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Abstract
Recent advances in the cyber-physical smart grid (CPSG) have enabled a broad range

of new devices based on information and communication technology (ICT). An open net-

work environment in CPSG provides frequent interaction between information and physical

components. However, this interaction also exposes the ICT-enabled devices to a growing

threat of cyberattacks. Such threats have been alerted by recent cybersecurity incidents, and

the security issues have strongly restricted the development of CPSG. Among various CPS

cybersecurity incidents, cyber data attacks invade the cyber layer to destroy data integrity.

Through elaborately eavesdropping on the transferred measurement data, the attacks can

mislead the state estimation (SE) while keeping stealthy to conventional bad data detection

(BDD). Due to the SE being the critical function of CPSG control, the cyber data at-

tacks may cause massive economic loss, power system instability, or even cascading failures.

Therefore, this dissertation focuses on the detection of stealthy data integrity attacks.

This dissertation first performs a thorough review of the state-of-the-art cyber-physical

security of the smart grid. By focusing on the physical layer of the CPSG, this work provides

an abstracted and unified state-space model in which cyber-physical attack and defense

models can be effectively generalized. The existing cyber-physical attacks are categorized

in terms of their target components. In addition, this work discusses several operational

and informational defense approaches that present the current state-of-the-art in the field,

including moving target defense (MTD), watermarking, and data-driven strategies. The

challenges and future opportunities associated with the smart grid cyber-physical security

is also discussed. Further, a real-time digital simulator, namely Typhoon HIL, is utilized to

visualize the random MTD against false data injection (FDI) attacks.

Given the review section as a background, a hidden, coordinated net load redistribution

attack (NLRA) in an AC distribution system is proposed. The attacker’s goal is to create



violations in nodal voltage magnitude estimation. An attacker can implement the NLRA

strategy by using the local information of an attack region and power flow enhanced deep

learning (PFEDL) state estimators. The NLRA is modeled as an attacker’s modified AC

optimal power flow problem to maximize the attack impact. Case study results indicate the

PFEDL-based SE can provide the attacker with accurate system states in a low observable

distribution system where conventional lease square-based SE cannot converge. The stealth-

iness of the hidden NLRA is validated in multiple attack cases. The influence of NLRA on

the distribution system is assessed, and the impact of attack regions, attack timing, and

attack area size are also revealed.

Next, this dissertation highlights that current MTD strategies myopically perturb the

reactance of D-FACTS lines without considering the system voltage stability. Voltage in-

stability induced by MTDs is illustrated in a three-bus system and two more complicated

systems with real-world load profiles. Further, a novel MTD framework that explicitly con-

siders system voltage stability using continuation power flow and voltage stability indices

is proposed to avoid MTD-induced voltage instability. In addition, this dissertation mathe-

matically derives the sensitivity matrix of voltage stability index to line impedance, on which

an optimization problem for maximizing voltage stability index is formulated. This frame-

work is tested on the IEEE 14-bus and the IEEE 118-bus transmission systems, in which

sophisticated attackers launch NLRAs. The simulation results show the effectiveness of the

proposed framework in circumventing voltage instability while maintaining the detection ef-

fectiveness of MTD. Case studies are conducted with and without the proposed framework

under different MTD planning and operational methods. The impacts of the proposed two

methods on attack detection effectiveness and system economic metrics are also revealed.

Finally, this dissertation proposes utilizing smart inverters to implement a novel meter

encoding scheme in distribution systems. The proposed meter encoding scheme is a software-

based active detection method, which neither requires additional hardware devices nor causes

system instability, compared with MTD and watermarking. By elaborately constructing

the encoding vector, the proposed smart-inverter-based meter encoding can mislead the



attacker’s SE while being hidden from alert attackers. In addition, by utilizing the topology of

radial distribution systems, the proposed encoding scheme encodes fewer meters than current

schemes when protecting the same number of buses, which decreases the encoding cost.

Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed

meter encoding scheme can mislead the attacker’s state estimation on all the downstream

buses of an encoded bus without arousing the attacker’s suspicion. FDI attacks constructed

based on the misled estimated states are highly possible to trigger the defender’s BDD

alarm.
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Chapter 1

Introduction

This chapter introduces the concepts studied in this dissertation. It also emphasizes the

importance and necessity of this research as well as provides detailed research questions and

contributions of this dissertation.

1.1 Background

Cyber-physical systems (CPSs) are smart systems that include engineered interacting

networks of physical and computational components1. The comprehensively interconnected

and integrated systems contribute new functionalities to enable technological development in

critical infrastructures, such as electric power systems, water networks, transportation, home

automation, and health care. A CPS encompasses complex systems of control, awareness,

computing, and communication. The complexity and heterogeneity have indicated potential

challenges to the security and resilience of CPSs. The interconnection of bulk physical layer

components is challenging the protection against inherent physical vulnerabilities therein.

On the other hand, cyber-integration, which relies on network communication and the in-

ternet of things (IoT) based devices, requires extraordinary investments in security designs

and upgrades against unanticipated threats from cyberspace2. A cyber-physical attack is

defined as a security breach in cyberspace that adversely affects the physical space of a

1



CPS3. Cyber-physical attacks compromise the confidentiality, integrity, and availability of

information by coupling cyber and physical spaces in a CPS. In the past decades, several

noteworthy cyber-physical attacks have been reported in the industry, facilitating synergistic

efforts from industry practitioners and research communities towards a new CPS security

era4. The first proclaimed cyber-physical attack dated back to 1982 in the Siberian wilder-

ness, where attackers manipulated the pipeline control software, which led the valves’ control

to misbehave, resulting in the severe crossing of pressure limits and eventually a massive ex-

plosion5. In 2003, the Slammer worm invaded the control system of the David-Besse nuclear

plant in Ohio through a contractor’s network, which disabled the supervisory system for

5 hours6. In June 2010, a cyber worm dubbed “Stuxnet” struck the Iranian nuclear fuel

enrichment plant by utilizing four zero-day vulnerabilities and digitally signed certificates

to bypass intrusion detection. The targets were the programmable logic controllers in the

supervisory control and data acquisition (SCADA) system7. The Stuxnet maliciously alter-

nated the frequency of electrical current powering the centrifuges and then switched them

between high and low speeds at intervals for which the machines were not designed8. In

December 2015, a coordinated cyberattack compromised three Ukrainian electric power dis-

tribution companies. Thirty substations suffered blackout for about three hours, resulting in

wide-area power outages affecting approximately 225,000 customers. BlackEnergy3 malware

was used to steal the authorized users’ virtual private network credentials, and a telephonic

denial-of-service (DoS) attack was executed to frustrate reports of outages9.

The smart grid landscape, arguably one of the most complex CPSs in history, is under-

going a radical transformation. Particularly, increased renewable energy resources, demand

diversification, and integration of information and communication technologies (ICTs)10.

The cyber-physical smart grid (CPSG) that has organized a universal cyberinfrastructure

interwoven with the bulk physical systems is susceptible to cyber-physical attacks. A wide

variety of motivations exist for launching such an attack in smart grids, ranging from eco-

nomic reasons, to terrorism, to a grudge (a disgruntled employee11). A large body of recent

work has been dedicated to addressing the cyber-physical security of smart grids, with many
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warnings becomes prominent12–15 and new vulnerabilities are continuously unveiled16. Re-

garding cyber and physical security, neither of them alone can provide broad solutions with-

out incorporating the other. In this regard, the investigations of the cyber-physical attacks

and the development of effective defense strategies are still incomprehensive. Thereby, it has

become paramount to keep up with the latest progress along the research frontier of smart

grid security.

This dissertation focuses on enhancing the cybersecurity of power systems against data

integrity attacks. The state-of-the-art research on cyber-physical attacks and defense meth-

ods is reviewed. Then, a realistic data integrity attack, namely net load redistribution attack

(NLRA), is introduced in AC distribution systems. Two emerging defense mechanisms, i.e.,

moving target defense (MTD) and smart-inverter-based meter encoding, are proposed to de-

tect the NLRA. The remainder of this chapter introduces the control-measurement loop of

the cyber-physical smart grid, the cyber-physical attacks in smart grids, the MTD methods,

and the meter encoding methods.

1.2 Introduction to Cyber-physical Attacks in Smart

Grid

This section proposes a discrete-time nonlinear time-invariant system to represent a

CPSG using the state-space representation. Such a high-level abstraction is a useful strategy

to form the foundation and generalize a defense analysis across all attack types.

A CPSG is a monolithic system with electricity generation, transmission, and distri-

bution sectors17. The physical systems are interconnected through transmission lines and

substations deployed in the field. The integration and coordination of heterogeneous compo-

nents require reliable capabilities in information, computation, and communication. These

requirements rely on a ubiquitous cyber-infrastructure interwoven with the physical systems.

Measurements and commands are constantly generated and transmitted through communi-
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Figure 1.1: Illustration of cyber-physical attacks on smart grid. This Dissertation focuses on
reviewing attacks that target either the EMS within the control center or physical devices
in the field. Defense mechanisms against those attacks are also discussed.

cation channels. A CPSG consists of physical devices, actuators, sensors, communication

channels, a centralized control center equipped with a state estimator, a bad data detector,

and an energy management system (EMS), as shown in Fig. 1.1.

This dissertation describes the CPSG as a discrete-time nonlinear time-invariant system

by using a state-space representation as follows:

xt+1 = A(xt) + B (ut) + wt (1.1)

yt = C (xt) + vt (1.2)

where xt ∈ Rn and yt ∈ Rm are system state and measurements at time interval t, respec-

tively; m is the number of measurements; n is the number of system states (usually m ≥ n).

Typically, system measurements include nodal net injections, line power flows, line current

phasors, and bus voltage phases from the emerging phasor measurement units (PMUs). Sys-

tem states include bus voltage magnitudes and angles. A (•) denotes a system state function;

B (•) is a control function; C (•) is a nonlinear measurement function; wx ∈ Rn and wy ∈ Rm

are system operating noise and measurement noise, respectively. The measurement function
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is reliant on the specific measurement type and involves the power system network topology

and parameters, such as line impedance and transformer tap ratios. The noise is generally

assumed to be Gaussian distributed with a covariance matrix R ∈ Rm×m. The received

sensor measurement data, which are called raw data, cannot be utilized directly by the EMS

and must be processed by state estimation (SE) and bad data detection (BDD).

The wide-area field sensors and communication channels are exposed to an increased

level of cyber threats. As shown in Fig. 1.1, the communication networks are vulnerable to

adversaries who can manipulate the control and measurement signals. For countermeasures,

the National Electric Sector Cybersecurity Organization Resource (NESCOR) has conducted

impact analyses and assessment of data integrity attacks against the wide-area monitoring,

protection, and control (WAMPAC) systems18, in which a dozen attack scenarios are dis-

cussed with the corresponding failure scenarios, including line trip, improper synchronous

closing, and control actions that create undesirable states. For instance, the WAMPAC.2

scenario indicated that the network equipment could be leveraged to spoof WAMPAC mes-

sages18. A threat agent may perform a spoofing attack and inject messages into WAMPAC

network equipment (router, switch, etc.). The altered messages involve measurement that

goes into the WAMPAC algorithms or control commands to PMUs or phasor data concentra-

tors (PDCs). The WAMPAC.4 scenario leverages the compromised PDC authentication to

manipulate the measurement data. Such compromise may be due to a backdoor or network

sniffing, which allows the malicious introduction of false measurement data. The altered data

can trigger actions when none are necessary or fail to take action when needed. Meanwhile,

The WAMPAC.8 scenario shows an attacker can insert malware in PMU/PDC firmware to

alter measurements. When the altering action is triggered, significant effort or cost is in-

vested in troubleshooting the systems given the lack of measurement consistency, followed

by equipment replacement18.

Analyzing the vulnerabilities of a CPSG has attracted increasing attention in the last

few years. The general approach is to study specific attacks against a particular system

component. A CPSG consists of information technologies (IT) and operational technologies
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(OT). IT refers to the application of networks that deal with the data and the flow of digital

information. In contrast, OT refers to technology that monitors and controls specific devices,

such as the SCADA system. IT and OT are merging, known as IT-OT convergence, and

the boundary between them has become blurry. This dissertation primarily focuses on OT

attacks and defense approaches in smart grids. Figure 1.2 shows the attacks and their targets

surveyed in this dissertation.

Figure 1.2: Cyber-physical attacks and their targets reviewed in this dissertation.

1.3 False Data Injection Attack

FDI attacks have become a significant threat to smart grids. As the communication

channels between meters and control centers are vulnerable to cyberattacks, attackers can
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launch man-in-the-middle attacks to eavesdrop and manipulate the measurement signals.

FDI attack, as one of the most infamous cyberattacks, can stealthily mislead the power

system state estimation by injecting false data into legitimate measurements. To bypass the

defender’s bad data detector, the attacker needs to elaborately construct an AC-FDI attack

vector a by following the equation:

a
∆
= h(x̂ + c) − h(x̂) (1.3)

where h(•) are the measurement functions, c ∈ Rn denotes the bias vector that the attacker

intends to mislead the state estimation, n is the number of system states, and x̂ is the

estimated state. When the legitimate measurement M is altered by the manipulated mea-

surement Ma = M+a, the BDD residual after the attack will be less or equal to the residual

before the attack, i.e., the attack is stealthy.

FDI attack vectors can also be implemented in DC power systems. In a DC model,

attackers need to specify a state increment, i.e., ∆θ, to construct and launch a successful

DC-FDI attack. An FDI attacker can compromise estimated states without being detected

by BDD, if the attack vector a is calculated by a = H · ∆θ 19.

The illustration of FDI attacks is shown in Figure 1.3. FDI attackers inject adversary

data a into the legitimate measurements M[t] based on the DC- or AC-FDI attack model.

The manipulated measurements Ma[t] received by the SCADA system can bypass bad data

detection without alerts and induce a bias in the estimated states. The estimated states will

be used in the applications of EMS, including the contingency analysis, automatic generation

control, and optimal power flow (OPF) model. Sd and SG are the apparent load power and

generation, respectively.

Yuan et al.20, for the first time, proposed a special case of FDI attacks, i.e., load redistri-

bution (LR) attack. With the increasing penetration of renewable-based distributed energy

resources (DERs), the malicious manipulation of net load measurements (load minus DER

generation) at DER buses can be disguised as renewable generation uncertainty. Therefore,
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Figure 1.3: Illustration of FDI attack model in the smart grid.

considering the attacker’s practical capability of manipulating the net load measurements,

this dissertation introduces an improved LR attack strategy, namely net load redistribution

attack21. The goal of the net load redistribution attack is to mislead the AC state estima-

tion with an illusory over- or under-voltage issue by injecting highly-structured attack vectors

into the measurements. To bypass the BDD, the net load redistribution attack stealthiness

constraints pertaining to boundary conditions between the attack and non-attack areas were

proposed. Those constraints included restrictions on voltage magnitude measurements on

the boundary buses and power flow measurements on the tie lines. With the required local

information within the attack region and the stealthiness constraints, the net load redistribu-

tion attack is modeled as an ACOPF problem for attackers, in which the prevailing ACOPF

constraints hold.
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1.4 State Estimation and Bad Data Detection

SE is essential in power systems, providing the estimated voltage states to EMS ap-

plications. Given the measurements M, the system states can be estimated by solving the

following weighted least square (WLS) optimization22:

x̂ = min
x

[M− h (x)]T W−1 [M− h (x)]

where h (�) : R2n−1 → Rm is a vector of nonlinear functions that reveal the relationship

between the measurements vector M ∈ Rm and the state vector x ∈ R2n−1.

In power systems, it is customary to use the Gauss-Newton iterative algorithm to solve

the above optimization problem. The iterative process converges when the difference between

the system states in two iterative is smaller than a pre-determined threshold.

x̂k+1=x̂k +
(

H (x̂k)T W−1H (x̂k)
)−1

H (x̂k)W−1 (M− h (x̂k))

where H (x)T = ∂h (x) /∂x is the Jacobian matrix.

Bad Data Detection (BDD) in AC state estimation is based on a residual analysis of

r = M−h(x̂), where r is the residual, x̂ is the estimated system states. The residual can be

attributed to noise and inaccuracy of the measurements as well as injected false data. The

defender, usually a system operator, runs the BDD tests by comparing the residual with a

pre-defined threshold τ calculated at a certain confidence interval.

∥r∥2 = ∥M− h(x̂)∥2 < τ

When there is at least one faulty measurement, the l2 norm of residual exceeds the threshold.
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1.5 Introduction to Moving Target Defense

The United States Department of Homeland Security defines MTD as the idea of con-

trolling perturbations across multiple system dimensions to increase uncertainty and appar-

ent complexity for adversaries, downsizing their window of opportunity, and increasing the

costs of their probing and attack efforts. Researchers have proved that MTD is a promising

defense method in IT systems23. IT systems usually operate in static configurations, and

attackers have ample reconnaissance time. Static configurations are vulnerable to various

attacks, including replay attacks, denial-of-service attacks, and man-in-the-middle attacks24.

When MTD is implemented, it provides the systems with improved security by constantly

altering the system configurations. Researchers have proposed various MTD applications,

including network address shuffling25, address space layout randomization26, moving tar-

get internet protocol version 6 defense24, MTD platform for cloud-based IT systems23, and

instruction-set randomization27.

MTD in power systems provides proactive defense in contrast to the traditional remedial

defense approaches. Unlike the MTD in information technology systems which highlights

the changes in the network layer, MTD in power systems require physical devices and extra

control. The essence of MTD is that it actively perturbs the transmission line impedance

to invalidate attackers’ knowledge about the power system configurations. Since MTDs can

utilize many devices to perturb the line impedance equivalently, this dissertation focuses on

MTDs based on distributed flexible AC transmission system (D-FACTS) devices. D-FACTS

devices, including Static Var Compensators (SVC), Thyristor Controlled Series Capacitors

(TCSC), and Static Synchronous Series Compensators (SSSC), are utilized initially to control

power flows. They can also manage power congestion and minimize system losses by altering

the impedance of power lines28. With the increase of D-FACTS devices29, their add-on cyber-

physical security benefits via MTD have attracted increasing attention in the cyber-physical

security research community.

The block diagram in Figure 1.4 shows an MTD-enabled power system measurement-
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control-loop in wide area monitoring, protection and control. Attackers can eavesdrop on

the power system measurement data and inject the manipulated measurement back into the

system. If the attackers have knowledge of the system configuration, they can construct and

inject stealthy FDI attack vector Ma into the SCADA system. Ma can bypass an AC state

estimation based BDD30 if there is no MTD activated. When an MTD is activated, the

attacker’s knowledge about the system configuration h (•) will be outdated, and the injected

attack vector that is constructed based on the outdated h (•) can be detected by BDD31. In

this case, further investigation can be conducted to identify the attack vector under some

conditions32.

Figure 1.4: Illustration of MTD model in the smart grid.

This dissertation constructs a dynamic simulation on the Typhoon real-time digital sim-

ulator to visualize the aforementioned MTD against FDI process. The simulation platform

consists of a digital circuit and a SCADA system, as demonstrated in Fig. 1.5 and 1.6. The

meters deployed in the circuit collect measurement data and transfer them to the SCADA

system. The SE and BDD then process the received data to evaluate the measurement.

When the residual value is lower than the threshold value, the BDD alarm light is off, and

the system is considered free of bad data or attack. When a stealthy FDI attack is injected,
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the estimated voltage angle at bus 10 is incorrect, as shown in Fig. 1.7. Meanwhile, the

BDD residual under attack is still lower than the threshold, meaning the attack is stealthy.

However, when the MTD is activated, the system line impedance changes, and the attacker

cannot obtain the updated line impedance in time. In this case, the injected FDI attack

vector will be detected by the BDD, as shown in Fig. 1.8.

Figure 1.5: 14-bus circuit in Typhoon real-time simulator.

1.6 Introduction to Meter Encoding

Besides the research on MTD, researchers have proposed other methods for detecting

data integrity attacks in cyber-physical systems. One such technique, known as meter encod-

ing, involves changing the values of sensor readings to spoil the capability of the attacker to

design a stealthy attack sequence in measurements. Liu33 created a meter encoding strategy

to increase the residuals obtained by the Kalman Filter applied to the undetectable attack

sequence capable of introducing estimation errors. Existing methods, however, are tailored

for IT systems, and their applicability to power systems is limited.
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Figure 1.6: 14-bus SCADA in Typhoon real-time simulator.

Figure 1.7: FDI attack impact in Typhoon real-time simulator.

Various defending strategies have been proposed to detect stealthy FDI attacks recently

in smart grids. For instance, protection-based defenses34;35 are proposed to deter attacks by

protecting a set of critical measurements. One disadvantage of the protection-based strate-

gies is that advanced encryption technologies are required, which can cause unacceptable

latency36;37 in power systems. Therefore, IEC 62351 standard stipulates that encryption

algorithms are not recommended38. Another type of emerging defense strategy is proactive

detection, which exploits the fact that the stealthiness of FDI attacks closely depends on the
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Figure 1.8: MTD detection in Typhoon real-time simulator.

attacker’s prior knowledge of the power system, e.g., line impedance and real-time measure-

ments. Proactive detection methods, such as MTD31;39–43, dynamic watermarking44;45, and

meter encoding46–49, have been studied to detect FDI attacks by actively perturbing trans-

mission line reactance, control inputs, or online measurements, respectively. Meter encoding

is a side-effect-free technique to detect FDI attacks compared with MTD and watermarking,

which may unavoidably increase power losses or decrease system stability. Meter encoding

strategies can detect FDI attacks by encoding the meter outputs and decoding them at

control centers without significantly affecting the physical operation of power systems.

The flowchart of the meter encoding against stealthy FDI attacks is shown in Figure 1.9.

The measurement vector M from the physical power system is processed by the encoding

scheme before being transmitted by the communication network. Given a secret encoding

vector µ and the encoding function f(M, µ), the output Mµ of an encoder consists of the

encoded measurements from the encoded meters and legitimate measurements from the

conventional meters. Both encoder and decoder have access to the secret encoding vector µ,

which is the bias between the encoded and original measurements. The encoding function

f in the encoder adds the encoding vector to the original measurements from the encoded

meters. Correspondingly, a decoding function g substracts the encoding vector from the
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encoded measurements. After receiving Mµ, the control center will decode the received

data by using the decoding function g(Mµ, µ). The decoded measurements Md will be

tested by the state estimation-based BDD first to check if the measurements contain bad or

manipulated data.

Figure 1.9: Illustration of meter encoding in the smart grid.

1.7 Research Motivations

Cyber-physical incidents introduced in Chapter 1.1 on page 1 pose a major threat to

the cyber-physical security of smart grids. The attacks listed in Fig. 1.2 can mislead the

smart grid control system, cause physical damage to devices, induce blackout, and even

trigger cascading failures. Since smart grids, as critical infrastructures, play a crucial role

in our everyday life, their security needs to be considered as one of the most important
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challenges in this modern era. Nations worldwide have recognized the threats of cyber-

physical attacks against smart grids. The United States has invested $210 million in smart

grid cybersecurity research since 201050. Canada has invested $40 billion in enhancing power

system infrastructures to achieve a secure and reliable power system50. It is urgent to study

the cybersecurity of smart grids from both an attacker’s and a defender’s perspectives to

improve the reliability of smart grids. This dissertation can help to achieve this goal in

four ways, including reviewing the state-of-the-art cybersecurity in smart grids, studying

a realistic FDI attack, improving the existing MTD approaches, and proposing the smart

inverter-based meter encoding.

From an attacker’s perspective, existing FDI constructions are costly and difficult to

achieve. There are two strong assumptions in current FDI literature, i.e., attackers know

the complete topology of a power system and the accurate system state to construct an

FDI attack vector. How to release these two strong assumptions is the crucial question for

an attacker to launch realistic attacks on power systems. Meanwhile, the majority of FDI

attacks are studied in transmission systems. The impact of FDI attacks on distribution

systems considering the DER is still unclear. Unlike a transmission system, the distribution

system is characterized by a radial network typology and a low X/R ratio. Therefore, the

current approximation-based FDI construction method51 does not apply to the distribution

system as significant approximation errors occur in the estimation of voltage angle differences

in the distribution system. Furthermore, there has been little effort to model a stealthy FDI

attack with a tangible attack goal in the distribution system. Without such a goal, it is

impossible for a defender to analyze the real consequence of an FDI attack. The author of

this dissertation wants to emphasize that the intention of this dissertation is not to educate

the attackers on how to perform FDI attacks but to provide power grid operators with a

better understanding of attack consequences, which in turn can assist in devising effective

defense approaches.

