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Abstract 

Solar energy driven catalytic systems have gained popularity in environmental remediation 

recently. Various photocatalytic systems have been reported in this regard and most of the 

photocatalysts are based on well-known semiconducting material, Titanium Dioxide, while some 

are based on other materials such as Silicon Dioxide and various Zeolites. However, in titania 

based photocatalysts, titania is actively involved in the catalytic mechanism by absorbing light 

and generating exitons. Because of this vast popularity of titania in the field of photocatalysis it 

is believed that photocatalysis mainly occurs via non-localized mechanisms and semiconductors 

are extremely important.  

Even though it is still rare, photocatalysis could be localized and possible without use of a 

semiconductor as well. Thus, to support localized photocatalytic systems, and to compare the 

activity to titania based systems, degradation of organic air pollutants by nanostructured silica, 

titania and mixed silica titania systems were studied. New materials were prepared using two 

different approaches, precipitation technique (xerogel) and aerogel preparation technique.  

The prepared xerogel samples were doped with both metal (silver) and non-metals (carbon and 

sulfur) and aerogel samples were loaded with Chromium, Cobalt and Vanadium separately, in 

order to achieve visible light photocatalytic activity. 

Characterization studies of the materials were carried out using Nova BET analysis, DR UV-vis 

spectrometry, powder X-ray diffraction, X-ray photoelectron Spectroscopy, FT-IR spectroscopy, 

Transmission Electron Microscopy, etc. Kinetics of the catalytic activities was studied using a 

Shimadzu GCMS-QP 5000 instrument using a closed glass reactor. All the experiments were 

carried out in gaseous phase using acetaldehyde as the model pollutant. 

Kinetic results suggest that chromium doped silica systems are good UV and visible light active 

photocatalysts. This is a good example for a localized photocatalytic activity. In contrast, our 

xerogel system shows comparatively high visible light photocatalytic activity for the titania 

based system, showing the importance of non-localized nature of photocatalysis. The Cobalt 

doped silica system shows interesting dark catalytic activity towards acetaldehyde and several 

other pollutants. Thus, in summary, based on the different activities we observed during our 

studies these materials could be successfully used to improve the quality of both indoor and 

outdoor air. 
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titania and mixed silica titania systems were studied. New materials were prepared using two 

different approaches, precipitation technique (xerogel) and aerogel preparation technique.  

The prepared xerogel samples were doped with both metal (silver) and non-metals (carbon and 

sulfur) while aerogel samples were loaded with Chromium, Cobalt and Vanadium separately, in 

order to achieve visible light photocatalytic activity. 

Characterization studies of the materials were carried out using Nova BET analysis, DR UV-vis 

spectrometry, powder X-ray diffraction, X-ray photoelectron Spectroscopy, FT-IR spectroscopy, 

Transmission Electron Microscopy, etc. Kinetics of the catalytic activities was studied using a 

Shimadzu GCMS-QP 5000 instrument using a closed glass reactor. All the experiments were 

carried out in gaseous phase using acetaldehyde as the model pollutant. 

Kinetic results suggest that chromium loaded silica systems are good UV and visible light active 

photocatalysts. This is a good example for a localized photocatalytic activity. In contrast, our 

xerogel system shows comparatively high visible light photocatalytic activity for the titania 

based system, showing the importance of non-localized nature of photocatalysis. The Cobalt 
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Chapter 1 -  Introduction 

  Environmental Pollution 1.1.

Over the last several decades there has been great concern about environmental pollution due to 

the fact that it is one of the primary causes for various health problems as well as for possible 

changes in the global climate. Generally, environmental pollution can be defined as 

contamination of water, land and air due to manmade waste and can be divided in to three major 

groups; water pollution, soil pollution and air pollution. The world has faced a large number of 

global and local problems due to the bad condition of the environment created in the last several 

decades. Some of the problems that have gained the attention of many people are ozone layer 

depletion, global warming and climate changes. Water pollution and soil pollution usually occurs 

by similar pollutants due to the close contact of these two environments. Some of the common 

pollutants in soil and water are heavy metal containing chemicals from industrial effluents, 

herbicides and pesticides from the agricultural industry. From these three major groups of 

environmental pollution, air pollution has received the attention of many researchers due to the 

seriousness of the impact on global climate change, acid rain, smog, and human and animal 

health.[1] 

Air pollution can be sub grouped in to two main categories; as indoor and outdoor. Both 

categories are equally important as they can create very unhealthy conditions to humans as well 

as to animals and plants.[1] Outdoor air pollution has gained the attention of many people due to 

the global effects that it cause. For example depletion of stratospheric ozone and global warming 

are widely discussed global effects that brought many secondary problems to the earth. On the 

other hand, indoor air pollution has its own risks to human health though it has received very 

little attention compared to outdoor air pollution. Usually indoor air pollution occurs due to bad 

ventilation and water systems. The main indoor air pollutants are radon, household chemicals, 

biological contaminants, carbon monoxide, pesticides, asbestos and lead, all of which are 

released by various indoor activities or house hold products.[1,2] Compounds which cause 

imbalance in the atmosphere are known as air pollutants  and can be divided in to two main 

groups as primary air pollutants and secondary air pollutants. Primary air pollutant is a pollutant 

emitted directly from a source, and a secondary air pollutant is not directly emitted into the 

environment, but forms when other pollutants react in the atmosphere. For example tropospheric 
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ozone is a secondary pollutant produced when hydrocarbons and nitrogen oxides react in the 

presence of sunlight. Further, according to EPA, the most common air pollutants are Ozone, 

Particulate matter, Carbon monoxide, Nitrogen Oxides, Sulfur dioxides and lead. 

Because of the bad effects of all the forms of environmental pollution, it is important to 

investigate ways to reduce or eliminate it. The best way to address these issues is to find 

solutions to already emitted pollutants from the environment and to avoid further release of 

contaminants to outdoor environment. Finding novel eco-friendly techniques as well as green 

technology is important to open up new ways to minimize the environmental pollution.  

  Solar Energy 1.2.

Petroleum is the primary energy source of the world to date. Ever growing technologies and 

industries urge for higher energy demand that is impossible to support with a non-renewable 

source like petroleum. On the other hand, petroleum products usually undergo incomplete 

combustion resulting harmful air pollutants such as carbon monoxide, carbon dioxide, and 

various hydrocarbons. Therefore, clean renewable energy is needed, such as solar energy, wind, 

geothermal, etc. Out of all these renewable energy sources, solar energy has the most potential. 

The most important factor about solar energy is that it does not emit any harmful atmospheric 

pollutants. On the other hand solar energy is important as it is a renewable energy source that can 

support the increasing demand of energy. Solar energy can be used to heat, or to produce 

electricity. It can also be converted into chemical energy or can be used to catalyze important 

reactions. In fact, it has been calculated that the amount of solar energy arriving at the earth’s 

surface in a minute is sufficient to meet the energy demand of the world for a year.  

But, the lack of efficient solar energy harvesting and storing methods is one of the main 

drawbacks that we face today. The maximum electric efficiency attained so far from a solar cell 

is 43% with multi-junction concentrators. Moreover, high production cost and the higher surface 

areas required for current solar cells limit their applications in commercial scale. Thus it is very 

important to discover new cost effective and efficient solar harvesting systems and proper 

storage systems that help support the increasing energy demand of the world. To meet these 

energy demands there are thousands of researchers around the globe experimenting on efficient 

methods to harvest and store solar energy.[3] 
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  Photocatalysis 1.3.

Photocatalysis is one of the very successful and active areas of research that have provided 

important ways to harvest readily available solar energy. Usually, any chemical reaction requires 

a certain amount of activation energy to initiate the reaction. In normal chemical reactions the 

activation energy will usually be supplied by simple methods such as heating, mechanical 

stirring, etc. But, in photochemical reactions, light energy is used. Upon exposure to certain 

wavelengths of light, photocatalytic material can be used to catalyze specific chemical reactions 

based on the oxidation and reduction potentials of the photo generated charge carriers. Thus, in 

photocatalytic reactions, the catalytic material plays an intermediate role between the reactant 

and the light and promotes desired chemical reactions. There are various steps occurring in a 

photocatalytic reaction process. The first step is photon absorption to generate electrons and 

holes with sufficient potentials for the catalytic process. Secondly, charge separation and 

migration to surface reaction sites. Then suppression of recombination and finally, construction 

of surface reaction sites for the chemical reaction to be catalyzed.[4] According to the literature, 

various photocatalytic materials have been employed to drive water splitting to produce 

hydrogen and oxygen gases, mineralizing harmful organic pollutants, as well as to remove 

organic dye molecules from industrial effluents. Even though there are many that have been 

reported, the number of materials that have become successful on industrial scale is very 

limited.[5] 

  Factors Affecting Photocatalytic Activity 1.4.

There are various factors that determine the efficiency of a photocatalyst. Those can be listed as, 

particle size, crystal structure, crystallinity and the nature of the boundaries of catalysts, 

efficiency of charge separation, energy range of the solar spectrum suitable for the excitation of 

the material, Optimum intensity of the light photons, environment of active sites, etc.  

1.4.1. Effects of particle nature on photocatalytic activity 

The crystal structure, crystallinity and particle size are important factors that determine the 

efficiency of a photocatalytic material. These factors are strongly related to charge separation, 

migration to surface and the charge recombination processes of the photocatalytic process. 

According to Kudo, A. and co-workers, photo generated electrons and holes tend to recombine in 

defect sites resulting lower efficiency photocatalytic materials. But, if a photocatalytic material 
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has higher crystallinity the amount of defects sites are low and the photocatalytic activity 

becomes efficient. On the other hand, if the size of the particles is smaller they tend to result in 

higher active photocatalytic materials due to higher surface area available and less number of 

defects sites. Moreover, when particles become smaller, the charge carrier migration to the 

surface of the catalyst is fast and less chance for recombination.[4] 

1.4.2. Positions of the conduction and valance bands of the semiconductor 

material 

Various semiconducting materials have unique energy positions for their conduction and valance 

energy bands and energy gaps. Position of these energy levels usually determines the oxidation 

and reduction ability of generated charge carriers while the energy gap determines the wave 

length of the photon required to activate the photocatalytic material. It is important to know the 

redox potential of the chemical reaction which planned to catalyze prior selecting the suitable 

semiconducting material for the photocatalysis.[4] 

1.4.3. Effect of surface area and the nature of the surface on photocatalysis 

The nature of the surface of the photocatalytic material is an important factor which determines 

the efficiency and the selectivity of a photocatalytic process. Since photo generated charge 

carriers migrate to the surface of the photocatalytic materials in order to react with reactants on 

the surface, the nature of the surface plays a crucial role when determining the efficiency of the 

photocatalyst. Moreover, the nature of the surface of the photocatalyst will determine the nature 

of the reactant compound being absorbed on to the surface. Surface acidity is an important factor 

that determines the specificity, efficiency and the mechanism of action of a photocatalytic 

material. For example, acidity of titanium dioxide based materials is strongly related to the 

amount of surface hydroxyl groups present on the surface and these groups play a major role in 

trapping photo generated holes and thereby decrease the recombination of electron hole pairs, 

which in turn increase the quantum efficiency of the photocatalyst.[4,6] 

Usually, during the preparation of photocatalytic materials the energy levels of the conduction 

and valance bands of the materials will be modified or the chemical environment of the active 

site will be changed by doping with suitable doping agents. These changes to photocatalytic 

systems usually enhance the light absorption, electron hole pair generation and the overall 

activity.[6] Surface Area of a material is also playing a major role when deciding the 
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photocatalytic activity of a material. Usually, most of the photocatalytic processes takes place in 

the surface of the material. Thus, higher surface area materials will hold larger number of 

reactive catalytic sites allowing more reactant absorption and thereby enhanced reactivity.[6] 

  Titanium Dioxide (Titania/TiO2) Based Photocatalysts 1.5.

Most of the successful photocatalytic materials that have been reported consist of a supporting 

base material. Usually compounds such as zeolite, titania and silica are popular as successful 

base materials due to their high stability under high temperature and pressure conditions, low 

toxicity, low cost and the ability to obtain various physico chemical properties simply by 

changing particle dimensions. Usually, it is believed that the supporting material facilitates the 

catalytic activity of the catalytic site by enhancing charged carrier separation, providing reduced 

electron hole recombination and facilitating charge transfer to an adsorbed species.[7] 

Titanium dioxide photocatalysis is the most studied and well understood photocatalytic system. 

Thus, studying the mechanistic details of how titanium dioxide behaves is important. Titanium 

dioxide, also known as Titania, is a white colored compound that is widely used as a 

photocatalyst, catalytic support, sensor material, and hydrogen adsorber. It is a semiconductor 

with a band gap of 3.2 eV, and has been shown to promote mineralization of organic pollutants, 

water splitting, and carbon dioxide reduction upon exposure to light. Titanium dioxide occurs in 

nature in three well-known mineral forms known as anatase, rutile and brookite. Among these 

mineral forms, anatase typically exhibits higher photocatalytic activity than other two forms but 

in some cases it has been reported that even higher photocatalytic activity is possible with 

precise mixtures of both anatase and rutile. One such example is commercially available Degussa 

P25 TiO2, which consist of 80% anatase phase and 20% rutile phase.[6,7] Because of the relatively 

wide band gap of titania (3.2 eV), it absorbs light corresponding to wavelengths shorter than 388 

nm, which is only 3-4% of the solar energy that reaches the earth.[8] Thus, in principle, 

photocatalytic activity should be enhanced by adjusting the band gap toward visible light 

energies by doping, since visible light is readily available in the solar spectrum. Doping has been 

carried out in earlier research using various methods and materials. Common doping materials 

used have been noble metals, transition metal oxides, organic dye molecules as well as anionic 

compounds.[8] 



6 

 

Since Titania is a semiconducting pigment, its valence electrons can be promoted into the 

conduction band, resulting in the formation of an electron-hole pair upon irradiation with suitable 

light. But, the created electron hole pair needs to be spatially separated in order to allow the 

formed electron hole pair to undergo chemical reactions. In titania, charge carrier recombination 

is usually avoided by immobilizing the created excited electron or hole or both in the trap states 

available in between the conduction and valance bands.[9] Formed excited electrons usually have 

a higher effective mass compared to the holes, and moderate reduction potential. So, electrons 

tend to remain in their free state or in some cases get trapped at the surface. On the other hand, 

holes usually have high oxidation potential and get trapped at the semiconductor surface. Usually 

a light excited hole can follow two paths. The holes either oxidize the hydroxyl groups available 

on the surface of titania to produce hydroxyl radicals or oxidize lattice oxygen atoms from -2 to 

0 valence state to create oxygen vacancies in titania. Therefore, in supported photocatalytic 

materials titania plays two major roles by itself providing a support to the system as well as 

providing active catalytic sites. Thus, the entire material is involved in photocatalysis, making 

the photocatalysis process non-localized.[10] 

  Insulating Materials Based Systems for Photocatalysis 1.6.

For many years titania has been recognized as the most useful photocatalyst and various types of 

applications have been developed based on it. But, recent research has focused more on 

photocatalytic systems other than titania. Some experiments of this kind have focused on various 

types of semiconductors, while some dealt with the use of different insulating materials.[11] 

Compared to the reported titania based photocatalytic systems the number of insulator based 

materials are less. Silica and Zeolite based materials have been extensively studied in this regard 

and have successfully used as good photocatalytic materials. Unlike semiconducting titania 

based materials, insulators consist of a very large band gap that is too large to generate excited 

electron hole pairs simply using light photons. In most of the reported literature, photoactive sites 

of insulator based photocatalysis occur due to the presence of highly dispersed metal oxide 

species of quantum size. According to the findings of Yoshida and coworkers it is possible to 

obtain photocatalytic abilities because of the presence of surface quantum defects on silica 

surfaces of silica based photocatalytic systems.[11] More studies have to be carried out in order to 

understand the photocatalytic mechanism associated with silica based materials. 
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  Transition Metal Ion Doping to Obtain Visible Light Photocatalysis 1.7.

It is important to investigate new materials based on titania and silica in order to enhance 

activities in the visible light range. Therefore, new doping agents as well as new methods of 

preparation must be studied in order to prepare commercially usable visible light photocatalysts 

by introducing intermediate energy levels to the conduction and valance bands. Transition metals 

and metal oxides have been actively used in the past to introduce light absorption in the visible 

range and have been moderately successful as photocatalysts. Transition metals are very good 

candidates to absorb in the visible range of the spectrum, as orbital energy transfer usually lies in 

the visible range.  Thus, more careful research in the area of transition metal ions doped titania 

and silica could result in promising visible light photocatalytic materials to decompose harmful 

environment pollutants. 

  Binary Oxide Systems for Efficient Photocatalysis 1.8.

