provide a more capable backbone communication
technology that is overall less expensive than MPLS. It has been demonstrated that OpenFlow
can provide similar services as MPLS using Open VSwitch software switches [11]. However, to
date, the current OpenFlow hardware does not readily support MPLS. In any case, can we use
commercially available hardware in GENI to provide MPLS-like functionalities? To answer this
question, we contribute the following:

1. An OpenFlow controller that implements an automatic fail-over mechanism, a load balanc-
ing traffic engineering scheme, and a QoS queuing mechanism

2. A Demand Response (DR) smart grid application that transmits traffic created by cyber
physical systems

The structure of this paper is outlined as follows: Section 2builds on the introduction by
providing the necessary background and state of the art for networking solutions within utility
companies. We review various research projects that consider simulations, emulations, and real-
time communication network implementations and experiments for the smart grid. Section 3
presents a high level overview of the smart grid model. In particular, details are provided for the
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Electro-Mechanical prototype that is subsequently integrated with the communication network
to realize the smart grid prototype. We also present a brief review of the OpenFlow architec-
ture. Section 4 describes the three experiments conducted and provides the resulting throughput,
frequency response, and load shed performance results. Section 5 presents a discussion on the
applicability of this work in the real-world and setbacks encountered. Finally, Section 6 discusses
the benefits and shortcomings of the current hardware and highlights the future direction of this
work.

2. Background and Related Work

Utility companies have not been amenable in adapting to the changing demands in commu-
nication networks to support increasing smart grid tools and applications for several reasons.
On one hand, they are tasked with providing reliable and secure communications to clients.
Thus, utility companies are almost surely driven towards communication solutions that have
been well vetted over the years. For utilities unable to maintain their own private networks,
service providers are subcontracted to support communication network services. On the other
hand, research in designs of alternate networking architecture will unlikely be deployed without
a demonstration of an actual prototype under realistic conditions. Deployment of a prototype
in the production setting of a utility company will almost surely be discarded, not only due to
the tradition of utilizing tried and tested solutions, but also due to the steep fines of millions of
dollars per day charged by NERC, should a utility be in violation of any standards.

A driving force towards deploying innovative ideas can be attributed to the three phases of:

1. developing thorough models that will be
2. exhaustively tested on simulators and
3. exhaustively tested in real-time

To date, phase one has gained considerable attention as several models exist that consider
the continuous dynamics of the Power Grid through ordinary differential equations [12, 13].
However in phase two, few models that integrate both Power and network models are prevalent
in the literature [14]. One of the first attempts at this classof hybrid simulators can be attributed
to EPOCHS. The EPOCHS framework federates close-source discrete-event and continuous time
packages through a mediating control agent [15]. In particular, both power and communication
system simulations run simultaneously, but independently, until they arrive at a predetermined
synchronization point. At this point, the simulations pause while a mediating agent accesses
the internal data of both simulators and executes a data exchange routine between simulators.
Subsequently, the simulators resume executing until the next synchronization point. As a first-
cut effort, EPOCHS’ contribution was the foundation of other such simulators. However, it
has been proven that this approach introduces timing errorsdue to the difficulty in selecting
synchronization points. This framework can produce behaviors which are independent on the
actual model [16].

An improvement to the EPOCHS framework demonstrates the removal of synchronization
point dependence by using the global scheduler of the communication network simulator [16].
Specifically, the power system dynamic simulation is divided into several discrete events dis-
tributed over the simulation time-line. Events from both simulators are entered into the global
scheduler of Network Simulator 2 (NS2), which allows instant response to events.

A second approach is that of the open source ADEVS modules, that models continuing dynam-
ics of the power systems through the DEVS framework. In DEVS,continuous time dynamics
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are represented by discrete-events using state-detectionmechanisms such as zero crossings [17].
Discrete events from both simulators are implemented by theglobal scheduler of NS2, as was
done in the previous approach. Finally, the ADEVS approach not only closely approximates the
costly GE Positive Sequence Load Flow (PSLF) package used inthe previous approaches, but by
virtue of its open source origins, the ADEVS modules are freefor research purposes and provide
seamless integration between continuous time and discreteevent simulators.

