Adaptation of the introductory control system laboratory apparatus for model based design

by

Dong Hyun Kim

B.S., Kansas State University, 2018

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Alan Levin Department of Mechanical and Nuclear Engineering
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Approved by: Approved by:

Co-Major Professor Co-Major Professor
Dr. J. Garth Thompson Dr. Warren N. White



Copyright

© Donghyun Kim 2021.



Abstract

Model Based Design (MBD) has been enabling engineers to rapidly develop, test,
analyze, and implement control system concepts. Many companies, especially in automotive and
aerospace industries, have seen increases in design and development productivity and decreases
in cost and time while retaining the quality of firmware in embedded systems. As MBD is
becoming a trend in industries’ standard practice, it is important for the university education to
adapt and integrate these tools into the students’ learning experience.

The MBD approach enhances the deployment of complex control systems by abstracting
their complexity into graphical representation of system models. The models support an array of
analysis and simulation tools that permit the designer to progressively evaluate alternative
control structures and components to reach the required performance requirements. The tools
ultimately lead to the auto-generation of the source code for the embedded systems firmware.
But it is important in the education context that students understand the engineering concepts
underlying the tools and to not obscure too much of the backend information. To appreciate the
automation of firmware generation students should have a minimal understanding of basic
coding practices to maximize the learning outcome.

This thesis presents the MBD methods used to automate the generation of new firmware
of an existing laboratory apparatus called the MotorLab and to integrate MBD concepts into an
undergraduate controls course. MotorLab is used in the introductory controls course at Alan
Levin Department of Mechanical and Nuclear Engineering at Kansas State University. The
updated firmware is carefully examined to ensure the full range of functionality of the original
lab device to deliver the same effective lab exercises and to demonstrate the application and

benefits of MBD.



Table of Contents

LISE OF FIQUIES ...ttt st et et re et e e st e ebe e beentesneenteeneennes vi
LISE OF TADIES ...ttt e s st e et sre e beenbeeneenreas viii
LiSt OF SOFtWAIE LISTINGS. .. ecieitieiiieie ettt e et e s te et e sneesreeneanes iX
ACKNOWIBAGEMENTS ...ttt et e e s be et e ere e s beenbeaneesreeneeaneesreeneeas X
NOMEBNCIALUIE ...ttt et se e bt et e e st e st e et e e neesbeeteaneesreenee e Xi
Chapter 1 - INTFOUCTION .......c.eiiiieitiiti et nb et 1
Chapter 2 - HAIAWATE.........ccueeie ettt st e e b e e e ta e teeneesba e teentenneesreenee e 7
2.1 IMIOTOTLAD ©.eee e et bbb 7
2.2 STM32 DISCOVEIY BOAIT ......c.eeuiiiiiiieiieitesiesieee ettt bbb 9
2.3 FTDI AQAPLET ... bbbttt bbb 10
2.4 Motor, Encoder, and AMPHTIEr........cooiiiiieeee e e 12
Chapter 3 - Physical System MOdeliNg........cccooviiiiiiiiiiicie e 15
3.1 MotorLab System BIOCK Diagram ............ccoeiiiiieiieiicic e 15
3.2 MotorLab SyStem Parameters..........cooiiiiiiiiiiieieie e 16
3.3 MotorLab Model DeVEIOPMENT ........ooviiiiiiiiiiieee e 17
Chapter 4 - SOFIWAIE ......cveeivieiee e te et e e e sbe e beeneeeaeesaeeeesneennas 22
4.1 IMBENWWOTKS ...ttt b ettt sttt bennenreas 22
4.2 STIMICTOCIECIIONICS .....veeieeeie et s ettt sta e sreeste et esreesaeeneesneenneeneeas 23
Chapter 5 - Code Generation With IMBD ..ottt 25
TN A1V, oo =] o [ o SRS 26
5.2 SOTWAIE-IN-L00P ... .ccitiiiiieiie ittt e bbb et e e s be e s e e ateens 28
5.3 PrOCESSOI-IN-L00D ... eeiiieieiiiieie ettt 30
5.4 HArdWAare-TN-LOOP ......ciuiiiiiieiieiiieiteste sttt bbbttt b e e bbb 31
5.4.1 SIMUIINK EXTErNal MOE ......cuoiiiiiiiee e e 32
5.4.2 STM32CUbeMX ConfigUIatioN .........cccciiiieiieiie e 33
5.4.3 STM32-MAT/TARGET BIOCK S€l.......ccoiiiiiiiiciie e 36
5.4.4 Limitations of STM32-MAT/TARGET .....c..cooi it 39
5.4.5 Workarounds Using STM32-MAT/TARGET ........ccooiiiiiiic e 45
Chapter 6 - HIL Verification and ANAIYSIS........cccueiiiiiiiiiiciie e 48



6.1 Data ACGUISTTION ..ecvviiieieeie ettt e e st e re e e e s teeteaneesreenreenne e 49

(I 1 o Tod 14V O] 1 o OSSPSR 50
6.3 Position Control With P Controller ..o 52
6.4 Position Control With PD CONIOIEr.........ccoveiiiiiiieice e 57
Chapter 7 - Additional MBD APPIICALIONS.........cceiieiiiieie e 62
Chapter 8 - CONCIUSIONS........ciuiiieiieie ettt et et e esae e be e e e sreesaeeneesneenns 65
RETEIBINCES ...ttt r et e bt s e Re et e e s e e Rt e be et e are e beeneeeneente et 67
Appendix A - ME570 MotorLab Laboratory ASSIGNMENTS..........ccvieiiiininieieieese e 1
Appendix B — ME570 MotorLab Hardware SpecifiCations ............ccccccovveveiieiieveeie e 1



List of Figures

Figure 2.1 MOtOrLab APPAIATUS ........ccuereiiiieieieie ittt sn bbb nneeneas 7
Figure 2.2 Components of MotorLab APParatus...........ccccoviiiirieieieienesesesee e 8
Figure 2.3 ST-LINK VCP MOGITICALION .......ccviiiiiieiiciicic sttt 10
Figure 2.4 SIL and PIL Hardware SELUD ........cccoeiieiieiieie e e ste e e e sre e sne e 11
Figure 3.1 MotorLab SchematiC DIagram .........cccoceiiriiiniiieieieese e 15
Figure 3.2 Proportional Position Control BIOCK Diagram ..........cccceeeeieieninieniieeenese e 15
Figure 5.1 MIL and SIL VErifiCatiON..........ccoiiieiiiie it 26
Figure 5.2 PIL and HIL VErifiCation ..........cccciveiiiiiiic ettt 26
Figure 5.3 Simulink Block Diagram for MIL, SIL, and PIL .......cccccceiieiiirieee e 27
Figure 5.4 SIL Hardware COonfIQUIation ............coeiuiiiiiniiinieiee e 28
Figure 5.5 SIL/PIL Block Generation Dialog BOX ..........ccccuiiiiiiiiiiiieiesisiseeee e 29
Figure 5.6 Build Code Dialog BOX ........cceciieiiiiiiiie ittt sae e 29
Figure 5.7 PIL SIMUIINK BIOCK ..........coiiiiiiiiicie et sne e 30
Figure 5.8 PIL Configuration for the Target Hardware ... 31
Figure 5.9 Excerpt of External Mode from MathWorks Help Center ............ccoocevviiniiiiinnnnne 33
Figure 5.10 STM32CubeMX Pinout & Configuration Tab.............cccccveviiiiiiiiii i 34
Figure 5.11 Project Clock ConfigUIration............ccccueiieiiiiciiciece e 35
Figure 5.12 STM32 Configuration Block and Parameter Dialog BOX ...........ccooevveienencicninnnnnn 36
Figure 5.13 Simulink Target Selection using STM32-MAT/TARGET ........ccccoeiiieniniiinee 37
Figure 5.14 STM32 Options for STM32CubeMX Installation Path .............ccccccooeiiiiiiiiicinenns 38
Figure 5.15 Selection of Verification INterface ...........cccooe e 39
Figure 5.16 The Diagnostics Window with the Error MeSSage..........ccoervrirerieeienienene e 39
FIQUre 5.17 BUIld BUTTON ..o 40
Figure 5.18 External Mode Dialog WINAOWS ...........coiuiiiieiiieiie et 40
Figure 5.19 External Mode Control Panel ............ccooii i 41
Figure 5.20 The Simulink Diagram of MoOtOrLab..........c.cooiiiiiiiiiicee e 42
Figure 5.21 Timer Blocks for PWM and Encoder SUDSYStEMS ..........ccoceiiiiiininiiic e 42
Figure 5.22 Control Loop Rate Verification using OSCIllOSCOPE .........cccvevvviiiiiiiiiiciccec, 43
Figure 5.23 Abnormality in Control LOOP FIrEQUENCY .......cccvveiiiiiiiieiieiieccee e 43

Vi



Figure 5.24 Resulting Plot of Speed Control with External Mode...........ccccocvvevviiiiieve e 44

Figure 6.1 HIL SIMUIINK DIGQIamM .........ccviiiiieii ettt esne e 48
Figure 6.2 Oscilloscope reading of GPIO pin at 10KHZ ... 49
Figure 6.3 HIL Graphical USer INTEIrfaCe .........ccoeiiiiiiiiiicieee e 51
Figure 6.4 High Frequency Dynamics in the System ReSPONSES ........c.cccevvereereiieeieeresieseennens 51
Figure 6.5 Proportional Position Control with Higher Gain............cccocveveiiieiieis e 53
Figure 6.6 PIL vs. HIL Proportional Control COmMPariSON ...........ccoeverereniniesiecieienese e 54
Figure 6.7 Comparison Between the MBD Simulations and the HIL Verification..................... 55
Figure 6.8 Comparison Between the MBD Simulations and the HIL Verification...................... 56
Figure 6.9 Comparison Between the MBD Simulations ...........ccccooeiieiiiieiiecie e 57
Figure 6.10 Smaller PD Gains with Large Command INPUL...........ccoooeriiininiinienee e 59
Figure 6.11 Higher PD Gains with Large Command INPUL...........cccoviiininininiiee e 60
Figure 6.12 HIL vs. MotorlabGUI with Higher PD Gains .........cccccoeiieiieiieiecie e 61
Figure 6.13 Closer LOOK at FIQUIE 6.12........cccueiuiiieiieieeieceese et se e e e sreesne e sne e 61
Figure 7.1 Arduino Robot Car with Ultrasonic DiStance SENSor............cccvvievieieieieneseseeeans 62
Figure 7.2 Visual Deployment of Embedded Controller using Arduino Uno...........cccccccvvnienene 63
Figure 7.3 MOtor DriVEr SUDSYSIEM ......c.iiiiiiiie et 64

vii



List of Tables

Table 2.1 Motor Dynamic Specs from the Manufacturer ...
Table 3.1 MotorLab SYStem Parameters. ........c.oceieieiiririeeeieiee et

Table 6.1 Data Acquisition Stream FOrMAL ............cccoeveiiieiieic e

viii



List of Software Listings

Listing 3.1 Low Pass Filter with a Derivative to get Velocity from Position Measurement........ 20
Listing 5.1 STM32SerialRtiostream.c Interrupt Callback Function Snippet...........cccccocvvinvnnne. 45
Listing 5.2 USB OTG FS TranSmit FUNCLION .........cccveiiiieiieic e 46
Listing 5.3 MATLAB System Source BIOCK............coiiiieiieiiiie e 47
Listing 6.1 Nominal Closed LOOP SYStem RESPONSE..........cciveiiriirierierieniisieeee e 50
Listing 6.2 High Frequency Closed Loop SyStem RESPONSE........cccrirerireiieieieneenie e 50



Acknowledgements

| am thankful for Dr. Schinstock for inspiring me to study automatic control theory, for
Dr. White for continuing to educate me and agreeing to be my advisor, and for the graduate
school for giving me the opportunity to pursue my thesis at Kansas State University. | would also
like to thank Dr. Thompson and Dr. Eckels for their support in finishing my thesis, Dr.
Brockhoff and Dr. Flippo for sharing insights regarding class objectives and research projects,
and Mr. Patterson for helping me with IT related issues.

