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Abstract 16 

Farm size is a significant determinant of both groundwater irrigated farm acreage and 17 

groundwater irrigation application rates per unit land area.  This paper analyzes the 18 

patterns of groundwater exploitation when resource users in the area overlying a common 19 

aquifer are heterogeneous.  In the presence of user heterogeneity, the common resource 20 

problem consists of inefficient dynamic and spatial allocation of groundwater because it 21 

impacts income distribution not only across periods but also across farmers.  Under 22 

competitive allocation, smaller farmers pump groundwater faster if farmers have a 23 

constant marginal periodic utility of income.  However, it is possible that larger farmers 24 

pump faster if the Arrow-Pratt coefficient of relative risk-aversion is sufficiently 25 

decreasing in income.  A greater farm-size inequality may either moderate or amplify 26 

income inequality among farmers.  Its effect on welfare depends on the curvature 27 

properties of the agricultural output function and the farmer utility of income.  Also, it is 28 

shown that a flat-rate quota policy that limits the quantity of groundwater extraction per 29 

unit land area may have unintended consequences for the income distribution among 30 

farmers. 31 

 32 

Keywords: agriculture, conceptual models, groundwater management 33 

 34 
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 36 

1. Introduction 37 

Theoretical models of groundwater extraction typically assume that the resource is non-38 

exclusive or that the resource users are identical.  This, along with the assumption of 39 

instantaneous interseasonal transmissivity, simplifies the analysis because there exists a 40 

representative user.  However, this approach does not take into account the spatial 41 

distribution of users, and the dependence of individual groundwater stocks on the history 42 

of past extractions (Brozovic et al 2003, Koundouri 2004). Recently, some authors have 43 

taken into account the spatial variability in groundwater use, either by relaxing the 44 

assumption of instantaneous lateral flows (e.g., Brozovic et al. 2010) or by introducing 45 

spatial heterogeneity in the marginal value of resource use (e.g., Gaudet et al. 2001, 46 

Xabadia et al. 2004).   47 

This article addresses another source of heterogeneity, that of variation in the size 48 

of the land area from which each user can access the resource.  This is an important issue 49 

because irrigated agriculture, one of the major consumers of groundwater, is comprised 50 

of farms of widely varying sizes (Schaible 2004; Hoppe et al. 2010). Knapp and Vaux 51 

(1982), Feinerman (1988), Foster and Rosenzweig (2008), and Sekhri (2011) are among 52 

the few studies addressing variation in farm size or in pumping volume.  53 

 It is well known that, to the extent that groundwater is a common property 54 

resource, private decisions lead to inefficient allocation. This result holds unless the 55 

aquifer is relatively large in comparison to total groundwater use, users can cooperate, or 56 

hydraulic conductivities are so small that the resource is effectively private (Feinerman 57 

and Knapp 1983). However, it is not clear whether heterogeneity in farm size alleviates 58 
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or exacerbates the so-called ‘tragedy of the commons’ (Hardin 1968). To the extent such 59 

effects are present, there are potentially important policy implications, because 60 

redistributive policies will then interact with policies to correct the common property 61 

externalities: policies targeting one of these domains may have unintended impacts in the 62 

other.   63 

To understand the presence and nature of any such interactions, the following 64 

questions are posed in this article:  What are the determinants of the relationship between 65 

farm size and groundwater use intensity?  How does the distribution of farm sizes in the 66 

area influence the efficiency of groundwater allocation?  What are the distributional 67 

impacts of farmland ownership structure and water management policies? To analyze 68 

these questions a two-period model is developed where land above an aquifer, all of 69 

which can be irrigated but is of undifferentiated quality, is gathered into farms of unequal 70 

size. The differences in pumping rates across farms of different sizes in this framework 71 

are entirely due to an endogenous interaction between common property effects and farm 72 

size inequalities. 73 

For both methodological and policy reasons, it is helpful to distinguish between 74 

the cases where farmers' utility-of-income functions are linear and where they are 75 

concave.  In the first case, marginal utility of income is constant, which is an appropriate 76 

representation of cases where small farmers supplement their incomes with off-farm 77 

sources (e.g., off farm employment of some household members). Even if the underlying 78 

utility functions are concave, in these cases there is no inherent reason that small farmers 79 

have smaller incomes than (or a marginal utility of income that differs from) large 80 

farmers. The second case presumes that income from irrigated farming activities are the 81 
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sole source of income, which is more appropriate for many developing country contexts. 82 

As small farms have a smaller capacity to generate income, they have a higher marginal 83 

utility of income that raises the stakes of the tradeoffs in allocating water across farmers 84 

and across periods. 85 

Linear utility is a helpful starting point because in that case farm size inequality, 86 

in itself, does not affect average utility (equivalently, it has no direct effect on total 87 

utility, which is taken here to be the measure of social welfare). However, as shown 88 

below, the common property nature of the resource creates differing incentives to pump 89 

water across size classes, so that an increase in inequality may either amplify or moderate 90 

the common property externalities and social welfare may either rise or fall.  91 

In the linear utility case, the basic intuition is that large farms have greater spatial 92 

extent of resource access or “ownership,” so that they perceive the resource as being 93 

more private.  By the same token, a small farmer effectively owns a smaller share of the 94 

aquifer, and perceives groundwater as a more common resource. Therefore, smaller 95 

farmers tend to pump faster.  In the aggregate, more water is always withdrawn in the 96 

first period compared to the efficient solution (the tragedy of the commons still applies), 97 

but the magnitude of overpumping depends on the inequality in land holdings. In an 98 

alternative distribution of farm sizes with greater inequality, aggregate pumping in the 99 

first period may change in either direction depending on the nature of the change in the 100 

distribution. Aggregate withdrawals increase if land area is shifted towards small farmers, 101 

but the converse holds if acreage is shifted towards large farmers. The direction of the 102 

change is shown to depend on specific curvature properties of the production function 103 

relating agricultural output to irrigation.   104 
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A separate but related question is how greater inequality in farm sizes affects 105 

social welfare. The model reveals that there are dynamic as well as spatial components 106 

determining this effect. The dynamic component refers to the effect of farm-size 107 

inequality on aggregate withdrawals in the first period, or the speed with which the 108 

aquifer is depleted.  The spatial component refers to the effect of farm-size inequality on 109 

the distribution of pumping rates and income across farmers in each period.  The 110 

direction of the overall effect depends on the magnitude and direction of both these 111 

components, which are determined by additional curvature conditions on the production 112 

function. 113 

Sufficient conditions are derived that identify the cases where an increase in 114 

inequality leads to a reduction in social welfare.  These conditions are quite restrictive, 115 

requiring specific curvature properties of the production function, suggesting that there 116 

are many cases where inequality is not welfare reducing.  Indeed, in many cases  117 

inequality may actually raise social welfare because it dampens the tragedy of the 118 

commons problem. Moreover, as illustrated with a numerical example, greater farm-size 119 

inequality may imply less income inequality.  This is because of an effect similar to that 120 

identified by Foster and Rozensweig (2008): smaller farmers have a strategic advantage 121 

as they are able to poach more groundwater per unit land than their larger neighbors.   122 

When utility is concave, the analysis has another layer of complexity.   The pure 123 

income redistribution effect of the land ownership structure, keeping the allocation of 124 

groundwater fixed, must be disentangled from its effects on the equilibrium average 125 

pumping rate and the spatial distribution of groundwater withdrawals across farmers.  126 

Here, it is possible that small farmers actually pump less in the first period than large 127 
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famers. This will occur if the utility functions are “sufficiently” concave, so that small 128 

farmers (who have lower incomes) face a greater differential between marginal utilities of 129 

present and future income, and therefore, have a greater incentive to save groundwater 130 

for future use. With this as an additional determinant of pumping rates, the results 131 

discussed above continue to apply, however. 132 

  This paper may contribute to the continuing debate on the magnitude of the 133 

welfare difference between optimal control rules and competitive outcomes (Gisser 1983, 134 

