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Abstract 

Time series of normalized difference vegetation index (NDVI) data from satellite spectral 

measurements can be used to characterize and quantify changes in vegetation phenology and 

explore the role of natural and anthropogenic activities in causing those changes.  Several 

programs and methods exist to process phenometric data from remotely-sensed imagery, 

including TIMESAT, which extracts seasonality parameters from time-series image data by 

fitting a smooth function to the series. This smoothing function, however, is dependent upon 

user-defined input parameter settings which have an unknown amount of influence in shaping 

the final phenometric estimates.  To test this, a sensitivity analysis was conducted using MODIS 

maximum value composite NDVI time-series data acquired for Fort Riley, Kansas during the 

period 2001-2012. The phenometric data generated from the different input setting files were 

compared against that from a base scenario using Pearson and Lin’s Concordance Correlation 

Analyses. Findings show that small changes to parameter settings results in insignificant 

differences in phenometric estimates, with the exception of end of season data and growing 

season length. 

Next, a time-series analysis of the same MODIS NDVI data for Fort Riley and nearby 

Konza Prairie Biological Station (KPBS) was conducted to determine if significant differences 

existed in selected vegetation phenometrics.  Phenometrics of interest were estimated using 

TIMESAT and based on a Savitzky-Golay filter with parameter settings found optimal in the 

previous study.  The phenometrics start of season, end of season, length of season, maximum 

value, and small seasonal integral were compared using Kolmogorov-Smirnov (K-S) and 

showed significant differences existed for all phenometrics in the comparison of Fort Riley 

training areas and KPBS, as well as low- versus high-training intensity areas within Fort Riley.  



 

Fort Riley and high-intensity training areas have earlier dates for the start and end of the growing 

season, shorter growing season lengths, lower maximum NDVI values, and lower small seasonal 

integrals compared to KPBS and low-intensity training areas, respectively. Evidence was found 

that establishes a link between military land uses and/or land management practices and 

observed phenometric differences.   
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Chapter 1 - Introduction 

 Research Background 

Time-series analysis of remotely sensed imagery has seen an increase in use across a 

number of environmental studies.  Using vegetation indices from satellite spectral measurements, 

valuable information on vegetation life cycles, or phenology, may be obtained (Reed et al., 1994; 

Wardlow 2005). Given its spectral, spatial, and temporal resolution, the study of time series 

datasets of normalized difference vegetation index (NDVI) images captured by the Moderate 

Resolution Imaging Spectrometer (MODIS) sensor has been shown to be a very cost-effective 

means to assess phenology trends (Ahl et al., 2006, Jacquin et al., 2009; Verbesselt et al., 2009; 

Wardlow 2005; Zhang et al., 2003).  

The well-known NDVI is calculated as the ratio of the difference between the near-

infrared (841-876 nm) and red bands (620-670 nm) over the sum of these same two bands of the 

electromagnetic spectrum (Eidenshink and Faundeen 1994; Rouse et al., 1973; Wardlow 2005). 

Because spectral response in the red and near-infrared bands is related to chlorophyll content and 

cell structure respectively, changes in NDVI values over time is a good measure of the annual 

cycle of vegetation growth and development. It is also a relative measure of the amount of 

photosynthetic biomass and total primary production and often correlates well with biophysical 

measures such as green leaf biomass, the ratio of green vegetation cover, fraction of 

photosynthetically active radiation (FPAR), and leaf area index (LAI) (Asrar et al., 1989; Baret 

and Guyot 1991; Tucker 1991; Wardlow 2005; An 2009). 

Phenology has emerged as an important focus in ecological research because of its 

importance in addressing issues and questions in global modeling, monitoring, and climate 

change.   Phenology is the timing of seasonal activities for vegetation (Parmesan 2006) and the 
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study of how it is affected by interannual and seasonal variations in factors such as weather 

conditions and soil variables (Schwartz 1998; Cleland et al., 2007).  Usually measured in Julian 

dates, or days since December 31, phenology can be described using satellite imagery and 

phenometric data extracted from vegetation index data such as that acquired by the MODIS 

sensor (Ahas et al., 2002; An 2009).  The spectral-temporal information obtained from time-

series NDVI data can be used to characterize and quantify changes in vegetation phenology 

(Reed et al., 1994; Wardlow 2005) and to explore the potential role of different natural and 

anthropogenic activities in causing those changes (Jacquin et al., 2009). 

Phenometrics such start and end of growing season, growing season length, and 

maximum greenness value may be extracted from a time series of NDVI data by fitting a 

function to the original data, which often incorporates use of a filter, or smoothing function, to 

remove atmospheric and sensor calibration noise (Chen et al., 2004; Eklundh and Jönsson 2010; 

Jönsson et al., 2010). A number of software packages and methods exist to facilitate data 

smoothing and extraction of fitted functions, including the TIMESAT software package 

(Eklundh and Jönsson 2010).  However, smoothing typically requires a number of user-defined 

parameter settings to optimize a given curve-fitting function to the raw satellite data.  For 

example, the Savitzky-Golay filter available in TIMESAT requires values for important 

parameters such as start and end of season threshold, window size, and number of envelope 

iterations (Eklundh and Jönsson 2010).  While general guidelines are available for selecting the 

proper values for these parameters, it remains unclear as to what impact adoption of TIMESAT 

“default” parameter setting might have on extracted phenometrics. 
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 Research Goals 

This study investigates differences in phenology between Fort Riley, Kansas, a U.S. 

Army military installation, and Konza Prairie Biological Station (KPBS), a natural tallgrass 

prairie preserve. The overarching goal was to determine if a long time series of course-resolution 

satellite imagery, such as that acquired by the MODIS sensor, is capable of detecting differences 

in selected phenometrics caused by dominant landuses between the two nearby sites.  Assuming 

differences would be detected, further analyses of Fort Riley only would follow to determine 

whether the same imagery could be used to assess the impact of varying levels of military 

training intensity on vegetation growth and dynamics.  

To achieve the overarching goal, two distinct studies were conducted using the 

TIMESAT program to (1) smooth a time series of MODIS 16-day maximum value NDVI 

composite images for the period 2001-2012 and then (2) extract key phenometric values and 

dates.  The first study (Chapter 4) presents a sensitivity analysis of selected parameters required 

by the TIMESAT Savitzky-Golay filter using as input the complete MODIS NDVI time series 

for Fort Riley.  Phenometric data from the time series was extracted using different Savitzky-

Golay filters created from unique user-defined parameter settings.  Ordered pairs of extracted 

phenometrics obtained from the different filter parameter settings were compared at the pixel 

level using Pearson and Lin’s Concordance Correlation tests (Lin 1989; McGrew and Monroe 

2000).  This analysis allowed for specification of an “optimal” Savitzky-Golay filter parameter 

settings file for the Fort Riley and KPBS study areas based on the vegetation characteristics of 

the Flint Hills ecoregion. 

Following this sensitivity analysis, a second study (Chapter 5) was conducted to extract 

and compare selected phenometrics from the Fort Riley and KPBS study sites using the same 

2001-2012 time series of MODIS 16-day maximum value NDVI composite images.  Of interest 
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here was whether the dominant landuse of each site (e.g., military training versus natural 

grassland) would result in measurable differences in phenometrics when using NDVI 

information derived from course-resolution satellite images.  Again, TIMESAT was used to pre-

process the NDVI time series and also to extract phenometric data for KPBS and three different 

spatial configurations of Fort Riley, including (1) all military training areas (excluding developed 

areas), (2) high-intensity military training areas only, and (3) low-intensity military training areas 

only.  TIMESAT-generated phenometrics for each of the four study areas were compared using 

the non-parametric Kolmogorov-Smirnov test to determine if significant differences existed.  In 

addition, a “normal” vegetation phenology curve was developed for KPBS and the three Fort 

Riley study sites. 
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Chapter 2 - Literature Review 

 Remote Sensing of the Environment 

 In the early 1980’s, the United States National Oceanic and Atmospheric Administration 

(NOAA) satellites began collecting course spatial resolution reflectance data for large areas of 

the Earth’s surface on a daily basis (Schwartz 1998). Satellite remote sensing presents a practical 

means to obtain data vital to the understanding of vegetation processes. Data collection is 

completed without direct physical contact to the land, as remote sensors record electromagnetic 

radiation (EMR). Once detected, changes in the amount and properties of EMR become a 

valuable data source for interpreting important properties of the Earth’s surface, including 

vegetation processes (Suits 1975). Specific advantages of remote sensing include a large areal 

extent, high spatial and temporal dynamics, and the ability to detect vegetation condition (Cihlar 

et al., 1991). It combines comprehensive ground coverage and regularly repeated observations, 

which allows for both intensive and extensive phenological monitoring (Cleland et al., 2007). 

Remote sensing technology has proven to be a valuable tool for analyzing, observing, 

differentiating, and mapping changes across constantly changing landscapes. Such tools include 

spaceborne sensors that provide both synoptic and recurring coverage of the Earth’s surface. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) is carried on NASA’s Terra and 

Aqua platforms and acquires high quality image data with global coverage at a high temporal 

resolution (Justice and Townshend 2002). The MODIS sensor was designed to capture images at 

a 250 meter spatial resolution to assist in identifying human-induced land cover changes (Justice 

et al., 1988). 

MODIS incorporates seven spectral bands that encompass the visible through middle 

infrared regions of the electromagnetic spectrum. Each band is narrowed to avoid atmospheric 
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absorption while retaining the ability to record spectral features of terrestrial objects. To help 

reduce atmospheric contamination, MODIS is equipped with several atmosphere-related bands 

that measure cloud properties, aerosols, and water vapor for post-processing accurate surface 

reflectance values (Justice et al., 1998). Further, the MODIS platform is very stable with a highly 

precise external orientation, resulting in subpixel geolocational accuracy (~50-m at nadir) (Wolfe 

et al., 2002).  

Remote sensing of the environment involves recording and interpreting images produced 

by radiant flux from a source area or target to a sensor, such as a satellite. Discrete measurements 

made within the visible and near infrared (NIR) regions of the electromagnetic spectrum are used 

to create spectral reflectance curves (Jensen 1983). These “spectral signatures” are not constant 

for a given feature and depend on the spectral distribution of the incident radiant flux onto a 

target, on geometric interactions between the sensor angle-of-view of the satellite sensor and the 

exiting energy from the Earth’s surface, on atmospheric properties, and on the physical 

characteristics of the target feature (Slater 1980). 

Chlorophyll in plant tissue absorbs visible energy for photosynthesis most effectively in 

the blue and red regions of the electromagnetic spectrum (An 2009). The red region is highly 

chlorophyll absorptive and dependent on chlorophyll content (Figure 2.1) and is therefore 

sensitive to green, or photosynthetically active, vegetation  (Tucker 1979; Tucker et al., 1991; 

Wardlow 2005).  
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the relationship between biomass and NIR reflectance is linear and positive (Jensen 1983) with 

the amount of reflectance dependent upon plant developmental stage.  

Satellite remote sensing has been used to assess regional environmental change by post-

classification analysis of land cover change to document separate, abrupt anthropogenic impacts 

on the land surface such as deforestation and urbanization. However, a variety of spectral 

vegetation indices, such as the normalized difference vegetation index (NDVI), can also be 

calculated from satellite image data in order to quantify the spatial and temporal variation in 

vegetation growth and activity (Linderholm 2006). Indices such as NDVI have also been 

successfully used to assess vegetation phenology (Wright et al., 2012).  

 Vegetation Indices 

Vegetation indices are mathematical combinations of surface reflectance at two or more 

wavelengths that are designed to emphasize particular vegetation properties. Derivation of 

vegetation indices are based on the reflectance properties of plant foliage, such as leaves, 

needles, and other green materials which vary greatly in chemical composition.  Vegetation 

indices often correlate well with several biophysical parameters such as leaf area index (LAI), 

fraction of photosynthetically active radiation (FPAR), and green aboveground biomass (Asrar et 

al., 1989; Baret and Guyot 1991; Wardlow 2005). The most significant components that affect 

leaf spectral response are pigments, water, carbon and nitrogen (ENVI Online Help 2005).  By 

understanding the basic composition of leaves and how they change under different 

environmental conditions, vegetation indices can be used to determine the general condition of 

vegetation, biomass, and land cover, in order to estimate net productivity (Cihlar et al., 1991; 

Tucker et al., 1991; An 2009).  
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Several studies have been conducted using different spectral band combinations to 

assess and monitor vegetation biomass, physiological status, and properties of plant canopies 

(Colwell 1973, Colwell 1974; Tucker 1979; Jensen 1983). Several combinations can accurately 

estimate biomass, monitor crops and rangelands, and detect changes in agricultural crop 

development while also accounting for soil background reflectance variations. Additionally, 

several different combinations of spectral bands have been proven effective in capturing 

phenological dynamics while monitoring different types of vegetation (Colwell 1973, Colwell 

1974; Tucker 1979).  

Vegetation biomass discrimination is highly dependent on the ratio of soil surface-

vegetation spectral reflectance, or radiance contrast, making particular wavelengths better to use 

over others (Colwell 1974). The ideal vegetation index for this purpose is one that would be 

highly sensitive to vegetation, insensitive to background soils, and minimally influenced by 

atmospheric path radiance.  Examples of frequently used vegetation indexes include the IR/red 

ratio (Colwell 1973, Colwell 1974), the soil-adjusted vegetation index (SAVI) (Huete 1988), the 

transformed SAVI (TSAVI) (Baret et al., 1989), the perpendicular vegetation index (PVI) 

(Richardson and Weigand 1977), the Kauth-Thomas transformation (tasseled cap or K-T) (Kauth 

and Thomas 1976), the enhanced vegetation index (EVI) (Huete et al., 2002), and the normalized 

difference vegetation index (NDVI) (Rouse et al., 1973).  

Equation 2.1 shows NDVI as the ratio of the difference between the near-infrared band 

(.75 to 1.10 μm) and the red band (.58 to .68 μm) and the sum of these two bands (Rouse et al., 

1973, Eidenshink and Faundeen 1994, Wardlow 2005):  
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NDVI = (NIR – red) / (NIR + red)           Equation 2.1 

 

where: 

NDVI = Normalized difference vegetation index 

NIR = reflectance in the near-infrared spectrum 

red = reflectance in the red spectrum 

 

NDVI is a measure of greenness that correlates well with total primary production 

(Tucker et al., 1991; Wardlow 2005; An 2009), and the amount of photosynthetic biomass 

(Cihlar et al., 1991; Zhou et al., 2001), which dominates both photosynthesis and transpiration 

processes. Typically, NDVI increases rapidly in the spring and then levels off until the end of 

August (Cihlar et al., 1991). Therefore, changes in NDVI translate into changes in vegetation 

conditions that coincide with the absorption of photosynthetically active radiation (Sellers 1985).  

Healthier vegetation conditions, and overall density and intensity of active vegetation, are 

associated with higher NDVI values, while degraded vegetation tends to result in lower NDVI 

values.  

Though NDVI has been proven to be very useful, limitations exist. Because NDVI is 

ratio-based, it is essentially non-linear, meaning lower ratio values tend to be enhanced and 

higher ratio values condensed causing values to saturate over high biomass conditions.  This 

“ratio predicament” may cause areas with high biomass density to have much larger NDVI 

values than areas with lower densities, even if the vegetation health conditions were identical.  

Since electromagnetic radiation in the visible and NIR bands of the spectrum cannot 

penetrate cloud cover, satellite images suffering from cloud contamination yield significantly 

lower NDVI values that do not correctly reflect actual surface conditions unless preprocessing 

filtering and smoothing is applied to the raw data.  Additionally, the NIR band includes a strong 
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water absorption region, which can reduce the reliability of NDVI calculations (Wardlow 

2005). Other limitations associated with most vegetation indices include atmospheric path 

radiance, satellite drift, calibration uncertainties, inter-satellite sensor differences, bidirectional 

and atmospheric effects, and even volcanic eruptions (Zhou et al., 2001).  

 Phenology and Phenometrics 

Phenology has emerged as an important focus in ecological research for its use in 

vegetation monitoring/modeling and addressing issues related to climate change. Phenology is 

the timing of seasonal vegetation activities (Parmesan 2006) and the study of how vegetation 

growth may be affected by interannual and seasonal variations in meteorological conditions, soil 

characteristics, and photoperiod (Schwartz 1998; Cleland et al., 2007). It can be used to predict 

the fitness and probability of species occurrence under certain conditions (Cleland et al., 2007), 

making it one of the most efficient ways of following species response to changing ecosystem 

conditions (Walther et al., 2002). Through the use of remote sensing, the study of phenology 

provides additional insights into the natural and anthropogenic processes impacting vegetation 

life cycles. 

Phenophases represent a particular stage of development such as plant emergence or 

green-up, growth rate, blooming period and senescence (Price et al., 2004; Yu et al., 2004; 

Cleland et al., 2007). Usually measured in Julian dates, or days since December 31 (Ahas et al., 

2002; An 2009), different phenology metrics, or phenometrics, can be described using satellite 

imagery and monitoring NDVI values during the course of a growing season. 

A multitemporal index profile will illustrate the relative phenological characteristics of 

vegetation (e.g., timing of greenup, peak greenness, senescence) if the satellite imagery used to 

generate the profile has sufficient spatial, spectral, and temporal resolution (Wardlow 2005). A 
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dynamic events may be revealed (Eklundh and Olsson 2003, Heumann et al., 2007; Eklundh 

and Jönsson 2010). Spectral-temporal information extracted from time-series vegetation index 

data has been used successfully to characterize vegetation phenology  and assist with 

forecasting/monitoring vegetation density and health (Reed et al., 1994; Wardlow 2005; Jacquin 

et al., 2009).  

Time series of MODIS-derived NDVI datasets have been used to assess vegetation 

activity and measure vegetation dynamics (Zhang et al., 2003; Ahl et al., 2006), including 

spatiotemporal changes in vegetation condition and biomass  (Huete et al., 2002).  Specifically, 

16-day MODIS maximum value NDVI composite images (MOD13Q1) with a 250 meter spatial 

resolution have been shown successful in measuring important phenometrics and detecting 

possible human-induced land cover changes (Wardlow 2005; Jacquin et al., 2009; Verbesselt et 

al., 2009). Variations in phenometric values associated with different land cover regions, land 

use practices, climatic conditions, as well as planting dates for crops, may be determined 

(Wardlow 2005).  

An observed time series can be decomposed into three components: the trend (long term 

direction), the seasonal (systematic, calendar related movements) and the irregular 

(unsystematic, short term fluctuations) (Cleveland et al., 1990; Australian Bureau of Statistics 

2005; Verbesselt et al., 2009). The seasonal component represents the phenology for an area of 

interest, illustrating the timing and signal magnitude of the vegetation growing season. Year-to-

year variations in the seasonal component of a time series suggest difference in weather 

conditions or changes in land cover type (Verbesselt et al., 2009).  The trend component, often 

expressed as a linear trend from the beginning to end of a time series, provides an indication of 

the direction and magnitude of vegetation change (i.e., positive or negative) (Jacquin et al., 
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2009). The remainder, or irregular component, is essentially treated  as signal noise caused by 

external factors.  

Signal decomposition is usually performed in order to discriminate the time series signal 

from its associated noise.  Raw data from remote sensors must first be processed through a series 

of filtering, compositing, smoothing or screening procedures in order to isolate the signal from 

the noise. This preprocessing is often based on a smoothing of distinct sequences of temporally 

adjacent data points and may mask some abrupt phenological changes taking place on the ground 

(Cleland et al., 2007). 

There are many different types of time series analysis techniques used to filter raw NDVI 

data and the extract phenometrics, including the seasonal Kendall (SK) trend test (Hirsch and 

Slack 1984; de Beurs and Henebry 2004, de Beurs and Henebry 2005; de Beurs et al., 2009;), 

principal component analysis (PCA) (Crist and Cicone 1984), pixel-above-threshold technique 

(PAT) (Cleland et al., 2007), wavelet decomposition (Anyamba and Eastman 1996), change 

vector analysis (CVA) (Lambin and Strahler 1994), and Fourier analysis (Azzali and Menenti 

2000). In addition, the TIMESAT software program provides several filtering options to smooth 

raw vegetation index data and extract key phenometric data (Eklundh and Jönsson 2010). 

 The TIMESAT program was created to smooth and extract phenometrics from remotely-

sensed time series data.  In previous studies, TIMESAT has been used to study vegetation 

phenology (Eklundh and Jönsson 2003), map phenological and environmental changes (Eklundh 

and Olsson 2003; Hickler et al., 2005; Olsson et al., 2005; Seaquist et al., 2006; Heumann et al., 

2007; Seaquist et al., 2009), examine high-latitude forest phenology (Beck et al., 2007), assess 

satellite and climate data-derived indices of fire risk (Verbesselt et al., 2006), monitor human 



 

15 

 

impacts of fire seasons (Le Page et al., 2009), and evaluate relationships between coniferous 

forest NDVI and models of conifer photosynthetic activity (Eklundh and Jönsson 2010).  
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Soil Conservation Service 1975).  Elevations range from 312 to 420 meters above mean sea 

level with the highest elevations located along a north-south axis through the center of the 

installation and generally decreasing towards the southwest and southeast directions.  The 

average slope is 4.1% with the highest slope values found in the south and east, mainly near the 

alluvial bottomlands.   

Most Fort Riley soils are friable, overlying nearly impervious clays and were developed 

residually from parent materials and/or from other materials carried by water or wind and 

deposited on the base.  Simplified soil classifications show that the majority of the soil is a clay 

upland that is combined with loamy uplands, limy soils, and loamy lowlands.  Soil permeability 

varies from excessively drained sandy lowland soils to tight clays with very slow permeability 

(U.S. Department of Agriculture Natural Resources Conservation Service 2012). 

The vegetation of Fort Riley is a mix of native prairie and introduced vegetation 

consisting of C4 grasses (46%), forbs (32%), legumes (11%), and C3 grasses (11%) (Dickson et 

al., 2008). According to Althoff et al., (2006), the installation is comprised of three major 

vegetation communities, including grasslands (32,200 ha), shrublands (1,600 ha), and woodlands 

(6,000 ha). The eastern portion of Fort Riley shares many of the characteristics to the Flint Hills, 

with vegetation dominated by warm-season highly productive C4 grasses and a mixture of 

annual and perennial forbs. The western portion of Fort Riley represents a plant community 

undergoing succession back to native prairie from past cultivation in the 1960s (Quist et al., 

2003).  

Fort Riley grasslands are dominated by big bluestem (Andropogon gerardii), Indiangrass 

(Sorghastrum nutans), switchgrass (Panicum virgatum), and little bluestem (Schizachyrium 

scoparium). Other grasses and forbs are also present at lower abundances.  Shrublands consist 
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primarily of buckbrush (Symphoricarpos orbiculatas), smooth sumac (Rhus glabra), and rough-

leaved dogwood (Cornus drummondii). Additionally, there is a mixture of grasses and forbs that 

occur along the edges of woodlands and in solitary patches of grassland areas. Typically located 

along riparian lowlands, woodlands are dominated by chinquapin oak (Quercus muhlenbergii), 

bur oak (Quercus macrocarpa), American elm (Ulmus americana), hackberry (Celtis 

occidentalis), and black walnut (Juglans nigra).  

The majority (80%) of the forb community, most common within Fort Riley grasslands, 

is dominated by white heath aster (Symphyotrichum ericoides), the common sunflower 

(Helianthus annuus), whorled milkweed (Asclepias verticillata), and common milkweed 

(Asclepias syriaca). Common sunflower abundance and distribution is closely linked to 

disturbance caused by tracked military vehicles during maneuvers (Althoff et al., 2006). Various 

introductions of non-native invasive species have resulted in shifts in species composition and 

productivity (Quist et al., 2003), similar to that experienced throughout the Great Plains region.  

 Military Training and Environmental Impacts 

Fort Riley serves as a combat training ground for mortar and artillery fire, small arms 

fire, aircraft flights, field maneuvers, tanks, and mechanized infantry units (Quist et al., 2003; 

Althoff et al., 2006). Since the 1980’s, military units have engaged in continuous maneuver-

based training across the entire installation (U.S. Army 1994), though such activities are 

concentrated in the northern 75% portion of the installation (Quist et al., 2003; Althoff et al., 

2006). This concentrated area of activity includes 17 of the 18 total training areas at Fort Riley 

(approximately 26,000 ha) which experiences significant disturbance from military vehicle 

traffic.  
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High intensity military training associated with mechanized military maneuvers has 

been cited as the cause of increased bare soil, reduced plant cover, compacted soil conditions, 

and compositional shifts in plant communities (Shaw and Diersing 1990; Trumbell et al., 1994; 

Whitecotton et al., 2000; Quist et al., 2003; Guretzky et al., 2006). Military training alters 

vegetation composition by decreasing the basal cover of perennial warm-season grasses and 

increasing the cover of perennial cool season grasses and annual warm-season forbs (Wilson 

1988; Shaw and Diersing 1990; Milchunas et al., 1999; Dickson et al., 2008). Mechanized 

military maneuvers increase the populations of non-native species, weeds, forbs, and annuals 

(Milchunas et al., 2000), while reducing the cover provided by native perennial grasses and forbs 

(Quist et al., 2003; Guretzky et al., 2006; Dickson et al., 2008). Roughly 25-35% of the surface 

area of military training grounds is heavily damaged by military operations.  Changes in the 

proportion of bare ground, litter, vegetative basal cover, as well as the churning of soil surface 

from military vehicle traffic increases the potential for invasion by undesirable species 

(Milchunas et al., 1999) as bare ground is essential for weed development (Wilson 1988). 

Smaller annual species tend to replace large perennials (Dickson et al., 2008) and short-lived 

perennials tend to replace long-lived perennials (Milchunas et al., 1999).  

Introduced non-native species, such as broad-leaved forbs, are extremely vulnerable to 

military disturbance as compared to native prairie vegetation communities. Graminoids, such as 

the native tall grasses of Fort Riley, show higher resistance and resilience to military disturbance 

due to their deeper root systems (Dickson et al., 2008). The native grasses of Fort Riley are 

matrix-forming, meaning they consume the majority of available resources and have dense root 

systems that give them the ability to reduce surface erosion. However, when stripped or replaced 

of such characteristics, military training areas become highly susceptible to soil erosion (Quist et 
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al., 2003) and suffer from significant decreases in plant species richness and diversity 

(Milchunas et al., 2000; Quist et al., 2003). In 2001, 50% of the grassland areas at Fort Riley 

were characterized as bare ground, which may have been due to increased off-road training by 

wheeled and tracked vehicles during this time (Althoff et al., 2006).  

 Sustainable Management of U.S. Army Military Training Lands 

Since passage of the National Environmental Policy Act of 1969 (NEPA) and publication 

of U.S. Army Regulation 200-2 (Department of the Army 1988), the U.S. Army has challenged 

itself to consider environmental effects and costs identified through decision-making based upon 

“a systematic, interdisciplinary approach that ensures integrated use of the natural and social 

sciences, planning, and the environmental design arts.”  To help achieve this requirement, U.S. 

Army Regulation 350-19 mandates the critical goal of “maximizing the capability, availability, 

and accessibility of ranges and training lands to support doctrinal requirements, mobilization, 

and deployments” (Department of the Army, 2005).  This same regulation established the 

Integrated Training Area Management (ITAM) program at the installation level whose objective 

is to establish the “policies and procedures to achieve optimum, sustainable use of training and 

testing lands” through implementation of “a uniform land management program.”  A key term 

used in U.S. Army Regulation 350-19 is “sustainable use” which helps ITAM personnel develop 

a local philosophy for training land management, as well as identifying specific methods and 

approaches for managing and maintaining training lands to support military mission readiness at 

the installation level.   

The Range and Training Land Assessment (RTLA) component of the Integrated Training 

Area Management (ITAM) program was created by the U.S. Army to support the ITAM mission 

by monitoring training lands for environmental degradation, including trends in plant 
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communities. This monitoring information helps military land managers maintain valuable 

training lands for present and future generations without losing ecological diversity (Althoff et 

al., 2006). The Land Condition Trend Analysis (LTCA) denotes a standard methodology for the 

collection, analysis, and documentation of vegetation conditions on installations (Tazik et al., 

1992; Althoff et al., 2006). Through the use of GIS and remote sensing techniques, RTLA 

personnel can effectively monitor training land impacts, and their subsequent recovery, over long 

time periods at low cost. 

 Konza Prairie Biological Station  

Konza Prairie Biological Station (KPBS) is located on 3,487-hectares of protected land 

south of Manhattan, Kansas (39.09°N, 96.57°W), in Northeastern Kansas (Figure 3.3). The KPBS 

is owned by the Nature Conservancy (http://www.nature.org) and operated by the Division of 

Biology at Kansas State University (http://kpbs.konza.ksu.edu). One of the National Science 

Foundation’s Long-term Ecological Research Sites, KPBS has similar vegetation, soils, 

prescribed burning practices, and climate due to its close proximity (less than 10 kilometers) to 

Fort Riley. 