A third approach is an improvement to the ADEVS approach. In this approach, the Toolkit for
Hybrid Systems Evaluation and Modeling (THYME) was integrated with the Network Simulator
3 (NS-3) simulation tools (see [18, 19]) to compare the performance of MPLS and OpenFlow
networks in the context of a hypothetical smart grid application [20, 21].

Another class of simulations have been conducted using the mininet simulation framework to
demonstrate that OpenFlow can provide similar services as MPLS using an OpenFlow control-
plane and the same push, pop, and swap behavior used in the MPLS data-plane [22, 23]. Further-
more, researchers demonstrated a low-cost MPLS Label Switch Router (LSR) using NFPGAs
that realizes an implementation of Label Distribution Protocol (LDP) using the Quagga routing
suite [24].

In phase three, several experiments exist including a research project which seeks to develop
technologies to integrate fixed (hydro, flywheel, and compressed air) and mobile (batteries in
cars) storage to the power grid [25]. However, these projects revolve around existing network
architectures where innovation is restricted to the features enclosed in the “box” [26, 27, 28, 29].

For this reason, the Global Environment for Network Innovation (GENI) at the U.S. National
Science Foundation provides researchers the network resources, scale, realism, and control nec-
essary to deploy prototypes and evaluate new networking architectures [30]. To date, the Open-
Flow specification 1.1.0 supports MPLS. However, the current commercial hardware does not.
In this project, we integrate the current network hardware in GENI and the power resources of
Kansas State University as a smart grid prototype where automatic fail-over, MPLS-like load
balancing, and QoS services are provided.

3. Power and Smart Grid Model

Figure 1 illustrates a high level view of a smart grid where a network provides the communi-
cation and control to the generation, transmission, and generation components of the grid. This
model provides visibility to the Control Center (CC) and allows customers to interact with the
system.

3.1. The Electro-Mechanical Model

The power system test-bed in Figure 2 displays a 4-bus systemconsisting of 3 synchronous
generators (G1, G2, and G3), 3 transmission lines, and 3 loads. During normal operation, G3
at bus 1 produced 95W. A 3-phase autotransformer was placed at bus 1 to reduce the voltage
from 208V to 138V to accommodate the equipment’s voltage requirements. A 3-phase diode
bridge rectifier and capacitors were placed on the low side ofthe transformer to form a 160V
DC bus. The DC bus had 2 loads: an 11W fixed load and an Agilent 6063B variable electronic
load operating in constant resistance mode. Nominally the electronic load’s resistance was set
at 200Ω (120W). A 90W load and a generator (G2) operating at 120W were connected to bus 2.
G3 at bus 3 normally produced 65W and there was no load at bus 3.The buses were connected
in a loop with inductive transmission lines. Each transmission line had a reactance of j1.2241Ω.
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Figure 1: A model of the smart grid

In order to test the load shedding action, the circuit breaker on generator 3 (CB G3) was opened,
disconnecting G3 from the system. The loss of G3 was enough todepress the system frequency
by at least 3Hz.

3.2. The Smart Grid Prototype

Figure 3 provides details of the smart grid prototype. Resources are divided into two groups:
resources of K-State and resources of GENI. At K-State, an analog to digital converter converts
the analog voltage to its digital equivalent. This digital signal is transmitted to a micro-controller
that counts the width of each pulse to provide an estimation of its period. The period is then se-
rially transmitted to ksuHost1. A generator agent (GA) at ksuHost1 transmits 1 period measure-
ment, for every 15 samples received from the micro-controller (i.e. protection traffic), through
the network to the Control Center agent (CCA) in GENI. Assuming the frequency has deviated
from the nominal value of 60Hz, the CCA transmits load shed measurement to the load agent
(LA) at ksuHost3. The LA communicates to the agilent 6063B variable load through a GPIB
connection to adjust the load accordingly such that a frequency of 60Hz is maintained. Addi-
tionally, a loop topology exists in the GENI core for redundancy and dual-homing purposes and
an OpenFlow controller residing at the control center, provides the control plane control for all
OpenFlow switches in GENI. ksuHost2 generates streams of background traffic to the host at the
Control Center.