Gisser and Sanchez 1980, Koundouri 2004).  Provencher and Burt (1993) identify three 135 

sources of inefficiency associated with groundwater use in agriculture: stock, pumping 136 

cost, and risk externalities.  In the presence of user heterogeneity, an access inequality 137 

externality is added to this list.  The access inequality externality arises when the rates of 138 

groundwater extraction differ across farms of varying size overlying a common aquifer.  139 

This externality can be both positive and negative, depending on whether smaller farms 140 

appropriate, on a per unit land area basis, a greater share of the common resource.  Small 141 

and large farmers can be thought of as, respectively, low and high income groups.  And 142 

so, a common resource such as groundwater may become a natural vehicle for income 143 

transfer, and can either neutralize or amplify income inequality caused by the inequality 144 

in farmland holdings. 145 

This paper also analyzes the effects of a specific but commonly implemented 146 

water management policy, namely pumping quotas, on the distribution of income across 147 

farm size classes. Using an example of a flat-rate quota policy, policy-induced gains and 148 

losses are shown to be unequally distributed across farmers. In general, the results 149 

suggest that the interactions between policies addressing farmland ownership structures 150 
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and groundwater management should not be ignored.  An effort to reduce inequities may 151 

worsen the common property problem, while efforts to reduce the common property 152 

problem may cause greater inequities.  Of course, the directions of these impacts may be 153 

the opposite so that the policies are mutually reinforcing. However, careful empirical 154 

analysis that differentiates farmers’ production relationships across size classes (e.g., 155 

Sekhri 2011) is required to determine the nature of the interactions  156 

 157 

1.1 Literature Review 158 

Knapp and Vaux (1982) and Feinerman (1988) are among the few studies that consider 159 

equity and distributional effects of groundwater management schemes.  Knapp and Vaux 160 

(1982) consider groups of farmers differentiated by their derived demand for water, and 161 

present an empirical example that demonstrates that some users may suffer substantial 162 

losses from quota allocation policies even though the group as a whole benefits.  163 

Feinerman (1988) extends their analysis and considers a variety of management tools 164 

including pump taxes, quotas, subsidies, and markets for water rights.  Using simulations 165 

calibrated to Kern County, California (USA), Feinerman concludes that while the welfare 166 

distributional effects on user groups may be substantial, the negotiations between the 167 

policy-makers and the users are likely to be difficult because the attractiveness of policies 168 

varies across users and is sensitive to the parameters.  However, following Gisser and 169 

Sanchez (1980), these studies ignore the stock externality, and assume that under 170 

competition users behave myopically and base their decisions solely on the consideration 171 

of their immediate (periodic) profits.  Also, there is no investigation of the effect of the 172 

extent of user heterogeneity on the properties of competitive allocation. 173 
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There is a rather thin literature base in development economics that is concerned 174 

with the effect of inequality in land holdings on groundwater exploitation.  Motivated by 175 

the role of groundwater in sustaining the Green revolution and developing agrarian 176 

economies, Foster and Rosenzweig (2008) consider the patterns of groundwater 177 

extraction in rural India.  They develop a dynamic model of groundwater extraction that 178 

captures the relationships between growth in agricultural productivity, the distribution of 179 

land ownership, water table depth, and tubewell failure.  Using data on household 180 

irrigation assets including tubewell depth as a proxy for irrigation intensity, they find that 181 

large landowners are more likely to construct tubewells, but their tubewells tend to be 182 

less deep than those dug by smaller landowners. Foster and Rosenzweig conclude that 183 

this is indicative of a free-riding effect in the sense that large farmers are less able to 184 

effectively poach the water from neighboring farmers by lowering the water-table under 185 

their own lands.  They also find evidence of land consolidation as a way to improve 186 

efficiency of groundwater exploitation.   187 

This paper captures some of the same effects through a simple model where wells 188 

of equal depth are already in place and each farmer faces an irrigation application rate 189 

decision.  A two-period framework with a “quasi-bathtub” aquifer is particularly well 190 

suited to fully work out the equilibrium effects of farm-size inequality on the welfare 191 

difference between the competitive and efficient allocations.  By assuming an initial 192 

stock that is scarce enough to impose tradeoffs between the two periods, both the 193 

pumping cost externality and stock externality naturally arise in the model, which are 194 

then either amplified or moderated by the farm size inequalities. The pumping cost and 195 

stock externalities are the costs that one user imposes on others through higher future 196 
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pumping costs and reduced groundwater availability, respectively.  Following Gisser and 197 

Sanchez (1980), groundwater economic studies in multiperiod settings typically consider 198 

only the pumping cost externality; Provencher and Burt (1993, 1994) are notable 199 

exceptions. 200 

Given the seasonality of production in irrigated agriculture, a groundwater 201 

resource can be regarded as a “quasi-bathtub” with  features of a common property 202 

resource over time.  The quasi-bathtub property means that the resource at each extraction 203 

point is private within each period, but the aquifer becomes a “bathtub” or purely 204 

common pool across periods.  This happens when the time period during which 205 

groundwater is extracted is relatively short, and does not allow for seepage from one 206 

point in the aquifer (such as a well or a pool) to another.  However, the water level tends 207 

to be more uniform throughout the aquifer in the long run. The quasi-bathtub assumpition 208 

is appropriate if (a) the irrigation season is considerably shorter than the time that elapses 209 

between the two seasons, and (b) wells are spaced so that the localized cones of 210 

depression caused by pumping from neighboring wells do not overlap within each 211 

irrigation season.   212 

The analysis also assume no time discounting, although farmers’ time preferences 213 

of income are captured in the concave utility model.  These assumptions ensure that the 214 

results are not an artifact of any other source of spatial or temporal heterogeneity other 215 

than that introduced by size inequality. However, the main insights and policy 216 

implications obtained in this framework carry on to more realistic settings. 217 

From here, the paper presents a simple two-period model of groundwater 218 

extraction in the presence of farm-size heterogeneity.  The social planner’s solution is 219 
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considered.  Then the paper analyzes the equilibrium allocation and the effect of farm-220 

size inequality on the pumping rates and farm income when farmers’ marginal periodic 221 

utility of income is constant.  Consideration is given to equilibrium allocation when 222 

farmers’ marginal periodic utility of income is decreasing.  Lastly, before the 223 

conclusions, consideration is given to a flat-rate quota policy that illustrates political 224 

economy issues that arise in the presence of user heterogeneity. 225 

2. Model 226 

For simplicity, the model focuses on the stock, cost, and access inequality externalities.  227 

It considers the decisions of water application per acre taking the distribution of irrigated 228 

acres across farmers as exogenous.  With slight modifications, the model can be extended 229 

to include decisions about the share of farm acreage allocated to irrigated crops.  Farmers 230 

are identical except for the distribution of land ownership, and irrigation technology is 231 

constant returns to scale.  All profits are derived from agricultural outputs using 232 

groundwater for irrigation on a fixed land area, and farmers hold exclusive pumping 233 

rights on their land.  The individual groundwater stocks are private during each irrigation 234 

season because there is no intra-seasonal well interference.  However, the groundwater is 235 

an inter-seasonal common property resource based on the groundwater hydrology over a 236 

longer time interval.  The following assumptions are standard (e.g., Negri 1989): 237 

1. (Fixed land ownership) The distribution of farmland ownership does not change 238 

over time. 239 

2. (Constant returns to scale and homogenous land quality) The agricultural 240 

production function has the property of constant returns to scale (output is 241 

proportional to farm size).  Land quality is identical across all farms.  Inputs other 242 
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than groundwater, including the choice of irrigation technology, fertilizer, crops, 243 

etc., are optimized conditional on the rate of water extraction.  Output and input 244 

prices, including energy costs, are exogenous. 245 

3. (Pumping cost) The total cost of groundwater extraction per acre increases with 246 

the pumping rate and decreases with the level of the water table (or the stock of 247 

groundwater). 248 

4. (User location is irrelevant) The aquifer is confined, non-rechargeable, 249 

homogenous, and isotropic.  The groundwater basin has parallel sides with a flat 250 

bottom.          251 

5. (Quasi-bathtub) There are no intra-seasonal lateral flows of groundwater across 252 

farms.  However, inter-seasonal changes in groundwater level are transmitted 253 

instantaneously to all users (i.e., the groundwater has an infinite rate of 254 

transmissivity during the time elapsed from one irrigation season until next). 255 