Also, I thank my loving parents and my brother for supporting me throughout my
education and asking nothing in return while believing in me.

And last but not least, | would like to dedicate this thesis to my dearest Laura who
supported me throughout my happiest and toughest times working on the thesis. This would not

have been possible without you.



Nomenclature

MBD — Model based design

RTOS — Real Time Operating System

UAS — Unmanned Aerial Systems
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Chapter 1 - Introduction

University engineering faculty members have always appreciated the importance of
engaging engineering students in hands-on experiments with laboratory practices. This teaching
method of applying theories taught in lectures into more tangible applications has given students
better understanding of engineering principles and practices. It also results in increased
confidence before heading into industry as engineers [1]. It has also been shown in pedagogical
studies that young adults in higher education have greater comprehension and retention of
learning experiences with interactive exercises ( [2], [3], and [4]). But there are significant
hurdles associated with engineering labs. Teaching laboratories are expensive to develop,
operate, and maintain and there are few sources from which those resources may be obtained.
Some institutions have added equipment fees to the students’ tuition but there are many demands
for those resources. Many institutions and faculty members may lack the resources for operation
of specific teaching laboratories. This may especially be the case in the controls engineering
discipline where the equipment often involves hardware and software pertaining to automotive
and aerospace industries.

The application of digital computers to control physical systems revolutionized the
controls industry. The use of a computer to control a physical system is called an embedded
control system. The design and implementation of embedded control systems involve selection
of the computer (often a microcontroller), the sensors and actuators that connect the computer to
the physical system, and the creation of the computer software. The MathWorks company
capitalized on this transformation by producing a suite of tools to support the development and
implementation of these systems. Their tools make use of graphical user interfaces and

mathematical models to represent the components of the systems. These tools reduce the cost



and time to design and implement embedded control systems by supporting a progressive set of
analysis and simulation tools.

The controls industry has adopted this methodology called Model Based Design (MBD)
using MathWorks products and other third-party add-on products that integrate into MathWorks
tools. MBD manages the complex nature of embedded control systems by using graphical
abstractions and mathematical models. These tools provide an interactive environment to design,
test, analyze, and deploy these systems. This is achieved by integrating the four main stages of
MBD: Model-In-Loop (MIL), Software-In-Loop (SIL), Processor-In-Loop (PIL), and Hardware-
In-Loop (HIL).

MIL is a model development and simulation stage. This stage depends on accurate
computer models of the physical system being controlled, the controller, and interconnecting
devices being developed. The models are used for simulation and analysis, and for tuning the
controller. The MIL stage is important in saving costs since the computer model of the physical
system can be used instead of setting up expensive hardware under a testing environment. MIL
provide a means to evaluate various components of the system prior to expenditure for the
physical devices. The same computer model is then used in MIL, SIL, and PIL to develop and
test the controller software.

Once the analysis of the MIL simulation returns adequate performance, the next stage is
SIL. SIL uses and extends the models from the MIL stage. The SIL stage enables testing the
controller in a controller emulation process. The MIL and SIL stages are completed in a general-
purpose PC without any special hardware. The software emulated processor mimics the
constraints of a specific processors to allow various controllers to be evaluated before acquiring

the microcontroller.



Following the SIL stage is the PIL stage which involves a real microcontroller. In
contrast to SIL, this stage runs the simulation with the control loop running on an actual
microcontroller. PIL requires a connection with adequate data transfer rate between a host PC
and microcontroller.

The final stage is HIL, which is the verification of a deployed embedded control system
in the most realistic setting using actual physical hardware. There can be various levels of HIL
from only implementing the interconnecting sensors and actuators to including the entire
functioning physical system. At any given stages of implementing MBD, reiteration back to prior
stages is often necessary.

A major benefit of the MBD methodology is the auto-generation of optimized controller
code. MBD saves a significant amount of time spent with the debugging process due to
handwritten code being susceptible to human errors ( [5], [6], and [7]). In the educational
context, the time saved in code production can provide more time for testing, analyzing, and
engaging students in learning more about the embedded control system design procedures.
Instead of repeating the same process of writing and debugging code manually, students will be
able to focus on the simulation, verifying the response of the hardware, and studying the effects
of the controllers on the physical system.

Working with the mathematical and graphical representations of physical systems can aid
students in understanding mathematical principles in control systems analysis and design. The
simplified visual representation of each components block will help relating mathematical
principles to the physical control system.

The first two stages of MBD can be accomplished on general-purpose PCs without the

expenditure on any physical system hardware. Additionally, PIL can be accomplished with many



inexpensive microcontroller boards. With the help of MBD, students can be exposed to
designing various embedded control systems that might be very expensive or impossible to
implement in a university laboratory. But in order for students to experience the full scope of the
MBD methodology, it is critical to include some level of physical hardware. With more realistic
HIL setups, students can have more accurate response data to analyze and compare with their
simulated system from previous stages. And laboratory exercises should be designed carefully to
maximize the student outcome from learning with the MBD. The lab should also help students
with retaining the understanding of basic coding practices while reinforcing the control theory
with more hands-on exercises.

A faculty member in the Mechanical and Nuclear Engineering Department at Kansas
State University has developed an embedded system [8]. The system can control various
operational modes of a small brushless motor. The device is called the MotorLab and has gone
through several stages of development. The system is used in a set of experiments in a laboratory
associated with an automatic controls course that is required in the curriculum. The controls
laboratory consists of 10 experimental stations each with a MotorLab device and a general-
purpose PC. Since the system was developed and is maintained internally using student
employees, it is difficult to determine its cost. It remains unknown as if it will continue to be
maintained since the faculty member who developed the hardware, and the embedded firmware
is no longer with the University.

Other methods of modifying and updating the laboratory device have been explored ( [9],
[10], [11], and [12]) at Kansas State University. Most of the effort was aimed at lowering the
cost and with increasing the distribution of the apparatus. It might produce better learning

outcomes if a suitable device can be developed at a cost so that each student can own one.



Experience with a similar situation in a related course produced outstanding experiences for
many of the students who became very engaged with the device and could spend as much time as
they wished learning with the device.

The current set of laboratory assignments in the controls course do not address MBD
explicitly. However, several of the assignments involve application of the MathWorks tools to
model, analyze, design, and simulate the controller for the MotorLab system (essentially the MIL
stage). But students are not exposed to the embedded MotorLab software or to the other stages of
MBD. Students are encouraged to change the parameters of the controller and observe the effect
on the response of the system. The MotorLab device seems well suited for a broader application
of MBD and that is the subject of this thesis.

The alternative to internally developing laboratory equipment suitable for teaching the
concepts of MBD is to purchase laboratory hardware and software. But this solution of
purchasing all the necessary equipment comes with an exceptionally expensive price tag. Unlike
the industries’ implementation of MBD using the resources available to them, universities might
not have the same capacity to purchase the industrial grade software and hardware. Especially
when the materials are required for every student in the curriculum.

To minimize the financial burden of an important educational experience for our
students, this thesis will focus on two main objectives. The first is to lower the cost associated
with adopting MBD by not requiring acquisition of new hardware and software. It will assume
the availability of the minimum requirement of essential software and hardware such as
MATLAB Coder and Simulink Coder, and a microcontroller with a suitable physical system to
control (the MotorLab system). Then, the thesis will explore creating additional tools to work

with MATLAB and Simulink along with available free software packages. This will



substantially reduce the software acquisition cost to enable MBD functionality. The second
objective is to examine the quality of generated controller code to ensure that it is suitable for our
intended educational purposes. It will be carefully compared with the current MotorLab
firmware by running example labs. The objectives are to reduce the cost without compromising
the quality so that the students will gain access to the industrial tools that are widely used. It will
boost students’ confidence and competence as they join the engineering workforce after
graduation.
In the following chapters, the development and deployment of MBD capability will be

covered as follows:

e description of the hardware currently used in the control course,

e modelling of the physical hardware,

e acquisition and development of additional tools and software and adapting to their

limitations with workarounds, and

e verification using the HIL.
Finally, several lab exercises from the introductory controls course, ME570, will be performed
using the MBD approach and compared to the results to the original MotorLab exercises. They
will be used to demonstrate the practicality of using MBD for the development of embedded

control systems in an educational setting.



Chapter 2 - Hardware

2.1 MotorLab

To investigate the implementation of MBD capability, the existing laboratory apparatus
has been evaluated and modifications required to support the four stages of MBD identified. The
existing device called MotorLab is pictured in Figure 2.1 and Figure 2.2. It has been in use for
over a decade in the laboratory associated with the mechanical engineering automatic controls
course. It features a rugged design and construction, as well as well written custom firmware. It
also includes a custom graphical user interface which provides access to the setup the laboratory
experiments and record system responses. To make the MBD approach more familiar for
students and cost effective, this thesis aims to utilize the hardware that is already provided in the

laboratory and to replicate the graphical user interface functionality.

Figure 2.1 MotorLab Apparatus
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Figure 2.2 Components of MotorLab Apparatus

The apparatus is composed of four main components:

e a brushless motor with an encoder,

e an amplifier,

e a24 Volt power supply, and

e a microcontroller development board.
The vendor of the microcontroller used is STMicroelectronics. It is a multi-national company
that offers a variety of Micro-Controller Units (MCU) and Micro-Processor Units (MPU) used in
a wide range of embedded control applications. Exposure to this type of hardware can help
students become familiar with the capabilities and resources they provide, and the tools used to
integrate these devices into physical systems. This exposure makes the students attractive to
companies that seek employees with relative experience with specific MCU or MPU products.
More details about the hardware, the driver libraries, and the Hardware Abstraction Layer driver

will be covered in the software chapter.



