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Abstract: A one-step, gas-phase, catalyst-free detonation of hydrocarbon (C2H2) method was 

developed to produce gram quantities of pristine graphene nanosheets (GNs).  The detonation of 

C2H2 was carried out in the presence of O2. The molar ratios of O2/C2H2 were 0.4, 0.5, 0.6, 0.7, 

and 0.8. The obtained GNs were analyzed by XRD, TEM, XPS and Raman spectroscopy. The 

GNs are crystalline with (002) peak centered at 26.05° (d = 0.341 nm). TEM shows that the GNs 

are stacked in two to three layers and sometimes single layers. An increase in the size of GNs 

(35-250 nm) along with reduction in defects (Raman ID/IG~ 1.33- 0.28) and specific surface area 

(187 to 23 m2g-1) was found with increasing O2 content. The high temperature of the detonation, 

ca. 4000K, is proposed as the cause of graphene production rather than normal soot. The method 

allows for the control of the number of layers, shape and size of the graphene nanosheets. The 

process can be scaled up for industrial production. 

1. Introduction 

Graphene is a two dimensional monolayer of sp2 bonded carbon atoms in a hexagonal 

crystal structure. It has been drawing considerable interest because of its unique physical 

properties including excellent mechanical strength, high intrinsic carrier mobility at room 

temperature, and electrical and thermal conductivity  comparable to the in-plane value of 

graphite.1-3 These properties open gateways for the potential applications of graphene in 

technological areas such as nanoelectronics,4,5 sensors,6 nanocomposites,7,8 batteries,9 

supercapacitors, and hydrogen storage.10 Pioneering work for the production of graphene was 

first done by the micromechanical cleavage of highly ordered pyrolytic graphite (HOPG).10,11  
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However, the low yield makes it unsustainable for large scale use. Numerous methods for 

preparation of graphene nanosheets have since been developed including chemical vapor 

deposition (CVD),12,13 ultrasonication-assisted exfoliation of graphene oxide (GO) from graphite 

oxide in water,14 epitaxial growth on an electrically insulating surface,15 solution-based chemical 

reduction of GO,16 rapid thermal exfoliation of expanded graphite into graphene17, high 

temperature heating of polymer on metal/insulator surface,18 and gas-phase plasma synthesis19. 

Notably, the CVD method has been used in a roll-to-roll production of 30-inch monolayer 

graphene films.20  

For the production of large quantities of graphene, the modified Hummer’s method for 

the production of GO through chemical exfoliation of graphite to graphite oxide and then 

graphite oxide to GO has gained much attention due to low-cost and higher yield in comparison 

to other methods.21-24  However, this method is not ideal because the GO produced suffers from 

some important drawbacks such as poor electrical conductivity due to the presence of epoxide, 

carboxyl, and hydroxyl groups on the graphene sheets.2 Further, the reduction of GO to graphene 

needs insalubrious chemical reductants such as hydrazine or sodium borohydride, and high 

temperature heating in order to recover the graphitic structure.25  Moreover, the reduction process 

cannot completely remove the many structural defects introduced by the oxidation process. A 

few environmentally friendly processes are available to reduce GO to graphene either by 

chemical or electrochemical methods, but these give low yield.26 Thus despite the usefulness of 

previous graphene synthetic methods, none appear economical, eco-friendly, kilogram scale 

production of the material.  

Here we report a novel, cost-effective and eco-friendly, one-step method that involves 

controlled gas-phase hydrocarbon (C2H2) detonation with oxygen (O2) for the production of 

graphene nanosheets.  Our process has several advantages such as simplicity, high productivity, 

economic viability, and short synthesis time (minute).This method is catalyst-free and does not 

generate any toxic by-products during synthesis as generated in solution phase methods.20-24 