KPBS is dominated by native tallgrass prairie of the Flint Hills ecoregion, part of the 

same largest continuous tallgrass prairie in North America. Because of the steep slopes and 

underlying limestone soils, KPBS proves unsuitable for cultivation and has remained unplowed, 

retaining its native characteristics. Elevation range from approximately 318 to 445 m above sea 

level and average 397 m across the site (Knapp et al., 1998; Briggs 2012;). On average, KPBS 

experiences 34-36 inches of precipitation, usually from April to October (Hayden 1998), with 

average monthly air temperature ranging from -3°C in January to 27°C in July and soil 

temperatures tend to range from 1.6°C in January to 29.3°C in July (Blair 1997). 
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Figure 3-3 Konza Prairie Biological Station study area showing experimental watersheds 

but excluding agricultural and developed areas. 

 

 

An experimental plan established in 1971 assigned KPBS watersheds to different 

treatments of prescribed burning, ranging from annual burns to long-term (e.g., 20 years) 

unburned.  In October 1987, bison were introduced to Konza to examine the effects of grazing on 

the prairie ecosystem and, as of 1992, 1,100 ha were being actively grazed.  Cattle also graze in 

selected watersheds. 

The flora of KPBS results from both regional climatic influences as well as local-scale 

factors such as soils, burning regime, and grazing.  Over five hundred species of vascular plants 

have been reported on Konza Prairie since 1975 (Freeman 1998).  The ten most species-rich 

families account for nearly 60% of all species identified at KPBS and are comparable to those 

found throughout the Flint Hills ecoregion  (Kuchler 1974).  Perennial plants comprise 65% of 

all the species at Konza, with annuals representing most of the remaining species. 
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KPBS shares a similar grassland species composition mix with Fort Riley, being 

dominated by native warm-season C4 grasses such as big bluestem (Andropogon gerardii), little 

bluestem (Schizachyrium scoparium), indiangrass (Sorghastrum nutans), and switchgrass 

(Panicum virgatum). In addition to grasses, forbs are commonly found throughout the site.  

Common species on mesic sites include white aster (Aster ericoides), daisy fleabane (Erigeron 

strigosus), and wild alfalfa (Psoralea tenuiflora).  Species on more xeric areas include western 

ragweed (Ambrosia psilostachya), white sage (Artemisia ludoviciana), and aromatic aster (Aster 

oblongifolius) (Freeman and Hulbert 1985; Freeman 1998).  
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Chapter 4 - Sensitivity of TIMESAT-derived Phenometrics to 

Adaptive Savitzky-Golay Filters Applied to MODIS Time Series 

Data 

 Abstract 

Time series of normalized difference vegetation index (NDVI) data from satellite spectral 

measurements can be used to characterize and quantify changes in vegetation phenology and 

explore the role of natural and anthropogenic activities in causing those changes.  Several 

programs and methods exist to process phenometric data from remotely-sensed imagery, 

including TIMESAT, which extracts seasonality parameters from time-series image data by 

fitting a smooth function to the series. This smoothing function, however, is dependent upon 

user-defined input parameter settings which have an unknown amount of influence in shaping 

the final phenometric estimates.  To test this, a sensitivity analysis was conducted using MODIS 

maximum value composite NDVI time-series data acquired for Fort Riley, Kansas during the 

period 2001-2012.  A total of three parameter settings were changed to create 7 TIMESAT input 

setting files. The 7 extracted phenometric data extracted by TIMESAT using the different input 

settings files were compared against that from a base scenario using Pearson and Lin’s 

Concordance Correlation Analyses. Findings showed that small changes to parameter settings 

result in insignificant differences in phenometric estimates, with the exception of end of season 

data and growing season length.  Phenometric results are dependent upon user-defined input 

settings and an optimal input settings file may differ based on distinctive study areas. For Fort 

Riley, the optimal settings file included a start and end of season threshold value of 25%, a 

window size of 4, and envelope iteration value of 2. 
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 Introduction 

Phenology has emerged as an important focus in ecological research for its use in 

vegetation monitoring/modeling and addressing issues related to climate change. Phenology is 

the timing of seasonal vegetation activities (Parmesan 2006) and the study of how vegetation 

growth may be affected by interannual and seasonal variations in meteorological conditions, soil 

characteristics, and photoperiod (Schwartz 1998; Cleland et al., 2007). It can be used to predict 

the fitness and probability of species occurrence under certain conditions (Cleland et al., 2007), 

making it one of the most efficient ways of following species response to changing ecosystem 

conditions (Walther et al., 2002). Through the use of remote sensing, the study of phenology 

provides additional insights into the natural and anthropogenic processes impacting vegetation 

life cycles. 

Usually measured in Julian dates, or days since December 31, phenology can be 

measured by using satellite imagery and extracting phenometric data from vegetation index data 

such as that acquired by the MODIS sensor (Ahas et al., 2002; An 2009).  The spectral-temporal 

information obtained from time-series NDVI data can be used to characterize and quantify 

changes in vegetation phenology (Reed et al., 1994; Wardlow 2005) and to explore the potential 

role of different natural and anthropogenic activities in causing those changes (Jacquin et al., 

2009). 

Phenometrics such as start and end of growing season, growing season length, and 

maximum greenness value may be extracted from a time series of NDVI data by fitting a 

function to the original data, which often incorporates use of a filter, or smoothing function, to 

remove atmospheric and sensor calibration noise (Chen et al., 2004; Eklundh and Jönsson 2010; 

Jönsson et al., 2010). A number of software packages and methods exist to facilitate data 

smoothing and extraction of fitted functions, including the TIMESAT software package 
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(Eklundh and Jönsson 2010).  However, smoothing typically requires a number of user-defined 

parameter settings to optimize a given curve-fitting function to the raw satellite data.  For 

example, the Savitzky-Golay filter available in TIMESAT requires values for important 

parameters such as start and end of season threshold, window size, and number of envelope 

iterations (TIMESAT MANUAL).  While general guidelines are available for selecting the 

proper values for these parameters, it remains unclear as to what impact adoption of TIMESAT 

“default” parameter settings might have on extracted phenometrics. 

 Past Work 

A typical NDVI profile, or phenology curve, illustrates the onset of greenness or when 

the vegetation begins to green-up, the maximum NDVI value illustrating the highest relative 

photosynthetic biomass, the rate of senescence or decay, the end of greenness date, and the 

growing and brown days (days of senescence) of a year accumulating to the season length of the 

year (Figure 4.1). The area beneath this phenology curve represents the accumulated NDVI or an 

indication of relative photosynthetic biomass, which is dependent upon all other phenometric 

data. 

Spectral-temporal information extracted from time-series vegetation index data has been 

used successfully to characterize vegetation phenology and assist with forecasting/monitoring 

vegetation density and health (Reed et al., 1994; Wardlow 2005; Jacquin et al., 2009).  Time 

series of satellite-derived NDVI datasets have been used to assess vegetation activity and 

measure vegetation dynamics (Zhang et al., 2003; Ahl et al., 2006), including spatiotemporal 

changes in vegetation condition and biomass  (Huete et al., 2002).  Specifically, 16-day MODIS 

maximum value NDVI composite images (MOD13Q1) with a 250 meter spatial resolution have 

been shown successful in measuring important phenometrics and detecting possible human-
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previous studies, TIMESAT has been used to study vegetation phenology (Eklundh and 

Jönsson 2003), map phenological and environmental changes (Eklundh and Olsson 2003; 

Hickler et al., 2005; Olsson et al., 2005; Seaquist et al., 2006; Heumann et al., 2007; Seaquist et 

al., 2009), examine high-latitude forest phenology (Beck et al., 2007), assess satellite and 

climate data-derived indices of fire risk (Verbesselt et al., 2006), monitor human impacts of fire 

seasons (Le Page et al., 2009), and evaluate relationships between coniferous forest NDVI and 

models of conifer photosynthetic activity (Eklundh and Jönsson 2010).  

As pointed out in the TIMESAT manual, optimal curve fitting during smoothing is “more 

of an art than a science” and some trial and error may be necessary to arrive at a final set of 

parameter settings (Eklundh and Jönsson 2010). This study reports the results of a sensitivity 

analysis of phenometrics to selected parameters required by the TIMESAT Savitzky-Golay filter 

using as input a 2001-2012 time series of MOD13Q1 images for Fort Riley, Kansas.  

Phenometric data from the time series was extracted using different Savitzky-Golay filters 

created from unique user-defined parameter settings.  Ordered pairs of extracted phenometrics 

obtained from the different filter parameter settings were compared at the pixel level using 

Pearson and Lin’s Concordance Correlation tests (Lin 1989; McGrew and Monroe 2000).  This 

analysis allowed for specification of an “optimal” Savitzky-Golay filter parameter settings file 

and, ultimately, more confidence in the validity of extracted phenometrics for the Fort Riley 

study area. 

 Study Area 

Fort Riley is a United States Army base located in northeastern Kansas (39°11’N, 

96°48’W), on the Kansas River, between Junction City and Manhattan and within Geary, Riley, 
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High intensity military training associated with mechanized military maneuvers has 

been cited as the cause of increased bare soil, reduced plant cover, compacted soil conditions, 

and compositional shifts in plant communities (Shaw and Diersing 1990; Trumbell et al., 1994; 

Whitecotton et al., 2000; Quist et al., 2003; Guretzky et al., 2006). Military training alters 

vegetation composition by decreasing the basal cover of perennial warm-season grasses and 

increasing the cover of perennial cool season grasses and annual warm-season forbs (Wilson 

1988; Shaw and Diersing 1990; Milchunas et al., 1999; Dickson et al., 2008). Mechanized 

military maneuvers increase the populations of non-native species, weeds, forbs, and annuals 

(Milchunas et al., 2000), while reducing the cover provided by native perennial grasses and forbs 

(Quist et al., 2003; Guretzky et al., 2006; Dickson et al., 2008).  

Fort Riley’s climate is generally considered temperate continental.  Weather is highly 

variable but can be characterized as having hot summers, cold, dry winters, moderate winds, low 

humidity, and a pronounced peak in rainfall late in the spring and in the first half of summer.  

Average monthly temperatures range from approximately -3°C in January to 26°C in July 

(PRISM Climate Group 2012).  Mean annual precipitation is approximately 843 mm, but 

extremely variable from year to year, with 75% of precipitation occurring during the growing 

season.  The source of much precipitation is thunderstorms, which typically have intense rainfall 

rates of approximately 60 mm/hr and occur approximately 55 days each year in this area (U.S. 

Department of Agriculture Soil Conservation Service 1975;  Knapp 1998). 

The vegetation of Fort Riley is a mix of native prairie and introduced vegetation 

consisting of C4 grasses (46%), forbs (32%), legumes (11%), and C3 grasses (11%) (Dickson et 

al., 2008). The installation is comprised of three major vegetation communities, including 

grasslands (32,200 ha), shrublands (1,600 ha), and woodlands (6,000 ha) (Althoff et al., 2006) 
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The eastern portion of Fort Riley shares many of the characteristics to the Flint Hills, with 

vegetation dominated by warm-season highly productive C4 grasses and a mixture of annual and 

perennial forbs. The western portion of Fort Riley represents a plant community undergoing 

succession back to native prairie from past cultivation in the 1960s (Quist et al., 2003).  

Fort Riley grasslands are dominated by big bluestem (Andropogon gerardii), Indiangrass 

(Sorghastrum nutans), switchgrass (Panicum virgatum), and little bluestem (Schizachyrium 

scoparium). Other grasses and forbs are also present at lower abundances.  Shrublands consist 

primarily of buckbrush (Symphoricarpos orbiculatas), smooth sumac (Rhus glabra), and rough-

leaved dogwood (Cornus drummondii). Additionally, there is a mixture of grasses and forbs that 

occur along the edges of woodlands and in solitary patches of grassland areas. Typically located 

along riparian lowlands, woodlands are dominated by chinquapin oak (Quercus muhlenbergii), 

bur oak (Quercus macrocarpa), American elm (Ulmus americana), hackberry (Celtis 

occidentalis), and black walnut (Juglans nigra).  

The majority (80%) of the forb community, most common within Fort Riley grasslands, 

is dominated by white heath aster (Symphyotrichum ericoides), the common sunflower 

(Helianthus annuus), whorled milkweed (Asclepias verticillata), and common milkweed 

(Asclepias syriaca). Common sunflower abundance and distribution is closely linked to 

disturbance caused by tracked military vehicles during maneuvers (Althoff et al., 2006).  

 Data and Methods 

 Data Acquisition 

The image data used in this analysis was the MODIS MOD13Q1 product, a 16-day 

maximum value NDVI composite with a 250 meter spatial resolution.  A gridded level-3 product 

delivered in a sinusoidal projection, MODIS radiance counts are calibrated and geolocated based 
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Collected images spanned the period from January 2001 through December 2012 (n = 

12 years). Because TIMESAT only analyzes for the n – 1 centermost seasons, the results 

presented here will be based on 11 years and exclude 2012 (Eklundh and Jönsson 2010). Each 

calendar year includes 23 total MOD13Q1 images with this study incorporating 276 total images 

(23 x 12).   

 Data Processing in TIMESAT 

After data acquisition and preprocessing was complete, a text file was prepared to serve 

as the input for TIMESAT processing (see Appendix A for the complete text file used in this 

study).  The first row of the input text file included the number of images to be used in the 

analysis (i.e., 276) followed in the second row by the full path and filename of the first 

MOD13Q1 image.  Each subsequent row lists the next image, including the full path and 

filename.   

After reading the input file and initial lines for each of the images, TIMESAT reads each 

image file comprising the time series image (and any optional quality indicators incorporated), 

preprocesses the images using optional quality indicators, smooth’s the time series data using a 

number of possible filter types and user-defined parameter settings, and extracts seasonality 

parameters (i.e., phenometrics) to a file based on the selected smoothing function.   

The TIMESAT graphical user interface (GUI) presents the controls for selecting the 

smoothing function and parameter settings, and provides a graphical view of the raw and 

smoothed curves for one pixel, along with the resulting phenometrics (Figure 4.4).  The critical 

steps of selecting a smoothing function and related parameter settings are organized in three 

subsections within the TIMESAT interface and include data plotting, common settings, and 

class-specific settings.  A brief discussion of each subsection follows. 
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to the raw data (Jönsson and Eklundh 2002; Chen et al., 2004). It may be difficult to 

discriminate between the maxima and minima that may be due to seasonal variation, and that 

which may be due to noise or disturbances (Jönsson and Eklundh 2002). The double logistic 

function included with TIMESAT has been found to preserve NDVI signal integrity (Hird and 

McDermid 2009) but result in no major differences with the Savitzky-Golay method (Jönsson et 

al.,2010).   

First proposed in 1964, the Savitzky-Golay filter is a simplified least-squares-fit 

convolution for extracting derivatives and smoothing a spectrum of consecutive values. It is 

essentially a weighted moving average filter based on a polynomial where the polynomial order 

dictates the convolution. When the weight coefficients are applied to a signal, a polynomial least 

squares fit will be applied to the filter window. Such a procedure is intended to maintain peak 

times within the data and reduce introduced bias noise from the data (Chen et al., 2004; Eklundh 

and Jönsson 2010). It is intended to preserve the area and mean position of a seasonal peak, but 

alter both the width and height. This method is sensitive to local variations in vegetation index 

values, proving useful when comparing against different regions (Jönsson et al., 2010). The end 

result is a smoothed curve adapted to the upper envelope (peak values) of the values in a time-

series.  More information on the mathematics behind this procedure and its coefficients may be 

found in Savitzky and Golay (1964), Steinier et al., (1972), and Press et al., (1996). 

 As Figure 4.4 indicates, Fort Riley experiences growing season transitions during green-

up and senescence phases.  An optimal smoothing filter for this situation would utilize a narrow 

moving window approach. The Savitzky-Golay filter has the option of modifying the width of 

the moving window that is used to filter the raw data. A large window will have a higher degree 

of filtering, flatten sharp peaks and hamper the ability to detect rapid changes in the data. A 
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smaller window will detect these rapid changes occurring on Fort Riley and preserve sharp 

peaks in the data.  

 Common Settings  

Common settings in TIMESAT affect all pixels in the image time series.  Similar to the 

data plotting options, TIMESAT makes available three different methods in common settings:  

STL original, STL replace spike method, and median spike method.  The STL method (seasonal 

trend LOESS) provides seasonal smoothing and decomposes time series data by using a LOESS 

smoother (locally weighted regression smoother) based on a weight system (Verbesselt et al., 

2009). This decomposition takes the full time-series and partitions it into a seasonal and a trend 

component, and low weights are assigned to the values that do not fit these patterns (Cleveland et 

al., 1990).  

The median spike method was used in this analysis because, unlike the two STL options, 

it retains all raw data values.  However, any values in the time series that are significantly 

different from their left- and right neighbors – and from the median in a window – are classified 

as outliers and are assigned zero weight (Eklundh and Jönsson 2010). 

The median filter option also incorporates a spike value.  The spike value is used to help 

determine significant differences in adjacent values in the time series.  Data values that differ 

from the median by more than the product of the spike value and standard deviation of the time-

series, and that are different from the left- and right neighbors are removed.  The TIMESAT 

manual suggests that a normal setting for the spike value is 2 and warns that a lower value will 

remove more data values from the analysis (Eklundh and Jönsson 2010).  Based on this 

recommendation, a spike value of 2 was used in this analysis. 
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 Fixed Class-Specific Settings 

Class-specific settings in TIMESAT apply to individual land classes (i.e., different 

landuse/landcover categories).  While only a single class is recognized when processing data 

through the TIMESAT GUI, multiple classes can be accommodated and analyzed separately 

through the TIMESAT process function.  A total of eight different class-specific settings can be 

applied.  The first four, and those which will not be examined by the sensitivity analysis, are 

briefly discussed below. 

The seasonal parameter defines the number of growing seasons per year.  A parameter 

value of 1, like that applied to the Fort Riley data, indicates a single season per year.  For areas 

experiencing dual seasons, a parameter value of 0 should be used. 

A second parameter, start of season method, offers two choices:  Amplitude and absolute 

value.  This parameter works with the season start and season stop values.  When choosing 

amplitude as the method, the season start and stop values are entered as percentages of the 

growing season maximum value.  For example, a season start value of 0.20 will identify the time 

when 20% of the maximum growing season amplitude is reached.  Conversely, setting an 

absolute value for start of season method finds the time each season when that specific digital 

number value is reached. 

Further fine-tuning of the impact of the number of envelope iterations (explained in the 

following section) can be made through adjustments to the third setting adaptation strength.  

Ranging from a minimum of 1 to a maximum of 10, normal adaptation values are typically 2 or 3 

(Eklundh and Jönsson 2010).  After reviewing the Fort Riley time series data in the TIMESAT 

GUI, and visually comparing differences in curve fits using typical adaptation strength values, a 

final setting of 2 was selected as the curve fit tended to honor the raw data values best.  
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The force minimum option (setting number 4), if active, essentially removes extremely 

low values in the time series (e.g., outliers) and replaces them with the new value entered.  Using 

this option is helpful in eliminating unusually low NDVI values such as those recorded during 

the winter when snow covers the land surface.  Forcing these low values into something 

approaching the mean winter minima helps preserve the true seasonal curves generated by the 

fitted function.  Fort Riley does experience extended winter periods with snow on the ground, so 

this study implements a forced minimum value of 80.  

 Dynamic Class-Specific Settings  

The second set of four class-specific settings, and those selected for participation in the 

sensitivity analysis, include the Savitzky-Golay window size, number of envelope iterations, start 

of season (SOS) and end of season (EOS). When previewed in the TIMESAT GUI, each of these 

settings appeared to exert considerable influence on the shape of the curve fitted to the NDVI 

time series, as well as the resulting phenometrics reported in the seasonality data window.  

Related literature does not provide definitive guidance on the most appropriate values for these 

settings.  For example, SOS and EOS values (start of season method = amplitude) typically range 

between a setting of 10-25%.  

The window size represents the width, or half-window, of the moving window used by 

the Savitzky-Golay filter during smoothing.  The width of the moving window helps to 

determine the amount of smoothing that takes place and impacts the ability to capture rapid 

changes in the NDVI time series.  Implementing a large window size may neglect important 

variations and flatten out sharp peaks in the data (Chen et al., 2004).  The TIMESAT manual 

suggests a starting window size value of floor(noptsperyear/4).  For the Fort Riley MOD13Q1 
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time series, this results in a base value of 5.  Chen et al., (2004) concluded that a window size of 

4 was the optimal setting for their data as it provided the best fit. 

The second dynamic class-specific setting in the sensitivity analysis is number of 

envelope iterations.  The fit of the smoothing function previously selected can be made to 

approach the upper envelope of a time series using an iterative and multi-step procedure that can 

be repeated twice.  Specifying a value of 1 for number of envelope iterations results in only one 

“fit” to the data and no adaptation.  With values of 2 or 3, one or two additional fits are applied 

to force the fitted function towards the upper envelope (Eklundh and Jönsson 2010).  Because the 

Savitzky-Golay filter is generally sensitive to the upper envelope of the smoothing function, 

number of envelope iterations is one of the parameters settings that will be examined with the 

sensitivity analysis.  Selecting too large of a value may introduce error into the estimated 

beginning of season and end of season dates by over-fitting the curve.  Values which are too 

small may cause errors by including in the fitted curve data related to atmospheric or calibration 

noise. 

The final two dynamic settings are SOS and EOS, represented in the TIMESAT GUI as 

season start and season end, respectively.  Assuming amplitude as the start of season method, 

values for SOS and EOS will range between 0 and 1.  These values represent the proportion of 

the seasonal amplitude reached each season.  For example, a SOS value of 0.20 establishes as the 

season start the date where the fitted curve reaches 20% of its maximum value each growing 

season. Though two separate settings, SOS and EOS are typically assigned the same values.  Past 

researchers have used various values for SOS/EOS including 0.10 (White et al., 1997; Jönsson 

and Eklundh 2002; Jones et al., 2012) and 0.25 (Dragoni and Rahman 2012).   Selecting low 

values for this setting may place SOS/EOS too early/late in the season in portions of the fitted 
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curve dominated by atmospheric and calibration noise.  High values may mistakenly label as 

the SOS/EOS date periods well inside the actual growing season instead of its true 

beginning/end. Table 4.1 offers a quick summary of the specific input values chosen for this 

analysis based both on recommendations from the TIMESAT manual and those in related 

literature. 
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Table 4.1 TIMESAT parameter settings and input values selected for this analysis. 

 

Parameters Suggested Source Used 

Data Plotting 

Filters Gaussian, 

logistic, 

Savitzky-Golay

Savitzky and Golay 1964; 

Jönsson and Eklundh 2002; Hird 

and McDermid 2009; Jönsson et 

al., 2010 

Savitzky-

Golay 

Common Settings 

Spike Method STL original; 

STL replace 

spike; median 

spike 

Verbesselt et al., 2009; Eklundh 

and Jönsson 2010 

Median 

spike 

Spike Value 2 Eklundh and Jönsson 2010 2 

Fixed Class-Specific Settings 

Seasonal Parameter 1 Eklundh and Jönsson 2010 1 

Start of Season 

Method 

Amplitude, 

absolute value 

Eklundh and Jönsson 2010 Amplitude 

Adaptation Strength 2-3 Eklundh and Jönsson 2010 2 

Force Minimum N/A N/A 80 

Dynamic Class-Specific Settings 

Savitzky-Golay 

Window Size 

5 Chen et al., 2004; Eklundh and 

Jönsson 2010 

3, 4, and 5 

Number of Envelope 

Iterations 

1, 2, 3 Eklundh and Jönsson 2010 1, 2, 3 

SOS and EOS 

Threshold 

10-25% White et al., 1997;  Jönsson and 

Eklundh 2002; Dragoni and 

Rahman 2012; Jones et al., 2012 

10%, 20%, 

25%, 30% 
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curves and output as a TPA file and processed by the TIMESAT TSM_printseasons routine to 

generate numerical phenometric data for further analysis.  The TIMESAT seasonality files 

contain 11 total phenometrics estimated for each pixel in every NDVI image in the 11 season 

time series (Table 4.3).   

Each individual NDVI image had 106 columns and 128 rows of pixels which results in 

more than 13,500 data values per phenometric per season.  Five of these 11 phenometrics were 

selected for comparison, including start of season, length of season, end of season, maximum 

value, and small season integral.  A graphic depiction of these 5 phenometrics is shown in 

Figure 4.5. 
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Table 4.3 List, definition, and biological significance of the phenometrics extracted using 

TIMESAT (Eklundh and Jönsson 2010). Rows highlighted in gray indicate phenometrics 

used in later analyses.  

 

Phenometric Definition Biological Significance 

Start of Season Time at which the left edge has increased to a user-

defined level measured from the left minimum value. 

Time of initial vegetation green 

up 

End of Season Time at which the right edge has decreased to a user-

defined level measured from the right minimum value 

Time of initial vegetation 

senescence 

Season Length Time from start to end of season Length of growing season from 

green up to senescence 

Base Level Average of the left and right minimum values Baseline for the seasonal 

phenology curve 

Middle of Season Mean value of the times at which the left edge has 

increased to the 80% level and the right edge has 

decreased to the 80% level. 

Time of the middle of the 

growing season. 

Maximum Value Largest data value for the fitted function during the 

season. 

The highest NDVI value of the 

season. 

Seasonal Amplitude Difference between the maximum value and base 

level. 

Used for referencing Start and 

End of Season thresholds. 

Rate of Increase at Beginning 

of Season 

Ratio of the difference between the left 20% and 80% 

levels and the corresponding time difference. 

Rate of vegetation green up. 

Rate of Decrease at End of 

Season 

Absolute value of the ratio of the difference between 

the right 20% and 80% levels and the corresponding 

time difference. 

Rate of vegetation senescence. 

Large Seasonal Integral Integral of the function describing the season from 

season start to season end. 

Proxy for the relative amount 

of vegetation biomass without 

regarding minimum values. 

Small Seasonal Integral Integral of the difference between the function 

describing the season and the base level from season 

start to season end. 

Proxy for the relative amount 

of vegetation biomass while 

regarding minimum values. 
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(Equation 4.3). Unlike Pearson’s, it incorporates the sample means () and sample standard 

deviations () in order to include a bias correction factor (Cb) in the analysis (Lin 1989). 

 

E[(Y1 – Y2)
2]  = (μ1 – μ2)

2  + (σ1
2 + σ2

2  – 2σ12)    Equation 4.3 

            = (μ1 – μ2)
2  + (σ1

  – σ2 )
2  + 2(1 – ρ) σ1σ2 

 

The bias correction factor (Equation 4.4) must be greater than 0, but less than 1, and 

measures how far the best-fit line deviates from the 45line (measure of accuracy).  When Cb = 1, 

there is no deviation from the 45 line, and as Cb decreases, the deviation increases. Therefore, 

the Lin’s concordance correlation coefficient contains both the measurements of accuracy (c) 

and precision () (Lin 1989).  

 

ࢉ࣋ ൌ ૚ െ ૛ሻ૛ሿࢅ	૚ିࢅሾሺࡱ

૚࣌
૛ା࣌૛

૛ାሺࣆ૚ିࣆ૛ሻ૛
       Equation 4.4 

 

௖ߩ ൌ 1 െ
45௢݈݅݊݁	݉݋ݎ݂	݊݋݅ݐܽ݅ݒ݁ܦ	ݎ݈ܽݑܿ݅݀݊݁݌ݎ݁ܲ	݀݁ݎܽݑݍܵ	݀݁ݐܿ݁݌ݔܧ
45௢݈݅݊݁	݉݋ݎ݂	݊݋݅ݐܽ݅ݒ݁ܦ	ݎ݈ܽݑܿ݅݀݊݁݌ݎ݁ܲ	݀݁ݎܽݑݍܵ	݀݁ݐܿ݁݌ݔܧ

	݄݊݁ݓ ଵܻܽ݊݀	 ଶܻܽ݁ݎ	݀݁ݐ݈ܽ݁ݎݎ݋ܿ݊ݑ

 

or,  
 

௖ߩ ൌ
ଵଶߪ2

ଵߪ
ଶ ൅ ଶߪ

ଶ ൅ ሺߤଵ െ ଶሻଶߤ
ൌ  ࢈࡯࣋

 
where: 
Cb = [(υ + 1/υ + u2)/2]-1 
υ = σ1

 /σ2 = scale shift 
u = (μ1 – μ2)/ (√ σ1

 σ2) = location shift relative to the scale 
 

In order to determine whether combinations of parameter settings yield significant similar 

phenometric results, a threshold value of 0.90 need to be met (or exceeded) for both the 
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Pearson’s and Lin’s coefficients.  Generally, a Pearson’s coefficient value above 0.55 is 

considered sufficient, with higher values indicating a stronger relationship (McGrew and Monroe 

2000). A Lin’s concordance coefficient value of  >= 0.90 is considered moderate to almost 

perfect as the value increases (Lin 1989).  Phenometrics were classified as ‘unaffected’ by a 

modification to an input parameter if the Pearson’s and Lin’s coefficients met the 0.90 threshold 

for every season assessed.  Phenometrics labeled as ‘slightly affected’ did not meet the 0.90 

threshold for four, or fewer, seasons.  Those that were ‘significantly affected’ failed to meet the 

0.90 threshold for eight or more seasons. 

In addition to the 0.90 similarity threshold, examination of coefficient results allowed for 

additional insight regarding the sensitivity of phenometrics to different parameter settings.  Of 

particular interest are coefficients whose difference values are below 0.05, but less than 0.10, and 

greater than 0.10.  Difference values less than 0.05 suggest that paired values are nearly 

identical, and values between 0.05 and 0.10 are considered at the second level tier of similarity.  