Another important approach to enhance the efficiency of a photocatalytic material is use of 

binary metal oxide systems. Interestingly, there are many reports that discuss enhanced activity 

of titania when it is associated with another metal oxide such as silica, zirconia, etc.[4] Therefore, 

in most of the cases the binary material was used as a solid acid or as a supporting material to 

titania. Examples for such metal oxide combinations reported are Al2O3/TiO2, ZrO2/TiO2, 

CdS/TiO2, CdSe/TiO2, ZnO/TiO2, SnO2/TiO2, PbS/TiO2, WO3/TiO2 and SiO2/TiO2. The mixed 

oxide system of silicon dioxide with titanium dioxide has been widely studied compared to other 

reported systems because of the promising properties of silica. Silica materials are nontoxic and 

able to provide high surface area to the photocatalyst, acting as a carrier of titania and helps 

produce suitable pore structures to favor photocatalytic activity.[10] Moreover, it is believed that 

the increased photocatalytic efficiency arises due to the improved adsorption of reactants and the 

concentration of the reactants near the active centers of mixed silica/titania catalysts. 

 

Moreover, according to the article by Ping Cheng and coworkers the photocatalytic efficiency of 

titania based materials can be enhanced by introducing secondary materials such as silica.[11] 

Research in this area of binary oxides doped with transition metals is rare. Thus, it is very 

important to study the effect of various levels of binary oxide materials towards visible light 

photocatalytic activity. Experiments carried out in this area will lead us to understand the 
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changes in the active sites of the titania catalysts due to the introduction of secondary oxide 

species and may complement the findings of Xianzhi Fu and coworkers towards binary oxide 

photocatalytic systems.[6] 

On the other hand, most of the catalytic systems reported in the past are primarily based on some 

kind of a semiconducting base material. It is believed that semiconducting materials are required 

to obtain good photocatalytic activities due to the ability of semiconductors to create reactive 

electron hole pairs upon irradiation of UV or Visible light. But, whether the photocatalysis can 

be obtained without using semiconducting base materials is an important question that still 

remains unanswered. Thus, it is very important to synthesize new insulators based materials such 

as silica doped with suitable transition metal ions in order to study the feasibility of visible light 

photocatalytic activities. Moreover, this will benefit the area of photo-catalysis because visible 

light active transition metal doped insulator compounds will open up a new area of 

photocatalysis where photocatalytic reaction is localized to certain active sites of the system. 
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Chapter 2 -  Comparison of Photocatalytic Activities of Novel Silica 

and Titania Based Materials co-doped with both Metals and 

Non-Metals 

  Introduction 2.1.

The interest of titania based photocatalytic studies gained attention after its first discovery of 

photocatalytic water splitting by Fujishima, Akira and coworkers.[1,2] They introduced the 

photocatalytic activity of titanium dioxide under UV light irradiation. Since then, a large number 

of studies have been carried out in order to improve titania in various ways to harvest solar 

energy efficiently. Preparation of various sizes, various shapes, as well as various preparation 

methods have been employed to enhance properties that affect the photocatalytic ability.[3,4,5] 

Titania, because of its very large band gap, absorbs the UV region of solar spectrum, which is 

about 8% of the whole solar spectrum. Thus, many attempts have been made to modify titania, 

so that it absorb in the visible region of the solar spectrum to achieve efficient photocatalysis. 

Doping of titania with various types of materials have been carried out in order to prepare new 

titania based materials to harvest visible wave lengths. Various types of transition metals as well 

as non-metals, such as carbon, nitrogen, and sulfur have been successfully used in this regard. 

Use of titania as a combination of mixed oxides is another approach to enhance the visible light 

activity. Silica doped titania and various zeolites mixed with titania systems are good examples 

for such systems. [6-9] 

Here in, we discuss the preparation and activity comparison of both metal and non-metal co 

doped titania, silica and mixed titania silica systems for degradation of  organic pollutants under 

UV and visible light irradiation.  

  Experimental Methods 2.2.

2.2.1. Preparation of Ag, (C, S) doped titania and silica photocatalysts  

Silver, Carbon and Sulfur co-doped titania and silica photocatalysts were prepared using 

Ti[OCH(CH3)2]4 and TEOS as the starting materials for the titania and silica based systems 

respectively in ethanol medium. First, an amount of 0.124 mol NH4SCN was dissolved in 200 

mL of C2H5OH. A 0.031 mol of either Ti[OCH(CH3)2]4 or TEOS or a mixture of both, 



11 

 

depending on the desired material to be synthesized, was added under vigorous stirring. Then, 

the desired amount of AgNO3 (Ag=0, 1, 3, and 5 mol%) was dissolved in 0.125 mol of deionized 

water and 1 ml of NH4OH solution. This mixture was added drop wise into the starting base 

material-ammonium thiocyanate solution and stirred for 5 min at room temperature; the solvent 

was then evaporated in a rotavap. The samples were dried overnight and calcined at 500 oC for 

two hours in air. 

2.2.2. Characterization studies 

As prepared samples were characterized using various techniques. Brunauer-Emmet-Teller 

(BET) effective surface area and pore size distribution of the samples were tested using a 

Quantachrome NOVA 1200 gas absorption/desorption analyzer after degassing the samples at 

150 oC for two hours. Scintag-XDS-2000 spectrometer with Cu K radiation with applied 

voltage of 40 kV and current of 40 mA was used to obtain powder XRD analysis of the samples 

to determine the crystalline nature. Samples were scanned 2θ from 0o to 75o with a scan rate of 

1o per minute. Diffuse reflectance UV-Visible spectra were measured at room temperature in air 

on a Cary 500 scan UV-Vis-NIR photometer over the range from 200 to 800 nm. 

Polytetrafluoroethylene (PTFE) powder of 1 µm particle size was taken as a reference material 

for diffuse reflectance studies.  

2.2.3. Kinetic studies of photocatalysis 

The as prepared Ag/(C-S) TiO2, Ag/(C-S) SiO2, and Ag/(C-S) TiO2-SiO2 mixed systems were 

tested for photocatalytic degradation of acetaldehyde under UV light and visible light separately. 

The rate of decomposition of acetaldehyde and production of carbon dioxide (CO2) was followed 

using a glass reactor with a quartz window and Shimadzu GCMS-QP 5000 instrument. 

Acetaldehyde degradation was studied as a model pollutant and the temperature of the glass 

reactor was maintained at 25 oC by circulating water in the outer jacket of the reactor system 

during all the kinetic experiments. For all the kinetic studies, 0.10 g of the prepared sample was 

uniformly placed on the special glass chamber allowing UV or visible light to directly contact 

the prepared photocatalytic material. Then the air filled system was sealed and 0.10 ml of liquid 

acetaldehyde was introduced to the bottom of the reactor to avoid any direct contact of liquid 

acetaldehyde and the photocatalytic material. During the experiment acetaldehyde slowly gets 

evaporated due to its near room temperature boiling point, and gaseous acetaldehyde gets 
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absorbed on to the reaction sites of the catalyst. Photocatalysts were then illuminated with UV or 

visible light using a 1000 w xenon lamp. Glass filters was used to obtain visible region 

wavelengths ( >420 nm) and UV region (320 nm – 400 nm) by cutting off unnecessary light. The 

progress of any reaction was detected by injecting 35 µl of gas samples from the sealed reactor to 

the Shimadzu GCMS-QP 5000 instrument every 20 minutes. All the kinetics experiments were 

carried out at least two times in order to confirm the accuracy of the results and were compared 

with commercially available titania P25 and prepared blank samples, where no dopant elements 

were present. 

  Results and Discussion 2.3.

2.3.1. Structure of the photocatalytic system 

BET surface area values obtained for as prepared samples are given in the Table 1 below. 

According to the obtained results, titania doped samples show the highest surface area values 

while silica samples show very low values giving somewhat different from what is reported in 

most of the literature. Even though silicon dioxide (SiO2/Silica) based samples in most of the 

cases was used to take advantage of their higher surface area, there are few reports that talk about 

lower surface area silica as well. In reality, the surface area of silica based materials depends on 

the method of preparation and the materials used for the preparation. Further, it appears 

according to the results reported in the table 2.1, doped silver causes sintering of SiO2 and mixed 

systems.[10] 

Table 2.1: BET surface area values of as prepared photocatalysts  

Ratio of 

TiO2: SiO2 

Surface Area Data (m2g-1) 

1% Ag 3% Ag 5% Ag 0% Ag 

1:0 60 50 55 44 

1:1 10 9 11 15 

0:1 2.5 3.5 21 25 

 

  



13 

 

In the current studies photocatalyst were prepared using a simple precipitation method by co-

hydrolyzing the basic lattice material (Silica, Titania or the mixture of both) with the 

corresponding doping elements using base catalyzed hydrolysis.  The precipitation technique 

results in xerogels and helps prepare materials more cost-effectively and less time consuming 

methods to obtain higher yielding photocatalysts. Hydrolysis of both titania and silica precursors 

can be generally explained using well-known sol-gel process. In solution, respective alkoxides 

get hydrolyzed and condensed to generate new polymeric materials composed of M   O   M (M 

represent Ti or Si) bonds according to the following reaction schemes.[11]  

 M   OR   H2O                                     M   OH      ROH (1)    

 M   OR   HO   M                                      M -O- M + ROH  (2) 

 M   OH   HO   M                                        M   O   M    H2O (3) 

So, after complete hydrolyzation of the sol-gel prepared material solvent drying using a rotavap 

results in collapse of the formed network structure leaving lower surface area materials. 

Compared to the well-known aerogel synthesis process there is no need of higher temperature 

and pressure conditions during this synthesis method which makes the process very cost 

efficient.[12]  

Calcination of the catalyst at 500 oC for two hours is important due to several reasons. 

Generation of photocatalytically active crystalline phases mainly takes place and removal of left 

over solvents from the photocatalytic structure, generation of right crystalline state and the 

removal of unwanted organic compounds occur during this step.  

The powder XRD patterns obtained for the prepared photocatalysts are given in Figures 2.1-2.3 

with corresponding powder XRD patterns obtained after catalytic studies under UV and visible 

light respectively. Figure 2.1 shows the powder XRD pattern of the 5%Ag (C,S) doped titania 

based system prepared in our lab. The XRD pattern clearly resembles the peak pattern of Anatase 

crystalline titania present in the system. Additionally, three unique peaks, that are not usually 

present in XRD peaks of anatase titania, can be clearly identified in the region of 2θ value, 28 to 

34, which is according to reported literature belongs to crystalline silver sulfate species. Thus, it 

Esterification 

Alcohol Condensation 
Alcoholysis 

Water Condensation 
Hydrolysis 

Hydrolysis 

Hydrolysis 
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is clear from powder XRD characterization studies, doped sulfur exist in the form of sulfate in 

these systems.[13,14]      

Figure 2.1: Powder XRD patterns obtained for the (a) 5% Ag/(C,S) TiO2 photocatalyst, (b) 

the catalyst after 140 minutes in acetaldehyde environment under UV light, (c) The catalyst 

after 140 minutes in acetaldehyde environment under visible light. 
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Figure 2.2: Powder XRD patterns obtained for the (a) 5% Ag/(C,S) doped SiO2 

photocatalyst, (b) the catalyst after 140 minutes in acetaldehyde environment under UV 

light, (c) The catalyst after 140 minutes in acetaldehyde environment under visible light. 

 
The powder XRD pattern obtained for the silica based photocatalytic systems (Figure 2.2) show 
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The XRD pattern of the mixed TiO2 and SiO2 system also show peak patterns for elemental 

silver, and silver sulfate species present in the system. Further, it shows peak patterns for both 

anatase titania and amorphous silica present in the system.  

Figures 2.1-2.3 include powder XRD patterns obtained for all three types of samples after UV 

and Visible light photocatalytic studies. In all the XRD patterns no significant difference could 

be observed before and after the catalytic processes which is a clear indication of the stability of 

the catalyst during its photocatalytic activities. 

 

Figure 2.3: Powder XRD patterns obtained for the (a) 5% Ag/(C,S) doped TiO2-SiO2 

photocatalyst, (b) the catalyst after 140 minutes in acetaldehyde environment under UV 

light, (c) The catalyst after 140 minutes in acetaldehyde environment under visible light. 
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According to the obtained spectra all the samples show red shifts of the absorption compared to 

that of commercially available P25 which is expected as a result of doped silver and non-metals. 

But, the light absorption in the visible region of the spectrum varies in the order of TiO2 << 

mixed SiO2-TiO2  SiO2.  

Figure 2.4: Diffuse reflectance UV-vis studies of as prepared photocatalysts 

 

2.3.2.  Kinetics of photocatalytic degradation 

Photocatalytic ability of as prepared samples was tested using acetaldehyde as a model pollutant. 

Acetaldehyde is a common air pollutant that is usually emitted into the air due to the smoke 

produced from combustion in automobiles and tobacco smoke. Acetaldehyde is a main pollutant 

mostly in industrial and ambient environments due to the release of acetaldehyde as a byproduct 

of thermal degradation of various polymers. Therefore, study of effective ways to eliminate 

acetaldehyde is important. Further, acetaldehyde degradation is mostly an oxidation process; 

there is a high chance for the catalyst which is active towards acetaldehyde to be active towards 

200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
b

s
o

rb
a

n
c
e

Wavelength (nm)

  1% Ag (C,S) TiO
2

  1% Ag (C,S) TiO
2
SiO

2
 Mixed

  1% Ag (C,S) SiO
2



18 

 

oxidation of other complex pollutants as well. In the presence of oxygen complete oxidation of 

acetaldehyde takes place according to the reaction scheme 4 below and resulting in carbon 

dioxide and water as products.  

   2 CH3CHO   +   5 O2                         4 CO 2    +   4 H2O (4) 

Even though a complete oxidation is expected, several side reactions can also take place due to 

the polymerization and other reactions of acetaldehyde. Acetic acid is one of the main 

byproducts that usually results in oxidation studies of acetaldehyde. 

    CH3CHO                                CH 3COOH
[O]

   (5) 

Moreover, there are some reports of polymerization of acetaldehyde to generate higher molecular 

weight compounds such as Paraldehyde, 2,4,6-trimethyl-1,3,5-trioxane and Metaldehyde, the 

tetramer of the acetaldehyde. But, these polymers tend to form in aged acetaldehyde samples and 

usually do not affect the quality of kinetic results as GCMS is an excellent technique to separate 

and distinguish compounds with different molecular weights.[15-17]    
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Figure 2.5 shows photocatalytic reaction progress of as prepared 1%Ag(C,S) doped systems 

under UV and visible light irradiations. All three samples show good acetaldehyde degradation 

ability while the mixed sample shows the highest photocatalytic oxidation of acetaldehyde 

compared to the systems which have titania and silica as the main lattice structure. According to 

recent studies carried out by Qifeng Chen and co-workers[18], introduction of silica into titania 

matrices results in formation of unbalanced positive charges due to the replacement of some of 

(6) 

(7) 
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the Ti4+ ions. These unbalanced positive charges in the system adsorb more hydroxyl groups 

onto their surface increasing the number of reactive sites present on the surface.[18] The number 

of reactive sites are important as they usually play a major role in adsorption and the conversion 

of the pollutant into CO2. This could be a major reason for the enhanced photocatalytic activity 

observed for our mixed system under UV light. The catalytic rates observed for the titania based 

and silica based systems showed reasonable results as semiconducting titania is showing higher 

photocatalytic efficiency compared to that of insulating silica based system. Titania, with its 3.2 

eV band gap successfully absorbs radiation in the UV region of the solar spectrum making it is 

an ideal candidate under UV light compared to silica. Thus, the reactivity differences observed 

can be easily understood. The photocatalytic activities obtained under visible light (Figure 2.5b) 

does not follow the same order as under UV light. Above all, the photocatalytic activity of all the 

samples is high compared to that of visible light due to the higher energy of UV light. But, the 

order of reactivity is also different from UV light studies. The titania doped system showed 

significantly high photocatalytic activity compared to the other two systems. The results obtained 

with the 5% Ag loading samples show similar order as 1% Ag doped samples as indicated in the 

figure 2.6a and 2.6b.  
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Figure 2.5: Photocatalytic acetaldehyde degradation studies of as prepared 1%Ag(C,S) 

doped TiO2, 1%Ag(C,S) doped SiO2 and 1%Ag(C,S) doped mixed systems (a) under UV 

light (b) under visible light irradiation.  

 

0 20 40 60 80 100 120 140

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 1% Ag (C,S) TiO
2
SiO

2 
Mixed

 1% Ag (C,S) TiO
2

 1% Ag (C,S) SiO
2

UV light onDark

A
m

o
u
n
t 

o
f 

C
O

2
 (

m
m

o
l)

Time (min)

(a)



21 

 

 
  

0 20 40 60 80 100 120 140

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

Visible light onDark

A
m

o
u

n
t 

o
f 
C

O
2
 (

m
m

o
l)

Time (min)

 1% Ag (C,S) SiO
2

 1% Ag (C,S) TiO
2
SiO

2
Mixed

 1% Ag (C,S) TiO
2

(b)



22 

 

Figure 2.6: Photocatalytic acetaldehyde degradation studies of as prepared 5%Ag(C,S) 

doped TiO2, 5%Ag(C,S) doped SiO2 and 5%Ag(C,S) doped mixed systems (a) under UV 

light (b) under visible light irradiation. 
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Photocatalytic activity of titania based systems with different amounts of silver loadings were 

plotted together in order to study the effect of silver loading towards oxidation of acetaldehyde. 