2.2 STM32 Discovery Board

The development board used is the STM32F4 Discovery Board manufactured by
STMicroelectronics. The embedded software for the MotorLab application was developed for
this hardware and for this specific application. The primary task of the software is the interrupt
driven control loop that is executed at 10kHz. Other peripheral tasks with lower priorities run in
the background without compromising the primary task. The MBD processes are implemented
on a general-purpose host PC. The PC must be capable of performing the MBD algorithms at the
same control loop rate. In the PIL and HIL stages, the host PC and the microcontroller must be
able to exchange data at this same loop rate.

Software for the Discovery board is developed in an application on a PC and ported to the
Discovery board through a USB port. The USB port communicates with the onboard processor
through the ST-LINK, a device on the board that manages that communication process. The ST-
LINK also supports software debugging and limited data retrieval which is not fast enough to
support the PIL and HIL applications.

Three options were pursued to obtain the required exchange data between the host PC
and the Discovery board. The Discovery board has several Universal Synchronous-
Asynchronous Receiver/Transmitter (USART) ports. The Transmit and Receive (TX/RX) lines
are available on the board as designated pins. The first option considered was to utilize the VCP
(Virtual Com Port) modification. This modification consists of the Transmit and Receive pins
(TX/RX) of any available USART to be soldered to the ST-LINK TX/RX pins. The TX/RX pins
are adjacent to the bottom left corner of the ST-LINK chip. A picture of this modification is

shown below in Figure 2.3.
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Figure 2.3 ST-LINK VCP Modification

The benefit of this modification is the simple interface. Only one USB cable is required to
exchange data between the Discovery board and host PC. The same connection can be used to
flash the firmware to the Discovery board as well.

This option is the simplest setup out of the three, but the data exchange rate is
significantly throttled by the hardware. Data acquisition can be done but the speed at which this
port is able to read and write data is too slow to support the PIL and HIL applications. Thus,
making the first option not feasible for MBD purposes. To mitigate the physical limitation with
the Discovery board, additional hardware is required moving forward.

2.3 FTDI Adapter

Future Technology Devices International (FTDI) is a semiconductor device company
specializing in Universal Serial Bus technology [13]. It develops, manufactures, and supports
devices and their related cables and software drivers for converting RS-232 or TTL serial
transmissions to and from USB signals, in order to provide support for legacy devices with

modern computer interfaces.
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The second option to achieve the required communication rates was to create a new
communication channel from the onboard USART TX/RX pins to a USB port on the host
computer. The USART pins are TTL level and the FTDI adapter is used to convert them to be
compatible with the host PC’s USB port. The hardware setup of the USART interface using
FTDI converter is shown in Figure 2.4 below. This allows serial port communication between

the microcontroller and host PC while running the SIL and PIL applications.

. ST-Link to host PC Micro-USB

FTDI USB-TTL converter

Figure 2.4 SIL and PIL Hardware Setup

The second option noticeably improves the data exchange rate. This is achieved by using a
hardware with better data transmission capability. According to FTDI chip’s specification [14],
the maximum baud rate achievable is 3M baud. This can be beneficial in theory, but the
maximum speed is limited by MATLAB and Simulink software which has been tested to be
below 1M (921600) baud. However, the second option’s data rate is still not sufficient for the

HIL verification.
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In contrast to the SIL and PIL, the HIL will accomplish data acquisition using the third
option: USB On-The-Go Full-Speed (USB OTG FS). The implementation of this USB protocol
further improves the data transmission rate for HIL. This option has the best data transfer rate
when compared to the other two. Unfortunately, USB OTG FS cannot be utilized during SIL and
PIL due to compatibility issues with Simulink. Simulink’s proprietary code does not allow for a
third-party patch to use different protocols. Only UART is supported for SIL and PIL. The
second option of FTDI board will suffice for the operation of SIL and PIL using MotorLab. The
USB OTG FS will be implemented using the micro-USB port on the Discovery board. The
micro-USB port is on the opposite side of the board to the mini-USB as shown in Figure 2.4
above. The detailed steps on setting up, running the various simulations, and verifications with
plots will be covered in Chapter 4, 5, and 6.

2.4 Motor, Encoder, and Amplifier

In this section, the characteristics of the motor, encoder and amplifier will be presented.
In the next section the mathematical model of the system will be developed for position and
speed control applications.

The motor is a three-phase DC brushless motor. It has a maximum speed of 4000 RPM
with the 24 Volt power supply. The detailed specifications from the manufacturer of the motor,

excerpted from Appendix B, are shown in Table 2.1 below.
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Table 2.1 Motor Dynamic Specs from the Manufacturer

LA052-040E Motor Dynamic Specs from Shinano Kenshi
Units Value
Rated Power w 40
Rated Voltage Vbe 24
Rated Speed RPM 3,000
Rated Torque N-cm 12.7
kgf -cm 13
Rated Current A 2.5
Torque Constant N .Acm 5.0
WTlcm 0.51
%4
Back EMF Constant YRPM 5.2
Phase Resistance 0 1.18
Phase Inductance mH 4.4
Instantaneous Peak Torque N-cm 38.2
Max Speed RPM 5,000
Rotor Inertia g - cm? 110
kw
Power Rate S 1.48
Mechanical Time Constant ms 5.2
Electrical Time Constant ms 3.7
Mass kg 0.6

The motor position is measured by the incremental encoder attached directly to the motor

deg
count

shaft. The encoder is a two-channel encoder with a resolution of 0.225 which is 1600

counts in a full revolution. The encoder signals are attached to a timer counter on the Discovery

board. Motor position is measured by counting pulses from the encoder. The two channels
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provide indication of the direction of rotation so that encoder count is incremented or
decremented depending on the direction of rotation. The measured position can be numerically
differentiated in the software on the Discovery board to approximate the motor speed.

The position or speed of motor are controlled by the amplifier and microcontroller. The
amplifier has a current control circuit that outputs a current to the motor windings proportional to
the input command. This is known as a torque-controlled motor since the magnetic torque is
proportional to the current in the windings. The command input to the amplifier is an analog
signal. The microcontroller provides this signal by means of a £3 Volt analog output connected
to the amplifier. The microcontroller uses a Digital-to-Analog Converter (DAC) to achieve this
output. By controlling this analog voltage signal, the current inside the motor can be controlled.
The amplifier has a pin connected to the microcontroller’s Analog-to-Digital Converter (ADC)
where the current output to the motor is measured. This signal is not utilized in the

microcontroller’s control loop, but it is recorded for analysis purposes. The current command to
the motor can be implied by scaling the microcontroller’s analog voltage command with 1 %.

Therefore, the unit of proportional gain in the position controller is %. Similarly, the

proportional gain in the velocity controller is %. The scaling of the amplifier current command

and the encoder will be used in the next chapter to determine the scaling of the controller gains.
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Chapter 3 - Physical System Modeling

This chapter will describe the parameters of the current MotorLab device and its electro-
mechanical system characteristics. It will be used to model the system. This system model will
be used in the first three phases of MBD: MIL, SIL, and PIL.

3.1 MotorLab System Block Diagram
Figure 3.1 below shows the schematic representation of MotorLab system in a closed-

loop position or speed control configuration.

6, w

Figure 3.1 MotorLab Schematic Diagram

Oc € Ve le Tm 1 O
Kp —| Ka —p| Kt » s + bs

v

Figure 3.2 Proportional Position Control Block Diagram

For convenience, the desired motor command position, &, will be represented in degrees. The

measured position of the motor, dm, will also be in degrees as will the command error, ec. Kp is

Volt

@)' The input signal to the amplifier, V, is the analog

the proportional gain of the controller (

output from the microcontroller’s DAC converter with a range of £3 Volts. Since the amplifier is
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supplied with 24 Volts, the current input to the motor windings is changed with varying the duty
cycle with £3 Volts. Also known as Pulse Width Modulation (PWM), the average power with a
fixed voltage delivered to the motor is varied by modulating the time duration of a pulse

described by duty cycle. This drives the motor to change either its position or speed with current
control. Kais the amplifier gain and is denoted as 1 ‘3%’. This amplifier gain is used to scale the

voltage output into the current command, I¢, delivered to the motor. With the microcontroller’s
peak voltage of 3 Volts, the maximum current command is 3 Amps. As a note, the amplifier is
mathematically assumed to be ‘1’ meaning it is “fast” with no loss in the controller output. When

a current command feeds into the motor windings, the torque produced by the brushless motor is
proportional to the current input and is denoted by Kt and has a unit of N'Tm. Then the applied

torque drives the motor to the commanded position while the feedback loop provides the encoder
reading of the motor shaft position, .
3.2 MotorLab System Parameters

The introductory lab exercises are designed for students to identify system parameters
experimentally. Some hardware specific constants require further reading of the manufacturer’s
reference manuals and hardware specification data sheets. The most important parameters for
modeling the dynamic system are in Table 3.1, excerpted from Appendix B. The numeric
constants for the system model used in this thesis are gathered from it. The Table 3.1 below also

contains the motor constants which the students identify during the second lab experiment.
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Table 3.1 MotorLab System Parameters

Value Description
ke O.OSN'Tm Motor Torque Constant
b 3e™®>N-m-s | Viscous Friction Coefficient
Jm | 1.29e kg - m? Total Rotor Inertia
Wcf 300% Speed Filter Cutoff Frequency

3.3 MotorLab Model Development

The motor shown in Figure 3.2 above can be modeled as a continuous time transfer

function. The total inertia of the motor is given below:

Im=J1t+];

Where J; is the rotor inertia from Table 3.1 above and J, is the inertia of the double shaft collar
which is 19g - cm? taken from Appendix B. According to the Newton’s law, the moment of
inertia times the angular acceleration is equal to the sum of the torques which consist of the
motor torque Tm and the friction torque:

I + bo(t) = T, (t) (3.1)

The motor torque is equal to the motor torque constant from Table 3.1 times the motor current:
T (8) = k¢i(t) (3.2)

Now equating (3.1) and (3.2) then taking the Laplace transform to obtain the following:

Jmn(sw(s) — wy) + bw(s) = k.i(s) (3.3)
The time domain solution of (3.3) can be found for some arbitrary initial condition w, and no
input by setting the input current i to zero and solving for the speed:

Jm(sw(s) — wg) + bw(s) = k;i(s) =0
Ums + bw(s) = Jinwo

]mwo
JmS+b

w(s) =
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Wy

b
s+]m

w(s) =

Take the inverse Laplace transform to obtain the following exponential decay model to express

the initial condition motor response:

L Hw(s)} = w(t) = a)oe_%t

To model the speed output from the motor using the current control, the following
transfer function has been obtained by rearranging Equation (3.3):

w(s) ke
i(s) Jms+b

Since the position of the motor is the integral of the velocity, the position output from the motor

(3.4)

is obtained by adding an integrator to Equation (3.4):
0(s) w(s) 1 k;
i(s)  i(s) s JynS%+bs

Equation (3.4) is the speed response model and Equation (3.5) is the position response model in

(3.5)

MBD, specifically for MIL, SIL, and PIL.