Brozovic et al (2003) provide a detailed discussion of the consequences of this 256 

assumption. 257 

6. (Two periods) There are only two periods (irrigation seasons), and farmer 258 

preferences over income are additively separable across periods.   259 

Provencher and Burt (1994)  and Saak and Peterson (2007) also consider and provide 260 

justifications for a two-period framework.  The assumption that the aquifer is non-261 

renewable is for expositional convenience, and a positive rate of recharge can be easily 262 

incorporated.  The groundwater extractions are the net quantity of water withdrawn if 263 

some fraction of the water percolates back to the stock.  Next the model notation is 264 

introduced.  265 
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 266 

2.1 Aquifer 267 

The total stock of groundwater stored in the aquifer in the beginning of period 1 is 268 

11 Ahx  , where 1h  is the height of the water table in period 1, and A  is the size of the 269 

area measured in acres (1 acre = 0.4047 ha).  Let },...,1{ AL   denote the set of acres.  270 

The hydraulic heads of the water table under each acre are the same in the beginning of 271 

each period, tjti hh ,,   th  Lji  ,  and 2,1t .  Let tiu ,  denote the quantity of 272 

groundwater applied in period t  on acre i .  By the quasi-bathtub assumption, the per 273 

acre quantity of groundwater withdrawn in each period cannot exceed the per acre stock 274 

or th  275 

 tti hu ,  for all Li  and 2,1t .        (1) 276 

Let 


A

i iuAu
1 1,

1
1  denote the average pumping in period 1.  Since there is no recharge, 277 

the stock of groundwater in the aquifer in period 2 is 12 xx  1Au , and the level of the 278 

water table is  279 

 112 uhh  .         (2) 280 

 281 

2.2 Land ownership 282 

There are n  farmers (users of groundwater) who are located in the area overlying the 283 

aquifer and grow irrigated crops.  Farmer k  farms acres LLk  , and let kA  || kL  284 

denote the number of irrigable acres owned by farmer k , where AA
n

k k  1
.  In what 285 

follows, the set of acres kL  will be referred to as “farm k ” or “farmer k ”.  For 286 
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concreteness, the farm indices are assumed to be ordered by farm size, nAAA  ...21 .  287 

Throughout, the first symbol in doubly subscripted variables identifies the acre and the 288 

second identifies the period, 2,1t .  Variables with one subscript typically refer to the 289 

aggregate values in the specified period, unless they are farm-specific and invariant 290 

across periods.  The letters ji,  will index acres, and letters lk,  will index farmers. 291 

 292 

2.3 Production technology 293 

The periodic per acre benefit of water consumption net of all costs including groundwater 294 

pumping cost is 295 

 ),( , tti hug ,          (3) 296 

where g  is strictly increasing and concave.  While irrigation increases yield, a higher 297 

groundwater stock decreases the cost of pumping due to a decrease in pumping lift, and 298 

increases the efficiency of irrigation by permitting a more flexible application schedule. 299 

Land quality is assumed to be homogeneous so that total farm income is proportional to 300 

farm size (i.e., technology exhibits constant returns to spatial scale).  For simplicity, the 301 

rainfall and surface water supply are the same on all farms in both periods.  For example, 302 

(3) can take the following form: 303 

qzhuczhupyhug z  ),(),,(max),( , 304 

where p  is the per unit price of the crop, y  is yield, and c  is the cost of pumping 305 

groundwater, z  is the vector of other inputs, and q  is the price vector of other inputs.    306 

For notational convenience, let  307 

 ),()( hhghf u ),( hhgh         (4) 308 



 15

denote the marginal per acre benefit of water consumption evaluated at the point of 309 

depletion of an individual groundwater stock. (Here and throughout, subscripts on 310 

functions denote differentiation with respect to the lettered arguments.)  By concavity of 311 

g , 0)(  hf  ),0( 1hh .  All of the results that follow will also hold under weaker 312 

technical conditions, namely 0uug , 0hhg , and  )(hf  ),( hhguu ),( hhghh 0),(2  hhguh
, 313 

which are implied by concavity of g . 314 

 Let v  denote the periodic utility of farm income, 0,0  vv .  Each farmer 315 

maximizes the sum of utilities of the whole-farm revenue in each period:  316 

   


2,1 ,}{ )),((max
, t Li ttiuk

kkLiti
hugv  subject to (1) and (2).  (5) 317 

For simplicity, there is no discounting of future income. 318 

3. Social planner 319 

Before turning to the analysis of the competitive allocation by non-cooperating users, the 320 

efficient allocation is first characterized.  The social planner chooses }{ ,
s
tiu  to maximize 321 

producer welfare conditional on the land ownership distribution: 322 

     


2,1 1 ,}{
)),((max

, t

n

k Li t
s
tiu

s

k
s

ti
hugvW  subject to (1) and (2).  (6) 323 

The following result shows that the efficient allocation of groundwater 324 

compensates for income inequality caused by the inequality in farm sizes.  The common 325 

resource may serve as a vehicle to decrease income inequality by redistributing income 326 

from larger farmers to smaller farmers.  This effect is absent if either farm sizes are 327 

identical, or farmers’ periodic utility functions are linear in income.  Note that optimal 328 

groundwater consumption in the final period exhausts the remaining stock on each farm, 329 

and hence, must be identical on all acres, 22,2, huu s
j

s
i   Lji  , , because the income 330 
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utility and water benefit functions are strictly increasing.  And so, the focus is solely on 331 

period 1 pumping.  All proofs that are not in the text are in the Appendix. 332 

 333 

Proposition 1.  (Efficient pumping) Efficient allocation of groundwater is  334 

a) invariant across acres, s
j

s
i uu 1,1,   Lji  , , and is determined by  335 

 0)(),( 1,111,  s
i

s
iu uhfhug ,       (7)  336 

if either farmers have linear utility, 0v , or acreage is uniformly distributed across 337 

farmers, nAAk /  for nk ,...,1 ; 338 

(b) characterized by smaller farmers pumping groundwater faster, s
ju 1,

s
iu 1, , for 339 

kLj , lLi , lk  ,  if 0v  (decreasing marginal utility of income). 340 

 341 

(7) is easiest to interpret for the special case when the water benefit depends only on 342 

water use, u.  In this case, it is efficient to equalize the marginal benefits of water use in 343 

the two periods: )()( 1,11,
s
iu

s
iu uhgug  , which implies that 2/11, hus

i   Li .  This is 344 

equivalent to the assertion that, in the absence of a pumping cost externality and 345 

inequality of income across farmers, the efficient solution distributes the available water 346 

equally across the two periods on each farm. 347 

 It is convenient to differentiate between the case when farmers’ per period 348 

marginal utility of income is (1) constant (i.e., utility is linear), and (2) decreasing (i.e., 349 

utility is concave).  In the former case, from the social planner’s point of view, a non-350 

uniform distribution of acreage across farmers has no effect on either the optimal 351 

allocation of water either spatially or temporally.  However, as demonstrated in the next 352 

section, such differences may still arise in competitive equilibrium.  In the latter case, as 353 
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is demonstrated in Part (b) of Proposition 1, the social planner faces a trade-off between 354 

dynamic and distributional sources of inefficiencies.   355 

From a policy perspective, an important insight of the analysis to follow is that, in 356 

the presence of farmer heterogeneity, competitive allocations go beyond the tragedy of 357 

the commons, and affect income inequality as well.  The welfare difference between the 358 

optimal and competitive allocations may be particularly large, when, from the societal 359 

point of view, the income distribution matters.  This happens when the equilibrium 360 

distribution of pumping rates across heterogeneous farmers amplifies the income 361 

inequality caused by size inequality.  However, the competitive allocation may also 362 

moderate the inherent inequality in income distribution caused by the inequality in land 363 

ownership, or even change its sign, whereas total incomes over two periods earned by 364 

smaller farmers exceed that of larger ones. 365 

 366 

4. Linear utility  367 

This section considers the case of linear utility functions, 0v .  The competitive 368 