Existing MTD operations may deviate the steady-state operating point of a power sys-

tem from its optimal one, causing massive economic and stability impacts52. In53, voltage
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stability is defined as the ability of a power system to maintain steady voltages at all buses

after being subjected to a disturbance. One of the most common disturbances is the load

increases that occur due to the peak load period. To maintain stability after such distur-

bance, the system needs the preserved capabilities of the transmission network for power

transfer. The action of MTD perturbation which changes the transmission line impedance,

may degrade the power transfer capability and cause voltage instability during the peak load

period. To the best of the author’s knowledge, there is no research on MTD operations to

detect FDI attacks while guaranteeing system stability. Furthermore, even if existing MTD

operational approaches54–56 are proposed to follow some security constraints such as power

flow limits and safe voltage boundaries, all those approaches consider a single-hour system

load without taking into account forecasted load variations in look-ahead time periods. This

might be plausible for AC-OPF since it is frequently implemented, e.g., on an hourly basis.

However, the frequency of the MTD can be several hours to a few days depending on the at-

tacker’s capabilities as well as how a system operator executes it (e.g., an event-based MTD

strategy57). The lack of such look-ahead capabilities in existing MTD methods may cause

voltage instability or even voltage collapse due to the reduction of load margin or voltage

stability degradation between two consecutive MTD executions. Therefore, addressing the

impact of MTD on the system voltage stability is an urgent task.

As D-FACTS devices are usually unavailable in distribution systems, meter encoding

strategies are proposed to replace MTD in detecting FDI attacks. There are two metrics to

evaluate the meter encoding methods, i.e., encoding cost and encoding hiddenness. Most cur-

rent meter encoding focuses on implementing their proposed schemes on conventional meters.

Additional ZigBee modules and cellular network communication devices must be deployed

for the conventional meters within different substations to support data transmission be-

tween meters and encoders. Meanwhile, defenders need microprocessors to implement meter

encoding because conventional meters are not programmable and can only report correct

measurements. These additional devices are expensive and dramatically increase the sys-

tem’s operational cost. As for hiddenness, existing meter encoding methods can be detected
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by alert attackers using BDD before launching attacks because the encoded measurements

are inconsistent with physical laws like Kirchhoff’s circuit laws or power flow laws. When

attackers detect the unhidden meter encoding, they will not launch attacks until they crack

the coding matrices. To fill this gap, proposing a cheap and hidden meter encoding scheme

to detect FDI attacks is worthwhile.

This dissertation seeks to address the following unsolved research questions plaguing

smart grid cyber-physical security. These questions are from either an attacker’s or a de-

fender’s perspective.

Question 1: What is the state-of-the-art cyber-physical security in smart grids?

Question 2: How can attackers construct stealthy FDI attacks without the knowledge of

complete system topology and the capability of WLS-based SE?

Question 3: When system operators utilize MTD to detect stealthy FDI attacks, what is

the impact of MTD on the system voltage stability? Is it possible for an MTD to induce

voltage instability? If yes, how to re-dispatch an MTD to avoid voltage instability while

keeping the performance of the original MTD strategy?

Question 4: Since D-FACTS devices are usually not available in distribution systems, how

can system operators detect stealthy FDI attacks by utilizing programmable smart inverters?

1.8 Research Contributions

This work is unique in that it considers the cyber-physical security of smart grids from

both an attacker’s and a system operator’s perspectives. This dissertation aims to study

the construction of stealthy FDI attacks using limited resources and enhance the detection

of stealthy FDI attacks with proactive detection methods. Interconnections between these

studies also provide a comprehensive attack and detection framework, which can further

enhance the cybersecurity of smart grids against data integrity attacks. The objectives,

contributions, and research outcomes of this dissertation are outlined in response to the
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questions raised in Section 1.7.

Question 1: The review chapter comprehensively reviews cyber-physical threat models

and defense mechanisms. Over the last five years, several survey and review papers on the

cyber-physical security of the smart grid have been published. Table 1.1 lists a comparison

between this work and other works regarding the publication year, smart grid models, attack

taxonomy, technological focus, challenges and opportunities, and the review scope. The

contributions of this review chapter, as illustrated in Table 1.1, are four-fold.

• A discrete-time nonlinear time-invariant system is proposed to represent a CPSG by

using the state-space representation. Such a high-level abstraction is a useful strategy

to form the foundation and generalize a defense analysis across all attack types.

• The state-of-the-art cyber-physical attack models are summarized based on the pro-

posed abstraction and categorized according to the control-feedback loop segment each

attack involves. This new taxonomy provides the grid operator with intuitive situa-

tional awareness of enhancing the system’s cyber-physical security.

• In order to provide a timely review, this review chapter surveys the most recent publi-

cations, including 78 in the last five years (i.e., 2016-2020), 49 of which were published

in the past three years (i.e., 2018-2020). A thorough review of cutting-edge defense

approaches such as data-driven machine learning, moving target defense, and water-

marking is provided.

• The challenges and opportunities of future CPSGs are discussed, which may shed light

on cyber-physical security issues that the next-generation smart grid needs to tackle.

These contributions are discussed in Chapter 2 and in the following article:

H. Zhang, B. Liu and H. Wu, “Smart Grid Cyber-Physical Attack and Defense: A Re-

view,” in IEEE Access, vol. 9, pp. 29641-29659, 2021, doi: 10.1109/ACCESS.2021.3058628.58

Question 2: A novel net load redistribution attack is proposed to falsify nodal voltage

magnitude estimation in the AC distribution system. Specifically, the attackers intend to
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create illusory voltage violations, such as under-voltage violations, to the system operator.

• The NLRA is constructed as an attacker’s AC-OPF problem that only requires local

line impedance information.

• The machine learning-based SE with two deep neural networks is proposed to construct

NLRA. This SE can address the issue that attackers may not have enough redundant

measurements to implement the conventional WLS-based SE in distribution systems.

The performance of the attacker’s machine learning-based SE is evaluated under low-

observable conditions.

• The NLRA model is solved by using an interior-point algorithm, and simulations are

conducted on a modified PG&E 69-node distribution system.

These contributions are discussed in Chapter 3 and in the following article:

H. Zhang, B. Liu and H. Wu, “Net Load Redistribution Attacks on Nodal Voltage Magni-

tude Estimation in AC Distribution Networks,” 2020 IEEE PES Innovative Smart Grid Tech-

nologies Europe (ISGT-Europe), 2020, pp. 46-50, doi: 10.1109/ISGT-Europe47291.2020.9248915.21

Question 3: Chapter 4 proposes a novel voltage-stability-constrained MTD framework

against highly structured FDI attacks, especially in the presence of stressful system condi-

tions. The contributions of Chapter 4 are described as follows:

• It is revealed through a 3-bus system and two more complex systems that a system with

the existing MTD operation methods can suffer voltage instability or even experience

voltage collapse at the peak load.

• A voltage stability (t-index) optimization method is proposed to enhance the origi-

nal MTD strategies. Specifically, the sensitivity matrix of the voltage stability index

with respect to line impedance is mathematically derived. The proposed optimization

method maximizes the lowest index value among all the load buses with the minimum

impedance adjustment; therefore, the system voltage stability is considered while the

impact on the original MTD strategy is minimized.
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• A load margin optimization method is developed based on Continuation Power Flow69

(CPF) to ensure a sufficient load margin for system voltage stability at the most stress-

ful time period. The power injection to impedance sensitivity is utilized to calculate

safe MTD setpoints adjustment with ample load margins.

• A new MTD framework is presented, which seamlessly integrates the above two volt-

age stability constrained methods into the original MTD operational methods. Case

studies on IEEE 14-bus and 118-bus systems are conducted to test the proposed MTD

framework against one of the most sophisticated FDI attacks, i.e., NLRA.

These contributions are discussed in Chapter 4 and in the following articles:

H. Zhang, B. Liu, X. Liu, A. Pahwa and H. Wu, “Voltage Stability Constrained Moving

Target Defense Against Net Load Redistribution Attacks,” in IEEE Transactions on Smart

Grid, vol. 13, no. 5, pp. 3748-3759, Sept. 2022, doi: 10.1109/TSG.2022.3170839.42

H. Zhang, N. Fulk, B. Liu, L. Edmonds, X. Liu and H. Wu, “Load Margin Constrained

Moving Target Defense against False Data Injection Attacks,” 2022 IEEE Green Technologies

Conference (GreenTech), 2022, pp. 51-56, doi: 10.1109/GreenTech52845.2022.9772024.70

Question 4: Chapter 5 aims to detect FDI attacks in distribution systems by designing

a smart-inverter-based meter encoding scheme. The main contributions of this chapter are

outlined as follows:

• A smart-inverter-based meter encoding scheme is proposed to detect FDI attacks in

distribution systems. The proposed meter encoding can mislead the attacker’s SE

while not being detected by alert attackers.

• It is proved that if an inverter bus is encoded, all the downstream buses on that lateral

will be protected by the proposed smart-inverter-based meter encoding. FDI attacks

that target these buses will be detected.

• A comprehensive evaluation is constructed to test the detection effectiveness of the

proposed smart-inverter-based meter encoding against strong attackers. In this disser-
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tation, FDI attackers can obtain the necessary system state using either the WLS-based

state estimator or the power flow enhanced deep learning (PFEDL) state estimator.

These contributions are discussed in Chapter 5 and in the following article:

H. Zhang, B. Liu and H. Wu, “Smart Inverter Enabled Coding Scheme for Detecting

False Data Injection Attacks in Distribution System State Estimation” in IEEE Open Access

Journal of Power and Energy, 2022, under review

In conclusion, this work proposes the utilization of a realistic FDI attack and two proac-

tive defense methods to enhance the cybersecurity of smart grids. First, the NLRA model is

proposed to release the strong assumptions in the existing FDI attack construction. Next,

the impact of MTD on long-term voltage stability is explored. Two optimization models are

proposed to avoid MTD-induced voltage instability while maintaining the detection effec-

tiveness against NLRA. Finally, smart-inverter-based meter encoding is proposed to detect

FDI attacks in distribution systems. Compared with MTD, the proposed meter encoding

does not require installing additional hardware devices, such as D-FACTS.

1.9 Organization of This Dissertation

The organization of this dissertation is shown in Fig. 1.10. In each block in this figure,

the research questions and the main contributions are summarized. Chapter 1 introduced

the concepts in this dissertation, including the background, research motivations, and contri-

butions of this dissertation. In Chapter 2, a comprehensive review is presented to study the

state-of-the-art cyber-physical security in smart grids. In Chapter 3, a realistic FDI attack,

namely NLRA, is proposed to mislead the operator’s situational awareness by manipulat-

ing the measurements. The attackers only need lock line impedance information and much

fewer measurements than traditional FDI strategies to construct the proposed attack vector

in distribution systems. Chapter 4 first evaluates the impact of existing MTD on long-term

voltage stability, then proposes two optimization methods to ensure voltage stability while

maintaining the performance of the original MTD strategies. In Chapter 5, a software-based
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detection method, namely smart-inverter-based meter encoding, is proposed to detect FDI

attacks in distribution systems. The proposed meter encoding does not require D-FACTS

devices, thus, addressing the issue that it is unrealistic to implement MTD in distribution

systems. Finally, Chapter 6 presents key conclusions of this work and discusses future re-

search directions.

Figure 1.10: Structure diagram of this dissertation.
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Table 1.1: A comparison of related literature

Ref.-
Yr

CPSG
model

Taxonomy Attack types Challenge
and oppor-
tunity

Scope (at-
tack or de-
fense)

Technological
focus

59-2015
Conceptual
model

N/A DoS Yes Both attack
and defense

Informational

60-2015
Conceptual
model

Layers (physical,
MAC, network,
application)

CIA triad at-
tacks

Yes Attack only Both informa-
tional and op-
erational

61-2016
N/A CPSG compo-

nents
CIA triad at-
tacks

No Attack only Informational

62-2016
Abstract
model

Security objec-
tives (Confiden-
tiality, integrity,
availability)

CIA triad at-
tacks

No Both attack
and defense

Both informa-
tional and op-
erational

63-2016
N/A Layers (com-

munication,
measurement,
control)

DoS, wrapping,
phishing attacks

No Attack only Both informa-
tional and op-
erational

2-2016
Abstract
model

Layers (genera-
tion, transmis-
sion, distribu-
tion)

Control, mea-
surement at-
tacks

Yes Both attack
and defense

Both informa-
tional and op-
erational

64-2017
N/A N/A Malware Yes Attack only Informational

65-2018
Abstract
model

Source of threats Technical and
non-technical
attacks

No Attack only Both informa-
tional and op-
erational

66-2018
N/A Attack behavior Interruption, in-

terception, mod-
ification, fabri-
cation attacks

No Both attack
and defense

Both informa-
tional and op-
erational

67-2019
Mathematical
model (linear
time invari-
ant)

Spatial–temporal
hiddenness

FDI, topology
attack, DoS,
replay attack,
Stuxnet, dy-
namic attack

No Both attack
and defense

Both informa-
tional and op-
erational

68-2020
Conceptual
model

Security objec-
tives (Confiden-
tiality, integrity,
availability)

CIA triad at-
tacks

Yes Both attack
and defense

Informational

This
chapter-
2021

Mathematical
model (non-
linear time
invariant)

Control and
feedback
loop (con-
trol, measure-
ment, control-
measurement)

Aurora, pric-
ing attacks,
AGC attacks,
FDI, Topology
attacks, GPS-
spoofing, Line-
outage masking,
Stuxnet-like
attacks

Yes Both attack
and defense

Both informa-
tional and op-
erational
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Chapter 2

Smart Grid Cyber-Physical Attack

and Defense: A Review

Recent advances in the CPSG have enabled a broad range of new devices based on

information and communication technology. However, these ICT-enabled devices are sus-

ceptible to a growing threat of cyber-physical attacks. This chapter thoroughly reviews the

state-of-the-art cyber-physical security of the smart grid. By focusing on the measurements

and control loop introduced in Figure 1.1, this chapter first categorizes the existing cyber-

physical attacks in terms of their target components. This chapter then discusses several

operational and informational defense approaches that present the current state-of-the-art

in the field, including MTD, watermarking, and data-driven strategies. Finally, this chapter

discusses the challenges and future opportunities associated with the cyber-physical security

of smart grid.

2.1 Smart Grid Cyber-Physical Attacks Categorization

Figure 1.2 illustrates the cyber-physical attacks and their corresponding targets. Fol-

lowing the WAMPAC scenarios prescribed in18, this chapter summarizes the cyber-physical
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attacks in CPSGs in the following three categories:

1. Control signal attacks: By relying on the ability to bypass the data authentication

and integration examinations, control signal attacks aim to acquire the physical device

authority and then operate it at the attacker’s will. This type of attack is usually

designed to target mission-critical devices in power systems, such as automatic genera-

tion control (AGC), relays, smart inverters, flexible AC transmission system (FACTS)

devices, and circuit breakers. To achieve the adversaries’ malicious goals effectively,

adversaries likely have knowledge of the target device (e.g., inverter P -Q setpoints,

generator ramping limits, line flow limits). Despite the study of N -1 contingency

for loss of a generator or transmission line, researchers show that by exploiting the

clustering-based vulnerability, simultaneous attacks against the elaborately identified,

most vulnerable devices may cause cascading failures71. Control attacks can achieve

significant consequences in a short period. However, the lack of coordinated masks in

the feedback measurement makes the attacks unhidden to detection methods.

2. Measurement attacks: These attacks focus on manipulating the sensor measurement

data transferred through the communication channels or hacking the remote terminal

units (RTU) in the field. Physical communication links are usually compromised to

deliver falsified messages (e.g., false data injection attacks, GPS spoofing, and replay

attacks). Depending on the attackers’ capabilities, they may change the firmware of

devices, eavesdrop on measurements for reconnaissance, and control sensors for report-

ing tampered measurements. For example, an attacker may change the Domain Name

Systems (DNS) server of the device gateway to an attacker-controlled DNS server72.

By doing this, DNS hijacking attacks can be implemented to control the device-remote

server interactions. Once an attacker controls the communication between the gateway

and the remote server, all the measurement reports are going to be sent to the malicious

server instead of the legitimate server. In addition, traditional DoS or a Black Hole

can block the packets in the network, decreasing the system’s situational awareness.

This type of attack may disable the system operator’s situational awareness to cover
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intrusions or induce inappropriate operations according to the falsified system state

based on manipulated measurements.

3. Control-signal-measurement attacks: This type of attack is also called control-measurement-

loop attacks, in which adversaries launch coordinated attacks on both the control sig-

nals and measurements. The control signal attack may cause immediate physical layer

consequences, while the measurement attacks, such as replay attacks, can disguise

the ongoing control signal attack. The manipulated measurements can pass existing

anomaly detection mechanisms in the system. Existing research revealed that at-

tackers might utilize the control-measurement-loop attack73 (e.g., line outage masking

attacks, Stuxnet attacks) to enhance the stealthiness of control signal attacks. The

enhancement is achieved by masking the attack consequences and deceiving the attack

detection and mitigation mechanism. For instance, the notorious Stuxnet attack74;75

targeted the SCADA systems and caused substantial damage to the centrifuge of a nu-

clear plant. A Stuxnet attack can compromise the programmable logic controllers and

give unexpected commands while returning normal operation system measurements to

the SCADA.

2.2 Cyber-Physical Attacks

Given the categorization of IT and OT attacks, several attack behaviors against the IT

systems of a CPSG are briefly reviewed first. Then, the OT attacks are discussed in greater

detail in the rest of this section.

2.2.1 Data Availability Attacks

Since wireless communication is commonly used in a CPSG, adversaries can launch

attack schemes against the communication channel. This dissertation classifies the attacks

that impede data availability as IT attacks. For example, Byzantine attacks against com-

munication networks such as cognitive radio networks and mobile Adhoc networks were

27



discussed in76;77. These attacks are launched by compromised insider nodes to affect the

trusted routing, which in turn reduces the overall network performance. After intrusion, a

selfish sensing node can report falsified channel sensing results and increase its own gains at

the cost of performance degradation of other honest nodes. Typically, attackers intentionally

launch Byzantine attacks for two attack objectives. The first objective is vandalism, where

attackers report channel vacancy when the sensing results indicate that the channel is busy.

The second objective is exploitation, where attackers can access the idle channel exclusively

by sending channel busy information when their sensing results indicate that the channel is

idle. Attackers can pursue attack utility maximization of the above objectives78.

Compared with Byzantine attacks that hinder data availability by degrading the com-

munication channel, DoS is another notorious attack that blocks normal data transfer by

occupying the communication channel with junk data. In a CPSG, the objective of a DoS

attack is to disrupt the communication between a control center and sensors or actuators in

the field. DoS attackers are not required to have knowledge of the CPSG configuration or

the ability to manipulate the control or measurement data in the communication channel.

The attack consequence is that system operators can easily notice the attack due to the

loss of measurement data. However, the operators cannot mitigate the attack since they

cannot send control signals to the actuators. An example of the DoS attacks is the incident

of the Ukrainian electric power companies discussed earlier. In79, Qin et al. considered how

to damage the system performance most severely when launching a DoS attack against the

state estimation over the packet-dropping network environment. They presented an optimal

attack schedule that maximizes the trace of the average expected estimation error covariance.

In80, Zhang et al. proposed a scenario that a DoS attacker with attack cost constraint jams

the sensor-to-estimator communication channel. The authors formulated an optimization

problem that balances the destruction on the cost of system control and the cost of attack

in an infinite time horizon concurrently.
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2.2.2 Control Signal Attacks

Aurora Attacks

The aurora generator vulnerability was originally tested by the Idaho National Labo-

ratory in 2007, where a hypothetical attacker maliciously opened and re-closed the circuit

breaker of a generator by injecting a series of compromised control commands81. When dis-

connected from the power grid, the generator becomes desynchronized. The aurora attack

is designed to re-close the breaker when the system and generator slip out of synchronism

before the protection system responds to the attack. Since generator protection elements

are intentionally delayed to prevent unnecessary tripping, attackers typically get a 15-cycle

window to re-close the breaker before any protection device kicks in82. The physical damage

to the generator is caused by the variation of electrical power output from the generator and

the incremental generator rotating speed during the aurora attack. Each time the break-

ers are re-closed, the difference in frequency and phase angle between the main grid and

the generator may result in high torque and currents, which can ultimately damage the

generator83.

A scoring methodology with vulnerability ranking criteria to find the most vulnerable

breakers for an aurora attack has been presented in84. In85, modeling and impact analysis

of aurora attack targeting microgrid point of common coupling (PCC) and synchronous

generator breakers are examined. The classic sync-check relays for coping with aurora attacks

can lead to unintentional islanding in a microgrid, which is forbidden by the IEEE 1547

Standard86. The authors demonstrated that an attacker could successfully damage the

microgrid synchronous generator by attacking the PCC breaker of a microgrid connected to

the main grid.

Pricing Attacks

Demand-response programs have been drawing more attention from retail markets to

increase the efficiency of the power grid. In a basic form, demand-response is a control
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Table 2.1: Control signal attack

Control
signal
attack

Target Objective Means Consequence Mathematical
expression

Aurora
at-
tack83;86;87

Generators
in power
plants,
microgrid
synchronous
generators

Cause
damage to
generators,
motors, and
transform-
ers

Intentionally
open and
close a
breaker
or PCC
breaker

Electromagnetic
torque and
current fluctu-
ations

Control com-
mand injection
ua
t

Pricing
at-
tack88–90

Price signal,
transactive
energy sys-
tems bid
signal

Mismatch
between the
generated
and the
consumed
power, prof-
itability

Manipulate
the price
signal, bid
prices and
bid quanti-
ties

System emer-
gencies (e.g.,
line and trans-
former over-
load), economic
losses

Price signal
manipulation
λa
t , bid price

manipulation
bai , bid quantity
manipulation
qai

mechanism where the control signals are the incentives. In 2013, Tan et al.87 introduced a

pricing attack by performing scaling (sending the scaled value of the true price) and delay

(sending old prices) attacks on the price signals. In 2017, Giraldo et al.91 further improved the

attack by modeling an attacker who aims to increase the mismatch between the generated

and the consumed power by compromising the communication channel and deploying an

attack time series to manipulate the price signal. In contrast to one-snapshot attacks, where

the attackers inject malicious data only once, Maharjan et al.89 consider attacks capable of

injecting false pricing information at any moment and repeatedly over a long-time duration.

The power mismatch caused by long-term attacks can lead to over-generation, economic

losses, and poor power quality. To quantify the impact of the repeated attacks, the authors

propose a sensitivity analysis method. In their analysis, the authors utilize a z-transform

sensitivity function to model the dynamics of the system.

Zhang et al.88 analyzed the vulnerabilities in transactive energy systems in 2020. In

such a system, the home controllers at the end-user react to the price signal sent by the

transactive market and return bid information automatically. Data exchanged between the

prosumer and the market agent can be manipulated by attackers. The authors extended
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the pricing attack using malware to inject both malicious bidding prices and quantities from

prosumers. Under these attacks, the market-clearing price was manipulated, and the energy

consumption of each individual prosumer was affected, which in turn adversely influenced the

overall demand on the distribution feeders. Two attack scenarios were studied in88, where

the first scenario aims at compromising the reliability of the system by manipulating the bid

price to some extreme values, while the second scenario aims at making profits over time by

manipulating the bid price within limits to avoid being detected. Note that prosumers know

these bid limits from the service agreement. If the attacker manipulates the signals such

that they are out of the limits, the manipulation will become obvious89. In contrast to the

first scenario, the attack in the second scenario has a small impact on the total load, which

makes it difficult to be detected. Table 2.1 summarizes the existing works on the control

signal attacks.