Motor position can be measured directly with the incremental encoder. There is no device
on the MotorLab system to measure its motor speed. To be able to operate as a speed control
system, a software differentiation of the motor position is implemented in the microcontroller.
To reduce the noise induced on the speed signal by the discrete nature of the encoder, a low-pass
filter is implemented with the differentiator.

For the implementation of HIL, a block must be added to create the speed signal from the
measured position signal. This will perform the same functionality as the derivative and filter in
the original MotorLab firmware. In the MotorLab firmware the filter was specifically
implemented with a lower frequency bandwidth (300Hz) that could be used to teach the students

about higher-order dynamic effects in control systems. The intention of the MBD system being
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developed in this thesis is to retain the functionality of the original MotorLab system, so the
block that is added must be created in such a way that the lower bandwidth characteristic of the
original system is retained. So, the block that is created must include not only the derivative but
also the filter characteristics. The second order continuous time transfer function for the filter

with a derivative can be described as the following:

(l)f(S) _ (l)cfzs

= 3.6
0(s)  s?2+ 2{wcrs + wer? (3.6)

Where w((s) is the filtered speed output, 8(s) is the measured encoder position input,
and w is the cutoff frequency to filter out large spikes in the speed approximation. Also note

the free s in the numerator for differentiating the position. The natural frequency of the filter,
which is the cutoff frequency, is chosen based on the 10x rule of thumb. This allows the system
to ignore the effects of the high frequency dynamics from the filter itself. It is high enough to
acquire clean signal from the motor but also low enough to help students realize this critical
concept. When the students increase controller gains pushing the magnitude of this closed loop
system closer towards the magnitude of the filter’s open loop poles, or its cutoff frequency, it is
expected to affect the system performance. The direct system outputs with the high frequency
dynamics sometimes are not possible to predict or are complex to model. The effect of high
frequency dynamics will be demonstrated later in Chapter 6 using both the speed and position
responses of motor plant with Equation (3.4) and (3.5) above.

The block for implementing the speed filter is developed as a function in C code. The
continuous time transfer function must be discretized. Discretization is accomplished using

Tustin’s method by setting

N
I
—_

el
N

+

[UnN
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Discretizing (3.6) symbolically results in the following expression:

w(z) 2Tw,%(z% — 1)

0(z) T2w,2z2 + 4T{w,z2 + 422 + 2T?w, 2z — 8z + T2?w,,2 — 4T{w, + 4

With the common z terms factored out in the denominator:

w(z) 2Tw,%(z%2 - 1)

0(z) (T?w,2 + 4Tqw,, + 4)z2 + (2T?w,2 — 8)z + T2w,2 — 4T{w,, + 4

Then the following coefficient can be obtained to simplify (3.7):
(T?wy,? + 4TQw,, + 4)z2
Finally, dividing (3.7) with (3.8) above to find the filter coefficients:

2Tw,,? . 2Tw,?
w(z) T2w,2 + 4T{w, + 4 T2w,2 + 4T{w,, + 4

(3.7)

(3.8)

0(z) 14 2T2w,2 — 8 T2w,2 — 4T{w, + 4

-1
TZw, 2 + 4T¢w, + 42 T

Implementing (3.9) in C code is included in Listing 3.1 below:

TZw,% + 4T({w, + 47

(3.9)

-2

Listing 3.1 Low Pass Filter with a Derivative to get Velocity from Position Measurement

void initLPF(float sampleT, float cutoffFreq, float dampingRatio) {
*

float wn = *cutoffFreq;
float T = sampleT;
float zeta = dampingRatio;

//set filter coefficients

bo = (T*T*wn*wn + 4*zeta*T*wn + 4);

bl = (2*T*T*wn*wn - 8)/bo;

b2 = (T*T*wn*wn - 4*zeta*T*wn + 4)/bo;
a0 = 2*T*wn*wn/bo;

al = 0/bo;

a2 = (-2*T*wn*wn)/bo;

//init previous values
Vk_ 1 = Vk 2 = Pk_1 = Pk_2 = 03

}
float getVelocity(float pos) {
float vel;
vel = a@*pos + al*Pk_1 + a2*Pk_2 - bl*Vk_1 - b2*Vk_2;
// update values
Pk_2=Pk_1; Pk_1=pos; Vk_2=Vk_1; Vk_1=vel;
return vel;
}
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Note the coefficient al is zero because the numerator of (3.9) does not have a z~* term. The
function getVelocity will take position measurement as an input argument and return the filtered
velocity approximation. The verification of speed control using the C code above will be shown

in Chapter 6 along with other response data comparisons using the HIL method.
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Chapter 4 - Software

4.1 MathWorks

MATLAB has become a standard high-level modeling and analysis software for both the
industry and academia. Its capabilities make the software very user friendly when coupled with
Simulink. Simulink provides graphical user interface for simulation and code generation based
on block diagrams. MathWorks Toolboxes such as Simulink Coder, MATLAB Coder, and
Embedded Coder support automated code generation with optimization available [15]. In
combination, they can use Simulink diagrams to produce firmware for specific microcontrollers.
Similarly, hardware support packages provide microcontroller specific add-ons for Simulink and
MATLAB. Once installed, these packages can configure Simulink diagrams to generate code for
the targeted microcontroller to communicate with the host PC during simulation runtime. This is
useful during PIL where the microcontroller computes controller output and the host PC
computes the system response. Simulink labels this proprietary feature as External mode. It
provides graphical representation of the simulation response and allows the user to pause the
simulation and change simulation parameters using the host PC. Although hardware support
packages are free for users with adequate MathWorks licenses, for the typical educational license
there are limitations. The educational license provides some support for the popular Arduino
processors but no support for the more capable Discovery board used in this thesis. These
limitations and workarounds will be evaluated later in Chapter 5.

The following is a summary of all the necessary programs, toolboxes, and additional
hardware support packages from MathWorks.
MathWorks base software with licensing requirement:

e Simulink and MATLAB
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Toolboxes with licensing requirement:
e Simulink Coder and MATLAB Coder
e Embedded Coder
e Control System Toolbox
Required hardware support packages available for free:
e ARM Cortex-M Support from Embedded Coder
e ST Discovery Board Support from Embedded Coder
4.2 STMicroelectronics
In order to support MBD, STMicroelectronics provides software tools that integrate into
MATLAB and Simulink to access the features of their microcontrollers. The following programs
must be downloaded from the vendor’s webpage:
e STM32-MAT/TARGET, STM32CubelDE and STM32CubeMX
STM32-MAT/TARGET is a particular software package developed by
STMicroelectronics to extend the target support for Simulink and MATLAB. This software
comes with prebuilt peripheral driver blocks including but not limited to General Purpose Input
Output (GP10s) and Timers.
STM32CubelDE is an Integrated Development Environment (IDE) based on Eclipse
CDT [16]. This open-source IDE comes with support for the Arm toolchain as well as various
helpful debugging tools such as Serial Wire Debug (SWD) interface based on the Gnu Debugger
(GDB).
STM32CubeMX is a GUI based embedded C code project initialization generator which
incorporates Hardware Abstract Layer (HAL) drivers into the base project [17]. The generated

project file has an extension of .ioc. The generated project file then can be imported into the
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workspace of STM32CubelDE or any other supported IDE such as the IAR Embedded
Workbench or Keil MDK. STM32CubelDE was chosen over these IDEs due to the fact that it is
not a subscription-based product.

Detailed description of the workflow for each of the simulations will be included in the

following chapter.
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Chapter 5 - Code Generation with MBD

The original MotorLab microcontroller’s firmware is a sophisticated custom Real Time
Operating System (RTOS), a modified version of an OS developed for used in Unmanned Aerial
System (UAS) flight controller. The system supports the level of complexity and computational
bandwidth required for flight control systems so it will have more than adequate capacity for the
introductory controls lab exercises. To allow students to continue to use a well performing
controller, the MBD generated firmware must be required to run control loop rates at 10kHz. All
the other peripheral tasks such as data acquisition must be intricately developed to not interfere
with the main control loop rate. Available methods for verifying the system performance will be
explored later in this chapter using HIL and their respective performance and limitations will be
discussed in Chapter 6.

Figure 5.1 and Figure 5.2 captures the major differences between the MIL, SIL, PIL, and
HIL stages of MBD development for MotorLab. The four stages will be described in the
following subsections. The MIL and SIL are simulations performed only on the host PC and do
not require microcontroller. The PIL and HIL stages require both the microcontroller and
sometimes the actual physical system depending on the level of HIL verification. In advanced
industry testing environment, especially in aerospace where HIL testing sometimes can be
difficult, additional industrial grade hardware and software are used to test the plant response in
real-time simulation. These real-time simulation solutions are provided from a partnership
between MathWorks and Speedgoat. Speedgoat is the exclusive hardware manufacturer for
Simulink Real-Time toolbox and supports much higher data bandwidth for detailed simulation in

real-time [18].
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Figure 5.1 MIL and SIL Verification
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Figure 5.2 PIL and HIL Verification

5.1 Model-In-Loop

The very first step in MBD s the realization of the plant model to design a controller.
Figure 5.3 below shows the Simulink model containing two identical system models. It is
modified from the lab exercise #7, where students are taught to construct a system similar to the
MIL phase. The block diagrams in Chapter 3 are used as components of this model. The closed
loop system on top uses a continuous PID controller and the other uses a discrete PID controller.
The two feedback gains named blow and bhigh denote the difference in friction coefficient

values at high and low speed of the motor respectively. This will allow for the model to use a
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higher coefficient of friction at low speed and lower coefficient at high speed. Once the plant
model is created, the controller model can be developed to verify the controllability of the plant.
In the MIL simulation, only the top closed loop system model is required. The continuous PID
controller will drive the simulated system response. This step is to make sure the controller logic

can in fact control the plant model within the desired performance criteria.

Nonlinear Position Control Simulation

PID(s)

Simulation PID

Simulation Position {deg)

Nonlinear Position Control Simulation with SILIPIL @

PIL Pasition (deg)

Fafarenca Input

Figure 5.3 Simulink Block Diagram for MIL, SIL, and PIL

The resulting Simulink data output will be exported back into the MATLAB workspace (to
out.simout) using the export block as shown above. This workspace variable will contain the
time series variable and position reading at each time step and can be used to plot the result. It is
important to record simulation results to compare responses between the other simulations, as
well as the final HIL verification stage. The resulting plots should show very similar responses

between the continuous and discrete controllers driving the same plant model. The comparison
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plots are included in Chapter 6 and note that this step does not require any hardware and can be
done with only the host PC running MathWorks products.
5.2 Software-In-Loop

After verifying the controller and plant model in the MIL step, the next step is to
configure the Simulink diagram to run SIL. The difference between MIL and SIL is that the
former uses the host PC to simulate everything, and the latter uses a microcontroller emulator to
simulate the controller hardware. Figure 5.4 below shows the configuration required for the
model to use ARM Cortex-M3 emulator. Note that the microcontroller on the Discovery board is
an ARM Cortex-M4 based controller, but the emulator for M4 is not yet available with the

hardware implementation package.