equilibrium is first characterized, followed by an analysis of the effect of inequality in 369 

farm sizes on the groundwater stock and the distribution of income. 370 

 371 

4.1. Equilibrium 372 

Farmers are non-cooperative, and each farmer takes the quantity of water pumped by 373 

others in each period as given.  In period 2, all farmers exhaust the available stocks of 374 

groundwater on each acre, so that 2
*

2, hui   for Li .  By (5), in period 1 farmer k ’s 375 

payoff is 376 
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 k ),(),(max 2211,}{ 1,
hhghug

kkLii Li iu 
 subject to (1) and (2).  (8) 377 

The competitive allocation can now be characterized.  Differentiating (8), the best 378 

response by farmer k  on acre kLi , *
1,iu , satisfies 379 

 ),( *
1, xug iu )( 2hfak 0 , if *

1,iu 1h , and *
1,iu 1h , if otherwise  (9) 380 

where AAa kk /  is the share of the aquifer that can be captured by farmer k .  (9) can 381 

be written in a more compact form 382 

 *
1,iu ,min[ 1h )]);(( 12

1 hhfag ku
 ,  kLi      (10) 383 

where )(.;1 hgu
  is the inverse of ),( hugu  obtained by treating h  as a parameter.  Note 384 

that per acre pumping rates on each farm are identical *
1,

*
1, ji uu   kLji  , .  Summing 385 

pumping rates (10) over all nk ,...,1  and kLi , and substituting (2), yields 386 

 *
1u  


n

k k ha
1 1,min[ )]);(( 1

*
11

1 huhfag ku  ,     (11) 387 

where 


A

i iuAu
1

*
1,

*
1 )/1(  is the equilibrium average pumping in period 1.  By concavity 388 

of g , (11) uniquely determines the aggregate pumping in period 1, *
1u .  Together (10) 389 

and (11) prove the existence and uniqueness of equilibrium. 390 

 391 

Proposition 2.  (Competitive allocation) Suppose that farmers’ utility is linear in income.  392 

Competitive equilibrium exists, it is unique, and is given by (10) and (11).  The average 393 

pumping rate is higher than the socially efficient average rate, suu 1
*
1  . Also, smaller 394 

farmers pump faster than larger farmers, *
1,iu *

1,ju , for any kLi , lLj , lk  . 395 

 396 



 19

Comparing the first-order conditions that characterize the efficient and competitive 397 

allocations, (7) and (9), respectively, shows that the discrepancy between them arises 398 

along both spatial and temporal dimensions.  That is, the competitive allocation leads to 399 

an inefficiently high aggregate pumping in period 1, which entails an inefficient 400 

allocation of groundwater across periods.  Nonetheless, it is possible that individual 401 

farmers extract groundwater at a slower rate than the socially efficient average rate, i.e. 402 

s
i uu 1
*
1,   for some i  (see Section Small and large farms: an example and Figure 1b).  403 

Also, unless all farmers are identical, the competitive allocation results in inefficient 404 

pumping rates across farmers in period 1.  Recall that, by Proposition 1(a), efficiency 405 

requires that the per acre irrigation application rates be identical when farmers have linear 406 

utility. 407 

Under linear utility, smaller farmers always deviate more from the socially efficient 408 

allocation.  However, it is not clear whether the non-uniformity of the distribution of land 409 

ownership, in and of itself, leads to a loss or gain of total farm income.  As shown in the  410 

next section, the effects of the inequality in farm sizes on the groundwater stock and farm 411 

income depend on rather subtle properties of the agricultural production function. 412 

 413 

4.2. Inequality in farm sizes 414 

The measure of inequality that is used to model an increase in the concentration of land 415 

ownership (a smaller share of farmers owns a larger share of land) is introduced next. The 416 

rest of this section analyzes the effect of inequality in farm sizes on the remaining 417 

groundwater stock and on total income.  An example is presented that illustrates the 418 

findings. 419 
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 420 

4.2.1. Measuring inequality 421 

To model the effect of increased inequality in land holdings a precise measure of 422 

inequality is needed.  The analysis here relies on the Lorenz measure, which is widely 423 

used to measure wealth inequality more generally.  Let W


 = (W1, ..., Wn) denote a vector 424 

of wealth (in this paper, wealth is measured by the area of land owned) by n individuals, 425 

where W1 W2  ... Wn and Wkk1

n W .  The Lorenz measure of  W


is defined as 426 

(l / n,W


)  Wkk1

l W ; its interpretation is the share of land held by the smallest 427 

100(l / n) percent of farmers.  If W


 is a perfectly equal wealth distribution (i.e., 428 

Wk W / n k ), then the Lorenz function is linear in x  l / n with a slope of 1; for all 429 

other distributions it is a (weakly) convex curve that never lies above this line. In general, 430 

increasing inequality implies more curvature of the Lorenz curve, so that the value of   431 

at a given value of x will be smaller.   432 

The effect of inequality in farm size is modeled by comparing the equilibrium 433 

under the given distribution of land holdings, nAAA  ...21 , to an alternative 434 

distribution, nBBB  ...21   ( AB
n

k k  1
).   Where distribution B


 is more unequal 435 

distribution A


 based on the Lorenz measure: (l / n, A


)  (l / n, B


)l 1,� , n . The 436 

proofs of several of the propositions below rely on the majorization order, a  general tool 437 

to compare the dissimilarity within the components of vectors that is closely related to the 438 

Lorenz measure. Marshall and Olkin (1979) provide a comprehensive treatment of 439 

majorization. 440 
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Definition.  Real vector A


 is majorized by B


, denoted BA m


 , if  

l

k kA
1

 Bkk1

l  441 

for nl ,...,1 , and  

n

k kA
1  


n

k kB
1

. 442 

 443 

Thus, the comparison of interest can be expressed as the majorization BA m


 . A related 444 

notion of Schur-concave and Schur-convex functions will also be needed.  A real-valued 445 

function )(Ay


 is called Schur-concave if BA m


  implies )(Ay


 y(

B), and )(Ay


 is 446 

Schur-convex, if )(Ay


  is Schur-concave.  Schur-concavity might be more intuitively 447 

called “Schur-monotonicity” because it simply requires function y to always decrease in 448 

response to a perturbation that induces more dissimilarity in its arguments.  The Lorenz 449 

function itself is an example of a Schur-concave function.  The analysis to follow will 450 

appeal to the following important property of Schur-concave functions.  Suppose that 451 

 


n

k kAzAy
1

)()(


.  Then )(Ay


 is Schur-concave if and only if z  is concave. 452 

 453 

4.2.2. Measuring concavity 454 

The analysis that follows will also depend on the curvature properties 455 

(specifically the degree of concavity) of the agricultural production function, g. Even 456 

though there is no uncertainty in this model, it is convenient to derive its results using 457 

well-known measures of curvature from the literature on decisionmaking under 458 

uncertainty.  Let ),(/),( 11 hughugR uuu  denote the index of concavity of agricultural 459 

output function, and ),(/),( 11 hughugP uuuuu  denote the index of concavity of the 460 

marginal output function of a farmer with technology ),( 1hug  in period 1.  If  ),( 1hug  461 

were a utility of income function, then R  would be interpreted as the Arrow-Pratt 462 
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coefficient of absolute risk aversion, and P  would be the coefficient of absolute 463 

prudence.  464 

As g represents technology and not preferences in the model here, these indexes 465 

are employed simply as measures of the curvature of the physical relation between output 466 

and water.  In this non-stochastic framework, they are indicators of the strength of the 467 

motive to smooth water extraction over time (i.e., the diminishing marginal productivity 468 

of water).  Adding uncertainty will not change the qualitative nature of the results. There 469 

is an empirical literature on the relationship between farmers’ risk preferences and their 470 

dynamic use of groundwater (e.g., Antle (1983, 1987) and Koundouri et al. 2006) as well 471 

as on the effects of risk preferences on farmer’s reaction to water quota policies (e.g., 472 