The results are shown in figure 2.7 comparing catalytic performances separately under UV and 

visible light irradiations. According to the results shown in the figure it is clear that the 

photocatalytic performance is highest for the 1%Ag doped sample for both under UV and visible 

irradiations. According to the previous studies carried out in our laboratory the presence of silver 

is essential to obtain the photocatalytic activity. Thus, in line with earlier studies 1% silver is the 

optimum amount of silver that is needed to be present in the system to achieve good 

photocatalytic activities[13] 
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Figure 2.7: Photocatalytic performance of 1%Ag(C,S) TiO2, 3%Ag(C,S) TiO2, and 

5%Ag(C,S) TiO2, (a) under UV light (b) under visible light irradiation. 
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  Mechanism/s of Photocatalytic Activity 2.4.

Photocatalytic mechanism of titania based systems are well studied and understood. But, when 

titania is doped with various types of metal and non-metal dopants, the mechanism of 

photocatalytic activity can also change based on the alignment of the new energy levels 

introduced by the dopant atoms.[19-21] Usually, non-metal doping, especially carbon and sulfur in 

our system, into titania introduce energy bands in the band gap of titania closer to the valance 

band, resulting in decrease in the energy gap creating a doped system visible light active.[22,23] 

On the other hand, there are literature reports  about the ability of sulfur to increase surface 

acidity of titania there by enhancing pollutant absorption.[24] Generally, upon exposure to visible 

region of light, excited electron and hole pairs will be created from doped titania photocatalysts 

according to the reaction scheme 8 below. 

TiO2 + hv                     e−
(CB) + h+

(VB)      (8) 
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According to our powder XRD results it is clear that the 1% Ag(C,S) TiO2 photocatalyst consists 

of both ionic and elemental silver. Elemental silver is known to enhance photocatalytic activity 

of titania by introducing a new Fermi energy level just below the conduction band of titania 

facilitating generated electron hole pairs while doped Ag1+ ions enhance the photocatalytic 

activity by trapping excited electrons.[25,26] The observed decrease in photocatalytic activity with 

higher loading of silver could occur due to its activity as an electron hole recombination center 

and acting as a barrier to the incoming radiation and the pollutant.[25,27]    

  Summary 2.5.

Novel photocatalytic systems based on silica and titania co-doped with both metals and 

nonmetals were successfully studied. Characterization studies revealed that these samples consist 

of both ionic and metallic silver (Ag and Ag+1) and sulfur in the form of sulfate. Interesting 

photocatalytic activities were observed under both UV and visible light conditions. Mixed silica 

and titania, and titania based samples showed nearly similar and the high activities under UV 

light and titania based photocatalysts showed the highest activity under visible light. Silica based 

systems did not show any interesting acetaldehyde degradations. Even though the surface areas 

of these materials are low, the employed preparation technique allows low cost and efficient 

photocatalyst preparation.        
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Chapter 3 -  Comparison of Catalytic Activities of Nanostructured 

Silica and Titania Based Materials Loaded with Various 

Transition Metal Ions 

  Introduction 3.1.

Transition metal ions have been widely used in photocatalytic studies because of many favorable 

properties.[1] Most of the transition metal ions absorb in the visible region of the spectrum 

making them ideal candidates to use when designing novel photocatalytic materials.  Further, 

various properties such as oxidation/reduction abilities can be changed or tuned simply by 

changing the transition metal used or changing the oxidation state of them. Transition metals and 

their respective ionic species show various properties depending on the number of d electrons 

available on their outermost electronic shell. Thus, there are a large number of reports on use of 

transition metal ions loaded systems for catalytic, and photocatalytic environmental remediation 

applications.[2,3] Therefore, it is very interesting to study the effects of the loaded transition metal 

ions and the host materials on textural, optical, and catalytic properties.  

Photocatalysis based on silica materials had not been of much interest to researchers due to the 

very large band gap and inert property of silica. But, silica based materials gained the attention of 

many researchers after the discovery of M41S type of molecular sieves due to their high surface 

area (~1000 m2/g) and narrow pore size distribution with long range ordering.[4] It is believed 

that higher surface area available on silica based materials improve guest absorption and provide 

suitable environments for transition metal ions to bind to create active catalytic sites.[5] further, 

one of the main disadvantages associated with titania based photocatalytic materials is their 

lower surface area. Thus, there are many attempts of combining titania with silica in order to 

obtain higher photo catalytic activities.[5,6]   

Here in, we have synthesized novel silicon dioxide (SiO2) and titanium dioxide (TiO2) based 

systems separately loaded with three different transition metal ions, cobalt, chromium and 

vanadium ions using well-known aerogel synthesis methods. One of the main objectives of this 

study is to compare structural and photocatalytic differences that could be obtained using 

different types of transition metal ions and to compare titania and silica based systems that were 

prepared by the same synthesis process.  
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  Experimental Methods 3.2.

3.2.1. Preparation of new photocatalytic systems 

Well known aerogel preparation method was employed to prepare silicon dioxide (SiO2), 

titanium dioxide (TiO2) and mixed (1:1) silica-titania samples. All the prepared samples were 

loaded with chromium, cobalt and vanadium ions. As starting material tetraethylorthosilicate 

(TEOS) and titanium isopropoxide (Ti(ipr)4) were used respectively to prepare silica and titania 

lattices. These precursors were co-hydrolyzed in the presence of the transition metal ion to be 

loaded. Required amounts of Chromium(III) nitrate (Cr(NO3)3.9H2O), Cobalt(II) acetylacetonate, 

and Vanadium(III) acetylacetonate were used as transition metal ion precursors for the 

preparation of chromium loaded, cobalt loaded, and vanadium loaded systems, respectively. All 

the chemicals were analytical grade and used without further purification. During the preparation 

of samples an amount equivalent to 0.5 mol percent of the dopant material was dissolved in 140 

ml of methanol and 20.0 ml of TEOS solution and stirred well. Corresponding titania based 

samples were prepared by dissolving the same amount of transition metal ion precursor in 140 

ml of methanol and 26.6 ml of Ti(ipr)4. The 1:1 mixed silica and titania samples were prepared 

using corresponding silica and titania precursor amounts for the molar ratios expected for the 

final products. Then, a mixture of 0.5 ml of water and 2.5 ml concentrated nitric acid was added 

drop wise to hydrolyze the silica and/or titania precursors. The solution mixture was then aged 

for about 15 minutes and super critical drying was carried out in an autoclave. Then the 

autoclave was quickly vented soon after the temperature reached 265 oC. Finally, the resulting 

aerogel was calcined in air at 500 oC for 2 hours. 

3.2.2. Characterization studies 

Brunauer-Emmet-Teller (BET) measurements of surface area and pore size distribution of the 

prepared samples were carried out using Quantachrome NOVA 1200 gas absorption/desorption 

analyzer after degassing the samples at 150 oC for two hours. Powder XRD analysis of the 

samples was carried out to determine the crystalline nature of samples using a Scintag-XDS-

2000 spectrometer with Cu K radiation with applied voltage of 40 kV and current of 40 mA. 

Samples were scanned 2θ from 0o to 75o with a scan rate of 0.5o per minute. Diffuse reflectance 

UV-Visible spectra were measured at room temperature in air on a Cary 500 scan UV-Vis-NIR 

photometer over the range from 200 nm to 800 nm. The sample cell was made of two transparent 
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CaF2 discs, a Teflon O-ring and screw-type combination in which catalysts were packed between 

two discs and the O-ring. Polytetrafluoroethylene (PTFE) powder of 1 µm particle size was taken 

as a reference material for diffuse reflectance studies.  

3.2.3.  Kinetic studies of photocatalytic systems 

Prepared aerogel materials were tested for both UV and visible light photocatalytic activities 

using suitable glass filters. Kinetics of the photocatalytic degradation was studied using a 

Shimadzu GCMS-QP 5000 instrument and a glass reactor. Acetaldehyde was used as a model 

pollutant and the temperature of the glass reactor was maintained at 25 oC by circulating water in 

the outer jacket of the reactor system during all the kinetic experiments. In a typical experiment 

0.10 g of the prepared sample was uniformly placed on the special glass chamber allowing UV 

or visible light to directly contact the prepared photocatalytic material by passing through the 

quartz window on top of the reactor. Then the air filled system was sealed and 0.10 ml of liquid 

acetaldehyde was introduced to the bottom of the reactor to avoid any direct contact of liquid 

acetaldehyde and the photocatalytic material. During the experiment acetaldehyde slowly gets 

evaporated due to its near room temperature boiling point, and gaseous acetaldehyde gets 

absorbed on to the reaction sites of the catalyst. Photocatalysts were then illuminated with UV 

(320 nm – 400 nm) or visible light(λ > 420 nm) using a 1000 w xenon lamp and glass filters by 

cutting off unnecessary light. The progress of any reaction was detected by injecting 35 µl of gas 

samples from the sealed reactor to the Shimadzu GCMS-QP 5000 instrument every 20 minutes. 

All the kinetics experiments were carried out at least two times in order to confirm the accuracy 

of the results and were compared with commercially available titania P25 and prepared blank 

samples, where no dopant elements were present. 
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  Results and Discussion 3.3.

3.3.1. Structure and Characterization 

Table 3.1: BET surface area values obtained for the 0.5 (mol)% transition metal ion loaded 

samples 

Surface Area (m2/g) Chromium Cobalt Vanadium 

SiO2 717 487 374 

TiO2 84 93 97.5 

SiO2TiO2 (1:1) 345 328 347 

 

BET surface area values obtained for the as prepared samples were given in the table 3.1 and 

clearly indicate the very high effective surface area values we obtained for our samples. Similar 

to reported literature, silica based samples show very high surface area values compared to that 

of titania samples. Still, the effective surface area values obtained for the titania based samples 

are also high compared to the reported titania surface area values in literature. Moreover, BET 

values reported in the table 3.1 indicate high effective surface area values obtained for the 1:1 

silica titania mixed systems.[5,6]    

Powder XRD patterns obtained for the as prepared nine systems are given in figures 3.1-3.3. 

Powder XRD patterns are identical for systems with same matrix materials irrespective of the 

loaded transition metal ion. Titania based systems and mixed systems show XRD patterns 

corresponding to anatase titania crystallinity. Silica based systems show a broad peak for all 

three systems indicating amorphous silica material present in our samples.[7,8] For any sample no 

crystalline peaks could be detected arising from any crystalline states of the loaded transition 

metals. This can be due to fine dispersion of transition metals/metal oxides in the main matrix 

material or due to the formation of metal-Silica or metal- titania composite structures without 

forming any crystalline species. Detailed powder XRD studies are needed to understand 

structural details of these materials. 
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Figure 3.1: Powder XRD patterns of Chromium loaded (a) TiO2, (b) SiO2, and (c) Mixed 

SiO2:TiO2 systems 
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Figure 3.2: Powder XRD patterns of Cobalt loaded (a) TiO2, (b) SiO2, and (c) Mixed 

SiO2:TiO2 systems 
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Figure 3.3: Powder XRD patterns of vanadium loaded (a) TiO2, (b) SiO2, and (c) Mixed 

SiO2:TiO2 systems 
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Figure 3.4: Diffuse reflectance UV-vis spectroscopic studies of chromium loaded samples 
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Figure 3.5: Diffuse reflectance UV-vis spectroscopic studies of chromium loaded samples 
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Figure 3.6: Diffuse reflectance UV-vis spectroscopic studies of vanadium loaded samples 
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without any chromium ion doping, shows minimal acetaldehyde degradation, indicating the 

importance of loaded chromium in the photocatalytic performance.  

Furthermore, the acetaldehyde degradation under UV light without any catalyst (No Catalyst) is 

higher than that of in the presence of pure silica (Blank/SiO2). Blank titania also shows 

significant CO2 production and this is expected for titania based compounds under UV light.[9,10] 

Chromium doping into titania seems to be not very important in UV light based catalysis as there 

is only a slight increase in the activity compared to the blank titania based sample. The highest 

active sample, chromium loaded silica aerogel, as shown in both figures 3.7 and 3.8, shows very 

interesting photocatalytic behaviors under UV and visible wavelengths that only start its activity 

upon exposure to light confirming the photocatalytic nature of the material. 

Figure 3.7: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

chromium loaded silica, titania, mixed systems, blank samples and commercially available 

titania P25 under UV light irradiation 
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The photocatalytic activity under visible light is of more interest to us since a larger percentage 

of solar radiation consists of visible light.[11] Thus, all the samples were tested for visible light 

photo degradation of acetaldehyde and the results obtained are plotted in figure 3.8. According to 

the kinetic results, acetaldehyde degradation under visible light without any catalyst is very low. 

Therefore, it can be assumed that all the carbon dioxide observed is due to the photocatalytic 

behavior of the catalyst material. The blank silica sample showed no photocatalytic activity, as 

expected, because of the inability of insulating silicon dioxide (SiO2) to act as a photocatalytic 

material by itself. The titania sample prepared in our labs shows a slight activity compared to 

commercially available P25 which may be arising due to the compositional changes of different 

crystalline phases, surface area differences and the particle sizes of titania.[10,12] According to the 

powder X-ray diffraction studies the titania based samples prepared in our lab consisted of 100% 

anatase crystalline titania. But, commercially available P25 titania is a mixture of both anatase 

and rutile crystalline phases.[10,12] The 0.5(mol)% Cr-SiO2-TiO2 systems and the 0.5(mol)% Cr-

SiO2 systems show very high photocatalytic activities under visible light compared to all the 

other systems. The higher surface area of our silica SiO2 samples could be one major reason for 

the observed higher photocatalytic activity. 

  



41 

 

Figure 3.8: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

chromium loaded silica, titania, mixed systems, blank samples and commercially available 

titania P25 under visible light irradiation 

 
The 0.5(mol)% Cr-SiO2-TiO2 systems and the 0.5(mol)% Cr-SiO2 systems show very high 

photocatalytic activities under visible light compared to all the other systems. 

Acetaldehyde degradation of cobalt loaded samples 

Figures 3.9 and 3.10 summarize the results obtained for the catalytic degradation of the model 

pollutant, acetaldehyde, by as prepared 0.5(mol)% Co-SiO2 catalyst and compare the catalytic 

activity of the catalyst to its photocatalytic relatives made from titania, mixed titania/silica 

systems and commercially available photocatalytic material P25 under UV and Visible lights. 
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Figure 3.9: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) cobalt 

loaded silica, titania, mixed systems, blank samples and commercially available titania P25 

under UV light irradiation 

 
According to the kinetic results (figure 3.9-3.10) it is very clear that the Co-SiO2 system has the 

highest activity towards acetaldehyde degradation. The catalyst does not require any light source 

to initiate or maintain the reaction. One interesting observation unique to the Co-SiO2 catalyst is 

conversion of almost all the acetaldehyde present in the system into CO2 within the first 40 

minutes of the reaction. But, after the first 40 minutes of the reaction no additional CO2 

production occurred. This can be due to two main reasons; lack of reactants or the catalyst 

deactivation, which will be discussed later. 
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Figure 3.10: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

cobalt loaded silica, titania, mixed systems, blank samples and commercially available 

titania P25 under visible light irradiation 
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activity under visible light seems to have a direct relationship with the low diffuse Reflectance 

UV-Vis absorption in the visible region. 

Figure 3.11: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

vanadium loaded silica, titania, mixed systems, blank samples and commercially available 

titania P25 under UV light irradiation 
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Figure 3.12: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

vanadium loaded silica, titania, mixed systems, blank samples and commercially available 

titania P25 under visible light irradiation 

 

3.3.3.  Calculation of Catalytic Turnover 

Turnover number and the rate of catalysis were calculated based on the kinetic information 

obtained under visible light irradiation. For calculation purposes the amount of loaded chromium 

was used as the catalytic active sites assuming that all the loaded chromium was involved 

equally in catalytic oxidation process. Equations 2 and 3 were used for the calculations.  