2.2.3 Measurement Attacks

AGC Attacks

Automatic generation control is a wide-area frequency control application in intercon-

nected power grids. It ensures system frequency remains within acceptable bounds and limits

the tie-line power flow between adjacent control areas to their scheduled values. AGC relies

on power flow and frequency measurements from remote sensors to calculate the area con-

trol error (ACE). The ACE represents the power exchange error and the system frequency

error between the real system state and the scheduled state. Based on the ACE, automated

control commands on AGC generators are computed once every few seconds. However, ex-

isting measurement validation techniques, such as state estimation, typically run once every

few minutes, which cannot accommodate the second-level frequency of AGC. Therefore, the

lack of measurement validation or attack detection mechanism makes AGC susceptible to

measurement attacks. Moreover, AGC is a highly automated system that requires minimal

supervision and intervention by system operators. Once compromised, it may rapidly cause

a power imbalance in the system90.
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Sridhar et al.92 inject four adverse measurements, i.e., scaling, ramp, pulse, and ran-

dom attacks, to demonstrate their impacts on the physical system stability and the market

operation. In scaling attacks, measurements are modified to higher/lower values during the

entire duration of the attack. Ramp attacks gradually increase or decrease original mea-

surements over time. Pulse attacks modify measurements through temporally spaced short

pulses. Random attacks add random values to true measurements. In an attack scenario

to jeopardize system stability, the attacker’s goal is to cause a rapid decline in the sys-

tem frequency to trigger under-frequency load shedding. In the other attack scenario, to

manipulate the market operation and profit by generating more power, the attack involves

modification of generator operating points identified by the security-constrained economic

dispatch (SCED). In this case, the attacker is a utility that wants to generate more power

than the dispatched schedule without being detected. The attacker injects fabricated tie-line

power and system frequency measurements to force ACE miscalculation, forcing generators

in the targeted area to ramp down. Meanwhile, the attacker ramps up its own generator,

thereby generating more than the operating point suggested by SCED. As an increased gen-

eration in the attacker’s area compensates for a decrease in the targeted area, the system

frequency is kept.

Similarly, the four types of attacks discussed above are studied by Chen et al.93 to

explicitly implement the AGC attack strategy targeting the load frequency control. Tan

et al.90 consider that the grid frequency is a global parameter that can be easily verified.

They assume there exist upper and lower bounds, known by the attackers, as stealthiness

constraints for any injected attack vector to pass the data quality checks. The stealthiness

constraints limit the attack vector magnitude and make the attacker unable to cause an

unsafe frequency deviation in a single AGC cycle. Thus, Chen et al.93 focus on attacks

on power flow measurements using a continuous false data injection attack over multiple

AGC cycles to overcome the stealthiness constraints. They define a metric to assess the

effectiveness of their attacks, i.e., Time-to-Emergency (TTE), as the time from the onset of

an attack to the first time instant when the average frequency deviation of the system is out
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of the threshold (e.g., 0.5 Hz) in their case study. They optimize their proposed attack by

minimizing the TTE and following the stealthiness constraints simultaneously, leaving the

shortest time period for the system to counteract.

FDI Attacks

FDI attacks against state estimation and bad data detection are one of the hottest

topics in the smart grid. It was first presented by Liu et al.19;94 with DC system models in

2011. The authors assumed that the attacker knows the topology and network parameters

of the entire power system and can manipulate the data measurements from the meters. An

FDI attack can cheat the power system state estimation, which is the basis of many power

system applications, such as contingency analysis, and economic dispatch95;96. Falsified state

estimation results could potentially mislead the operation and auto-control mechanism of the

EMS. The consequences of such attacks include economic loss, unstable system states, and

even system voltage collapse97. Liang et al.98 introduce an FDI attack that can induce

physical line overflows. By considering the EMS sequential data processing functionalities,

their optimized attack vector results in line overload when the false measurements cause

generation re-dispatch. Elaborately constructed attack vectors can bypass bad data detection

by keeping consistent with physical laws like Kirchhoff’s circuit laws. The construction of

the FDI attack vector a in DC models obeys (2.1):

a = Hẋ (2.1)

where H is the measurement matrix; ẋ is the estimated state deviation due to the attack;

and x̂attack = x̂ + ẋ. Therefore, the malicious measurements Ma = M + a will get the same

BDD residual r as the original measurements M do.

Hug et al. further investigated the FDI attack in AC state estimation99 in 2012. Unlike

the DC model, where the elements in the measurement matrix H are constant, the rela-

tionship between the measurements and the states becomes non-linear in AC systems. The
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attack vector is derived as:

a = H(x̂ + ẋ) −H(x̂) (2.2)

where x̂ is the estimated state; ẋ is the change in the estimated state. The BDD residual un-

der an AC-FDI attack is determined by the covariance matrix, the malicious measurements,

and the estimated states after the attack. Since the attack vector is noiseless, the residual

after the attack is not greater than the original residual; thus, the attack is hidden. Note

that the construction of AC FDI attacks requires the estimated states, as shown in (2.2).

The state-of-the-art research on FDI attacks is on weakening the assumption that the

attacker has the full knowledge of the system network information (i.e., H and H(•) are

known to the attackers). However, the attacker has limited ability to hack into meters.

In this case, the attacker can only access some specific measurements due to the different

physical protection of the meters100. The limited access to meters leads to a subset of research

works generating attack vectors by minimizing the number of manipulated measurements.

For an attacker, minimizing the number of attacked meters, as shown in (2.3), can reduce

the risk of being detected and the attack cost.

αk = min
x

∥Hx∥0 (2.3)

where αk denotes the minimum objective value, ∥•∥0 is the cardinality of a vector. Such a

problem is proven to be NP-hard and non-convex; thus, it is often solved by mixed-integer

linear programming (MILP) methods101. By exploiting the sparsity of H in the power

system on account of physical topology, Sou et al.101 propose a min-cut polynomial time

approximate algorithm, which is faster but still as accurate as the MILP method. Wang et

al.102 simplify the original problem by solving the relaxed L1-norm problem for sparse attack

construction. Due to recent studies, the L0-norm minimization can be relaxed to L1-norm

minimization for sparse attack evaluation103;104. Recall that the construction of a perfect

AC FDI attack requires the knowledge of estimated states. In reality, however, an adversary

cannot obtain the same estimated state as the operators. To close the gap, Zhao et al.105
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provide a sufficient condition for an imperfect FDI attack. By satisfying this condition, an

imperfect attack vector can avoid being detected.

Blind FDI Attacks

Recently, FDI attacks with little to no information inspired researchers to construct

blind FDI attacks without explicit knowledge of the power grid topology. Some researchers

proved that such attacks exist and can further decrease the attack cost. In 2015, Kim et

al.106 presented the subspace method to learn the system operating subspace from mea-

surements and launch attacks accordingly. Their subspace method did not require system

parameter information and depended on partial sensor measurements. In 2015, Yu et al.107

studied the problem of blind FDI attack, which makes inferences from the correlations of the

line measurements. The construction of the attack utilizes the principal component analy-

sis (PCA)108 approximation method to transform the observation vector (a set of possibly

correlated measurement variables M) into a set of linearly uncorrelated variables, x̃, called

principal components. In the proposed attack model107, attackers first collect some historical

measurement data and run the PCA transformation. The PCA matrix, HPCA ∈ Rm×n, is

introduced by the dimensionality reduction of PCA, m is the number of measurements, and

n is the number of principal components. The attacker can generate the stealthy blind FDI

attack vector a = HPCAẋ with an arbitrary n × 1 non-zero vector ẋ. The attack is proven

stealthy in the noiseless condition, and the noise will slightly degrade the performance of the

attack.

In cases where attackers have the topology information needed, in 2012, Rahman and

Mohsenian-Rad109 proved that an attack could estimate H by collecting offline topology data

manually (e.g., getting access to the grid topology maps through intruders or utility company

employees), and online measurements data (deploying attacker’s sensors and PMUs). An-

other approach exploits the relationship between the publicly available locational marginal

prices (LMPs) and the Lagrange multipliers of the network-constrained economic dispatch.

Thus, LMP components can unveil the topology information. In 2014, Kekatos et al.110
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developed a regularized maximum likelihood estimator (MLE) to recover the grid Laplacian

from the LMPs. A convex optimization problem was solved using an iterative alternating

direction method of multipliers (ADMM) based algorithm. In the scenario where the loads

vary within a small range, the topology information can be embedded into the correlations

among power flow measurements. Esmalifalak et al.111 propose an independent component

analysis (ICA) algorithm to speculate the matrix H from power flow measurements. Higgins

et al.112 propose a data prepossessing before the ICA process. The proposed data classi-

fication is through T-distributed stochastic neighbor embedding (T-SNE) for dimensional

reduction. Despite the above cases where attackers can obtain the topology information,

attackers are also able to construct FDI attacks with limited topology information. Deng

et al.113 demonstrate that the adversary could launch unobservable FDI attacks to modify

the state variable on a bus if they know the susceptance of every transmission line that is

incident to that bus.

Meanwhile, attackers can launch effective and unidentifiable FDI attacks based on data-

driven strategies114. Data-driven methods, especially machine learning-based approaches,

are an essential branch of cyber-physical attacks on the smart grid. In 2019, Chen et al.114

assumed an attacker who has little knowledge of the power system and is unable to estimate

important parameters from observations. The attacker can only perform attacks and on-

line learning iteratively to search for an optimal strategy. The optimal attack strategy was

modeled as a partially observable Markov decision process (POMDP). Which, however, was

impossible to be solved. Thus, the attacker could obtain an approximately optimal strat-

egy through a Q-learning algorithm with the nearest sequence memories (NSM). In 2017,

Markwood et al.115 proposed a measurement matrix estimation attack, which was termed

as a topology leaking attack. When the attacker knows the historical bus power injections

and relative voltage phase angles, the measurement matrix H can be estimated. In cases

where attackers can not distinguish the eavesdropped measurement corresponding to the cur-

rent system topology, Higgins et al.112 proposed an unsupervised learning method to cluster

the data set via the density-based spatial clustering of application with noise (DBSCAN)
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algorithm in 2020.

Load Redistribution Attacks

In 2011, Yuan et al.20 defined a special type of false data injection attacks, namely

load redistribution attacks. By considering the characteristics of the power system and the

attacker’s capability, limited access to specific meters are available to LR attackers. Unlike

original FDI attacks with a strong assumption that the attacker has access to all the meters

in the system, LR attacks only manipulate the injection measurements of load buses and line

power flow measurements. Centralized generator measurements and zero load bus injection

measurements are not attackable. In other words, LR attacks are realistic false data injection

attacks. In 2014, Liu et al.116 proposed a local LR attack, which does not require the network

parameter information of the whole system. They defined non-attacking regions, attacking

regions, and boundary buses that connect these two types of regions. According to their

research, an attacker, without knowing the network information of the entire power system,

can launch a successful local load redistribution attack with only the knowledge of the

network information (topology and line admittance) of the attacking region. This is done

by keeping the same phase angle variations at all boundary buses.

Researchers have recently focused on revealing the specific attack consequences. In 2019,

Che et al.117 analyzed the mechanism that the attacker can implicitly identify the targeted

initial contingency as a system weak point, then leverage such weak point to implement LR

attacks to cause physical damage to the system. Under the impact of the load attack vector,

the SCED enforces the line flow limits based on the incorrect power flow state. When the

generators are following the dispatch commands sent from the SCED, severe transmission

overloads can be caused125. In 2017, Xiang et al.119 quantified the impact of LR attacks

on long-term power supply reliability by proposing a power system reliability evaluation

model. The proposed Monte Carlo simulation-based assessing method considers LR attacks

that can cause load curtailment. In 2018, Fu et al.120 presented an attacker who does

not pursue a temporary profit but the most tripped lines during the cascading process by
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Table 2.2: Measurement signal attack

Control signal attack Target Objective Means Consequence Mathematical
expression

AGC attack90;92;93 Automatic
genera-
tion
control

Rapid decline
in the system
frequency

ACEmanip-
ulation

Under-
frequency
load shed-
ding

Measurement
injection yat

FDI attack19;94–102 State es-
timation
based
BDD

Incorrect esti-
mated state

Measurement
manipula-
tion

CPSG func-
tional failure

Measurement
injection yat

Blind FDI at-
tack106;107;109–111;113–115

State es-
timation
based
BDD

Incorrect esti-
mated state

Measurement
manipula-
tion

CPSG func-
tional failure

Measurement
injection yat

LR attack20;21;116–120 State es-
timation
based
BDD

Incorrect esti-
mated state

Realistic
measure-
ment ma-
nipulation

CPSG func-
tional failure

Realistic mea-
surement injec-
tion yat

Topology attack121;122 Topology
estima-
tion

Incorrect
topology esti-
mation

Measurement
manipula-
tion

Incorrect
topology
state

Measurement
injection yat

Spoofing attack123;124 PMU Manipulating
PMU mea-
surements

GPS signal
manipula-
tion

Incorrect
location and
time stamp

Measurement
injection yat

coordinating LR attacks with physical attacks. As the main cause of cascading failure is

a physical attack, the system operator will always try to prevent cascading failure by re-

dispatching the system back to a security operation point. This is when LR attacks come

into play to disrupt and mislead the re-dispatching by causing maximum line overloading.

Fu’s case study showed that the LR-enhanced coordinated attack is more serious than a

single physical attack causing cascading attacks. In 2020, Zhang et al.21 extended the LR

attack to AC distribution systems by presenting a net load redistribution attack, which aims

at misleading the distribution system state estimation to observe illusory voltage violations.

Measurements from prosumer buses with behind-the-meter distributed energy resources can

be manipulated by an NLRA. In 2020, Choeum et al.118 proposed an LR attack against the

conservation voltage reduction (CVR) in distribution systems with DERs. The presented

adversary injects malicious load data into the advanced metering infrastructure network and

misleads the CVR to develop an abnormal control signal for the voltage regulator and smart

inverter set points. The CVR results are consequently distorted, which causes an increase
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in active power flow from the substation.

Topology Attacks

In 2013, Kim et al.121 proposed topology attacks in distinguishing from the FDI attack.

The main difference between the topology attack and the FDI attack is that the topology

attack manipulates the estimated topology state (switch and breaker states) instead of the

estimated system state (power injection, power flow). A topology attack is achieved by

manipulating both the meter measurement data and the network data, which can be repre-

sented as binary bits indicating the on and off states of various switches and line breakers.

The attack vector in a DC model is shown in (2.4):

a = (H̄ −H)x (2.4)

where H and H̄ are the measurement matrices before and after the attack, respectively.

When the measurement is noiseless, the system state x can be replaced with a function of

measurements to generate the attack vector. However, the estimated state x̂ is required

when considering measurement noise.

The DC and AC attack vectors mentioned in this subsection require complete knowledge

of network information to construct the measurement matrices and functions. In reality, this

may not be possible. Therefore, a topology attack with local network information121;126 has

been studied. Kim et al.121 consider a weak attacker who only has access to a few local

meters. The authors propose line removal attacks, i.e., the adversary tries to remove lines

from the actual network topology and mislead the operator that the line is disconnected.

Liu et al.126 observe the existing topology attacking model has two practical issues. The

first issue is that there is no limit on the attacking amounts for load measurements at buses.

The second issue is that attackers have limited capability to obtain necessary information.

Thus, the authors propose a local topology attack model to determine the feasible attack

region by obtaining less network information.
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Table 2.3: Control-signal-measurement attacks

Control
signal
attack

Target Objective Means Consequence Mathematical
expression

Line
outage
mask-
ing at-
tack127–131

Topology esti-
mation

Measurement
manipula-
tion to
mask line-
outage

Measurement
manipula-
tion

Voltage viola-
tion and line
overflow

Measurement
injection yat

Stuxnet-
Like At-
tack132;133

Communication
channel

Incorrect
control and
measure-
ment signal

Control
signal
and mea-
surement
manipula-
tion

Stealthy mali-
cious
control com-
mands

Control com-
mand injection
ua
t and mea-

surement
injection yat

GPS Spoofing Attack

In CPSGs, spoofing attacks on PMUs are conducted via global position systems (GPS),

in which the adversary produces artificial GPS signals. Two attack approaches, i.e., source

ID mix attacks and time stamp attacks, are studied based on the spatio-temporal character-

ization of the GPS signals. A source ID mix attack is an attacker exchanging the location

information of measurement data among different PMU channels without altering the mea-

surement values. This attack places the measured data in the wrong positions in associated

data servers. In 2019, Cui et al.123 demonstrated the impact of source ID mix spoofing on the

wide-area monitoring systems (WAMS) and the wide-area damping control. By swapping

the signals of two buses, the WAMS estimated the disturbance at a location far away from

the correct location; the damping control failed, and the system frequency kept dropping.

The other type of GPS spoofing attack is called time stamp attack, also known as time

synchronization attacks (TSAs), which aim to introduce erroneous time stamps maliciously,

thereby inducing a wrong phase angle in the PMU measurements122. In 2019, Risbud et

al.124 formulated an optimization problem to identify the most vulnerable PMUs to con-

struct a TSA. The vulnerability was quantified by the state estimation error, and a greedy

algorithm was utilized to solve the problem.
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2.2.4 Control Signal Measurement Attacks

Line Outage Masking Attacks

The recent attack on the Ukrainian power grid134, which affected both the physical

infrastructure and the situational awareness at the control center, is drawing more attention

from researchers. A novel line outage masking attack is proposed127–131, where an adversary

attacks an area by physically disconnecting some lines from the attacked area (i.e., remotely

open the circuit breakers) to occur short-term damage like voltage violation and line overflow,

and then mask the measurements within the attacked area by DoS or FDI attacks. Such

attacks combine both control and measurement layer attacks to cause immediate failure and

block the operator’s awareness at the same time, which may lead to cascading failures.

In 2017, Deng et al.131 presented two coordinated cyber-physical attacks (CCPAs) to

mask the line outage, namely replay and optimized CCPA. To construct the replay CCPA,

attackers alter the meter readings on all the branches to force the active power flow mea-

surements after the line outage to be the same as the power flow measurements from a

normal state. The replay CCPA is extremely costly, and the actual system state is not

consistent with the manipulated measurements, which makes it detectable by independently

known-secure PMUs. The optimized CCPA neutralizes the impact of the line outage on the

BDD residual. In 2019, Soltan et al.127 proved that finding the set of line failures after data

distortion and data replay masking attack is an NP-hard problem, based on the operator’s

knowledge of the phase angle measurement before and after the attack as well as the line

admittance matrix. In 2016, Li et al.135;136 proposed to conduct two-step cyberattacks that

mask line outages resulting from the physical attacks. The cyberattacks are decomposed into

two steps, which include a topology-preserving attack as the first step, followed by the load

redistribution attack (if the first step is not feasible). More specifically, the topology attack

masks line outages caused by physical attacks, while the load redistribution attack keeps the

total load unchanged and redistributes the line flow to bypass the state estimation-based

detection. In 2019, Chung et al.130 further improved the masking approach by deploying
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a line-removing FDI attack (topology attack) that misled the SCADA system with a fake

outage in another position. After the real line outage attack, the topology attack region is

then selected to re-dispatch the power flow. The attack vector is generated in an AC model

with local network information and the capability to manipulate the measurement within

the attacked area.

Stuxnet-Like Attacks

Traditional Stuxnet attacks inject malicious control commands into the actuators and,

meanwhile, corrupt the sensor readings to cover the ongoing attack. To avoid being detected,

Stuxnet attacks require the attacker’s capabilities to replay all the measurements during the

steady state of the system. Forensic analysis of Stuxnet attacks132 has shown the feasibility

of a very targeted and highly sophisticated cyberattack. Moreover, with some modifications,

Stuxnet can be tailored as a platform for targeting other systems e.g., automobile or power

systems.

In 2019, Tian et al.133 defined Stuxnet-like attacks against secondary voltage control,

which assume the attacker has write access to both the control signal and sensor mea-

surement. The cyber-physical system dynamic is described as a discrete-time linear time-

invariant (LTI) model. In the presence of an attack, the system dynamics are as follows:

xa(t + 1) = Axa(t) + Bua(t) + w(t) (2.5)

ya(t) = Cxa(t) + v(t) (2.6)

where the notations are similar to those in (1.1) and (1.2) with an exception that the subscript

a denotes the under attack status. The attacker knows the state transit matrix A, the

control matrix B, and the measurement matrix C. Variable ua is the contaminated control

signal received by the actuators; ya is the manipulated sensor measurement received by the

control center; xa denotes the system state. Functions w(t) and v(t) denote the process and

sensor noises, respectively. This Stuxnet-like attack is only implemented on a converged
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system, where the control center expects unchanged system states. The attacker needs to

judge whether the system has converged, according to the eavesdropped control signal and

measurement data.

2.3 Cyber-Physical Defense

Cyber-physical defense is absolutely the focus of ongoing research efforts, where a mas-

sive number of works have already been published in the literature. This section first catego-

rizes cyber-physical defense approaches into temporally-relevant and spatially-relevant ap-

proaches. Further, several state-of-the-art cyber-physical defense approaches in the CPSG,

including securing measurement sensors, model and algorithmic enhancement, data-driven

approaches, MTD, and watermarking, are reviewed.

2.3.1 Temporally- and Spatially-relevant Detection

In a temporally-relevant detection, the current system state is estimated by prior esti-

mated state, measurement, and control signal. At time t, the estimated measurement ŷ (t)

and the residual δ (t) are shown as:

ŷ (t) = L1

(
X̂ (t− 1) , U (t− 1) , Y (t− 1)

)
(2.7)

δ (t)
∆
= y (t) − ŷ (t) (2.8)

where L1 (•) is an abstract function; X̂ (t− 1) = [x̂ (t− 1) · · · x̂ (0)] ∈ Rn×t is the set of the

prior estimated state; U (t− 1) = [u (t− 1) · · ·u (0)] ∈ Rl×t; Y (t− 1) = [y (t− 1) · · · y (0)] ∈

Rm×t. After the estimation, if the calculated residual is larger than a pre-defined threshold,

the detection method will signal an alert. Among all temporally-relevant approaches, the

most widely used method is the Kalman filter based state estimator and the chi-squared

test45;137;138. The Kalman filter based estimator minimizes the variance of the estimated

state, given the previous observations. The chi-squared test139 is commonly used to detect
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anomalies.

The spatially-relevant detection method estimates the system by the correlation between

different sensors in one time-interval only. A power system state estimator and the residual-

based BDD is an example of the spatially-relevant detection approach. An essential of this

estimation is measurement filtering, which utilizes the measurement data redundancy to

increase the measurement accuracy. At time t, the estimated system state is calculated

based on the measurement from the same time interval,

x̂ (t) = L2 (y (t)) (2.9)

where L2 (•) is an abstract function. From equation (1.2), the estimated measurement is

shown as:

ŷ (t) = C (x̂) . (2.10)

The residual-based alarm mechanism is also implemented in spatial-relevance detection. One

notable difference is that in a temporally-relevant detection, the estimated measurement

is calculated from prior system state (2.7); however, in a spatially-relevant detection, the

estimation is based on the current state (2.10).

2.3.2 Securing Measurement Sensors

As previously mentioned, the majority of attacks require, more or less, the attacker’s

knowledge about the system control and measurement signal. An assessment in72 has shown

that the major cybersecurity concerns range from exploiting well-known protocols to the

leakage of confidential information. Therefore, one natural approach is to select and protect

critical control or measurement signal strategically.

In 2010, Bobba et al.96 explored the detection of false data injection by protecting a set of

critical sensor measurements and a method to verify the values of strategically selected state

variables. The authors demonstrated that an attack aims to construct an attack vector such
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that it avoids specific measurements and state variables that are protected and verified. From

the defender’s perspective, the operator should select the sets of protected measurements and

the verified state to ensure that an adversary cannot find a stealthy attack vector. Thus, FDI

attacks could always be detected. The trade-off here is that the protection and verification

of a large number of measurements and state variables could be costly.