Groom et al. 2006). 473 

 474 

4.2.3. Inequality of farm sizes and groundwater stock 475 

With the definitions above, the relationship between inequality and the residual water 476 

stock in period 2 can now be analyzed. 477 

 478 

Proposition 3.  Suppose that farmers’ utility is linear in income.  Then under more 479 

unequal distribution of farm sizes, BA m


 , the groundwater stock in period 2 480 

(a) increases, )()( *
2

*
2 BhAh


 , if PR 2 ;   481 

(b) decreases, )()( *
2

*
2 BhAh


 , if (i) B1 / A ))((/),( *

211 Ahfhhgu


 , i.e. the smallest farm 482 

under the new land ownership distribution is not “too small” and (ii) PR 2 .    483 

 484 
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 The inequality in land ownership creates a trade-off in terms of its effect on the 485 

pumping decisions in period 1.  A heavier left tail of the acreage distribution implies that 486 

there are more farmers who own a smaller share of the aquifer and tend to pump faster 487 

than the average farmer.  However, a heavier right tail implies the opposite.  Therefore, 488 

ascertaining the effect of any increase in acreage inequality on the competitive allocation 489 

requires structure on the farm-size sensitivity of the difference in pumping rates between 490 

small and large farmers, *
1,

*
1, ji uu  , where kLi , lLj , lk AA  .  The farm-size 491 

sensitivity of the difference in pumping rates across farms is )(/)( kkk auaua  , where  492 

)( kau 112
1 ));(( hhhfag ku  . If the pumping rate differential, u , is increasing (decreasing), 493 

the sensitivity is negative (positive). 494 

Condition (a) states that, when the aquifer is full, the agricultural output, )(., 1hg , 495 

is in a sense more concave than the marginal output, )(., 1hgu .  Then the perceived 496 

benefit from a more stable inter-seasonal groundwater use pattern increases with size at 497 

an accelerating rate, and a greater inequality stimulates, on average, a slower pumping 498 

rate.  Note that condition PR )(2   is equivalent to log-concavity (log-convexity) of the 499 

first derivative of the demand for water with respect to output when the aquifer is full, 500 

);( 1
1 hyg y

 , where )};(:{);( 11
1 hugyuhyg   is the inverse of agricultural output 501 

function obtained by treating the stock of groundwater, 1h , as a parameter. 502 

To guarantee that the average pumping rate increases, the additional condition (i) 503 

in Part (b) is needed because the aquifer is a quasi-bathtub (see constraint (1)).  This 504 

condition puts a limit on the increase in the size of large farms.  It implies that, under the 505 

new distribution of land ownership, the number of farmers who grow irrigated crops is 506 
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the same, 01 B , and that, under the initial distribution of land ownership, no farmer 507 

depleted his/her stock of groundwater in period 1, 1
*

1, )( hAui 


 for all 1Li , where 1 is 508 

the index of the smallest farmer.  509 

 510 

4.2.4. Farm-size inequality and farm income 511 

The effect of  farm size inequality on total farm income is now considered.  In the case of 512 

linear utility, (6) becomes  513 

  


n

k k
c AW

1
)( 


 


n

k k gA
1

({ ,min[ 1h )},())],);(( *
2

*
211

*
2

1 hhghhhfag ku  ,    (12) 514 

where *
2h *

11 uh   is given by (11), and )(AW c


 symbolizes the dependence of total farm 515 

income (agricultural output) on the distribution of land ownership among farmers. 516 

 The farm-size inequality affects both the groundwater stock in period 2 (dynamic 517 

allocation) and the distribution of groundwater application rates across farms in period 1 518 

(spatial allocation).  Keeping everything else equal, a more stable inter-seasonal pattern 519 

of groundwater use increases total farm income.  The distributional effect of farm-size 520 

inequality on farm income is more difficult because a higher variability in farm sizes may 521 

or may not lead to a higher variability in the per acre pumping rates (see Proposition 3).     522 

 523 

Proposition 4.  Suppose that farmers’ utility is linear in income.  Then under more 524 

unequal distribution of farm sizes, BA m


 , total farm income 525 

(a) decreases, )()( BWAW cc


 , if  (i) PR 3  and (ii) )()( *
2

*
2 BhAh


 ;   526 
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(b) increases, )()( BWAW cc


 , if (i) the smallest farm under the new land 527 

ownership distribution is not “too small”, B1 / A ))((/),( *
211 Ahfhhgu


 , (ii) PR 3 , and 528 

(iii) )()( *
2

*
2 BhAh


 .    529 

 530 

Conditions in (a) guarantee that the unequal distribution of farm acreage 531 

aggravates both the distributional (a(i)) and dynamic (a(ii)) inefficiencies, that are 532 

associated with the competitive allocation.  Condition a(i) requires that the net benefit of 533 

irrigation when the aquifer is full, ),( 1hug , is in a sense more concave than the marginal 534 

benefit, ),( 1hugu .  Then a greater inequality in farm sizes stimulates a greater variability 535 

in (acreage-weighted) pumping rates and lowers total output.  Observe that a(i) is less 536 

stringent than (a) in Proposition 3.  This is because the net benefit of irrigation, ),( 1hug , 537 

is concave in u , which adds additional curvature, and thus, on average, a smaller (or 538 

positive) farm-size sensitivity of the spatial pumping rate differential suffices to cause a 539 

total output loss. 540 

Part (b) has a similar interpretation.  Condition b(i) is the same as in Proposition 541 

3.  But now sufficient condition b(ii) is more stringent compared with b(ii) in Proposition 542 

3.  This is because a negative and “sufficiently” large (in absolute value) farm-size 543 

sensitivity of the spatial pumping rate differential is required in order to assuredly raise 544 

total output.  Note that condition PR )(3   is equivalent to concavity (convexity) of the 545 

first derivative of the inverse output function (i.e., demand for water as a function of 546 

output) when the aquifer is full, );( 1
1 hyg y

 . 547 

Combining Propositions 3(b) and 4(a) yields 548 
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 549 

Corollary.  Suppose that farmers utility is linear in income.  Then under more unequal 550 

distribution of farm sizes, BA m


 , total farm income decreases, )()( BWAW cc


 , if 551 

RPR 32  .   552 

 553 

Sufficient conditions under which more unequal distribution of farm sizes has an 554 

unambiguously positive effect on total farm income cannot be obtained in this way.  To 555 

guarantee a lesser inequality in pumping rates, the pumping rate spatial differential, 556 

)( kau , must be “sufficiently” decreasing (in absolute value) with farm size.  In contrast, 557 

to guarantee a more stable average pumping rate, the pumping rate spatial differential 558 

must be increasing or “slightly” decreasing (in absolute value) with farm size.   559 

 Furthermore, as clear from the proof of Proposition 4 (see (21) in Appendix), the 560 

sign of kk A /  is ambiguous.  Therefore, it is possible that smaller farmers earn more 561 

total income than larger farmers, lk    for lk  .  Of course, larger farmers always 562 

have higher total revenues in period 2.  But smaller farmers have more intensive-margin 563 

operations and higher per acre revenues in period 1.  The differential in total revenues 564 

between small and large farmers in period 1 can be positive, and even exceed the 565 

magnitude of the negative differential in total revenues in period 2.  Intuitively, smaller 566 

farmers will earn higher profits from being  in a better strategic position to take 567 

advantage of the common property resource; they are able to steal more groundwater per 568 

unit of land than their larger neighbors.  The following example illustrates. 569 

 570 

4.2.5. Small and large farms: an example 571 
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Let )(),( zuhug  , )1,0( , 15.0 hz  , and 0v .  By Proposition 1, the efficient 572 

allocation of groundwater across acres and seasons is invariant to the distribution of land 573 

ownership, and is given by 11, 5.0 hu s
i   for Li .  The maximal regional farm income is 574 

)5.0(2 1 zhAW s  .   575 

For simplicity, all farms fall in one of the two categories: small and large.  The 576 

size of small farms is s  acres, sAk   for mk ,...,1 , and the size of large farms is l  577 

acres, lAk   for nmk ,...,1 , where ls  .  The number of small farms is m , and the 578 

number of large farms is mn  , where Almnms  )( .  By (10) and (11) equilibrium 579 

pumping in period 1 is 580 

)])(1()
1

)1(
()(,min[ )1/(1

1
)1/(1

1
*
1,

 