2. Experimental details 

Graphene nanosheets (GNs) in the form of a powder were prepared from the catalyst-free 

controlled detonation of C2H2 gas in the presence of O2 in a 16.6 liter cylindrical aluminum 

chamber. The pre-detonation molar ratios of O2/C2H2 were 0.4, 0.5, 0.6, 0.7, and 0.8. For each 
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ratio, the initial chamber pressure was 1 atmosphere. The gases had purities of 98.0 % for C2H2 

and 99.0 % for O2. In a typical batch, the detonation of C2H2 with O2 was carried out by a 

controlled power supply through a spark generator ignition system (Fig.S1and S2, where S refers 

supplementary information). During the detonation, the hydrocarbon was first converted into free 

carbon atoms or ions which condensed into a nanoparticle carbon aerosols which in turn quickly 

aggregated and then finally formed a gel, known as a Carbon Aerosol Gel (CAG).27 After the 

denotation, the chamber was allowed to cool to 300 K. The fluffy black CAG powder was 

collected from the chamber (inset Fig. 5); we will henceforth call this material “detonation 

carbon”. The material was homogeneous and subsequent characterization confirmed that it was 

one phase. The detonation pressure and temperature were measured with a data acquisition 

system. The same process was followed for all molar ratios. Table 1 shows the peak temperature 

and the pressure observed during detonation for different O2:C2H2 molar ratios. These high 

pressures and temperatures (ca. 4000K), which are a consequence of the exothermic detonation 

of the hydrocarbon and oxygen, last for about 15 milliseconds during the detonation, after which 

the system rapidly cools (Fig. S2). The phase, layered structure, and the chemical compositions 

of detonation carbon was analyzed by XRD, TEM, Raman spectroscopy and X-ray Photoelectron 

spectroscopy. 

3. Characterizations 

 X-ray diffraction was carried out using a Bruker D8 Advance X-ray diffractometer, 

Germany, with nickel filter Cu Kα radiation as the X-ray source to determine phase purity and 

degree of crystallization. The morphology and the size of the samples were determined with a 

FEI Company Nova NanoSEM 430 field emission scanning electron microscope, FESEM, at 3.5 

kV and low vacuum with a TLD detector and Philips CM-100 transmission electron microscope 

(TEM) with an accelerating voltage of 100 kV. For TEM measurement, the samples were 

prepared by inserting Cu grids in the detonation carbon powder without using any solvent. The 

high resolution TEM images and SAED patterns were recorded by using FEI Tecnai F20 XT 

Field Emission Transmission Electron Microscope with an accelerating voltage of 200 kV.  BET 

measurements were carried out using a Nova 1000 series surface area analyzer, Quantachrome 

instrument. Diffuse reflectance FTIR spectra were recorded via a Cary 630 FTIR 

spectrophotometer, Agilent Technology, USA over a range 500-4000 cm-1. The X-ray 
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photoelectron spectroscopy (XPS) of a Perkin-Elmer PHI 5400 spectrometer with Al Kα X-ray 

source (1486.6 eV) was used to obtain the chemical compositions of the samples. The 

spectrometer was calibrated using Au 4f7/2 at 84.0 eV and Cu 2p3/2 at 932.7 eV.  The base 

pressure of the analysis chamber was below 10-9 mbar.  The room temperature Raman spectra 

were obtained on pellets of 10 mm diameter and 2 mm thick (as shown in the inset of Fig. 8) 

with an iHR550 Raman spectrophotometer, Horiba Jobin Yvon with a HeNe laser (632.8 nm) as 

the excitation source. 

4. Results and discussion 

The X-ray diffraction (XRD) patterns of the detonation carbon obtained at O2/C2H2 of 

0.4, 0.5, 0.6, 0.7, and 0.8 and graphite flakes (GF, obtained from Alfa Aesar for comparison) are 

depicted in Fig. 1. Fig. 1(a) shows seven well defined diffraction peaks that are characteristic of 

graphite with the most intense (002) peak centered at 26.6° (enlarged in the inset), while the 

(002) peak of the detonation carbon is centered at 26.05° [Fig.  1(b)-(f)] to imply an interplanar 

spacing (d) of 0.341 nm, which is larger than d = 0.335 nm of GF. The determined d = 0.341 nm 

for the detonation carbon is  in good agreement with the XRD pattern reported for pristine GNs 

synthesized by other methods.28,29 Hence, the detonation carbon resembles the graphitic 

(graphene) structure. In addition, the reduction in full width at half maxima (FWHM) of the 

(002) peak with increasing O2/C2H2 ratio indicates an increased size of the crystallite and, thus, 

more crystalline order.   