PMUs have recently attracted researchers’ attention due to their ability to provide

measurement redundancy and assist in FDI detection. In 2018, Zhao et al.105 developed a

robust FDI attack detection method by checking the statistical consistency of measurements

from a limited number of secured PMUs. In the proposed detector, short-term measurement

forecasting140 was advocated to enhance the PMU data redundancy in 2013. In 2011, Giani

et al.141 proposed that it is sufficient to place p + 1 known secure PMUs at carefully chosen

buses to neutralize a collection of p cyberattacks. Since then, the optimal PMU placement

has been researched to detect the stealthy FDI attacks with the least PMUs. In 2015,

Qi et al.142 formulated the optimal PMU placement as an optimization problem, which

maximizes the determinant of the empirical observability Gramian matrix. In 2017, Pal

et al.143 presented an integer linear programming methodology for the PMUs placement

scheme while considering realistic cost and practical constraints. In 2018, Sarailoo et al.144

adopted synchrophasor availability (SA) on all buses as a constraint and then minimized the

number of PMUs. The SA is the fraction of time on average the bus voltage synchrophasor is

correctly present. As mentioned in Section III, the synchronization between PMUs requires

GPS signals, which are vulnerable and can be attacked145–147. In 2015, Fan et al.148 proposed

a cross-layer detection against simultaneous GPS spoofing attacks toward multiple PMUs.

2.3.3 Modeling and Algorithmic Enhancement

Another category of defense approaches is the improvement of detection models and

algorithms. In 2011, Huang et al.149 proposed an adaptive cumulative sum (CUSUM) al-

gorithm, which detects the adversary fast while maintaining a low detection error rate. In

2014, Liu et al.150 proposed a false data detection mechanism that utilized the intrinsically

45



low-dimensional power grid measurements and the sparse nature of FDI attacks. The detec-

tion problem is formulated as a matrix separation problem and is solved by two methods:

nuclear norm minimization and low-rank matrix factorization. In 2015, Gu et al.151 proposed

a detection method to detect FDI attacks by tracking the dynamics of measurement varia-

tions. They utilized the Kullback-Leibler distance (KLD) to calculate the distance between

two probability distributions, i.e., historical measurements and suspicious measurements,

to detect the FDI attacks. In 2017, Zhao et al.152 proposed a short-term state forecasting

method considering the temporal correlation to calculate the approximate prior system mea-

surements. The consistency between the forecasted and received measurements is checked

by a statistics-based test method. From the consistency test result, a detection metric is

constructed by the infinity and the L2-norm-based measurement residual analysis. In 2018,

Ashok et al.153 showed that the existing CPS defense focuses on either redundant measure-

ments or the cybersecurity of sensors and communication channels. These offline approaches

make specific assumptions about the attacks and systems, which are restrictive. One solu-

tion of PMUs placement or security mechanism may no longer be adequate under another

system configuration. Therefore, the author proposed an online anomaly detection that

covers broad attack scenarios. The proposed method leverages online information obtained

from load forecasts, generation schedules, and real-time data from PMUs to detect anomaly

measurements.

2.3.4 Data-driven Approaches

Another noteworthy category of defense approaches is data-driven machine learning

methods that have been gaining traction due to the following two salient advantages:

1. The construction of the data-driven approaches does not depend on the network topol-

ogy; and

2. This approach is usually sensitive to time-variance measurement, which can be very

effective in detecting one time interval stealthy FDI attacks created based on the

spatial-relationship of CPSGs.
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The use of supervised learning classifiers as alternate FDI detectors was proposed by Ozay

et al.154 in 2015. Supervised machine learning-based binary-classifiers were presented to

check the distance between ”secured” and ”attacked” measurements. With the distance

information, attacks can be recognized by the learning algorithms. In 2016, Yan et al.155

proposed to implement the learning based false data classifiers as a secondary detector after

the residual-based BDD. They designed FDI detectors with three widely used supervised

learning based classifiers, including support vector machine, k-nearest neighbor, and ex-

tended nearest neighbor. The proposed detectors are capable of detecting stealthy FDI

attacks that can bypass the residual-based BDD. In 2019, Sakhnini et al.156 tested three

classification techniques with different heuristic feature selection techniques. The authors

concluded that the support vector machine and the k-nearest neighbor algorithms could get

better accuracy than the artificial neural network. However, the artificial neural network is

expected to have better performance on larger systems at a higher computational cost. The

recent breakthrough in computing provides the foundation for ”deep” neural networks. In

2019, Niu et al.157 developed a smart grid anomaly detection framework based on a neural

network. The recurrent neural network with a long short-term memory cell is deployed to

capture the dynamic behavior of power systems. According to the captured behavior, the

estimated measurements are calculated and compared with the observed measurements. If

the residual between the observed and the estimated measurements is greater than a given

threshold, an attack is detected.

As for reinforcement learning based methods, Chen et al.114 proposed a BDD method

based on Kernel density estimation in 2019. By using historical records, the measurements

can be estimated. The effectiveness of the proposed detection method relies on the abun-

dance of integrated records of normal operations of the power grid. When an attack vector

is injected consistently, the tempered measurements could be used for the Kernel density

estimation analysis. Thus, the proposed BDD detection method could fail. Other than the

studies that contribute to attack detection, Li et al.158 proposed a defense methodology that

recovers the real measurements to maintain uninterrupted state estimation under FDI at-
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tacks in 2020. The proposed method utilized a generative adversarial network based data

model which captures the deviations from ideal measurements and then generates correct

data to replace the manipulated data. Besides the aforementioned defense approaches that

protect the transferred measurement data, the defense on the communication channel is vi-

tal. One of the cutting-edge wireless communication technologies used in the smart grid is

the cognitive radio, which is motivated by the ever-increasing demand for high data rates in

the face of limited spectral resources. In 2013, Ding et al.159 introduced a spectrum attacker

who can inject attack data into the honest spectrum sensor to mislead the fusion center to

lower the spectrum utilization. Moreover, the authors show that the kernel K-means cluster-

ing (KMC) algorithm yields better performance than the KMC algorithm in the detection

of spectrum attacks. However, high-quality clean training data are too expensive or too dif-

ficult to obtain in some cases. In 2016, Xie et al.160 proposed a convex framework to provide

robust classification and training in improving the anomaly-resistant against sensor failures

(i.e., falsified channel sensing resulting in Byzantine attacks) in which possibly anomalous

samples occur in the training set. In 2017, Qin et al.161 proposed a low-rank matrix comple-

tion based malicious user detection framework for the secure cooperative spectrum sensing

with a lower data acquisition cost.

2.3.5 Moving Target Defense

The aforementioned operational defense approach is either computationally complex

or somewhat passive. As an emerging technique, MTD, is originally proposed to enhance

network security162. It proactively changes the system configuration so that it reduces the

attack surface and increases the uncertainty about the network system. With the properly

arranged MTD perturbation, the attacker’s knowledge about the system is always outdated.

This approach increases the barriers for the attackers to launch stealthy attacks. MTD has

recently been introduced in the physical layer of the cyber-physical power system (CPPS)

to provide proactive defense, which is an advantage over the traditional remedial defense.

Comparing with the MTD in the cyber-layer network system, MTD in CPPS is very complex
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as it requires the physical dispatch of control, measurements, or device properties.

In 2012, the concept of MTD was first introduced into the physical layer of the power

system by Morrow et al.163 and Davis et al.164. In general, MTD utilizes D-FACTS devices

to actively modify impedance perturbations to invalidate attackers’ knowledge about the

power system configurations, which is essential for constructing stealthy attacks. Table 2.4

summarizes the existing works on MTD, where the superscript ”AC” or ”DC” indicates the

corresponding AC or DC model used.

There are two essential steps in the construction of an MTD, namely MTD planning

and MTD operation. First, in the MTD planning, a utility needs to install D-FACTS devices

on an appropriately identified subset of transmission lines, namely solving the problem of D-

FACTS placement. Arbitrary placement and full placement are the two simplest D-FACTS

placement strategies. Arbitrary placement randomly selects a subset of lines to install D-

FACTS devices165. Full placement is the most expensive method in which D-FACTS devices

are installed on every transmission line32. However, the detection effectiveness of MTDs

under these two placements is not considered. Max-rank placement31;166 can make MTDs

achieve the maximum rank of the composite matrix ( i.e., max-rank MTDs), a metric of the

detection effectiveness. Spanning-tree placement proposed in167 installs D-FACTS devices

on the lines which form a spanning tree of the system. MTDs under spanning-tree placement

is effective to detect single-bus, uncoordinated multiple-bus, and coordinated multiple-bus

FDI attacks.

After the allocation of D-FACTS devices, the system operator/defender needs to con-

tinuously determine the D-FACTS setpoints under different load conditions in the MTD op-

eration. The MTD operation includes four methods. First, random selection is the simplest

operation method without any computational overhead, in which the D-FACTS setpoints

are randomly perturbed165. As D-FACTS devices are originally used to control the power

flow, OPF-based operation methods integrate the D-FACTS devices into the optimal power

flow model to minimize the system losses or generation costs31;168;169. Neither the random

selection method nor OPF-based operation methods consider the detection effectiveness.
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Table 2.4: Moving target defense in CPSG

MTD Algorithm MTD
planning

MTD opera-
tion

Characteristics

Random MTD165DC Arbitrary
placement

Random selec-
tion

Detection effective-
ness is not considered

OPF-based
MTD168DC,169AC

N/A OPF-based op-
eration

Minimize generation
cost and guarantee
detection effective-
ness168

Hidden
MTD170DC,41AC,171DC

Placement
enumer-
ation170;
max-rank
placement
using pro-
tected
meters171

Random selec-
tion subject to
hidden condi-
tion170

MTD has max-rank
and is hidden to alert
attacker, but171 uses
extra protected sen-
sors

Spanning-tree
MTD167DC

Spanning-
tree place-
ment

Random selec-
tion

Covers all buses, but
max-rank MTD is not
ensured

Max-rank
MTD32DC,166DC,31DC, AC

Full place-
ment32,
max-rank
place-
ment31;166

Optimization-
based opera-
tion32; ACOPF-
based opera-
tion31

Minimizes system
losses32 or generation
costs31. Guaran-
tees max-rank MTD
based on numeri-
cal methods32;166 or
graph-theory meth-
ods31

Thus, these two methods must be constructed in the D-FACTS placements, which ensure

the detection effectiveness, such as the max-rank placements. Second, the optimization-

based operation takes both the economic cost and the detection effectiveness into account,

in which the metric of detection effectiveness is maximized or taken as constraints32;166. Fi-

nally, the hidden MTD operation method delicately selects D-FACTS setpoints such that all

measurements remain the same after MTD is applied41;170;171. In this case, vigilant attackers

cannot detect the MTD in place using BDD. To find suitable placement for hidden MTD

operation, authors in170 enumerate all placement combinations, while authirs in171 use the

max-rank placement in166, with the help of protected meters.
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In the literature, there are three important concerns in evaluating the performance of

MTD. First, attack detection effectiveness is the most important metric for a defense algo-

rithm. As not all MTDs are effective in detecting FDI attacks, the feasibility and the limita-

tion of MTD are discussed in167. Many works focus on improving the attack detection effec-

tiveness of MTDs though the MTD planning31;166;167;171 and MTD operation32;168;170. Two

metrics are proposed to measure the detection effectiveness of MTD, namely the Lebesgue

measure168 and the rank of the composite matrix31;32;166;170. The composite matrix rank is

superior to the Lebesgue measure in the evaluation of MTD detection effectiveness since it

demonstrates the inherent nature of MTD on FDI attack detection and provides an explicit

objective for constructing an effective MTD. Authors in31 proved the rank of the composite

matrix could be merely determined by D-FACTS placement, as long as no D-FACTS devices

work in idle states. In addition, the number of buses covered by D-FACTS devices and the

incremental line reactance introduced by D-FACTS devices also impact the MTD detection

effectiveness167. However, there is no metric proposed to measure this impact.

Second, the cost of the MTD application is a must concern for a utility. The cost

consists of the planning cost and the operation cost. In the planning cost, the number of D-

FACTS devices used in MTD determines the capital cost and labor fee. Max-rank placement

in31 uses the minimum number of D-FACTS devices to achieve the maximum rank of the

composite matrix. In the operation cost, the D-FACTS setpoints impact the generation cost

and system losses, as these setpoints can change power flow in the system. Thus, OPF-

based operation methods can be used to reduce the MTD operation cost in both AC and

DC models. To integrate the OPF-based operation methods into the EMS, an interior-point

solver proposed in169 can solve these methods within seconds.

Third, the hiddenness of MTDs provides a superior function, making the MTD stealthy

to attackers. Vigilant attackers use BDD to detect the existence of MTD before launching any

attacks. If attackers detect any MTD in place, they may stop FDI attacks and invest more

resources to launch data exfiltration attacks to obtain the latest system configuration170.

Hidden MTDs can mislead these attackers to launch detectable attacks based on incorrect
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line parameters. In summary, a desirable MTD would be a hidden MTD with maximal

detection effectiveness and low cost.

2.3.6 Watermarking

Watermarking is originally used to identify the ownership of noise-tolerant signals such

as audio, video, or image data. It also can be used to check the integrity and authenticity of a

signal. The first use of watermarking to defend against the replay attack employed in Stuxnet

was introduced by44;137 in 2009, where the physical watermarking as a control-theoretic

method to authenticate the correct control operation was proposed. Although existing tools

like cryptography can provide authentication, physical watermarking is more effective against

physical attacks or insiders who are usually authenticated users. The concept is that by

injecting a known noise as a probe input of the system, an expected effect of such input

should be found in the actual measurement output due to the system dynamics. Thus,

if the attacker is unaware of the watermarking, the injected attack will be detected by a

chi-squared detector. In 2014, Weerakkody et al.45 considered a more adversarial attacker

with access to a subset of real-time control and sensing signals. The physical watermarking

approach is extended to show the ability to counter a more intelligent adversary. Since

introducing a random probe signal into the system could affect the operating cost, Miao et

al.172 proposed an optimization method for the trade-off between cost-centric and security-

centric controllers in 2013. Despite the detection capability, the physical watermarking needs

to inject perturbation as a probe into the system, which may affect the system’s performance.

Moreover, the physical watermarking detection sensitivity is usually related to the probe

signal magnitude. Thus, to increase the detection performance, the defender has to sacrifice

the optimal system performance.

In 2016, Satchidanandan et al.173 extended the physical watermarking to dynamic wa-

termarking in a noisy dynamical system. The authors introduced independent and identically

distributed random variables to actuator nodes, namely privately imposed excitation. The

realization of the time-sequence excitation is superimposed on the control input from an

52



honest actuator. The author assumed that the control policy is in place, and the excitation

is only known by the honest actuator itself. The proposed dynamic watermarking can ensure

that a malicious sensor is constrained to distorting the process noise by at most a zero-power

signal by implementing the correlation detector. In 2018, Ferdowsi et al.174 proposed a deep

learning framework for the dynamic watermarking of IoT signals. The framework is based on

the long short-term memory blocks to extract stochastic features from IoT signals and water-

marks the features inside the original signal. This dynamic extraction enables eavesdropping

attack detection since the attacker cannot extract the watermarked information.

Watermarking can also be used for attack identification in CPSG. In 2018, Liu et al.32

designed a reactance perturbation-based scheme to identify originally covert FDI attacks on

power system state estimation. The term originally covert attack refers to the stealth of the

attack prior to reactance perturbation. The authors proved that the originally covert attack

(constructed with the original measurement matrix H0) is detectable and identifiable in a

reactance perturbation with a new measurement matrix H if and only if the rank of [H0 H] is

equal to 2(n−1), where n is the number of buses. In 2020, Zhang et al.175 proposed an attack

identification approach for GPS spoofing attacks (GSAs) against PMUs. They performed a

parallel probing technique on each PMU to determine the locations of spoofed PMUs and

the ranges of GSA phase shifts under the assumption that the PMU in a substation is secure.

The attack models and the defense mechanisms surveyed in this chapter are summarized

in Fig. 2.1. The two-layer model in this figure is a graphic form of the CPSG model

abstracted in Section 1.2. In Fig. 2.1, each attack on smart grid functionalities is shown

with corresponding counter-measurements labeled next to it.

2.4 Opportunities and Challenges

Despite the tremendous research efforts reviewed in this work, cyber-physical security

challenges remain to be thoroughly addressed. Critical power system functionalities such as

market operation, advanced metering, and network operation may also face attacks. Mean-

53



Figure 2.1: Infographic of attack and defense mechanisms in smart grid.

while, the potential implications of these attacks remain to be further investigated. In

addition, the emerging applications, including time of use, demand response, and large-scale

electric vehicles, will have strong impacts on the smart grid and may also become targets

of cyber-physical attacks in the future. This section highlights four critical challenges and

opportunities in the field of smart grid cyber-physical security that deserve further research

efforts.
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2.4.1 Cyber-physical Security in Distribution Systems on The Grid

Edge

A CPSG is a critical infrastructure with an enormous number of complicated devices.

Cyber-physical attack and defense simulations are necessary to estimate their performance,

though it is impossible to implement most experiments on a real-world power grid. However,

the existing cyber-physical studies focus primarily on transmission systems, while the work

on the three-phase unbalanced distribution systems with low system observability is signif-

icantly under-researched. A growing number of distribution systems on the grid edge are

experiencing significant penetration of DERs. The emerging power-electronic-device-based

electric vehicles, local energy storage, and demand-response have also contributed to the sys-

tem dynamics and complexity. Fully taking into account the new dynamics and complexity

in low-observability distribution systems is quite challenging in the context of cyber-physical

security. More research efforts are therefore necessary in distribution systems on the grid

edge.

On the other hand, conventional, discrete-time, model-based simulations are accepted by

researchers176. However, the traditional power system simulation tools may not be suitable

for studying the distribution grid with increasing complexity and cyber-physical concerns.

There has been a growing need to use continuous-time simulation with hardware in the loop

(HIL) capabilities. In177, the authors develop a SCADA security testbed, which integrates

a real-time immersive network simulation environment with PowerWorld. The authors in178

develop a testbed with PowerWorld and OPNET. A platform equipped with GridLAB-D

and NetSim has been used for power systems and communication network simulation in179.

Due to time-domain analysis complexity, these simulation platforms cannot run in real-time

or perform HIL simulation. In a broader sense, the real-time simulation reflects the exact

dynamic behavior of a CPSG, and the HIL ensures precise operation as the real devices.

While these two functionalities are usually unavailable with the current simulation structure,

development on the real-time simulation testbed with HIL largely remain to be conducted.
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2.4.2 Interdependence

Studying the CPSG security issues relies on the interdependence of both the cyber layer

and the physical layer. The attack detection requires advanced communication technologies

to transfer data from the physical devices to the control center. On the other hand, most

cyber-physical attack schemes have taken advantage of this interdependence to launch attacks

in the cyber layer and induce physical damages. For future research in this area, cyber-

physical interdependence needs to be comprehensively explored. For instance, the physical

attacks on cybersecurity have been under-investigated, and the threats can be devastating

when the dependence of physical systems is exploited by an attacker2. Another cyber-

physical interdependence that has been largely ignored is simulation software. Traditional

software is developed to simulate or emulate either communication networks (e.g., OPNET,

NS2, OMNET) or physical power systems (e.g., RTDS, DSATools, PSS/E, PowerWorld).

Such software cannot provide realistic cyber-physical environments180. Additionally, the

interdependence between CPSGs and other critical infrastructures, such as communication,

water, and transportation networks, ought to be researched in the context of cyber-physical

attacks against CPSGs.

2.4.3 Attack Coordination

In real-word CPSG, sequential outages are the most common causes of blackouts181, e.g.,

the 2003 Northeast Blackout182 and the 2011 Southwest Blackout183. If a series of attacks

can trigger such events, then an intimidating cyber-physical security risk will be worthy of

attention. Section 2.2 discussed the line outage masking attack, one of the popular methods

among coordinated attacks. Meanwhile, most researchers assume that the cyberattack vector

is injected simultaneously with the physical damage in the existing research. This assumption

may be validated in a specific condition, such as the system is in a steady state. However,

the general circumstances in which the attackers cannot promise timely cyberattack injection

with respect to the system dynamic have remained to be considered. However, the timing and

ordering of coordinated attacks can also have an impact on the eventual damages. With an
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elaborate schedule, not only will concurrence be relaxed, but the damage may be amplified.

On the other hand, from a defender’s perspective, analyzing the coordinated attacks on

CPSG based on temporal-topological correlation can help to restore the complete attack

path and identify the intent of the attacks184.

2.4.4 Attack Identification and Mitigation

In future power systems, an attack detector will be an indispensable tool for detect-

ing and identifying anomalous measurements. Without reliable attack identification, it is

hard to implement a mitigation process with pertinence. While detecting attacks is compu-

tationally straightforward, identifying the attack location and strategy is computationally

challenging185. For instance, bad data cannot be identified once belonging to the critical

sets of measurements, also known as bad data groups, because they cause the same nor-

malized residuals for each element of the set186. Another problem is that existing state

estimation based algorithms in transmission systems are not suitable for unbalanced distri-

bution systems with high r/x ratios187. With the aforementioned issues, few solutions have

been proposed for the identification of attacks. In addition, rather than brutally getting rid

of identified compromised measurements, how best to mitigate the adverse effect of those

attacks is also a very challenging issue depending on particular operation and controls of a

CPSG.

2.5 Conclusion

A CPSG relies on the cooperation of both cyber and physical layer functionalities.

The ubiquitous threat to the entire smart grid’s large attack surface makes it necessary

to comprehensively analyze and classify attacks. This chapter provides a CPPS operation

model and addresses the associated vulnerabilities targeted by an attacker. It also classifies

the existing attack approaches against different components based on the CPPS model. A

review of the cutting-edge operational defense approaches is presented to summarize and
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categorize the state-of-the-art in the field, ranging from the state estimation based detector

to the emerging MTD and watermarking methods. As smart grid technologies become more

prevalent and more physical devices are connected to the cyber-physical infrastructures,

significant attack surfaces are introduced, as well as a wide range of opportunities and

challenges. Four challenges were highlighted in the investigation of smart grid cyber-physical

security. This survey provides insights that future research efforts must target a new set

of cyber-physical security concerns, including real-time risk modeling and simulation, risk

mitigation, and coordinated attack defense.
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Chapter 3

Net Load Redistribution Attacks

After reviewing the state-of-the-art cyber-physical security research in smart grids, it

is seen that researchers are expected to study the power system cybersecurity from both

the attacker’s and the defender’s perspectives. This chapter proposes a realistic FDI attack

model, namely NLRA, which releases two strong assumptions in the existing FDI strategies.

Furthermore, a modified AC-OPF problem is constructed to maximize the attack impact

while keeping the proposed attack stealthy to the system operator’s BDD. To obtain the

required system state, WLS-based and machine learning-based state estimators are proposed

to be implemented by attackers.

3.1 Introduction

Cyber data attacks are viewed as “the worst interacting bad data injected by an ad-

versary”188. In67, Liu et al. analyze several existing security accidents and introduce the

taxonomy of the attacks according to their spatial-temporal characteristics. An attacker

with the capability of configuration information can manipulate the measurement data at

the smart meters as they are usually physically exposed4. Such attacks are defined as

FDI19;94;188. FDI attacks can result in incorrect state estimation and further undermine

the economic and secure operation of power systems. In previous research, it is assumed
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attackers have the entire power network information. In reality, this is an impractical as-

sumption due to the security and complexity of today’s power grid. Therefore, FDI attacks

with incomplete information51;107;109;116;126 are drawing more research attention. Liu et al.116

demonstrate an attacker could construct an undetectable FDI attack in an AC transmission

system with incomplete network information by maintaining the same phase angle increment

at the boundary nodes of the attack region. According to the characteristics of transmission

systems (i.e., high X/R ratio, meshed network), Liu et al. propose a method to approxi-

mately estimate phase angle differences between boundary nodes51. Their results show the

construction of an FDI attack does not require knowledge of the entire power network. Yuan

et al. develop a novel concept of load redistribution attacks20, which is a more realistic form

of the FDI attack in the DC transmission system. To the best of the author’s knowledge,

the LR attack has not been researched in AC distribution systems with distributed energy

resources, wherein the malicious measurement may be disguised by the uncertain DERs’

power injection. Existing research on the effect of LR attacks mainly concerns economic

consequences. However, little research has been conducted when attackers aim at creating

system state violations.