 

A

s
z

E

EzE
h

A

s
hui  for kLi , mk ,...,1 , 581 

 
AmnlAl

AlzAsmuh
u m

i /)()/(

)1))/((/
)1/(1

)1/(1*
1,1*

1, 


 







 for kLi  and nmk ,...,1  582 

where )])/)(()/( )1/()1/(    AlmnAsmE . 583 

For concreteness, this example consider a special case of an increase in farm size 584 

inequality whereas small farms get uniformly smaller and large farms get uniformly 585 

larger.  Note that ))(,;())(,;( slmsAslmsA m 


 for ss  , where 586 

)/()()( mnmsAsl  .  Clearly, a uniform shift of acreage from small farms to large 587 

farms, keeping the number of farms in each size category fixed, constitutes an increase in 588 

farm size inequality.  Inequality can then be measured simply as the gap between the 589 

acreage on small and large farms, 0 sl , keeping the number of each type of 590 

farms, m , fixed.   591 

 592 
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In Figure 1, parameters are: 8.0 , 3.0z , 100n , 50m , 11 h , and 593 

000,100A .  Then the maximal farm income per acre is 8.12.010/ AW s .  At 0  594 

(i.e., 1000 ls ), small and large farms are the same, and the distribution of land 595 

ownership is uniform across farmers. The effects of an increase in farm size inequality on 596 

the equilibrium groundwater stocks, pumping rates, and incomes are analyzed next. 597 

As shown in Figure 1(a), when the difference in farm sizes is relatively small, 598 

280 , the difference in the pumping rates increases until the small farmers deplete 599 

their wells in period 1, 11
*
1,  hui  for kLi  and 50,...,1k .  This limits the ability of 600 

small farmers to “steal” groundwater from their neighbors, and therefore, establishes an 601 

upper bound on the difference in the pumping rates.  Curiously, the large farmers pump 602 

less than the efficient quantity, 5.05.0 1
*
1,  hui  for kLi  and 100,...,51k , when 603 

[ 220, 400].  In this range, the gain in the dynamic efficiency for the large farmers 604 

outweighs the loss associated with letting the small farmers steal their groundwater.  605 

However, as the size of each large farm, and hence the total share of the aquifer farmed 606 

by large farms, increases, large farmers are able to more effectively “push” the aggregate 607 

groundwater use towards the efficient allocation.  Even though the incentive to pump 608 

groundwater efficiently for each individual large farmer declines, the aggregate 609 

groundwater usage in period 1 decreases.  This is because the distribution of total acreage 610 

is skewed more (less) heavily towards large (small) farmers, who pump slowly (who 611 

deplete their wells in period 1). 612 

Figure 1(b) illustrates the non-monotone relationship between the stock of 613 

groundwater in period 2 and farm-size inequality.  As explained earlier, when the gap 614 

between small and large farms is small, [ 0, 280], the large farmers are relatively 615 
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ineffective in raising the dynamic efficiency.  This is because, even though they decrease 616 

their pumping rates in order to compensate for the higher pumping rates by small 617 

farmers, their weight in aggregate pumping is relatively light.  And so, the negative effect 618 

of the aggressive pumping by small farms dominates, and the groundwater stock in 619 

period 2 falls.  As the share of total acreage owned by small farmers declines, but their 620 

pumping rates remain constant ( 11
*
1,  hui  for kLi  and 50,...,1k ), the large farmers 621 

need to give up less of period 1 pumping to push the region towards more dynamically 622 

efficient allocation.  From the perspective of a large farmer, the groundwater resource is 623 

more private, which reinforces the diminished influence of aggressive pumping by small 624 

farmers.  As a result, the average stock in period 2 increases, and the region moves 625 

towards a more dynamically (and spatially) efficient allocation. 626 

Figure 1(c) shows the non-monotone effect of the inequality in farm sizes on total 627 

income.  Proposition 4 shows that, in general, an increase in size inequality affects the 628 

total farm income in two distinct ways.  First, it affects the groundwater stock in period 2.  629 

Second, it affects the variability of the pumping rates among farmers in period 1.  When 630 

the gap is small, [ 0, 280], both the “stock” and “pumping rate variability” effects 631 

work in the same direction.  When the gap is “sufficiently” large, any further increase in 632 

farm-size inequality raises the total farm income.  Note that the dip in the total income in 633 

Figure 1(c) has a rather pointed peak.  This is because for 280  there is an additional 634 

income gain associated with the gain in the spatial efficiency due to the decline in the 635 

heterogeneity of pumping rates.  The period 1 pumping on large farms increases, while 636 

pumping on small farms remains constant (as they deplete their wells in period 1).   637 
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As shown in Figure 1(d), total per farm incomes are also non-monotone in the 638 

extent of farm-size inequality.  Surprisingly, the total small farm income increases when 639 

the acreage on small farms decreases in the range [ 0, 280].  The converse holds for 640 

large farms.  This is because small farms are in a better position to steal groundwater 641 

from their neighbors operating on large farms.  However, the cap on the pumping in 642 

period 1, 1*
1, iu , eventually annuls this effect.  Consequently, a further increase in farm- 643 

size inequality affects farm incomes in the expected direction because, keeping 644 

everything else equal, a smaller (larger) acreage entails a smaller (larger) whole-farm 645 

income. 646 

 647 

5. Concave utility   648 

So far, the analysis has considered the effect of farm-size heterogeneity on welfare in the 649 

case of farmers with linear utility functions (constant marginal utility of income).  As 650 

shown next, relaxing this assumption may lead to rather different conclusions.  Even the 651 

result that smaller farmers pump faster under the competitive allocation may no longer 652 

hold.  This section considers the case of farmers with (strictly) concave per period utility 653 

functions, 0v . To highlight the role of concavity of utility, profit per unit of land area 654 

(e.g., yield) is now assumed to be a linear function of the amount of water applied per 655 

acre, and that pumping costs do not depend on the hydraulic head, uhug ),( .   656 

Following the same steps as before, it can be shown that the equilibrium best 657 

response of farmer k  on acre kLi , *
1,iu , is  658 

 *
1,iu ,min[ 1h )))]((()/1( *

11
1

1 uhAvavA kkk  ,  kLi    (13) 659 
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where (.)1
1
v  is the inverse of v , and the average pumping in period 1, *

1u , solves 660 

 *
1u  


n

k k hAA
1 1,min[)/1( )))]((( *

11
1

1 uhAvav kk  .    (14) 661 

Let )(/)()( uvuvuur   denote the Arrow-Pratt coefficient of relative risk-aversion of a 662 

farmer with the periodic utility of income v . 663 

 664 

Proposition 5.  Suppose that farmers’ utility is strictly concave in income . Then the 665 

average pumping rate is higher than the socially efficient average rate, suu 1
*
1  , and for 666 

all kLi , lLj , lk   667 

a) smaller farms pump faster, *
1,iu *

1,ju , if 0r . 668 

b) smaller farms pump slower, *
1,iu *

1,ju , if )()))(((1 1
1 ahArahAvavr    669 

],[ lk aaa  and )5.0,0( 1hh .  670 

 671 

Farm size has two effects on the farmer’s pumping decision.  On the one hand, 672 

larger farmers view their stock of groundwater as a relatively more private resource.  This 673 

provides them with a greater incentive to push the regional use towards a dynamically 674 

more efficient allocation.  On the other hand, larger farmers may have a smaller 675 

(negative) difference in marginal utilities of income in periods 1 and 2.  This diminishes 676 

their incentive to push the region towards a dynamically more efficient allocation 677 

compared with smaller farmers.  The “private resource” effect dominates if the 678 

coefficient of relative risk-aversion is increasing in income.  The “income scale” effect 679 

dominates if the coefficient of relative risk-aversion is “sufficiently” large and decreasing 680 

in income (in the sense of condition in Part (b)). 681 
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 While not reported here due to space constraints, the counterparts of Proposition 682 