Those exceeding 0.10 were considered insignificant. These threshold values provide a spectrum 

indicating how similar test combinations are to one another by determining how close 

coefficients were to the significance threshold.   

 Results 

With all other parameter settings were held constant, the SOS/EOS and window size and 

the envelope iteration number coefficients had no effect on the beginning of season phenometric 

(Table 4.4). This means that TIMESAT is insensitive to this parameter. 
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Table 4.4  Summary of sensitivity analysis results for the beginning of season 

phenometric.  

 

Phenometric Input Setting Input Value Impact on Phenometric 

Beginning of 

Season 

SOS/EOS Threshold 0.1 Unaffected 

0.25 Unaffected 

0.3 Unaffected 

Window Size 3 Unaffected 

5 Unaffected 

Envelope Iteration 1 Unaffected 

3 Unaffected 

 

 The SOS/EOS and window size coefficient had a significant effect on the end of season 

phenometric data. The envelope iteration number significantly affected this phenometric only 

when the input value was 1 and only for 4 of the 11 seasons. These seasons did not reach the 

0.90 significance threshold value and are generally characterized as having either growing 

seasons with less than normal average precipitation,  a season that experienced a significant lack 

of precipitation during at least one month of the growing season, or growing season average 

temperatures much cooler than the normal average temperatures. Results were unaffected when 

using an envelope iteration number of 3 (Table 4.5).   Therefore, the end of season phenometric 

data was highly sensitive to the threshold value for the SOS and EOS and window size, but only 

slightly sensitive to the number envelope iterations. 
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Table 4.5 Summary of sensitivity analysis results for the end of season phenometric. 

 

Phenometric Input Setting Input Value Impact on Phenometric 

End of Season SOS/EOS Threshold 0.1 Significantly Affected 

0.25 Significantly Affected 

0.3 Significantly Affected 

Window Size 3 Significantly Affected 

5 Significantly Affected 

Envelope Iteration 1 Slightly Affected 

3 Unaffected 

 

 The input settings impacted the length of season in a manner nearly identical to that of 

the end of season phenometric (Table 4.6). Because the length of season is dependent upon both 

the SOS and EOS, it makes sense why the length of season is sensitive to the same parameters 

impacting the EOS.  An envelope iteration number of 1 was insensitive to an additional season, 

indicating the only difference in results between these parameters.  

 

Table 4.6 Sensitivity analysis results for the length of season phenometric. 

 

Phenometric Input Setting Input Value Impact on Phenometric 

Length of Season SOS/EOS Threshold 0.1 Significantly Affected 

 0.25 Significantly Affected 

 0.3 Significantly Affected 

Window Size 3 Significantly Affected 

 5 Significantly Affected 

Envelope Iteration 1 Slightly Affected 

 3 Unaffected 

 

The SOS/EOS threshold results for the EOS and length of season phenometrics indicated 

a smaller insignificance when the base setting was compared to the 30% threshold value versus 
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the 10% threshold value. This would suggest eliminating the 10% threshold value as an optimal 

parameter setting for this study. After comparing 20%, 25%, and 30% against each other, it was 

determined that the larger the threshold value, the smaller the difference in phenometric results 

exhibiting the highest similarities. 

The non-definitive results for these phenometrics may be due a number of reasons 

including the introduced noxious vegetation species that are commonly associated with military 

maneuvers in grassland vegetation communities (Quist et al., 2003; Dickson et al., 2008), 

vegetation species composition, soil composition, climatic variables, military training, or a 

cumulative effect of these variables. 

 The SOS/EOS and window size coefficients had no effect on the maximum of season 

phenometric data. The envelope iteration number only significantly affected this phenometric in 

3 of the 11 seasons when the input value was 1, and in 4 of 11 seasons when the input value was 

3 (Table 4.7). The results suggest a consistent maximum NDVI value, regardless of the threshold 

value for SOS/EOS and window size, but some seasons may be more sensitive to the number of 

envelope iterations.  

 

Table 4.7 Sensitivity analysis results for the maximum of season phenometric. 

 

Phenometric Input Setting Input Value Impact on Phenometric 

Maximum of 

Season 

SOS/EOS Threshold 0.1 Unaffected 

 0.25 Unaffected 

 0.3 Unaffected 

Window Size 3 Unaffected 

 5 Unaffected 

Envelope Iteration 1 Slightly Affected 

 3 Slightly Affected 
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The SOS/EOS and window size and the envelope iteration number coefficients had no 

effect on the small integral of season phenometric data (Table 4.8). This model suggests that the 

small integral of season remains unaffected, regardless of the input settings for these parameters.   

 

Table 4.8 Sensitivity analysis results for the small integral of season phenometric. 

 

Phenometric Input Setting Input Value Impact on Phenometric 

Small Integral of 

Season 

SOS/EOS Threshold 0.1 Unaffected 

 0.25 Unaffected 

 0.3 Unaffected 

Window Size 3 Unaffected 

 5 Unaffected 

Envelope Iteration 1 Unaffected 

 3 Unaffected 

  

 Conclusions and Discussion 

This study defined an optimal Savitzky-Golay filter parameter settings file for Fort Riley, 

Kansas and other sites within the Flint Hills ecoregion.  It is the first known attempt to 

understand the impact of changing parameter values of the TIMESAT curve fitting process on 

generated seasonality (phenometric) data.  One benefit of this analysis is increased confidence in 

the phenometrics estimated from the MODIS MOD13Q1 time series data for the Fort Riley study 

area by better understanding the influence of curve-fitting parameters on the result. 

The SOS/EOS parameter only impacted the phenometrics EOS and the length of season. 

When the threshold values were compared against one another, the phenometric results for EOS 

and the length of season were most similar when using a SOS/EOS threshold of 25% or 30%. By 

comparing the extracted phenometrics from the EOS using different SOS/EOS input values, the 
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particular phenometrics. By comparing the extracted phenometrics from the EOS using 

different window size input values, the phenometric differences by season were smallest when 

comparing 4 against 3 or 5. This is because the difference between 3 and 5 was significantly 

greater than the comparisons between 4 and 5, and the comparisons between 4 and 3. The length 

of season parameter had an identical relationship, and therefore, a window size of 4 was 

determined as the best input for this data.  

For a majority of the phenometrics examined, the comparison between 2 and 3 envelope 

iterations was most analogous. The largest difference in phenometric results from this input 

value was the maximum of season.  A three-way comparison of the envelope iteration numbers 

determined that 2 envelope iterations would be the best input for this data.  

In summary, the optimal parameter input settings for the Fort Riley study area includes a 

SOS/EOS threshold value of 0.25, a window size of 4, and an envelope iteration number of 2.  

Figure 4.9 shows the TIMESAT-generated fitted curve for NDVI resulting from these 

parameters settings for the time period 2001-2012.  

Though NDVI has been proven to be very useful, there are a few key issues that limit the 

effectiveness of using NDVI for biophysical calculations and vegetation monitoring. NDVI is 

ratio-based and responds in a non-linear manner to changing vegetation conditions, which often 

causes lower ratio values to be enhanced and higher ratio values tend to be condensed. This may 

cause results to be insensitive as values saturate over high biomass conditions.  Though it may 

prove useful in sparse vegetation plots, NDVI is a poor discriminator of stress when that stress 

occurs at high values of green cover (Jackson et al., 1983). Lastly, NDVI is more sensitive to 

early rain seasons and to canopy background noise such as soil or plant litter, which also 

introduces non-vegetation-related variations in the NDVI data (Huete 1988).   
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composited vegetation index product, such as the MODIS MOD13Q1 product, can use a 

constrained-view angle to limit residual cloud and atmospheric effects (Verbesselt et al., 2009).  

Imagery with greater spatial resolutions could potentially provide a more accurate spatial 

view of vegetation conditions across a study area as NDVI values would be averaged over 

smaller ground areas.  This greater spatial resolution would, however, have a computational cost 

and increase the amount of time needed for analysis.  Also, there are no satellite platforms able 

to capture “high spatial resolution” imagery at a temporal frequency comparable with that of the 

MODIS system.   

TIMESAT requires the same number of images per year throughout the time series to 

perform an analysis.  This certainly places limits on the selection of sensors if some captured 

images are cloudy or of poor quality, but there are ways users could work around this limitation.  

For example, a missing or corrupt image could be excluded from every year in the analysis.  

However, phenology results might be suspect given the introduction of a data “gap” in the time 

series.  Alternatively, missing or corrupt images could be replaced in the time series with that 

which appears before/after it in the series.  This option is likely to have less of an impact on 

estimation of phenometrics than excluding an entire date each year across the assessed seasons. 

One direction for future phenology analysis at Fort Riley using TIMESAT would be to 

incorporate a landuse/landcover classification. This would allow for separate analyses on the 

impact of TIMESAT input parameter settings on the resulting phenometrics based on 

landuse/landcover type, and estimation of separate sets of phenometrics.  For example, grassland 

areas would be expected to have a phenology curve different than that of woody vegetation.  

Additional work is also needed to determine if the sensitivity analysis results reported here are 

independent of location.  Since phenology is dependent upon climate, soil properties, and species 
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composition, it is possible that TIMESAT phenometrics for non-grassland sites would be better 

estimated using different input parameter settings. 
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Chapter 5 - Time Series Analysis of Vegetation Phenometrics for 

Military and Non-Military Lands using Moderate Resolution 

Satellite Imagery 

 Abstract 

A time-series analysis of MODIS maximum value composite normalized difference 

vegetation index (NDVI) data for Fort Riley, Kansas and the nearby Konza Prairie Biological 

Station (KPBS) was conducted to determine if significant differences exist in selected vegetation 

phenometrics between the two sites.  Additional comparisons were made using areas at Fort 

Riley that experience high and low training intensities.  Phenometrics of interest were estimated 

from the time series satellite data using the program TIMESAT, which extracts seasonality 

parameters from remotely-sensed time series data by fitting a smooth function to the series.  For 

this study, a Savitzky-Golay filter, with parameter settings found optimal for Fort Riley, was 

applied.  The phenometrics start of season, end of season, length of season, maximum value, and 

small seasonal integral were compared using Kolmogorov-Smirnov (K-S) test for each of the 

four study sites and three seasons based on annual temperature and precipitation characteristics.  

Significant differences existed for all phenometrics in the comparison of Fort Riley training areas 

and KPBS, as well as low- versus high-training intensity areas within Fort Riley.  Results show 

earlier dates for the start and end of the growing season, shorter growing season lengths, lower 

maximum NDVI values, and lower small seasonal integrals for both Fort Riley (in the Fort 

Riley-KPBS comparison) and high-intensity training areas (in the high- versus low-intensity 

training area comparison). No significant seasonal differences were detected between study sites 

for 97% of all comparisons, suggesting that phenometric differences were caused by varying 

land uses and/or land management practices rather than weather conditions.  A detailed report of 
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the phenometric differences between the study areas is presented, and a normal phenology 

curve was determined for all study areas.  

 Introduction 

Phenology has emerged as an important focus in ecological research for its use in 

vegetation monitoring/modeling and addressing issues related to climate change. Phenology is 

the timing of seasonal vegetation activities (Parmesan 2006) and the study of how vegetation 

growth may be affected by interannual and seasonal variations in meteorological conditions, soil 

characteristics, and photoperiod (Schwartz 1998; Cleland et al., 2007). It can be used to predict 

the fitness and probability of species occurrence under certain conditions (Cleland et al., 2007), 

making it one of the most efficient ways of following species response to changing ecosystem 

conditions (Walther et al., 2002). Through the use of remote sensing, the study of phenology 

provides additional insights into the natural and anthropogenic processes impacting vegetation 

life cycles. 

Usually measured in Julian dates, or days since December 31, phenology can be 

described using satellite imagery and phenometric data extracted from vegetation index data such 

as that acquired by the MODIS sensor (Ahas et al., 2002; An 2009).  With sufficient spatial and 

temporal resolutions, the spectral-temporal information obtained from time-series NDVI data can 

be used to characterize and quantify changes in vegetation phenology across time and space 

(Reed et al., 1994; Wardlow 2005) and to explore the potential role of different natural and 

anthropogenic activities in causing those changes (Jacquin et al., 2009). 

This study investigates differences in phenology between Fort Riley, Kansas, a U.S. 

Army military installation, and Konza Prairie Biological Station (KPBS), a natural tallgrass 

prairie preserve.   Phenometrics for both study sites were estimated after using TIMESAT and a 



 

62 

 

Savitzky-Golay filter to smooth a time series of MODIS 16-day maximum value NDVI 

composite images for the period 2001-2012.  Of interest here was whether the dominant landuse 

of each site (e.g., military training versus natural grassland) would result in measurable 

differences in phenometrics when using NDVI information derived from course-resolution 

satellite images.   

Select phenometrics for KPBS and three different spatial configurations of Fort Riley, 

including (1) all military training areas (excluding developed areas), (2) high-intensity military 

training areas only, and (3) low-intensity military training areas only were extracted and then 

compared using the non-parametric Kolmogorov-Smirnov test to determine if significant 

differences existed.  In addition, a “normal” vegetation phenology curve was developed for 

KPBS and the three Fort Riley study sites. 

 Past Work 

NDVI is calculated from a normalized transformation of the red and near-infrared (NIR) 

reflectance ratio (Tucker 1979). These bands of the electromagnetic spectrum are highly 

sensitive to vegetation compositions, making NDVI one of the most common measures of 

vegetation greenness and overall health (Cihlar et al., 1991; Tucker et al.,1991; Wardlow 2005; 

An 2009). A typical NDVI profile, or phenology curve, illustrates the onset of greenness or when 

the vegetation begins to green-up, the maximum NDVI value illustrating the highest relative 

photosynthetic biomass, the rate of senescence or decay, the end of greenness date, and the 

growing and brown days (days of senescence) of a year accumulating to the season length of the 

year (Figure 5.1).  The area beneath this phenology curve represents the accumulated NDVI and 

is an indication of relative photosynthetic biomass. 
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raw NDVI data and then extract phenometrics, including the seasonal Kendall (SK) trend test 

(Hirsch and Slack 1984; de Beurs and Henebry 2004, de Beurs and Henebry 2005; de Beurs et 

al., 2009;), principal component analysis (PCA) (Crist and Cicone 1984), pixel-above-threshold 

technique (PAT) (Cleland et al., 2007), wavelet decomposition (Anyamba and Eastman 1996), 

change vector analysis (CVA) (Lambin and Strahler 1994), and Fourier analysis (Azzali and 

Menenti 2000). In addition, the TIMESAT software program provides several filtering options to 

smooth raw vegetation index data and extract key phenometric data (Eklundh and Jönsson 2010).  

In previous studies, TIMESAT has been used to study vegetation phenology (Eklundh 

and Jönsson 2003), map phenological and environmental changes (Eklundh and Olsson 2003; 

Hickler et al., 2005; Olsson et al., 2005; Seaquist et al., 2006; Heumann et al., 2007; Seaquist et 

al., 2009), examine high-latitude forest phenology (Beck et al., 2007), assess satellite and 

climate data-derived indices of fire risk (Verbesselt et al., 2006), monitor human impacts of fire 

seasons (Le Page et al., 2009), and evaluate relationships between coniferous forest NDVI and 

models of conifer photosynthetic activity (Eklundh and Jönsson 2010).  

As pointed out in the TIMESAT manual, optimal curve fitting during smoothing is “more 

of an art than a science” and some trial and error may be necessary to arrive at a final set of 

parameter settings (Eklundh and Jönsson 2010).  Previous work using TIMESAT at Fort Riley 

identified optimal values for a number of parameters required when applying a Savitzky-Golay 

filter to smooth MODIS NDVI (Chapter 4).   

 Study Area 

Fort Riley is a United States Army base located in northeastern Kansas (39.18°N, 

96.80°W), on the Kansas River, between Junction City and Manhattan and within Geary, Riley, 

and Clay counties (Figure 5.2).  The total installation area is 41,141 ha and is located within the 
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season.  The source of much precipitation is thunderstorms, which typically have intense 

rainfall rates of approximately 60 mm/hr and occur approximately 55 days each year in this area 

(U.S. Department of Agriculture Soil Conservation Service 1975; Knapp 1998). 

The vegetation of Fort Riley is a mix of native prairie and introduced vegetation 

consisting of C4 grasses (46%), forbs (32%), legumes (11%), and C3 grasses (11%) (Dickson et 

al., 2008). The installation is comprised of three major vegetation communities, including 

grasslands (32,200 ha), shrublands (1,600 ha), and woodlands (6,000 ha) (Althoff et al., 2006).  

The eastern portion of Fort Riley shares many of the characteristics to the Flint Hills, with 

vegetation dominated by warm-season highly productive C4 grasses and a mixture of annual and 

perennial forbs. The western portion of Fort Riley represents a plant community undergoing 

succession back to native prairie from past cultivation in the 1960s (Quist et al., 2003).  

Fort Riley grasslands are dominated by big bluestem (Andropogon gerardii), Indiangrass 

(Sorghastrum nutans), switchgrass (Panicum virgatum), and little bluestem (Schizachyrium 

scoparium). Other grasses and forbs are also present at lower abundances.  Shrublands consist 

primarily of buckbrush (Symphoricarpos orbiculatas), smooth sumac (Rhus glabra), and rough-

leaved dogwood (Cornus drummondii). Additionally, there is a mixture of grasses and forbs that 

occur along the edges of woodlands and in solitary patches of grassland areas. Typically located 

along riparian lowlands, woodlands are dominated by chinquapin oak (Quercus muhlenbergii), 

bur oak (Quercus macrocarpa), American elm (Ulmus americana), hackberry (Celtis 

occidentalis), and black walnut (Juglans nigra).  

The installation serves as a combat training ground for mortar and artillery fire, small 

arms fire, aircraft flights, field maneuvers, tanks, and mechanized infantry units (Quist et al., 

2003; Althoff et al., 2006). Since the 1980’s, military units have engaged in continuous 
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maneuver-based training across the entire installation (U.S. Army 1994), though such activities 

are concentrated in the northern 75% portion of the installation (Quist et al., 2003; Althoff et al., 

2006).  

High intensity military training associated with mechanized military maneuvers has been 

cited as the cause of increased bare soil, reduced plant cover, compacted soil conditions, and 

compositional shifts in plant communities (Shaw and Diersing 1990; Trumbell et al., 1994; 

Whitecotton et al., 2000; Quist et al., 2003; Guretzky et al., 2006). Military training alters 

vegetation composition by decreasing the basal cover of perennial warm-season grasses and 

increasing the cover of perennial cool season grasses and annual warm-season forbs (Wilson 

1988; Shaw and Diersing 1990; Milchunas et al., 1999; Dickson et al., 2008). Mechanized 

military maneuvers increase the populations of non-native species, weeds, forbs, and annuals 

(Milchunas et al., 2000), while reducing the cover provided by native perennial grasses and forbs 

(Quist et al., 2003; Guretzky et al., 2006; Dickson et al., 2008).  

Konza Prairie Biological Station (KPBS) is located on 3,487-hectares of protected area 

south of Manhattan, KS (39.09°N, 96.57°W), in northeastern Kansas (Figure 5.3). The KPBS is 

owned by the Nature Conservancy (http://www.nature.org) and operated by the Division of 

Biology at Kansas State University (http://kpbs.konza.ksu.edu).  

One of the National Science Foundation’s Long-term Ecological Research Sites, KPBS 

has similar vegetation, soils, prescribed burning practices, and climate due to its close proximity 

(less than 10 kilometers) to Fort Riley.  KPBS is dominated by native tallgrass prairie of the Flint 

Hills ecoregion, part of the same largest continuous tallgrass prairie in North America. Because 

of the steep slopes and underlying limestone soils, KPBS proves unsuitable for cultivation and 

has remained unplowed, retaining its native characteristics. 
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Figure 5-3 Konza Prairie Biological Station study area in Kansas depicting watersheds 

and excluding built up areas. 

 

 

KPBS shares a similar grassland species composition mix with Fort Riley, being 

dominated by native warm-season C4 grasses such as big bluestem (Andropogon gerardii), little 

bluestem (Schizachyrium scoparium), indiangrass (Sorghastrum nutans), and switchgrass 

(Panicum virgatum). In addition to grasses, forbs are commonly found throughout the site.  

Common species on mesic sites include white aster (Aster ericoides), daisy fleabane (Erigeron 

strigosus), and wild alfalfa (Psoralea tenuiflora).  Species on more xeric areas include western 

ragweed (Ambrosia psilostachya), white sage (Artemisia ludoviciana), and aromatic aster (Aster 

oblongifolius) (Freeman and Hulbert 1985; Freeman 1998). 
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 Data and Methods 

 Data Acquisition 

The image data used in this analysis was MODIS MOD13Q1 project, a 16-day maximum 

value NDVI composite with a 250-meter spatial resolution.  A gridded level-3 product delivered 

in a sinusoidal projection, MODIS radiance counts are calibrated and geolocated based on grid 

and angular data, masked from cloud, land/water, perceptible water and aerosol products, 

incorporate spectral reflectance, and undergo quality assurance flags associated with atmospheric 

correction products (Huete et al., 1999).  

Imagery data was downloaded from the Earth Observing System Data and Information 

System (EOSDIS 2009) and saved as an 8-bit unsigned integer with a  213.705 meter spatial 

resolution for the latitude of these study area. Each image was reprojected into the North 

American Datum of 1927, Universal Transverse Mercator Zone 14 North projection clipped to 

the extent of the study area, and resaved as a single band IMAGINE file. This format meets the 

TIMESAT requirement of a headerless binary format. Saved images were placed in the same file 

directory for later processing in TIMESAT (Figure 5.4). 

Collected images spanned the period from January 2001 through December 2012 (n = 12 

years). Because TIMESAT only analyzes for the n – 1 centermost seasons, the results presented 

here will be based on 11 years and exclude 2012 (Eklundh and Jönsson 2010). Each calendar 

year includes 23 total MOD13Q1 images with this study incorporating 276 total images (23 x 

12).   
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The TIMESAT graphical user interface (GUI) presents the controls for selecting the 

smoothing function and parameter settings, and provides a graphical view of the raw and 

smoothed curves for one pixel, along with the resulting phenometrics (Figure 5.5).  The critical 

steps of selecting a smoothing function and related parameter settings are organized in three 

subsections within the TIMESAT interface and include data plotting, common settings, and 

class-specific settings.  A brief discussion of each subsection follows and is summarized in Table 

5.1. 
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Table 5.1: TIMESAT parameter settings and input values selected for this analysis. 

 

Parameters Suggested Source Used 

Data Plotting 

Filters Gaussian, 

logistic, 

Savitsky-Golay

Savitzky and Golay 1964; 

Jönsson and Eklundh 2002; Hird 

and McDermid 2009; Jönsson et 

al., 2010 

Savitzky-

Golay 

Common Settings 

Spike Method STL original; 

STL replace 

spike; median 

spike 

Verbesselt et al., 2009; Eklundh 

and Jönsson 2010 

Median 

spike 

Spike Value 2 Eklundh and Jönsson 2010 2 

Class-Specific Settings 

Seasonal Parameter 1 Eklundh and Jönsson 2010 1 

Start of Season 

Method 

Amplitude, 

absolute value 

Eklundh and Jönsson 2010 Amplitude 

Adaptation Strength 2-3 Eklundh and Jönsson 2010 2 

Force Minimum N/A N/A 80 

Savitzky-Golay 

Window Size 

5 Chapter 4 4 

Number of Envelope 

Iterations 

1, 2, 3 Chapter 4 2 

SOS/EOS Threshold 10-25% Chapter 4 25% 
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 Data Plotting 

Three different filters, or smoothing functions, are available for selection in TIMESAT, 

including Gaussian, logistic, and Savitzky-Golay.  The Savitzky-Golay filter used in this analysis 

is a simplified least-squares-fit convolution for extracting derivatives and smoothing a spectrum 

of consecutive values. It is essentially a weighted moving average filter based on a polynomial 

where the polynomial order dictates the convolution. When the weight coefficients are applied to 

a signal, a polynomial least squares fit will be applied to the filter window. Such a procedure is 

intended to maintain peak times within the data and reduce introduced bias noise from the data 

(Chen et al., 2004; Eklundh and Jönsson 2010). It is intended to preserve the area and mean 

position of a seasonal peak, but alter both the width and height. This method is sensitive to local 

variations in vegetation index values, proving useful when comparing against different regions 

(Jönsson et al., 2010). The end result is a smoothed curve adapted to the upper envelope (peak 

values) of the values in a time-series.  More information on the mathematics behind this 

procedure and its coefficients may be found in Steinier et al., (1972), Press et al., (1996), and 

Savitzky and Golay (1964).  

 As Figure 5.5 illustrates, Fort Riley experiences growing season transitions during green-

up and senescence phases.  An optimal smoothing filter for this situation would utilize a narrow 

moving window approach. The Savitzky-Golay filter has the option of modifying the width of 

the moving window that is used to filter the raw data. A large window will have a higher degree 

of filtering, flatten sharp peaks and neglect the ability to detect rapid changes in the data. A 

smaller window will detect these rapid changes occurring on Fort Riley and preserve sharp peaks 

in the data.  
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 Common Settings  

Common settings in TIMESAT affect all pixels in the image time series.  Similar to the 

data plotting options, TIMESAT make available three different methods in common settings:  

STL original, STL replace spike method, and median spike method.  The median spike method 

was used in this analysis because, unlike the two STL options, it retains all raw data values.  

However, any values in the time series that are significantly different from their left- and right 

neighbors – and from the median in a window – are classified as outliers and are assigned zero 

weight (Eklundh and Jönsson 2010). 

The spike value is used to help determine significant differences in adjacent values in the 

time series.  Data values that differ from the median by more than the product of the spike value 

and standard deviation of the time series, and that are different from the left- and right neighbors, 

are removed.  The TIMESAT manual suggests that a normal setting for the spike value is 2 and 

warns that a lower value will remove more data values from the analysis (Eklundh and Jönsson 

2010).  Based on this recommendation, a spike value of 2 was used in this analysis. 

 Class-Specific Settings 

A total of eight different class-specific settings may be used in TIMESAT and applied to 

individual land classes (i.e., different landuse/landcover categories). The seasonal parameter 

defines the number of growing seasons per year.  A parameter value of 1, like that applied to the 

Fort Riley data, indicates a single season per year.  For areas that experience dual seasons, a 

parameter value of 0 should be used. 

A second parameter, start of season method, offers two choices:  Amplitude and absolute 

value.  This parameter works with the season start and season stop values.  When choosing 

amplitude as the method, the season start and stop values are entered as percentages of the 
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growing season maximum value.  For example, a season start value of 0.20 will identify the 

time when 20% of the maximum growing season amplitude is reached.  Conversely, setting an 

absolute value for start of season method finds the time each season when that specific digital 

number value is reached. 

Further fine-tuning of the impact of the number of envelope iterations (explained in the 

following section) can be made through adjustments to the third setting adaptation strength.  

Ranging from a minimum of 1 to a maximum of 10, normal adaptation values are typically 2 or 3 

(Eklundh and Jönsson 2010).  After reviewing the Fort Riley time series data in the TIMESAT 

GUI, and visually comparing differences in curve fits using typical adaptation strength values, a 

final setting of 2 was selected as the curve fit tended to honor the raw data values best.  

The force minimum option (setting number 4), if active, essentially removes extremely 

low values in the time series (e.g., outliers) and replaces them with the new value entered.  Using 

this option is helpful in eliminating unusually low NDVI values such as those recorded during 

the winter when snow covers the land surface.  Forcing these low values into something 

approaching the mean winter minima helps preserve the true seasonal curves generated by the 

fitted function.  These study areas experience extended winter periods with snow on the ground, 

so this study implements a force minimum value of 80. 

 The remainder of the settings included in this analysis is the Savitzky-Golay window size, 

number of envelope iterations, start of season (SOS) and end of season (EOS). The window size 

represents the width, or half-window, of the moving window used by the Savitzky-Golay filter 

during smoothing.  The width of the moving window helps to determine the amount of 

smoothing that takes place and impacts the ability to capture rapid changes in the NDVI time 

series.  Implementing a large window size may neglect important variations and flatten out sharp 
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peaks in the data (Chen et al., 2004).  It has been determined that a window size of 4 is the 

optimal setting for providing the best-fitting effect (Chen et al., 2004; Chapter 4). 

The Savitzky-Golay filter is generally sensitive to the number of envelope iterations 

because it is sensitive to the upper envelope of the smoothing function. The fit of the smoothing 

function previously selected can be made to approach the upper envelope of a time series using 

an iterative and multi-step procedure that can be repeated twice.  Specifying a value of 1 results 

in only one “fit” to the data and no adaptation.  With values of 2 or 3, one or two additional fits 

are applied to force the fitted function towards the upper envelope (Eklundh and Jönsson 2010). 

Selecting too large of a value may introduce error into the estimated beginning of season and end 

of season dates by over-fitting the curve.  Values which are too small may cause errors by 

including in the fitted curve data related to atmospheric or calibration noise. For Fort Riley, a 

value of 2 for the number of envelope iterations was found to perform satisfactorily (Chapter 4). 