An important reason for this gap is that constructing LR attacks in AC distribution

systems remains challenging, as attackers only have limited resources. Even though local

FDI attacks51;116;126 are proposed to reduce the attacker’s required knowledge about system

configurations, the lack of accurate system state from an attacker’s perspective excludes them

from being used in the real world. Therefore, this chapter first proposes to use boundary

conditions to ensure the stealthiness of the proposed NLRA so that only part of the system

configuration information is required for an attacker. Then it is proposed to use power flow

enhanced deep learning SE to provide attackers with the necessary system state because

attackers usually do not have redundant measurements to implement WLS-based SE.

In summary, this chapter fills the gap by answering the following questions:

• In NLRA construction, how do attackers maximize the attack impact? How to con-

struct NLRA with incomplete knowledge about system configuration?
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• How do attackers get accurate system states without enough redundant measurements

to implement WLS-based SE?

The first question is solved in the NLRA model section, and the second question is

solved in the PFEDL-based SE section.

3.2 NLRA Model

Cyberattacks on a certain type of power system measurements can easily expose them-

selves. For example, a control center can straightforwardly detect a cyberattack on the

measurements of a utility-scale wind or solar farm through direct communication between

the system control center and the generating resource control room189. In the NLRA model,

a generator bus with utility-scale generators is not attackable. A nodal net load, calculated

as the total load minus the total local generation, is measured at a specific node in the

power system. Nodal net load measurements would become highly uncertain with a greater

amount of behind-the-meter DERs in the distribution system, giving rise to cyberattacks as

the attacker can disguise an attack vector as uncertainties.

Before introducing the attack model, this section defines the attack region and non-

attack region for clarity. As shown in Figure 3.1, a connected power network is separated

into the attack region in the left ellipse and the non-attack region in the right ellipse by a set

of tie lines. The buses on each end of a tie line are called boundary buses. The attack region

consists of all the buses whose measurements can be manipulated by the attacker, excluding

the boundary buses. The non-attack region consists of all the buses that are outside the

attack region.

This section investigates a stealthy FDI attack model, termed as NLRA, in which mea-

surements on the net power injection at a load node and related line power flow measurements

can be compromised. With some mild assumptions on the attackers’ capability, attackers

can precisely control the errors injected into these measurements (attack vector) in a coor-

dinated manner to mislead the estimation of nodal voltage magnitudes in the attack region.
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Figure 3.1: Illustration of NLRA attack and non-attack region.

The attackers must also maintain the sum of all net power injection measurements in the

attack region unchanged to make the attack stealthy.

3.2.1 Stealthy Conditions

To launch a stealthy AC FDI attack with incomplete network information, two condi-

tions need to be satisfied. First, the attack vector itself should bypass the BDD tests. Liu et

al.19 proved that if an attacker injects false data that are consistent with the physical char-

acteristics of power systems into the measurements, the attack vector can bypass the BDD.

Second, the injected attack vector should not cause any state or measurement changes out-

side of the attack region since the attacker does not have access to the non-attack region. Liu

et al.116 demonstrated that if an attack vector ensures that all boundary nodes between the

attack and non-attack regions have the same incremental phase angle, the additional power

flow due to the injected false power will not flow out of the attack region. Therefore, the

power system states and measurements in the non-attack region would remain unchanged.

Recently, an FDI attack strategy against AC SE with incomplete network information

is proposed in transmission systems51. The authors utilize the high X/R characteristic in
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transmission systems to approximate the necessary voltage angles on boundary buses to

ensure the above two stealthy conditions. However, this approximation is not accurate in

distribution systems due to the low X/R ratio. Meanwhile, attackers usually cannot obtain

enough redundant measurements to implement WLS-based SE. To address this issue, this

dissertation proposes to use PFEDL-based SE as an attacker to obtain accurate system

states with a small amount of measurements. The detailed PFEDL-based SE is introduced

in Section 3.3

3.2.2 Attacker’s Capabilities

To meet the two conditions discussed in Section 3.2.1 and launch a stealthy NLRA

attack, an attacker must have the following capabilities:

1) Knowledge of line impedance in the attack region. In reality, line impedance may not

be directly accessible to attackers. They need to launch data exfiltration attacks to obtain

the line impedance. Several methodologies190–193 have been proposed to estimate the line

impedance;

2) Read & write access to power injection and line flow measurements in the attack

region. The attacker can eavesdrop on those measurements and perform man-in-the-middle

attacks; and

3) Knowledge of the voltage magnitude and angles at boundary nodes, as well as read

access to the tie-line power flow between the attack and non-attack regions.

The attacker’s capabilities required to launch a stealthy NLRA are summarized in Ta-

ble 3.1. Note that the attacker’s cost (e.g., resources invested) to launch a successful NLRA

is highly related to the scale of an attack region. For an attacker, attacking a large region

requires a higher cost than a small region, but may result in more severe consequences in

the distribution system.
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Table 3.1: Attacker’s capabilities for NLRA

Measurements Capabilities
Line impedance Attack region (Knowledge)
Power injection Attack region (Read & Write)
Line power flow Attack region (Read & Write),

Tie lines (Read-only)
Voltage magnitude Boundary nodes (Read-only)
Voltage angle Boundary nodes (Read-only)

3.2.3 Attack Objectives

With the above attacker’s capabilities, the proposed NLRA is modeled as a modified

AC-OPF problem. The attacker’s goal is to mislead the distributed system operator (DSO)

to observe under-voltage issues in AC state estimation by injecting an attack vector into the

measurements. Let A, B, T represent the set of nodes in the attack region, boundary nodes,

and tie lines, respectively. The objective of the NLRA attack is formulated below.

min
∑
a∈A

caVa (3.1)

Here, subscript a denotes the targeted nodes in the attack region A; Va represents the

intended voltage magnitude measurements of node a; ca is a non-negative weight coefficient

assigned to a node representing the attacking emphasis, the summation of which equates

to 1. To achieve the most desirable under-voltage violation, an attacker can assign a large

weight to the most critical node, and a zero weight for nodes of no interest.

3.2.4 Stealthiness Constraints

To make NLRA stealthy, an attacker needs to ensure measurements of the tie line’s

power flow ST , the voltage magnitude on the boundary nodes VB, and the voltage phase

difference between the boundary nodes ∆θB remain unchanged after the attack as defined
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in Equation 3.2. 
ST

VB

∆θB

 =


S ′
T

V ′
B

∆θ′B

 (3.2)

Here, superscript (•)′ denotes the measurements before an attack. Constraints 3.3 and 3.4,

showing the essence of an NLRA, indicate the sum of all net load changes should be equal

to zero, and the net load’s change at each node is within a reasonable range, respectively.

∑
a∈A

∆Da = 0 (3.3)

− δSl′

a ≤ ∆Da ≤ δSl′

a (3.4)

In 3.3, ∆Da is the attack magnitude, i.e., net load change, at each node in the attack region.

In 3.4, δ is a percentage of allowable change on the original load (apparent power) measure-

ment Sl′
a . Constraint 3.4 is imposed because the DSO can check the sensor measurements

when an under-voltage condition occurs. In this case, unrealistic injected data can be easily

exposed.

With local information of the attack region and boundary information between the

attack and non-attack regions, NLRA is modeled as a modified ACOPF problem, in which

the prevailing ACOPF constraints 3.5-3.9 hold for the proposed NLRA.

Sl = P l + iQl (3.5)

gP (θ, V, P l) = 0 (3.6)

gQ(θ, V,Ql) = 0 (3.7)

hf (θ, V ) ≤ 0 (3.8)

ht(θ, V ) ≤ 0 (3.9)
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Here, voltage angle θ, voltage magnitude V , real and reactive power load P l and Ql are

decision variables. In 3.6, gP is the nonlinear equality constraint of nodal real power balance.

In 3.7, gQ represents the nonlinear equality constraints of nodal reactive power balance. hf

in 3.8 and ht in 3.9 are nonlinear inequality constraints of power flow limits at the “from

node” and “to node”, respectively. Attack vectors generated by the proposed NLRA model

obey Kirchhoff’s current & voltage laws, implying they follow the inherent characteristics of

the distribution system.

3.2.5 Attack Framework

The flow chart of an NLRA in the distribution system is shown in Figure 3.2. The

attacker has the capability of eavesdropping on compromised sensors in the attack region.

The attacker can generate an attack vector by running the NLRA model formulated in 3.1-

3.9 based on the eavesdropped measurements. Further, the attacker can inject the calculated

attack vector back into the corresponding communication links through man-in-the-middle

attacks.

Figure 3.2: The flowchart of NLRA.

In this study, it is assumed that DSO is equipped with an AC state estimator and

BDD. The AC state estimator utilizes compromised measurements combined with the mea-

surements in the non-attack region to check the existence of a cyberattack. If the attack
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bypasses the BDD test, the system will respond to the estimated system states with correc-

tive actions. This section focuses on demonstrating the impact of the NLRA attacks in the

distribution system. Corrective actions, and most importantly, defense approaches for the

DSO in response to NLRA are out of the scope of this chapter.

3.3 Attacker’s Power FLow Enhanced Deep Learning-

based SE

The last challenge for an attacker to construct the proposed NLRA is to deal with

the estimated voltage states. The approximation method51 in transmission systems is not

feasible here in distribution systems, and the attackers usually do not have enough redundant

measurements to implement WLS-based SE. Thus, this chapter proposes to use PFEDL

models194 to estimate the system states. In power systems, redundant factors (RF) are

utilized to indicate system observability. The RF is defined as the ratio between the number

of available measurements and the number of system states. Typically, WLS-based SE

requires an RF of 2.5 to work correctly. Experiment results in this chapter show that in the

69-bus system when the RF is 1.5, the WLS-based SE cannot converge, while the PFEDL-

based SE can provide the attackers with accurate system states.

A PFEDL model can incorporate historical measurement data and the power flow model.

The hybrid model utilizes deep neural networks to learn the state correlations while consid-

ering physical laws in a power system. Inspired by the autoencoder in the artificial intelligent

area, the PFEDL model consists of an encoder and a power flow enhanced decoder, as shown

in Figure 3.3. The autoencoders are trained to copy their inputs to their outputs with in-

ternal layers. Such an internal hidden layer divides the neural network into two parts which

are the encoder and decoder. When using a PFEDL-based autoencoder as a state estimator,

the measurement M is fed into the encoder, and the hidden layer output is the estimated

system state x̂. To improve the accuracy of the PFEDL state estimator, the estimated state

then goes through the decoder to output the restored measurements M̂. Once the restored
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Figure 3.3: Architecture of the power flow enhanced deep learning state estimator

(estimated) measurements are generated, the cumulative error between the actual and the

estimated measurement vector is calculated as the loss function to train the PFEDL neu-

ral network. The loss function is then back-propagated, thereby adjusting the weights and

biases of the neural network accordingly.

Since neural networks can approximate nonlinear functions195, deep neural networks

are utilized as the encoder to estimate the system states given the measurements M. In

the experiment section, the attackers’ PFEDL-based SE utilizes long short-term memory

(LSTM) neural network and a feed-forward deep neural network (FNN). The LSTM neural

network is one type of recurrent neural networks. It can map the nonlinear relationship of

measurements and states while learning the temporal correlations of the load change.

The attacker’s PFEDL-based SE results under various RF are compared with the actual

system state in Figs. 3.4 and 3.5. One year of hourly load data from ERCOT is used to

train and test the PFEDL-based SE. The standard deviation for the measurements is 0.004.

The largest redundant factor in the following cases is 1.5, which is still too low for the WLS-

based SE to converge. As a comparison, it is seen that the PFEDL-based SE works well,

and the estimated states are accurate when RF is 1.5 (dotted red lines). By observing the

PFEDL-based SE under various RF, it can be seen that a lower RF for the PFEDL-based
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(a) Voltage magnitude estimation.

(b) Voltage angle estimation.

Figure 3.4: PFEDL (FNN) state estimation results under low observability.
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(a) Voltage magnitude estimation.

(b) Voltage angle estimation.

Figure 3.5: PFEDL (LSTM) state estimation results under low observability.
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Table 3.2: Average MAEs for PFEDL-based SE in 69-bus system

Redundant
factors

1.5 1.2 0.9

LSTM 0.0034 0.0037 0.0053
DNN 0.0013 0.0017 0.0020

SE will lead to a worse SE accuracy for both the LSTM and FNN models. The accuracy

of the two PFEDL-based SE is evaluated in Table 3.2. The accuracy measure is the mean

absolute error (MAE):

MAE =
1

N

N∑
k=1

|x̂k − xk| (3.10)

where N is the number of the estimated states. A lower MAE value means better estimation

accuracy.

The average MAE under each RF is calculated from 1,000 cases. For the PFEDL-based

SE, the RF values of 1.5, 1.2, and 0.9 are used to calculate the MAEs. Since the WLS-based

SE cannot converge when RF is 1.5, this chapter calculates the MAE of the WLS-based SE

under a fully measured (RF=3.5) system as a reference. The reference MAE value is 0.0052.

When comparing this reference MAE with the MAE results in Table 3.2, it shows that the

PFEDL-based SE under a low observable system can perform as well as the WLS-based

SE under a fully measured system. The PFEDL-based SE greatly reduces the attack cost,

which is an advantage for NLRA attackers. In contrast to WLS-based SE, an attacker’s

required number of measurements reduces by 57% if the PFEDL-based SE is used to replace

the WLS-based SE.

3.4 Experiment Results

In this section, the proposed NLRA model is simulated on a modified PG&E 69-node

radial distribution system. The DSO, equipped with the AC state estimator and BDD,

has full access to all sensor measurements and global information of the entire distribution

system. This section simulates NLRA on this system and assesses its attack consequences
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while accounting for the impact of attack regions, attack timing, and the sizes of attack

regions. The NLRA, AC state estimation, and BDD are all performed in MATPOWER196.

3.4.1 Test Distribution System

The one-line diagram of the modified 69-node system is shown in Figure 3.6. This section

modifies the original 69-node radial distribution system by adding aggregated behind-the-

meter DERs at certain nodes (in Figure 3.6). The proposed NLRA is simulated in two

regions (i.e., main feeder and lateral) and three time periods (i.e., valley, shoulder, and peak

hours). The range of allowable voltage magnitudes is between 0.95 p.u. and 1.05 p.u. in this

system.

Figure 3.6: The modified PG&E 69-node system.

3.4.2 Impact of Attack Regions

This subsection compares the system impact of the attack at two regions, i.e., one

on the main feeder (Nodes 13 to 26) and the other on the lateral (Nodes 53 to 63). To

demonstrate the flexibility of attacking different numbers of nodes, Nodes 22 to 25 on the

main feeder and Node 59 on the lateral are chosen to be the targets, that is, the weight

coefficients on these nodes are non-zero. While attackers may pick their target nodes of

interest, this section randomly selects the target nodes in the middle of the attack region.
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Such a selection allows the voltage magnitude profile to drop first and then rise to satisfy

the boundary condition. This is a unique characteristic of the NLRA attacks in the radial

distribution system. Figure 3.7 shows nodal voltage magnitudes and angles at a peak hour

before and after the attack. In order to make the NLRA stealthy in the attack region, the

voltage magnitudes and the incremental phase angles on the boundary nodes remain the

same after the attack. When the attack is on the main feeder, the largest voltage drop

occurs at Node 21, which is 0.017 p.u. No voltage magnitude of any node drops below

the secure range and the DSO observes no under-voltage issue. When the attack is on the

lateral, the DSO perceives six voltage violations below the lower limit of 0.95 p.u. at Nodes

57 to 62. The largest voltage drop of 0.057 p.u. occurs at Node 58. The difference in

attack consequences between the two attack regions is largely attributed to the difference

in line impedance. Specifically, an attack region with higher line impedance would more

likely experience larger voltage drops under an NLRA. Therefore, the optimal strategy for

an attacker is to launch an NLRA on laterals, where the line impedance is higher than that

of the main feeder.

3.4.3 Impact of Attack Timing

This subsection investigates the impact of attack timing on the distribution system by

implementing NLRA in different time periods. Figure 3.8 compares the profiles of voltage

magnitudes after NLRA on the main feeder and the lateral at peak, shoulder, and valley

hours. It is seen larger voltage drops occur during the peak hour in both attack regions.

As shown in Figure 3.8b, on the lateral occur five and one nodal voltage violations at the

shoulder and the valley hours, respectively. The most severe attack consequences occur on

the lateral during the peak hour when the under-voltage condition occurs on six nodes, i.e.,

Nodes 57-62. This result can be explained by comparing the net load differences at those

time periods. A higher load condition provides NLRA with more freedom to manipulate and

redistribute the nodal net loads in the attack region.
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(a) Voltage magnitude on main feeder (b) Voltage angle on main feeder

(c) Voltage magnitude on lateral (d) Voltage angle on lateral

Figure 3.7: Attack consequences on a peak hour.

3.4.4 Impact of System the Size of an Attack Region

This subsection studies the impact of the size of an attack region on the stealthiness

of the NLRA. The size of the attack region is reduced by randomly selecting 4 to 7 nodes

out of the total 11 nodes (Nodes 53-63) on the lateral as the attack region. For each attack

region, this subsection simulates NLRA, the AC state estimation, and the BDD tests 1000

times. In order to show the stealthiness of the NLRA, an attack stealthiness probability

(ASP) metric is used, which is defined as the probability of the attack vector bypassing the

BDD test. Due to the meter measurement noise, the residual check for a normal system fails

with a probability of 0.02 to 0.05, which gives the non-attack case an ASP between 0.95 to

0.98. Figure 3.9 shows the ASP of the four attack sizes. It is seen ASP increases as the

size of the attack region increases. This is because the larger the attack region is, the more
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(a) Attack on main feeder. (b) Attack on lateral.

Figure 3.8: Attack consequences in different time periods.

noise-free measurements there will be. The noise-free measurements are the injected false

data, which strictly obey Kirchhoff’s current and voltage laws and thus reduce the residual

in the AC state estimation.

Figure 3.9: ASP versus the number of nodes in the attack region.
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3.5 Summary

Based on the concept of the LR attack, this chapter proposes a stealthy NLRA against

the AC distribution system with behind-the-meter DERs using local network information.

The proposed method is stealthy to BDD in the state estimator and can mislead DSO with

illusory under-voltage issues. The numerical results show that the estimation residual after

the NLRA is smaller than that before the attack, which can ensure the stealthiness of NLRA.

The simulation results demonstrate that a larger attack area in NLRA further reduces the

residual in BDD. The NLRA attacks aiming at the region with higher line impedance (e.g.,

laterals) and larger total net load (e.g., the peak load) lead to larger voltage drops in the

attack region. The future work will focus on the development of a defense framework in

which the proposed NLRA will be simulated. Attack sequences with a high level of DERs

as well as other attack goals in the distribution system will be also researched.
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Chapter 4

Voltage Stability Constrained Moving

Target Defense

In previous sections, FDI attacks are reviewed and constructed. Evaluation results show

that these attacks can mislead the power system SE and cause economic losses or even fail-

ures. Many defense strategies are proposed to detect FDI attacks. As an emerging proactive

defense strategy, MTD utilizes D-FACTS devices to actively perturbs the branch equivalent

impedance to invalidate attackers’ knowledge about the power system configuration. Since

D-FACTS devices can control power flows and reduce system operational costs, their add-on

cybersecurity benefits via MTD have drawn increasing attention in the research society.

4.1 Introduction

The majority of MTD strategies in the literature are designed to detect FDI attacks

against state estimation39;41;165;197. In 2021, Liu et al.43 first propounded that there are two

intertwined and essential problems associated with MTD, i.e., MTD planning and MTD

operation. The MTD planning refers to optimally installing MTD devices (e.g., D-FACTS

devices) on an appropriately identified subset of the system (e.g., transmission lines). The
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MTD operation determines how to optimally dispatch MTD device setpoints in real-time. In

2014, a random MTD (RMTD) operation165 was proposed to randomly change the reactance

of D-FACTS equipped transmission lines without considering the detection effectiveness. In

2020, a DCOPF-based MTD operation168 was proposed to minimize the generation cost

while ensuring MTD detection effectiveness. An ACOPF-based optimized MTD (OMTD)

strategy that minimizes the system loss is introduced in52. In133, Stuxnet-like attacks, which

can compromise the control signals to mislead the system to unsafe conditions and inject

false sensor measurements to cover the ongoing attack, are detected by MTD. In 2018, Liu

et al.32 defined the “hidden” MTD (HMTD), which optimally changes the branch reactance

in AC network to minimize the system loss as well as line power flow differences. An HMTD

is stealthy to attackers, even when the attackers are capable of checking the activation

of D-FACTS39. In54, Cui et al. propose an HMTD strategy for three-phase unbalanced

distribution systems. Lakshminarayana et al.55 propose to actively perform MTD so that

the attacker’s knowledge to mask the effects of the physical attack is outdated.

However, MTD operations may deviate the steady-state operating point of a power

system from its optimal one, causing massive economic and stability impacts52. In53, voltage

stability is defined as the ability of a power system to maintain steady voltages at all buses

in the system after being subjected to a disturbance. One of the most common disturbances

is the load increases which occur due to the peak load period. To maintain stability after

such disturbance, the system needs the preserved capabilities of the transmission network

for power transfer. The action of MTD perturbation, which changes the transmission line

impedance, may degrade the power transfer capability and cause voltage instability or even

voltage collapse during the peak load period. In 2015, Wang et al.198 proposed an online line

switching methodology for increasing load margins to the static stability limit of a look-ahead

power system. Cui et al.199 propose a voltage stability constrained OPF model utilizing a

sufficient condition on power flow Jacobian nonsingularity. In 2018, Wang et al.200 proposed

voltage stability constrained OPF by using the minimum singular value of the power flow

Jacobian as a voltage stability index. To the best of the author’s knowledge, there is no
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research on MTD operations to detect FDI attacks while guaranteeing system stability.

This chapter aims to fill the gap by proposing a novel voltage-stability-constrained MTD

framework against highly structured FDI attacks, especially in the presence of stressful sys-

tem conditions. One important consideration here is that the voltage-stability improvement

ought to be minimally “invasive”, meaning such an enhancement should not significantly

degrade the attack detection effectiveness of the MTDs or incur a prominent increase in the

system operating cost. In summary, this chapter answers the following research questions:

• Can a system with the existing MTD operation methods suffer voltage instability or

even experience voltage collapse at the peak load?

• If an MTD can induce voltage instability, how to enhance the existing MTD strategies

to improve the voltage stability of a power system?

The first question is answered by simulating the MTD-induced voltage instability on

three test systems with real-world load profiles. The second question is answered in Sec-

tion 4.4.

4.2 MTD-Induced Voltage Instability

This section first shows the voltage stability issue induced by MTD in a 3-bus demo

system. Then, a comparative analysis is conducted to show the likelihood of such issues

in two complex power systems. A definition of the demonstrated voltage stability issue is

given. Meanwhile, the theoretical connection between voltage instability and myopic MTD

operations is explained. Last, this section explains why the conventional power flow control

methods are unsuitable for solving MTD-induced voltage instability.

Figure 4.1 illustrates the 3-bus system, in which Bus 1 is the slack bus with a generation

capacity of 500 MVA. Buses 2 and 3 are the load buses whose off-peak loads are 241.2 MVA

and 80.4 MVA, respectively. The load increases by 25% at the peak hour with a fixed power

factor. The power flow limits of Lines 1-2, 1-3, and 2-3 are 220 MVA, 215 MVA, and 105
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(a) peak load w/o MTD (b) off-peak load w/ MTD

(c) peak load w/ MTD (d) power-voltage curves with and without MTD

Figure 4.1: MTD-induced voltage instability in the 3-bus system.