  

(2) 

 

0 20 40 60 80 100 120 140 160 180 200

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060
 V-SiO

2

 V-SiO
2
-TiO

2

 V-TiO
2

 P25

 Blank TiO
2

 Blank SiO
2

 No Catalyst

A
m

o
u

n
t 

o
f 

C
O

2
 (

m
 m

o
l)

Time (min)

Dark Vis



46 

 

    

      (3) 

 

Table 3.2: Turnover numbers obtained for the catalysts for four hours of reaction for each 

metal ion site 

Catalyst 

Turnover number of 

Chromium loaded 

Systems 

Turnover number of 

Cobalt loaded Systems 

Turnover number of 

vanadium loaded 

Systems 

SiO
2
 16.8 79.0 4.8 

TiO
2
 4.8 15.0 3.2 

SiO
2
/TiO

2
 12.6 8.7 2.8 

Table 3.3: Turnover frequencies obtained for the catalysts for four hours of reaction for 

each metal ion site 

catalyst 

Turnover frequency of 

chromium loaded 

systems 

Turnover frequency of 

cobalt loaded systems 

Turnover frequency of 

vanadium loaded 

systems 

SiO
2
 0.28 7.9 0.08 

TiO
2
 0.08 0.25 0.05 

SiO
2
/TiO

2
 0.21 0.145 0.046 

  Mechanism of Photocatalytic Activity  3.4.

To briefly review the general mechanism of titania based photocatalysis under UV light, 

positively charged holes and negatively charged electrons are created in valence and conduction 

bands of titania respectively as described by Eq 1.   

TiO2 + hν → TiO2 (e-  and  h+) ………………………………..………….…………...    Eq 1 

OH- + h+ → •OH  ………………………………………………………………………      Eq 2 

O2 + e- → O2
•─  ………………………………………..……………….………………     Eq 3 
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In the second step positively charged holes are trapped by surface hydroxyl groups of titania 

generating reactive hydroxyl radicals (Eq 2). In the meantime negatively charged electrons can 

interact with oxygen in the valence band to generate reactive oxygen species (Eq3). The 

oxidation ability of •OH radicals is very high so that they easily react with various organic 

pollutants.[13,14] 

3.4.1. Mechanism of transition metal (Cr/Co) loaded TiO2 photocatalyst 

Even though the above equations explain the behavior of semiconducting titania under UV light, 

a modified mechanism is needed to explain the visible light activity of transition metal ion 

loaded titania photocatalysts. There are various ways that loaded transition metals help improve 

the visible light photocatalytic activity[15,16]. The most accepted way of inducing visible light 

activity into the titania network is by introducing new localized electronic states and surface 

structures. These changes to the titania network can eventually change the electronic structure, 

absorption properties, redox potential and charge carrier mobility of the photocatalyst, etc.[14] 

Introduction of such energy states and surface structures in the band gap induces a red shift in the 

band gap transition and visible light absorption through charge carrier transfer between a dopant 

and conduction band(CB) or valence band(VB) or a d—d transition in the crystal field[17]. The 

charge transfer transition between Cr ion 3d electrons and conduction band of titania is known to 

be responsible for the red shift evident in UV-Vis spectra. According to the studies carried out by 

Umebayashi and co-workers, for chromium loaded titania photocatalysts two types of electron 

transitions are possible. The first transition is a donor transition from the Cr t2g level into the CB 

which can be explained using Eq 4, and the other transition is the acceptor transition from the 

VB to the Cr t2g level given by Eq 5.[14,16,17,18] 

Mn+ + hν→ M(n+1)+  + e─ CB  ……………………………………………..…    Eq4 

Mn+ + hv → M(n-1)+  + h+ VB ……………………………………………..…    Eq5 

Furthermore, loaded transition metal ions can also enhance the efficiency of TiO2 by providing 

electron (or hole) trapping/defect sites and thereby decreasing generated electron hole pair 

recombination when the energy levels for Mn+/M(n-1)+ lies below the conduction band edge and 

the energy level for Mn+/M(n+1)+ above the valence band edge. This can be illustrated using the 

following equations [16-19] 

Mn+ + e- → M(n-1)+ …………………………………………………………..……… Eq 6 
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Mn+ + h+ →M(n+1)+ ………………………………………………………………….. Eq 7 

Therefore, considering all the possible effects of transition metals and as well as according to the 

mechanism proposed by Devi and co-workers it is possible to explain the enhanced visible light 

photocatalytic activity of chromium and cobalt loaded Titania photocatalysts using the following 

equations.  

Charge trapping: 

Ti4+ + e− → Ti3+ ……………………………………………………………………… Eq8 

Mn+ + e− → M(n−1)  …………………………………………………………………… Eq9 

Mn+ + h+ → M(n+1)+…………………………………………………………………… Eq10 

OH− + h+ → OH• ……………………………………………………………………….… Eq11 

Charge release and migration: 

Ti4+ + M(n−1)  → Ti3+ + Mn+ ………………………………………………………… Eq 12 

M(n+1)+ + OH− → Mn+   OH˙ ……………………………………………………….… Eq 13 

Recombination: 

e− + h+ → heat ………………………………………………………………………...… Eq 14 

Ti3+   OH˙ → Ti4+ + OH− …………………………………………………………….… Eq 15 

M(n−1)  + h  → Mn+ …………………………………………………………………….… Eq 16 

M(n−1)    OH˙ → Mn+ + OH− ………………………………………………………… Eq 17 

M(n+1)+ + e− → Mn+ ………………………………………………………………….… Eq18 

M(n+1)+ + Ti3+ → Mn+ + Ti4+ ………………………………………………………… Eq19 

Interfacial charge transfer process: 

e− (or Ti3+, M(n−1) )   O → O− ……………………………………………………..… Eq20 

h+ (or  OH•, M(n+1)+) + R → R+ ……………………………………………………… Eq 21 

  Summary 3.5.

We have synthesized novel silicon dioxide (SiO2) and titanium dioxide (TiO2) based systems 

loaded with different transition metal ions such as cobalt, chromium and vanadium ions using 

well-known aerogel synthesis methods. These samples were characterized with BET surface area 

analysis, X-ray diffraction studies and diffuse reflectance UV-vis spectroscopic measurements. 

Catalytic and photocatalytic activities were determined using acetaldehyde as a model pollutant. 

For better comparison of the catalytic activities, kinetic results obtained for all the photocatalysts 
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except the dark catalyst 0.5% Co-SiO2 catalyst, were plotted together in figure 3.13. Among all 

the catalysts, even though the 0.5% Co-TiO2 catalyst shows the highest CO2 production, it shows 

a significant amount of CO2 production under dark conditions and does not show an increase in 

CO2 production upon exposure to visible light. But, 0.5% Cr-SiO2 system shows nearly zero CO2 

at the beginning and shows rapid CO2 production in the visible region. The in-depth dark 

catalytic activity of 0.5% Co-SiO2 system will be discussed in chapter 5. 

Figure 3.13: Photocatalytic performances of all the as prepared transition metal ion 

systems except dark active Co/Silica system under visible light 
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Chapter 4 -  Chromium(VI) Oxide Loaded Silica Aerogels: Novel 

Visible light Active Photocatalytic Materials for Removal of Air 

Pollutants 

  Introduction 4.1.

Photocatalysis has been studied actively during the last several decades because of its application 

to green energy and due to the understanding of the importance of a cleaner atmosphere. As a 

result there are a large number of reports about applications of photocatalysis in various tasks 

such as environmental remediation, photocatalytic water splitting, etc. Photocatalysis has widely 

been studied to destroy organic dye compounds from industrial effluents, oxidation of indoor and 

outdoor organic pollutants, etc. The basic advantage of photocatalysis is its ability to mineralize 

a large variety of harmful organic pollutants under ambient temperature and pressure 

conditions.[1] 

In most of the successful photocatalytic materials that have been reported earlier, consist of a 

supporting base material. Titania is one of the most widely used photocatalytic material that has 

shown success in organic material decomposition. It is believed that the supporting material 

facilitates the catalytic activity of the catalytic site by enhancing charge carrier separation, 

allowing reduced electron hole recombination and facilitating charge transfer to adsorbed species 

making photocatalytic processes are non-localized.[2,3] But, whether a photocatalytic process 

must be non-localized is a question that still needs to be answered.  

Therefore, our main objective in this chapter is to discover photocatalytic systems which 

progress according to localized mechanisms. The study was carried out by preparing such a 

system using insulated silica based materials. Generally low reactivity and high band gap energy 

of silica makes it a suitable material to study the localized properties of photocatalysis.  

Furthermore, to achieve visible light activity, it is important to insert a suitable light harvesting 

material into silica in order to introduce photocatalytic activities. Transition metals and metal 

oxides have been actively used in this regard. Transition metals are very good candidates to 

absorb in the visible range of the spectrum, as orbital energy transfer usually lies in the visible 

range.  According to the earlier experiments which were carried out in our lab, chromium loaded 

systems showed highest activities towards oxidation of organic air pollutants. Thus, for our 
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systems chromium was chosen as the doping agent for our more in-depth study of Cr-SiO2.[4,5,6] 

Herein we report the observed UV and visible light activities of chromium ion loaded silica 

based materials and possible mechanisms for the observed photocatalytic performances. 

  Experimental Methods 4.2.

4.2.1. Preparation of chromium ion loaded silica and titania aerogel samples 

Chromium ion loaded silicon dioxide and titanium dioxide samples were prepared using an 

aerogel preparation method using a similar procedure explained in the chapter 3. The 0.5(mol)% 

Cr loaded samples with varying molar ratios of titania and silica was prepared to obtain molar 

ratios of SiO2:TiO2, (0:100, 20:80, 40:60, 50:50, 60:40, 80:20 and 100:0). Further the effect of 

higher loading chromium was studied by preparing 1(mol)%, 2(mol % and 5(mol)% loaded 

chromium silica samples. 

4.2.2. Characterization studies 

Brunauer-Emmet-Teller (BET) measurements of surface area and pore size distribution of the 

prepared samples were determined using a Quantachrome NOVA 1200 gas 

absorption/desorption analyzer after degassing the samples at 150 oC for two hours. Powder 

XRD analysis of the samples was carried out to determine the crystalline nature using a Scintag-

XDS-2000 spectrometer with Cu K radiation with applied voltage of 40 kV and current of 40 

mA. Samples were scanned 2θ from 0o to 75o with a scan rate of 1o per minute. Diffuse 

reflectance UV-visible spectra were measured at room temperature in air on a Cary 500 scan 

UV-vis-NIR photometer over the range from 200 to 800 nm. 

The compositions of prepared photocatalysts were determined by carrying out elemental analysis 

using Energy Dispersive Spectrometry using a Scanning Electron Microscope. Detailed study of 

the loaded chromium was carried out using a bulk elemental analysis to determine the final 

amounts of loaded ions. Bulk elemental analysis was carried out using simultaneous optical 

systems and axial or radial viewing of the plasma using Perkin Elmer Optima 5300 spectrometer 

at Galbraith laboratories Inc.  

TEM studies were carried out using a Philips CM100 operating at 100 kV. The TEM samples 

were prepared by dispersing few milligrams of the catalyst in ethanol using an ultrasonic bath. 

Then a drop of catalyst-ethanol mixture was placed on the TEM grid and air dried. The facilities 
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were provided by the Microscopy and Analytical Imaging Laboratory at Department of Biology, 

Kansas State University. 

4.2.3. Kinetic studies of photocatalytic systems 

Prepared samples were tested for both UV light and visible light photocatalytic activities. 

Kinetics of the photocatalytic degradation was studied using a Shimadzu GCMS-QP 5000 

instrument and a glass reactor with a quartz window. Acetaldehyde was used as a model 

pollutant and the temperature of the glass reactor was maintained at 25 oC by circulating water in 

the outer jacket of the reactor during all the kinetic experiments. In a typical experiment 0.10 g 

of the prepared sample was uniformly placed on the special glass chamber allowing UV or 

visible light to directly contact the prepared photocatalytic material. Then the air filled system 

was sealed and 0.10 ml of liquid acetaldehyde was introduced to the bottom of the reactor to 

avoid any direct contact of liquid acetaldehyde and the photocatalytic material. During the 

experiment acetaldehyde slowly gets evaporated due to its near room temperature boiling point, 

and gaseous acetaldehyde gets absorbed on to the reaction sites of the catalyst. Photocatalysts 

were then illuminated with UV or visible light using a 1000 w xenon lamp and glass filters by 

cutting off unnecessary light. The progress of any reaction was detected by injecting 35 µl of gas 

samples from the sealed reactor to the Shimadzu GCMS-QP 5000 instrument every 20 minutes. 

All the kinetics experiments were carried out at least two times in order to confirm the accuracy 

of the results and were compared with commercially available titania P25 and prepared blank 

samples, where no dopant elements were present. 

4.2.4. Hydroxyl radical generation studies using terephthalic acid 

Terephthalic acid(TPA), which is not a fluorescent compound, gives a single, fluorescent 

product, 2-hydroxyterephthalic acid (HTPA), by reacting with hydroxyl radicals produced during 

the photocatalytic reaction (Figure 4.1). HTPA emits fluorescence at around 426 nm on the 

excitation of its own 312 nm absorption band. The measurements of the amount of OH˙ were 

performed for the chromium loaded titania and silica based systems carrying out photocatalytic 

reaction by means of this TPA fluorescence probe method as follows. For the measurements of 

any hydroxyl radicals generated during photocatalytic reactions the photocatalyst samples were 

irradiated under UV and visible light in terephthalic acid solution (2×10-3 M). Then the solution, 

after separation from the photocatalyst, was taken for fluorescence analysis. The fluorescence 
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measurements were carried out at the excitation wavelength of 314 nm in the range of emission 

wavelength from 330 nm to 600 nm with maximum peak at 425 nm.[7,8,9] 

Figure 4.1: Reaction path of terephthalate and hydroxyl radicals to generate fluorescent 

hydroxyterephthalate
[9]

 

 

  Results and Discussion 4.3.

4.3.1. Structure of chromium loaded photocatalytic systems 

It is well-known that the effective surface area of a material is important in deciding the 

photocatalytic efficiency of a material because in most of the photocatalytic systems the catalytic 

activity takes place on the surface of the material[10]. Therefore, the photocatalyst synthesis 

process was specially designed to obtain higher effective surface area using a super critical 

drying technique. Surface area values obtained from the BET analysis experiment show that all 

the samples have very high effective surface area values. Obtained effective surface area values 

of silica based materials are higher compared to that of titania based materials which confirm 

what has previously been reported.[11] Further, mixed silica and titania systems show a gradual 

decrease in effective surface area with increasing amounts of titania added as indicated in table 

4.1. The surface area of samples increased according to a linear pattern with increasing amounts 

of silica (Figure 4.2). 
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Figure 4.2: Increase in the effective surface area with increased amounts of silica 

 
Table 4.1: Change in specific surface area of 0.5(mol)% chromium loaded silica and titania 

based materials 

 
According to the EDS studies the ratios of silica to titania in mixed oxide samples matched 

exactly to the initial precursor concentrations. But, due to the limited sensitivity of the instrument 

as well as the minute amount of dopants present in these samples, percentages of chromium 

could not be detected (Figure 4.3) . Therefore, a bulk elemental analysis was carried out specially 

to determine the amounts of chromium present in the 0.5(mol)% chromium loaded sample. 
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According to the results obtained, the percentage of chromium is 0.369% by weight, which when 

converted in to reported mol % units comes around 0.43(mol)%. Thus, considering possible 

instrumental errors it is clear that only a minimal amount of chromium has been lost during the 

preparation procedure. 

Figure 4.3: EDS elemental analysis data obtained for the 0.5(mol)% Cr-SiO2 photocatalyst 

 
As indicated in the chapter 3, no other diffraction peaks arising from loaded chromium were 

observed during XRD studies. This indicates that chromium ion doping during the synthesis has 

no effect on the crystalline phase of the matrix material and the loaded chromium does not create 

any crystalline phases either. Chromium crystalline peaks may not be detectable due to lower 

concentrations and very smaller crystallite sizes. Detailed XRD studies were carried out with 

higher loading chromium silica samples prepared in the same procedure to study the reason for 

absence of chromium crystalline peaks. But, as indicated in the figure 4.4, no crystalline peaks 

arising from chromium species could be recognized for any higher loaded samples. Thus, 

consistent with literature reports it is clear that chromium either exist as non-crystalline forms 

bound to silica matrix or finely dispersed in the matrix of silica or titania as very small chromium 

oxide nano-particles.[4,12,13] 
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Figure 4.4: Powder XRD studies of 0.5(mol)% Cr-SiO2, 1(mol)% Cr-SiO2, 2(mol)%Cr-

SiO2 and 5(mol)% Cr-SiO2. 

 
Figure 4.5 shows diffuse reflectance UV-Vis absorption spectra of chromium loaded SiO2, TiO2, 

and mixed photocatalysts. As expected, with chromium present, absorption in the visible region 

was observed. For silica based photocatalytic systems, bands at 240 nm, 265 nm, 360 nm, 445 

nm and 650 nm, can be easily recognized in the system where no titania is present. The bands 

correspond to O  Cr6+ charge transfer transitions for Cr6+ ions in tetrahedral environment. 