* Commonly Used Parameters | = All Parameters |
Seleck Hardware board: lARM Cortex-M3 (QEMU) ']
Solver
Data Import/Export Code Generation system target file: ert.tlc
» Optimization ) N e = ) |
- Diagnostics Device vendor: |ARM Compatible Device type: |ARM Cortex
Hardware Implementation » Device details

Model Referencing
Simulation Target

» Code Generation
» HDL Code Generation Target Hardware Resources

Hardware board settings

Groups CPU Clock (MHz): 100
Clocking
External mode

Figure 5.4 SIL Hardware Configuration

After configuring the Simulink diagram to run in SIL mode, the next step is to generate the
controller block that will contain the C code. As shown in Figure 5.5 below, right click on the

discrete controller block and navigate to the hardware deployment option.
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Subsystem & Model Reference ]
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Format vy N
]
Simulatior Rotate & Fip »
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Locked Library Link »
Signals & Ports ’
fhigh

Linear Analysis v

eg)
Model Adwisar ]

Fixed-Poant Taol fol Simulation with SIL/PIL
C/Cr+ Code » B} Embedded Coder Quick Start

Properties. L=l Deploy this Subsystem to Hardware

Help Export Functions

Generate S-Function

Open Subsystem Repaort

Figure 5.5 SIL/PIL Block Generation Dialog Box

After choosing the deployment option, a new dialog window will open as shown in Figure 5.6.

#4 Build code for Subsystem:Discrete PID Controller - O x ‘
| Pick tunable parameters

ariahle Mame Class Storage Class

|
I Blocks using selected variable
Block Parent

Build ” Cancel H Help ]

Status
Selecttunahle parameters and click Build

Figure 5.6 Build Code Dialog Box

Click on the Build button and when the build process completes, a new Simulink diagram
window opens with the C code controller block as shown in Figure 5.7. Replace the discrete
controller block with this new SIL controller block and run the simulation. Similar to the
previous stage, SIL does not require the actual hardware. Also, note the block is named PIL, but

this is due to Simulink not differentiating the name between SIL and PIL steps. The Simulink
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diagram will run the controller based on the SIL configuration from Figure 5.4 above regardless

of the block name.

% untitled * - Simulink classroom use

SIMULATION DEBUG MODELING FORMAT

Hardware Board |_I‘j

Control Hardware T

STM32F4-Discoveny =
= =SS Panel Settings  Parar

PREPARE

HARDWARE BOARD

untitled

@®

P& untitled

Model Browser

B e

NuPlL v

Discrete PID Condroller

Figure 5.7 PIL Simulink Block

Once again, when the simulation completes make sure to save the simulation response
and exported workspace variable for the analysis.
5.3 Processor-In-Loop

Running the simulation in PIL is similar to SIL from the previous subsection. To deploy
PIL, configure the Simulink diagram to run the controller block outside of host PC with the
hardware select dropdown menu. For this thesis, STM32F4-Discovery is chosen but other
hardware boards are also available depending on which hardware support package is installed.
Repeat the process from Figure 5.5 through Figure 5.7 and replace the SIL controller block with
the new PIL block.

Unlike the SIL stage, it is critical at this point to setup the hardware to have correct
communication between the host PC and microcontroller board. As described in Chapter 2, the
FTDI cables are connected to the designated TX/RX GPIO pins which are configured as shown
in Figure 5.8 from MathWorks webpage [19]. Note the COM port number is arbitrary and will

depend on the port which the FTDI board is connected to.
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& Configuration Parameters: stm32fddiscovery_pil_block/Configuration (Active) — [m] X

Q

Solver Hardware board: |STM32F4-Discovery -

Data Import/Export

Math and Data Types
» Diagnostics Device vendor: | ARM Compatible - | Device type: ARM Cortex =

Code Generation system target file: erttlc

I Hardware Implementation
Model Referencing

Simulation Tarlget Hardware board settings
» Code Generation

» Coverage » Operating system/scheduler

I » Device details

¥ Target hardware resources

Groups
Build options |PIL communication interface: |Serial (USART2) I -
Clocking " “TooNas
e
ADC Common
ADCA
ADC 2 -
o OK Cancel Help Apply
L [" ) FT232R USB UART Properties ot S
| _Geﬂeral: Hardware |
FT232R USB UART
-
Device Functions:
Name Type
¥ USB Senal Converter Universal Se...
(2] USE Seral Port (COM28) 7 Ports (COM ... |

Figure 5.8 PIL Configuration for the Target Hardware

When the run button is clicked, Simulink will build, deploy, and run the simulation in series with
the target microcontroller and manage the data exchange. Observe the exported data back in the
MATLAB workspace and save the response data when the simulation terminates.

When the modified ST-LINK VCP is used instead of the FTDI solution as mentioned in
Chapter 2, the ST-LINK will block until its serial communication task is completed, making the
total simulation time extremely long and impractical. The use of FTDI is also recommended by
MathWorks documentation.

5.4 Hardware-In-Loop
HIL is the final verification step of MBD development cycle. HIL may include the

complete plant setup or be partially made up of simulation models. Factors such as safety, cost,
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time, and size may influence what physical devices may be included or simulated. Several
repetition of HIL may be required with additional physical devices integrating into the system at
each repetition. Following the HIL, further investigation and reiteration back to previous stages
may become necessary as the real-world problems, such as the high frequency dynamics and
nonlinearity, can start to occur. Analysis of the expected occurrence of high frequency dynamics
from Chapter 3 are included in Chapter 6.

In the following subsections, limitations of the software used in the HIL development,
specifically from Simulink and STM32-MAT/TARGET, are introduced and the method
developed to mitigate the said limitation will be presented.

5.4.1 Simulink External Mode

External mode is a feature of the Simulink Coder package. External mode provides the
user with real-time execution of 1/0 driver code blocks while exchanging parameter data
between the host PC and the target microcontroller board. This feature uses a shared memory
interface, enabling users to manipulate signals, such as PID gain values or step input value,
during the simulation runtime. This can be helpful for tuning the controller while observing the

system response. Below is a figure from MathWorks webpage describing External mode.
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Figure 5.9 Excerpt of External Mode from MathWorks Help Center

5.4.2 STM32CubeMX Configuration

The microcontroller on the Discovery board includes several peripherals and components
that can be used in wide range of applications. For example, the Discovery board includes
multiple counters, timers, registers, ADCs and DACs, and communications interfaces. Before the
release of STM32CubeMX, all of the peripheral drivers had to be manually developed using
their reference manual and their Application Programming Interface (API). To ease the burden of
developers manually configuring each microcontroller board, the manufacturer developed
STM32CubeMX that works with Simulink.

STM32CubeMX is an interactive software that supports Simulink as a base hardware
setup tool. In this subsection, the detailed description of C code project initialization using the
STM32CubeMX program is presented. With the help of STM32CubeMX, the hardware target

and its peripherals can be configured as desired. Open STM32CubeMX then navigate to
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ACCESS TO MCU SELECTOR under New Project and find a desired hardware target. Double
clicking on the target selected will bring up Pinout & Configuration tab like Figure 5.10 below.
If a dialog window asking about initialization of every peripheral pin appears, select no. This

will prevent the project from including unnecessary initialization code and keep the project files

streamlined.

® Hoav x a7

GENERATE CODE

STM32F407VGTx
LQFP100

Figure 5.10 STM32CubeMX Pinout & Configuration Tab

The Pinout & Configuration tab will be used to setup required peripherals used for controlling
the MotorLab device. Note the device category pane along the left of Figure 5.10. The first thing
to configure is System Core. Within System Core, select the RCC section and set High Speed
Clock to use Crystal/Ceramic Resonator. This will configure the clock to use the maximum
possible clock frequency for driving peripherals. Other peripherals like Timer settings for
generating PWM and reading encoder counts can be configured within this tab as well. Refer to
Figure 5.10 above to see various GPIO pins and their names which reflect their respective
functions. For example, TIM1 and TIM3 are used to drive PWM signals and count encoder

angles respectively.
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The next step is Clock Configuration. The specific parameter values for the clock
configuration were found by studying the MotorLab device information files and the C-code file
“system_stm32f4xx.c”. This is the setup code that runs in the original MotorLab device which
was created by Dr. Schinstock. The view of the complete Clock Configuration is shown in
Figure 5.11. This will configure the microcontroller to use its maximum clock cycle for

peripheral devices. This maximum clock cycle is 168MHz for the Discovery board.

[ 3 ss2cuben st STM3254 Discoveryioc: SM3ZF 4G STMZF407G-015C1

o x|

|'.\‘Ifﬁ File Window Help \ n [- I 4 {),: ‘1]

Project Manager

Figure 5.11 Project Clock Configuration

Once the configuration is complete and the parameters entered, select GENERATE CODE to
autogenerate the initialization code for the selected peripheral devices. This will generate and
export the project code (with the .ioc extension) to the IDE and toolchain specified under Project
Manager tab. The firmware code that will be generated by Simulink will be appended to this

base C project code.
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5.4.3 STM32-MAT/TARGET Block Set

One of the limitations of Simulink and its External mode is the lack of target support for
STM32 microcontrollers. The hardware support package provided by MathWorks includes only
three microcontroller boards and lacks the ability to configure individual peripherals. To mitigate
this issue, this thesis will make use of another support package from STM called STM32-
MAT/TARGET. It will be used for the HIL verification. This support package provides the users
with more advanced and customizable driver blocks. But the most beneficial feature from
STM32-MAT/TARGET package is that it supports the integration of configuration code file
generated by the STM32CubeMX in the previous subsection. In Figure 5.12 is the STM32

Configuration block and its parameter dialog box.

| [Pa] Block Parameters: STM32_Config X |
| sT M32_Config (mask) (link)

| STM32 Configuration :
Select STM32 .ioc configuration file
or
Start STM32CubeMx configuration tool for
- Selected ioc configuration file
- New ioc configuration file
- Browse to select ioc configuration file to modify

stmazixx AV S
Parameters

STM32 configuration file path
STM32F407VGTx

Configuration file HIL_HAL.ioc Select STM32 configuration file
STMI2_Config Start STM32CubeMx configuration tool

Current ioc file New ioc file Browse for ioc file

Start STM32CubeMx configuration tool

MCU Name

Cancel | | Hep || Apply

Figure 5.12 STM32 Configuration Block and Parameter Dialog Box
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This block configures the Simulink and Simulink Coder to generate source files using the .ioc
file specific to the target hardware. With the Simulink diagram using the STM32-
MAT/TARGET configuration block, the development ecosystem now incorporates Simulink,
STM32CubeMX, and STM32CubelDE. This in essence extends the available target hardware
from three boards that are included in the MathWorks’ support package, to virtually every MCUs
manufactured and supported by STM.