The final two class-specific settings are SOS and EOS, represented in the TIMESAT GUI 

as season start and season end, respectively.  Assuming amplitude as the start of season method, 

values for SOS and EOS will range between 0 and 1.  These values represent a proportion of the 

seasonal amplitude reached each season.  Though two separate settings, SOS and EOS are 

typically assigned the same values and will be treated as one setting in this study. Selecting low 

values for this setting may place SOS/EOS too early/late in the season in portions of the fitted 

curve dominated by atmospheric and calibration noise.  High values may mistakenly label as the 

SOS/EOS date periods well inside the actual growing season instead of its true beginning/end. 

For the Fort Riley study area, a SOS/EOS value of 0.25 was found to be optimal (Chapter 4).  
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 Phenometric Extraction 

The TIMESAT seasonality files contain 11 different phenometrics estimated for each 

pixel in every NDVI image in the 11 season time series (Table 5.2). The study area including all 

of Fort Riley training areas had 5,188 pixels, Fort Riley High intensity training areas had 1,213, 

Fort Riley Low intensity training areas had 1,558, and KPBS had 621 pixels.  Five of these 11 

phenometrics were selected for comparison, including start of season, length of season, end of 

season, maximum value, and small season integral.  A graphic depiction of these 5 phenometrics 

is shown in Figure 5.6. 
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Table 5.2 List, definition, and biological significance of the phenometrics extracted by 

TIMESAT (Eklundh and Jönsson 2010). Rows highlighted in gray indicate the 

phenometrics used in later analyses.  

Phenometric Definition Biological Significance 

Start of Season Time at which the left edge has increased to a user-

defined level measured from the left minimum value. 

Time of initial vegetation green 

up 

End of Season Time at which the right edge has decreased to a user-

defined level measured from the right minimum value 

Time of initial vegetation 

senescence 

Season Length Time from start to end of season Length of growing season from 

green up to senescence 

Base Level Average of the left and right minimum values Baseline for the seasonal 

phenology curve 

Middle of Season Mean value of the times at which the left edge has 

increased to the 80% level and the right edge has 

decreased to the 80% level. 

Time of the middle of the 

growing season. 

Maximum Value Largest data value for the fitted function during the 

season. 

The highest NDVI value of the 

season. 

Seasonal Amplitude Difference between the maximum value and base 

level. 

Used for referencing Start and 

End of Season thresholds. 

Rate of Increase at Beginning 

of Season 

Ratio of the difference between the left 20% and 80% 

levels and the corresponding time difference. 

Rate of vegetation green up. 

Rate of Decrease at End of 

Season 

Absolute value of the ratio of the difference between 

the right 20% and 80% levels and the corresponding 

time difference. 

Rate of vegetation senescence. 

Large Seasonal Integral Integral of the function describing the season from 

season start to season end. 

Proxy for the relative amount 

of vegetation biomass without 

regarding minimum values. 

Small Seasonal Integral Integral of the difference between the function 

describing the season and the base level from season 

start to season end. 

Proxy for the relative amount 

of vegetation biomass while 

regarding minimum values. 
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dimensional probability distributions (McGrew and Monroe 2000). The K-S test statistic 

measures the maximum distance of the empirical distribution function of one study area against 

the empirical distribution function from another study area, and can be used to compare two 

different datasets.   

Output from each K-S test includes an empirical distribution graph, also known as a 

cumulative fraction function, of a phenometric, across each growing season, for every study area 

comparison (Figure 5.9).  The empirical distribution graph shows the proportion of the data (y-

axis) that is strictly smaller than the values on the x-axis.  Depending on the phenometric 

considered, the x-axis represents dates (e.g., beginning of season phenometric) or NDVI value 

(e.g., maximum value phenometric).  A two-sample K-S test statistic (D) was also computed 

with the p-value representing the probability that D is greater than the observed value (d), 

assuming the null hypothesis that there is no difference in the phenometric between the study 

areas.  

The alpha level to reject or accept the null hypothesis was originally set at 0.05.  

However, because the analysis was to be completed for each of 11 seasons, a substantial Type 1 

error would be introduced due to the number of tests conducted (4 study areas × 5 phenometrics 

× 11 seasons = 220 tests; standard α of 0.05 / 220 tests = 0.00023). To reduce the possibility of a 

Type 1 error, the number of seasons was limited to 3 with three growing seasons selected to 

represent a normal temperature and precipitation year (2002), cool and wet conditions (2008), 

and a hot and dry season (2011).   
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 Results 

The phenometrics start of season, end of season, length of season, maximum value, and 

small seasonal integral were compared between each of the four study sites and three seasons 

based on annual temperature and precipitation characteristics.  Results from the two-sample K-S 

tests showed that for 58 of 60 (97%) of all possible comparisons made, the underlying null 

hypotheses that no seasonal differences existed between the phenometric and compared study 

sites could safely be rejected.  The null hypothesis could not be rejected for only two 

phenometrics – end of season in a normal year and length of season in a cool, wet year – in the 

comparison between high- and low-intensity training areas and KPBS, respectively.  Though the 

p-values for these two phenometrics never exceeded 0.003, the risk of a Type 1 error prevented 

rejection of the null hypothesis.  

It is important to point out that when comparing any portion of Fort Riley to KPBS, the 

empirical distributions will look fairly different. This is because Fort Riley has a larger 

distribution, or range of values. Fort Riley will have both lower values and higher values than 

KPBS, indicating higher variability and a more heterogeneous NDVI landscape. This may be due 

to a number of factors including sample size, plant species composition, vegetation type response 

to climatic variables, or military training. When comparing the different training intensity areas 

of Fort Riley, the empirical distributions look fairly similar, indicating a more homogenous 

NDVI relationship.  

In the following subsections, a general description of the results is presented for each of 

the four paired study area comparisons. All graphs presented within the results section are from 

the normal season unless otherwise noted.  A complete collection of empirical distribution 

graphs for each phenometric by season and paired comparison can be found in Appendix F. 
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 Fort Riley Training Areas vs. KPBS 

Significant differences existed for all phenometrics examined in the comparison for all 

Fort Riley training areas and KPBS (Table 5.3).  In general, and for each of the three season 

types assessed, Fort Riley training areas have an earlier start of growing season (SOS) and end of 

season (EOS) date, shorter growing season lengths, and lower maximum NDVI values and small 

seasonal integrals than KPBS. 

 

Table 5.3 Summary of K-S test results for all phenometrics between Fort Riley and KPBS. 

Season Phenometric KS D Pr > D 
Normal Start of Season 0.1193 0.3860 < 0.0001 
Cool/Wet  0.0627 0.2034 < 0.0001 
Hot/Dry  0.0546 0.1773 < 0.0001 
Normal End of Season 0.0384 0.1242 < 0.0001 
Cool/Wet  0.0869 0.2820 < 0.0001 
Hot/Dry  0.0469 0.1520 < 0.0001 
Normal Length of Season 0.0903 0.2920 < 0.0001 
Cool/Wet  0.0353 0.1145 < 0.0001 
Hot/Dry  0.0438 0.1414 < 0.0001 
Normal Maximum Value 0.0928 0.3011 < 0.0001 
Cool/Wet  0.0752 0.2442 < 0.0001 
Hot/Dry  0.0579 0.1880 < 0.0001 
Normal Small Integral 0.1217 0.3938 < 0.0001 
Cool/Wet  0.1122 0.3640 < 0.0001 
Hot/Dry  0.0738 0.2396 < 0.0001 
 

 

For both Fort Riley and KPBS, the SOS takes place within a very narrow time window.  

In normal years, the season start at Fort Riley is consistently ahead of that for KPBS (Figure 

5.11), though in cool/wet and hot/dry seasons the difference is less pronounced (though still 

significant). 
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assessed, Fort Riley’s high intensity training areas have an earlier SOS and EOS date, shorter 

growing season lengths, and lower maximum NDVI values and small seasonal integral than Fort 

Riley’s low intensity training areas. 

 

Table 5.4 Summary of K-S test results for all phenometrics between high and low intensity 

training areas at Fort Riley. 

 

Season Phenometric KS D Pr > D 
Normal Start of Season 0.0986 0.1988 < 0.0001 
Cool/Wet  0.0734 0.1477 < 0.0001 
Hot/Dry  0.0849 0.1709 < 0.0001 
Normal End of Season 0.0518 0.1043 < 0.0001 
Cool/Wet  0.1207 0.2430 < 0.0001 
Hot/Dry  0.0824 0.1660 < 0.0001 
Normal Length of Season 0.0515 0.1037 < 0.0001 
Cool/Wet  0.0405 0.0815 0.0002 
Hot/Dry  0.0966 0.1948 < 0.0001 
Normal Maximum Value 0.1866 0.3757 < 0.0001 
Cool/Wet  0.1918 0.3862 < 0.0001 
Hot/Dry  0.1442 0.2904 < 0.0001 
Normal Small Integral 0.1817 0.3663 < 0.0001 
Cool/Wet  0.1197 0.2410 < 0.0001 
Hot/Dry  0.1283 0.2583 < 0.0001 
 

For all training areas, the SOS takes place within a very narrow time window.  In 

cool/wet years, the SOS at high intensity training areas is consistently ahead of that for the low 

intensity training areas (Figure 5.16). In a normal season, about 50% of the area associated with 

the high intensity training areas experiences a significantly earlier SOS, and the other half 

experiences nearly an identical SOS to the low intensity training areas. Hot/dry season 

differences are less pronounced, and could show slightly later SOS times for the high intensity 

training areas. 
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earlier SOS and EOS date, shorter growing season lengths, and lower maximum NDVI values 

and small seasonal integral than KPBS. The one exception was seen with the EOS phenometric 

in a normal season.  

 

Table 5.5 Summary of K-S test results for all phenometrics between high intensity training 

areas at Fort Riley and KPBS (bold text indicates no significant difference exists). 

 

Season Phenometric KS D Pr > D 

Normal Start of Season 0.1630 0.3454 < 0.0001 
Cool/Wet 0.1215 0.2575 < 0.0001 
Hot/Dry 0.0865 0.1834 < 0.0001 
Normal End of Season 0.0421 0.0889 0.003 
Cool/Wet 0.1793 0.3801 < 0.0001 
Hot/Dry 0.1182 0.2502 < 0.0001 
Normal Length of Season 0.1409 0.2975 < 0.0001 
Cool/Wet 0.0720 0.1525 < 0.0001 
Hot/Dry 0.0796 0.1680 < 0.0001 
Normal Maximum Value 0.2099 0.4450 < 0.0001 
Cool/Wet 0.1602 0.3396 < 0.0001 
Hot/Dry 0.1181 0.2503 < 0.0001 
Normal Small Integral 0.2310 0.4881 < 0.0001 
Cool/Wet 0.1970 0.4177 < 0.0001 
Hot/Dry 0.1338 0.2837 < 0.0001 
 

In normal years, the SOS at Fort Riley’s high intensity training areas is consistently ahead 

of that for KPBS (Figure 5.21), though in cool/wet and hot/dry seasons the difference is less 

pronounced (though still significant). 
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seasonal integral compared to KPBS. The one exception was seen within the growing season 

length phenometric in a cool/wet season.  

 

Table 5.6 Summary of K-S test results for all phenometrics between low intensity training 

areas at Fort Riley and KPBS (bold text indicates no significant difference exists). 

 

Season Phenometric KS D Pr > D 
Normal Start of Season 0.1216 0.2695 < 0.0001 
Cool/Wet  0.0496 0.1098 < 0.0001 
Hot/Dry  0.1489 0.3298 < 0.0001 
Normal End of Season 0.1649 0.1438 < 0.0001 
Cool/Wet  0.0686 0.1519 < 0.0001 
Hot/Dry  0.0471 0.1043 < 0.0001 
Normal Length of Season 0.1173 0.2597 < 0.0001 
Cool/Wet  0.0402 0.0890 0.0018 
Hot/Dry  0.0461 0.1021 0.0002 
Normal Maximum Value 0.1277 0.2828 < 0.0001 
Cool/Wet  0.1660 0.3681 < 0.0001 
Hot/Dry  0.1093 0.2424 0.0002 
Normal Small Integral 0.1030 0.2281 < 0.0001 
Cool/Wet  0.0934 0.2067 < 0.0001 
Hot/Dry  0.0797 0.1765 < 0.0001 

 

Much variation in the SOS dates exist among the two sites, though the growing season at 

KPBS begins within a much narrower date range than Fort Riley’s low intensity training areas. 

In normal and hot/dry years, the SOS at Fort Riley’s low intensity training areas is consistently 

ahead of that for KPBS (Figure 5.26), though in a cool/wet season the difference is less 

pronounced (though still significant). 
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This analysis shows how inconsistent the end of season dates are compared to the 

beginning of season dates. Again, these values may be due to vegetation species composition, 

soil characteristics, climatic variables, military training, or a cumulative effect of these variables. 

The growing season length phenometric is dependent upon both the start and end of season date. 

Whatever impacts those phenometrics, will affect the growing season length. The reasoning 

behind these differences may be related to the same issues previously discussed, but it is 

interesting to see that under non-normal season conditions, Fort Riley’s growing season length 

were consistently shorter than KPBS’s, suggesting that the climate plays a significant role in 

governing this phenometric. 

The amount of variation within the maximum NDVI value and small seasonal integral 

values is apparent between Fort Riley and KPBS. With the comparison of the intensity levels 

against each other, we gain a clear picture of what military training does to vegetation on the 

installation, which can easily be seen in the average NDVI graphs (Figures 5.31 - 5.34). 

Compared to low intensity training areas, there is more vegetation loss, and more bare ground 

associated within those areas experiencing a high intensities of training. Through the 

Kolmogorov-Smirnov analysis, it is clear that Fort Riley has a greater range and more variability 

associated with key phenometrics.  
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season possibility, and Fort Riley training areas could have up to 6 seasons with the bimodal 

characteristic.  

These bimodal peaks could be related to soil differences between the study areas. Fort 

Riley experiences extensive military training with heavy artillery and mechanized units and it is 

likely that the soil compaction plays a role in the determining vegetation health and biomass 

production, which would particularly influence the maximum NDVI value and small seasonal 

integral. If the soil is significantly compacted, the soil cannot infiltrate water, restricting 

vegetation from taking root and fully developing, particularly in seasons with low rainfall.  

Satellite imagery would detect these areas as low NDVI values, causing the extracted 

phenometric data to be considerably lower than areas that do not experience such anthropogenic 

impacts. Even though Fort Riley and Konza Prairie experience similar climate, if their soil 

characteristics are different, they will experience different vegetation cover and perhaps different 

vegetation composition.  

The bimodal peaks could also suggest that there are vegetation community differences 

between the study sites. A direction for future work would be to incorporate vegetation 

community differences between the study sites, while varying the training intensity. In order to 

do this, an extensive vegetation community inventory is needed.  However, since we now know 

that there is a significant difference between these study areas, of which is partly related to the 

vegetation communities present, this analysis could be minimized by selecting specific plots 

based on vegetation community of both study areas. This would give further insight into 

mitigation processes for military training lands.  

In addition to incorporating land cover classes into the analysis, an alternative control 

study area that future work may integrate would be the Tallgrass Prairie Preserve located in 
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Kansas, north of Strong City. It is part of the same Flint Hills region shared with Fort Riley and 

the Konza Prairie Biological Station. The 11,000 acres of tallgrass prairie in the preserve is 

protected by the United States National Park Service and the Nature Conservancy 

(http://www.nature.org).  

Though NDVI has been proven to be very useful, there are a few key issues that limit the 

applicability of NDVI for biophysical calculations and vegetation monitoring. Though it may be 

a poor discriminator of stress when stress occurs at high values of green cover, NDVI proves 

useful in sparse vegetation plots (Jackson et al., 1983).  NDVI is more sensitive to early rain 

seasons and to canopy background noise such as soil or plant litter, which also introduces non-

vegetation-related variations in the NDVI data (Huete 1988).   

Any analysis including remote sensing must acknowledge the possibility of errors. As 

with most spectral reflectance combinations, atmospheric path radiance decreases the normalized 

difference value. A number of other variables may impact NDVI values, including satellite drift 

and volcanic eruption, calibration uncertainties, inter-satellite sensor differences, and  

bidirectional and atmospheric effects (Zhou et al., 2001). Since the reflectance in the visible and 

NIR bands cannot penetrate through cloud cover, some MODIS scenes that contain clouds may 

result in a lower NDVI composite image, which could affect the ability to accurately detect 

certain phenometrics. Luckily, a composited vegetation index product, such as NDVI, uses a 

constrained-view angle in order to limit residual cloud and atmospheric effects (Verbesselt et al., 

2009). 

Each vegetation index has its advantages and disadvantages. Though NDVI has proven 

successful in detecting phenology differences, using other vegetation indices, such as the 

Enhanced Vegetation Index (EVI) may provide similar, and perhaps even better results. NDVI 
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can easily be computed without requiring statements on land cover classes, soil type or climatic 

conditions. This proved useful for this specific analysis, as land cover classes and soil type were 

not accounted for in these results. In addition, NDVI has the ability to conduct long time series 

(more than 20 years), whereas the EVI is limited to sensor systems designating the blue band of 

the electromagnetic spectrum. EVI is more responsive to canopy structural variations, such as 

leaf area index (LAI) (Boegh et al., 2002), and is less sensitive to residual aerosol contamination 

(Miura et al., 1998; Xiao et al., 2003). EVI is less prone to vegetation index saturation (Xiao et 

al., 2004; Huete et al., 2006), but to compensate this, EVI usually offers lower vegetation index 

values across all biomes.  

It is important to note that these results are understated. There is a significant lack in the 

ability to statistically test large data, such as MODIS NDVI data. Such data is based on a pixel 

count, and when combined with 5 different phenometric data values, as well as 3 seasons of data, 

anywhere from 1,834 to 5,844 values are being evaluated. These large sample sizes will affect 

the statistical conclusions by making the results susceptible to a Type 1 error. The large number 

of tests performed will also cause a higher probability of conducting a Type 1 error. A direction 

for future work would be to incorporate a more appropriate statistical method for large data 

comparisons. In addition, all study areas in this analysis contained a different number of 

observations, because the goal was to see if the study areas were significantly different from one 

another (Fort Riley Full: 5188; Fort Riley High: 1213; Fort Riley Low: 1558; KPBS: 621). 

However, a future study may further this work by conducting a similar analysis on these study 

areas with equal number of observations.  This work could result in a lower Type 1 error and 

could give additional insight into any differences between the study areas.  
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Chapter 6 - Conclusions 

The utility and applicability of vegetation index time-series analysis continues to 

increase in a number of academic fields. Such analyses give substantial insight into the causes of 

changing vegetation health conditions. There are a number of filtering, fitting, and smoothing 

methods that may be implemented to extract phenometric data from satellite-derived vegetation 

indices. The difficulty lies in selecting the most appropriate technique specific to a study area, 

tailored for obtaining particular desirable output results. Within each smoothing technique, a 

number of user-defined input settings must be determined prior to application. Selecting the most 

appropriate input settings proves as an even more daunting task, as certain phenometric output 

data may be extremely sensitive to the selected parameter settings. 

This thesis presents the first documented sensitivity analysis of specific user-defined 

input settings for the Savitzky-Golay filter within the TIMESAT program. This thesis contributes 

to work focused on extraction of phenometrics by illustrating the importance of user-defined 

input settings when creating and applying a filter to raw vegetation index data and how sensitive 

particular phenometrics are to input settings. Generally, slightly modified input values do not 

have a significant impact on the phenometric results. However, there are certain input values to 

the filter settings that yield statistically different values for select phenometrics. Fort Riley’s end 

of season and growing season length phenometrics were highly sensitive to user-defined input 

settings for the Savitzky-Golay filer, but the start of season, maximum NDVI value, and the small 

seasonal integral were generally insensitive to the input settings analyzed.  

Additionally, this thesis presents an optimal settings file for the Savitzky-Golay filter 

option in the TIMESAT application when used for Fort Riley, Kansas and, possibly, the entire 

Flint Hills ecoregion. Ideally, the parameter settings file presented here would be applicable to 
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regions experiencing similar climate, latitude, and vegetation composition. Such settings may 

be used in future work related to time-series analysis of vegetation index data, using this filter 

option. The optimal settings file reported in this research may not be the optimal settings file for 

all study areas. However, the methods applied here present a template for future analyses seeking 

to determine an optimal settings file for their study areas. Once an appropriate filter method and 

specific input settings has been determined for a study area, multiple study areas may then be 

compared.  

This thesis also presents a time-series comparison analysis between an anthropogenically 

impacted study area (Fort Riley) and a natural tallgrass prairie preserve (KPBS). Due to the 

proximity between Fort Riley KPBS (Figure 6.1), the optimal filter settings report for Fort Riley 

in Chapter 4 were also used to extract phenometric data for KPBS using TIMESAT. Phenometric 

data was extracted from a total of three Fort Riley study areas, which included all Fort Riley 

training areas, low intensity training areas only, and high intensity training areas only.  The 

extracted phenometric data was then paired and compared against each study area by using a 

Kolmogorov-Smirnov test. 

This is the first known comparison of extracted phenometric data from a time series of 

a vegetation index in order to investigate differences in key phenometrics that might be caused 

by military training activities.  Such work is beneficial to Range and Training Land Assessment 

function of installation ITAM programs for evaluating the sustainability of military training 

lands.  Results confirmed that events occurring on Fort Riley significantly impact its vegetation 

phenology, especially in areas experiencing high intensity training. 

According to this model, Fort Riley generally experiences earlier SOS and EOS dates 

compared to KPBS. As training intensity increases, the SOS/EOS arrives earlier and earlier. 
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There is a substantial amount of variation in the maximum NDVI values and small 

seasonal integral between Fort Riley and KPBS. Fort Riley experiences a larger range of values 

for maximum NDVI values and small seasonal integral, and lower minimum and higher 

maximum values, than KPBS.  As training intensity increases on Fort Riley, the maximum NDVI 

and small seasonal integral values decrease. It is apparent that military training has a negative 

impact on these phenometrics given the decrease in vegetation cover and increase in bare ground 

associated with more frequent military training and higher training intensities.  

This thesis characterizes preliminary results of comparisons between Fort Riley training 

areas and a natural preserve serving as a type of control. This work could be further expanded by 

adding moderate intensity training areas to the paired comparisons, finding and incorporating a 

more appropriate statistical method to test for significance, conducting a similar analysis with 

equal number of observations per study area, and by incorporating vegetation community 

differences in a highly detailed comparison. Additional control work on this topic is needed in 

order to gain a better perspective on the contributing factors upon which Fort Riley's phenology 

is dependent. 
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Appendix B - SAS Code for Sensitivity Analysis 

**************************************************************************; 

* Bryanna Pockrandt Project: Systematic Phenometric Sensitivity Analysis *; 

**************************************************************************; 

 

 

*Importing the Beg_Fort Data from Excel to SAS; 

 proc import out=Beg_Fort 

   datafile='C:\Desktop\FINAL.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Beg"; 

   getnames=yes; 

 run; 

 

 

*Importing the End_Fort Data from Excel to SAS; 

 proc import out=End_Fort 

   datafile='C:\Desktop\FINAL.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="End"; 

   getnames=yes; 

 run; 

 

 

*Importing the Length_Fort Data from Excel to SAS; 

 proc import out=Length_Fort 

   datafile='C:\Desktop\FINAL.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Length"; 

   getnames=yes; 

 run; 

 

 

*Importing the Max_Fort Data from Excel to SAS; 

 proc import out=Max_Fort 

   datafile='C:\Desktop\FINAL.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Max"; 

   getnames=yes; 

 run; 
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*Importing the Sint_Fort Data from Excel to SAS; 

 proc import out=Sint_Fort 

   datafile='C:\Desktop\FINAL.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Sint"; 

   getnames=yes; 

 run; 

 

 

******************************************; 

* Macro for Lin's Concordance Coefficient ; 

******************************************; 

*NOTE: The following macro calculates Lin's concordance coefficent (rc) and lower and upper CI  

       for ONE pair of the above variables in the PROC CORR VAR statement; 

*NOTE: run the macro to get Lin's rc for each pair of variables;  

%macro concorr(x, y, yname, title); 

 

 data Model;  

   set pstats; 

   keep _TYPE_ _NAME_ &x &y; 

 run; 

 

 data ModelM; set Model; 

   if _TYPE_ ='MEAN'; 

   *getting xbar-ybar for the two variables in the corr; 

   xbar=&x; 

   ybar=&y; 

   diffmean=&x - &y; 

   keep xbar ybar diffmean; 

 run; 

 

 data ModelS; set Model; 

   if _TYPE_='STD'; 

   *getting the ratio of SDs for the two variables in the corr; 

   sdx=&x; 

   sdy=&y; 

   keep sdy sdx; 

 run; 

 

 data ModelN; set Model; 

   if _TYPE_='N'; 

   n=min(&x,&y); 

 run; 

 

 data ModelC; set Model; 
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   if _TYPE_='CORR' and _NAME_=&yname; 

   r=&x; 

 run; 

 

 data all;  

   merge modelM modelS modelN modelC; 

 run; 

 

 data all; set all; 

   keep n xbar ybar diffmean sdx sdy r; 

 run; 

 

 data all2; set all; 

   u=diffmean/sqrt(sdy*sdx); 

   usq=u**2; 

   v=sdy/sdx; 

   cb=2*(1/(v+(1/v)+usq)); 

   rc=r*cb; 

   z=.5*log((1+rc)/(1-rc)); 

   sig2z=(1/(n-2))* 

         ( ( (1-r**2)*(rc**2))/((1-rc**2)*(r**2)       )   

          +( (4*(rc**3)*(1-rc)*usq)/(r*((1-rc**2)**2)) ) 

    -( (2*(rc**4)*(u**4))/((r**2)*((1-rc**2)**2))  )  ); 

   lz=z - 1.96*sqrt(sig2z); 

   uz=z + 1.96*sqrt(sig2z); 

   lrc=(exp(2*lz)-1)/(exp(2*lz)+1); 

   urc=(exp(2*uz)-1)/(exp(2*uz)+1); 

   if (r>=.9 & rc>=.9) then thres_90='*'; else thres_90='.'; 

   if (r>=.9 & rc>=.9) then Threshold='>= 0.90'; else Threshold='< 0.90'; 

   if abs(r-rc)<.05 then rdiff_05='+'; else rdiff_05='.'; 

   if .05 <= abs(r-rc)<.10 then rdiff_05_10='#'; else rdiff_05_10='.'; 

   if abs(r-rc)<.05 then Difference='Below'; else if (.05<=abs(r-rc)<.10) then Difference='Between'; else Difference='Over'; 

 run; 

 

 proc print data=all2; 

   var n xbar ybar diffmean sdx sdy u v r cb lrc rc urc; 

   title3 'Concordance Coefficient: Print-out of all pieces for the calculation'; 

   title4 &title; 

 run; 

 

 proc print data=all2; 

   var r rc thres_90 rdiff_05 rdiff_05_10; 

   title3 'Comparison between Pearson & Lin Concordance Correlation Coefficient'; 

   title4 &title; 

 run; 

 

 proc freq data=all2; 
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   tables Threshold*Difference / norow nocol nopercent;; 

 run; 

 

 

%mend concorr; 

 

 

%macro sensitivity(data); 

 

 proc corr data=&data /*cov*/ outp=pstats noprint; 

   *NOTE: Give the list of variables to be correlated in the VAR statement; 

   var E1_WS4_SOS20 

       E2_WS3_SOS20 E2_WS4_SOS10 E2_WS4_SOS20 E2_WS4_SOS25 E2_WS4_SOS30 E2_WS5_SOS20  

       E3_WS4_SOS20; 

   by Season; 

   title3 'CORR Results' ; 

 run; 

 

 *Preliminary Comparisons for Sensity Analysis; 

   /* Adjusts Filter Settings 1 Parameter at a time */ 

       /* Treats E2_WS4_SOS20 as Gold Standard */ 

  %concorr(E2_WS4_SOS20, E2_WS4_SOS10, 'E2_WS4_SOS10','E2_WS4_SOS20 and E2_WS4_SOS10'); 

  %concorr(E2_WS4_SOS20, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS4_SOS20 and E2_WS4_SOS25'); 

  %concorr(E2_WS4_SOS20, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS4_SOS20 and E2_WS4_SOS30'); 

  %concorr(E2_WS4_SOS20, E2_WS3_SOS20, 'E2_WS3_SOS20','E2_WS4_SOS20 and E2_WS3_SOS20'); 

  %concorr(E2_WS4_SOS20, E2_WS5_SOS20, 'E2_WS5_SOS20','E2_WS4_SOS20 and E2_WS5_SOS20'); 

  %concorr(E2_WS4_SOS20, E1_WS4_SOS20, 'E1_WS4_SOS20','E2_WS4_SOS20 and E1_WS4_SOS20'); 

  %concorr(E2_WS4_SOS20, E3_WS4_SOS20, 'E3_WS4_SOS20','E2_WS4_SOS20 and E3_WS4_SOS20'); 

 

 

%mend sensitivity; 

 

 

ods rtf file = "C:\Desktop\Systematic Statistical Analysis on Phenometric Sensitivity Analysis (Bryanna Pockrandt).doc"; 

 

title 'Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 

title2 'Beginning of the Season for Fort Riley'; 

%sensitivity(Beg_Fort); 

 

title2 'End of the Season for Fort Riley'; 

%sensitivity(End_Fort); 