 Figure 2 (a-e) shows TEM images of the detonation carbon powder obtained at different 

O2/C2H2 gas ratios. All images reveal that the layers in detonation carbon are transparent, 

crumpled, folded, and randomly stacked on each other. They show a laminar morphology with 

crumpling consistent with the structure of pristine two-dimensional graphene prepared by other 

methods.28-30 This crumpling is intrinsic to graphene sheets because a thermodynamically 

unstable two-dimensional sheet undergoes microscopic crumpling via bending or buckling to get 

thermodynamically stable three-dimensional structures in localized regions.31 In Fig. 2(a, b), the 

detonation carbon prepared with O2/C2H2 = 0.4 and 0.5, respectively, show transparent ramified 

fractal aggregates of GNs. These aggregates have dense regions about 35-55 nm size connected 

by thin, continuous, twisted, ribbon-like structures [see Fig. S3(a, b)]. This implies that the 

detonation carbon consists of GNs interlaced with one another. With increasing ratios from 0.6 to 
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0.8, the GNs show a distinct feature of nearly spherical shape with an increased size of about 

225-250 nm [Fig. 2(c-e) and S3(c-e)]. The similar layer morphology stacked over each other 

around 250-350 nm size of the GNs powder prepared from O2/C2H2 of 0.8 is observed in 

FESEM as shown in Fig. S4. The O2/C2H2 ratio dependence of GNs size observed in TEM 

images is consistent with the (002) peak widths in the XRD spectra [Fig. 1(b)-(f)]. Thus, the 

detonation carbon appears to be composed of GNs and will hereafter be referred to as such as 

well. Moreover, in the samples of lower O2/C2H2, the randomly oriented GNs [Fig. 2(a-b)] 

exhibit many thin layers entangled with each other with overlapped edges, while more ordered 

stacking of GNs in mostly two to three layers is observed for the samples of higher O2/C2H2 as 

seen in Fig. 2(c-e).  The HRTEM image of the edge of the GNs in Fig. 2(f) shows the layer 

structure more closely.  

High magnification TEM images and the SAED patterns of the GNs of selected regions 

are shown in Fig.3. The transparent and featureless regions, indicated by arrows in Fig. 3 (a and 

d), are likely to be monolayer graphene which tends to scroll at the edges. The SAED patterns in 

Fig. 3(b, c and f) confirm the crystalline structure of the GNs. The  diffraction patterns of  the 

region marked with ‘A’ and ‘C’ in Fig. 3(a and e) show six-fold symmetry {see Fig. 3(b and f)} 

similar to monolayer graphene, whereas the region marked with ‘B’ in Fig. 3(a) shows  

misaligned diffraction spots  in  tiny arc shapes representing randomized six-fold symmetry as 

shown in Fig. 3(c). The misaligned spots could probably be due to crumpled local regions in 

GNs. The HRTEM images of GNs depicted in Fig. S3(f)  shows the lattice fringes spacing of 

0.240 nm which is in good agreement with the in-plane lattice constant of 0.246 nm for 

graphite.32  

The Brunauer-Emmett-Teller (BET) specific surface area (SSA) of the GNs measured 

from N2 adsorption desorption isotherms at 77 K is shown in Fig. 4. The isotherms exhibit type-