3.3. OpenFlow Architecture

Figure 4 illustrates the fundamental components of the OpenFlow Architecture: flow table,
secure channel, and OpenFlow protocol [31, 32, 33, 34]. As shown, the control and data planes
are decoupled: one of the fundamental features of Software Defined Networks.
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Figure 2: A miniature model of a power grid

Below gives a high level description of the OpenFlow mechanisms [31]. A “flow” is a match
structure with a corresponding action list, and a flow entry contains a set of packet fields that
must be matched, counters, and actions (such as send to a particular output port, modify or filter
the packet).

1. The OpenFlow (OF) controller uses the OF protocol to install flow space rules in the flow
table of the OF switch preemptively or at run time.

2. As packets arrive at the OF switch, they are checked against a list of flow space rules in the
flow tables.

3. If packets from a stream fail to match any rule in the flow table, they are encapsulated and
transmitted to the OF controller as “packet-in” messages for further evaluation. This occurs
until a flow entry (i.e. a flow rule) is installed for this stream of packets.

4. After evaluation, the OF controller installs a new rule for this type of packet. All subsequent
packets encounter similar actions without visiting the OF controller.

4. Experiments

The experiments revolve around a Demand Response (DR) smartgrid application, which uti-
lizes load shedding to regulate the power grid’s frequency.More specifically, customers provide
consent to utility companies seeking to regulate the on/off period of electric appliances to reduce
the load during peak periods of demand. In exchange, customers receive fringe benefits such as a
lower rate for electricity. What has this achieved? During the peak periods, usually between the
hours of 5pm to 7pm, residents return home and air condition units, washers, dryers, and stoves
are turned on. It is during this critical period of increasing load that utility companies have to
1.) do nothing and risk cascading failures, 2.) “fire-up” backup generators, which could cost
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Figure 3: The integration of the power grid and communication network to realize a prototype of the smart grid. I2 and
NLR correspond to OpenFlow switches in the research backbones of Internet2 and National LambdarailRail. HOUS,
ATL, SUNN, SEAT, DEV, and CHIC correspond to OpenFlow switches in Houston TX, Atlanta GA, Sunnyvale CA,
Seattle WA, Denver CO, and Chicago IL respectively.
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Figure 4: OpenFlow architecture

thousands of dollars and will be turned off at the end of the 2 hour period, or 3.) seek alternative
means to reduce the peak demand. Therefore, demand responseis a compromise that reduces the
demand and results in financial rewards for both the utility and the customer. However, demand
response is as efficient and reliable as the supporting network infrastructure.

For all experiments, the objective is to maintain the nominal frequency of 60Hz. We consider
three synchronous generators providing electricity to fixed and variable loads where the variable
loads represent appliances such as air condition units thatcan be toggled off and on. The Gen-
erator Agent (GA) at ksuHost1 transmits the period measurement corresponding to the analog
frequency of the generators to the Control Center Agent (CCA). The CCA then executes Algo-
rithm 1 as part of the load shedding control logic and transmits load shed measurements to the
Load Agent (LA):

Algorithm 1 Control Logic for Load Shedding
fnom :=Nominal frequency of 60Hz
fact :=Actual frequency from load agent
fdev :=The deviation of the actual frequency from the nominal frequency
fthres :=The frequency threshold was set to 0.1
Kp :=The gain for the control system which was 5
Ri :=Initial resistance of 200Ω
Rs f :=Resistance scaling factor
Rnew :=New resistance
for (;;) do

Convert period (in seconds) from GA to frequency (in Hz)
fdev = fnom − fact

if ( fdev > fthres or fdev < − fthres)
Rs f = fdevKp

Rnew = Rs f + Ri

TransmitRnew to the LA at ksuHost3
Ri = Rnew

end if
end for
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To trigger a deviation from the nominal frequency, we fail G3. As the frequency deviates
from the nominal value of 60Hz, the CCA utilizes the logic in Algorithm 1 to transmit load
adjustment measurements to the LA. The LA in turn adjusts thevariable load accordingly to
achieve the nominal frequency. We conduct this experiment under the following conditions:

1. with the CCA at KSU to obtain the benchmark frequency response and load shedding profile
2. during a failure on the primary path where fail-over mechanisms are implemented to reroute

traffic onto the backup path
3. injecting streams of traffic to congest the network
4. streams of traffic are load balanced through the network

For all experiments, we compare the frequency response and load shed profile to that of the
benchmark case where the CCA was deployed at KSU. Initially,we conducted the DR experi-
ment without load control and observed that all generators quickly went outside their operating
limits within 5s. The following subsections present details of the three experiments and the
results obtained.