 

title2 'Length of the Season for Fort Riley'; 

%sensitivity(Length_Fort); 
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title2 'Maximum Value of the Season for Fort Riley'; 

%sensitivity(Max_Fort); 

 

title2 'Small Integral of the Season for Fort Riley'; 

%sensitivity(Sint_Fort); 

 

 

ods rtf close; 

 

 

 

%macro season_plot(var,x,y,seas); 

 

  data diag; 

    set &var; 

    where Season=&seas; 

    z1=&x; 

    z2=&x; 

  run; 

 

 *Specifies conditions for symbols used in the plots; 

  symbol1 value=circle  height=0.75 cv=blue width=1; 

  symbol2 value=diamond height=0.25 cv=red  width=1 interpol=join; 

 

 *Generates a Lins Concordance Correlation Plot; 

  proc gplot data=diag; 

    plot &y*&x z2*z1 / overlay ; 

  run; 

 

%mend season_plot; 

 

 

%macro settings_plot(var,x,y); 

 

 title4 'Season 1'; 

 %season_plot(&var,&x,&y,1); 

 

 title4 'Season 2'; 

 %season_plot(&var,&x,&y,2); 

 

 title4 'Season 3'; 

 %season_plot(&var,&x,&y,3); 

 

 title4 'Season 4'; 

 %season_plot(&var,&x,&y,4); 

 

 title4 'Season 5'; 
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 %season_plot(&var,&x,&y,5); 

 

 title4 'Season 6'; 

 %season_plot(&var,&x,&y,6); 

 

 title4 'Season 7'; 

 %season_plot(&var,&x,&y,7); 

 

 title4 'Season 8'; 

 %season_plot(&var,&x,&y,8); 

 

 title4 'Season 9'; 

 %season_plot(&var,&x,&y,9); 

 

 title4 'Season 10'; 

 %season_plot(&var,&x,&y,10); 

 

 title4 'Season 11'; 

 %season_plot(&var,&x,&y,11); 

 

%mend settings_plot; 

 

 

%macro var_plot(var); 

 

 title3 'E2_WS4_SOS20 and E2_WS4_SOS10'; 

 %settings_plot(&var,E2_WS4_SOS20,E2_WS4_SOS10); 

 

 title3 'E2_WS4_SOS20 and E2_WS4_SOS25'; 

 %settings_plot(&var,E2_WS4_SOS20,E2_WS4_SOS25); 

 

 title3 'E2_WS4_SOS20 and E2_WS4_SOS30'; 

 %settings_plot(&var,E2_WS4_SOS20,E2_WS4_SOS30); 

 

 title3 'E2_WS4_SOS20 and E2_WS3_SOS20'; 

 %settings_plot(&var,E2_WS4_SOS20,E2_WS3_SOS20); 

 

 title3 'E2_WS4_SOS20 and E2_WS5_SOS20'; 

 %settings_plot(&var,E2_WS4_SOS20,E2_WS5_SOS20); 

 

 title3 'E2_WS4_SOS20 and E1_WS4_SOS20'; 

 %settings_plot(&var,E2_WS4_SOS20,E1_WS4_SOS20); 

 

 title3 'E2_WS4_SOS20 and E3_WS4_SOS20'; 

 %settings_plot(&var,E2_WS4_SOS20,E3_WS4_SOS20); 

 

%mend var_plot; 
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ods rtf file = "C:\Desktop\Plots for Phenometric Sensitivity Analysis (Beg_Fort).doc"; 

 

 title 'Plots for Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 title2 'Beginning of the Season for Fort Riley'; 

 %var_plot(Beg_Fort); 

 

ods rtf close; 

 

 

ods rtf file = "C:\Desktop\Plots for Phenometric Sensitivity Analysis (End_Fort).doc"; 

 

 title 'Plots for Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 title2 'End of the Season for Fort Riley'; 

 %var_plot(End_Fort); 

 

ods rtf close; 

 

 

ods rtf file = "C:\Desktop\Plots for Phenometric Sensitivity Analysis (Length_Fort).doc"; 

 

 title 'Plots for Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 title2 'Length of the Season for Fort Riley'; 

 %var_plot(Length_Fort); 

 

ods rtf close; 

 

 

 

ods rtf file = "C:\Desktop\Plots for Phenometric Sensitivity Analysis (Max_Fort).doc"; 

 

 title 'Plots for Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 title2 'Maximum Value of the Season for Fort Riley'; 

 %var_plot(Max_Fort); 

 

ods rtf close; 

 

 

 

ods rtf file = "C:\Desktop\Plots for Phenometric Sensitivity Analysis (Sint_Fort).doc"; 

 

 title 'Plots for Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 
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 title2 'Small Integral of the Season for Fort Riley'; 

 %var_plot(Sint_Fort); 

 

ods rtf close; 

 

 

************************************************; 

* Previous Comparisons for Sensitivity Analysis ; 

************************************************; 

 

 *Combinations for Envelope Iteration = 1; 

 %concorr(E1_WS3_SOS10, E1_WS3_SOS30, 'E1_WS3_SOS30','E1_WS3_SOS10 and E1_WS3_SOS30'); 

 %concorr(E1_WS3_SOS10, E1_WS4_SOS10, 'E1_WS4_SOS10','E1_WS3_SOS10 and E1_WS4_SOS10'); 

 %concorr(E1_WS3_SOS10, E1_WS4_SOS20, 'E1_WS4_SOS20','E1_WS3_SOS10 and E1_WS4_SOS20'); 

 %concorr(E1_WS3_SOS10, E1_WS4_SOS25, 'E1_WS4_SOS25','E1_WS3_SOS10 and E1_WS4_SOS25'); 

 %concorr(E1_WS3_SOS10, E1_WS4_SOS30, 'E1_WS4_SOS30','E1_WS3_SOS10 and E1_WS4_SOS30'); 

 %concorr(E1_WS3_SOS10, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS3_SOS10 and E1_WS5_SOS10'); 

 %concorr(E1_WS3_SOS10, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS3_SOS10 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS3_SOS30, E1_WS4_SOS10, 'E1_WS4_SOS10','E1_WS3_SOS30 and E1_WS4_SOS10'); 

 %concorr(E1_WS3_SOS30, E1_WS4_SOS20, 'E1_WS4_SOS20','E1_WS3_SOS30 and E1_WS4_SOS20'); 

 %concorr(E1_WS3_SOS30, E1_WS4_SOS25, 'E1_WS4_SOS25','E1_WS3_SOS30 and E1_WS4_SOS25'); 

 %concorr(E1_WS3_SOS30, E1_WS4_SOS30, 'E1_WS4_SOS30','E1_WS3_SOS30 and E1_WS4_SOS30'); 

 %concorr(E1_WS3_SOS30, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS3_SOS30 and E1_WS5_SOS10'); 

 %concorr(E1_WS3_SOS30, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS3_SOS30 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS4_SOS10, E1_WS4_SOS20, 'E1_WS4_SOS20','E1_WS4_SOS10 and E1_WS4_SOS20'); 

 %concorr(E1_WS4_SOS10, E1_WS4_SOS25, 'E1_WS4_SOS25','E1_WS4_SOS10 and E1_WS4_SOS25'); 

 %concorr(E1_WS4_SOS10, E1_WS4_SOS30, 'E1_WS4_SOS30','E1_WS4_SOS10 and E1_WS4_SOS30'); 

 %concorr(E1_WS4_SOS10, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS4_SOS10 and E1_WS5_SOS10'); 

 %concorr(E1_WS4_SOS10, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS4_SOS10 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS4_SOS20, E1_WS4_SOS25, 'E1_WS4_SOS25','E1_WS4_SOS20 and E1_WS4_SOS25'); 

 %concorr(E1_WS4_SOS20, E1_WS4_SOS30, 'E1_WS4_SOS30','E1_WS4_SOS20 and E1_WS4_SOS30'); 

 %concorr(E1_WS4_SOS20, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS4_SOS20 and E1_WS5_SOS10'); 

 %concorr(E1_WS4_SOS20, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS4_SOS20 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS4_SOS25, E1_WS4_SOS30, 'E1_WS4_SOS30','E1_WS4_SOS25 and E1_WS4_SOS30'); 

 %concorr(E1_WS4_SOS25, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS4_SOS25 and E1_WS5_SOS10'); 

 %concorr(E1_WS4_SOS25, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS4_SOS25 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS4_SOS30, E1_WS5_SOS10, 'E1_WS5_SOS10','E1_WS4_SOS30 and E1_WS5_SOS10'); 

 %concorr(E1_WS4_SOS30, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS4_SOS30 and E1_WS5_SOS30'); 

 

 %concorr(E1_WS5_SOS10, E1_WS5_SOS30, 'E1_WS5_SOS30','E1_WS5_SOS10 and E1_WS5_SOS30'); 
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 *Combinations for Envelope Iteration = 2; 

 %concorr(E2_WS3_SOS10, E2_WS3_SOS30, 'E2_WS3_SOS30','E2_WS3_SOS10 and E2_WS3_SOS30'); 

 %concorr(E2_WS3_SOS10, E2_WS4_SOS10, 'E2_WS4_SOS10','E2_WS3_SOS10 and E2_WS4_SOS10'); 

 %concorr(E2_WS3_SOS10, E2_WS4_SOS20, 'E2_WS4_SOS20','E2_WS3_SOS10 and E2_WS4_SOS20'); 

 %concorr(E2_WS3_SOS10, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS3_SOS10 and E2_WS4_SOS25'); 

 %concorr(E2_WS3_SOS10, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS3_SOS10 and E2_WS4_SOS30'); 

 %concorr(E2_WS3_SOS10, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS3_SOS10 and E2_WS5_SOS10'); 

 %concorr(E2_WS3_SOS10, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS3_SOS10 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS3_SOS30, E2_WS4_SOS10, 'E2_WS4_SOS10','E2_WS3_SOS30 and E2_WS4_SOS10'); 

 %concorr(E2_WS3_SOS30, E2_WS4_SOS20, 'E2_WS4_SOS20','E2_WS3_SOS30 and E2_WS4_SOS20'); 

 %concorr(E2_WS3_SOS30, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS3_SOS30 and E2_WS4_SOS25'); 

 %concorr(E2_WS3_SOS30, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS3_SOS30 and E2_WS4_SOS30'); 

 %concorr(E2_WS3_SOS30, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS3_SOS30 and E2_WS5_SOS10'); 

 %concorr(E2_WS3_SOS30, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS3_SOS30 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS4_SOS10, E2_WS4_SOS20, 'E2_WS4_SOS20','E2_WS4_SOS10 and E2_WS4_SOS20'); 

 %concorr(E2_WS4_SOS10, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS4_SOS10 and E2_WS4_SOS25'); 

 %concorr(E2_WS4_SOS10, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS4_SOS10 and E2_WS4_SOS30'); 

 %concorr(E2_WS4_SOS10, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS4_SOS10 and E2_WS5_SOS10'); 

 %concorr(E2_WS4_SOS10, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS4_SOS10 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS4_SOS20, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS4_SOS20 and E2_WS4_SOS25'); 

 %concorr(E2_WS4_SOS20, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS4_SOS20 and E2_WS4_SOS30'); 

 %concorr(E2_WS4_SOS20, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS4_SOS20 and E2_WS5_SOS10'); 

 %concorr(E2_WS4_SOS20, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS4_SOS20 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS4_SOS25, E2_WS4_SOS30, 'E2_WS4_SOS30','E2_WS4_SOS25 and E2_WS4_SOS30'); 

 %concorr(E2_WS4_SOS25, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS4_SOS25 and E2_WS5_SOS10'); 

 %concorr(E2_WS4_SOS25, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS4_SOS25 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS4_SOS30, E2_WS5_SOS10, 'E2_WS5_SOS10','E2_WS4_SOS30 and E2_WS5_SOS10'); 

 %concorr(E2_WS4_SOS30, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS4_SOS30 and E2_WS5_SOS30'); 

 

 %concorr(E2_WS5_SOS10, E2_WS5_SOS30, 'E2_WS5_SOS30','E2_WS5_SOS10 and E2_WS5_SOS30'); 

 

 

 *Combinations for Envelope Iteration = 3; 

 %concorr(E3_WS3_SOS10, E3_WS3_SOS30, 'E3_WS3_SOS30','E3_WS3_SOS10 and E3_WS3_SOS30'); 

 %concorr(E3_WS3_SOS10, E3_WS4_SOS10, 'E3_WS4_SOS10','E3_WS3_SOS10 and E3_WS4_SOS10'); 

 %concorr(E3_WS3_SOS10, E3_WS4_SOS20, 'E3_WS4_SOS20','E3_WS3_SOS10 and E3_WS4_SOS20'); 

 %concorr(E3_WS3_SOS10, E3_WS4_SOS25, 'E3_WS4_SOS25','E3_WS3_SOS10 and E3_WS4_SOS25'); 

 %concorr(E3_WS3_SOS10, E3_WS4_SOS30, 'E3_WS4_SOS30','E3_WS3_SOS10 and E3_WS4_SOS30'); 

 %concorr(E3_WS3_SOS10, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS3_SOS10 and E3_WS5_SOS10'); 

 %concorr(E3_WS3_SOS10, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS3_SOS10 and E3_WS5_SOS30'); 
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 %concorr(E3_WS3_SOS30, E3_WS4_SOS10, 'E3_WS4_SOS10','E3_WS3_SOS30 and E3_WS4_SOS10'); 

 %concorr(E3_WS3_SOS30, E3_WS4_SOS20, 'E3_WS4_SOS20','E3_WS3_SOS30 and E3_WS4_SOS20'); 

 %concorr(E3_WS3_SOS30, E3_WS4_SOS25, 'E3_WS4_SOS25','E3_WS3_SOS30 and E3_WS4_SOS25'); 

 %concorr(E3_WS3_SOS30, E3_WS4_SOS30, 'E3_WS4_SOS30','E3_WS3_SOS30 and E3_WS4_SOS30'); 

 %concorr(E3_WS3_SOS30, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS3_SOS30 and E3_WS5_SOS10'); 

 %concorr(E3_WS3_SOS30, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS3_SOS30 and E3_WS5_SOS30'); 

 

 %concorr(E3_WS4_SOS10, E3_WS4_SOS20, 'E3_WS4_SOS20','E3_WS4_SOS10 and E3_WS4_SOS20'); 

 %concorr(E3_WS4_SOS10, E3_WS4_SOS25, 'E3_WS4_SOS25','E3_WS4_SOS10 and E3_WS4_SOS25'); 

 %concorr(E3_WS4_SOS10, E3_WS4_SOS30, 'E3_WS4_SOS30','E3_WS4_SOS10 and E3_WS4_SOS30'); 

 %concorr(E3_WS4_SOS10, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS4_SOS10 and E3_WS5_SOS10'); 

 %concorr(E3_WS4_SOS10, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS4_SOS10 and E3_WS5_SOS30'); 

 

 %concorr(E3_WS4_SOS20, E3_WS4_SOS25, 'E3_WS4_SOS25','E3_WS4_SOS20 and E3_WS4_SOS25'); 

 %concorr(E3_WS4_SOS20, E3_WS4_SOS30, 'E3_WS4_SOS30','E3_WS4_SOS20 and E3_WS4_SOS30'); 

 %concorr(E3_WS4_SOS20, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS4_SOS20 and E3_WS5_SOS10'); 

 %concorr(E3_WS4_SOS20, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS4_SOS20 and E3_WS5_SOS30'); 

 

 %concorr(E3_WS4_SOS25, E3_WS4_SOS30, 'E3_WS4_SOS30','E3_WS4_SOS25 and E3_WS4_SOS30'); 

 %concorr(E3_WS4_SOS25, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS4_SOS25 and E3_WS5_SOS10'); 

 %concorr(E3_WS4_SOS25, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS4_SOS25 and E3_WS5_SOS30'); 

 

 %concorr(E3_WS4_SOS30, E3_WS5_SOS10, 'E3_WS5_SOS10','E3_WS4_SOS30 and E3_WS5_SOS10'); 

 %concorr(E3_WS4_SOS30, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS4_SOS30 and E3_WS5_SOS30'); 

 

 %concorr(E3_WS5_SOS10, E3_WS5_SOS30, 'E3_WS5_SOS30','E3_WS5_SOS10 and E3_WS5_SOS30'); 

 

 

 *Comparisons between Envelope Iterations; 

 %concorr(E1_WS4_SOS20, E1_WS4_SOS25, 'E1_WS4_SOS25','E1_WS4_SOS20 and E1_WS4_SOS25'); 

 %concorr(E1_WS4_SOS20, E2_WS4_SOS20, 'E2_WS4_SOS20','E1_WS4_SOS20 and E2_WS4_SOS20'); 

 %concorr(E1_WS4_SOS20, E2_WS4_SOS25, 'E2_WS4_SOS25','E1_WS4_SOS20 and E2_WS4_SOS25'); 

 %concorr(E1_WS4_SOS20, E3_WS4_SOS20, 'E3_WS4_SOS20','E1_WS4_SOS20 and E3_WS4_SOS20'); 

 %concorr(E1_WS4_SOS20, E3_WS4_SOS25, 'E3_WS4_SOS25','E1_WS4_SOS20 and E3_WS4_SOS25'); 

 

 %concorr(E1_WS4_SOS25, E2_WS4_SOS20, 'E2_WS4_SOS20','E1_WS4_SOS25 and E2_WS4_SOS20'); 

 %concorr(E1_WS4_SOS25, E2_WS4_SOS25, 'E2_WS4_SOS25','E1_WS4_SOS25 and E2_WS4_SOS25'); 

 %concorr(E1_WS4_SOS25, E3_WS4_SOS20, 'E3_WS4_SOS20','E1_WS4_SOS25 and E3_WS4_SOS20'); 

 %concorr(E1_WS4_SOS25, E3_WS4_SOS25, 'E3_WS4_SOS25','E1_WS4_SOS25 and E3_WS4_SOS25'); 

 

 %concorr(E2_WS4_SOS20, E2_WS4_SOS25, 'E2_WS4_SOS25','E2_WS4_SOS20 and E2_WS4_SOS25'); 

 %concorr(E2_WS4_SOS20, E3_WS4_SOS20, 'E3_WS4_SOS20','E2_WS4_SOS20 and E3_WS4_SOS20'); 

 %concorr(E2_WS4_SOS20, E3_WS4_SOS25, 'E3_WS4_SOS25','E2_WS4_SOS20 and E3_WS4_SOS25'); 

 

 %concorr(E2_WS4_SOS25, E3_WS4_SOS20, 'E3_WS4_SOS20','E2_WS4_SOS25 and E3_WS4_SOS20'); 

 %concorr(E2_WS4_SOS25, E3_WS4_SOS25, 'E3_WS4_SOS25','E2_WS4_SOS25 and E3_WS4_SOS25'); 
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 %concorr(E3_WS4_SOS20, E3_WS4_SOS25, 'E3_WS4_SOS25','E3_WS4_SOS20 and E3_WS4_SOS25'); 

 

 

 

*ods rtf file = "E:\GRA (Consulting)\Bryanna Pockrandt\Lins Concordance Plots on Phenometric Sensitivity Analysis (Bryanna Pockrandt).doc"; 

 

*title 'Lins Concordance Plots on Phenometric Sensitivity Analysis (Bryanna Pockrandt)'; 

 

 

%macro concord_plot(var,x,y,seas); 

 

 data diag; 

   set &var; 

   where Season=&seas; 

   z1=&x; 

   z2=&x; 

 run; 

 

 *Specifies conditions for symbols used in the plots; 

  symbol1 value=circle  height=0.75 cv=blue width=1; 

  symbol2 value=diamond height=0.25 cv=red  width=1 interpol=join; 

 

 *Generates a Lins Concordance Correlation Plot; 

  proc gplot data=diag; 

    plot &y*&x z2*z1 / overlay ; 

 title3 'Lins Concordance Correlation Plot'; 

  run; 

 

%mend concord_plot; 

 

title2 'Beginning of the Season for E2_WS3_SOS30 and E2_WS5_SOS30 (Season 2)'; 

%concord_plot(Beg_Fort,E2_WS3_SOS30,E2_WS5_SOS30,2); 

  

title2 'Beginning of the Season for E2_WS3_SOS30 and E2_WS5_SOS30 (Season 4)'; 

%concord_plot(Beg_Fort,E2_WS3_SOS30,E2_WS5_SOS30,4); 

 

title2 'Beginning of the Season for E2_WS3_SOS30 and E2_WS5_SOS30 (Season 5)'; 

%concord_plot(Beg_Fort,E2_WS3_SOS30,E2_WS5_SOS30,5); 

 

title2 'Beginning of the Season for E2_WS3_SOS30 and E2_WS5_SOS30 (Season 9)'; 

%concord_plot(Beg_Fort,E2_WS3_SOS30,E2_WS5_SOS30,9); 

 

title2 'Beginning of the Season for E2_WS3_SOS30 and E2_WS5_SOS30 (Season 11)'; 

%concord_plot(Beg_Fort,E2_WS3_SOS30,E2_WS5_SOS30,11); 

 

 

*ods rtf close;  
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Appendix C - SAS Results from Sensitivity Analysis 

 

Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS10 

 

 

 

 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1218.04 -24.3842 125.305 128.528 -0.19214 1.02572 0.99420 0.98156 0.97485 0.97587 0.97685

2 5188 1036.42 1056.42 -20.0003 145.557 148.887 -0.13586 1.02288 0.99733 0.99060 0.98745 0.98796 0.98844

3 5211 1087.52 1102.74 -15.2207 107.559 109.350 -0.14035 1.01665 0.99736 0.99011 0.98699 0.98750 0.98799

4 5224 1118.90 1142.33 -23.4235 100.029 102.570 -0.23125 1.02540 0.98339 0.97366 0.95538 0.95749 0.95949

5 5225 1028.06 1048.72 -20.6595 136.809 138.739 -0.14996 1.01411 0.99755 0.98879 0.98585 0.98637 0.98686

6 5228 1079.09 1090.62 -11.5299 139.714 141.649 -0.08196 1.01385 0.99876 0.99656 0.99512 0.99533 0.99553

7 5227 1151.10 1178.07 -26.9643 116.805 117.532 -0.23013 1.00622 0.98988 0.97418 0.96275 0.96433 0.96584

8 5223 1098.55 1124.41 -25.8599 101.660 103.692 -0.25187 1.01999 0.99081 0.96907 0.95855 0.96016 0.96171

9 5225 1087.65 1099.50 -11.8438 121.065 120.005 -0.09826 0.99125 0.99845 0.99516 0.99334 0.99362 0.99388

10 5223 1151.63 1199.46 -47.8308 135.913 143.690 -0.34227 1.05722 0.96319 0.94329 0.90423 0.90857 0.91271

11 5228 1025.80 1047.84 -22.0350 124.914 123.440 -0.17745 0.98819 0.99371 0.98443 0.97725 0.97824 0.97918
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS10 

 

 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

>= 0.90 10 1 11

Total 10 1 11

 

 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99420 0.97587 * + . 

2 0.99733 0.98796 * + . 

3 0.99736 0.98750 * + . 

4 0.98339 0.95749 * + . 

5 0.99755 0.98637 * + . 

6 0.99876 0.99533 * + . 

7 0.98988 0.96433 * + . 

8 0.99081 0.96016 * + . 

9 0.99845 0.99362 * + . 

10 0.96319 0.90857 * . # 

11 0.99371 0.97824 * + . 



 

150 

 

Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1183.38 10.2754 125.305 124.336 0.08232 0.99227 0.99712 0.99659 0.99339 0.99373 0.99405

2 5188 1036.42 1026.77 9.6475 145.557 144.648 0.06649 0.99375 0.99821 0.99778 0.99577 0.99599 0.99619

3 5211 1087.52 1079.11 8.4046 107.559 107.717 0.07808 1.00147 0.99719 0.99696 0.99384 0.99416 0.99447

4 5224 1118.90 1108.93 9.9769 100.029 99.353 0.10008 0.99324 0.99556 0.99499 0.99007 0.99058 0.99107

5 5225 1028.06 1018.43 9.6285 136.809 136.159 0.07055 0.99525 0.99791 0.99751 0.99518 0.99543 0.99566

6 5228 1079.09 1070.47 8.6202 139.714 138.497 0.06197 0.99129 0.99837 0.99805 0.99622 0.99642 0.99660

7 5227 1151.10 1137.87 13.2376 116.805 117.089 0.11319 1.00243 0.99561 0.99363 0.98872 0.98927 0.98980

8 5223 1098.55 1088.44 10.1049 101.660 101.718 0.09937 1.00057 0.99569 0.99509 0.99030 0.99080 0.99128

9 5225 1087.65 1080.79 6.8590 121.065 121.786 0.05649 1.00595 0.99792 0.99839 0.99611 0.99632 0.99652

10 5223 1151.63 1139.28 12.3466 135.913 136.101 0.09078 1.00138 0.99495 0.99590 0.99035 0.99086 0.99135

11 5228 1025.80 1014.70 11.1075 124.914 126.094 0.08850 1.00945 0.99621 0.99605 0.99185 0.99228 0.99268
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99712 0.99373 * + . 

2 0.99821 0.99599 * + . 

3 0.99719 0.99416 * + . 

4 0.99556 0.99058 * + . 

5 0.99791 0.99543 * + . 

6 0.99837 0.99642 * + . 

7 0.99561 0.98927 * + . 

8 0.99569 0.99080 * + . 

9 0.99792 0.99632 * + . 

10 0.99495 0.99086 * + . 

11 0.99621 0.99228 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1174.09 19.5694 125.305 124.656 0.15658 0.99482 0.99648 0.98788 0.98375 0.98440 0.98501

2 5188 1036.42 1017.74 18.6744 145.557 144.050 0.12897 0.98964 0.99785 0.99170 0.98915 0.98957 0.98997

3 5211 1087.52 1069.21 18.3056 107.559 107.937 0.16989 1.00351 0.99626 0.98577 0.98136 0.98208 0.98276

4 5224 1118.90 1099.98 18.9236 100.029 99.812 0.18939 0.99782 0.99448 0.98238 0.97600 0.97696 0.97789

5 5225 1028.06 1008.33 19.7286 136.809 135.629 0.14483 0.99137 0.99718 0.98958 0.98626 0.98679 0.98731

6 5228 1079.09 1060.58 18.5149 139.714 137.714 0.13348 0.98569 0.99755 0.99107 0.98818 0.98864 0.98909

7 5227 1151.10 1123.69 27.4160 116.805 117.586 0.23394 1.00668 0.99388 0.97334 0.96617 0.96739 0.96856

8 5223 1098.55 1077.63 20.9212 101.660 102.427 0.20502 1.00754 0.99555 0.97939 0.97411 0.97503 0.97592

9 5225 1087.65 1071.23 16.4212 121.065 122.712 0.13473 1.01361 0.99644 0.99092 0.98681 0.98739 0.98794

10 5223 1151.63 1127.48 24.1530 135.913 137.114 0.17693 1.00884 0.99334 0.98455 0.97698 0.97799 0.97896

11 5228 1025.80 1003.28 22.5275 124.914 126.960 0.17889 1.01638 0.99327 0.98412 0.97647 0.97750 0.97849
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99648 0.98440 * + . 

2 0.99785 0.98957 * + . 

3 0.99626 0.98208 * + . 

4 0.99448 0.97696 * + . 

5 0.99718 0.98679 * + . 

6 0.99755 0.98864 * + . 

7 0.99388 0.96739 * + . 

8 0.99555 0.97503 * + . 

9 0.99644 0.98739 * + . 

10 0.99334 0.97799 * + . 

11 0.99327 0.97750 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1167.69 25.9671 125.305 123.934 0.20837 0.98906 0.97515 0.97869 0.95188 0.95437 0.95673

2 5188 1036.42 1001.62 34.7993 145.557 145.108 0.23945 0.99692 0.97849 0.97213 0.94872 0.95122 0.95360

3 5211 1087.52 1064.41 23.1078 107.559 105.335 0.21709 0.97933 0.97292 0.97677 0.94762 0.95032 0.95288

4 5224 1118.90 1106.26 12.6431 100.029 96.068 0.12897 0.96040 0.96820 0.99095 0.95713 0.95944 0.96162

5 5225 1028.06 1017.18 10.8798 136.809 136.168 0.07971 0.99531 0.98329 0.99682 0.97901 0.98016 0.98125

6 5228 1079.09 1086.12 -7.0239 139.714 150.603 -0.04842 1.07794 0.97908 0.99603 0.97388 0.97519 0.97644

7 5227 1151.10 1154.24 -3.1360 116.805 121.665 -0.02631 1.04160 0.96310 0.99882 0.95990 0.96197 0.96392

8 5223 1098.55 1084.45 14.0986 101.660 99.123 0.14045 0.97505 0.97638 0.98992 0.96462 0.96654 0.96836

9 5225 1087.65 1095.77 -8.1144 121.065 118.006 -0.06789 0.97473 0.98103 0.99737 0.97723 0.97845 0.97961

10 5223 1151.63 1155.46 -3.8354 135.913 129.479 -0.02891 0.95266 0.97400 0.99841 0.97096 0.97245 0.97386

11 5228 1025.80 1013.34 12.4580 124.914 122.666 0.10064 0.98200 0.97345 0.99480 0.96658 0.96839 0.97011
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.97515 0.95437 * + . 