MVA, respectively. The system without MTD at the peak load is in a normal steady-state

as shown in Fig. 4.1a. When an MTD is introduced at the off-peak load in Fig. 4.1b, e.g.,

the impedance of Line 1-2 changes from 0.1 to 0.12 per unit, the MTD would not cause

any instantaneous voltage stability issues since the system after the MTD has enough load

margin for the off-peak load. However, this is not the case when it comes to the peak load

in Fig. 4.1c, where the originally sufficient load margin at the off-peak becomes insufficient.

Figure 4.1d illustrates the MTD-induced voltage instability by using the CPF P-V curve. As

seen, the solid curve and the dashed curve represent the CPF P-V curves without and with

the MTD, respectively. The saddle node bifurcation (SNB) point of the P-V curve without

MTD (star marker) is to the right of both the peak and off-peak loads. This indicates that

the system without MTD has enough load margin and no voltage stability issue for both the

off-peak and the peak loads. However, when the MTD is introduced, the SNB point (circle

80



marker) of the dashed curve is between the off-peak and peak loads. The amount of reduced

load margin attributed to the MTD is labeled in Fig. 4.1d as the MTD-induced load margin

reduction. Figure 4.1d indicates that the MTD would not cause any instantaneous voltage

stability issues at the off-peak load; however, the system will not have sufficient load margin

at the peak load and will thereby undergo voltage stability issues.

To facilitate the presentation, this section defines MTD-induced voltage instability as

voltage instability under stressful conditions due to the load margin decrease by an MTD

previously implemented. More specifically, the system originally had a sufficient load margin

to cope with the stressful condition, but the very sufficiency no longer exists after an MTD

is implemented.

To clearly show the likelihood of MTD-induced voltage instability in more complex

power systems, this section further tests the following two systems: 1) the Western Electric-

ity Coordinating Council (WECC) 240-bus system201 and 2) the 300-bus system196. Both

systems have sufficient load margins if no MTD is implemented. For each system, 3,000

RMTD scenarios are carried out at the given default load. The MTD magnitude is within

20% of the original line impedance. In the WECC 240-bus system, there is no voltage

instability at the default load immediately after all 3,000 RMTD scenarios are executed.

However, when it approaches the peak load, 313 out of 3,000 scenarios, i.e., 10.43% of the

total scenarios, induce voltage instability due to the load margin reduction by MTD. Another

interesting case to show the MTD-induced voltage instability is the 300-bus system. Due to

a lack of load profile in this system, this section only studies the system under the default

load196, where an ACOPF problem with MTD successfully converges. Nevertheless, 98 out

of 3,000 RMTD scenarios (i.e., 3.26%) incur voltage instability immediately after executing

the MTD because of the load margin reduction. These simulation results show that existing

MTDs are likely to induce voltage instability in larger-scale power systems. In reality, power

systems are much more complicated than the examples of 3-bus, 14-bus, WECC 240-bus,

and 300-bus systems. Thus, MTD-induced voltage instability ought to be systematically

addressed for any realistic MTD applications, particularly in the presence of drastic net load

81



variations caused by an increasing amount of renewable generation.

The MTD-induced voltage instability resides in existing MTD methods that myopi-

cally perturb the line impedance without looking-ahead capabilities for reserving sufficient

load margin. The lack of such capability in existing MTD models may lead to insufficient

load margin53, which can cause voltage instability or even voltage collapse. The connection

between voltage instability and MTD can be demonstrated by using the CPF P-V curve,

as shown in Fig. 4.1d. The SNB point of this curve depends on the transmission line

impedance and is used to calculate the system load margin given the current load condition.

Once the system load increases beyond the SNB point, the power flow problem becomes

ill-conditioned. This is because the Jacobian matrix of the power flow problem has a suf-

ficiently large condition number202. A large condition number is generally associated with

small singular values or eigenvalues of a matrix. The voltage instability is also related to

small eigenvalues203. Therefore, such an ill-conditioned power flow problem is proven to

be equivalent to the system voltage instability204. Since an MTD can alter the SNB point

through the line impedance perturbation, it may reduce the voltage stability of a power

system and even result in voltage collapse.

It is worth mentioning that the MTD-induced voltage instability cannot be solved by

the conventional MTD-based power flow control methods. Existing D-FACTS enabled power

flow control methods32;43;54;168 only consider a snapshot in power system operation, meaning

that the system voltage stability is guaranteed right after the D-FACTS setpoint is changed.

That might be enough for traditional power flow control methods, in which the D-FACTS

setpoints are less frequently altered (e.g., seasonal changes or as needed). However, as

MTD is introduced as a by-product of D-FACTS devices to enhance the cybersecurity of the

power grid52, their setpoint changes become much more frequent (e.g., intra-day changes),

which the traditional D-FACTS control methods are not prepared for. Therefore, the first

objective of this work is to provide existing MTD strategies with look-ahead capabilities to

prevent MTD-induced voltage instability. Furthermore, existing D-FACTS enabled power

flow control strategies cannot provide guidance on how to adjust the D-FACTS setpoints, if
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deemed necessary, while simultaneously improving the voltage stability and maintaining the

MTD performance. This represents another objective of this work.

4.3 Preliminaries

This section introduces the background knowledge of MTD planning, MTD detection

effectiveness, power injection to impedance sensitivity matrix, and voltage stability index t

as preliminaries.

4.3.1 MTD Planning and Detection Effectiveness

Two D-FACTS placement strategies, i.e., max-rank placement52 and graph-based place-

ment43, are used in this chapter to guarantee the MTD detection effectiveness against net

load redistribution attacks. To date, it is extremely challenging to quantitatively measure

the MTD detection effectiveness in nonlinear, full AC models. Thus, it is customary to

utilize the DC model43;56;168;197;205 to theoretically analyze the detection effectiveness. The

placement strategies43;52 are developed in DC models, and their performance is verified in

their AC counterparts. The MTD detection effectiveness of the proposed methods can be

theoretically explained as follows. In52, a sufficient condition for the max-rank placement

is proposed by using a graph theory-based topology analysis. By ensuring that there ex-

ists no loop in the D-FACTS graph and the non-D-FACTS graph, the max-rank placement

is designed to utilize the minimum number of D-FACTS devices to achieve the maximum

rank of its composite matrix, which is indicative of the MTD detection effectiveness. In43,

the graph-based placement is proposed as an enhanced max-rank placement to retain the

maximum rank of its composite matrix while eliminating the unprotected buses by using ad-

ditional D-FACTS devices. By following these two placement methods, all the constructed

MTDs have the max rank of their composite matrices if no D-FACTS device is in the idle

state. Thus, the MTD detection effectiveness is largely ensured by the D-FACTS placement

strategies43;52.
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4.3.2 Power System Quantities to Impedance Sensitivity

The power injection to impedance (PII) sensitivity is originally proposed, as an inter-

mediate step in the chain rule of calculus, to determine the relationship between the state

variables and line impedance206. In this chapter, the PII is utilized to calculate how much the

system load margin can be increased due to the adjustment of the original MTD setpoints,

when the system is near the power flow singularity (i.e., SNB point). The sensitivities of

power injections to a change in line impedance are denoted as:

[
∆S

]
= [PII] [∆xl] (4.1)

PII
∆
=

[
∂Si

∂xl

]
(4.2)

The apparent power injection Si at Bus i is differentiated with respect to xl for all lines that

connect Bus i and the adjacent Buses. With the help of PII, the necessary MTD setpoints

adjustment can be calculated under the most stressful system condition.

It should be noted that the Power Flow to Impedance (PFI) matrix and the voltage

State to Impedance (SI) matrix proposed in206 are not directly suitable for the MTD setpoint

adjustment. As discussed in Section 4.2, the MTD-induced voltage instability is directly re-

lated to insufficient load margin rather than steady-state power flow and voltage. In contrast,

with the desired load margin as the objective, the PII matrix can be straightforwardly used

to calculate the MTD adjustment such that the MTD-induced voltage instability is circum-

vented.

4.3.3 Voltage Stability Index (t-index)

The CPF method uses an iterative process involving predictor and corrector steps that

require high computational cost for large systems. A different strategy to represent the

voltage instability is by using the minimum singular value of the power flow Jacobian. Cui

et al.199 proposed a voltage stability margin index to quantify the power flow Jacobian
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nonsingularity. The proposed voltage stability index is derived from a sufficient condition

for the nonsingularity of power flow Jacobian207. A voltage stability index ti for each load

bus i is defined as:

ti = |Vi| −
n∑

j=1

|ZijSj|
|Vj|

, i, j ∈ N (4.3)

where |V | is the voltage magnitude, S is the apparent power injection, Zij is the bus

impedance matrix element, and N is the set of n load buses. A larger t-index value indicates

a better voltage stability performance at a load bus. Contrasted with the CPF method, the

t-index calculation does not require an iterative process which could greatly save computa-

tional efforts for a large system. As opposed to the CPF method, the t-index method is more

suitable when the system operator is only concerned about power flow Jacobian singularity,

while the tracing of the power flow solution path is not necessary.

4.4 Voltage-stability-constrained MTD Framework

This section proposes two voltage stability constrained MTD methods, i.e., a t-index

optimization method and a load margin constrained method, to ensure the system voltage

stability with sufficient load margin. To distinguish the system operation point with or

without MTD, this chapter defines hereinafter the D-FACTS operation point before MTD

as pre-MTD, while the operation point after MTD as post-MTD.

4.4.1 t-Index Optimization Method

This subsection first derives t-index to impedance sensitivity matrix (TII) and then

forms an optimization problem to maximize the t-index for the most critical forecasted load

S ′ = max([St1 , St2 , St3 , ..., StN ]), where t1 to tN are the time indices of the look-ahead time

periods within an MTD window. The basic idea of the t-index optimization method is to

maximize the lowest t-index among all the load buses of a system implemented with an

original MTD. The proposed method is a post-MTD method that adjusts the original MTD

setpoints.
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Figure 4.2: Flowchart of the new MTD framework with the proposed methods built-in.

TII Sensitivity Matrix

TII sensitivity matrix represents the relationship between the change of t-index ∆T and

the change of MTD setpoints ∆X on the branches equipped with D-FACTS devices. The

TII sensitivity matrix is described as follows:

∆T = TII × ∆X (4.4)

TII
∆
=

[
∂ti
∂xl

]
=

[
∂ti
∂Zij

× ∂Zij

∂xl

]
, i, j ∈ N , l ∈ L (4.5)

where TII is an N × L matrix, L is the set of D-FACTS equipped transmission lines l.
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From (4.3), it is shown that the t-indices at load buses are functions of the bus impedance

matrix elements. To get the derivative of the t-index, the t-index at each load bus i is firstly

differentiated with respect to the bus impedance matrix Z. Then, chain rule can be used to

combine ∂ti/∂Zij with ∂Zij/∂xl. During the derivative of t-index, the net power injection

can be assumed as constant. Thus, t is a function of Z and V , ti = f(Z, V ). For each load

bus i, the derivative of ti over Z is calculated by

∂ti
∂Zij

=
∂ |Vi|
∂Zij

− 1

2

n∑
j=1

(
ZijSjZ

∗
ijS

∗
j

VjV ∗
j

)− 1
2 ∂

∂Zij

(
ZijSjZ

∗
ijS

∗
j

VjV ∗
j

)

=
∂ |Vi|
∂Zij

− 1

2

n∑
j=1

(
ZijSjZ

∗
ijS

∗
j

VjV ∗
j

)− 1
2

SjS
∗
j

∂

∂Zij

(
ZijZ

∗
ij

VjV ∗
j

)

=
∂ |Vi|
∂Zij

− 1

2

n∑
j=1

|Sj|
|Zij| |Vj|

(
∂
(
ZijZ

∗
ij

)
∂Zij

− |Zij|2

|Vj|2
∂
(
VjV

∗
j

)
∂Zij

) (4.6)

Note that for complex number C, |C|2 = CC∗ holds, where C∗ is the conjugate of C. For

a normal complex derivative, Z∗
ij is not differentiable. This is because, for a complex limit

calculation, a conjugate function variable can approach zero from different directions in the

complex domain and results in different solutions, which is against the Cauchy–Riemann

equations. Since X ≫ R in transmission systems, the line resistance can be ignored, and

assume Z consists of pure imaginary variables. Then,
dZ∗

ij

dZij
= −1 and

∂ti
∂Zij

=
∂ |Vi|
∂Zij

+
n∑

j=1

|Sj|
|Vj|

+
n∑

j=1

|Sj| |Zij|
|Vj|2

∂ |Vj|
∂Zij

(4.7)

When substitute (4.7) into (4.5), ∂ |Vi| /∂Zij in (4.7) will turn to ∂ |Vi| /∂xl after the chain

rule (4.5). Since the derivative of voltage magnitude over line impedance is equivalent to the

SI sensitivity in206, ∂ |Vi| /∂xl can be replaced with the SI elements. The (i, l)th element in

the TII matrix can be calculated as,

TIIil =

[
∂ti
∂xl

]
= SIil +

n∑
j=1

|Sj|
|Vj|

∂Zij

∂xl

+
n∑

j=1

|Sj| |Zij|
|Vj|2

SIil

(4.8)
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For each transmission line equipped with D-FACTS devices, ∂Zij/∂xl is calculated with

respect to a unit step impedance change ∆xl.

t-Index Optimization Model

Based on the aforementioned TII sensitivity matrix, this section further proposes a t-

index maximization model (4.9) to adjust the MTD setpoints. To facilitate the presentation,

let subscript orig denote an original post-MTD system state without using any voltage

stability enhancement methods, and subscript new represent the state adjusted by using the

proposed voltage stability methods. As original MTD operation methods optimize D-FACTS

setpoints to achieve MTD hiddenness, maximize attack detection effectiveness, minimize

power generation costs, and to minimize system losses52, any adjustment on the original

MTD setpoints would deviate from the optimal values. Therefore, the proposed model (4.9)

also minimizes the MTD setpoints adjustment for a minimal impact on the original MTD

performance.

min
∆X,tthreshold

δ1∥∆X∥2 − δ2tthreshold (4.9)

s.t. tthreshold ≤ Torig + ∆T (4.9a)

LB ≤ Xorig + ∆X ≤ UB (4.9b)

∆T = TII × ∆X (4.9c)

where ∆X is the MTD setpoint adjustment which will be added to the setpoints in the

original MTD Xorig. The final output of the proposed model is the optimized setpoints

Xnew = Xorig + ∆X. δ1 and δ2 are the weighted coefficients to balance the trade-off between

the impact on the performance of the original MTD and the t-index increase. The first

component of the objective function (4.9) minimizes the adjustment of the MTD branch

impedance which ensures the adjustment will not significantly affect the performance of the

original MTD. The second component of (4.9) maximizes (i.e., minimize negative) the t-

index threshold tthreshold, which is equivalent to maximizing the t-index at the most critical
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load bus. Torig is the vector of t-index in the system with the original MTD at the peak net

load S ′. Constraint (4.9a) is the t-index threshold constraint to ensure the lowest t at the

most critical load bus is greater than the t-index threshold. Constraint (4.9b) aims to ensure

the total impedance change after the adjustment is within the physical capacity of D-FACTS

devices. LB and UB are the lower and upper bounds of line reactance perturbation, where

UB and LB are equal to ±20% of the transmission line impedance which is generally used

in MTD32;39;41;52;165;197. In (4.9c), ∆T is the vector of the incremental t-index at all load

buses calculated based on TII. In this chapter, the original MTD strategies are the ACOPF-

based OMTD52 and RMTD, in which all the D-FACTS devices have been properly placed

according to43 to ensure the MTD detection effectiveness. The prior work in43 showed that

the detection effectiveness of the original MTDs can be guaranteed as long as each of the

D-FACTS device placed is operated in a non-idle state. Based on the salient feature of the

original MTD, the L-2 norm is used in (4.9) to minimize the Euclidean distance from Xorig

to Xnew for each D-FACTS device such that the feature of the original MTD (e.g., optimized

generation cost, MTD detection effectiveness) can be preserved to the largest degree.

The steps of the proposed t-index optimization method are shown in Algorithm 1. In

Step 1, Algorithm 1 calculates the TII sensitivity matrix of the system with original MTD

setpoints. By following (4.8), the TII matrix is constructed to reveal the relationship between

the t-indices on load buses and the impedance of the D-FACTS lines. In Step 2, the TII-

matrix is then used in (4.9) to determine the t-index constrained MTD setpoints. In Step

3, the solution ∆X from (4.9) is the expected MTD setpoints adjustment. The new MTD

setpoints in the proposed t-index constrained MTD are calculated by adding ∆X to the

original MTD setpoints, i.e., Xnew = Xorig + ∆X.

Algorithm 1 t-index optimization method

Input: Xorig, S
′

Output: Xnew

1: Calculate TII from (4.8)
2: Solve the t-index optimization problem (4.9)
3: Xnew = Xorig + ∆X
4: return Xnew
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In general, TII is calculated and the t-index optimization method is carried out for the

most critical net load condition S ′ within an MTD window. Since the proposed model (4.9)

maximizes the t-index at the most critical load bus, the t-index at the load bus with high

voltage stability may degrade. However, this is typically acceptable as the entire system

remains voltage stable under the most stressful condition. Note that the weight coefficients

can be finely tuned to find the trade-off between the MTD’s performance and the voltage

stability. For instance, when higher variability and uncertainty of renewable generation are

considered, a higher weight can be placed on the voltage stability rather than maintaining

a small impact on the original MTD’s performance. One contribution of this work is the

development of the TII matrix that can be used to model a linear relationship between the

t-index and the D-FACTS setpoint for enhancing the system voltage stability. The linear

model can be seamlessly integrated with another objective function (e.g., L-0 norm) for

different original MTD strategies or to serve distinct purposes of the system operator.

4.4.2 Load Margin Constrained Method

Load margin LM is another noteworthy metric for measuring the system voltage stability.

It is defined as the maximum amount of load that the system can support given a system

configuration. With a specific system configuration and peak load forecast, the load margin is

calculated by CPF with a predictor-corrector method. As previously discussed, all existing

MTD methods fail to consider the system load margin that is very likely to degrade by

MTDs. This motivates us to develop a load margin constrained MTD method. The proposed

method is demonstrated in the dotted box of Fig. 4.2 and the steps, shown in Algorithm 2,

are described as follows:

• Step 1 : Algorithm 2 checks the original D-FACTS setpoints Xorig by using the CPF

method. The load margin LM is calculated given the original MTD and forecast peak

load. If the load margin of Xorig is able to satisfy the most critical load forecast within

an MTD window, i.e., S ′ ≤ LM , these setpoints can be applied to the system without

adjustment. Otherwise, the expected incremental load margin can be calculated by
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Algorithm 2 load margin constrained method

Input: Xorig, S
′

Output: Xnew

1: Solve CPF problem to get load margin LM of Xorig

2: if S ′ ≤ LM then (as they satisfy the load margin constraint for the most critical condi-
tion)

3: return Xorig

4: else
5: Calculate the expected load margin increase ∆LM

6: Compute the PII from (4.2)
7: Solve ∆X = PII−1 × ∆LM , subject to LB ≤ Xorig + ∆X ≤ UB
8: Xnew = Xorig + ∆X
9: end if
10: return Xnew

∆LM = S ′ − LM .

• Step 2 : Algorithm 2 computes the sensitivity matrix PII in (4.2). PII reveals the rela-

tionship between the expected incremental load margin ∆LM and the line impedance

change ∆X on the branches equipped with D-FACTS devices. After computing PII,

Algorithm 2 calculates the expected MTD setpoint adjustment by ∆X = PII−1×∆LM

. ∆X must ensure the MTD setpoint after the adjustment is still within the physical

limits of the D-FACTS devices, i.e., LB ≤ Xorig +∆X ≤ UB. LB and UB are the same

as used in the t-index optimization method.

• Step 3 : The load margin constrained MTD setpoints are calculated by adding ∆X to

the original MTD setpoints, i.e., Xnew = Xorig + ∆X. The new MTD setpoints are

then returned by Algorithm 2.

Notice that the scope of this chapter is on the voltage stability issue induced by MTD

only. In other words, the pre-MTD system state is voltage stable even under the most

stressful conditions without MTD. In view of the MTD setpoint that is perturbed around the

pre-MTD system state ∆LM calculated in Step 2 should be comparatively small. However,

if the system is not pre-MTD voltage sable ∆LM can be large. In such a case, feasible Xnew

may not exist due to the physical limits of the D-FACTS devices. Other methods208;209

including the potential load shedding as a last resort, need to be considered to ensure the
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pre-MTD voltage stability of the system.

4.4.3 Proposed Voltage Stability Constrained MTD Framework

Figure 4.2 illustrates the flowchart of the proposed voltage-stability constrained MTD

framework that integrates Algorithm 1 and 2 proposed in this section. These two methods lie

in the post-MTD process where original MTD setpoints are calculated and can be adjusted

if deemed necessary. The core idea in designing this framework is that the proposed meth-

ods ought to greatly enhance the system voltage stability within an MTD rolling window,

but should not significantly degrade the attack detection effectiveness of the original MTD

setpoints or incur a prominent increase in the system operating cost.

By comparing the two proposed algorithms, the t-index optimization method has an

advantage over the load margin constrained method that the adjusted MTD setpoints Xnew

are typically closer to the original MTD setpoints Xorig since the minimization of the set-

point deviation in (4.9). This is much desirable when the original MTD is an OPF-based

MTD strategy (e.g., OMTD and HMTD) with specific objectives including system cost min-

imization, attack detection probability maximization, and/or MTD hiddenness requirement.

The t-index optimization method can improve the voltage stability while maintaining the

original MTD performance as much as possible. Both of the proposed methods are computa-

tionally efficient since they only involve matrix computations, solving a series of power flow

problems, and solving a nonlinear minimization problem with all linear constraints. The

numerical tests show that the proposed methods can solve an IEEE 118-bus case with 60

D-FACTS devices within 20 seconds on a desktop computer. More comparative numerical

results will be shown in the next section. In comparison to the original MTD, the proposed

methods make the following novel modifications: 1) A load profile, especially the forecasted

peak load, is taken into consideration when the proposed methods are executed. This en-

hancement provides the original MTD with the look-ahead capability to effectively prevent

MTD-induced voltage instability; 2) By adjusting the original MTD setpoints, the proposed

methods can improve the voltage stability while maintaining the original MTD’s objectives
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such as the generation cost minimization52 and detection effectiveness maximization43. In

addition, the proposed methods are computationally-efficient post-processing approaches for

adjusting the original MTD setpoints. This feature enables the proposed methods to be

seamlessly integrated with existing MTD strategies.

4.5 Experiment Results

This section presents the case study and simulation results on the proposed methods

and framework. The net load redistribution attack against MTD detection cases are tested

on the IEEE 14-bus and 118-bus systems available from MATPOWER196. The t-index

optimization problem is solved by the FMINCON toolbox in MATLAB. The load margin

constrained method is implemented by using the CPF toolbox in MATPOWER. In order

to compare the performance of the proposed methods with various MTDs, this section uses

two D-FACTS placement methods, i.e., max-rank52 and graph-based placement43, as well as

two MTD operational strategies, i.e., RMTD and OMTD in the case study. The max-rank

placement solution for the IEEE 14-bus system and the IEEE 118-bus system can be found

in52. Specifically, the placement uses 7 and 62 D-FACTS devices in the IEEE 14-bus and

the IEEE 118-bus system, respectively. The graph-based placement uses 9 and 97 D-FACTS

devices in the IEEE 14-bus system and the IEEE 118-bus system, respectively. The graph-

based placement solution for the IEEE 14-bus and the IEEE 118-bus system can be found

in43. The simulations are performed on a desktop with an Intel Core i5 processor and 8 GB

RAM. The line impedance change in all the cases are set to be within 20% of the original

impedance.