4.1. Experiment 1: Automatic Fail-over

To demonstrate the automatic fail-over mechanism, it was necessary to create a logical link
failure on the primary path. To accomplish this task, we modified the discovery module of the
Network Operating System (NOX) package that utilizes the Link Layer Discovery Protocol to
establish the network topology. Algorithm 2 realizes a linkfailure for a given source-destination
pair of adjacent OpenFlow switches:

Algorithm 2 Link Failure Algorithm
Ai, j :=The adjacency structure that contains all source-destination (i, j) dpids (i.e. OpenFlow
datapaths/Switches) and the time of discovery
t f :=The time to fail a link
tc :=The current time
tl :=The time set to delete a link fromAi j

src :=The source dpid that connects the link to be removed
dst :=The destination dpid that connects the link to be removed
for (;;) do

Update the topology using LLDP
if i ∈ Ai j == src and j ∈ Ai j == dst andtc > t f

Do not update the time for linkAsrc,dst

else
Update adjacent dpids in theAi j

end if
if tAi, j > tl
Link (i, j) has timed out
Deletei, j from Ai, j

end if
end for

For this experiment, we only considered protection traffic in the network (i.e. traffic between
agents). At approximately 25s into the experiment, we failed G3 and as shown in Figure 5, the
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Figure 5: A comparison of the frequency response for a failureat G3 during as an automatic fail-over mechanism reroutes
traffic through the backup path to the benchmark experiment where CCAresided at KSU

frequency began to deviate from the nominal value. At approximately 29s into the experiment,
we also failed a link on the primary path. From Figure 5, one would expect less deviation in the
benchmark case than in the failover case. However, to compensate for the high delays between
the GA, CCA, and LA, a high gain was set at the CCA. For the failover case, this high gain
increases the step size of the resistance measures transmitted from the CCA to the LA and as a
result, decreases the time taken for the frequency to returnto the nominal value. For an unbiased
comparison, this high gain was also used in the benchmark case. However, in this case, a high
gain and small delay results in an “overshoot” of the resistance necessary to get the frequency
back to the nominal value. A smaller gain for a smaller delay would decrease the variation in the
benchmark case. Figure 6 captures the throughput in the backbone network for the duration of
the experiment. In particular, the automatic fail-over mechanism was able to reroute all traffic in
less than 2s considering a bi-directional distance of over thousands of miles. Given a Round Trip
Time (RTT) of 200ms (as opposed to .09ms for the benchmark case), Figure 7 shows an increase
of 20Ω of load shedding.

4.2. Experiment 2: Congestion

In this experiment, we investigated the impact of congestion on the frequency response and
load shedding profile. In particular, we used the queuing mechanism of the OpenFlow switch
in KSU to transmit 5 streams of 190Mbps and 1 stream of 50Mbps with the objective of incre-
mentally “filling the pipe” with 1Gbps (which is the capacityof the GENI backbone network) of
“background” traffic. Figure 8 demonstrates the “max rate” queuing feature of the Pronto 3290
OpenFlow switch at KSU. Two 900Mbps streams originate from two source hosts, destined to
a single destination host. Within the first 6s to 14s, the congestion control mechanisms of TCP
results in a throughput of about 50Mbps, as opposed to the 900Mbps throughput realized by the
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Figure 6: The throughput through the backbone network as automatic fail-over ensues
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Figure 7: A comparison of the the load shed profile as an automatic fail-over mechanism reroutes traffic from the primary
to the backup path
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Figure 8: Max rate feature for queues on the Pronto 3290 OpenFlow switch

User Datagram Protocol (UDP). At 15s, queues of 500Mbps are configured at the switch and
as shown, both TCP and UDP streams attain a throughput of 500Mbps. At 38s, the queues are
removed and the original behavior resumes.