2 0.97849 0.95122 * + . 

3 0.97292 0.95032 * + . 

4 0.96820 0.95944 * + . 

5 0.98329 0.98016 * + . 

6 0.97908 0.97519 * + . 

7 0.96310 0.96197 * + . 

8 0.97638 0.96654 * + . 

9 0.98103 0.97845 * + . 

10 0.97400 0.97245 * + . 

11 0.97345 0.96839 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1228.59 -34.9322 125.305 125.558 -0.27850 1.00202 0.96932 0.96267 0.92974 0.93314 0.93637

2 5188 1036.42 1065.56 -29.1442 145.557 143.738 -0.20149 0.98750 0.97953 0.98003 0.95780 0.95997 0.96202

3 5211 1087.52 1113.88 -26.3577 107.559 108.958 -0.24348 1.01301 0.97434 0.97113 0.94341 0.94621 0.94888

4 5224 1118.90 1135.54 -16.6326 100.029 105.348 -0.16203 1.05317 0.97748 0.98574 0.96150 0.96354 0.96547

5 5225 1028.06 1035.68 -7.6239 136.809 142.230 -0.05465 1.03962 0.98918 0.99776 0.98623 0.98696 0.98765

6 5228 1079.09 1094.56 -15.4624 139.714 143.381 -0.10925 1.02625 0.97563 0.99374 0.96777 0.96952 0.97118

7 5227 1151.10 1163.83 -12.7251 116.805 119.882 -0.10754 1.02634 0.95857 0.99392 0.95008 0.95274 0.95526

8 5223 1098.55 1107.24 -8.6943 101.660 108.182 -0.08290 1.06415 0.97885 0.99466 0.97216 0.97363 0.97501

9 5225 1087.65 1106.41 -18.7541 121.065 127.861 -0.15074 1.05614 0.97847 0.98731 0.96415 0.96606 0.96786

10 5223 1151.63 1171.14 -19.5081 135.913 145.971 -0.13850 1.07400 0.96526 0.98800 0.95110 0.95368 0.95613

11 5228 1025.80 1032.60 -6.7977 124.914 134.241 -0.05249 1.07467 0.97785 0.99604 0.97259 0.97398 0.97530
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.96932 0.93314 * + . 

2 0.97953 0.95997 * + . 

3 0.97434 0.94621 * + . 

4 0.97748 0.96354 * + . 

5 0.98918 0.98696 * + . 

6 0.97563 0.96952 * + . 

7 0.95857 0.95274 * + . 

8 0.97885 0.97363 * + . 

9 0.97847 0.96606 * + . 

10 0.96526 0.95368 * + . 

11 0.97785 0.97398 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1148.60 45.0564 125.305 122.018 0.36438 0.97377 0.96463 0.93743 0.89992 0.90427 0.90845

2 5188 1036.42 979.60 56.8130 145.557 145.434 0.39048 0.99916 0.97991 0.92916 0.90714 0.91050 0.91373

3 5211 1087.52 1066.93 20.5844 107.559 115.656 0.18456 1.07528 0.96648 0.98071 0.94495 0.94784 0.95057

4 5224 1118.90 1131.93 -13.0321 100.029 103.276 -0.12822 1.03246 0.95245 0.99135 0.94107 0.94421 0.94718

5 5225 1028.06 1008.04 20.0202 136.809 138.139 0.14563 1.00972 0.98125 0.98946 0.96925 0.97091 0.97249

6 5228 1079.09 1051.61 27.4789 139.714 152.265 0.18840 1.08983 0.96148 0.97900 0.93808 0.94129 0.94435

7 5227 1151.10 1143.58 7.5245 116.805 120.510 0.06342 1.03171 0.95706 0.99751 0.95218 0.95467 0.95704

8 5223 1098.55 1081.55 16.9992 101.660 98.867 0.16956 0.97253 0.96849 0.98545 0.95181 0.95440 0.95685

9 5225 1087.65 1098.55 -10.9004 121.065 121.980 -0.08970 1.00756 0.97376 0.99597 0.96810 0.96983 0.97147

10 5223 1151.63 1148.95 2.6827 135.913 138.057 0.01958 1.01578 0.95548 0.99969 0.95274 0.95518 0.95750

11 5228 1025.80 1015.72 10.0813 124.914 128.358 0.07962 1.02757 0.97407 0.99647 0.96897 0.97064 0.97221
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.96463 0.90427 * . # 

2 0.97991 0.91050 * . # 

3 0.96648 0.94784 * + . 

4 0.95245 0.94421 * + . 

5 0.98125 0.97091 * + . 

6 0.96148 0.94129 * + . 

7 0.95706 0.95467 * + . 

8 0.96849 0.95440 * + . 

9 0.97376 0.96983 * + . 

10 0.95548 0.95518 * + . 

11 0.97407 0.97064 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

>= 0.90 9 2 11

Total 9 2 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Beginning of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1223.24 -29.5783 125.305 123.070 -0.23818 0.98216 0.99164 0.97226 0.96267 0.96413 0.96554

2 5188 1036.42 1069.13 -32.7106 145.557 147.144 -0.22351 1.01091 0.99109 0.97557 0.96543 0.96688 0.96826

3 5211 1087.52 1116.36 -28.8385 107.559 106.290 -0.26971 0.98820 0.98975 0.96484 0.95315 0.95495 0.95668

4 5224 1118.90 1134.94 -16.0353 100.029 100.620 -0.15983 1.00591 0.99390 0.98737 0.98046 0.98135 0.98220

5 5225 1028.06 1042.62 -14.5646 136.809 140.057 -0.10522 1.02374 0.99743 0.99422 0.99127 0.99167 0.99205

6 5228 1079.09 1105.95 -26.8556 139.714 143.254 -0.18983 1.02534 0.99351 0.98200 0.97455 0.97562 0.97665

7 5227 1151.10 1169.14 -18.0350 116.805 118.018 -0.15361 1.01039 0.99444 0.98829 0.98197 0.98279 0.98357

8 5223 1098.55 1109.71 -11.1611 101.660 104.606 -0.10823 1.02898 0.99601 0.99377 0.98928 0.98981 0.99031

9 5225 1087.65 1098.13 -10.4754 121.065 124.428 -0.08535 1.02778 0.99745 0.99600 0.99312 0.99346 0.99378

10 5223 1151.63 1162.01 -10.3791 135.913 139.362 -0.07541 1.02538 0.99672 0.99685 0.99323 0.99358 0.99392

11 5228 1025.80 1038.80 -12.9986 124.914 128.319 -0.10267 1.02726 0.99672 0.99440 0.99068 0.99114 0.99157
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99164 0.96413 * + . 

2 0.99109 0.96688 * + . 

3 0.98975 0.95495 * + . 

4 0.99390 0.98135 * + . 

5 0.99743 0.99167 * + . 

6 0.99351 0.97562 * + . 

7 0.99444 0.98279 * + . 

8 0.99601 0.98981 * + . 

9 0.99745 0.99346 * + . 

10 0.99672 0.99358 * + . 

11 0.99672 0.99114 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 23.367 -1.83070 0.66664 1.03501 -2.20393 1.55258 0.70193 0.28353 0.19216 0.19902 0.20585

2 5184 44.501 46.271 -1.77025 0.59969 0.92998 -2.37048 1.55076 0.70359 0.25593 0.17392 0.18007 0.18620

3 5214 67.369 68.769 -1.39941 0.70863 0.86927 -1.78302 1.22668 0.87580 0.38307 0.32878 0.33549 0.34217

4 5222 89.227 91.019 -1.79113 0.51183 1.28337 -2.20998 2.50741 0.63872 0.25673 0.15699 0.16398 0.17095

5 5217 113.120 114.953 -1.83237 0.58607 0.87728 -2.55547 1.49690 0.75195 0.23001 0.16780 0.17295 0.17810

6 5223 136.376 137.756 -1.38051 0.72245 0.66204 -1.99614 0.91638 0.86419 0.33377 0.28258 0.28844 0.29427

7 5227 159.102 160.893 -1.79099 0.63784 1.18262 -2.06211 1.85409 0.69398 0.30094 0.20123 0.20885 0.21644

8 5221 181.954 183.925 -1.97129 0.50009 1.00920 -2.77482 2.01803 0.61463 0.19582 0.11532 0.12036 0.12540

9 5217 204.708 205.814 -1.10571 0.46685 0.54215 -2.19782 1.16128 0.80454 0.29185 0.22890 0.23480 0.24069

10 5198 227.709 230.564 -2.85552 0.62303 2.01435 -2.54897 3.23317 0.39409 0.19921 0.07293 0.07851 0.08408

11 5206 250.672 252.497 -1.82511 0.75990 1.07744 -2.01703 1.41787 0.71737 0.32302 0.22406 0.23172 0.23936
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.70193 0.19902 . . . 

2 0.70359 0.18007 . . . 

3 0.87580 0.33549 . . . 

4 0.63872 0.16398 . . . 

5 0.75195 0.17295 . . . 

6 0.86419 0.28844 . . . 

7 0.69398 0.20885 . . . 

8 0.61463 0.12036 . . . 

9 0.80454 0.23480 . . . 

10 0.39409 0.07851 . . . 

11 0.71737 0.23172 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 21.035 0.50144 0.66664 0.61354 0.78406 0.92034 0.97913 0.76288 0.74222 0.74696 0.75162

2 5184 44.501 43.986 0.51537 0.59969 0.54497 0.90151 0.90875 0.96594 0.70874 0.67863 0.68461 0.69049

3 5214 67.369 66.888 0.48120 0.70863 0.67525 0.69564 0.95289 0.98560 0.80442 0.78906 0.79284 0.79657

4 5222 89.227 88.748 0.47951 0.51183 0.45048 0.99861 0.88013 0.95360 0.66367 0.62605 0.63287 0.63960

5 5217 113.120 112.602 0.51783 0.58607 0.52045 0.93761 0.88804 0.96514 0.69127 0.66109 0.66717 0.67317

6 5223 136.376 135.838 0.53745 0.72245 0.69188 0.76018 0.95768 0.97262 0.77527 0.74882 0.75404 0.75917

7 5227 159.102 158.567 0.53539 0.63784 0.59359 0.87011 0.93062 0.96417 0.72405 0.69207 0.69810 0.70403

8 5221 181.954 181.425 0.52829 0.50009 0.47025 1.08939 0.94033 0.96333 0.62685 0.59813 0.60386 0.60954

9 5217 204.708 204.275 0.43306 0.46685 0.49945 0.89685 1.06981 0.96551 0.71202 0.68157 0.68746 0.69327

10 5198 227.709 227.200 0.50839 0.62303 0.50565 0.90577 0.81161 0.89832 0.69829 0.61720 0.62729 0.63717

11 5206 250.672 250.087 0.58500 0.75990 0.68425 0.81128 0.90044 0.93855 0.74929 0.69535 0.70325 0.71098
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.97913 0.74696 . . . 

2 0.96594 0.68461 . . . 

3 0.98560 0.79284 . . . 

4 0.95360 0.63287 . . . 

5 0.96514 0.66717 . . . 

6 0.97262 0.75404 . . . 

7 0.96417 0.69810 . . . 

8 0.96333 0.60386 . . . 

9 0.96551 0.68746 . . . 

10 0.89832 0.62729 . . . 

11 0.93855 0.70325 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 20.619 0.91694 0.66664 0.58158 1.47262 0.87240 0.94679 0.47764 0.44650 0.45222 0.45790

2 5184 44.501 43.565 0.93571 0.59969 0.51807 1.67873 0.86390 0.91789 0.41326 0.37330 0.37933 0.38532

3 5214 67.369 66.461 0.90830 0.70863 0.65462 1.33360 0.92377 0.96117 0.52843 0.50265 0.50791 0.51314

4 5222 89.227 88.340 0.88734 0.51183 0.41736 1.91988 0.81542 0.89238 0.34918 0.30584 0.31160 0.31733

5 5217 113.120 112.184 0.93667 0.58607 0.48657 1.75404 0.83024 0.92120 0.39129 0.35477 0.36045 0.36611

6 5223 136.376 135.395 0.98047 0.72245 0.65207 1.42851 0.90258 0.93937 0.49369 0.45762 0.46375 0.46984

7 5227 159.102 158.102 1.00040 0.63784 0.59215 1.62780 0.92836 0.89412 0.42962 0.37731 0.38413 0.39091

8 5221 181.954 180.979 0.97437 0.50009 0.46638 2.01758 0.93258 0.90631 0.32919 0.29343 0.29835 0.30325

9 5217 204.708 203.837 0.87138 0.46685 0.55486 1.71209 1.18851 0.90641 0.40313 0.35915 0.36540 0.37162

10 5198 227.709 226.781 0.92747 0.62303 0.49714 1.66652 0.79794 0.84380 0.41421 0.34152 0.34951 0.35744

11 5206 250.672 249.588 1.08438 0.75990 0.63208 1.56465 0.83180 0.80344 0.44622 0.34926 0.35851 0.36769
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.94679 0.45222 . . . 

2 0.91789 0.37933 . . . 

3 0.96117 0.50791 . . . 

4 0.89238 0.31160 . . . 

5 0.92120 0.36045 . . . 

6 0.93937 0.46375 . . . 

7 0.89412 0.38413 . . . 

8 0.90631 0.29835 . . . 

9 0.90641 0.36540 . . . 

10 0.84380 0.34951 . . . 

11 0.80344 0.35851 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 21.271 0.26563 0.66664 0.80397 0.36283 1.20601 0.94104 0.92300 0.86239 0.86858 0.87451

2 5184 44.501 44.345 0.15635 0.59969 0.65153 0.25012 1.08645 0.90049 0.96644 0.86338 0.87027 0.87684

3 5214 67.369 67.130 0.23926 0.70863 0.81293 0.31523 1.14718 0.95792 0.94417 0.89978 0.90445 0.90891

4 5222 89.227 89.099 0.12811 0.51183 0.59266 0.23261 1.15792 0.86080 0.96356 0.82085 0.82943 0.83764

5 5217 113.120 112.934 0.18647 0.58607 0.72269 0.28652 1.23312 0.90469 0.94066 0.84372 0.85101 0.85798

6 5223 136.376 136.519 -0.14279 0.72245 0.89989 -0.17709 1.24560 0.90697 0.96164 0.86600 0.87218 0.87809

7 5227 159.102 158.903 0.19918 0.63784 0.66548 0.30571 1.04333 0.93300 0.95454 0.88484 0.89059 0.89606

8 5221 181.954 181.831 0.12289 0.50009 0.51804 0.24144 1.03589 0.90252 0.97109 0.86978 0.87643 0.88276

9 5217 204.708 204.885 -0.17671 0.46685 0.49530 -0.36748 1.06094 0.89518 0.93522 0.82898 0.83718 0.84502

10 5198 227.709 227.496 0.21285 0.62303 0.55871 0.36077 0.89676 0.84570 0.93369 0.77927 0.78962 0.79953

11 5206 250.672 250.552 0.12032 0.75990 0.89534 0.14587 1.17823 0.91162 0.97645 0.88458 0.89015 0.89545
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.94104 0.86858 . . # 

2 0.90049 0.87027 . + . 

3 0.95792 0.90445 * . # 

4 0.86080 0.82943 . + . 

5 0.90469 0.85101 . . # 

6 0.90697 0.87218 . + . 

7 0.93300 0.89059 . + . 

8 0.90252 0.87643 . + . 

9 0.89518 0.83718 . . # 

10 0.84570 0.78962 . . # 

11 0.91162 0.89015 . + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

< 0.90 6 4 10

>= 0.90 0 1 1

Total 6 5 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 21.739 -0.20326 0.66664 0.56864 -0.33013 0.85300 0.92681 0.93707 0.86196 0.86848 0.87472

2 5184 44.501 44.712 -0.21128 0.59969 0.52439 -0.37677 0.87444 0.91436 0.92593 0.83913 0.84664 0.85383

3 5214 67.369 67.643 -0.27378 0.70863 0.61568 -0.41449 0.86882 0.94705 0.91257 0.85815 0.86425 0.87012

4 5222 89.227 89.331 -0.10304 0.51183 0.45780 -0.21288 0.89443 0.90086 0.97192 0.86903 0.87557 0.88180

5 5217 113.120 113.265 -0.14468 0.58607 0.51337 -0.26377 0.87596 0.90521 0.95825 0.86056 0.86742 0.87396

6 5223 136.376 136.410 -0.03391 0.72245 0.59751 -0.05161 0.82705 0.89865 0.98095 0.87583 0.88153 0.88698

7 5227 159.102 159.317 -0.21492 0.63784 0.63975 -0.33645 1.00299 0.94162 0.94643 0.88565 0.89118 0.89645

8 5221 181.954 182.022 -0.06799 0.50009 0.50695 -0.13504 1.01372 0.91421 0.99087 0.90074 0.90587 0.91075

9 5217 204.708 204.787 -0.07903 0.46685 0.47176 -0.16840 1.01051 0.88994 0.98597 0.87087 0.87745 0.88371

10 5198 227.709 228.041 -0.33238 0.62303 0.92838 -0.43703 1.49011 0.66226 0.85027 0.54679 0.56310 0.57898

11 5206 250.672 250.706 -0.03362 0.75990 0.62005 -0.04897 0.81596 0.88832 0.97852 0.86301 0.86924 0.87520
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End of the Season for Fort Riley 

Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.92681 0.86848 . . # 

2 0.91436 0.84664 . . # 

3 0.94705 0.86425 . . # 

4 0.90086 0.87557 . + . 

5 0.90521 0.86742 . + . 

6 0.89865 0.88153 . + . 

7 0.94162 0.89118 . . # 

8 0.91421 0.90587 * + . 

9 0.88994 0.87745 . + . 

10 0.66226 0.56310 . . # 

11 0.88832 0.86924 . + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

< 0.90 5 5 10

>= 0.90 1 0 1

Total 6 5 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 21.529 0.00772 0.66664 0.71083 0.01122 1.06629 0.93453 0.99788 0.92897 0.93255 0.93594

2 5184 44.501 44.613 -0.11171 0.59969 0.62425 -0.18258 1.04095 0.92095 0.98283 0.89991 0.90513 0.91009

3 5214 67.369 67.581 -0.21208 0.70863 0.78044 -0.28518 1.10132 0.95044 0.95664 0.90452 0.90923 0.91372

4 5222 89.227 89.240 -0.01250 0.51183 0.51270 -0.02441 1.00169 0.79652 0.99970 0.78613 0.79628 0.80600

5 5217 113.120 113.089 0.03088 0.58607 0.61361 0.05149 1.04700 0.92452 0.99763 0.91817 0.92233 0.92628

6 5223 136.376 136.753 -0.37748 0.72245 0.64330 -0.55372 0.89043 0.86692 0.86204 0.73653 0.74732 0.75773

7 5227 159.102 159.089 0.01303 0.63784 0.64411 0.02033 1.00982 0.94592 0.99975 0.94274 0.94568 0.94848

8 5221 181.954 181.939 0.01467 0.50009 0.47987 0.02995 0.95956 0.91869 0.99870 0.91311 0.91749 0.92167

9 5217 204.708 204.805 -0.09674 0.46685 0.42362 -0.21754 0.90740 0.91050 0.97240 0.87926 0.88537 0.89118

10 5198 227.709 227.793 -0.08471 0.62303 0.61737 -0.13658 0.99092 0.87328 0.99072 0.85805 0.86518 0.87197

11 5206 250.672 250.645 0.02755 0.75990 0.72168 0.03720 0.94970 0.93377 0.99798 0.92824 0.93188 0.93535
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.93453 0.93255 * + . 

2 0.92095 0.90513 * + . 

3 0.95044 0.90923 * + . 

4 0.79652 0.79628 . + . 

5 0.92452 0.92233 * + . 

6 0.86692 0.74732 . . . 

7 0.94592 0.94568 * + . 

8 0.91869 0.91749 * + . 

9 0.91050 0.88537 . + . 

10 0.87328 0.86518 . + . 

11 0.93377 0.93188 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Over Total

< 0.90 3 1 4

>= 0.90 7 0 7

Total 10 1 11



 

174 

 

Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

End of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5219 21.536 21.409 0.12748 0.66664 0.65917 0.19230 0.98880 0.98676 0.98178 0.96718 0.96878 0.97031

2 5184 44.501 44.311 0.19034 0.59969 0.60218 0.31673 1.00415 0.97353 0.95223 0.92362 0.92703 0.93028

3 5214 67.369 67.310 0.05965 0.70863 0.70899 0.08415 1.00051 0.99517 0.99647 0.99118 0.99166 0.99211

4 5222 89.227 89.149 0.07897 0.51183 0.48114 0.15914 0.94005 0.96843 0.98563 0.95196 0.95451 0.95693

5 5217 113.120 112.987 0.13372 0.58607 0.56644 0.23208 0.96650 0.98404 0.97323 0.95562 0.95769 0.95967

6 5223 136.376 136.272 0.10423 0.72245 0.70913 0.14562 0.98156 0.98139 0.98934 0.96927 0.97092 0.97249

7 5227 159.102 158.996 0.10561 0.63784 0.63193 0.16634 0.99073 0.99112 0.98631 0.97642 0.97756 0.97864

8 5221 181.954 181.853 0.10013 0.50009 0.49787 0.20068 0.99556 0.98584 0.98025 0.96465 0.96637 0.96801

9 5217 204.708 204.637 0.07178 0.46685 0.45533 0.15570 0.97533 0.98192 0.98772 0.96816 0.96986 0.97147

10 5198 227.709 227.628 0.08055 0.62303 0.61317 0.13032 0.98418 0.98889 0.99145 0.97933 0.98044 0.98148

11 5206 250.672 250.551 0.12165 0.75990 0.75255 0.16086 0.99033 0.98988 0.98718 0.97599 0.97719 0.97834
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.98676 0.96878 * + . 

2 0.97353 0.92703 * + . 

3 0.99517 0.99166 * + . 

4 0.96843 0.95451 * + . 

5 0.98404 0.95769 * + . 

6 0.98139 0.97092 * + . 

7 0.99112 0.97756 * + . 

8 0.98584 0.96637 * + . 

9 0.98192 0.96986 * + . 

10 0.98889 0.98044 * + . 

11 0.98988 0.97719 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 17.9450 -2.58177 0.91546 1.21432 -2.44868 1.32646 0.76183 0.24764 0.18326 0.18866 0.19405

2 5180 14.8770 17.2614 -2.38436 0.91271 1.14814 -2.32921 1.25794 0.81512 0.26745 0.21265 0.21800 0.22334

3 5214 15.0240 17.0925 -2.06845 0.94565 1.09867 -2.02930 1.16182 0.91084 0.32570 0.29181 0.29666 0.30151

4 5203 14.1149 16.5941 -2.47919 0.65494 1.35368 -2.63300 2.06689 0.66683 0.21090 0.13526 0.14063 0.14600

5 5200 14.5043 17.0885 -2.58415 0.90806 1.10309 -2.58199 1.21477 0.84517 0.22976 0.18999 0.19419 0.19837

6 5199 15.1219 17.1517 -2.02989 0.92776 0.87408 -2.25414 0.94214 0.91244 0.28230 0.25354 0.25758 0.26161

7 5216 15.0626 17.7280 -2.66539 1.17538 1.55253 -1.97311 1.32087 0.82234 0.33495 0.26865 0.27544 0.28220

8 5200 13.7895 16.4440 -2.65454 0.70979 1.12416 -2.97173 1.58379 0.69248 0.18105 0.12113 0.12538 0.12962

9 5198 13.8148 15.5870 -1.77226 0.72799 0.77367 -2.36150 1.06275 0.90563 0.26384 0.23506 0.23894 0.24281

10 5133 14.6410 18.4376 -3.79667 0.87474 2.16437 -2.75930 2.47430 0.49559 0.19062 0.08924 0.09447 0.09969

11 5157 13.6425 16.0871 -2.44462 0.87511 1.13435 -2.45361 1.29623 0.74416 0.24728 0.17850 0.18402 0.18953
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.76183 0.18866 . . . 

2 0.81512 0.21800 . . . 

3 0.91084 0.29666 . . . 

4 0.66683 0.14063 . . . 

5 0.84517 0.19419 . . . 

6 0.91244 0.25758 . . . 

7 0.82234 0.27544 . . . 

8 0.69248 0.12538 . . . 

9 0.90563 0.23894 . . . 

10 0.49559 0.09447 . . . 

11 0.74416 0.18402 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 14.6114 0.75186 0.91546 0.87001 0.84247 0.95035 0.98761 0.73737 0.72462 0.72823 0.73181

2 5180 14.8770 14.1246 0.75237 0.91271 0.85174 0.85332 0.93320 0.98371 0.73181 0.71569 0.71989 0.72403

3 5214 15.0240 14.2862 0.73788 0.94565 0.92119 0.79058 0.97413 0.99141 0.76170 0.75221 0.75516 0.75807

4 5203 14.1149 13.3729 0.74196 0.65494 0.61172 1.17220 0.93401 0.97319 0.59194 0.57127 0.57607 0.58084

5 5200 14.5043 13.6889 0.81542 0.90806 0.84585 0.93042 0.93149 0.98345 0.69669 0.68097 0.68516 0.68931

6 5199 15.1219 14.3226 0.79929 0.92776 0.90881 0.87046 0.97958 0.98313 0.72513 0.70879 0.71290 0.71695

7 5216 15.0626 14.1852 0.87740 1.17538 1.11410 0.76673 0.94786 0.98758 0.77198 0.75878 0.76239 0.76595

8 5200 13.7895 13.0130 0.77650 0.70979 0.67968 1.11795 0.95758 0.97937 0.61506 0.59809 0.60238 0.60663

9 5198 13.8148 13.1357 0.67909 0.72799 0.75432 0.91640 1.03618 0.98355 0.70396 0.68832 0.69238 0.69640

10 5133 14.6410 13.8057 0.83526 0.87474 0.79909 0.99904 0.91352 0.95954 0.66527 0.63202 0.63835 0.64460

11 5157 13.6425 12.8341 0.80840 0.87511 0.81974 0.95445 0.93673 0.96047 0.68605 0.65267 0.65893 0.66509
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.98761 0.72823 . . . 

2 0.98371 0.71989 . . . 

3 0.99141 0.75516 . . . 

4 0.97319 0.57607 . . . 

5 0.98345 0.68516 . . . 

6 0.98313 0.71290 . . . 

7 0.98758 0.76239 . . . 

8 0.97937 0.60238 . . . 

9 0.98355 0.69238 . . . 

10 0.95954 0.63835 . . . 

11 0.96047 0.65893 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 13.9706 1.39260 0.91546 0.84438 1.58393 0.92236 0.97118 0.44293 0.42624 0.43017 0.43408

2 5180 14.8770 13.4917 1.38529 0.91271 0.81683 1.60439 0.89495 0.96119 0.43607 0.41463 0.41915 0.42365

3 5214 15.0240 13.6241 1.39992 0.94565 0.90094 1.51667 0.95272 0.97734 0.46483 0.45070 0.45430 0.45788

4 5203 14.1149 12.7223 1.39260 0.65494 0.59514 2.23057 0.90870 0.93430 0.28634 0.26389 0.26753 0.27116

5 5200 14.5043 12.9982 1.50613 0.90806 0.80921 1.75701 0.89113 0.96076 0.39213 0.37265 0.37674 0.38081

6 5199 15.1219 13.6380 1.48388 0.92776 0.87833 1.64381 0.94673 0.96136 0.42507 0.40438 0.40864 0.41289

7 5216 15.0626 13.4136 1.64898 1.17538 1.06812 1.47169 0.90874 0.96059 0.47904 0.45525 0.46016 0.46504

8 5200 13.7895 12.3413 1.44821 0.70979 0.67337 2.09478 0.94870 0.94838 0.31295 0.29324 0.29679 0.30033

9 5198 13.8148 12.4718 1.34298 0.72799 0.80275 1.75678 1.10270 0.95279 0.39248 0.36955 0.37395 0.37833

10 5133 14.6410 13.0903 1.55071 0.87474 0.77946 1.87800 0.89107 0.89448 0.36100 0.31710 0.32290 0.32869

11 5157 13.6425 12.1323 1.51016 0.87511 0.78600 1.82087 0.89817 0.88450 0.37544 0.32582 0.33207 0.33830
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.97118 0.43017 . . . 

2 0.96119 0.41915 . . . 

3 0.97734 0.45430 . . . 

4 0.93430 0.26753 . . . 

5 0.96076 0.37674 . . . 

6 0.96136 0.40864 . . . 

7 0.96059 0.46016 . . . 

8 0.94838 0.29679 . . . 

9 0.95279 0.37395 . . . 

10 0.89448 0.32290 . . . 