II pattern and type H3 hysteresis loop. The adsorption hysteresis suggests that the isotherm is a 

pseudo type-II pattern due to multi-layer adsorption in materials having slit-like pores or 

aggregates of platy particles.33 In graphene, adsorption occurs on the surface of the graphene 

sheets, but due to their few layered structure, slit-like open pores exist. These open pores are 

responsible for the hysteresis loop observed in graphene materials.34 From the linear region of 

the graph and using the BET equation, it is found that the SSA lies in between 23 to 187 m2 g-1 
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(Fig. 5), which is significantly lower than the theoretical SSA of 2630 m2 g-1 for individual 

isolated graphene sheets.35 However, the SSA of the detonation carbon prepared at 0.4 O2/C2H2 

is close to the previously reported SSA-value of 184 m2 g-1 for GNs.36 A significant finding is 

that the yield per detonation of the GNs is high, in the range of 38% to 66% as shown in Fig. 5. It 

is found that the mass of the GNs is decreased as the amount of O2 is increased in the gaseous 

mixture. 

 The Drifts-FTIR measurement was performed to explore the surface functional groups 

present on GNs produced by detonation. Figure 6 displays the Drifts-FTIR spectra of detonation 

carbon prepared with different O2/C2H2 ratio. As the production method involves C2H2 and O2, 

one might expect some carboxyl or epoxy groups and hydrogen attached to the surface of GNs. 

However, the spectra (Fig. 6) do not show any features of functional group attached to the 

surface of the detonation carbon GNs, suggesting its pristine nature. The chemical composition 

of GNs is further explored by X-ray Photoelectron Spectroscopy (XPS). The XPS spectra of 

graphene GNs obtained after detonation of O2/C2H2 of 0.4 is presented in Fig 7. The survey XPS 

spectrum in Fig 7(a) indicates that the graphene is very pure because the actual ratio of C to O is 

about 49:1. Since XPS measures the composition on the sample surface, the presence of trace 

oxygen in the survey spectrum can be influenced by the moisture absorption on the surface from 

the atmosphere. 37-39 However, the enlarged view of the C 1s spectrum presented in Fig. 7(b) 

shows a single peak around 284.8 eV, which is associated with graphitic carbon. Moreover, the 

asymmetry in the peak is due to structural disorder at the edges of the sp2 network in graphene 

where the plane of carbon and any carbon fragments could be interacting by the surface oxygen 

attached during the transfer of the sample to the XPS instrument. No additional signals are 

observed (see Fig. S5 for XPS of O2/C2H2 of 0.8 as well) to imply that no other functional groups 

are attached with the C-C system of GNs. This is consistent with the FTIR data mentioned 

above. These results confirm the one-phase, pristine nature of the GNs produced here. 

The structure and quality of the detonation carbon GNs were analyzed by using Raman 

spectroscopy. Figure 8 shows the Raman spectra of GF and the detonation carbon GNs measured 

at an excitation wavelength of 632.8 nm under ambient conditions. Figure 8(a) presents 

characteristic G- and 2D-bands of GF at 1584 and 2690 cm-1, respectively, and the absence of 

defect (D) band indicates that GF are almost defect free. The sharp G-band at 1584 cm-1 
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corresponds to an optical E2g phonon at the Brillouin Zone center of all sp2 hybridized carbons, 

while the 2D-band at 2690 cm-1 corresponds to overtones of the D-band. This band is present 

even in absence of defects because it is the sum of two phonons with opposite momentum.40,41 It 

is the most prominent feature for graphene in the Raman spectrum, and its position and shape 

can be used to distinguish between single-layer, double-layer and few-layer graphene with AB 

interlayer stacking. 30,40    

As shown in Fig. 8(b-f), the Raman spectra of the detonation carbon GNs show two new 

bands at 1328 and 1610 cm-1 along with G- and 2D-bands at 1580 and 2650 cm-1 . The band at 

1328 cm-1 is assigned to the D-band, which is due to an intervalley double resonance (DR) 

Raman process from the transverse optical modes of K-point phonons of A1g symmetry in a 

structural defect or partially disordered structures of the sp2 domains in GNs.40,41 The peak at 