4.5.1 Accuracy Analysis of TII Sensitivity Matrix

This section analyzes the error of the TII sensitivity matrix under several IEEE systems

and MTD magnitudes. Given an MTD setpoint, the estimated t-index can be calculated by

adding the ∆T (4.4) to the original t-index. Figure 4.3 shows the errors between the real
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t-index and the t-index estimated by the TII sensitivity matrix on all the load buses in the

IEEE 14-bus system. It is seen that the errors between the real and calculated t-index are

small, meaning that the TII sensitivity matrix (4.8) is accurate. In addition, this chapter

evaluated the mean absolute percentage errors of the calculated t-index in five IEEE systems

under various MTD magnitudes (from 5% to 20% of the original line impedance). Each mean

absolute percentage error is calculated under 1,000 RMTD scenarios. From Table 4.1, it is

seen that the largest mean absolute percentage error is 2.288%, which indicates the TII

sensitivity matrix can accurately derive the t-index.

Figure 4.3: TII accuracy in IEEE 14-bus system.

Table 4.1: Mean absolute percentage errors of t-index

RMTD mag-
nitude

0∼0.05 0.05∼0.10 0.10∼0.15 0.15∼0.20

14-bus system 0.028% 0.076% 0.133% 0.180%
37-bus system 0.002% 0.006% 0.010% 0.015%
39-bus system 0.333% 0.916% 1.445% 2.113%
69-bus system 0.056% 0.161% 0.271% 0.320%
118-bus sys-
tem

0.360% 1.030% 1.549% 2.288%
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(a) original MTD (b) new MTD with δ1 = 1, δ2 = 3

(c) new MTD with δ1 = 1, δ2 = 1 (d) new MTD with δ1 = 1, δ2 = 0.5

Figure 4.4: Heatmaps of t-indices before and after the t-index optimization method with
various δ2 in the 14-bus system

4.5.2 Impact on Voltage Stability Metrics

To compare and evaluate the performance of the two proposed methods, this section

constructs 1000 RMTDs to form a defense pool. The load of the two systems are scaled up

by 1.35 times to create a very stressful load condition. Figure 4.4 shows the t-indices of all

the load buses in the IEEE 14-bus system obtained under the original MTDs and the new

MTDs after the t-index optimization. In this figure, 50 scenarios out of the 1,000 RMTDs

with the lowest t-indices are selected and indexed on the y-axis, whereas all load buses of

95



(a) IEEE 14-bus system.

(b) IEEE 118-bus system.

Figure 4.5: Voltage stability metrics before and after t-index optimization method

this system, i.e., Buses 4,5,7,9-14, are plotted on the x-axis. In Fig. 4.4a, the t-indices

vary distinctively by scenarios due to the random D-FACTS setpoints of the RMTDs. As

seen in Fig. 4.4b, all 50 MTD scenarios result in higher t-indices, signifying better voltage

stability after the t-index optimization method is implemented. An intriguing observation

in Fig. 4.4b is that the t-index of each load bus obtained are quite similar across all the

50 scenarios. This can be explained by investigating the new D-FACTS setpoints in those

scenarios. It is found that the new setpoints Xnew obtained are similar across the scenarios

under δ1 = 1 and δ2 = 3. Recall δ1 and δ2 are the weights of the MTD adjustment and the

t-index lower bound increase in the optimization model (4.9). As δ2 is comparatively larger
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(a) IEEE 14-bus system.

(b) IEEE 118-bus system.

Figure 4.6: Voltage stability metrics before and after load margin constrained method

than δ1 in Fig. 4.4b, all 50 new MTD scenarios converge to a similar optimal setpoint, where

the increase in the t-index lower bound is emphasized. To further explore the impact of both

weights on the new MTD, t-indices under two more combinations of the weights are shown

in Figs. 4.4c and 4.4d. When δ2 is decreased to 1 in Fig. 4.4c and further reduced to 0.5

in Fig. 4.4d, the scenario difference in the t-index of each load bus gets larger, suggesting

that the t-index optimization problem is more sensitive to the original RMTD setpoints in

the scenarios. In addition, the average t-index in Figs. 4.4a is 0.39. It is elevated by the

proposed method to 0.66, 0.59, and 0.54 in Figs. 4.4b, 4.4c, and 4.4d, respectively. The

percentage increases are 69% , 51%, and 38%, respectively. By examining all the RMTDs
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in the defense pool, it is found that 16% of the original RMTDs undergo voltage collapse

at the peak load. In comparison, all the failed scenarios are saved from voltage collapse by

implementing the t-index optimization method.

Figure 4.5 demonstrates the box plot of two voltage stability metrics, i.e., load margin

and the minimum t-indices value, for all the load buses in the two systems before and after

implementing the proposed t-index optimization method. In each box, the central mark

indicates the median, and the bottom and top edges suggest the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points, exclude outliers, and the

outliers are plotted individually. Three system states are compared, including the pre-MTD

state, the original MTD state, and the new MTD state. It is observed that when the system

is transitioning from the pre-MTD to the original MTD state, the CPF load margin and

the t-indices may increase or decrease. This is because the RMTDs in the defense pool are

constructed randomly without considering the voltage stability. As seen, from the original

to the new MTD state, the proposed t-index optimization method elevates both the t-indices

and the CPF load margin, indicating increased system voltage stability. A similar trend,

shown in Fig. 4.5b can be observed in the IEEE 118-bus system. Two peak loads are labeled

as dashed red lines in the load margin figures. These peak loads, which are not used here in

Algorithm 1, are added to be consistent with Fig. 4.6. The results in Fig. 4.5 show that the

t-index optimization method can promote both of those metrics, which in turn increases the

voltage stability of the system.

Analogously, Fig. 4.6 shows the box plots of those voltage stability metrics before

and after using the proposed load margin constrained method. According to Algorithm 2,

this method only makes adjustment if the system cannot support the forecasted peak load.

Therefore, Fig. 4.6 only shows the original MTDs that fail to do so, which is why the body

of the box plot in Fig. 4.6 is much shorter than that in Fig. 4.5. In the IEEE 14-bus

system, the forecasted peak load is 351.2 MVA labeled by a horizontal red line. In the left

plot of Fig. 4.6a, the load margin of the pre-MTD state is 365.1 MVA, which is greater than

the forecasted peak load. Hence, the pre-MTD system state is capable of supporting the
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forecasted peak load. For all RMTDs whose original load margin is less than the forecasted

peak load (i.e., “problematic” RMTDs), Lines 5-10 in Algorithm 2 are executed. It is seen

in the left plot of Fig. 4.6a that the proposed load margin constrained method significantly

brings up the load margin of those problematic RMTDs. As a result, the load margin of

all new MTDs are equal to or greater than the forecasted peak load. The right plots in

Fig. 4.6a shows the minimum values of t-indices among all the load buses. As seen, the

t-indices of the system also increase by using the proposed load margin constrained method.

Nevertheless, the improvement is not as significant as that in Fig. 4.5a since the t-indices

are not directly maximized in the load margin constrained method. Similar plots for the

IEEE 118-bus system are displayed in Fig. 4.6b. The results in Fig. 4.6 demonstrate that

the proposed load margin constrained method can significantly increase the load margin of

original MTDs and ensure ample load margins to support the forecasted peak load.

PSS/E simulations are further carried out on the IEEE 14-bus system. The dynamic

voltage responses of this system under the original MTDs and the proposed load margin-

constrained MTDs are compared in Fig. 4.7. As seen at the beginning of the simulation,

the system is at an off-peak load without any MTDs. At 1s, both RMTD and the load

margin-constrained MTD are implemented. Compared with the RMTD, the load margin

constrained MTD decreases the impedance on 11 transmission lines and increases the line

impedance on the rest 9 transmission lines. The voltage is stable in both cases after the

MTD operations. However, this is not the case when it comes to the peak load (the total

load increases by 60% instantaneously) starting from 4s. The system with the original MTD

undergoes drastic and short spikes of voltage oscillations and the voltage collapses at 4.6s.

Such oscillations indicate that the system generators strive to increase their generation to

prevent the system from voltage collapse, but unfortunately they fail to do so due to the

insufficient power transfer capability of the transmission lines. In contrast, the system with

the load margin-constrained MTD undergoes a smaller voltage drop right after the load

increase due to the power mismatch, but the system voltage remains stable at around 0.75

p.u.. Although the voltage magnitude does not meet the ANSI requirement, the proposed
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method still shows a much better dynamic voltage response, which, in turn, can provide

the system operator with sufficient time to implement AC-OPF or dispatch other voltage

supporting devices208;209. However, this is out of the scope of this chapter and will be studied

in the author’s subsequent efforts.

Figure 4.7: Dynamic voltage magnitude response simulated by PSS/E.

4.5.3 Impact on Generation Cost and Attack Detection

This subsection evaluates the impact of the two proposed methods on the system gen-

eration cost and MTD performance with various MTD settings. The generation costs in

the pre-MTD, load margin constrained MTD, and t-index optimization cases are the cor-

responding optimal system generation cost by running single-period ACOPF problems on

MATPOWER196, where the quadratic production cost curve of each generator is given. In

such problems, the generators are optimally dispatched (i.e., an economic dispatch problem)

with the setpoints of the D-FACTS devices given as a priori. An exception exists in the case

of the OMTD operation (i.e., the third row of Table 4.2), which utilizes a novel ACOPF-

based MTD model52;210 to jointly dispatch the D-FACTS setpoints and the generators while

minimizing the system generation cost. Table 4.2 illustrates the system generation costs for

the peak load in four cases. The ACOPF in MATPOWER is used to optimally dispatch

the generation for each case as illustrated in Fig. 4.2. In Table 4.2, the first case shows the

pre-MTD generation cost of the systems, while the second case represents the original-MTD
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generation cost when an ACOPF-based OMTD52 is executed. The last two cases show the

new-MTD generation costs after each proposed method is implemented. As seen, for both

the IEEE 14-bus and 118-bus systems, the lowest generation costs are associated with the

OMTD operation in the original MTD state. This is expected since the OMTD operation

without considering the voltage stability is solely dedicated to the cost minimization. The

second lowest generation costs are pertaining to the new MTD state after the t-index opti-

mization method is implemented. A relatively small cost increase is induced by this method.

This is because the t-index optimization method optimally adjusts the original OMTD set-

points to improve the t-indices of load buses and the resulting new MTD setpoints are close

to the OMTD ones. The largest generation cost emerges when the load margin constrained

method is applied due to much larger MTD setpoint deviation from the OMTD ones. The

generation cost results in Table 4.2 show that the load margin method is able to guarantee

the system voltage stability at a higher system generation cost. In contrast, the t-index

optimization method can ensure the voltage stability with a negligible increase in system

generation cost.

Table 4.2: Comparison of generation costs at the peak load

Cases 14-bus ($/hr) 118-bus ($/hr)

Pre-MTD 8,083.2 129,725.8
OMTD operation 8,076.4 129,714.6

Load margin method 8,358.0 129,906.3
t-index method 8,083.9 129,718.8

Furthermore, simulations are carried out to test the MTD effectiveness against net load

redistribution attacks using AC SE-based BDD. Four different D-FACTS placements are

considered including zero placement (No-MTD), full placement, max-rank placement52, and

graph-based placement43. The measurement noise is assumed to be Gaussian distributed

with zero mean and the standard deviation as 1% of the actual measurement. For each D-

FACTS placement, this section again constructs 1,000 RMTDs as the corresponding defense

pool. Further 1,000 net load redistribution attack vectors are constructed to form an attack

pool. Figure 4.8 shows the receiver operating characteristic (ROC) curves of MTDs. These
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ROC curves are created by plotting the true positive rate (TPR) versus the false positive rate

(FPR) at various BDD thresholds. Figure 4.8a compares the attack detection effectiveness

of the original MTD under different D-FACTS placements. As seen, the ROC curve without

MTD passes through the bottom right of the graph, leading to the smallest area under the

curve (AUC) among all the placement. A smaller AUC indicates a worse performance in

attack detection effectiveness. Again, the results in Figure 4.8a demonstrates: 1) the net

load redistribution attack is stealthy against AC SE-based BDD; 2) instead of increasing

the BDD residual, the net load redistribution attack decreases the residual21, leading to a

smaller TPR than the FPR at a given threshold; and 3) the MTD detection effectiveness

varies according to the D-FACTS placement. Theoretical explanation of the MTD detection

effectiveness can be found in Section 4.3.1.

Further, this section tests the impacts of the two proposed methods on the attack detec-

tion effectiveness under the other three D-FACTS placements, whose attack detection effec-

tiveness is compared in Figs. 4.8b to 4.8d. It is seen that both the load margin constrained

method and the t-index optimization method will maintain similar attack detection effective-

ness as the original RMTD under the full and graph-based D-FACTS placement. A larger

AUC difference between the original MTD and the load margin constrained MTD emerges

under the max-rank placement. This can be explained by examining the line impedance

change in percentage induced by an MTD, which is indicative of the average absolute MTD

magnitude. The average MTD magnitudes of the load margin constrained MTD is 10.42%,

which is larger than that of the other two MTDs, i.e., 9.70%. Here, the observation that the

attack detection effectiveness increases with the MTD magnitude is consistent with other

MTD works133;211. The results in Fig. 4.8b to 4.8b indicate that both of the proposed

methods can maintain similar attack detection effectiveness as the original MTD. Moreover,

by minimizing the MTD adjustment in (4.9), the t-index optimization method has a rela-

tively smaller impact on the attack detection effectiveness performance of the original MTD

compared with the load margin method.
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(a) RMTD w/ diff. placements (b) Under full placement

(c) Under graph-based placement (d) Under max-rank placement

Figure 4.8: ROC curves of BDD residual in IEEE 118-bus system.

4.6 Summary

This chapter addresses a critical issue induced by existing MTDs that myopically perturb

the transmission line impedance and result in system voltage instability for varying (net)

load. A 3-bus example system is used as an example to illustrate this issue and two methods

are further proposed to address it. For the first method, namely the t-index optimization

method, this chapter derives the t-index to impedance sensitivity matrix. By utilizing this

matrix, this chapter maximizes the lowest t among all the load buses with the minimum

impedance adjustment such that the system voltage stability is guaranteed while keeping

the performance of the original MTD strategy. The second method, i.e., a load margin
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constrained method, is developed based on CPF to ensure the load margin is beyond the

forecast peak load and thus keeps the system voltage stable during the most stressful time

period. Furthermore, this chapter proposes a new MTD framework that seamlessly integrates

the proposed two methods.

Extensive simulation results show that both methods can significantly improve the load

margin and the voltage stability of a system with an original MTD in critical net load

conditions. Moreover, the t-index optimization method can maintain the objectives close

to the original OMTDs. The load margin constrained method may induce the new MTD

setpoints further away from the original MTD, which is acceptable when RMTD is originally

implemented. In reality, system operators can choose either of the two proposed methods to

enhance the system voltage stability for RMTDs. When OMTD is originally implemented in

the system, a better choice is the t-index optimization method. In future work, the author

of this dissertation would like to explore implementing the proposed MTD voltage stability

constrained methods under other advanced MTD strategies, including inverter-based MTDs,

to change system configurations equivalently. The future work of this chapter will address the

challenge that no closed-form metric exists in the AC model to quantify the MTD detection

effectiveness directly. A sensitivity analysis will be conducted to approximate the impact of

reactance perturbation on the BDD residual.
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Chapter 5

Smart Inverter Enabled Coding

Scheme for Detecting FDI Attacks in

Distribution System State Estimation

The previous section proposes the voltage stability constrained MTD framework as a

proactive detection method. However, implementing MTD in large power systems only for

cybersecurity purposes is not cost-effective. Although MTD planning strategies31;40;43 have

been proposed to minimize the number of required D-FACTS devices, these methods are only

designed for transmission systems. Installing D-FACTS devices in distribution systems is

still not economically realistic. This chapter proposes a smart-inverter-based meter encoding

framework to detect FDI attacks in distribution systems. The proposed encoding scheme is

cost-effective and hidden from alert attackers with both WLS-based SE and PFEDL-based

SE.
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5.1 Introduction

Existing literature has revealed that if the attackers construct FDI attacks based on

the encoded measurements, such attacks can be detected by defenders equipped with SE-

based BDD. The majority of current meter encoding focuses on implementing their proposed

schemes on conventional meters. Additional ZigBee modules and cellular network commu-

nication devices must be deployed for the conventional meters within different substations

to support data transmission between meters and encoders. Meanwhile, microprocessors are

required to implement meter encoding because conventional meters are not programmable

and can only report correct measurements. These additional devices are expensive and can

dramatically increase the system’s operational cost. A coding scheme is proposed in46 to

increase the BDD residual under FDI attacks by encoding all the measurements with an

invertible coding matrix. In47, an proactive data modification method is proposed to detect

manipulation of measurements or control signals. This method encodes all the measurement

and control signals with time-varying invertible matrices, respectively. Liu et al.48 proposed

an optimal encoding scheme that considers the cost of meter coding. The strategies above

focus on designing invertible coding matrices to encode legitimate measurements. These

encoded measurements can be detected by alert attackers who use BDD before launching

attacks because the encoded measurements are not consistent with physical laws like Kirch-

hoff’s circuit laws or power flow laws. When attackers detect the unhidden meter encoding,

they will not launch attacks until they crack the coding matrices. Trevizan et al.49 proposed

a hidden meter encoding scheme that is undetectable to alert attackers. With their hidden

meter encoding, the attackers will not notice that the measurements have been encoded,

which means the system operators can better flag the FDI attacks. Although the hidden

meter encoding can detect FDI attacks without arousing the attacker’s suspicion, a deficiency

still exists. The hidden meter encoding can only protect the buses whose measurements are

encoded. For FDI attack116 that targets a small attack area, it will have a chance of not

being detected if there is no encoded bus inside the attack area. In this case, the number

of protected buses is linearly dependent on the number of encoded buses. Thus, to ensure
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a high percentage of protected buses in a large system, the encoding cost (i.e., the number

of encoded buses) of the hidden meter encoding can be high. Furthermore, existing meter

encoding researches only consider transmission systems. How to take advantage of the topol-

ogy of a radial distribution system to implement low-cost meter encoding is still an open

question.

This chapter aims to fill the gap by designing a smart-inverter-based meter encoding

scheme in distribution systems to detect FDI attacks. One important consideration here is

that the newly designed meter encoding scheme ought to be more cost-effective than the

existing ones. More specifically, when protecting the same number of buses, the proposed

encoding should require less number of encoded meters compared with existing methods.

In addition, unlike the existing meter encoding schemes that require additional devices to

encode measurements from conventional meters, the proposed meter encoding should only

encode the measurements on inverter buses using the current programmable smart inverters.

The programmable smart inverters have been widely used in anomaly detection212–214, which

means that it is achievable to implement the proposed smart-inverter-based meter encoding

scheme in distribution systems. The main contributions of this chapter are outlined as

follows.

• A smart-inverter-based meter encoding scheme is proposed to detect FDI attacks in

distribution systems. The proposed meter encoding can mislead the attacker’s SE

while not being detected by alert attackers.

• It is proved that if an inverter bus is encoded, all the downstream buses on that lateral

will be protected by the proposed smart-inverter-based meter encoding.

• A comprehensive evaluation is constructed to test the detection effectiveness of the

proposed smart-inverter-based meter encoding against strong attackers. In this chap-

ter, FDI attackers can obtain the necessary system state using either the WLS-based

state estimator or the deep learning-based state estimator.
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5.2 Preliminary

This section introduces the background of FDI attacks, their vulnerability, and the SE

in distribution systems.

5.2.1 False Data Injection Attacks and Their Vulnerability

As the communication channels between meters in the field and control centers are vul-

nerable to cyberattacks, attackers can launch man-in-the-middle attacks to eavesdrop and

manipulate the measurement signals. FDI attack, as one of the most infamous cyberat-

tacks, can stealthily mislead the power system state estimation by injecting false data into

legitimate measurements. To bypass the defender’s bad data detector, the attacker needs to

elaborately construct the attack vector a by following the equation99:

a
∆
= h(x̂ + c) − h(x̂) (5.1)

where h(•) are the measurement functions, c ∈ Rn denotes the bias vector that the attacker

intends to mislead the state estimation, n is the number of system states, and x̂ is the

estimated state. When the legitimate measurement M is altered by the manipulated mea-

surement Ma = M+a, the BDD residual after the attack will be less or equal to the residual

before the attack, i.e., the attack is stealthy.

Although current SE-based BDD cannot detect stealthy FDI attacks, these attacks

have one vulnerability: an attacker needs the correct system states to construct attack

vectors. By observing the well-known FDI construction equations21;99;215, it is seen that an

attacker is required to know the correct system state x or x̂ to derive the stealthy attack

vector. However, obtaining the system state information is not effortless for an attacker.

Existing research215;216 assumes that attackers can run local SE to obtain the required state

information. In this case, the stealthiness of the constructed attack vector is highly dependent

on the accuracy of the attacker’s state estimation.
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5.2.2 State Estimation in Distribution Systems

In an AC SE using noisy measurement, the power flows are non-linearly dependent on

the system states. The non-linear dependencies can be mathematically expressed as follows:

M = h(x) + E (5.2)

where M ∈ Rm is the vector of measurement data, including bus power injection and line

power flow. m is the number of measurements. x ∈ Rn is the vector of the system state. E

is the measurement noise vector, which is usually assumed to obey a Gaussian distribution.

h(•) are the non-linear measurement functions that reveal the relationship between the mea-

surement and the system state. The WLS-based SE mechanisms determine the system state

by solving the following problem:

min
X

J(x) = [M− h(x)]TW[M− h(x)] (5.3)

where W is the weight matrix given as the inverse of the covariance matrix of measurement

noise. The most common approach to solve (5.3) is the iterative procedure217.

State estimation is one of the most fundamental tasks in power systems. From a cy-

bersecurity point of view, system operators need the SE-based BDD to detect bad data or

FDI attacks; FDI attackers require the estimated state to construct stealthy FDI attack

vectors as shown in (5.1). One difficulty of implementing WLS-based SE in distribution sys-

tems is that redundant measurement is necessary to satisfy the observability requirement.

However, limited real-time measurements are available in distribution systems, which makes

(5.2) under-determined. To address this issue, low-observability SE techniques have been

proposed. Some methods attempt to improve system observability by optimally placing ad-

ditional meters218;219, or deriving pseudo-measurements from historical data220;221. Other

methods propose to replace the conventional WLS-based state estimator with new state

estimators, including matrix completion-based estimator222, approximation-based estima-
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tor223, and machine learning-based estimator194. In this chapter, besides the WLS-based SE,

PFEDL-based SE is utilized by both attackers and defenders to address the low-observability

issue in distribution systems.

5.3 The smart-inverter-based Meter Encoding

This section proposes to use smart inverters as encoders to report encoded measurements

so that only system operators will get the correct measurements. In contrast, attackers will

get the wrong measurements. The proposed encoding method is inspired by symmetric cryp-

tography, where the same measurement bias (encryption key) is used to encrypt and decrypt

the measurement data. After encoding the output data from smart inverters, the encoded

measurements and legitimate measurements from conventional meters will be transmitted

through the communication channels. If the attackers construct a formerly stealthy FDI

attack based on the encoded measurement, their attack will induce BDD residuals large

enough to trigger the BDD alarm.

Figure 5.1: Flowchart of the smart-inverter-based meter encoding.

The flowchart of the proposed smart-inverter-based meter encoding against stealthy FDI

attacks is shown in Fig. 5.1. The measurement vector M from the physical power system is

processed by the proposed encoding scheme before being transmitted by the communication

network. Given a secret encoding vector µ and the encoding function f(M, µ), the output
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Mµ of an encoder consists of the encoded measurements from smart inverters and legitimate

measurements from conventional meters. Both encoder and decoder have access to the secret

encoding vector µ, which is the bias between the encoded and original measurements. The

encoding function f in the encoder adds the encoding vector to the original measurements

from smart inverters. Correspondingly, a decoding function g substracts the encoding vector

from the encoded measurements. After receiving Mµ, the control center will decode the

received data by using the decoding function g(Mµ, µ). The decoded measurements Md will

be tested by the state estimation-based BDD first to check if the measurements contain bad

or manipulated data. When the received measurement passes the BDD, the measurement

and the corresponding estimated system state will be used by an energy management system

for advanced power system functions, including contingency analysis, optimal power flow,

automatic generation control, etc. The recovered measurements Md will be the same as the

original measurements Md = M if there is no FDI attack.