11 0.88450 0.33207 . . . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Over Total

< 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 14.9209 0.44232 0.91546 1.03758 0.45384 1.13340 0.94838 0.90022 0.84749 0.85375 0.85977

2 5180 14.8770 14.4203 0.45668 0.91271 0.99130 0.48011 1.08611 0.93391 0.89392 0.82767 0.83484 0.84173

3 5214 15.0240 14.5907 0.43331 0.94565 1.06558 0.43166 1.12682 0.96450 0.90884 0.87151 0.87657 0.88145

4 5203 14.1149 13.8373 0.27757 0.65494 0.76913 0.39109 1.17435 0.89103 0.91792 0.80914 0.81790 0.82629

5 5200 14.5043 14.2128 0.29158 0.90806 1.07023 0.29577 1.17858 0.94228 0.94583 0.88579 0.89124 0.89644

6 5199 15.1219 15.0228 0.09908 0.92776 1.16497 0.09530 1.25568 0.93446 0.97033 0.90245 0.90673 0.91084

7 5216 15.0626 14.9142 0.14839 1.17538 1.34694 0.11793 1.14595 0.95892 0.98401 0.94067 0.94358 0.94636

8 5200 13.7895 13.4909 0.29860 0.70979 0.77651 0.40220 1.09399 0.93144 0.92173 0.85178 0.85853 0.86499

9 5198 13.8148 13.8340 -0.01922 0.72799 0.75716 -0.02589 1.04008 0.94160 0.99889 0.93735 0.94056 0.94360

10 5133 14.6410 14.3920 0.24900 0.87474 1.04392 0.26057 1.19341 0.88872 0.95273 0.83897 0.84671 0.85410

11 5157 13.6425 13.3394 0.30308 0.87511 1.00922 0.32251 1.15324 0.92179 0.94145 0.86113 0.86782 0.87422
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.94838 0.85375 . . # 

2 0.93391 0.83484 . . # 

3 0.96450 0.87657 . . # 

4 0.89103 0.81790 . . # 

5 0.94228 0.89124 . . # 

6 0.93446 0.90673 * + . 

7 0.95892 0.94358 * + . 

8 0.93144 0.85853 . . # 

9 0.94160 0.94056 * + . 

10 0.88872 0.84671 . + . 

11 0.92179 0.86782 . . # 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

< 0.90 1 7 8

>= 0.90 3 0 3

Total 4 7 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 15.8723 -0.50906 0.91546 0.81119 -0.59072 0.88611 0.94101 0.84617 0.78884 0.79625 0.80343

2 5180 14.8770 15.5033 -0.62627 0.91271 0.78380 -0.74045 0.85876 0.91852 0.77776 0.70526 0.71438 0.72327

3 5214 15.0240 15.5934 -0.56935 0.94565 0.85286 -0.63398 0.90188 0.95744 0.82898 0.78727 0.79370 0.79995

4 5203 14.1149 14.3978 -0.28297 0.65494 0.59399 -0.45368 0.90695 0.91549 0.90278 0.81851 0.82648 0.83414

5 5200 14.5043 14.8302 -0.32587 0.90806 0.81611 -0.37854 0.89873 0.94202 0.92820 0.86837 0.87439 0.88015

6 5199 15.1219 15.4688 -0.34699 0.92776 0.79698 -0.40353 0.85904 0.91670 0.91493 0.83105 0.83871 0.84605

7 5216 15.0626 15.3689 -0.30631 1.17538 1.01969 -0.27979 0.86753 0.95797 0.95306 0.90862 0.91300 0.91717

8 5200 13.7895 14.1077 -0.31825 0.70979 0.71855 -0.44563 1.01235 0.93281 0.90961 0.84160 0.84850 0.85513

9 5198 13.8148 14.1200 -0.30521 0.72799 0.69971 -0.42764 0.96116 0.93790 0.91556 0.85220 0.85871 0.86495

10 5133 14.6410 15.1694 -0.52838 0.87474 1.01924 -0.55959 1.16520 0.76726 0.85596 0.64234 0.65674 0.67068

11 5157 13.6425 13.9744 -0.33194 0.87511 0.77729 -0.40247 0.88821 0.90286 0.91910 0.82155 0.82982 0.83774
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.94101 0.79625 . . . 

2 0.91852 0.71438 . . . 

3 0.95744 0.79370 . . . 

4 0.91549 0.82648 . . # 

5 0.94202 0.87439 . . # 

6 0.91670 0.83871 . . # 

7 0.95797 0.91300 * + . 

8 0.93281 0.84850 . . # 

9 0.93790 0.85871 . . # 

10 0.76726 0.65674 . . . 

11 0.90286 0.82982 . . # 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Over Total

< 0.90 0 6 4 10

>= 0.90 1 0 0 1

Total 1 6 4 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 15.1945 0.16878 0.91546 0.95462 0.18054 1.04278 0.94419 0.98312 0.92423 0.92825 0.93205

2 5180 14.8770 14.7667 0.11029 0.91271 0.93613 0.11932 1.02566 0.94576 0.99262 0.93535 0.93878 0.94203

3 5214 15.0240 15.0563 -0.03228 0.94565 1.05417 -0.03233 1.11476 0.96210 0.99361 0.95371 0.95595 0.95809

4 5203 14.1149 14.2138 -0.09890 0.65494 0.70285 -0.14578 1.07316 0.85605 0.98705 0.83694 0.84496 0.85262

5 5200 14.5043 14.4272 0.07719 0.90806 0.98536 0.08161 1.08512 0.95103 0.99338 0.94176 0.94473 0.94756

6 5199 15.1219 15.3479 -0.22608 0.92776 0.91240 -0.24573 0.98345 0.91022 0.97056 0.87710 0.88343 0.88944

7 5216 15.0626 15.0151 0.04745 1.17538 1.23169 0.03944 1.04791 0.96590 0.99813 0.96215 0.96410 0.96595

8 5200 13.7895 13.7186 0.07088 0.70979 0.71396 0.09957 1.00588 0.94303 0.99505 0.93494 0.93836 0.94161

9 5198 13.8148 13.8111 0.00364 0.72799 0.72438 0.00501 0.99505 0.95349 0.99998 0.95093 0.95347 0.95587

10 5133 14.6410 14.4873 0.15363 0.87474 0.88626 0.17449 1.01317 0.84192 0.98492 0.82032 0.82922 0.83772

11 5157 13.6425 13.5685 0.07402 0.87511 0.88587 0.08406 1.01229 0.93430 0.99641 0.92714 0.93094 0.93455
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.94419 0.92825 * + . 

2 0.94576 0.93878 * + . 

3 0.96210 0.95595 * + . 

4 0.85605 0.84496 . + . 

5 0.95103 0.94473 * + . 

6 0.91022 0.88343 . + . 

7 0.96590 0.96410 * + . 

8 0.94303 0.93836 * + . 

9 0.95349 0.95347 * + . 

10 0.84192 0.82922 . + . 

11 0.93430 0.93094 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

< 0.90 3 3

>= 0.90 8 8

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Length of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5201 15.3632 15.1619 0.20138 0.91546 0.92591 0.21874 1.01141 0.98676 0.97657 0.96188 0.96365 0.96534

2 5180 14.8770 14.5342 0.34280 0.91271 0.95247 0.36766 1.04356 0.96632 0.93589 0.90007 0.90437 0.90850

3 5214 15.0240 14.9128 0.11122 0.94565 0.93971 0.11798 0.99372 0.99260 0.99307 0.98492 0.98572 0.98647

4 5203 14.1149 13.9774 0.13748 0.65494 0.63548 0.21310 0.97029 0.97024 0.97736 0.94543 0.94827 0.95097

5 5200 14.5043 14.2666 0.23773 0.90806 0.90050 0.26290 0.99167 0.98676 0.96656 0.95174 0.95377 0.95571

6 5199 15.1219 14.8822 0.23962 0.92776 0.95275 0.25487 1.02695 0.97943 0.96821 0.94574 0.94829 0.95073

7 5216 15.0626 14.8963 0.16624 1.17538 1.19315 0.14038 1.01511 0.99397 0.99013 0.98336 0.98416 0.98492

8 5200 13.7895 13.6265 0.16296 0.70979 0.70206 0.23085 0.98911 0.98535 0.97399 0.95777 0.95972 0.96158

9 5198 13.8148 13.6962 0.11855 0.72799 0.71841 0.16392 0.98684 0.98770 0.98666 0.97315 0.97452 0.97583

10 5133 14.6410 14.4898 0.15118 0.87474 0.85155 0.17516 0.97349 0.98622 0.98454 0.96940 0.97097 0.97246

11 5157 13.6425 13.4629 0.17964 0.87511 0.86940 0.20595 0.99347 0.99068 0.97921 0.96870 0.97009 0.97142
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.98676 0.96365 * + . 

2 0.96632 0.90437 * . # 

3 0.99260 0.98572 * + . 

4 0.97024 0.94827 * + . 

5 0.98676 0.95377 * + . 

6 0.97943 0.94829 * + . 

7 0.99397 0.98416 * + . 

8 0.98535 0.95972 * + . 

9 0.98770 0.97452 * + . 

10 0.98622 0.97097 * + . 

11 0.99068 0.97009 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

>= 0.90 10 1 11

Total 10 1 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc 

1 5227 205.033 205.033 0 12.4303 12.4303 0 1 1 1 . 1 . 

2 5229 200.095 200.095 0 15.2525 15.2525 0 1 1 1 1 1 1 

3 5222 207.156 207.156 0 12.5454 12.5454 0 1 1 1 . 1 . 

4 5221 209.121 209.121 0 11.1342 11.1342 0 1 1 1 . 1 . 

5 5227 200.191 200.191 0 14.1475 14.1475 0 1 1 1 . 1 . 

6 5228 197.462 197.462 0 14.8426 14.8426 0 1 1 1 . 1 . 

7 5225 209.855 209.855 0 11.9124 11.9124 0 1 1 1 1 1 1 

8 5227 211.179 211.179 0 10.5940 10.5940 0 1 1 1 1 1 1 

9 5228 209.977 209.977 0 10.5576 10.5576 0 1 1 1 . 1 . 

10 5227 210.033 210.033 0 10.8602 10.8602 0 1 1 1 1 1 1 

11 5226 207.910 207.910 0 11.5955 11.5955 0 1 1 1 . 1 . 
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 1 1 * + . 

2 1 1 * + . 

3 1 1 * + . 

4 1 1 * + . 

5 1 1 * + . 

6 1 1 * + . 

7 1 1 * + . 

8 1 1 * + . 

9 1 1 * + . 

10 1 1 * + . 

11 1 1 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc 

1 5227 205.033 205.033 0 12.4303 12.4303 0 1 1 1 . 1 . 

2 5229 200.095 200.095 0 15.2525 15.2525 0 1 1 1 1 1 1 

3 5222 207.156 207.156 0 12.5454 12.5454 0 1 1 1 . 1 . 

4 5221 209.121 209.121 0 11.1342 11.1342 0 1 1 1 . 1 . 

5 5227 200.191 200.191 0 14.1475 14.1475 0 1 1 1 . 1 . 

6 5228 197.462 197.462 0 14.8426 14.8426 0 1 1 1 . 1 . 

7 5225 209.855 209.855 0 11.9124 11.9124 0 1 1 1 1 1 1 

8 5227 211.179 211.179 0 10.5940 10.5940 0 1 1 1 1 1 1 

9 5228 209.977 209.977 0 10.5576 10.5576 0 1 1 1 . 1 . 

10 5227 210.033 210.033 0 10.8602 10.8602 0 1 1 1 1 1 1 

11 5226 207.910 207.910 0 11.5955 11.5955 0 1 1 1 . 1 . 
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 1 1 * + . 

2 1 1 * + . 

3 1 1 * + . 

4 1 1 * + . 

5 1 1 * + . 

6 1 1 * + . 

7 1 1 * + . 

8 1 1 * + . 

9 1 1 * + . 

10 1 1 * + . 

11 1 1 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11



 

194 

 

Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc 

1 5227 205.033 205.033 0 12.4303 12.4303 0 1 1 1 . 1 . 

2 5229 200.095 200.095 0 15.2525 15.2525 0 1 1 1 1 1 1 

3 5222 207.156 207.156 0 12.5454 12.5454 0 1 1 1 . 1 . 

4 5221 209.121 209.121 0 11.1342 11.1342 0 1 1 1 . 1 . 

5 5227 200.191 200.191 0 14.1475 14.1475 0 1 1 1 . 1 . 

6 5228 197.462 197.462 0 14.8426 14.8426 0 1 1 1 . 1 . 

7 5225 209.855 209.855 0 11.9124 11.9124 0 1 1 1 1 1 1 

8 5227 211.179 211.179 0 10.5940 10.5940 0 1 1 1 1 1 1 

9 5228 209.977 209.977 0 10.5576 10.5576 0 1 1 1 . 1 . 

10 5227 210.033 210.033 0 10.8602 10.8602 0 1 1 1 1 1 1 

11 5226 207.910 207.910 0 11.5955 11.5955 0 1 1 1 . 1 . 
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 1 1 * + . 

2 1 1 * + . 

3 1 1 * + . 

4 1 1 * + . 

5 1 1 * + . 

6 1 1 * + . 

7 1 1 * + . 

8 1 1 * + . 

9 1 1 * + . 

10 1 1 * + . 

11 1 1 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5227 205.033 205.294 -0.26097 12.4303 11.8167 -0.02153 0.95064 0.98165 0.99849 0.97910 0.98016 0.98117

2 5229 200.095 201.714 -1.61933 15.2525 14.2890 -0.10969 0.93683 0.97104 0.99192 0.96114 0.96319 0.96514

3 5222 207.156 207.323 -0.16762 12.5454 11.7959 -0.01378 0.94026 0.98225 0.99801 0.97926 0.98030 0.98128

4 5221 209.121 208.352 0.76853 11.1342 10.9726 0.06953 0.98549 0.98032 0.99748 0.97659 0.97786 0.97905

5 5227 200.191 199.683 0.50809 14.1475 14.1084 0.03596 0.99724 0.99149 0.99935 0.99032 0.99085 0.99134

6 5228 197.462 198.927 -1.46417 14.8426 14.2318 -0.10074 0.95885 0.98372 0.99408 0.97663 0.97789 0.97909

7 5225 209.855 211.273 -1.41742 11.9124 11.6464 -0.12034 0.97767 0.98387 0.99256 0.97520 0.97655 0.97783

8 5227 211.179 209.891 1.28799 10.5940 10.1577 0.12416 0.95881 0.97869 0.99148 0.96866 0.97036 0.97196

9 5228 209.977 209.261 0.71609 10.5576 10.1767 0.06908 0.96392 0.98402 0.99695 0.97994 0.98102 0.98204

10 5227 210.033 211.016 -0.98288 10.8602 9.9231 -0.09468 0.91371 0.96179 0.99152 0.95113 0.95363 0.95600

11 5226 207.910 207.441 0.46961 11.5955 11.0073 0.04157 0.94927 0.97880 0.99779 0.97537 0.97664 0.97784
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.98165 0.98016 * + . 

2 0.97104 0.96319 * + . 

3 0.98225 0.98030 * + . 

4 0.98032 0.97786 * + . 

5 0.99149 0.99085 * + . 

6 0.98372 0.97789 * + . 

7 0.98387 0.97655 * + . 

8 0.97869 0.97036 * + . 

9 0.98402 0.98102 * + . 

10 0.96179 0.95363 * + . 

11 0.97880 0.97664 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5227 205.033 204.780 0.25357 12.4303 13.1637 0.01982 1.05900 0.98261 0.99816 0.97979 0.98081 0.98177

2 5229 200.095 198.964 1.13092 15.2525 16.2398 0.07186 1.06473 0.97819 0.99547 0.97232 0.97376 0.97512

3 5222 207.156 204.887 2.26886 12.5454 12.8720 0.17854 1.02603 0.98420 0.98399 0.96674 0.96844 0.97006

4 5221 209.121 209.899 -0.77862 11.1342 11.1780 -0.06979 1.00393 0.98492 0.99756 0.98151 0.98252 0.98348

5 5227 200.191 201.436 -1.24494 14.1475 14.1944 -0.08785 1.00332 0.99116 0.99615 0.98660 0.98734 0.98804

6 5228 197.462 196.570 0.89250 14.8426 15.3882 0.05906 1.03676 0.98004 0.99761 0.97645 0.97770 0.97888

7 5225 209.855 208.592 1.26270 11.9124 12.8007 0.10225 1.07457 0.98109 0.99225 0.97202 0.97349 0.97487

8 5227 211.179 211.715 -0.53629 10.5940 10.6352 -0.05052 1.00389 0.98356 0.99872 0.98129 0.98230 0.98325

9 5228 209.977 210.623 -0.64635 10.5576 11.0989 -0.05971 1.05127 0.98195 0.99698 0.97782 0.97898 0.98008

10 5227 210.033 209.823 0.20995 10.8602 11.2779 0.01897 1.03846 0.98161 0.99911 0.97969 0.98074 0.98173

11 5226 207.910 208.141 -0.23104 11.5955 11.8599 -0.01970 1.02280 0.98122 0.99955 0.97972 0.98078 0.98178
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.98261 0.98081 * + . 

2 0.97819 0.97376 * + . 

3 0.98420 0.96844 * + . 

4 0.98492 0.98252 * + . 

5 0.99116 0.98734 * + . 

6 0.98004 0.97770 * + . 

7 0.98109 0.97349 * + . 

8 0.98356 0.98230 * + . 

9 0.98195 0.97898 * + . 

10 0.98161 0.98074 * + . 

11 0.98122 0.98078 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5227 205.033 200.172 4.86086 12.4303 13.0269 0.38199 1.04799 0.97754 0.93105 0.90659 0.91013 0.91355

2 5229 200.095 193.647 6.44777 15.2525 14.7667 0.42963 0.96815 0.96547 0.91507 0.87874 0.88347 0.88803

3 5222 207.156 204.034 3.12139 12.5454 12.5975 0.24829 1.00415 0.98377 0.97009 0.95217 0.95434 0.95642

4 5221 209.121 204.893 4.22775 11.1342 11.6396 0.37137 1.04539 0.97800 0.93463 0.91062 0.91406 0.91738

5 5227 200.191 195.051 5.14006 14.1475 14.4543 0.35944 1.02168 0.98715 0.93912 0.92454 0.92705 0.92948

6 5228 197.462 190.987 6.47565 14.8426 15.4160 0.42810 1.03863 0.98043 0.91546 0.89402 0.89754 0.90095

7 5225 209.855 205.912 3.94323 11.9124 12.1757 0.32742 1.02210 0.97937 0.94891 0.92631 0.92934 0.93224

8 5227 211.179 207.543 3.63623 10.5940 10.1613 0.35047 0.95915 0.97855 0.94137 0.91791 0.92117 0.92431

9 5228 209.977 206.976 3.00143 10.5576 10.2432 0.28862 0.97022 0.98346 0.95959 0.94125 0.94372 0.94609

10 5227 210.033 206.884 3.14901 10.8602 11.1908 0.28564 1.03044 0.97895 0.96039 0.93737 0.94017 0.94285

11 5226 207.910 203.909 4.00151 11.5955 11.3533 0.34875 0.97911 0.98145 0.94247 0.92201 0.92499 0.92787
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.97754 0.91013 * . # 

2 0.96547 0.88347 . . # 

3 0.98377 0.95434 * + . 

4 0.97800 0.91406 * . # 

5 0.98715 0.92705 * . # 

6 0.98043 0.89754 . . # 

7 0.97937 0.92934 * . # 

8 0.97855 0.92117 * . # 

9 0.98346 0.94372 * + . 

10 0.97895 0.94017 * + . 

11 0.98145 0.92499 * . # 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

< 0.90 0 2 2

>= 0.90 3 6 9

Total 3 8 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Maximum Value of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5227 205.033 210.867 -5.83417 12.4303 12.5261 -0.46755 1.00771 0.96442 0.90144 0.86436 0.86937 0.87421

2 5229 200.095 208.294 -8.19935 15.2525 17.2486 -0.50551 1.13087 0.95833 0.88079 0.83817 0.84409 0.84980

3 5222 207.156 210.087 -2.93123 12.5454 13.4631 -0.22555 1.07315 0.98816 0.97283 0.95951 0.96132 0.96304

4 5221 209.121 214.236 -5.11559 11.1342 11.2903 -0.45626 1.01402 0.96598 0.90565 0.87000 0.87484 0.87951

5 5227 200.191 205.786 -5.59460 14.1475 14.9917 -0.38415 1.05967 0.98377 0.92983 0.91169 0.91474 0.91768

6 5228 197.462 203.062 -5.59962 14.8426 15.0292 -0.37492 1.01257 0.97411 0.93427 0.90635 0.91008 0.91367

7 5225 209.855 214.764 -4.90926 11.9124 12.4907 -0.40246 1.04854 0.97707 0.92412 0.89923 0.90293 0.90650

8 5227 211.179 215.966 -4.78756 10.5940 11.9232 -0.42598 1.12547 0.97685 0.91098 0.88576 0.88988 0.89386

9 5228 209.977 213.827 -3.85050 10.5576 11.6218 -0.34761 1.10080 0.97833 0.93894 0.91516 0.91859 0.92188

10 5227 210.033 213.856 -3.82298 10.8602 12.0348 -0.33440 1.10816 0.97367 0.94234 0.91383 0.91753 0.92108

11 5226 207.910 212.888 -4.97788 11.5955 12.6471 -0.41106 1.09069 0.98059 0.91890 0.89749 0.90107 0.90453
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.96442 0.86937 . . # 

2 0.95833 0.84409 . . . 

3 0.98816 0.96132 * + . 

4 0.96598 0.87484 . . # 

5 0.98377 0.91474 * . # 

6 0.97411 0.91008 * . # 

7 0.97707 0.90293 * . # 

8 0.97685 0.88988 . . # 

9 0.97833 0.91859 * . # 

10 0.97367 0.91753 * . # 

11 0.98059 0.90107 * . # 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Over Total

< 0.90 0 3 1 4

>= 0.90 1 6 0 7

Total 1 9 1 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1218.04 -24.3842 125.305 128.528 -0.19214 1.02572 0.99420 0.98156 0.97485 0.97587 0.97685

2 5188 1036.42 1056.42 -20.0003 145.557 148.887 -0.13586 1.02288 0.99733 0.99060 0.98745 0.98796 0.98844

3 5211 1087.52 1102.74 -15.2207 107.559 109.350 -0.14035 1.01665 0.99736 0.99011 0.98699 0.98750 0.98799

4 5224 1118.90 1142.33 -23.4235 100.029 102.570 -0.23125 1.02540 0.98339 0.97366 0.95538 0.95749 0.95949

5 5225 1028.06 1048.72 -20.6595 136.809 138.739 -0.14996 1.01411 0.99755 0.98879 0.98585 0.98637 0.98686

6 5228 1079.09 1090.62 -11.5299 139.714 141.649 -0.08196 1.01385 0.99876 0.99656 0.99512 0.99533 0.99553

7 5227 1151.10 1178.07 -26.9643 116.805 117.532 -0.23013 1.00622 0.98988 0.97418 0.96275 0.96433 0.96584

8 5223 1098.55 1124.41 -25.8599 101.660 103.692 -0.25187 1.01999 0.99081 0.96907 0.95855 0.96016 0.96171

9 5225 1087.65 1099.50 -11.8438 121.065 120.005 -0.09826 0.99125 0.99845 0.99516 0.99334 0.99362 0.99388

10 5223 1151.63 1199.46 -47.8308 135.913 143.690 -0.34227 1.05722 0.96319 0.94329 0.90423 0.90857 0.91271

11 5228 1025.80 1047.84 -22.0350 124.914 123.440 -0.17745 0.98819 0.99371 0.98443 0.97725 0.97824 0.97918
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS10 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99420 0.97587 * + . 

2 0.99733 0.98796 * + . 

3 0.99736 0.98750 * + . 

4 0.98339 0.95749 * + . 

5 0.99755 0.98637 * + . 

6 0.99876 0.99533 * + . 

7 0.98988 0.96433 * + . 

8 0.99081 0.96016 * + . 

9 0.99845 0.99362 * + . 

10 0.96319 0.90857 * . # 

11 0.99371 0.97824 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

>= 0.90 10 1 11

Total 10 1 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1183.38 10.2754 125.305 124.336 0.08232 0.99227 0.99712 0.99659 0.99339 0.99373 0.99405

2 5188 1036.42 1026.77 9.6475 145.557 144.648 0.06649 0.99375 0.99821 0.99778 0.99577 0.99599 0.99619

3 5211 1087.52 1079.11 8.4046 107.559 107.717 0.07808 1.00147 0.99719 0.99696 0.99384 0.99416 0.99447

4 5224 1118.90 1108.93 9.9769 100.029 99.353 0.10008 0.99324 0.99556 0.99499 0.99007 0.99058 0.99107

5 5225 1028.06 1018.43 9.6285 136.809 136.159 0.07055 0.99525 0.99791 0.99751 0.99518 0.99543 0.99566

6 5228 1079.09 1070.47 8.6202 139.714 138.497 0.06197 0.99129 0.99837 0.99805 0.99622 0.99642 0.99660

7 5227 1151.10 1137.87 13.2376 116.805 117.089 0.11319 1.00243 0.99561 0.99363 0.98872 0.98927 0.98980

8 5223 1098.55 1088.44 10.1049 101.660 101.718 0.09937 1.00057 0.99569 0.99509 0.99030 0.99080 0.99128

9 5225 1087.65 1080.79 6.8590 121.065 121.786 0.05649 1.00595 0.99792 0.99839 0.99611 0.99632 0.99652

10 5223 1151.63 1139.28 12.3466 135.913 136.101 0.09078 1.00138 0.99495 0.99590 0.99035 0.99086 0.99135

11 5228 1025.80 1014.70 11.1075 124.914 126.094 0.08850 1.00945 0.99621 0.99605 0.99185 0.99228 0.99268
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS25 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99712 0.99373 * + . 

2 0.99821 0.99599 * + . 

3 0.99719 0.99416 * + . 

4 0.99556 0.99058 * + . 

5 0.99791 0.99543 * + . 

6 0.99837 0.99642 * + . 

7 0.99561 0.98927 * + . 

8 0.99569 0.99080 * + . 

9 0.99792 0.99632 * + . 

10 0.99495 0.99086 * + . 

11 0.99621 0.99228 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1174.09 19.5694 125.305 124.656 0.15658 0.99482 0.99648 0.98788 0.98375 0.98440 0.98501

2 5188 1036.42 1017.74 18.6744 145.557 144.050 0.12897 0.98964 0.99785 0.99170 0.98915 0.98957 0.98997

3 5211 1087.52 1069.21 18.3056 107.559 107.937 0.16989 1.00351 0.99626 0.98577 0.98136 0.98208 0.98276

4 5224 1118.90 1099.98 18.9236 100.029 99.812 0.18939 0.99782 0.99448 0.98238 0.97600 0.97696 0.97789

5 5225 1028.06 1008.33 19.7286 136.809 135.629 0.14483 0.99137 0.99718 0.98958 0.98626 0.98679 0.98731

6 5228 1079.09 1060.58 18.5149 139.714 137.714 0.13348 0.98569 0.99755 0.99107 0.98818 0.98864 0.98909

7 5227 1151.10 1123.69 27.4160 116.805 117.586 0.23394 1.00668 0.99388 0.97334 0.96617 0.96739 0.96856

8 5223 1098.55 1077.63 20.9212 101.660 102.427 0.20502 1.00754 0.99555 0.97939 0.97411 0.97503 0.97592

9 5225 1087.65 1071.23 16.4212 121.065 122.712 0.13473 1.01361 0.99644 0.99092 0.98681 0.98739 0.98794

10 5223 1151.63 1127.48 24.1530 135.913 137.114 0.17693 1.00884 0.99334 0.98455 0.97698 0.97799 0.97896

11 5228 1025.80 1003.28 22.5275 124.914 126.960 0.17889 1.01638 0.99327 0.98412 0.97647 0.97750 0.97849
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS4_SOS30 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99648 0.98440 * + . 

2 0.99785 0.98957 * + . 

3 0.99626 0.98208 * + . 

4 0.99448 0.97696 * + . 

5 0.99718 0.98679 * + . 

6 0.99755 0.98864 * + . 

7 0.99388 0.96739 * + . 

8 0.99555 0.97503 * + . 

9 0.99644 0.98739 * + . 

10 0.99334 0.97799 * + . 

11 0.99327 0.97750 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1167.69 25.9671 125.305 123.934 0.20837 0.98906 0.97515 0.97869 0.95188 0.95437 0.95673

2 5188 1036.42 1001.62 34.7993 145.557 145.108 0.23945 0.99692 0.97849 0.97213 0.94872 0.95122 0.95360

3 5211 1087.52 1064.41 23.1078 107.559 105.335 0.21709 0.97933 0.97292 0.97677 0.94762 0.95032 0.95288

4 5224 1118.90 1106.26 12.6431 100.029 96.068 0.12897 0.96040 0.96820 0.99095 0.95713 0.95944 0.96162

5 5225 1028.06 1017.18 10.8798 136.809 136.168 0.07971 0.99531 0.98329 0.99682 0.97901 0.98016 0.98125

6 5228 1079.09 1086.12 -7.0239 139.714 150.603 -0.04842 1.07794 0.97908 0.99603 0.97388 0.97519 0.97644

7 5227 1151.10 1154.24 -3.1360 116.805 121.665 -0.02631 1.04160 0.96310 0.99882 0.95990 0.96197 0.96392

8 5223 1098.55 1084.45 14.0986 101.660 99.123 0.14045 0.97505 0.97638 0.98992 0.96462 0.96654 0.96836

9 5225 1087.65 1095.77 -8.1144 121.065 118.006 -0.06789 0.97473 0.98103 0.99737 0.97723 0.97845 0.97961

10 5223 1151.63 1155.46 -3.8354 135.913 129.479 -0.02891 0.95266 0.97400 0.99841 0.97096 0.97245 0.97386

11 5228 1025.80 1013.34 12.4580 124.914 122.666 0.10064 0.98200 0.97345 0.99480 0.96658 0.96839 0.97011
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS3_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.97515 0.95437 * + . 