After setting up the hardware target using the block shown in Figure 5.12 above, the next
step is to configure Simulink to use a different system target file. The Configuration Parameters

dialog box within Simulink is shown below in Figure 5.13:

& Configuration Parameters: HIL_HAL/Configuration (Active] - [m] x

Solver Target selection
Data Import/Export
Math and Data Types

» Diagnostics Language: C =
Hardware Implementation
Model Referencing
Simulation Target

» Code Generation

System target file: |stm32.tic Browse...

Description: stm32 (Embedded Target)

Build process
Generate code only
Package code and artifacts Zip file name:
Makefile configuration
Generate makefile
Template makefile: |stm32 tmf

Make command: make_riv

Code generation objectives
Prioritized objectives: Unspecified Set Objectives..

Check model before generating code: | Off ~ | | Check Model..

oK Cancel Help Apply

Figure 5.13 Simulink Target Selection using STM32-MAT/TARGET

The selected system target file with the file extension of .tlc in the figure above is included in the
STM32-MAT/TARGET package. This setup will instruct Simulink Coder to compile the block

diagram and generate code using stm32.tlc to the target the hardware specified by the
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configuration block. After the system target file has been configured, the next step is to specify
the installed path of STM32CubeMX. As shown in Figure 5.14 below, STM32CubeMx Path
update box should be checked. This will search for a directory containing the software and

autofill the empty installation path box.

& Configuration Parameters: HIL_HAL/Configuration (Active] - [m] x

Q
Salver +| Download Application

Data Import/Export
Math and Data Types
» Diagnostics STM32CubeMx installation path: CAST\STM32CubeMX

+| STM32CubeMx Path update

Hardware Implementation Installed Full Path: |C\MATLAB\STM32-MAT\STM32
Model Referencing
Simulation Target

¥ Code Generation Model configuration (ioc) Full Path: | \HIL_HAL ioc

Update installed path

Optimization | Interrupt Handler Optimization
Report

Comments

Identifiers

Custom Code

Interface

Code Style

Verification

Templates

Code Placement

Data Type Replacement
STM32 Options

STM32 Project Files

oK Cancel Help Apply

Figure 5.14 STM32 Options for STM32CubeMX Installation Path

The last step of configuring the Simulink diagram for External mode is to set the
verification interface method. Navigate to Interface under Code Generation within Configuration
Parameters dialog box. Select External mode as highlighted in Figure 5.15 below. Also note that
inside the Interface section, there are other options such as External mode configuration to setup
communication port, but this will be ignored during the build as described in the following

subsection as a bug.
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- ;
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Templates
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Transport layer: stm32_serial ~ | MEX-file name: ext_serial_win32_comm
MEX-file arguments: |0,1,115200,10

Static memory allocation

OK Cancel Help Apply

Figure 5.15 Selection of Verification Interface

Now the Simulink diagram is configured to be verified using External mode along with the
hardware in real-time as the HIL.
5.4.4 Limitations of STM32-MAT/TARGET

At the time of the development, an existing bug in the system prevents the program from

launching STM32CubelDE at the end of the code generation in External mode.

¥4 Diagnostic Viewer — [} X
Diagnostics

= DG BE B3 DR ®- @
HIL_EXT

+ Diagnostics
5:22 PM

Launcher: startApplication()}: error with getApplicationExecutable()

Component. Simulink | Category: Model error

rrerre |

Figure 5.16 The Diagnostics Window with the Error Message

To bypass this bug, the Build button under DEPLOYMENT should be used instead of Build,

Deploy & Start as shown in Figure 5.17.
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Figure 5.17 Build Button

Refer to Figure 5.18. When the build is initiated, a series of dialog windows will appear to
configure the host PC COM port where the FTDI converter is connected and to select IDE. This

will also override any values set within Figure 5.15.

‘Set PC COM Port for External Mode settings and press continue. Select USART Saloct IDE for Code Ganarator of 8 TMI2CUBEMX
and press continue.

Rxport Paa Heap Size (62)

........

(((((

Figure 5.18 External Mode Dialog Windows

When the build completes, the generated project can be opened using the IDE selected with
STM32CubeMX in the previous step. Run the debugger within the IDE, then open External
Mode Control Panel from the Simulink diagram toolbar. While the debugger is running in the

IDE, the hardware can be connected to the Simulink diagram using Connect button as shown in

Figure 5.19.
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Figure 5.19 External Mode Control Panel

The method described in this subsection bypasses the error message shown in Figure 5.16 and
connect to the hardware while communicating in real-time using External mode. The complete
Simulink diagram for the motor control apparatus utilizing the STM32-MAT/TARGET,
MATLAB, and Simulink block sets and detailed view of subsystems is shown in Figure 5.20 and

Figure 5.21 respectively.
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Figure 5.21 Timer Blocks for PWM and Encoder Subsystems

At this point of the development, the microcontroller can exchange data with the host PC to edit
parameters of the motor controller to test and verify the system response. However, as soon as

the data acquisition block is implemented within the diagram, running the simulation in External
mode becomes impractical. The increase in required bandwidth for data acquisition is too much
when added on top of the External mode’s overhead. The low-cost microcontroller board cannot

physically handle the required data transmission rate. For instance, when External mode is used
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to interact with the hardware in real-time while transferring velocity data back to the host PC, the
control loop will deviate from its fixed loop frequency of 10kHz. This results in instability of the
motor control. The physical setup of measurement is shown in Figure 5.22. The measured

abnormal control loop frequency is shown in Figure 5.23.

Figure 5.23 Abnormality in Control Loop Frequency
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This problem arises from the generated External mode source code that utilizes interrupt-based
communication between the hardware and host PC. The affected speed control plot is shown in
Figure 5.24 below and is identified to occur near the same interval.

Speed Control with Kp=0.0008
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0 . . . . . . . .
] 0.5 1 1.5 2 25 3 3.5 4
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Figure 5.24 Resulting Plot of Speed Control with External Mode

Also, HAL_UART_RxCpltCallback function is hardcoded within the External mode’s source
code. This is a callback function that is called when the data receive is completed on a UART
port. The MathWorks’ usage of the function, as shown in Listing 5.1, prevents any new custom
blocks to define a new behavior of the callback function during receive interrupts. The
compilation will fail with the multiple definition error. This severely hinders the performance of

the serial communication, and the user is forced to utilize communication with blocking.
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Listing 5.1 STM32SerialRtiostream.c Interrupt Callback Function Snippet

/****************************************************************************

* x *

* Function Name : HAL UART RxCpltCallback

* Description : Rx Transfer completed callbacks.

* Input : UART handle

hkhkkhk kA hkhhhkhkhhhkhhkhAhhhkhhkhhhhhkhkhAhhhkhkhkhAhhhhkhkhhhhhkhAhrhhkkhkkhkhkhhhhkdhkhAhrhrhkkhk kb hkhkhkhk Ak hhkkhkkhxk
**/

void HAL UART RxCpltCallback (UART HandleTypeDef * huart)

{
HAL StatusTypeDef status;

/* Increment pointer on receive buffer. */
ptSet++;

g;RiSiifment number of receive char. */

Another issue coupled with the External mode code is the usage of HAL functions by
STM32-MAT/TARGET peripheral driver blocks. When the debugger first initializes the project
before connecting to the Simulink diagram, the CCR value within the register viewer is observed
to be at an arbitrary value instead of zero. This is undesirable as the CCR register is responsible
for the PWM generation. It will result in indeterministic behavior, and the system response will
be random. The last bug observed within the Simulink diagram using External mode is the usage
of dashboard blocks. To make the simulation more user friendly, implementing visual blocks
without complex signal lines can be beneficial in contrast to the diagram shown in Figure 5.20
above. But when the diagram is running, either the dashboard blocks do not update or disappear,
giving no control of the device in real-time.

5.4.5 Workarounds Using STM32-MAT/TARGET

To keep the integrity of MBD approach with user friendliness from start-to-end
development cycle and to avoid students from having to debug code manually, Simulink
External mode will not be employed for HIL verification. Instead, a USB serial communication
protocol will be developed to allow students to interact with the hardware in real-time. This
approach will alleviate the bandwidth issue as well as establishing a simple and swift connection

with the microcontroller. Thus, making it an efficient method for the hardware testing in HIL.
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To enable a serial communication protocol over the micro-USB port, STM’s USB Device
middleware will be used to implement USB OTG FS. Once the firmware is flashed, the
Discovery board only requires the micro-USB for data acquisition. This simpler connectivity
also makes it a desirable approach to hardware testing without cluttering up the apparatus with
additional wiring. In contrast, FTDI converter requires minimum of three wires and a USB cable.
Listing 5.2 below shows the transmit function that will send string data with a length of 2048
lines. Each string contains time, position, velocity, and the current measured from the amplifier.

Listing 5.2 USB OTG FS Transmit Function

for (uintl6 t i=0; i < ; i++) { // send over the float data
__disable irqg();
snprintf (strBuffer, , "t:%0.3f|p:%0.3f|v:%0.4fla:%0.3£|",

data[i].floatVals[0],data[i].floatvVals[1],
data[i].floatVals[?],data[i].floatVals[3]);
__enable irqg();
while (CDC Transmit FS((void¥*)strBuffer, sizeof(strBuffer)));
}

return;
To use the custom source code files within the Simulink context, MATLAB System Block can
be implemented. MATLAB System Block is like an interpreter between the two programming
languages. It will translate C functions to be used within Simulink’s code generation. Listing 5.3
is a snippet of the MATLAB System Block source code. It is a template file that can be modified
to fit the use. The MATLAB function coder.cinclude() is used to include the header file during
its initialization as the function name suggests. Then, another MATLAB function coder.ceval() is
used to call the C function in the main control loop. The copyStr function contains the code
snippet in Listing 5.2. Additional variable names such as posMeasured are the input arguments to

the function.
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Listing 5.3 MATLAB System Source Block
methods (Access=protected)
function setupImpl (obj)
if coder.target ('Rtw')
% Call C-function implementing device initialization
coder.cinclude ('ReceiveTransmit.h');
else
% Place simulation setup code here
end
end
function stepImpl (obj,posMeasured,velMeasured,currentMeasured)
if coder.target ('Rtw'")
% Call C-function implementing device output
coder.ceval ('copyStr',posMeasured,velMeasured,currentMeasured) ;
else
% Place simulation output code here
end

end
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Chapter 6 - HIL Verification and Analysis

This chapter will cover a few lab exercises to compare the results and performance

between the original MotorLab and the MBD deployed embedded controller. Figure 6.1 below

depicts the full HIL Simulink diagram developed for this thesis.

stmazen BFF

STM3IZFA0TVGTX

§TM32_Config

Kp

u P Analog Out

Pos and Vel Measure

Measurad Position — Pog

Measured Speed Vil

Measured Vel

USART RX

Figure 6.1 HIL Simulink Diagram

Amp Enable

Starting from the left, the blue block is the target hardware configuration block. Below that is the

communication-receive block. It will listen to the host PC’s commands such as PID gains or

what type of input wave to be used. Next block is the PID subsystem. It has an additional input

parameter which is the input wave magnitude. Following the PID is PWM Analog Out block. As

the name suggests, this block sends the PWM signal to the amplifier. Note there is no signal

coming out of the block. This is because the feedback sensor is the encoder, which is the next

block. Encoder block will read encoder counts to measure the position of the motor. The position

values are also used to calculate the speed using the low pass filter inside. The next block named

Feedback Mode Selector is used to send back either the position or velocity depending on the

controller mode. The last two are the communication-transmit and Amp Enable blocks. The
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communication-transmit block will send the data back to the host PC when the transmit buffer is
full. More details on the data acquisition will be covered in the following subsection.