These bands can be assigned as follows; the band at 445 nm (22500 cm-1) is the symmetry-

forbidden transition (1t1  2e) which is partially allowed in solid salts, while the other bands at 

370 nm (27000 cm-1) 1t1  2e, 294 nm (34000 cm-1) 1t1  7t2, and 241 nm (41400 cm-1) 6t2  

2e are symmetry allowed transitions.[14-17]  

Therefore, based on the XRD and the clear UV-Vis absorption patterns which correspond to the 

individual Cr6+ state, it is evident that isolated Cr(VI) sites exist dispersed in the matrices of 

Silica and Titania. The use of minute amounts of chromium during the preparation of these 

materials also favor the formation of isolated Cr6+ sites.[4] Tetrahedral Cr6+ has been reported in 

three different chemical forms, such as Chromium oxide (CrO3), Chromate ions(CrO4
2-) and 

Dichromate ions(Cr2O7
2-). Due to the characteristic yellow-orange coloration and according to 

previous reports both chromate and dichromate species are possible on silica surface[18]. 
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Comparison of TEM images of blank silica sample, 0.5(mol)% Cr-SiO2, and 5(mol)% Cr-SiO2 is 

shown in figure 4.6. Loaded chromium sites on silica matrix can be identified in both chromium 

loaded samples as ~ 2 nm size dark spots. The amount of chromium sites increase with 

increasing chromium loading was observed without significant increase in the size of these 

particles. But, no chromium sites could be observed on the surface of Cr-TiO2 sample as shown 

in the figure 4.6d.   

Figure 4.6:  TEM images of (a) Blank Silica aerogel, (b) 0.5(mol)% Cr-SiO2 catalyst (c) 

5(mol)% Cr-SiO2, and (d) 0.5(mol)% Cr-TiO2        
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The structure of the bound chromium site is one of the important factors when studying the 

mechanism of photocatalytic action. There have been several attempts reported in literature to 

characterize the structure of isolated Cr6+ sites on silica. Moisii and co-workers proposed two 

possible structures for Cr6+ sites (Figure 4.7) and confirmed the structure a for their 0.5% Cr 

loaded silica xerogels using XANES and Raman spectroscopic studies.[19]   

Figure 4.7: Possible structures for the bonding nature of chromium sites to silica 

 
The probability of getting the same binding nature for our 0.5 (mol)% chromium loaded silica 

system is high due to the similar compositions and nearly same synthesis procedures that were 

employed during the preparation of materials. Further, it has been predicted in literature, using 

Pauling’s criterion, that there is a high probability of isomorphous substitution, which would 

yield metal ions in a stable tetrahedral environment surrounded by oxygen atoms. Based on the 

ratio of ionic radii, ρ, of the cation and anion, the calculated value for titania and oxygen 

(ρ=0.515) falls out of the acceptable range (ρ= 0.225-0.414) for a tetrahedral coordination due to 

the larger size of Ti4+(68pm). Therefore, the binding of small tetrahedral Cr6+(44pm) ions to 

titania matrix is unlikely due to the larger distortion. But Since the ionic radii of Cr6+ and 

Si4+(41pm) are much closer in value, binding of Cr6+ into a silica matrix is very favorable 

compared to Cr6+ binding onto titania.[21,22] But, due to the presence of the hexavalent Cr 

oxidation state in our catalyst, it is unlikely that Cr6+ could enter into the bulk lattice of silica due 

to charge considerations and due to the absence of four siloxy anions. Thus, it is likely that most 

of the loaded chromium will end up on the surface of the silica material, resulting in a large 

number of catalytically active sites.[19,20] 
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4.3.2. Kinetics of photocatalytic degradation 

In chapter 3 we discussed the results obtained from basic acetaldehyde photo degradation studies 

of prepared silica, titania and mixed photocatalytic systems under UV and Visible light. 

According to the kinetic results obtained, chromium ion loaded silica shows the highest 

photocatalytic degradation and shows very interesting photocatalytic behaviors under UV and 

visible wavelengths that only start its activity upon exposure to light confirming photocatalytic 

nature of the material. Further, according to figure 4.8, which compares the effect of different 

ratios of silica and titania on kinetic activities under visible light, increasing photo degradation 

ability is observed when more and more silica is present. This increased photo activity could 

occur due to the favorable binding of Cr6+ in a silica matrix over that of titania.  

Turnover number and the rate of catalysis were calculated using kinetic information given in 

figure 4.8. For calculation purposes the amount of loaded chromium was used as the catalytic 

active sites assuming that all the loaded chromium involved equally in catalytic oxidation 

process. Turnover numbers given are only for 100 minutes of catalytic time. Since the catalysts 

are active after 100 minutes reaction time, turnover numbers can be further improved by carrying 

out catalytic experiments for prolonged time durations. Thus, turnover numbers for 0.5(mol)% 

Cr-SiO2 system and mixed systems clearly indicate that the acetaldehyde degradation process is 

photocatalytic in nature. 
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Figure 4.8:  Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 

chromium loaded photocatalytic systems with varying ratios of SiO2: TiO2 under visible 

light irradiation 
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Table 4.2: Turnover numbers obtain for the acetaldehyde degradation under visible light 

Catalyst 

Turnover Number 

(First 100 minutes 

of catalysis) 

Turnover 

Frequency (min-1) 

0.5(mol)% Cr-SiO2 17 0.17 

0.5(mol)% Cr-SiO2-TiO2 (80:20) 11 0.11 

0.5(mol)% Cr-SiO2-TiO2 (60:40) 12 0.12 

0.5(mol)% Cr-SiO2-TiO2 (50:50) 8.8 0.09 

0.5(mol)% Cr-SiO2-TiO2 (40:60) 6.5 0.07 

0.5(mol)% Cr-SiO2-TiO2 (20:80) 4.0 0.04 

0.5(mol)% Cr-TiO2 3.7 0.04 

  Mechanism/s of Photocatalytic Activity 4.4.

Understanding the mechanism which governs the photocatalytic activity is equally important to 

the study of the structure of the material, and can lead to predicting better photocatalysts. The 

study of hydroxyl radical generation upon exposure to UV light is widely used to confirm the 

mechanism of photocatalytic activity of titania based photo catalysts.[8,23] The observed intense 

fluorescence peaks at 426 nm indicate the oxidation ability of the generated reactive species 

which we believe the main component is hydroxyl radicals according to the previous reports. 

The results obtained from hydroxyl radical detection experiments for both titania and silica based 

samples studied herein, clearly indicate varying amounts of hydroxyl radicals formed (figure 

4.9). 
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Figure 4.9: Fluorescence spectra obtained for the supernatant liquid of the irradiated a) 

titania b) silica suspension containing 3 × 10
-3

 M terephthalic acid at various irradiation 

periods. 
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Comparing the results of kinetic studies it is clear that 0.5(mol)% Cr-SiO2 material is able to 

perform best in degrading acetaldehyde into carbon dioxide. Further, according to the results 

obtained the catalytic activity emerges only upon irradiation of light, proving the photocatalytic 

nature of the catalyst. Since silica is an insulating compound with very large band gap, it cannot 

be excited with light photons generating reactive electron hole pairs, which is generally 

considered as the primary process governing any photocatalytic reaction upon exposure to UV/ 

visible light. But, due to the high photo sensitivity observed in the Cr loaded silica photocatalyst, 

there must be a different mechanism of photocatalytic degradation. 

According to the evidence from UV-visible spectra, TEM and XRD analysis, chromium sites in 

the silica matrix are highly dispersed. In addition to that, due to the insulating silica support the 

active photocatalytic sites, which are metal oxide species, are localized and isolated making the 

photocatalytic process significantly different from that of semiconducting titania.  

According to Yoshida and coworkers, a photo excitation process can occur at the molecular 

orbital level at localized reaction sites when loaded metal oxides are highly dispersed.[6] During 
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the excitation process, an electron in the ground state of the M-O bond gets excited to an 

unoccupied singlet orbital. Then depending of the availability of inter system crossing 

mechanisms, the excited electron could transfer to a triplet state yielding phosphorescence, 

which has been detected using a photoluminescence spectroscopic method.[6] We were able to 

observe similar emission fine structure which consist of intensity maxima corresponding to each 

vibrational energy level of the bond in the photoactive site, in our case (Cr - O). Note our solid 

state photoluminescence studies (Figure 4.10). According to the results indicated in the figure 

4.10 (b), fine structure cannot be identified in photoluminescence spectra of blank samples. The 

emission peaks present in the blank photoluminescence spectra may occur due to the output of 

the light source in the instrument as well as outside light sources. Since, the blank samples do not 

show any fine structures in the region where fine structure is observed for Cr-SiO2 sample, it is 

clear that peak patterns arise due to the presence of chromium. Further, the luminescence fine 

structures are much clear in silica based systems compared to that of titania based system which 

is a good evidence for higher number of reactive sites in much reactive silica based 

photocatalysts. Even though we can assign this peaks generally as phosphorescence fine 

structure due to vibrational bands, in depth studies and calculations are necessary to confirm the 

assignment. But, in general the observed vibrational fine structure is a clear indication of the 

localized excitation process taking place during the photocatalytic process. 
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Figure 4.10: (a) Solid state fluorescence of 0.5(mol)% Cr-SiO2 catalyst at 300 nm excitation 

wave length (b) comparison of solid state fluorescence study of 0.5(mol)% Cr-SiO2, 

0.5(mol)% Cr-TiO2 and blank samples   

  

350 400 450 500 550

F
lu

o
re

s
c
e
n

c
e
 [

a
.u

.]

Wave length(nm)

 0.5(mole) % Cr-SiO
2

(a) 



69 

 

 
The intervals of peak maxima values obtained for the photoluminescence studies indicate the 

vibration energy of the photoactive sites. The calculated values are indicated in the table (4.3) 

below. According to the calculated values does not in agreement with the reported IR values for 

the Cr=O and the Cr-O-Si bonds reported in literature, but in agreement with IR values of Cr-O 

bonds of chromium clusters (Figure 4.11). [24-27]   

Table 4.3: The intervals of the fine structure on the phosphorescence spectrum of Cr-SiO2 

Maximum Wavelength (nm) Maximum Wavelength (cm-1) Gap between adjacent peaks 
(cm-1) 

438 22779.04 - 

451 22222.22 606.1 

468 21367.52 805.4 

483 20746.89 620.6 

493 20325.2 421.7 
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Figure 4.11: Diffuse Reflectance IR spectra of (a) blank silica, (b) 0.5(mol)% Cr-SiO2 

systems  
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Figure 4.12: Photo excitation in a quantum photocatalyst on which the exiton is localized.
[6]

 

 
Thus, based on the above literature and experimental data it is clear that the Cr6+ loaded silica 

system is producing reactive electron hole pairs upon light irradiation. Usually, in titania based 

systems, generation of reactive hydroxyl radicals and oxygen species takes place by reacting 

surface hydroxyl groups and atmospheric oxygen with photo generated electrons and holes 

respectively. Similarly, according to the hydroxyl radical experiments carried out for our 

0.5(mol)% Cr loaded silica sample, a fluorescence peak around 426 nm provides evidence for 

hydroxyl radical generation during the photocatalytic reaction (figure 4.10). However, the active 

site is localized, and all the chemical steps must take place rapidly at that site. Therefore, photo 

generation of reactive electron and holes in quantum sites of Cr―O, generate positively charged 

holes, which must react with surface hydroxyl groups present on the silica surface producing 

reactive hydroxyl radicals. These hydroxyl radicals may be involved in oxidation of 

acetaldehyde in the presence of oxygen to carry out complete oxidation to produce carbon 

dioxide.   

  Summary 4.5.

 The photocatalytic oxidation ability of chromium loaded silica, titania, and mixed systems were 

prepared and studied to better understand the localized nature of photocatalysis. The prepared 

0.5(mol)% Cr-SiO2 system shows interesting visible and UV light activities towards 

acetaldehyde degradation. Even though semiconducting titania based systems are known as 
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successful photocatalytic materials, insulating silica based systems showed higher oxidation 

abilities towards complete oxidation of acetaldehyde. Such direct comparison have not been 

reported before. According to the reported literature, most of the silica based systems were 

successful for either partial oxidation of organic materials or other reactions, such as 

polymerization, metathesis reactions, etc.[6]  

Moreover, the structure and the mechanisms which govern the photocatalysis are compared 

separately for the chromium loaded titania system as well as for the silica based system. 

Hydroxyl radical generation studies further support the proposed localized electron-hole pair 

generation at highly dispersed chromium oxide photo active quantum sites.      
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Chapter 5 -  Silica Supported Cobalt Oxide Catalyst; A Novel 

Nanostructured Catalyst for Destroying Indoor Air Pollutants in 

the Dark 

  Introduction 5.1.

Quality of indoor air has gained the interest of many researchers as it has become a major issue 

with the health of humans. There are large numbers of reports about the diseases that occurs due 

to poor quality indoor atmospheres. Asthma, Lung cancers, respiratory irritations are some of the 

reported health problems that caused by poor indoor environments. Main pollutants that are 

responsible for the bad indoor atmospheres can be listed as semi volatile organic compounds, 

carbon monoxide, biological compounds from mold toxins, etc. Therefore, immediate attention 

is necessary to improve the indoor air quality. 

Many nanostructured catalysts have been reported in the past to address this issue. Among 

successful nanomaterials that were used for the removal of air pollutants, transition metal ions 

loaded Silica, Titania and Zeolite materials are good candidates. Mainly, the mineralization of 

these pollutants is done by means of oxidation degradation of organic matter into relatively non 

harmful compounds such as carbon dioxide (CO2).[1] 

Cobalt is a well-known oxidation catalytic material that has been widely used for many years. 

Silicon dioxide (SiO2) on the other hand is well-known to provide higher surface areas 

generating large number of absorption sites to facilitate pollutant adsorption and thereby enhance 

the reactivity of materials. Herein we discuss the collective use of higher surface area silica and 

catalytic cobalt oxides for the catalytic removal of air pollutants.[2]     

  



75 

 

  Experimental Methods 5.2.

5.2.1. Catalyst preparation 

Silica (Silicon Dioxide; SiO2) supported Cobalt aerogel samples were prepared using a well-

known aerogel preparation method to prepare higher surface area materials. Tetra ethyl ortho 

silicate (TEOS) was used as the silica precursor for the synthesis. The catalytic system was 

prepared by mixing the silica precursor and the dopant, Cobalt(II) acetylacetonate, and co-

hydrolyzing together using an acid catalyzed hydrolysis technique. All the chemicals were 

analytical grade and used without further purification. Samples of various loadings of cobalt 

ions, 0.5 (mol)%, 0.8 (mol)%, 2(mol)% and 5(mol)%, were prepared to study in depth structural 

properties and the effect of dopant amount. The samples were prepared using amounts equivalent 

to the required doping materials and the percentages were calculated with respect to the percent 

of silica base material assuming all the TEOS converted in to SiO2 at the end of the process. The 

calculated dopant material was first dissolved in 140 ml of methanol and 20.0 mL of TEOS 

solution and stirred well. Then, a mixture of 0.5 ml of water and 2.5 ml concentrated nitric acid 

was added drop wise to hydrolyze the silica precursor. The solution mixture was then aged for 

about 15 minutes and then super critical drying was carried out in an autoclave. The autoclave 

was quickly vented soon after the temperature reached 265 oC and the gaseous phase solvent, 

Methanol, was removed without collapsing the silica network structure. Finally, the resulting 

powder was calcined in air at 500 oC for 2 hours. 

5.2.2.  Characterization studies 

Brunauer-Emmet-Teller (BET) measurements of surface area and pore size distribution of the 

prepared samples were carried out using a Quantachrome NOVA 1200 gas absorption/desorption 

analyzer after degassing the samples at 150 oC for two hours. Powder XRD analysis of the 

samples was carried out to determine the crystalline nature of samples using a Scintag-XDS-

2000 spectrometer with Cu K radiation with applied voltage of 40 kV and current of 40 mA. 

Samples were scanned 2θ from 0o to 75o with a scan rate of 0.5o per minute. Diffuse reflectance 

UV-Visible spectra were measured at room temperature in air on a Cary 500 scan UV-Vis-NIR 

photometer over the range from 200 nm to 900 nm. The sample cell was made of two transparent 

CaF2 discs, a Teflon O-ring and screw-type combination in which catalysts were packed between 
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two discs and the O-ring. Polytetrafluoroethylene (PTFE) powder of 1 µm particle size was taken 

as a reference material for diffuse reflectance studies.  

The compositional studies of prepared systems were done by carrying out elemental analysis 

experiments using Energy Dispersive Spectrometry using a Scanning Electron Microscope. 

Detailed study of the loaded cobalt was carried out using a bulk elemental analysis to determine 

the final amounts of loaded cobalt ions. Bulk elemental analysis was carried out using 

simultaneous optical systems and axial or radial viewing of the plasma using Perkin Elmer 

Optima 5300 spectrometer at Galbraith laboratories Inc. 