2 0.97849 0.95122 * + . 

3 0.97292 0.95032 * + . 

4 0.96820 0.95944 * + . 

5 0.98329 0.98016 * + . 

6 0.97908 0.97519 * + . 

7 0.96310 0.96197 * + . 

8 0.97638 0.96654 * + . 

9 0.98103 0.97845 * + . 

10 0.97400 0.97245 * + . 

11 0.97345 0.96839 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1228.59 -34.9322 125.305 125.558 -0.27850 1.00202 0.96932 0.96267 0.92974 0.93314 0.93637

2 5188 1036.42 1065.56 -29.1442 145.557 143.738 -0.20149 0.98750 0.97953 0.98003 0.95780 0.95997 0.96202

3 5211 1087.52 1113.88 -26.3577 107.559 108.958 -0.24348 1.01301 0.97434 0.97113 0.94341 0.94621 0.94888

4 5224 1118.90 1135.54 -16.6326 100.029 105.348 -0.16203 1.05317 0.97748 0.98574 0.96150 0.96354 0.96547

5 5225 1028.06 1035.68 -7.6239 136.809 142.230 -0.05465 1.03962 0.98918 0.99776 0.98623 0.98696 0.98765

6 5228 1079.09 1094.56 -15.4624 139.714 143.381 -0.10925 1.02625 0.97563 0.99374 0.96777 0.96952 0.97118

7 5227 1151.10 1163.83 -12.7251 116.805 119.882 -0.10754 1.02634 0.95857 0.99392 0.95008 0.95274 0.95526

8 5223 1098.55 1107.24 -8.6943 101.660 108.182 -0.08290 1.06415 0.97885 0.99466 0.97216 0.97363 0.97501

9 5225 1087.65 1106.41 -18.7541 121.065 127.861 -0.15074 1.05614 0.97847 0.98731 0.96415 0.96606 0.96786

10 5223 1151.63 1171.14 -19.5081 135.913 145.971 -0.13850 1.07400 0.96526 0.98800 0.95110 0.95368 0.95613

11 5228 1025.80 1032.60 -6.7977 124.914 134.241 -0.05249 1.07467 0.97785 0.99604 0.97259 0.97398 0.97530
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E2_WS5_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.96932 0.93314 * + . 

2 0.97953 0.95997 * + . 

3 0.97434 0.94621 * + . 

4 0.97748 0.96354 * + . 

5 0.98918 0.98696 * + . 

6 0.97563 0.96952 * + . 

7 0.95857 0.95274 * + . 

8 0.97885 0.97363 * + . 

9 0.97847 0.96606 * + . 

10 0.96526 0.95368 * + . 

11 0.97785 0.97398 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1148.60 45.0564 125.305 122.018 0.36438 0.97377 0.96463 0.93743 0.89992 0.90427 0.90845

2 5188 1036.42 979.60 56.8130 145.557 145.434 0.39048 0.99916 0.97991 0.92916 0.90714 0.91050 0.91373

3 5211 1087.52 1066.93 20.5844 107.559 115.656 0.18456 1.07528 0.96648 0.98071 0.94495 0.94784 0.95057

4 5224 1118.90 1131.93 -13.0321 100.029 103.276 -0.12822 1.03246 0.95245 0.99135 0.94107 0.94421 0.94718

5 5225 1028.06 1008.04 20.0202 136.809 138.139 0.14563 1.00972 0.98125 0.98946 0.96925 0.97091 0.97249

6 5228 1079.09 1051.61 27.4789 139.714 152.265 0.18840 1.08983 0.96148 0.97900 0.93808 0.94129 0.94435

7 5227 1151.10 1143.58 7.5245 116.805 120.510 0.06342 1.03171 0.95706 0.99751 0.95218 0.95467 0.95704

8 5223 1098.55 1081.55 16.9992 101.660 98.867 0.16956 0.97253 0.96849 0.98545 0.95181 0.95440 0.95685

9 5225 1087.65 1098.55 -10.9004 121.065 121.980 -0.08970 1.00756 0.97376 0.99597 0.96810 0.96983 0.97147

10 5223 1151.63 1148.95 2.6827 135.913 138.057 0.01958 1.01578 0.95548 0.99969 0.95274 0.95518 0.95750

11 5228 1025.80 1015.72 10.0813 124.914 128.358 0.07962 1.02757 0.97407 0.99647 0.96897 0.97064 0.97221
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E1_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.96463 0.90427 * . # 

2 0.97991 0.91050 * . # 

3 0.96648 0.94784 * + . 

4 0.95245 0.94421 * + . 

5 0.98125 0.97091 * + . 

6 0.96148 0.94129 * + . 

7 0.95706 0.95467 * + . 

8 0.96849 0.95440 * + . 

9 0.97376 0.96983 * + . 

10 0.95548 0.95518 * + . 

11 0.97407 0.97064 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Betwe Total

>= 0.90 9 2 11

Total 9 2 11
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Systematic Phenometric Sensitivity Analysis (Bryanna Pockrandt) 

Small Integral of the Season for Fort Riley 

Concordance Coefficient: Print-out of all pieces for the calculation 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs n xbar ybar diffmean sdx sdy u v r cb lrc rc urc

1 5226 1193.66 1223.24 -29.5783 125.305 123.070 -0.23818 0.98216 0.99164 0.97226 0.96267 0.96413 0.96554

2 5188 1036.42 1069.13 -32.7106 145.557 147.144 -0.22351 1.01091 0.99109 0.97557 0.96543 0.96688 0.96826

3 5211 1087.52 1116.36 -28.8385 107.559 106.290 -0.26971 0.98820 0.98975 0.96484 0.95315 0.95495 0.95668

4 5224 1118.90 1134.94 -16.0353 100.029 100.620 -0.15983 1.00591 0.99390 0.98737 0.98046 0.98135 0.98220

5 5225 1028.06 1042.62 -14.5646 136.809 140.057 -0.10522 1.02374 0.99743 0.99422 0.99127 0.99167 0.99205

6 5228 1079.09 1105.95 -26.8556 139.714 143.254 -0.18983 1.02534 0.99351 0.98200 0.97455 0.97562 0.97665

7 5227 1151.10 1169.14 -18.0350 116.805 118.018 -0.15361 1.01039 0.99444 0.98829 0.98197 0.98279 0.98357

8 5223 1098.55 1109.71 -11.1611 101.660 104.606 -0.10823 1.02898 0.99601 0.99377 0.98928 0.98981 0.99031

9 5225 1087.65 1098.13 -10.4754 121.065 124.428 -0.08535 1.02778 0.99745 0.99600 0.99312 0.99346 0.99378

10 5223 1151.63 1162.01 -10.3791 135.913 139.362 -0.07541 1.02538 0.99672 0.99685 0.99323 0.99358 0.99392

11 5228 1025.80 1038.80 -12.9986 124.914 128.319 -0.10267 1.02726 0.99672 0.99440 0.99068 0.99114 0.99157
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Comparison between Pearson & Lin Concordance Correlation Coefficient 

E2_WS4_SOS20 and E3_WS4_SOS20 

Obs r rc thres_90 rdiff_05 rdiff_05_10 

1 0.99164 0.96413 * + . 

2 0.99109 0.96688 * + . 

3 0.98975 0.95495 * + . 

4 0.99390 0.98135 * + . 

5 0.99743 0.99167 * + . 

6 0.99351 0.97562 * + . 

7 0.99444 0.98279 * + . 

8 0.99601 0.98981 * + . 

9 0.99745 0.99346 * + . 

10 0.99672 0.99358 * + . 

11 0.99672 0.99114 * + . 

Table of Threshold by Difference 

Threshold Difference 

Frequency Below Total

>= 0.90 11 11

Total 11 11
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Appendix D - SAS Code for Time Series Analysis 

**********************************************************************; 

* Bryanna Pockrandt Project: Systematic Kolmogorov-Smirnov Analysis  *; 

**********************************************************************; 

 

*Importing the Beg Data from Excel to SAS; 

 proc import out=Beg 

   datafile='F:\GRA (Consulting)\Bryanna Pockrandt\Data\Kolmogorov-Smirnov 

Analysis\Composite KS Data.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Beg"; 

   getnames=yes; 

 run; 

 

*Importing the End Data from Excel to SAS; 

 proc import out=End 

   datafile='F:\GRA (Consulting)\Bryanna Pockrandt\Data\Kolmogorov-Smirnov 

Analysis\Composite KS Data.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="End"; 

   getnames=yes; 

 run; 

 

*Importing the Length Data from Excel to SAS; 

 proc import out=Length 

   datafile='F:\GRA (Consulting)\Bryanna Pockrandt\Data\Kolmogorov-Smirnov 

Analysis\Composite KS Data.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Length"; 

   getnames=yes; 

 run; 
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*Importing the Max Data from Excel to SAS; 

 proc import out=Max 

   datafile='F:\GRA (Consulting)\Bryanna Pockrandt\Data\Kolmogorov-Smirnov 

Analysis\Composite KS Data.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Max"; 

   getnames=yes; 

 run; 

 

*Importing the Sint Data from Excel to SAS; 

 proc import out=Sint 

   datafile='F:\GRA (Consulting)\Bryanna Pockrandt\Data\Kolmogorov-Smirnov 

Analysis\Composite KS Data.xlsx' 

   dbms=xlsx 

   replace; 

   sheet="Sint"; 

   getnames=yes; 

 run; 

 

/* Performs Kolmogorov-Smirnov Test for Comparisons between Locations during 

a Particular Season & Specified Phenometric */ 

 %macro kstest(pheno,loc1,loc2,season); 

 

   ods graphics on; 

   proc npar1way data=&pheno edf plots=edfplot; 

      where ( Location in(&loc1,&loc2) & Season=&season ); 

      var Value; 

      class Location; 

   run; 

   ods graphics off; 

 

 %mend kstest; 

 

/* Performs Kolmogorov-Smirnov Test for all Comparisons within a Particular 

Season */ 

 %macro ks_season(pheno,season); 
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  *Comparison of Konza vs. Fort Riley Full; 

    title4 'Comparison of Konza vs. Fort Riley Full'; 

    %kstest(&pheno,'Konza','FR Full',&season); 

 

  *Comparison of Fort Riley High vs. Fort Riley Low; 

 title4 'Comparison of Fort Riley High vs. Fort Riley Low'; 

    %kstest(&pheno,'FR High','FR Low',&season); 

 

  *Comparison of Konza vs. Fort Riley High; 

 title4 'Comparison of Konza vs. Fort Riley High'; 

    %kstest(&pheno,'Konza','FR High',&season); 

 

  *Comparison of Konza vs. Fort Riley Low; 

    title4 'Comparison of Konza vs. Fort Riley Low'; 

    %kstest(&pheno,'Konza','FR Low',&season); 

 

 %mend ks_season; 

 

/* Performs Kolmogorov-Smirnov Test for all Comparisons within a Particular 

Phenometric */ 

 %macro ks_pheno(pheno); 

 

  *Analysis of the Normal Season; 

    title3 'Season 2 (Normal)'; 

    %ks_season(&pheno,2); 

 

  *Analysis of the Cool, Wet Season; 

 title3 'Season 8 (Cool, Wet)'; 

    %ks_season(&pheno,8); 

 

  *Analysis of the Hot, Dry Season; 

    title3 'Season 11 (Hot, Dry)'; 

    %ks_season(&pheno,11); 

 

 %mend ks_pheno; 
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ods rtf file = "F:\GRA (Consulting)\Bryanna Pockrandt\Systematic Statistical 

Analysis on Kolmogorov-Smirnov Analysis (Bryanna Pockrandt).doc"; 

 

title 'Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt)'; 

 

  title2 'Phenometric: Beginning of the Season'; 

  %ks_pheno(Beg); 

 

  title2 'Phenometric: End of the Season'; 

  %ks_pheno(End); 

 

  title2 'Phenometric: Length of the Season'; 

  %ks_pheno(Length); 

 

  title2 'Phenometric: Maximum Value of the Season'; 

  %ks_pheno(Max); 

 

  title2 'Phenometric: Small Integral of the Season'; 

  %ks_pheno(Sint); 

 

ods rtf close; 

 

  %kstest(Beg,'Konza','FR Full',11); 

 

 

 

  %kstest(Beg,'Konza','FR High',2); 

  %kstest(Beg,'Konza','FR Low',2); 

 

  %kstest(Beg,'FR High','FR Low',2); 

 

 

 

  %kstest(Beg,'Konza','FR Full',11); 

 

  %kstest(Beg,'Konza','FR Full',11); 
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Appendix E - SAS Results for Time Series Analysis 

Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
  
  
Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 
Location N EDF at�Maximum Deviation from Mean�at Maximum 
Konza 621 0.307568 -8.589762 
FR Full 5188 0.693524 2.971851 
Total 5809 0.652264   
Maximum Deviation Occurred at Observation 2913 
Value of Value at Maximum = 30.10 

 

 
 
  

Kolmogorov-Smirnov Two-Sample 

Test (Asymptotic) 

 KS  0.119256 D  0.385955

KSa  9.089330 Pr > KSa  <.0001 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location

Location N 
Summed Deviation�from M
ean 

Konza 621 39.933521 
FR Full 5188 4.780015 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.007697 CMa 44.713536 
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Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.001157 
FR Full 5188 0.385955 
  
Kuiper Two-Sample Test (Asymptotic)
K 0.387112 Ka 9.116566 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 2 (Normal) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
  

Kolmogorov-Smirnov Test for Variable Value 

Classified by Variable Location 

 Location  N 

 EDF at

Maximum

 Deviation from Mean

at Maximum

FR High  1213  0.280297  3.892588

FR Low  1558  0.081515  -3.434671

Total  2771  0.168531

Maximum Deviation Occurred at Observation 1388 

 Value of Value at Maximum = 29.60 

 Kolmogorov-Smirnov Two-

Sample Test (Asymptotic) 

 KS  0.098618 D  0.198782

KSa  5.191262 Pr > 

KSa 

 <.0001 

  
  
  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

FR High 1213 3.859020 
FR Low 1558 3.004487 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.002477 CMa 6.863507 
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Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1213 0.198782 
FR Low 1558 0.023331 
  
Kuiper Two-Sample Test (Asymptotic)
K 0.222113 Ka 5.800557 Pr > Ka <.0001 
 
  

  



 

226 

 

Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
  
  

 Kolmogorov-Smirnov Test for Variable Value 

Classified by Variable Location 

 Location  N 

 EDF at

Maximum

 Deviation from Mean

at Maximum

 Konza  621  0.307568  -5.692159

 FR High  1213  0.652927  4.072794

Total  1834  0.535987

Maximum Deviation Occurred at Observation 939 

 Value of Value at Maximum = 30.10 

 
  
Kolmogorov-Smirnov Two-Sample Test 
(Asymptotic) 
KS 0.163436 D 0.345358 
KSa 6.999166 Pr > 

KSa 
<.0001 

  
 
  
  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location

Location N 
Summed Deviation�from M
ean 

Konza 621 17.293772 
FR High 1213 8.853613 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.014257 CMa 26.147385 
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Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.000000 
FR High 1213 0.345358 
  
Kuiper Two-Sample Test (Asymptotic)
K 0.345358 Ka 6.999166 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
  

 Kolmogorov-Smirnov Test for Variable Value 

Classified by Variable Location 

 Location  N 

 EDF at

Maximum

 Deviation from Mean

at Maximum

 Konza  621  0.307568  -4.801088

 FR Low  1558  0.577022  3.031110

 Total  2179  0.500229

 Maximum Deviation Occurred at Observation 1109 

 Value of Value at Maximum = 30.10 

  
  

 Kolmogorov-Smirnov Two-Sample 

Test (Asymptotic) 

 KS  0.121634  D  0.269453

 KSa  5.677858  Pr > 

KSa 

 <.0001 

 
  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 13.924339 
FR Low 1558 5.550073 
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Cramer-von Mises Statistics (Asymptotic) 
CM 0.008937 CMa 19.474412 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean 

Konza 621 0.001926 
FR Low 1558 0.269453 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.271379 Ka 5.718433 Pr > Ka <.0001 
 
  

  



 

230 

 

Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
  
  

 Kolmogorov-Smirnov Test for Variable Value 

Classified by Variable Location 

 Location  N 

 EDF at

Maximum

 Deviation from Mean

at Maximum

 Konza  621  0.202899  -4.529672

 FR Full  5223  0.406280  1.561898

 Total  5844  0.384668

 Maximum Deviation Occurred at Observation 2977 

 Value of Value at Maximum = 168.30 

 
  

 Kolmogorov-Smirnov Two-Sample 

Test (Asymptotic) 

 KS  0.062677 D  0.203381

 KSa  4.791394  Pr > 

KSa 

<.0001 

 
   
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 8.365952 
FR Full 5223 0.994688 
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Cramer-von Mises Statistics (Asymptotic) 
CM 0.001602 CMa 9.360641 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean 

Konza 621 0.001610 
FR Full 5223 0.203381 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.204992 Ka 4.829330 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 8 (Cool, Wet) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
  
Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N 
EDF at�Max
imum Deviation from Mean�at Maximum 

FR High 1237 0.362167 2.892401 
FR Low 1553 0.214424 -2.581414 
Total 2790 0.279928   

Maximum Deviation Occurred at Observation 1403 

Value of Value at Maximum = 168.20 
 

  

 Kolmogorov-Smirnov Two-Sample 

Test (Asymptotic) 

 KS  0.073396  D  0.147743

 KSa  3.876813  Pr > 

KSa 

 <.0001 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location

Location N 
Summed Deviation�from M
ean 

FR High 1237 4.525396 
FR Low 1553 3.604581 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.002914 CMa 8.129976 
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Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1237 0.147743 
FR Low 1553 0.000000 
  
Kuiper Two-Sample Test (Asymptotic)
K 0.147743 Ka 3.876813 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
  

 Kolmogorov-Smirnov Test for Variable Value 

Classified by Variable Location 

 Location  N 

 EDF at

Maximum

 Deviation from Mean

at Maximum

 Konza  621  0.104670  -4.272100

 FR High  1237  0.362167  3.026930

 Total  1858  0.276103

 Maximum Deviation Occurred at Observation 972 

 Value of Value at Maximum = 168.20 

  

 Kolmogorov-Smirnov Two-Sample 

Test (Asymptotic) 

 KS  0.121466  D  0.257497

 KSa  5.235756  Pr > 

KSa 

 <.0001 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean

Konza 621 6.941662 
FR High 1237 3.484860 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.005612 CMa 10.426522 
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Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.001610 
FR High 1237 0.257497 
  
Kuiper Two-Sample Test (Asymptotic)
K 0.259107 Ka 5.268498 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.104670 -1.953787 
FR Low 1553 0.214424 1.235485 
Total 2174 0.183073   
Maximum Deviation Occurred at Observation 1110
Value of Value at Maximum = 168.20 

 

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.049578 D 0.109754 
KSa 2.311646 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean

Konza 621 0.903923 
FR Low 1553 0.361453 
  
Cramer-von Mises Statistics (Asymptotic)
CM 0.000582 CMa 1.265376 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean 

Konza 621 0.017951 
FR Low 1553 0.109754 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.127705 Ka 2.689728 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.162641 -3.948295 
FR Full 5228 0.339901 1.360779 
Total 5849 0.321081   
Maximum Deviation Occurred at Observation 2948
Value of Value at Maximum = 237.10 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.054606 D 0.177260 
KSa 4.176213 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 5.677255 
FR Full 5228 0.674364 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.001086 CMa 6.351619 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.047579 
FR Full 5228 0.177260 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.224838 Ka 5.297157 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 11 (Hot, Dry) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

FR High 1237 0.466451 -3.350611 
FR Low 1558 0.637356 2.985555 
Total 2795 0.561717   
Maximum Deviation Occurred at Observation 1386
Value of Value at Maximum = 237.20 

 

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.084887 D 0.170904 
KSa 4.487776 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean

FR High 1237 4.225889 
FR Low 1558 3.355215 
  
Cramer-von Mises Statistics (Asymptotic)
CM 0.002712 CMa 7.581103 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean 

FR High 1237 0.015080 
FR Low 1558 0.170904 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.185984 Ka 4.883749 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.162641 -3.042065 
FR High 1237 0.345998 2.155407 
Total 1858 0.284715   
Maximum Deviation Occurred at Observation 935
Value of Value at Maximum = 237.10 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.086494 D 0.183357 
KSa 3.728262 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 3.674826 
FR High 1237 1.844840 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.002971 CMa 5.519667 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.004876 
FR High 1237 0.183357 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.188234 Ka 3.827417 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Beginning of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.307568 -5.876108 
FR Low 1558 0.637356 3.709811 
Total 2179 0.543369   
Maximum Deviation Occurred at Observation 1139
Value of Value at Maximum = 237.20 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.148870 D 0.329787 
KSa 6.949197 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 16.484817 
FR Low 1558 6.570649 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.010581 CMa 23.055465 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.002567 
FR Low 1558 0.329787 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.332355 Ka 7.003297 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.120773 -2.764209 
FR Full 5184 0.244985 0.956718 
Total 5805 0.231697   
Maximum Deviation Occurred at Observation 2849
Value of Value at Maximum = 43.60 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.038392 D 0.124212 
KSa 2.925091 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 2.486717 
FR Full 5184 0.297888 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.000480 CMa 2.784605 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.085288 
FR Full 5184 0.124212 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.209499 Ka 4.933549 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 2 (Normal) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

FR High 1212 0.592409 2.040719 
FR Low 1555 0.488103 -1.801646 
Total 2767 0.533791   
Maximum Deviation Occurred at Observation 1377
Value of Value at Maximum = 44.0 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.051751 D 0.104306 
KSa 2.722217 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

FR High 1212 1.626095 
FR Low 1555 1.267413 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.001046 CMa 2.893508 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1212 0.104306 
FR Low 1555 0.025795 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.130101 Ka 3.395424 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.942029 1.464727 
FR High 1212 0.853135 -1.048459 
Total 1833 0.883252   
Maximum Deviation Occurred at Observation 905
Value of Value at Maximum = 44.50 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.042073 D 0.088894 
KSa 1.801303 Pr > KSa 0.0030 

 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 0.512714 
FR High 1212 0.262703 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.000423 CMa 0.775417 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.088894 
FR High 1212 0.035168 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.124061 Ka 2.513925 Pr > Ka 0.0002 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.851852 2.561039 
FR Low 1555 0.708039 -1.618441 
Total 2176 0.749081   
Maximum Deviation Occurred at Observation 1072
Value of Value at Maximum = 44.30 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.064946 D 0.143813 
KSa 3.029567 Pr > KSa <.0001 

 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 2.923523 
FR Low 1555 1.167529 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.001880 CMa 4.091052 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.143813 
FR Low 1555 0.018541 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.162354 Ka 3.420146 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.144928 -6.280445 
FR Full 5221 0.426930 2.166004 
Total 5842 0.396953   
Maximum Deviation Occurred at Observation 2924
Value of Value at Maximum = 181.30 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.086919 D 0.282002 
KSa 6.643460 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 20.278663 
FR Full 5221 2.412000 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.003884 CMa 22.690663 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.002873 
FR Full 5221 0.282002 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.284875 Ka 6.711143 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 8 (Cool, Wet) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

FR High 1237 0.618432 4.757849 
FR Low 1553 0.375402 -4.246291 
Total 2790 0.483154   
Maximum Deviation Occurred at Observation 1390
Value of Value at Maximum = 181.40 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.120733 D 0.243029 
KSa 6.377156 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

FR High 1237 9.395299 
FR Low 1553 7.483570 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.006050 CMa 16.878869 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1237 0.243029 
FR Low 1553 0.014457 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.257486 Ka 6.756514 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.238325 -6.306305 
FR High 1237 0.618432 4.468234 
Total 1858 0.491389   
Maximum Deviation Occurred at Observation 917
Value of Value at Maximum = 181.40 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.179304 D 0.380106 
KSa 7.728816 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 19.341937 
FR High 1237 9.710059 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.015636 CMa 29.051995 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.007282 
FR High 1237 0.380106 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.387389 Ka 7.876887 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 8 (Cool, Wet) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.144928 -2.704362 
FR Low 1553 0.296845 1.710114 
Total 2174 0.253450   
Maximum Deviation Occurred at Observation 1113
Value of Value at Maximum = 181.30 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.068624 D 0.151917 
KSa 3.199698 Pr > KSa <.0001 

 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 3.864416 
FR Low 1553 1.545269 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.002488 CMa 5.409684 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.001932 
FR Low 1553 0.151917 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.153849 Ka 3.240384 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.144928 -2.704362 
FR Low 1553 0.296845 1.710114 
Total 2174 0.253450   
Maximum Deviation Occurred at Observation 1113
Value of Value at Maximum = 181.30 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.068624 D 0.151917 
KSa 3.199698 Pr > KSa <.0001 

 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 5.451269 
FR Full 5206 0.650257 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.001047 CMa 6.101526 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.044788 
FR Full 5206 0.151974 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.196762 Ka 4.634654 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 11 (Hot, Dry) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

FR High 1223 0.380213 3.258133 
FR Low 1564 0.214194 -2.881135 
Total 2787 0.287047   
Maximum Deviation Occurred at Observation 1377
Value of Value at Maximum = 249.70 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.082385 D 0.166018 
KSa 4.349295 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

FR High 1223 4.565427 
FR Low 1564 3.570024 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.002919 CMa 8.135450 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1223 0.166018 
FR Low 1564 0.096883 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.262902 Ka 6.887419 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.209340 -4.134989 
FR High 1223 0.459526 2.946503 
Total 1844 0.375271   
Maximum Deviation Occurred at Observation 935
Value of Value at Maximum = 249.80 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.118239 D 0.250186 
KSa 5.077402 Pr > KSa <.0001 

 

 
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 7.857872 
FR High 1223 3.989974 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.006425 CMa 11.847846 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.098370 
FR High 1223 0.250186 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.348556 Ka 7.073764 Pr > Ka <.0001 
 
  

  



 

252 

 

Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: End of the Season 
Season 11 (Hot, Dry) 
Comparison of Konza vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.592593 -1.861123 
FR Low 1564 0.696931 1.172742 
Total 2185 0.667277   
Maximum Deviation Occurred at Observation 1048
Value of Value at Maximum = 250.30 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.047061 D 0.104338 
KSa 2.199796 Pr > KSa 0.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 1.702348 
FR Low 1564 0.675932 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.001088 CMa 2.378280 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.003836 
FR Low 1564 0.104338 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.108175 Ka 2.280678 Pr > Ka 0.0012 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Length of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley Full 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.776167 6.497585 
FR Full 5180 0.484170 -2.249743 
Total 5801 0.515428   
Maximum Deviation Occurred at Observation 2929
Value of Value at Maximum = 14.0 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.090279 D 0.291998 
KSa 6.876042 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 18.416415 
FR Full 5180 2.207837 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.003555 CMa 20.624252 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.291998 
FR Full 5180 0.015877 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.307875 Ka 7.249927 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Length of the Season 
Season 2 (Normal) 
Comparison of Fort Riley High vs. Fort Riley Low 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

FR High 1209 0.758478 -2.027872 
FR Low 1553 0.862202 1.789238 
Total 2762 0.816799   
Maximum Deviation Occurred at Observation 1384
Value of Value at Maximum = 14.60 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.051458 D 0.103724 
KSa 2.704374 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

FR High 1209 1.344671 
FR Low 1553 1.046818 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.000866 CMa 2.391489 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

FR High 1209 0.023807 
FR Low 1553 0.103724 
  
Kuiper Two-Sample Test (Asymptotic) 
K 0.127531 Ka 3.325096 Pr > Ka <.0001 
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Systematic Kolmogorov-Smirnov Analysis (Bryanna Pockrandt) 
Phenometric: Length of the Season 
Season 2 (Normal) 
Comparison of Konza vs. Fort Riley High 
  
The NPAR1WAY Procedure 
 

Kolmogorov-
Smirnov Test for Variable Value�Classified by Variable Location 

Location N
EDF at�Maxi
mum

Deviation from Mean�at Maximu
m

Konza 621 0.827697 4.897994 
FR High 1209 0.530190 -3.510354 
Total 1830 0.631148   
Maximum Deviation Occurred at Observation 921
Value of Value at Maximum = 14.10 
  
  
Kolmogorov-Smirnov Two-Sample Test (Asymptotic)
KS 0.140866 D 0.297507 
KSa 6.026021 Pr > KSa <.0001 

 

  
Cramer-
von Mises Test for Variable Value�Classified by Variable Location 

Location N 
Summed Deviation�from M
ean 

Konza 621 11.307076 
FR High 1209 5.807853 
  
Cramer-von Mises Statistics (Asymptotic) 
CM 0.009352 CMa 17.114928 
  
  
Kuiper Test for Variable Value�Classified by Vari
able Location 

Location N 
Deviation�from M
ean

Konza 621 0.297507 
FR High 1209 0.001654 
  

Kuiper Two-Sample Test (Asymptotic) 

 K  0.261226  K
a 

 5.504496  Pr > Ka  <.0001 
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