1610 cm-1  is called the D′-band that occurs via an intravalley DR process in the presence of 

defects. Furthermore, the relative intensity of D-and G-bands is a convenient way to estimate the 

extent of defects and the size of in-plane sp2 domain in the GNs.31,42 An obvious observation is 

that the intensity of the D-band decreases with increasing O2 content. The intensity ratio of the 

D- and G-bands (ID/IG) in GNs decreases from 1.33 to 0.28 for 0.4 to 0.8 O2/C2H2 ratio. This 

indicates that partial sp2 domains are restored at different levels, and the graphitic degree of GNs 

is also improved accordingly due to the reduction effect and self-repairing of the graphene layer 

at high O2 content.29 The shape of the 2D-band is O2 content dependent.  At 0.4 O2/C2H2, the 2D-

band is broad to imply many layers of GNs, as is also evident from TEM images in Fig. S3 (a). 

The width gradually decreases from 65 to 43 cm-1 (see Fig. S6) with increasing O2 content, 

becoming sharpest for 0.8 O2/C2H2. This evolution of sharpness of the 2D-band implies the 

transformation of GNs from many layers to two to three layers with increasing O2 content (the 

width of the 2D band for monolayer graphene is 24 cm-1).43 Hence, it can be concluded that O2 

plays a vital role for GNs quality in this particular process. 

 The question remains why graphene is created in this detonation process instead of 

normal carbonaceous soot. The mechanism of graphene production is undoubtedly as difficult to 

describe as the mechanism of soot formation in flames, a description which remains 

incomplete.44 However, an important clue to a description might lie in Table 1 which shows the 

peak temperatures and pressures observed during detonation for the different molar ratios of 
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O2/C2H2 used. No functionality with molar ratio is observed beyond the estimated errors of the 

measurements. These temperatures and pressures are consistent with each other under the 

assumption of no change in the total moles of gas in the chamber from before detonation, at ca. 

300K and 1 atm, to the peak temperature. The peak detonation temperature of about 4000 K is 

roughly twice the combustion temperature of sooting hydrocarbon/air diffusion flames including 

C2H2.
45 The “normal” soot produced in such flames consists of roughly spherical monomers 

(primary particles) with diameters in the range of 20 to 50 nm joined together into fractal 

aggregates.46,47 The composition of these monomers is typically mostly carbon with a 

carbon/hydrogen ratio of C/H ≈ 8, and the carbon is nearly amorphous being composed of many 

small graphitic planes.45 In strong contrast detonation carbon is pure carbon with graphene 

morphology and characteristics; it is graphene. Based on our temperature measurements we 

propose that the key difference is the temperature. This hypothesis is supported by the 

observations of Choi and coworkers.48 They used a burner arrangement in which C2H2 co-flowed 

with an annular oxyhydrogen flame. This flame produced normal soot. The flame was irradiated 

with a many watt CO2 laser. Sharply above a laser power threshold the flame stopped producing 

normal soot and instead produced “shell-shape carbon nanoparticles” composed of graphenic-

like curved layers wrapped together. Concomitant with this threshold, the flame temperature 

jumped from 2100 K to 3000 K. Although these observations are unexplained, their similarity to 

our detonation process in temperature and resulting morphologies supports our hypothesis that 

the high temperatures (>3000 K) during detonation is the fundamental cause of the graphenic 

nature of the carbon produced. Given these observations, we further hypothesize that high 

temperature, such as 4000K, completely decomposes the hydrocarbon precursor to yield carbon 

atoms or ions which then rapidly combine after the high temperature phase to form graphene. 

This is very different than the current view of normal soot formation in a flame which describes 

soot formation as a chemical process involving molecular polymerization up a chain of 

polyaromatic hydrocarbons followed by dehydrogenation to soot44. Finally, if this hypothesis is 

true, detonation of other hydrocarbons should yield graphene materials as well; a proposition we 

will soon pursue.  
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5. Conclusions  

 In summary, a simple, quick, one-step, eco-friendly, high-yield method for the gram scale 

production of graphene nanosheets has been developed. The method involves the controlled 

detonation of C2H2 in presence of O2. The high temperature of the detonation, ca. 4000 K, is 

proposed as the cause of graphene production rather than normal soot. This method is green and 

does not result in contamination of the graphene product. Simple modification of our lab-scale 

apparatus could produce 300 grams/hour. Thus, with scale up, this method can produce graphene 

nanosheets in the large quantities required for industrial application.  
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Table 1:  The molar ratio O2/C2H2, peak 
detonation temperature (Td) and pressure (Pd) 
for preparation of GNs.  