3-4 carry over to the case of concave utility as well.  Competitive allocations may either 683 

exacerbate or alleviate income inequality associated with the distribution of land holdings 684 

among farmers.  If the coefficient of relative risk-aversion is increasing in income, small 685 

farmers pump more groundwater per acre than large farmers.  This lessens the income 686 

inequality caused by an unequal distribution of acreage.  The converse is true if larger 687 

farmers pump more aggressively (on a per acre basis), which is possible if the coefficient 688 

of relative risk-aversion is “sufficiently” large and decreasing. 689 

Note that, in the absence of the effect of farm-size inequality on the disaggregated 690 

pumping rates, from the societal point of view, the heterogeneity in land holdings is 691 

immaterial if farmers are risk-neutral (i.e., they value marginal income in both periods 692 

independently of the number of acres they farm).  When farmers are risk-averse, the 693 

heterogeneity in the pumping rates can be welfare-increasing, given that the per acre 694 

irrigation rates increase on smaller farms and decrease on larger ones, so that in period 1 695 

income is redistributed from rich to poor farmers (see Proposition 1).  However, because 696 

of the decreasing marginal per acre benefits of water, total income always decreases 697 

under a greater variability of the pumping rates.  This may create a tension between the 698 

effects of farm-size inequality on income distribution and total income (output).  The next 699 

section takes a policy perspective and investigates the workings of a very simple 700 

groundwater use policy in the presence of farmer heterogeneity. 701 

 702 

6. Policy analysis: an example of flat-rate quota policy 703 
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The analysis now considers some political economy aspects of implementing a simple 704 

policy that allocates per period per farm pumping quotas.  Suppose that the policy takes 705 

the form 706 

qAu kLi i
k


*

1,  and ]0,max[ *
1,

*
2,  


kk Li ikkLi i uqAqAu  for nk ,...,1 ,       (15) 707 

where ],0( 1hq  is the per acre quota (measured in acre-feet), and the quota allocated to 708 

each farm is proportional to its size.  The quota limits the quantity of groundwater 709 

extracted in each period, but allows farmers to carry over unused portions of their quota 710 

into the next period.  There is no market for water rights, and the unused quotas cannot be 711 

bought or sold. 712 

For concreteness, the case of risk-neutral farmers and a strictly concave 713 

agricultural output function (analyzed in Section Linear utility) is considered.  The 714 

following result establishes that, while this policy always slows the rate of the aquifer 715 

depletion, the effect on farmer incomes is likely heterogeneous.  The setting is assumed 716 

to be such that the equilibrium pumping rates decrease with time *
2,

*
1, ii uu   Li , so 717 

that *
21

*
1 5.0 uhu  .  For example, this is always true if all farmers are sufficiently small 718 

relative to the aquifer, na  )}(/),({inf 111),0( 1
uhfhuhguhu  .  Then, under quota 719 

policy (15), farmers do not transfer the unused portion of their quotas from period 1 to 720 

period 2: *
2,

*
1, ii uuq  , if 2/1hq  , and quu ii  *

2,
*
1,  Li  if 2/1hq  .  Hence, for 721 

2/1hq   equilibrium is given by 722 

 )(*
1, qui ,min[q )]));((( 1

*
11

1 hquhfag ku  ,  kLi , nk ,...,1   (16)  723 

 )(*
1 qu  


n

k k qa
1

,min[ )]));((( 1
*
11

1 hquhfag ku   .    (17) 724 

The income of farmer k  under the quota policy is 725 
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 ({)( gAq kk  ,q )},() 11 qhqgh  , if 2/1hq  , and   (18) 726 

 ({)( gAq kk  ,min[q ))],));((( 11
*
11

1 hhquhfag ku      (19) 727 

))}(),(( *
11

*
11 quhquhg  , if 2/1hq  .  728 

From (18) it follows that all farmers lose (gain) from a more restrictive quota, if the 729 

initial quota is sufficiently small and the marginal benefit of a higher stock is “small” 730 

(“large”) relative to the marginal benefit of water consumption: kk Aqq  /)(  731 

),({ 1hqgu 0)()},(),( 11  qhqgqhqg hu  for all nk ,...,1 .  On the other hand, 732 

from (19) it follows that the income of large farmers, who are not bound by the quota, 733 

increases because the quota policy slows down the average pumping rate in period 1. 734 

Let }1  )),((/),(:sup{)( *
21 nkqhfhqgakqm uk  .  Note that )(qm  is a non-735 

increasing function.  Then farmers )(,...,1 qmk   are bound by the quota in period 1.  736 

Also, farmers ,...,1k )( 1hqm   deplete their wells in period 1, where 1hq   737 

symbolizes the absence of the quota policy. 738 

 739 

Proposition 6.  Suppose that the quota is applicable, qhqu  )( 1
*

1,1 .  Then under the 740 

groundwater quota policy 1hqq   741 

a) the groundwater stock in period 2 increases, )()( 212 qqhhqh   1hq  .  742 

Suppose that the period 2 quota is not binding, 2/1hq  .  Then 743 

b) large farmers gain, )()( 1 qqhq kk    for nqmk ,...,1)(  ; 744 
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c) small farmers lose, )()( 1 qqhq kk    for )(,...,1 1hmk  , if (i) 0uuug , 745 

0uuhg , 0),(),(2  hhghhg hhuh , and (ii)  






n

zk k

z

k kz aaa
1

21

1
/  for all 746 

)(),...,( 1 qmhmz  . 747 

 748 

Farmers in the medium size range, )( 1hm )(qmk  , may lose or gain from a quota.  749 

The intuition for this result is very clear: Small farmers, who pump faster than the 750 

average farmer, stand to lose the most from a quota policy.  Large farmers, who are not 751 

restricted by the policy, strictly gain from the quota because of the more stable inter-752 

seasonal allocation of groundwater induced by this policy.   753 

This illustrates that policies that do not account for user heterogeneity, are likely to 754 

affect not only the inter-seasonal but also the spatial distribution of incomes among 755 

farmers.  The ensuing political economy issues and the relative weight of small and large 756 

farmers in the policy-making process pose additional constraints on the design of 757 

efficient groundwater management policies. 758 

 759 

7. Conclusions and policy implications 760 

This article has analyzed the economic inefficiencies that arise when farmers controlling 761 

operations of varying sizes withdraw irrigation water from a common aquifer. Farm size 762 

inequality was shown to affect the degree of inefficiency because small farmers are more 763 

strongly influenced by common property externalities than large farmers, who have an 764 

incentive to internalize inter-well costs within their operations. This insight alone has the 765 

policy implication that the gains from groundwater management are likely to be greater 766 

in regions populated by small farms, such as in developing nations.  767 
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The overall effect of an increase in inequality on social welfare was shown to be 768 

ambiguous and dependent on the agricultural production function as well as on the 769 

differences in marginal utility between large and small farmers. To the extent that these 770 

relationships vary across regions, it is one explanation for wide gaps in the prosperity of 771 

groundwater-dependent agricultural regions.  772 

Sufficient conditions were established to identify the cases where increased 773 

inequality reduces aggregate welfare, and these conditions which appear to be quite 774 

restrictive. This finding suggests that in many regions, there is a meaningful, if not 775 

recognized, policy tradeoff between common property distortions and inequality. Wealth 776 

disparities within the farm population is a concern in both high and low income countries, 777 

particularly as it relates to the incomes of small farmers (Hoppe et al. 2010).  However, in 778 

the case of access to a common aquifer, a reduction in inequality may have the 779 

unintended effect of accelerating the depletion of the resource. Moreover, the analysis 780 

reveals that the common aquifer can, in effect, become a conduit to transfer income from 781 

large to small farmers.  782 

Finally, water management policies designed to correct common property 783 

externalities were demonstrated to have potentially significant and undesirable 784 

distributional impacts. In particular, it was shown that a quota policy may well reduce the 785 

speed of aquifer depletion as intended, but the welfare gains from groundwater 786 

conservation will not be evenly distributed; in general irrigators in certain size classes 787 

will incur welfare losses.  788 

789 
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Appendix 855 

Proof of Proposition 1: First, note that in period 2, the planner optimally exhausts 856 

the remaining stock on each farm because g and v  are strictly increasing. This implies 857 

that constraint (1) binds for t = 2 (i.e., s
iu 2, = h2 Li ), so that (6) can be written 858 