Oxidation state of cobalt before and after catalysis was determined using XPS studies. XPS data 

were recorded using a Perkin−Elmer PHI 5400 electron spectrometer using polychromatic Al Kα 

radiation (1486.6 eV). Analysis was carried under vacuum less than 2 × 10−8 Torr. The XPS 

binding energies were measured with a precision of 0.1 eV. The analyzer pass energy was set to 

17.9 eV, and the contact time was 50 ms. the spectrometer was calibrated by setting the binding 

energies of Au 4f7/2 and Cu 2p3/2 to 84.0 and 932.7 eV, respectively. The sample spectra were 

referenced to the adventitious C 1s peak at 285.0 eV.  

TEM studies were performed on a Philips CM100 operating at 100 kV. The TEM samples were 

prepared by placing a few milligrams of the catalyst in acetone followed by sonication. Then 

grids were allowed to air dry overnight. The facilities were provided by the Microscopy and 

Analytical Imaging Laboratory at Department of Biology, Kansas State University. 

5.2.3. Kinetic studies of photocatalytic systems 

Prepared samples were tested for possible catalytic activities using the primary sample, 

0.5(mol)% Co-SiO2. The kinetics of the degradation was studied using a Shimadzu GCMS-QP 

5000 instrument and a glass reactor with a quartz window. Acetaldehyde was used as a model 

pollutant and the temperature of the glass reactor was maintained at 25 oC by circulating water in 

the outer jacket of the reactor during all the kinetic experiments. In a typical experiment 0.10 g 

of the prepared sample was uniformly placed on the special glass chamber. Then the air filled 

system was sealed and 0.10 ml of model pollutant was introduced to the bottom of the reactor to 

avoid any direct contact of liquid acetaldehyde and the photocatalytic material. During the 

experiment acetaldehyde slowly gets evaporated due to its near room temperature boiling point 

and gaseous acetaldehyde gets absorbed on to the reaction sites of the catalyst. The progress of 
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any reaction was detected by injecting 35 µl of gas samples from the sealed reactor to the 

Shimadzu GCMS-QP 5000 instrument. All the kinetics experiments were carried out at least two 

times in order to confirm the accuracy of the results and were compared with prepared blank 

samples, where no dopant elements present. 

  Results and Discussion 5.3.

Prepared cobalt loaded samples were analyzed using powder x-ray diffraction to determine the 

crystalline nature of the catalysts prepared. According to powder XRD results, a broad peak 

correspond to amorphous silica was obtained. The 0.5(mol)% Co-SiO2 sample did not show any 

crystalline peaks for any possible cobalt oxide crystalline states. This absence of XRD peak 

patterns can occur due to several reasons, such as fine incorporation of loaded cobalt ions in to 

the matrix of the system creating no chance of formation of crystalline cobalt states to detect by 

XRD[3,4], or the amount of crystalline cobalt present in the sample may be below the detection 

limit of the XRD instrument due to the very small amounts of cobalt precursors used during the 

synthesis of the system. 

Figure 5.1: Powder x-ray diffraction studies of 0.5(mol)% Co-SiO2 catalyst 
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To further study the reasons for absence of any cobalt crystalline phases and to confirm the 

dispersed nature of cobalt in the silica matrix, further studies were carried out with silica samples 

with higher loadings of cobalt. The obtained XRD patterns are indicated in the figure 5.2.  

Figure 5.2: XRD patterns of 0.5% Co-SiO2, 0.8% Co-SiO2, 2.0% Co-SiO2 and 5.0% Co-

SiO2 catalysts 

 
Powder XRD data obtained for the various amounts of cobalt loaded silica samples clearly 

indicate that there is no observable crystalline peaks present even for the highest loading sample 

studied which is 5(mol)% Co-SiO2. This is a good evidence to support the high dispersion of 

cobalt in the silica matrix. Further, it is clear that the reason for not observing any crystalline 

cobalt oxide peaks in 0.5(mol)% sample is not due to below detection limit concentrations of 

cobalt, but due to the actual doping of cobalt in to the silica matrix. Further, these results suggest 

that the cobalt loaded into silica exist as non-crystalline forms such as cobalt composites with 

silica or as extremely small crystalline cobalt oxide particles that are undetectable by XRD.[5] 

  

10 20 30 40 50 60 70

In
te

n
s
it
y
 [
a

.u
.]

2theta

 5CoSiO2

 2CoSiO2

 0.8CoSiO2

 0.5CoSiO2



79 

 

Figure 5.3: (a), (b) TEM images of Blank Silica aerogel, (c) 0.5(mol)% CoSiO2, (d) 2(mol)% 

CoSiO2, and 5(mol)% CoSiO2 
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Figure 5.3 shows the TEM micrographs of as prepared blank silica and 0.5(mol)% cobalt loaded 

silica samples. TEM pictures clearly indicate the mesoporous nature of all the materials and 

irregular pore structures present in the matrix which is in agreement with very high surface area 

values we obtained for these silica samples. According to the size determination using TEM, 

finely dispersed, about 1-2 nm sized dark spots could be observed all over the silica matrix of all 

the Co-SiO2 samples we studied (figure 5.3(c), (d) and (e)). Slight increase in the frequency of 

these dark spots could be observed with increasing cobalt loading confirming the dark spots 

originates due to loaded cobalt. Furthermore, it is expected to see cobalt sites dark compared to 

that of silica due to higher electron density of cobalt. Moreover, the presence of these small 

particles in TEM, but their absence in the XRD spectra suggests that they are not pure cobalt 

oxide nano particles, but are probably cobalt oxide-silica composites without much crystallinity. 

[5, 6] 

Diffuse reflectance UV-vis spectra indicate peak patterns correspond to cobalt oxide states 

present in the system with absorptions in 400 nm to 700 nm range with peak absorptions at 520 

nm, 581 nm and 648 nm wavelengths. Similar results have been reported by Stanislaw Dzwigaj 

and coworkers, based on their studies of cobalt catalyst supported on Si and reported that the 

obtained peak maxima belongs to isolated tetrahedral cobalt species and attributed to 4A2 4T1 

(4P), 4A2
4T1 (4F) and 4A2 4T2 transitions respectively.[7,8]. An additional shoulder peak is 

present around 478 nm in our 0.5(mol)% Co-SiO2 sample. In line with earlier studies this low 
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intense peak is evidence for octahedral Co2+ which is attributed to the 4T1g(F) 4T1g(P) 

transition [9]. 

UV-vis absorption spectra of pure Co3O4 has two characteristic broad peaks around 300 nm -500 

nm region with ~400 nm peak maxima which occurs due to charge transfer transitions O2-  

Co2+ and O2-  Co3+ and Co(III) in an octahedral site: 1A1g  1T2g, and 600 nm - 800 nm region 

with 700 nm peak maxima which is usually assigned to Co(III) in an octahedral 

site:1T1g
1A1g.[10-13]. Even though the characteristic second band centered about 650 nm cannot 

be identified in our spectrum, the broad peak present around 300 nm to 400 nm could be 

assigned to highly dispersed Co3O4 species.[10,11,14].  Furthermore, in accordance with L.F. Liotta 

and co-workers, Co(II) ions could migrate into the silica lattice forming octahedral and 

tetrahedral Co(II) sites, as we suspected during our XRD studies,[15] while some of the Co(II) 

atoms may oxidize to Co (III) during the calcination step carried out in air due to the presence of 

atmospheric oxygen, giving rise to the broad absorption peak at 300 nm- 400 nm region.[14]. 

Figure 5.4: Curve fitted DR UV-vis spectra of 0.5(mol)%Co-SiO2 catalyst 
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catalysis. The as prepared catalyst has a dark blue color and special textural properties. UV-vis 

absorption studies show a corresponding peak pattern of the as prepared sample which we 

discussed earlier in this text. According to further UV-vis studies, the catalyst before calcination 

has a crude absorption pattern due to the presence of various oxidation states and left over 

precursor materials. During the calcination, the catalyst seems to generate corresponding active 

state which is responsible for the catalysis as evidenced by UV-vis spectra obtained for the as 

prepared catalyst. But, upon exposure to the pollutant the catalyst changes its color from dark 

blue to dark green instantly. This color change could occur due to the absorption of acetaldehyde 

or due to some changes in the oxidation state of the cobalt due to catalytic activity.  

One interesting feature of 0.5(mol)% Co-SiO2 catalyst is its ability to re-gain its original color 

and texture spontaneously within about two weeks after catalytic reaction. Studies carried out 

later revealed that the catalyst could be regenerated quickly simply re-calcining the reacted 

sample. UV-Visible spectra in figure 5.5 clearly show the regeneration ability of the catalyst 

which is an added advantage of reusability of the catalyst.  

Figure 5.5: DRUV-vis spectra of (a) 0.5(mol)%Co-SiO2 sample before calcination, (b) after 

calcination at 500 
o
C, (c) After catalytic reaction upon exposure to acetaldehyde, (d) re-

calcined sample after catalysis. 
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The 0.5(mol)% Co-SiO2 sample was characterized using XPS spectroscopy in order to further 

confirm the electronic states and the environment of cobalt present in the as prepared system and 

to study any changes of oxidation states due to the catalytic oxidation process.[16]  

After careful analysis of obtained XPS spectra, characteristic Cobalt 2P3/2 and 2p1/2peaks could 

be identified for both samples. But, these spectral peaks are common for all the possible cobalt 

states. Thus, a more detailed analysis is important to understand the real state of cobalt. Table 1 

gives the binding energy of the Co 2p3/2 peak and the difference in binding energy between the 

Co 2p1/2 and the Co 2p3/2 peaks of possible cobalt states.[17]  

Table 5.1: XPS binding energy values for known cobalt oxides 
[17]

 

Sample Binding Energy (eV) of 2p3/2 ΔE (Co 2p1/2 − Co 2p3/2) (eV) 

Metallic Cobalt 777.8 15.0 

CoO 780.5 15.7 

Co3O4 780.1 15.0 
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The experimental value obtained for the binding energy difference between two main peaks is in 

good agreement with the ΔE value of Co(II) reported in the table 1 in both as prepared sample 

and after catalysis. Both samples show spectral peak splitting of 15.8 eV indicating the presence 

of Co(II) state both before and after the catalytic process.[17,18] Satellite peaks can be identified in 

both cases as well. According to the reported XPS data, satellite peaks positioned at nearly 6 eV 

above the main peaks Co 2p3/2 and Co 2p1/2 indicates the presence of Co(II).18,19] On the other 

hand, Satellite peaks are not present in Co 2p spectrum of normally diamagnetic and low-spin 

Co(III) in Co2O3. But, Co3O4 is a combination of the two oxides CoO and Co2O3, its spectrum is 

usually described by the combination of the contributions of these two oxides with a ratio 

Co(II):Co(III) =1:2.  Therefore, Co3O4 species also produce satellite peaks with nearly 6 eV 

above the main peaks making it difficult to distinguish between CoO and Co3O4 states. But, the 

intensity of satellite peaks in Co 2p spectrum of Co3O4 is expected to be low due to lower 

amount of Co(II) present in Co3O4 state while CoO state 100% Co(II).[19]  

The XPS spectra of Co 2p region on as prepared catalyst have lower Co 2p3/2 electron binding 

energy than the reported value of free Co3O4 and the binding energy difference listed in the table 

above (ΔE (Co 2p1/2 − Co 2p3/2)) does not match the ΔE value of Co3O4. But, careful comparison 

of XPS spectra obtained before and after catalysis shows increase intensity in the satellite peaks 

for the sample after the catalysis process. Therefore, consistent with the above explanation about 

the satellite peaks of Co3O4 and CoO we can conclude that some of the Co(III) sites present in 

the as prepared catalyst has reduced into Co(II). Moreover, this result confirms DRUV-vis 

observations about Co(III) species present in the system and give evidence about the active 

catalytic site of the 0.5(mol)% Co-SiO2 catalyst.  
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Figure 5.6: (a)Curve fitting of XPS Co 2p spectrums of  as prepared Co-SiO2 catalyst. (b) 

Curve fitting of XPS Co 2p spectrums of  Co-SiO2 after catalysis. Satellite peak intensity 

increase significantly after the catalytic process 
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5.3.1.  Kinetics of catalytic degradation 

As discussed earlier in chapter 3, 0.5(mol)% cobalt loaded silica system show interesting dark 

catalytic activity. The catalyst does not require any light source to initiate or maintain the 

reaction. One interesting observation unique to the Co-SiO2 catalyst is conversion of almost all 

the acetaldehyde present in the system into CO2 within first 40 minutes of the reaction. But, after 

the first 40 minutes of the reaction no additional CO2 production occurred. This can be due to 

two main reasons; lack of reactants or the catalyst deactivation. According to reaction scheme 

(1), continuous supply of oxygen is important to continue produce CO2. But, the reactor system 

used for the kinetic studies is a closed system and has a limited amount of oxygen. To study the 

reason for CO2 leveling off, several dark catalytic experiments were carried out by injecting 

more acetaldehyde and oxygen. The results are shown in figure 5.7.     
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Figure 5.7: Detailed kinetic studies of 0.5(mol)% Co-SiO2 system with (a) added 

acetaldehyde and (b) added  oxygen 
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According to Figure 5.7, the reason for the carbon dioxide leveling off is not the poisoning of the 

catalytic sites but the lack of reactants. Detailed study of figure 5.7(b) shows that after the first 

catalytic cycle when acetaldehyde is introduced into the system, CO2 production doubled and 

again leveled off. Since the reaction stopped after reaching nearly double the amount of CO2, 

another 100 μL of acetaldehyde was introduced to observe the catalytic performance (figure 5.7 

(b)).  But, the third cycle did not produce an equal amount of CO2. Even though another 100 μL 

of acetaldehyde was added, no increase in carbon dioxide could be observed. But, when 20 mL 

of pure oxygen was introduced, the system started producing CO2 again. 

The catalytic performance of Co-SiO2 catalyst was further studied to estimate the total amount of 

acetaldehyde that it can convert into CO2. During this study, the same Co-SiO2 sample was used 

throughout the experiment. After constant CO2 levels were obtained, the reactor set-up was 

opened and flushed with air to refresh the system and re used the same catalyst with new 200 μL 

acetaldehyde sample. The results obtained by this study are indicated in the figure 5.8.  
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The results show that the catalytic activity of Co-SiO2 upon degradation of acetaldehyde is 

extremely fast and stayed active throughout all the 13 reaction cycles that were studied. This 

whole experiment was carried out continuously for three days. The catalyst remained active, and 

CO2 production continued, with a small decrease in the third day. Turnover number and the rate 

of catalysis was also calculated using the experimental data and discussed earlier in the chapter 

3. 

After confirmed strong catalytic activity of Co-SiO2 catalyst towards acetaldehyde, a new set of 

experiments were carried out to study the activity of the same catalyst on degradation of other 

types of pollutants which are much more difficult to oxidize compared to that of acetaldehyde. 

Therefore, catalytic oxidation of series of aldehydes, propanaldehyde, 2,2-

dimethylpropanaldehyde, and benzaldehyde, was studied using Co-SiO2 catalyst.   

Figure 5.9: Catalytic degradation of propanaldehyde. 
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Figure 5.10: Catalytic degradation of tert-butyl aldehyde as followed by CO2 evolution. 

 

Figure 5.11: Catalytic degradation of benzaldehyde as followed by CO2 evolution. 
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The results obtained are indicated in figure 5.10 above. The amount of CO2 produced was less 

compared with that of acetaldehyde. However, the catalyst was moderately active and only 

benzaldehyde was resistant. But, when compared to acetaldehyde, all the other model pollutants 

have higher boiling points which are an important factor in our system design. In order to oxidize 

the pollutant, it must be able to get into the gaseous phase in order to contact the catalyst surface. 

Thus, when benzaldehyde was studied at slightly elevated temperature (50 oC), CO2 production 

increased with time.  

  Mechanism of catalytic activity 5.4.

It is important to understand the mechanism of the catalytic cycle of the Co-SiO2 catalyst in 

order to further improve the catalyst and enhance performance. More studies are probably 

needed, but a general mechanism can be proposed based on the evidence available (Figure 5.12).  

According to our characterization studies using XPS and UV-Vis data, cobalt as Co(II) and 

Co(III) are both present. It has been shown earlier that both Co(II) and Co(III) oxidation states 

have ability to work as reactant binding sites. According to the studies carried out by Jansson and 

co-workers, Co(III) plays the active role in absorbing CO, while, Pollard and co-workers claimed 

the absorption of CO onto both Co(II) and Co(III) sites in Co3O4 clusters based on their IR 

studies.[20-22]  

Figure 5.12: General mechanism of the 0.5(mol)% Co-SiO2 catalyst 
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Even though our IR studies did not show any carbonyl stretching frequencies after the binding of 

acetaldehyde onto the catalyst (Figure 5.13), we did observe an increase in the peak area of 

satellite peaks in our XPS spectra which, usually occur due to increased Co(II) sites. This 

suggests that Co(III) site is the binding site. This is reasonable considering higher positive charge 

compared to that of Co(II). The bound pollutant could be oxidized at the Co(III) site using an 

oxygen in the lattice reducing Co(III) site in to Co(II). The reduced cobalt can be then re 

oxidized by gas phase oxygen after desorption of CO2.[22,23] But, it is still unclear whether the 

oxidation catalytic process degrade the whole pollutant molecule or just the carbonyl group of 

the molecule. More detailed experiments such as studies with other types of organic pollutants as 

well as Isotopes labeling studies will be beneficial to further clarify the catalytic behavior of this 

highly active system.  