Shown in Figure 6.2 below highlighted in red is the control loop timing verification using
an oscilloscope. Comparing the measured frequency to Figure 5.23 in the previous chapter, the

final embedded controller developed by this thesis shows a uniform interval at 10kHz.

r

Tektronix BS 10328 | m Mt N L 1
“ . d A o u‘
{ of i 9 s % i

Figure 6.2 Oscilloscope reading of GP1O pin at 10kHz

6.1 Data Acquisition

Table 6.1 below shows the structure of the incoming data stream from the
microcontroller. The Command value will depend on the controller mode. The rest is always sent
from the microcontroller to be used for analysis.

Table 6.1 Data Acquisition Stream Format

Column 1 2 3 4 5
Description | Time | Command | Motor Position | Motor Speed | Motor Current
6. (deg),
Variable |t (sec) | w, (rpm), 6 (deg) w (rpm) i (amp)
i (amp)

49



6.2 Velocity Control

As introduced in Chapters 3 and 5, the high frequency dynamics affecting the system will
be discussed using the speed control responses. Refer to Figure 6.4 below. The legend name HIL
denotes the embedded controller generated from the MBD, Nominal model is from the
MATLAB simulation code without the low pass filter, and High Freq. Model from the same
MATLAB simulation but with the low pass filter added.

The nominal plant is described as the following from Equation (3.4) where k; is the
motor torque constant, k- is the conversion from radian to degree, and k,.; is the output

conversion to RPM:

_ kikarkrg
Gsystem = J.s+b
m

Multiplying the above equation with a proportional controller G, = K,, = 0.0032 ;f%, the first

order closed loop system response can be obtained using the MATLAB syntax as shown below:

Listing 6.1 Nominal Closed Loop System Response
Tnominal = feedback(kp*Gs, 1);
For the higher order system response with the low pass filter, the following equation is used:
2

(A)Cf
5%+ 2{wers + wep?

th =
Similar to the nominal response, the closed loop response is obtained:

Listing 6.2 High Frequency Closed Loop System Response

Thf = feedback (kp*Ghf*Gs, 1);
For the actual system response using the embedded controller, the GUI based on Simulink
function blocks and various dashboard blocks are used as shown in Figure 6.3 below. Users can

edit various parameters to observe and collect system output data.
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Figure 6.3 HIL Graphical User Interface

The HIL GUI is developed to reflect the current MotorlabGUI parameters in order to offer
students the same required functionality to conduct lab exercises. The resulting plot of a speed

control using a specific Kp gain is shown below in Figure 6.4.
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Figure 6.4 High Frequency Dynamics in the System Responses
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As the plot above clearly shows, there are some differences between the plots induced from the

high frequency dynamics of the filter. The filter’s cutoff frequency, or its natural frequency, is

set at 300722, Applying the 10x rule of thumb, this gives the upper limit for the closed loop poles
N

of the system at around 30%. With a proportional gain of 0.0032 ’;Pi;, the magnitude of the

closed loop pole from the nominal model is 120.8%, and is close to the real pole of the system

with the filter at -136.1%. These are well over the rule of thumb limit and resulted in the
oscillations with noticeable amplitude. Moreover, the other two poles from the model with the
filter have a magnitude of 282.6% which is much closer to the magnitude of the real pole and

therefore the complex poles affect the system response noticeably. And further deviation can be
observed from the actual system response. This phenomenon will be observed again in position
control using the embedded controller.

6.3 Position Control with P Controller
When a proportional gain is 0.01’2%’;, the responses between the HIL and MotorlabGUI

are the same, but the difference between the two and the MIL, SIL, and PIL responses can be
recognized as shown in Figure 6.5 and Figure 6.6 below. This is due to the high frequency

dynamics or other non-linear dynamics that are not modeled in the simulations as Kp gets higher.

To compare this higher Kp to the lower Kp of 0.005%, the noticeable difference in plot

vanishes.
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. Position Control with Kp=0.01
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Figure 6.5 Proportional Position Control with Higher Gain

The above figure is the position control comparison between the MotorLab device and
the HIL response. To minimize the variables in system response, same motor was used with
different microcontrollers.

Figure 6.6 below compares the same system response using the two different MBD steps,
PIL and HIL. The PIL utilizes microcontroller in loop with the host PC to run the embedded
controller with the simulated plant. In contrast, the HIL is a full verification method with the

actual plant and the embedded controller.
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400 T T T

PIL
350 ‘ HIL| |

300 N |

)
N
(o))
o

T
1

Position (deg
—_ —_ N
o (&) o
o o o
T T T
\
)
1 1

(o)
o
T
—
1

Time (sec)

Figure 6.6 PIL vs. HIL Proportional Control Comparison

The visible difference closely resembles the speed response plot above when the high frequency
dynamics start to affect the system, but the frequency of the oscillations are in phase.

In order to confirm that the higher gain is affecting the system response, the following

Amp

figures were obtained using a lower gain of 0.005 deg”
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Position Control with Kp=0.005
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Figure 6.7 Comparison Between the MBD Simulations and the HIL Verification

Unlike the response resulting from the higher gain, the system response above shows well
matching plots. This can be expected as the gain gets lower, the magnitude of higher order poles
gets further away from the magnitude of the real pole. The following Figure 6.8 and Figure 6.9

are comparisons between the various MBD stages.
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Position Control with Kp=0.005
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Figure 6.8 Comparison Between the MBD Simulations and the HIL Verification

Figure 6.8 above replaces the SIL response from Figure 6.7 with the PIL response. Again, the
plots appear to be a good match with the HIL response slightly larger in amplitude. And the final

MBD response figure below is the pure simulation without the actual motor in the loop.
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Position Control with Kp=0.005
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Figure 6.9 Comparison Between the MBD Simulations

6.4 Position Control with PD Controller

The lab #6 students conduct is the utilization of Proportional-Derivative controller. This
lab is designed to teach students the limitations of using the square wave input to test systems.
Up until this lab, students are only required to use step input to the system. To establish a diverse
understanding of control theory coupled with the limitations of physical system, students learn
about the output saturation and why different input wave types are necessary. For example,

suppose a step input of 2000 deg is used with a PD controller as the following:

6. = 2000deg
amp - sec

Gc(s) = K, + Kys

57



With the initial error of 2000 deg at the first timestep, then the output from the controller
becomes:
e(t) = 2000deg

2000
L{e(®)}=E(s) = —

K, - 2000
Ie(s) = E(s) - Ge(s) = ————+ Kq - 2000

Then, taking the inverse Laplace transform to get the step and impulse functions:
L Y{.(s)} = K, - 2000 - u(t) + K, - 2000 - 5(t)

Here, impulse function has an area of K; - 2000 = 0.2amp - sec. Since the embedded controller
has a finite step size of 10kHz, or 0.0001sec, this suggests that the amplifier needs to output
20,000,000 amp or extremely small time steps to correct the initial error. For obvious reasons,
this is not feasible for lab exercises or even for the most industrial applications.

This control problem highlights that the actual energy which drives the plant is much
smaller than predicted by the linear model due to the amplifier saturation at £3amps. To mitigate
this inadequate PD controller response, triangle input wave function will be implemented. It is

also a good idea to test systems with various input signals, not just step inputs.
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Position Control with Kp=0.0007, Kd=0.00007
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Figure 6.10 Smaller PD Gains with Large Command Input

Figure 6.10 above shows the system response when triangle input wave is used against lower PD
controller gains. There exists a small deviation from the command tracking, but it is sufficient in
correcting the error signal. In contrast, Figure 6.11 below shows the system response with higher
PD gains. Comparing the two different PD controllers, the higher PD gains show better tracking

to the input command.
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Position Control with Kp=0.01, Kd=0.001
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Figure 6.11 Higher PD Gains with Large Command Input

Finally, the embedded controller produced from the MBD is compared to the original
MotorLab device using the same gains as Figure 6.11. Figure 6.12 below shows very closely
matching plots and Figure 6.13 shows a zoomed in window of Figure 6.12. Note the difference is

miniscule, showing that the MBD deployed control system matches well with the current device.
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Figure 6.12 HIL vs. MotorlabGUI with Higher PD Gains
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Figure 6.13 Closer Look at Figure 6.12
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Chapter 7 - Additional MBD Applications

As stated in the previous chapter, taking advantage of the software used in this thesis can
assist with extending the MBD approach in embedded control applications. This chapter will
introduce the basic MBD deployment of an embedded control using the Arduino based robot car.
The robot car is equipped with a distance measuring sensor as its feedback signal. Below is the
hardware image. It is composed of a basic motor driver, Arduino Uno, and distance sensor. The
distance sensor has ultrasonic transmitter and receiver. The distance is calculated by measuring
the time it takes for the sound to reflect from an object back to the receiver. The range of

distance it can measure is between 2 cm to 400 cm.