 ))),(()),(((max 221 ,}{ 1,
hhgAvhugvW k

n

k Li t
s
tiu

s

k
s
i

   
. 859 

Because  kLi t
s
ti hug ),( ,  is symmetric and concave in s

iu 1, , and sW  is symmetric in (.)v , 860 

optimality requires that s
iu 1,

s
ju 1,  for any kLi  and lLj  if lk AA  .  Additionally, 861 

corner solutions are ruled out because v  and g  are increasing and concave in each 862 

argument.  The first-order conditions for a maximum are  863 

0)),((
)(

)1,()),((
1 1111

11
1,11, 

  

n

l

ss
ll

s
s
iu

s
ik uhuhgAvA

A

uhf
ughugAv ,   (20) 864 

if 11, hu s
i  , and 11, hu s

i  , otherwise, for all kLi  and nk ,...,1 .  Part (a) follows by 865 

observing that (20) reduces to (7) when 0v  because AA
n

l l  1
.  Part (b) follows by 866 

observing that only the first term in (20) depends on farm size kA , and, by concavity of 867 

utility function, v , it decreases with kA .  Then by concavity of yield function, g , this 868 

implies that s
iu 1,  is a non-increasing function of farm acreage.  869 

 870 

Proof of Proposition 2: Suppose that *
11 uu s  .  Then, by (11) 871 

*
1u  


n

k k ha
1 1,min[ )]);(( 1

*
11

1 huhfag ku   


n

k k ha
1 1,min[ )]);(( 111

1 huhfag s
ku   872 

  


n

k k ha
1 1,min[ )]);(( 111

1 huhfg s
u  ss

u uhuhfg 1111
1 ));((   . 873 
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The inequalities follow by concavity of g .  The equality follows by (7).  And so, a 874 

contradiction was obtained.  Also, *
1,iu ,min[ 1h )]);(( 12

1 hhfag ku
 ,min[ 1h  875 

)]);(( 12
1 hhfag lu
 *

1,ju  for any kLi , lLj , lk  .  876 

 877 

 878 

Proof of Proposition 3:  879 

Part (a). Suppose that )()( *
2

*
2 BhAh


 .  Then, by (11),  880 

)(*
1 Au


 


n

k k ha
1 1 ,min[ )]));((( 1

*
11

1 hAuhfag ku


  881 

 


n

k k hb
1 1 ,min[ )]));((( 1

*
11

1 hAuhfbg ku


  882 

 


n

k k hb
1 1 ,min[ )]));((( 1

*
11

1 hBuhfbg ku


 )(*

1 Bu


 . 883 

The first inequality follows because the sum of compositions of two concave functions 884 

(here )](.);(,min[ 1
1

1 hfagaha kukk
 ), is Schur-concave in naa ,...,1 .  To show this, it must 885 

be demonstrated that )(1 afagu
  is concave in a .  Differentiating twice yields 886 

2

12 )]([

a

afagu


 

0))()(2(
),()( 1

 uPuR
huguR

f

uu

, 887 

where the inequality follows by condition (a) stated in Proposition 3.  The second 888 

inequality follows by concavity of g .  And so, a contradiction was obtained. 889 

Part (b). Suppose that )()( *
2

*
2 BhAh


 . Then, by (11),  890 

)(*
1 Au

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
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k ka
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)));((( 1
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11

1 hAuhfag ku
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
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1

)));((( 1
*
11
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
  891 

 


n

k k hb
1 1,min[ )]));((( 1

*
11

1 hAuhfbg ku


  892 
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,min[ 11
hb

n

k k 
 )]));((( 1

*
11

1 hBuhfbg ku


 )(*

1 Bu


 . 893 

The equalities follow because, by condition b(i)  in the statement of Proposition 3 and 894 

concavity of g , 11
*
2

1 ));((( hhAhfag ku 


 and 11
*
2

1 ));((( hhAhfbg ku 


 for all nk ,...,1 , 895 

since BA m


  implies 11 ba  .  The first inequality follows because, by condition b(ii) in 896 

the statement of Proposition 3,  

n

k ka
1

)));((( 1
*
11

1 hAuhfag ku


  is Schur-convex (see 897 

Part (a)).  The second equality follows by assumption.  And so, a contradiction was 898 

obtained.  899 

 900 

Proof of Proposition 4:  901 

To show parts (a) and (b), we need two facts. 902 

Fact 1. (i) )])(,(min[)( 1 kkkk auhgAaa   is concave in ka  when PR 3 . 903 

 (ii) 
1)(

)(
haukk

k
a


  is convex in ka  when PR 3 , where ));((()( 1

*
2

1 hAhfagau kuk


 .   904 

Proof of fact 1: To verify, differentiate twice with respect to aak  : 905 
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),()( 1
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 0)())(  uP . (22) 907 

depending on whether PR )(3  .  This proves Fact 1(ii).  To show Fact 1(i), note that 908 

)])(,(min[ 1 kk auhga )]),((),,(min[ 111 haugahhga kkk  by monotonicity of g .  Hence, 909 

)])(,(min[ 1 kk auhga  is concave in ia  when PR 3  as a composition of concave 910 

functions. 911 
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Fact 2. 0/ *
2  hW c . 912 

Proof of fact 2: *
2/ hW c   inherits the sign of  222112

1 /)},()),);((({ hhhghhhafgg u    913 

0)(),(/)( 212  hfhughfa uu , where the inequality follows by concavity of g .  914 

Keeping everything else equal, as the extent of dynamic inefficiency of the competitive 915 

allocation increases, welfare falls.   916 

Part (a).  By (12), 917 
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The first inequality follows because function )(AW


 is Schur-concave as the sum of 921 

concave functions by condition a(i)  in the statement of Proposition 4and Fact 1(i).  The 922 

second inequality follows by condition a(ii) in the proposition statement and Fact 2.  923 

Part (b).  By condition b(i) in the proposition statement, 1
*

1, )( hAui 
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 for all Li  924 
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The first inequality follows because function )(AW


 is Schur-convex by Fact 1(ii).  The 931 

equality follows by condition b(ii) in the statement of Proposition 4.  The second 932 

inequality follows by condition b(iii) in the proposition statement and Fact 2.   933 

 934 

Proof of Proposition 5: Suppose that *
11 uu s  .  Then, by (20) and (14) in the text, 935 
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The inequalities follow by concavity of v .  And so, a contradiction was obtained. 939 

Part (a). Let kLi .  First, consider 1
*

1, )( hAu ki  .  By (13), differentiation yields 940 

ki Au  /*
1, 0)]()(1))[(/()( 2

*
1,

*
1,2  hARuARuAvAhAv kikikkk  941 

The inequality follows because, by (13), *
11

*
1, uhui  , and so )(1 *

1,ikuAR  942 

))(( *
11 uhAR k  1 0 .  If 1

*
1, hui   then 1

*
1, hu j   for lLj , lk  . 943 

Part (b). Proof is analogous.  944 

 945 

Proof of Proposition 6:  946 

Part (a). Note that this is trivially true when the quota is binding in period 2, 2/1hq  , 947 

because then qui *
1, , and *

2,iu qhh  12  Li .  So consider the case when 948 

2/1hq   and suppose that )()( *
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where the last inequality follows by concavity of g .  And so, a contradiction was 953 

obtained. 954 

Part (b). By (19), farmer k ’s income for nqmk ,...,1)(   is  955 
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where the inequality follows by Part (a), and monotonicity and concavity of g . 958 

Part (c).  By (19), farmer k ’s income is ({)( gAq kk  q )},(), *
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The first inequality follows because )( 1hm )(qm  , which follows by concavity of g .  963 
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since, by c(i),  967 
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The third inequality in (23) follows by c(ii).  Hence, )()( 1hqqq kk    for 970 
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 973 

a) b) 

c) d) 

 974 

Figure 1.  Inequality in farm sizes, pumping rates, and income. (a) Per acre pumping 975 

rates (b) Groundwater stock in period 2 (c) Average income per acre (d) Income for small 976 

and large farms (1 acre = 0.4047 ha = 4047 m2) 977 
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