Figure 5.13:  Diffuse Reflectance IR studies of 0.5(mol)% CoSiO2 catalyst (a) As prepared 

(b) after the catalysis 
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  Summary 5.5.

In conclusion we have discovered a very active oxidation catalyst based on cobalt and silica 

aerogels. Characterization studies revealed that the catalyst has a high surface area and consists 

of Cobalt(II) as well as Co(III) oxidation states. Even though it is not yet very clear how the 

pollutant binds to the catalyst, according to XPS studies the most likely binding site in the 

system is Co(III) site as indicated by the XPS satellite peaks. This 0.5(mol)% Co-SiO2 system 

has shown excellent catalytic oxidizing ability towards all the pollutants that we have tried so far. 

Based on the available observations, a general catalytic mechanism is proposed.  
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Chapter 6 -  Photocatalysts for Elimination of Toxins on Surfaces and 

in Air Using UV and Visible Light 

Abstract 

Among the materials that have been studied to eliminate harmful air pollutants, photocatalytic 

systems get a high priority due to the use of clean, renewable, solar energy to drive the reactions 

involved. 

Various types of photocatalytic systems have been reported for the degradation of harmful air 

pollutants. Most of the reported systems are based on semiconducting materials. Titania (TiO2) is 

the most widely studied semiconducting compound in photocatalysis. Various types of 

modifications to titania systems have been reported to achieve visible light activity. Not only 

semiconducting systems but also insulating materials have been studied. The exact mechanism of 

photoactivity is still an ambiguity for insulator based photocatalytic systems. But, some reports 

suggest that photocatalysis occurs at the molecular orbital level, which generate reactive 

electron-hole pairs which then drive the chemical decomposition of pollutants. 

Herein, a comparison of these types of photocatalysts is made. 

  Introduction 6.1.

Over the last several decades there has been great concern about environmental pollution due to 

the fact that it is one of the primary causes for various health problems as well as for possible 

changes in the global climate. Generally, environmental pollution can be defined as 

contamination of air, water and land due to manmade waste and can be divided into three major 

groups; air pollution, water pollution and soil pollution. From these three major groups, air 

pollution has received the attention of many researchers due to the seriousness of the impact on 

climate change, acid rain, smog, and human and animal health. Air pollution can be sub grouped 

in two main categories; as indoor and outdoor. Both categories are equally important as they can 

create very unhealthy conditions to humans as well as to animals and plants.[1] 

These environmental problems are related to energy use, and clean renewable energy is needed, 

such as solar energy, wind, geothermal, etc. Out of all these renewable energy sources, solar 

energy has the most potential. In fact, it has been calculated that the amount of solar energy 

arriving at the earth’s surface in a minute is sufficient to meet the energy demand of the world 



97 

 

for a year. But, the lack of efficient solar energy harvesting and storing methods is one of the 

main drawbacks that we face. So, there are thousands of researchers around the globe 

experimenting on efficient methods to harvest and store solar energy. Solar energy can be used to 

heat, or to produce electricity. Solar energy can also be converted into chemical energy or can be 

used to catalyze important reactions.[2] 

Photocatalysis is one of the very successful and active areas of research that have provided 

important ways to harvest readily available solar energy to destroy harmful organic air 

contaminants to overcome environment pollution. Usually, any chemical reaction requires a 

certain amount of activation energy to initiate the reaction. In normal chemical reactions the 

activation energy will usually be supplied by simple methods such as heating, mechanical 

stirring, etc. But, in photochemical reactions, light is used for this purpose. Upon exposure to 

certain wavelengths of light, photocatalytic material can be used to catalyze specific chemical 

reactions based on the oxidation and reduction potentials of the photo generated charge carriers. 

Thus, in photocatalytic reactions, the catalytic material plays an intermediate role in absorbing 

light energy and promoting desired chemical reactions. According to the literature, various 

photocatalytic materials have been employed to drive water splitting to produce hydrogen and 

oxygen gases, mineralizing harmful organic pollutants, as well as to remove organic dye 

molecules from industrial effluents. Even though, there are many materials that have been 

reported, the number of materials that have become successful on an industrial scale is very 

limited.[3]  

There are various factors that determine the efficiency of a photocatalyst. These are efficiency of 

charge separation, energy range of the solar spectrum suitable for the excitation of the material, 

optimum intensity of the light photons, environment of active sites, etc. Usually, during the 

preparation of photocatalytic materials the energy levels of the conduction and valance bands of 

the materials are modified, or the chemical environment of the active site is changed by doping 

with suitable doping agents. These changes to photocatalytic systems usually enhance the light 

absorption, electron hole pair generation and the overall activity. Surface acidity is another 

important factor that determines the specificity, efficiency and the mechanism of action of a 

photocatalytic material. For example, acidity of titania based materials is strongly related to the 

amount of surface hydroxyl groups present on the surface and these groups play a major role in 
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trapping photo generated holes and thereby decrease the recombination of electron hole pairs, 

which in turn increase the quantum efficiency of the photocatalyst.[4] 

Most of the successful photocatalytic materials that have been reported consist of a supporting 

base material. Usually compounds such as zeolite, titania and silica are popular as successful 

base materials due to their high stability under high temperature and pressure conditions, low 

toxicity, low cost and the ability to obtain various physico-chemical properties simply by 

changing particle dimensions. Usually the supporting material facilitates the catalytic activity of 

the catalytic site by enhancing charged carrier separation, providing reduced electron hole 

recombination and facilitating charge transfer to an adsorbed species.[5] 

On the other hand, most of the catalytic systems reported in the past are primarily based on at 

least one semiconducting base material. Semiconducting materials are required to obtain good 

photocatalytic activities due to the ability of semiconductors to create reactive electron hole pairs 

upon irradiation of UV or Visible light. But, whether comparable photocatalytic activity can be 

obtained without using semiconducting base materials is an important question that still remains 

unanswered. Thus, it is very important to directly compare other available options, such as 

insulators based materials, in order to determine the photocatalytic activities of these materials. 

  Titanium Dioxide Based Photocatalysis 6.2.

Titanium dioxide photocatalysis is the most studied and well understood photocatalytic system. 

Thus, studying the mechanistic details of how titania behaves is important. Titanium dioxide, 

also known as Titania, is a white colored compound that is widely used as a photocatalyst, 

catalytic support, sensor material, and hydrogen adsorber. Titania is a semiconductor with a band 

gap of 3.2 eV, and has been shown to promote mineralization of organic pollutants, water 

splitting, and carbon dioxide reduction upon exposure to UV light. Titanium dioxide occurs in 

nature in three well-known mineral forms known as anatase, rutile and brookite. Among these 

mineral forms, anatase typically exhibits higher photocatalytic activity than the other two forms. 

But, in some cases it has been reported that even higher photocatalytic activity is possible with 

precise mixtures of both anatase and rutile. One such example is commercially available Degussa 

P25 TiO2, which consists of 80% anatase phase and 20% rutile phase. Because of a relatively 

wide band gap, titania absorbs light corresponding to wavelengths shorter than 388 nm, which is 

only 3-4% of the solar energy that reaches the earth. Thus, in principle, photocatalytic activity 
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should be enhanced by adjusting the band gap toward visible light energies by doping, since 

visible light is readily available in the solar spectrum. Doping has been carried out in earlier 

research using various methods and materials. Common doping materials used have been 

inorganic compounds, noble metals, transition metal oxides, organic dye molecules, anionic 

compounds etc.[5,6,7]  

  Non-Metal Doping  6.3.

Doping with various non-metallic compounds has been carried out to obtain visible light 

photoactivity of titania photocatalysts usually by introducing new energy states in between the 

band gap. Low-band gap, nitrogen modified titania based visible light photocatalysts prepared by 

Kisch and coworkers and Panayoto and coworkers are good examples of photocatalytic materials 

based on titania that has been doped with non-metallic material. According to these reports, 

nitrogen doped titania photocatalyst clearly shows an intense band-to-band absorption in the 

range of 400-500 nm visible range of the solar spectrum, which brings the modified band gap of 

titania to 2.46 - 2.20 eV and very high photocatalytic activity towards formic acid mineralization 

under visible light (figure 6.1).[8,9]  

Figure 6.1: Diffuse reflectance spectra of (a) TiO2, (b) TiO2-N, (c) TiO2-N1 calcined 1 h, 

and (d) TiO2-N2 calcined 0.5 h.
[8]
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Tang and coworkers also reported on highly crystalline and ordered mesoporous TiO2 thin films 

doped with carbon, synthesized via a highly cost effective route, that exhibit high photocatalytic 

activity. In this material carbon inclusion plays a major role to stabilize the framework of titania 

during thermal crystallization process. Moreover, according to their findings high crystallinity 

and ordered mesoscopic structures always help to enhance the efficiency of photocatalysis.[10] 

Figure 6.2: TEM images of a TiO2 thin film crystallized at 550 °C with pure post induced 

carbon as the confining material. The zoom-in image is also shown on the right. The inset is 

a selected area electron diffraction pattern (SAED) indexed as the anatase phase
[10]

 

 
Further, there are reports about titania based photocatalytic materials co-doped with several non-

metallic compounds. Xiang and coworkers as well as Hamal and coworkers, have separately 

reported successful preparation methods for visible light active titania photocatalysts using more 

than one non-metal.[11,12] According to the literature, doping with nitrogen and sulfur co-dopants 

can induce the formation of new energy levels in the band gap. These new energy levels result in 

visible light response of co-doped photocatalysts due to the requirement of lower energy of 

photons to generate new electron hole pairs. Under lower energy visible light irradiation, 

electrons can easily transfer from the valance band to impurity states, and the electrons in the 

impurity states can move to the conduction band after secondary excitation.[12] The density of 

states diagram represented in figure 6.3 clearly indicates the insertion of intermediate energy 

levels due to the addition of S and N.[12] 
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Figure 6.3: Total density of states for N,S co-doped TiO2 at 2.08 at.% doping levels
[12]

  

 

  Metal Doping 6.4.

Visible light photo degradation activity of titania can also be obtained by introducing various 

metals and metal oxides. Transition metals and respective metal oxides have been actively used 

in this regard due to the ability to absorb in the visible range of the spectrum, as orbital energy 

transfer usually lies in the matching wavelength range. There are a large number of reports about 

effects of metal ion doping on titania photocatalysis. Some metal ions like Co3+ and Al3+ 

decrease the photocatalytic activity while metal ion such as Fe3+, Ru3+, V4+ to enhance the 

photocatalytic activity. According to Choi and co-workers the relative photocatalytic efficiency 

of a metal-ion dopant depends on whether the metal ion serves as a mediator of interfacial charge 

transfer or a recombination center.[13]  Furthermore, they have carried out an interesting study of 

titania based photocatalysis using various metal ion dopants to study the effect of each dopant on 

visible light photocatalytic activity of titania prepared by the well-known sol-gel method.[13] 

According to the findings of Choi and co-workers, the ionic radii of the dopant metal ion play an 

important role in the final structure of the photocatalytic material and have a direct effect on the 

photoactivity. The final structure of a doped photocatalyst is highly affected by the nature of the 

doped metal ion and its size. Usually, metal ions such as Pt4+(0.765 Å), Cr3+(0.755 Å), and 
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V3+(0.78 Å) ions, which have similar ionic radii to Ti4+(0.745 Å) ions in titania, are most likely 

substituted in the titania framework with less amounts of distortions, thus forming favorable 

structures. In contrast, metal-ion dopants such as Co2+(0.89 Å), Cu2+(0.87 Å) and Pt2+(0.94 Å) 

ions usually end up located in interstitial positions of the titania lattice, rather than directly in 

Ti4+ sites, because of the relatively large size difference between dopant ions and Ti4+. Also, 

much larger dopant ions such as Ag+, Rb+, Y3+ and La3+ ions do not get incorporated in the 

titania framework due to the larger size variation between the metal ion and Ti4+. Thus, they are 

more likely to be found as dispersed metal oxides within the crystal matrix or dispersed on the 

surface of TiO2.[13] 

Usually, visible light activity in metal ion doped titania aerogels can occur due to two main 

reasons. (1) the excitation of electrons from the dopant ions to the conduction band of titania 

(i.e., a metal to conduction band charge transfer) or (2) defects associated with oxygen vacancies 

that give rise to colored centers, or a combination of both. However, the changes that occur to 

titania due to dopant metals can be clearly identified using diffuse reflectance UV-Vis studies, as 

reported by Choi and coworkers (figure 6.4). According to their observations there is no 

significant difference between the absorption spectra of pure titania and Ag, Rb, Y and La ion 

doped titania samples, since these larger ions did not incorporate into the titania framework 

(spectra are identical to undoped TiO2). But in figure 6.4 a,b,c it is very clear that the metal ions 

of similar size as Ti4+ have successfully been incorporated into the matrix of titania creating 

additional bands which induce absorption in the visible range of photons.[13,14] 

Figure 6.4: UV-Vis diffuse reflectance spectra for various Metal-TiO2 samples. Absorption 

spectra for Ag
+
, Rb

+
, Y

+
, and La

+
 TiO2 samples, which are not shown here, are identical 

with that of undoped TiO2.
[13]

 

   
Rates of the mineralization of various organic pollutants using photocatalysis have been obtained 

by many researchers. Titania based photocatalysts have been employed mainly in oxidation 



103 

 

catalysis. There are reports about polymerization mechanisms and reduction mechanisms as well. 

According to the collective results of photocatalytic activities of titania reported in the literature, 

metal ion doping seems to be not important under UV light, as the increases in the activity 

compared to pure titania based samples are very small. Under UV light irradiation, the majority 

of the reactive species are created by semiconducting titania itself. But when it comes to visible 

light active titania photocatalysts, doping agents play an important role by introducing additional 

energy levels within the band gap of titania, introducing trap states and by stabilizing the titania 

framework.[13,14,]  

The next topic to be discussed is the chemistry that photocatalysts induce. The study of hydroxyl 

radical generation upon exposure to UV light is widely used to confirm the mechanism of 

photocatalytic activity of titania based photocatalysts.[15,16,17] According to the reported results of 

hydroxyl radical detection experiments, titania based samples clearly indicate the formation of 

hydroxyl radicals upon exposure to UV light and Visible light (figure 6.5). 

Figure 6.5: Fluorescence spectra obtained for the supernatant liquid of the irradiated TiO2 

suspension containing terephthalic acid at various irradiation periods PL spectral changes 

with irradiation time under UV and Vis light
[15,17]

  

 
Since titania is a semiconducting pigment, its valence electrons can be promoted into the 

conduction band, resulting in the formation of an electron-hole pair upon irradiation with suitable 

light. But, the created electron hole pair needs to be spatially separated in order to allow the 

formed electron hole pair to undergo chemical reactions. In titania, charge carrier recombination 

is usually avoided by immobilizing the created excited electron or hole or both in the trap states 

available in between the conduction and valance bands.[7] Formed excited electrons usually have 

a higher effective mass compared to the holes, and moderate reduction potential. So, electrons 
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tend to remain in their free state or in some cases get trapped at the surface. On the other hand, 

holes usually have high oxidation potential and get trapped at the semiconductor surface. Usually 

a light excited hole can follow two paths. The holes either oxidize the hydroxyl groups available 

on the surface of titania to produce hydroxyl radicals, or oxidize lattice oxygen atoms from -2 to 

0 valence state to create oxygen vacancies in titania. Therefore, in supported photocatalytic 

materials titania plays two major roles by itself providing a support to the system as well as 

providing active catalytic sites. Thus, the entire material is involved in photocatalysis, making 

the photocatalysis process non-localized.[18] 

Therefore, according to the general mechanism of titania based photocatalysis, upon exposure to 

UV light positively charged holes and negatively charged electrons will be created in valence 

and conduction bands of titania respectively as described by Eq1.  