Mµ = f(M, µ) (5.4a)

Md = g(Mµ, µ) (5.4b)

The encoding function (5.4a) and the decoding function (5.4b) would be implemented at

the smart inverter and the control center, respectively. Existing researches widely assume

that attackers can bypass data protection strategies implemented within the communication

network, e.g., packet encryption, and eavesdrop on data-in-flight between the power system

and the control center. In this case, the attackers will get the wrong (encoded) measurements.

How to ensure that alert attackers will not suspect the encoded measurements is still an open

question.

5.3.1 Meter Encoding Construction and Hiddenness

When alert attackers obtain Mµ from the communication channel, they will run their

SE-based BDD before constructing stealthy FDI attack vectors a based on their estimated
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system state. To ensure an alert attacker does not suspect the measurements are encoded,

Mµ should be elaborately encoded by the system operator to be consistent with power

flow laws. This process can be viewed as a defender constructing a stealthy FDI attack by

encoding the measurement from smart inverters to mislead an attacker’s SE. A hidden meter

encoding Mµ = M + µ can be achieved by constructing an encoding vector µ, similar to a

stealthy FDI attack vector:

µ = h(x̂ + B) − h(x̂) (5.5)

Where x̂ is the correct estimated state, and B is a bias between the attacker’s estimated

state and the true system state, which is defined as the encoding magnitude. Let xµ = x̂+B

denotes the false state vector that the defender intends to mislead the attackers after meter

encoding. When alert attackers run their SE-based BDD with the encoded measurements,

the residual after the meter encoding rµ remains the same as the original residual r without

encoding:

rµ = ∥M + µ− h(xµ)∥2

= ∥M + h(x̂ + B) − h(x̂) − h(xµ)∥2

= ∥M− h(x̂)∥2

= r

(5.6)

Thus, the proposed meter encoding is hidden from alert attackers.

5.3.2 Smart-inverter-based Meter Encoding

In reality, it is cost-prohibitive to implement existing meter encoding schemes on con-

ventional meters in the field. This chapter proposes only using smart inverters to implement

the encoding schemes to address this issue. Unlike the existing meter encoding methods that

can only protect the encoded buses, the proposed smart-inverter-based encoding can protect

all the downstream buses by encoding one inverter bus, which will be explained in Section

5.3.3. In this case, the proposed encoding scheme extraordinarily decreases the number of

encoded meters when protecting multiple buses, i.e., decreases the defense cost.
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Figure 5.2: Cyber-physical configuration of a distribution system.

The cyber-physical configuration of a distribution system with the proposed smart-

inverter-based encoding is given in Fig. 5.2. Assuming a smart inverter is installed at Bus e

in a radial distribution system. The solid lines going into the smart inverter and control center

represent that the correct measurements are transmitted, while the dashed lines denote that

the transmitted measurements contain encoded data. Nowadays, smart inverters are usually

programmable212;224. Thus defenders can use them to implement the proposed encoding

scheme. Instead of sending the actual measurements, the smart inverter sends encoded

measurements, which will be transmitted along with the legitimate measurements from other

meters. After the remote server receives the encoded measurements, a decoder will be

activated to restore Md and send the decoded measurements to the control center. To ensure

the decoder can correctly restore the encoded measurements, pseudo-random generators225

can be implemented in both the encoder and the decoder, where the same pseudo-random

sequences can be generated using a shared initial seed. In this configuration, when attackers

construct FDI attacks, they will eavesdrop on the measurements from the cyber layer by

implementing man-in-the-middle attacks72.
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This chapter considers the attackers know the line parameters in a part of a power

system. Therefore, the attackers can launch local FDI attacks after implementing their

local state estimation with the eavesdropped measurements215;216. To prevent attackers

from obtaining the correct system state to construct stealthy FDI attacks, encoding vector

µ is added to the legitimate smart inverter measurements. The easiest way to construct

the encoding vector is to randomly choose the magnitude of µ. However, alert attackers

can detect such arbitrary encoding vectors by implementing their state estimation-based

BDD. When the attackers identify a large mismatch between the system model and the

measurements encoded by an arbitrary encoding vector, they will suspect the measurements

are encoded and may devise ways to circumvent the meter encoding. This section proposes

the following encoding functions (5.7) to (5.10), which the system operators can use to

remain hidden from alert attackers. The encoding vector consists of real and reactive power

injections P ∗
e and Q∗

e at a smart inverter bus (denoted as the red right-angled line at Bus e

in Fig. 5.2).

P ∗
eu = P ∗

e −
∑
d∈N

Ped (5.7)

Q∗
eu = Q∗

e −
∑
d∈N

Qed (5.8)

P ∗
eu = −(V ∗

e )2geu + V ∗
e Vu(geucos(θ

∗
e − θu) + beusin(θ∗e − θu)) (5.9)

Q∗
eu = (V ∗

e )2geu + V ∗
e Vu(geusin(θ∗e − θu) − beucos(θ

∗
e − θu)) (5.10)

where e denotes the encoded inverter bus, u and d are the corresponding upstream and

downstream buses. N is the set of all the directly connected downstream buses. The

superscripts (∗) represent the variables that the meter encoding will impact. These variables

include the encoded measurements and the system state that the system operators intend

to mislead the attackers. The target of the encoding scheme is to mislead the attackers into

believing the wrong system state V ∗
e , θ

∗
e instead of the true system state Ve, θe. By calculating

(5.7)-(5.10), the encoded measurements P ∗
eu, Q

∗
eu, P

∗
e , Q

∗
e can be derived, given V ∗

e , θ
∗
e .

Similar to the stealthy FDI attacks, the general rule for a hidden encoding scheme is
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that the defender encodes the transmitted data so that the measurements are consistent

with the power flow laws. The alert attackers will detect the encoding scheme if there is no

feasible power flow solution after meter encoding. The proposed smart-inverter-based meter

encoding requires that some measurements should not be measured, including the upstream

bus power injection measurements P ∗
u , Q

∗
u and the power flows P ∗

eu, Q
∗
eu (denoted as the red

crossings in Fig. 5.2) on the transmission lines that connect the invert bus and the upstream

bus. This requirement is consistent with the fact that distribution systems are not fully

measured. In case such upstream bus injection and power flows are measured, additional

effort is needed for the defender to encode these data to make the attacker’s eavesdropped

measurements consistent with Kirchhoff’s circuit laws. Consider the example demonstrated

in the physical layer of Fig. 5.2 for clarification. The goal of the system operator is to

mislead the attacker’s SE by changing the perceived bus power at Bus e while not arousing

the attacker’s suspicions, i.e., bypassing the attacker’s BDD. Assuming the system operators

achieve this by using (5.7)-(5.10), they will also need to process the related measurements

at Bus u and on the transmission line u− e to hide the encoding.

5.3.3 Protected Region

The proposed meter encoding can protect a region of buses by utilizing the topology

of a radial distribution system. The definition of a protected region is given as follows. In

a radial distribution system, the region that consists of an encoded inverter bus and all its

downstream buses is the protected region of the meter encoding. For clarity, let us assume

there is a smart inverter on a lateral of a radial distribution system, as shown in Fig. 5.2. The

system operator chooses to encode the measurement from this smart inverter by changing

the estimated state xe on the inverter Bus e as discussed in Section 5.3.2. In this case, all

the buses on such lateral after the smart inverter bus is inside a protected region.

In a protected region, the proposed meter encoding scheme can mislead the system state

estimated by attackers. This conclusion can be proved by analyzing the power flow equations

inside the protected region because SE results are usually nearly identical to the power
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flow solutions if the state estimator works properly. Since the power flow measurements

on transmission line e − d are not encoded, the misled estimated states at Bus d can be

calculated by solving the power flow equations on this transmission line, given the misled

system states V̂ ∗
e , θ̂

∗
e (as described in Section 5.3.2) and the correct power flow measurements

Ped, Qed.

V̂ ∗2
e ged − V̂ ∗

e V̂
∗
d (gedcos(θ̂

∗
e − θ̂∗d) + bedsin((θ̂∗e − θ̂∗d)) = Ped (5.11)

− V̂ ∗2
e bed + V̂ ∗

e V̂
∗
d (bedcos(θ̂

∗
e − θ̂∗d) − gedsin((θ̂∗e − θ̂∗d)) = Qed (5.12)

Because all the power flow measurements inside the protected region are not encoded, the

misled system states on all the downstream buses (from Bus d to the end Bus n of this

lateral) can be calculated accordingly, similar to (5.11) and (5.12). Then, these incorrect

states will be used by attackers to construct FDI attacker vectors.

5.4 Experiment Results

This section evaluates the detection effectiveness of the proposed smart-inverter-based

meter encoding against stealthy FDI attacks. The simulations are implemented on the

IEEE 69-bus system using the open-source MATLAB tool MATPOWER196. The WLS-

based SE and BDD are implemented on MATLAB, while the machine learning-based SE is

performed using the Python package Pytorch226. To train and test the attacker’s machine

learning-based state estimator, PV generation and one-year load profiles are obtained from

ERCOT227 and eGauge228, respectively. Among the hourly measurement data, the first

7760 measurement vectors are used to train the attacker’s PFEDL model, and the rest

measurement vectors are used to construct and test FDI attacks. In this case study, both

the training and testing measurements are encoded by the proposed meter encoding scheme.

It is assumed that all the measurements contain Gaussian noise with a standard deviation

of 2% of the accurate measurement value. The chi-square statistic tests are performed with

a 95% confidence level for the SE-based BDD.
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This chapter mainly focuses on proposing a low-cost and hidden smart-inverter-based

meter encoding scheme to detect FDI attacks in distribution systems. The state estimator

observability issue is out-of-scope for this chapter. The case studies are concentrated on

an observable distribution system under stealthy FDI attacks. The distribution system is

hereinafter assumed to be single-phase balanced.

5.4.1 Protected Region, Encoding Hiddenness, and Encoded Costs

This sub-section evaluates the protected region consisting of all the buses on which

the attacker’s SE is misled by the meter encoding. Bus 15 is chosen as the encoded bus

equipped with a smart inverter. According to the definition of the protected region, the

proposed meter encoding will protect the encoded Bus 15 and its downstream Buses 16-27.

After a defender implements the encoding process, the attacker’s estimated system state

based on the eavesdropped measurements is shown in Fig. 5.3. Figures 5.3a and 5.3b

illustrate the scenario in which the attackers use the WLS-based state estimator, while Figs.

5.3c and 5.3d demonstrate the scenario where the attackers use the PFEDL state estimator.

In these scenarios, the system operator aims to mislead the attackers’ state estimation by

an encoding magnitude B equal to 0.065 p.u. It is seen that the biases between the true

voltage magnitudes and the attackers’ estimated voltage magnitudes are around 0.065 p.u.

as expected by the defender. The misled state estimation verifies that a protected region

consists of the encoded inverter bus and all the downstream buses.

In addition, the proposed encoding is hidden from attackers when they implement their

SE-based BDD test on the encoded measurements. This section runs 1,000 BDD tests from

an attacker’s perspective. The BDD residuals of the encoded measurements are identical to

the residuals of the legitimate measurements without meter encoding, as shown in Fig. 5.4.

This result indicates that if the legitimate measurements can pass the attacker’s BDD, the

encoded measurements can also bypass the same BDD, i.e., the proposed meter encoding

is hidden from alert attackers. The hiddenness of the proposed meter encoding scheme is a

unique benefit as existing meter encoding schemes46–48 can be detected by an alert attacker.
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(a) Voltage magnitude estimation with
WLS-based SE

(b) Voltage angle estimation with WLS-
based SE

(c) Voltage magnitude estimation with
PFEDL-based SE

(d) Voltage angle estimation with PFEDL-
based SE

Figure 5.3: Attacker’s estimated state with/without meter encoding

Figure 5.4: Attacker’s BDD residuals after meter encoding

For the above example in Fig. 5.3, two measurements (the real and reactive power

injections at Bus 15) are required to be encoded to protect the 13 buses in the protected
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Table 5.1: Comparison of meter encoding costs

Encoding schemes
Proposed
scheme

Existing
encoding49

Existing
optimal
encoding48

No. of encoded meters per
one protected bus

0.15 3.86 1.93

region. As a comparison, the meter encoding scheme proposed in49 requires the defender to

encode 54 measurements to protect 14 buses. An optimal encoding scheme proposed in48

needs to encode 27 measurements to protect 14 buses. The average required encoded meters

to protect one bus is compared in Table 5.1. The comparison result shows that the proposed

meter encoding scheme has the lowest encoding cost.

5.4.2 Detection of FDI Attacks

Figure 5.5: FDI attack on voltage magnitude estimation

This sub-section evaluates the detection effectiveness of the proposed meter encoding

in detecting stealthy AC FDI attacks. Suppose the attackers aim to decrease the estimated

voltage magnitude at bus 21 by 0.04 p.u. To achieve this, the attackers can obtain x̂ by using

the WLS or machine learning-based state estimators after eavesdropping on the original

measurements. By solving (5.1), the attack vector can be constructed, given c equals 0.04

p.u. Without the proposed meter encoding, the FDI attack will mislead the system operator’s
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SE at Bus 21, as shown in Fig. 5.5. This attack is proved to be undetectable for conventional

SE-based BDD99.

Figure 5.6: BDD residuals with meter encoding after stealthy FDI attacks

AC SE-based BDD is used from a system operator’s perspective to evaluate the detection

effectiveness of the proposed smart-inverter-based meter encoding. Bus 15 is the inverter

bus whose measurements are encoded. After a BDD test, a residual can be derived to

indicate if an attacker has manipulated the received measurements. In this chapter, the BDD

threshold is chosen to be 313 with a 95% confidence level. If the BDD residual exceeds the

threshold, the system operator can declare a 95% probability that the received measurements

are manipulated. The box plot in Fig. 5.6 shows the BDD residuals after an attacker

launches FDI attacks under different encoding magnitudes B = V ∗
15 − V15. These attack

vectors are constructed based on the encoded measurements and the corresponding system

states estimated by the attacker’s WLS SE. The attack magnitude (recall 1.3) is c = 0.05p.u.

at bus 20. On the x-axis of Fig. 5.6, various encoding magnitudes are tested to evaluate the

detection capability of the proposed encoding scheme. The first box from the left illustrates

that when attackers construct FDI attacks using their estimated states from the legitimate
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Table 5.2: Attack detection effectiveness using the proposed meter encoding

Encoding
magnitude
(p.u.)

ADP Percentage of
ADP increase

0.00 0.038 0.00%
0.01 0.042 10.53%
0.02 0.059 55.00%
0.03 0.142 273.42%
0.04 0.354 830.53%
0.05 0.640 1685.26%
0.06 0.948 2395.00%
0.07 0.999 2528.95%

measurements (i.e., encoding magnitude is 0), the attacks are stealthy to SE-based BDD. As

a comparison, when the attacker’s eavesdropped measurements are encoded with increasing

encoding magnitudes, the constructed FDI attacks will increase the BDD residual, as shown

in Fig. 5.6. When the encoding magnitude is greater than 0.07 p.u., all the FDI attacks are

detectable in this example.

In this chapter, the attack detection probability (ADP) is introduced to evaluate the

effectiveness of the BDD with the help of the proposed encoding scheme. The ADP is defined

as the ratio of the number of detected attacks to the total number of attacks. An ADP value

of 1 means all the attacks are detected by BDD, and an ADP value of 0 means no attack is

detected. Using the ADP of the BDD without meter encoding as a reference, Table 5.2 lists

the ADP with various encoding magnitudes and the corresponding improvement in ADP.

Recall that the encoding magnitude is defined as the bias between the attacker’s estimated

state and the true system state. For each scenario, 1,000 attack vectors are constructed

based on the encoded measurements and are tested by BDD. The improvement in the BDD

detection effectiveness depends on the encoding magnitude. A larger encoding magnitude

leads to greater inconsistency between the attack vector and the physical power flow laws

and thus increases the BDD residual and the ADP. From Table 5.2, it is recommended to

use a larger encoding magnitude to provide higher detection effectiveness. Although using

a large encoding magnitude for defenders does not increase their defense cost (as the meter
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encoding is a software-based method), a larger encoding magnitude may result in a significant

measurement change and raise an attacker’s suspicion. In this case, an alert attacker may

suspend the attack and invest more resources to obtain the correct measurements, which

further increases the cybersecurity risk of the smart grid. Therefore, how to optimally

choose the encoding magnitude to balance the trade-off between the detection effectiveness

and the encoding magnitude is an important topic, which will be addressed in future work.

(a) WLS-based FDI (b) PFEDL-based FDI

Figure 5.7: ADP of the proposed meter encoding against FDI attacks under different attack
parameters

A fixed encoding magnitude B = 0.065 p.u. is used in this simulation to investigate the

ADP under different numbers of attacked buses and various attack magnitudes. The ADP of

the proposed encoding scheme against the attackers who use the WLS-based SE to construct

their stealthy FDI is shown in Fig. 5.7a. The simulations are run in 70 cases with various

numbers of attacked buses and attack magnitudes. In each case, 1,000 attack scenarios are

constructed based on the encoded measurements and the corresponding attacker’s estimated

states. The ADP for each case is calculated using the BDD residuals after the 1,000 attack

scenarios. As shown in the x- and y- axis, a range of 2 to 8 buses in the protected region

is attacked, while the attack magnitude changes from 0.003 p.u. to 0.039 p.u. It is seen

that with the increase of attack magnitudes, the ADP of the proposed encoding scheme

also increases. This observation is true for both the FDI attacks constructed based on the
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attacker’s WLS state estimator (Fig. 5.7a) and the PFEDL state estimator (Fig. 5.7b).

When the attack magnitude reaches 0.023 p.u., the ADPs are over 90% regardless of which

state estimator the attacker uses.

5.5 Summary

This chapter proposes a smart-inverter-based meter encoding scheme to detect stealthy

FDI attacks in single-phase distribution systems. The proposed scheme can protect all the

downstream buses against FDI attacks by encoding a bus equipped with a programmable

smart inverter, which decreases the encoding cost compared with existing meter encoding

strategies. The case study has demonstrated that the proposed scheme can mislead the

attacker’s SE on the protected buses and induce the attack vector to trigger the defender’s

BDD. A comprehensive evaluation, which considers alert attackers equipped with WLS-

based SE and PFEDL-based SE, has been conducted to test the proposed scheme’s detection

effectiveness against FDI attacks. In addition, the case study shows the proposed low-cost

meter encoding is hidden from alert attackers who can implement SE-based BDD to detect

arbitrary defense strategies.

123



Chapter 6

Conclusion and Future Work

This chapter concludes the dissertation by summarising the key research findings in

relation to the research targets and questions and discussing directions for possible future

work. Chapter-specific conclusions are included in their respective chapters.

6.1 Conclusion

In this dissertation, the cyber-physical security of smart grids is comprehensively re-

viewed. After investigating the impact of various cyber-physical attacks, this dissertation

focuses on the infamous data integrity attack, namely FDI attacks. With the provided back-

ground, this dissertation address three major research questions that aim to enhance the

detection of FDI attacks in distribution systems. Therefore, a novel NLRA as a more realis-

tic FDI attack is proposed to mislead the system operator’s SE. Using NLRA as an adversary,

a voltage stability constrained MTD framework is proposed to detect such attacks while en-

suring long-term voltage stability. Further, a low-cost meter encoding method that does

not require additional hardware devices is explored. The answers to these research questions

can help distribution systems enhance cybersecurity and improve situational awareness. The

accomplishments of this dissertation are summarized as follows.
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Chapter 3 proposes an NLRA framework, which targets to mislead system operator’s

SE in distribution systems with DERs. By following the boundary conditions, attackers

can launch NLRA with limited configuration information inside an attack region. Further,

deep neural network-based SE is utilized by attackers to get the system state for NLRA

construction under low observable distribution systems where conventional WLS-based SE

cannot converge. The numerical results show that the proposed NLRA is stealthy to the

defender’s BDD and can mislead DSO with illusory under-voltage issues.

In Chapter 4, a long-term voltage stability issue under existing MTD strategies is re-

vealed. Steady-state and dynamic simulations show that when MTDs perturb line impedance,

the system load margin will be degraded and may induce voltage instability in various power

systems. To address this problem, a voltage-stability-constrained MTD framework is pro-

posed to detect FDI attacks while ensuring voltage stability. Two methods, i.e., t-index

optimization and load margin constrained method, are utilized to re-dispatch the original

MTDs. The NLRA model from Chapter 3 is used to evaluate the detection effectiveness of

the proposed MTD framework. Extensive simulation results show that both methods can

significantly improve the load margin and the voltage stability of a system with an origi-

nal MTD in critical net load conditions. Moreover, the t-index optimization method can

maintain the objectives close to the original OMTDs.

Finally, Chapter 5 proposes a smart-inverter-based meter encoding method to detect

FDI attacks in distribution systems. The advantage of this method over MTD is that no

additional D-FACTS devices are needed. Meanwhile, since meter encoding is a software-

based detection method, it will not induce system stability issues.

6.2 Future Work

This section summarizes potential research directions. Chapter 3 improves the exist-

ing FDI attacks so they can be launched in distribution systems. Interesting future work

includes developing defense frameworks in which the proposed NLRA will be simulated,
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studying attack sequences with a high level of DERs, and investigating other attack goals

in distribution systems. A comparison of existing PFEDL-based SE (LSTM and DNN) and

pure data-driven SE would be an exciting area of research. Extending the NLRA model to

three-phase unbalanced systems could be another area of further inquiry.

Chapter 4 considers voltage stability constrained MTD framework. This work can be

improved in the future by implementing the proposed voltage stability constrained MTD

methods under other advanced MTD strategies. A machine learning model to address load

margin uncertainty during peak load could be another extension of this work. Further, work

can be done to address the challenge that there exists no closed-form metric in the AC model

to quantify the MTD detection effectiveness directly. A sensitivity analysis can be conducted

to approximate the impact of reactance perturbation on the BDD residual.

Chapter 5 investigates the viability of a smart-inverter-based meter encoding that de-

tects FDI attacks in distribution systems without installing additional hardware devices.

The encoded measurements include load injections and power flows. However, phase mea-

surements from the most advanced phasor measurement units (PMUs) are not considered.

Improving the proposed detection scheme by encoding PMUs could be interesting future

work. Further, this work can be better evaluated on a hardware-based testbed consisting of

measurement, control, and communication functions.

This dissertation studies cyber-physical security in smart grids. It is necessary to inves-

tigate attack detection, identification, and mitigation under more sophisticated adversary

models in the future. In addition, investigating the cooperation of many interdependent

detection methods could be vital in improving the system operator’s situational awareness.

Further, investigating the attack and defense strategies in dynamic emulations is worthwhile

to enhance the robustness and resilience of smart grids.
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Appendix A

Acronyms

Acronyms

CPS cyber-physical system

IoT internet of things

SCADA supervisory control and data acquisition

DoS denial of service

ICT information and communication technologies

CPSG cyber-physical smart grid

NLRA net load redistribution attack

MTD moving target defense

EMS energy management system

PMU phasor measurement unit

SE state estimation

BDD bad data detection
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NESCOR national electric sector cybersecurity organization resource

WAMPAC wide-area monitoring, protection, and control

PDC phasor data concentrator

IT information technologies

OT operational technologies

OPF optimal power flow

LR load redistribution

DER distributed energy resource

WLS weighted least square

D-FACTS distributed flexible AC transmission system

SVC static var compensator

TCSC thyristor controlled series capacitor

SSSC static synchronous series compensator

CPF contibuation power flow

PFEDL power flow enhanced deep learning

AGC automatic generation control

RTU remote terminal unit

DSO distributed system operator

RF redundant factor

LSTM long short-term memory

DNN deep neural network

MAE mean absolute error
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ASP attack stealthy probability

RMTD random moving target defense

OMTD optimized moving target defense

HMTD hidden moving target defense

SNB saddle node bifurcation

WECC western electricity coordinating council

PII power injection to impedance

PFI power flow to impedance

SI state to impedance

TII t-index to impedance

ROC receiver operating characteristic

TPR true positive rate

FPR false positive rate

AUC area under curve
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