In this experiment, the streams originating from ksuHost2 and are destined for the host at the
Control Center. Figure 9 shows a cross section of the rate at which packets are transmitted by the
GA and received by the CCA. The “generator” stream represents protection traffic transmitted
by the GA and “x streams” represent the number of streamsx, that existed through the backbone
network on the primary path. As shown, though the number of streams increase, the arrival rate
at the CCA remains fairly constant (1 packet every three seconds) with a slight delay between
the transmission and the arrival of packets. This is expected as the RTT was 98ms on the pri-
mary path. Initially, protection packets were transmittedevery 200ms. However, the generators
quickly went outside their operating limits since the rate at which the frequency measures are
updated at the CCA, far exceeded the rate at which load shed command were executed by the
variable load. This was not expected as the RTT was 98ms. However, considerable delays ex-
ist on the path from the LA through the GPIB connection to the variable load. Perhaps a more
efficient variable load would resolve this issue.

From Figure 10, it appears that the throughput times overlapfor the various streams. How-
ever, Experiment 2 consists of 4 individual trials and the different throughput values have been
aggregated into one plot where the start time of 0s signifies the initial injection of a given number
of streams into the network. Specifically, for each trial, wetransmittedx stream/s through the
network, failed G3 and recorded the frequency response and load shed profile for this trial. The
decrease in throughput observed can be attributed to the flowand congestion control mechanisms
of the Transmission Control Protocol (TCP).

From Figure 11, the settling time (i.e. the difference between the times when the frequency
deviates and when the frequency returns to the nominal value) for all streams is approximately
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Figure 9: The load shed profiles for the corresponding streamsof traffic generated from the substation to the control
center
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Figure 10: Throughput in the primary path as streams are incrementally traversing the network
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Figure 11: A comparison of the frequency responses for each trial wherex stream/s traversed the network in addition to
protection traffic from LA

10s. More importantly, though the frequency returns to the nominal value at 8s for the benchmark
experiment, the settling time was 20s. This can be attributed to the high gain used to compensate
for the delays between the transmission of a protection packet from the GA, to the CCA, and
the execution of a load shed command from the CCA to the LA. This high gain substantially
increases the step size of the resistance measures transmitted to the load. As shown from the
benchmark plot, a high gain and small delay results in an “overshoot” of the ideal resistance
value necessary for the frequency to return to the nominal value. A smaller gain would result in
a graceful return of the frequency to the nominal value for the benchmark frequency. However,
this low gain would increase the settling time for experiments with high latencies between GA,
CCA, and LA.

Figure 12 shows a range of 80 ohms for all streams. This can be attributed to the absence of
queuing mechanisms on the return path from the CCA to the LA inaddition to inaccuracies in
the initial configuration of the power system.

4.3. Experiment 3: Load Balancing

At the OpenFlow controller, the load balancing mechanism was designed such that we toggled
the path taken for each new flow. In particular, we first load balanced three streams on the primary
path and three streams on the backup path and then executed the failure of G3. We then compared
the result to a second experiment where we injected all six streams in the primary path and
created a separate queue of 10Mbps for the protection traffic. Figure 13 displays the aggregated
throughput in both paths as streams are load balanced. As expected, the average throughput
through the backup path was about 240Mbps as each individualflow was about 80Mbps due
to the 200ms latency. That of the primary path was about 500Mbps as each stream was about
180Mbps. This is a direct result of the flow control and congestion mechanisms inherent within
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Figure 12: The load shed profiles for the corresponding streams of traffic generated from the substation to the control
center.

the TCP iperf streams where long latencies exist.
From Figures 14 and 15, the results from both QoS and load balancing were similar to that of

the benchmark case. In particular, the QoS experiment showsa graceful return to the nominal
frequency. From the load balancing result, the frequency response and load shed profile is similar
to that of the benchmark case where the resistance necessaryto allow the frequency to return to
the nominal value is exceeded. This may be attributed to the sequence in which protection and
background packets are transmitted through both paths in addition to the sequence in which they
arrive at the Control Center.

5. Discussion

This project is a first-cut exploration into the current capabilities of hardware that supports
the OpenFlow technology for Smart Grid operations. In particular, we investigated whether
OpenFlow could provide an automatic fail-over mechanism, aload balancing traffic engineering
service, and some Quality of Service guarantees with a controller developed within a two week
period. Other traffic tunneling mechanisms were implemented in the simulative environment
of mininet. However, during the actual deployment process we learned that the HP, NEC, and
Pronto switches within GENI do not support a unified set of actions at all layers in the hardware
path. This hindered any attempt to rewrite a packet for tunneling purposes. Furthermore, an
attempt to utilize the exploratory pool of the 6-bit Differentiated Service Code Point (DSCP)
field for tagging packets proved unsuccessful, as these values were translated into a level of
service in the network and generally resulted in increased RTTs of up to 1s.