Molar  ratio 
O2/C2H2 

Td (K) 

(± 200 K) 

Pd (atm) 

(± 1.5 atm.) 

0.4 3800 13.4 

0.5 3900 13.1 

0.6 4200 13.8 

0.7 3600 14.3 

0.8 3800 14.3 
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Figure 1: XRD patterns of (a) graphite flakes (GF), and (b through f) the detonation carbon 

graphene nanosheets (GNs) prepared by detonation with different O2/C2H2 molar ratios. The 

magnified spectrum of (a) is shown in the inset. 
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Figure 2: TEM images of GNs prepared by detonation of different molar ratios of O2/C2H2 (a-e). 

(f) HRTEM image of GNs at 0.6 shows well the number of layers.   
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Figure 3: High magnification TEM images and SAED patterns of GNs prepared by detonation of 

different molar ratios of O2/C2H2 (a-f). The SAED patterns of regions marked with ‘A’, ‘B’, and 

‘C’ are shown in (b), (c) and (f), respectively.  Arrows indicate the monolayer GNs. 
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Figure 4: Nitrogen adsorption desorption isotherm of GNs prepared by detonation of O2/C2H2 of 

(a) 0.4 and (b) 0.8. 

 

 

 

 

 

 

 



18 

 

 

 

 

 

 

 

 

 

Figure 5: The specific surface area and yield of GNs powder. Lines are guides to the eye. Inset 

shows the bulk quantity ~ 7.4 g graphene powder collected after a detonation 
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Figure 6: DRIFTS-FTIR spectra of GNs prepared by detonation of different molar ratios of 

O2/C2H2. 
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Figure 7: XPS spectra of graphene powder prepared after detonation of O2/C2H2 of 0.4 (a) survey 
and (b) C 1s spectrum detail 
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Figure 8: Raman spectra of GF and pristine GNs prepared by detonation of different molar ratios 

of O2/C2H2. The inset shows the pellet form of GNs powder for Raman measurement.     
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Supporting Information 

 

1. Materials and Devices: Graphite flakes (99.99%, 10 mesh) were purchased from Alfa Aesar. 

Acetylene (C2H2, 98.0 %) and Oxygen (O2, 99.0 %) gas were procured from Linweld Lincoln. 

Data for determining detonation pressure and temperature were acquired by a data acquisition 

system (DAS), Model: NI USB-6210, National Instruments. A dynamic pressure sensor, Model: 

482A21, PCB Piezotronics was used for pressure measurements. Band-pass filters of 515 nm and 

680 nm wavelengths, and neutral density filter of optical density, OD = 3.0 were purchased from 

Edmund Optics and implemented into the two-color pyrometer. 

2. Synthesis of graphene nanosheets 

Graphene nanosheets (GNs) in the form of powder were prepared from the detonation of C2H2 in 

the presence of O2 in a 16.6 liter cylindrical aluminum chamber equipped with a quartz window 

of 8.5 cm  1.5 cm.  The molar ratios of O2/ C2H2 were 0.4, 0.5, 0.6, 0.7, and 0.8. For each ratio, 

the initial chamber pressure was 1 atmosphere. The detonation was carried out by a controlled 

power supply through a spark generator ignition system connected to an automotive spark plug 

fitted into the lid of the chamber. The successful detonation was confirmed by a mild ‘pop’ 

sound heard after the ignition system was turned on. The detonation pressure was measured with 

a data acquisition system (DAS) connected to a piezocrystal dynamic pressure sensor installed in 
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the lid of the chamber. The detonation temperature was determined by detecting the flash of light 

that was emitted from the hot soot through the quartz window during the detonation using a two-

color pyrometer. This pyrometer, which was also connected to the DAS, used two band-pass 

interference filters of 515 nm and 680 nm wavelengths. The temperature was calculated from the 

calibrated ratio of the intensities of the emitted light at these two wavelengths and Planck’s black 

body law under the reasonable assumption that the soot emissivities at these two closely spaced 

wavelengths are equal. The same process was followed for all molar ratios.  