TiO2 + hν → TiO2 (e- and  h+
) ……..……… Eq 1 

h+
vb  →  h+

trap  ……………………………….……… Eq 2 

O2 + e─ → O2˙
−………………………… …………… Eq 3 

In the second step positively charged holes will be trapped by surface hydroxyl groups of titania 

generating reactive hydroxyl radicals (Eq2). In the meantime negatively charged electrons in the 

valence band can interact with oxygen gas to generate reactive oxygen species (Eq3). The 

oxidation ability of •OH radicals is very high so that they can easily react with various organic 

pollutants according to various reaction schemes.[15,19] 

O2˙
− + O2˙

− + 2H+  →  H2O2 + O2   
…………. Eq 4 

 O2˙
− + h+

vb  →  O2 ……………………………..… Eq 5  

O2˙
− + h+

trap  →  O2 …………………………….…. Eq 6 

OH− + h+
vb → OH˙  ………………………………. Eq 7 

OH˙   OH˙  → H2O2  …………………….….…… Eq 8 

e─   h+
trap  → recombination ……………….….. Eq 9 

Even though the above equations explain the behavior of semiconducting titania under UV light, 

the photocatalytic mechanism must be slightly modified when explaining visible light activity of 

metal/non-metal doped titania photocatalysts. There are various ways that doped metals/non-

metals help improve the visible light photocatalytic activity. The most popular way of inducing 

visible light activity in a titania network is by introducing new localized electronic states and 
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surface structures. These changes to the titania network can eventually change the electronic 

structure, absorption properties, redox potential and charge carrier mobility of the photocatalyst 

etc. Introduction of such energy states and surface structures in the band gap induces a red shift 

in the band gap and visible light absorption through charge carrier transfer between a dopant and 

conduction band (CB) or valence band (VB) or a d—d transition in the crystal field[24]. The 

charge transfer transition between transition metal ion 3d electrons and conduction band of 

titania is known to be responsible for the red shift evident in UV-Vis spectra of most of the 

transition metal doped titania samples.[20-24]  

According to the studies carried out by Umebayashi and co-workers, for transition metal doped 

titania photocatalysts two types of electron transitions are possible (Figure 6.6). The first 

transition is a donor transition from the metal t2g level into the CB which can be explained using 

Eq10, and the other transition is the acceptor transition from the VB to the metal t2g level given 

by Eq11.[23] 

Charge carrier generation: 

Mn+   hν→ M(n+1)+  + e─ CB  …………………… Eq 10 

Mn+ + hv → M(n-1)+  + h+ VB   …………..……… Eq 11 

Figure 6.6: Schematic diagram to illustrate the photoexcitation process under visible light 

of the metal-doped TiO2: (a) Chromium doped Titania, (b) Vanadium doped Titania, (c) 

Manganese doped Titania
[23]

 

 
Furthermore, doped metal ions can also enhance the efficiency of TiO2 by providing electron (or 

hole) trapping/defect sites and thereby decreasing generated electron hole pair recombination 

when the energy levels for Mn+/M(n-1)+ lies below the conduction band edge and the energy level 

for Mn+/M(n+1)+ above the valence band edge. This can be illustrated using the following 

equations.[17,21,23] 

Charge trapping: 



106 

 

Ti4+ + e− → Ti3+   ………………………….……….……   Eq 12 

Mn+   + e─ → M(n-1)+  ………………………….….……   Eq 13 

Mn+   + h+   → M(n 1)   …………………..………..…..    Eq 14 

OH− + h+ → OH• …………….………………..……..…   Eq 15 

Therefore, considering all the possible effects of doped transition metals and as well as according 

to the mechanism proposed by Devi and co-workers, it is possible to explain the enhanced visible 

light photocatalytic activity of metal ion doped Titania photocatalysts. The following equations 

explain the remaining steps during a photocatalytic decomposition of organic pollutants.[20]  

Charge release and migration: 

Ti4+ + M(n−1)  → Ti3+ + Mn+ …………….……..…   Eq 16 

M(n+1)+ + OH− → Mn+   OH˙ ………………..…..   Eq 17 

Recombination: 

e− + h+ → heat ……………………………...…….……. Eq 18 

Ti3+  OH˙ → Ti4+ + OH− ………………..……..…   Eq 19 

M(n−1)  + h+ → Mn+ …………….…………………..… Eq 20 

M(n−1)    OH˙ → Mn+ + OH− ………….……..…   Eq 21 

M(n+1)+ + e− → Mn …………….….............…..……..…Eq 22 

M(n+1)+ + Ti3+ → Mn+ + Ti4+ …………….……..…  Eq 23 

Interfacial charge transfer process: 

e− (or Ti3+, M(n−1) )   O → O− …………..………  Eq 24 

h+ (or  OH•, M(n+1)+)   R → R+ ………………..…  Eq 25 

  Photocatalytic Mineralization of Organic Pollutants with Titania 6.5.

Based Mixed Oxide Supports 

Even though pure titania and titania with small amounts of various dopants have been successful 

in photocatalysis, they are not the only materials that show high photocatalytic activities. 

According to the article by Cheng and coworkers the photocatalytic efficiency of titania based 

materials can be enhanced by introducing secondary materials such as silica.[24] Interestingly, 

there are many reports that discuss enhanced activity of titania when associated with another 

metal oxide such as silica, zirconia, etc.[4] Examples for other such metal oxide combinations 
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reported are ZrO2/TiO2, WO3/TiO2, SnO2/TiO2, ZnO/TiO2, PbS/TiO2, Al2O3/TiO2, CdSe/TiO2, 

and SiO2/TiO2 .[19,24]  

Mixed metal oxides help promote photocatalytic activity in various ways. In some cases the 

binary material was used as a solid acid support for titania based systems to improve the 

absorption of reactants and thereby to increase the concentration of reactants near the active 

centers of the catalysts.[19,24]   

The mixed oxide system of silicon dioxide with titanium dioxide has been widely studied as 

compared to other reported systems because of the promising properties of silica. Silica materials 

are nontoxic and able to provide high surface area to the photocatalyst, acting as a carrier of 

titania, and helps produce suitable pore structures to favor photocatalytic activity. Moreover, the 

increased photocatalytic efficiency arises due to the improved adsorption of reactants and the 

concentration of the reactants near the active centers of mixed silica/titania catalysts. [19,24] 

According to the findings of Anpo and co-workers, when titania is finely dispersed on another 

support surface, higher photocatalytic activity is observed due to the decreased non-radiative 

transfer of light energy absorbed by titania. Also, when titania is dispersed on the surface of 

other types of supporting materials, the presence of coordinately unsaturated surface titania sites 

are promoted compared to that of bulk titania which makes the mixed titania system perform 

better in photocatalysis.[25,26] According to another interesting study carried out by Anpo and co-

workers, titania supported Alumina mixed oxide systems  show enhanced photocatalytic 

activities due to the formation of surface layers where titania species are surrounded by the 

Al2O3 carrier, which acts as co-catalyst for the respective reaction.[26,27] 

Use of TiO2-SiO2 mixed oxides doped with transition metal ions to achieve visible light 

photocatalytic activity has also been reported.[28]  
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Figure 6.7: The modal pollutant, Acetaldehyde, photocatalytic oxidation by 0.5 mol% Cr 

loaded mixed SiO2 and TiO2 photocatalysts with varying SiO2 and TiO2 ratios
[28]

 

 
The 0.5% chromium loaded mixed silica and titania system and the 100% silica based systems 

show very high photocatalytic activities under visible light compared to all the other systems. 

Further, according to figure 6.7, which compares the effect of different ratios of silica and titania 

on kinetic activities under visible light, higher photo degradation takes place when more silica is 

present.[28]  

Enhanced reactant specificity is not the only factor affected using mixed oxides. The formation 

of new trapping or recombination centers can be found upon addition of a foreign material to a 

semiconducting compound such as titania. According to XPS characterization experiments 

(figure 6.8) carried out by Anpo and coworkers, clear shifts of Ti(2p3/2) and Si(2p1/2) peaks were 

observed for varying ratios of titania and silica photocatalytic samples. The shift towards the 

higher binding energy values occurs due to smaller relaxation energy for highly dispersed titania, 

compared to that of the bulk. Because of the higher dispersion a large number of coordinative 

unsaturated titania sites are present on the surface, which results in high photoactivity.[25,26]   
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Figure 6.8: XPS signals for titanium-silicon oxide catalysts at 298 K.
[25]

 

 

Anderson and Bard have reported a mechanism to explain the enhanced photocatalytic activity of 

mixed oxide systems based on titania prepared by sol-gel methods (Scheme 1). Even though they 

have not considered all the possible effects of mixed oxides, they have been able to address the 

complex puzzle of mechanism of activity up to a certain extent. During the photocatalytic 

reaction titania behaves as the photocatalytic center, which absorb photons and create reactive 

electron hole pairs and thereby generate reactive hydroxyl radicals. Supporting silica or alumina 

provide efficient absorption sites closer to photoactive titania sites and help increase the overall 

photoactivity of the system.[26]   
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Figure 6.9: Schematic representation of the TiO2/SiO2 or TiO2/Al2O3 photocatalyst with no 

interaction between the TiO2 and SiO2 or Al2O3 phases.
[26]

 

 

  Silica Based Photocatalysis 6.6.

For many years titania has been recognized as the most useful photocatalyst and various types of 

applications have been developed. But, recent research has focused more on photocatalytic 

systems other than titania. Some experiments of this kind have focused on various types of 

semiconductors, while some dealt with the use of different insulating materials.[29] 

Compared to the reported titania based photocatalytic systems the number of insulator based 

materials are small in number. But, some of these reported systems have shown interesting 

photocatalytic activities towards removal of harmful air pollutants. Herein we will discuss 

several such materials and their special structure and function related properties. In most of the 

reported literature, photoactive sites of insulator based photocatalysis occur due to the presence 

of highly dispersed metal oxide species of quantum size. But, according to the findings of 

Yoshida and coworkers it is possible to obtain photocatalytic abilities because of the presence of 

surface quantum defects on silica surfaces.[29] When photocatalysis occurs due to the presence of 

quantum defects, the usual electron hole pair generation mechanism is somewhat different from 

that of a semiconducting material. Usually when silica is loaded with highly dispersed metal 

oxides, photoexcitation occurs as shown in the scheme 2a. Quantum defects on the silica surface 
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can allow photoexcitation to occur in a similar manner. According to scheme 2a, photoexcitation 

occurs on a molecular orbital level. Upon exposure to a desired wavelength of photons, an 

electron in the ground state of the M-O bond is excited to an unoccupied singlet orbital state. 

Later, this singlet state can be transferred into the triplet state via intersystem crossing, if 

available. Scheme 2b is an illustration of electron-hole pair generation upon exposure to certain 

photons of energy. The metal oxide species have been represented as a tetrahedral MO4 

arrangement.[30] 

Figure 6.10: (a) Photoexcitation in a quantum photocatalyst, (b) an illustration of 

photoexcitation state of active sites on a silica-based photocatalyst on which the exciton is 

localized
[30]

  

 
The photoactive sites on silica materials such as FSM-16, MCM-41 and sol-gel prepared SiO2 

have been revealed by various spectroscopic techniques. According to the observed results active 

sites were generated on silica material by dehydroxylation of surface isolated hydroxyl groups at 

high temperatures above 673K as indicated in scheme 3. According to FTIR studies, catalytic 

active sites could be recognized as ‘strained siloxane bridges’. Active sites of each silica material 

were common and showed similar activities. But the efficiency varies from one silica material to 

another due to the amounts of active sites present in each material.[30] 

Further, according to the results obtained from ESR studies, the presence of four different 

signals, which correspond to  Si −O˙,  Si−O−O˙,  Al−O˙, and .Si  w ere observed. Further 

collective use of IR and ESR results suggested the reaction in scheme 3a. The reaction at scheme 

3b occurs according to the charge transfer transitions at 258 nm wavelength, which occurs from a 

bonding orbital of Si-O to 2P nonbonding bridging oxygen. Thus, the photosensitivity of silica 
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materials arises because of the light sensitivity of this reaction that can be photoexcited under 

UV light below ≈390 nm.[30,31] 

Figure 6.11: Photocatalytic active sites generation mechanism in pure silica based 

materials
[30]

 

 
On the other hand, introduction of suitable dopant elements to the silica material can enhance the 

absorption in the visible region of the spectrum because as is evident from scheme 3b, higher 

energy UV light is required in order to generate photoactive sites in silica.[30,33,34] In literature 

there are many reports about successful transition metal ions loaded silica based systems. 

Usually, the required amount of metal oxide dopants are very small as highly dispersed transition 

metal oxides tend to show enhanced oxidation abilities compared to that of highly concentrated 

photocatalysts.[30, 32, 33] 

Wang and coworkers studied the effect of various transition metal ions doping on high surface 

area silica based systems. From various transition metals (M= Co, Cr, Mn, V, Fe, Cu, and Ni) 

that were studied, cobalt and chromium were found to be the most photocatalytically active 

under visible light. Further, according to the studies of Moisii and co-workers, chromium oxides 

show promising visible light active photocatalytic performances.[ 32, 33] Further, according to in-

depth kinetic studies 0.5 (mol)% Cr loaded Silica aerogel material is able to perform best in 

mineralizing acetaldehyde into carbon dioxide (Figure 6.10).[28] 

 



113 

 

Figure 6.12: Kinetics of photocatalytic degradation of acetaldehyde using 0.1%(mol) 

chromium loaded silica, titania, mixed systems, blank samples and commercially available 

titania aerogel(P25) (a) under UV light irradiation (b) Visible light irradiation
[28]

 

 
The structure of the bound chromium site is one of the important factors when studying the 

mechanism of photocatalytic mechanism. There have been several attempts reported in literature 

to characterize the structure of isolated chromium oxide sites on silica and titania. Moisii and co-

workers carried out an interesting series of experiments to distinguish the correct structure from 

two possible structures for Cr6+ sites, one structure is dimeric oxygen bound to silica matrix 

(scheme 4a) and one oligomeric (Scheme 4b) chromate species. In most of the reports dimeric 

chromium bonding has been used to explain the structure of the Cr6+ site and the oligomeric 

structure were reported in a few cases. But, Moisii and coworkers confirmed structure 4a as the 

most favorable structure for their 0.5% Cr loaded silica xerogels using XANES and Raman 

spectroscopic studies.[ 32] 

Figure 6.13:  possible structures for the bonding nature of chromium sites to silica 
[32]

 

 
Therefore, chromium loaded silica photocatalysts should be able to generate high energy 

electron- hole pairs upon exposure to a desired wavelength of photons by exciting an electron in 

the ground state of the Cr-O bond to an unoccupied singlet orbital state.[30]  
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On the other hand, according to the recent article by Yi and co-workers, photochromism effects 

have also been proposed to play a major role in Cr6+ based photocatalytic materials. They 

observed a clear color change from purple to yellow in their SrTiO4:Cr catalyst upon exposure to 

sunlight.[34]  

Thus, the Cr6+ ions present on the surface of the sample undergo change in oxidation states due 

to the exposed light. According to the standard potentials in aqueous solutions reported by Petr 

Vany´sek and coworkers highly oxidizing Cr6+ can be easily reduced to Cr3+ ions.[35] 

Figure 6.14: Structural and oxidation state changes of Cr
6+

 loaded silica in to Cr
3+

 as a 

result of photochromism 

 
According to Pradier and coworkers, there are two possible ways for Cr3+ species to exist in the 

silica matrix due to different charge effects, either present as Cr2O3 crystallites (O = Cr-O-Cr = 

O), which are around 100Å in size, or as single chromium containing surface grafted species (-

Si-O-Cr = O).[36] Usually, the correct phase of chromia can be identified by using FTIR and XPS. 

In most of the reported highly dispersed chromia loaded silica based photocatalysts, chromia is 

present as surface grafted species.  Further, there are many reports of chromia species acting as 

very good oxidation catalysts for various organic compounds, which proves the possibility of 

generated chromia sites to act as catalytic sites for incoming air pollutants.[36-39]  

    On the other hand, there is an enhanced activity observed when silica is present compared to 

that of titania( figure 6.9). This increased photo activity may occur due to the favorable binding 

of Cr6+ to silica compared to titania. The probability of isomorphous substitution has been clearly 

predicted in the literature, and the stability of a metal ion in a tetrahedral environment 

surrounded by oxygen atoms by using Pauling criterion. Based on the ratio of ionic radii, ρ, of 

the cation and anion, the calculated value for titania and oxygen (ρ=0.515) falls out of the 

acceptable range (ρ= 0.225-0.414) of a tetrahedral coordination due to the larger size of Ti4+ 

(68pm). Therefore, the isomorphous binding of small Cr6+ (44 pm) ions to a titania matrix is 
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unlikely due to the larger distortion.  But Since the ionic radii of Cr6+ and Si4+ (41pm) is much 

closer in values, isomorphous insertion of Cr6+ into silica matrix is highly favorable.[40] 

Photocatalysis is not restricted only to semiconducting materials, but photocatalysis is also 

possible with pure insulating materials as well as with mixtures of both. Thus, it is important to 

design novel systems in order to enhance photo degradation activities in the visible light range. 

New doping agents as well as new methods of preparation will benefit the future of 

photocatalysis. 
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