For all experiments, we used OpenFlow to create queues for all traffic streams on egress at
KSU. Since the initial aggregated throughput on both primary and backup paths was about

15



0 100 200 300 400 500 600
100

150

200

250

300

350

400

450

500

550

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

 

 
primary
backup

Figure 13: Throughput on both paths as streams are load balanced in the backbone core network
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Figure 14: A comparison of the frequency response for the QoS,load balancing and benchmark experiments
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Figure 15: A comparison of the load shed profile for the QoS, load balancing and benchmark experiment

10Kbps, we determined that the sequencing of packets at the queues would be unchanged as
they traversed the backbone network. For this reason and in addition to the flow control and
congestion control mechanisms of TCP, all frequency response profiles were identical when all
streams traversed the primary path. However, no queues werecreated for traffic from the CCA
to the LA. This contributed to the variations in load shed profiles for the different experiments.
Assuming a high volume of traffic on the backbone GENI network, it would be necessary to
implement queues on other switches on the path to provide similar results.

From a power grid perspective, Control Centers and substations are generally in proximity to
each other (as opposed to spanning multiple states within the US, as was done in this project).
Furthermore, specialized mechanisms are incorporated into substations to provide a more accu-
rate reading of the generator frequencies. For this reason,a frequency deviation greater than
0.5 would cause generators to go offline [35]. The mechanisms used in this project consisted
of off-the-shelf and in-lab components. Therefore, this work wasa “proof-of-concept” that cur-
rent hardware can be used to implement the afore mentioned features. Subsequent work should
include experiments that directly compare the performanceof MPLS in providing these features.

For experiment 2, ideally we would use UDP traffic to demonstrate the affects of congestion.
In an initial attempt to transmit 100Mbps of UDP traffic through the network, several switches
disconnected from the controller. One possible explanation is the overflow of buffers in the
switches as the controller is bombarded with packets much quicker than it can install flows in
the switches. As one possible solution, we initially streamed UDP traffic at a low rate to allow
flows to be installed in the switches. We then initiated the transmission of a 100Mbps stream.
As shown from Figure 16, for 1 minute, the stream was successful. However, several switches
subsequently disconnected from the controller and the throughput dropped to 0. We are currently
attempting to resolve this issue. Furthermore, as hardwarevendors provide switches that support
more of the features detailed in the OpenFlow specification,we intend to rerun these experiments
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Figure 16: Throughput through the primary path using UDP

and provide more functionality to the OpenFlow controller.

6. Conclusion

It has been shown that current software switches can be used to provide MPLS features using
an OpenFlow control plane. To date, the available hardware does not readily support MPLS.
However, can we use OpenFlow with the commercially available hardware in GENI to pro-
vide MPLS-like features? Given a short period of two weeks and the limitations of the current
hardware, we implemented and deployed an OpenFlow controller that 1.) provides automatic
fail-over mechanisms, 2.) provides MPLS-like load balancing tunnel feature, and 3.) provides
QoS guarantees. These services were used to support real traffic from cyber physical systems in
a smart grid Demand Response experiment that utilizes load shedding to regulate frequency. All
three features were successfully demonstrated within the GENI network.

This work demonstrates the flexibility and speedy implementation and deployment of a real-
world solution under real-world network conditions. Within a short period of time, we were
able to run complex experiments that span resources in multiple spatial locations from Kansas,
to Texas, to locations on the West coast such as California and Washington, and Boston on the
East coast. It goes without saying that deploying an experiment of such magnitude on GENI
is rather complex and requires a learning curve of the various tools and mechanisms available.
Furthermore, there exists a lag in the current capabilitiesof the hardware when compared to the
capabilities defined in the OpenFlow specification.

In the future it would be of interest to implement other salient MPLS-like tunnel features such
as auto route and auto-bandwidth as the supporting hardwarebecomes available and compare
performance results with that of MPLS routers. Furthermore, it will be interesting to consider

18



an algorithm that dynamically selects an optimal gain measure given a latency measure between
GA, CCA, and LA.
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