In this type of controlled one-step hydrocarbon detonation method the initial aerosols, the 

carbon particles formed, are composed of nanometer size monomers. They quickly aggregate and 

then gel to form a Carbon Aerosol Gel (CAG).1 The CAG is found to have very low densities, 

high surface areas and other useful novel properties.1 After detonation, a dark black fluffy CAG 

layer on the bottom and some clumps here and there clinging to the walls and ceiling of the 

chamber was obtained. The formation of GNs was confirmed from the XRD, TEM and Raman 

measurements of CAG.  

 

Figure S1: Experimental set-up for hydrocarbon detonation to produce GNs. 
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3. Calibration of pyrometer for temperature measurement 

To measure the detonation temperature a two-color pyrometer was designed and built. The 

Wein’s approximation to the Planck’s equation for T < 6000K was used. We assumed that the 

ratio of emissive power of the carbon particles at two very close wavelengths λ1 and λ2 is unity. 

Then a working formula for the two-color pyrometer is 

 
6785

ln 0.25a
ex

T
C R




 
                           (1) 

where Ta is the actual temperature, C is the calibration constant and Rex is the experimental ratio 

of the signals of light from λ1 = 515 nm and λ2 = 680 nm. 

To determine the calibration constant, the standard terrestrial solar radiation spectrum, Air 

Mass 1.5 Global, published by American Society for Testing and Materials (ASTM E892-

87(1992) was used. With the calibration constant so determined, the measured temperature of the 

sun and tungsten filament lamps were 5600K and 3200K, respectively, with an uncertainty of ± 

200K. 

 

Fig.S2: Signals of intensity of light versus time for a typical detonation acquired by the 

pyrometer system and the corresponding temperature after the ignition system is turned on 
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Figure S2 presents the signal of light intensity versus time after the ignition system is turned on 

acquired through pyrometer equipped with 515 nm and 680 nm filters during the detonation 

which is completed in 40 ms. When the detonation flash light is higher than the background 

light, the intensity of the both signals recorded from two filters follow almost the same pattern of 

the variation with time and it continues for about 15 ms (see from 20 ms to 35 ms in Fig. S2). 

The temperature of detonation calculated from equation 1 is also plotted in Fig. S2. All the 

temperatures mentioned in Table 1 correspond to the time where the intensity of both the signals 

are maximum, and it is around 3900 ± 200 K at 26 ms for the case shown in Fig. S2. Note that in 

Fig. S2 the maximum temperature appears to be ca. 4200K but does not occur at the maximum 

intensity. This discrepancy is due to the finite experimental error. Temperatures lower than ca. 

2000 K could not be measured accurately with the present pyrometer design. Nevertheless, it is 

apparent that the rapid cooling from the peak temperature occurs in ca.6 ms. 
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Figure S3: TEM images of GNs prepared by detonation of different molar ratio ofO2/C2H2 (a-f). 
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Figure S4: (a) FESEM image of GNs powder prepared by detonation of O2/C2H2 of 0.8 and (b) magnified 

image of (a) 

 

Figure S5: XPS spectra of graphene powder prepared after detonation of O2/C2H2 of 0.4 (a) 

survey and (b) C 1s and O2/C2H2 of 0.8 (a) survey and (b) C 1s. 
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Figure S6: Expanded view of 2D band in Raman spectra of GF and pristine GNs prepared by 

detonation of different molar ratio of O2/C2H2.  
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