Figure 7.1 Arduino Robot Car with Ultrasonic Distance Sensor

The Simulink diagram is shown below in Figure 7.2. For this Arduino target board to
work with Simulink, additional hardware support packages must be downloaded. To note, there

are many communities and forums dedicated to setting up Arduino with Simulink. This can be
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helpful with troubleshooting the setup. Unfortunately, this was not the case for the Discovery

board since it requires steeper learning curve when compared to Arduino boards.
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Figure 7.2 Visual Deployment of Embedded Controller using Arduino Uno

The diagram is designed to control the distance in front of the robot car, which is a simple
position control application. This was chosen because the concept of control system can be more
obvious when it relates to something students can grasp. In this case, an overly simplified
adaptive cruise control using PID. The block named Target Distance is the reference input by a
user. The vehicle will try to keep this distance. It is measured in meter. The block named Motor
Driver is a Simulink subsystem which can help with simplifying the topmost view of the
diagram. The detailed view of the subsystem block is shown in Figure 7.3 below. Additional
logic was required to drive the system forward or backward depending on the distance sensor

readings.
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Figure 7.3 Motor Driver Subsystem

As this vehicle was inexpensive and intended for only visualizing the concept of PID
controller, there is room for performance improvements such as adding wheel encoders. Wheel
encoders can be used as an additional feedback sensor, making the system more controllable. But
nevertheless, the entire system costs less than $30 and is capable of integrating a basic MBD
development. It is also modular where students can take it around and work with it at their own

leisure.
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Chapter 8 - Conclusions

The main objective of this thesis was to demonstrate the application of MBD to expand
and advance the current motor control apparatus. This was achieved by adopting the modern
methodology used in embedded controller development. The primary goal of this research was to
develop an easy-to-use graphical interface for developing and verifying the embedded control
system for students. This would allow students to drag and drop proper blocks within Simulink
to design and implement an embedded controller. For the verification using HIL, a few example
lab exercises from the introductory control theory course were examined and analyzed using the
rapidly deployed embedded controller based on MBD. The degree to which the newly created
controller matched the performance of the original device was very encouraging. Furthermore,
an additional inexpensive MBD application based on the Arduino robot car was briefly
introduced.

Many difficulties were encountered trying to minimize the cost associated with the MBD
implementation. The free to use software had limited documentation or resources were not
available from the supplier for it to function properly. Thus, to integrate the MBD required a
very lengthy process of trial and error for some parts of the program to work. Other parts had to
be completely redeveloped and substituted for the MBD to function as intended.

When the rapidly deployed embedded controller was compared to the original MotorLab
device, the difference in performance was insignificant and satisfactory. The operating procedure
is very similar to that used by the MotorLab software, making the embedded controller familiar
to instructors and students. Applying the researched method of creating new blocksets to more
complex systems, a new course on teaching students the MBD process could be created. The

outcome of the course could include the MBD designing process, testing with hardware, analysis
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of auto-generated firmware, and the controller tuning process to drive the system more
efficiently.

Realistically, the solution developed by combining many tools from marginally supported
sources create a significant problem for continued use. Maintaining a functioning system in the
face of uncoordinated software updates and the need to update locally created tools to retain
compatibility would require support from well-trained individuals. The elegant option is to
acquire the more extensive MathWorks tool set that are designed specifically for MBD . The
problems confronted in this thesis highlight many of the basic issues associated with
establishing, maintaining, and operating effective teaching laboratories in an educational

environment.
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Appendix A - MES70 MotorLab Laboratory Assignments

Laboratory #3
In this lab you will compare a
proportional controller for the Motorlab
position control to a proportional-
derivative (PD) controller.
Overview of laboratory procedure ! :
1. In preparation for the lab find the m ’;- ‘ Cm ‘ Cﬁ ::- 4":..;';'.."' ﬂ
closed-loop TF (CLTF) given ! i
below. Also, go through the m-file
code provided, reading the
comments and understanding how
it relates to the procedure.
2. Obtain data forthesﬁep responses. J = motor and double collar inertia (from motor 1ab handout)
3. Leam from the results by 6. ()= &) __ 1 b = viscous friction coeficient (estimated to be 3x10~° N-m-sirad)
completing the Lab 3 Narrative in "UTE) K ebs &; = motor torgue constant (from motar lb handout)
Canvas. G, (s)= K + K 45, PD controller kg -ISO‘/x(md')-angu!xposdmmitcmm
and CLTF T;(s) =1 (awplifier assumed "fast")
Closed loop position control 8(s) (K g5+ Ky Ky == Propotiomal gaint of controller
system model (a TF). 6,6) T KT+ (b+ K ghky S+ K bk, —u —derivativegainof controller
L4 8,(t) = angular position (measured in radian)
6(t) = angular position (measwred in degrees)
6(s) _ (Kys+ Kp)k,kd,.

() J52+(b+ Kakikg s+ K ks

Finding the closed—loop transfer function (CLTF)

Using the block diagram complete the equations below. Each blank represents one block. Then by back substituting
to eliminate variables, starting from the bottom, obtain an equation with #(s) and 8, (s) . Use this to find the CLTF.
E(s)=6.(s)-6(s)

I(s)=___E(s)
I(5)= Ic(s)
T()=____I(s)
6r(s)= I(s)
0s)=______6,)

Generating data for the closed-loop step response of a proportional controller and a PD controller
e  Use a proportional controller with K, =0.01(4Amp /deg) and a PD controller with X, =0.1(Amp / deg) and

K4 =0.001(Amp-s/deg).

¢ Use a square wave with a magnitude of 200 degrees to generate the experimental step response data. Store the
data in “stepdata”, for the proportional controller and “stepdataPD” for the PD controller. Set the Data
Collection - Sample Rate to 500Hz, then press the Calculate Step Response Timing button. Notice the
waveform frequency automatically changes.

e Make sure that you get a nice/complete step response by using “mlposplots()” on the data right after you take it.

Things to turn in.
e Plot 1 — compare the theoretical and experimental step responses for the proportional controller.

e Plot 2 — compare the experimental step responses (not the models/theoretical) for the proportional and PD
controllers.

*  Your development of the CLTF.
+ Don’t forget to do the lab narrative on canvas - individually
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Lab 3

Setup & Constants

Run the riab first to populate the "stepdata” and "stepdataPD" variables

% You need add in kt and 3 from the last lab

b= 3e-5; % N-m-s/rad - nominal viscous friction
kdr=188/pi; % deg/rad
Motor model fer functi P

New commands: tf{) and step()

% First step has no kd (derivative) - just kp (porportional)
kp = @.01; % proportional controller gain

kd = 0.9; % derivative controller gain

% Construct the transfer function

% Closed loop TF model using the tf([num poly],[den poly]) format
Gel=tf(kt*kdr*[kd kp],[J b+kd*kt*kdr kp*kt*kdr])

% alternative method of constructing transfer functions
s =t s 3
Gcl = kt*kdr*(22%s + 2?) / (3*s~2 + (b+kd*kt*kdr)*s + kp*kt*kdr)

[theta_model,t_model]=step(Gcl); % Generate the *unit* step response of model

% Since the transfer functions we use in ME57@ are linear, we can simply

% multiply the unit step response by a constant to obtain different step

% heights

theta_model = theta_model®???; % scale the response to the real step size

Plot th tical (model) resp. vs real (stepdata) response
t_real=stepdata(:,1); % extract time column of the data matrix
theta_real=stepdata(:,3); % extract angle column of the data matrix

% Plot experimental (real) and Theoretical step responses for Kp=0.81
figure(1)

ploti = plot(t_real,theta_real, t_model,theta_model);
ylabel('Motor Angle (deg)’);

xlabel( Time (sec)’);

title( Actual and Theoretical Step Response for Kp = @.817);
legend( 'Experimental data’, 'Theoretical’);

ploti(1).Color = ‘red’;

ploti(2).cColor = ‘black’;

ploti(2).Linewidth = 2;

ploti(2).Linestyle T3 s

Compare your two experimental results (from stepdata and stepdataPD)

e Extract time and theta from stepdataPD into variables t_realPD and theta_realPD
* Plot both real responses on the same graph - plot(x1.y1. x2,y2, x3.y3, ...... xn,yn)
e There is no theoretical data shown in this plot

Laboratory 3
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Laboratory #5

In Lab #2 we found a linear estimate of the friction in
the motor of the Motorlab system. It was obvious from the
data that there were some nonlinear effects in the friction.
In this lab you will try to capture these nonlinear effects in a
simulation of the system using Simulink. You will use a
model with a high coefficient of friction at low velocity and
lower coefficient at high velocity as shown in the second
figure to the right. Using a simulation of the nonlinear
system you should be able to generate a nonlinear initial
condition response for the velocity of the motor that is very
similar to the experimental data in the first figure.

In other labs you have/will experiment with a position
control system that uses a strictly proportional controller.
Although you will not collect experimental data for this
system in this lab, you will simulate it using your nonlinear
model. In this model you will assume the closed loop
current control system is very fast (i.e. 7;(s)=1).

Intro to Simulink

Simulink is a graphical simulation tool that is a companion
to MATLAB. Your lab instructor will walk you through the
process of building a simple model.

Generating the initial condition response.

The first Simulink diagram given in this handout should be
used to generate a response like that shown in the first
figure. The model in this Simulink diagram is contained in
the file “InitialConditionSimStart.mdl.” This file should run
after you have run the “setup.m” file. However, you will
have to correct one thing (you figure it out) in order for the
linear model to work correctly. With this simulation you
only need to validate that the nonlinear model reproduces
something very similar to the experimental data from the
actual system shown in the first figure. Then you should
move on to the closed loop simulation.

Generating the closed loop position control
responses.

The second Simulink diagram given in this handout should
be used to generate closed loop position control responses.
The model in this Simulink diagram is contained in the file
“PosCntrlSimStart.mdl.” You should finish building the
middle model (the linear model) and the bottom model.
The bottom model should take into account that the actual
Motorlab system will only allow +/- 3 Amps of current to
be commanded to the motor amplifier. USE A
SATURATION BLOCK TO LIMIT THE MOTOR
CURRENT TO +/- 3 AMPS. After you have all three
models working, HAVE YOUR LAB INSTRUCTOR
CHECK THE OUTPUT OF YOUR SIMULINK MODELS.

Laboratory 5

Angular Velocty (rpm)
3 8
8

Actual and Theoretical Response to and IC of -4260 rpm

experimental data
=== theoretical response

0.5 1 15 2 25 3 35
Time (sec)

Input Torque vs. Angular Velocity with Linear and Nonlinear Models

0.01

0.005

-0.005

£

=
%  Data from Motorlab
w= |_inear Model of Friction
Two-piece, Nonlinear Model

*

Frictiot

Slope = best- .

Slope - blow+bhigh
Slope=blow

| | |

-250 0 250 500

24V Supply,
and Motor
Amp with
Current Control

| Motar Closed Mowe

Positon  Position Controller | Cament  Loop Current Curent - Mechanieal yp,
Command Eror T+ Command  Control System  (T0rque) Dynamics  poiion

3 (s) s

09 4 ¢ ‘
Computer
J = motor inertia (from motor lab handout)
o) kk, b = viscous friction cocficient (cstimated to be 3x10°> N-m-sfrad)
)= e = e k, = motor torque constant (from motor lab handout)

G, (s) = K. proportiomlcontroller Ky, = 180"/ (rad) = angular postion unit conversion

andCLTF

(s) _ Kk,
0.(s)  Js* +bs+ K kk,,

Ti(s) =1 (amplifier assumed "fast")
K, = proportional gain of controller
K, = derivative gain of controller
2= K, /Ky =zeroof controller

(1) = angular position (measured in degrees for this problem)
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Then use your closed loop model(s) to generate step responses for the following three StepSizes:

1. StepSize = 200 deg

2. StepSize = 3000 deg

3. StepSize = 9000 deg
Each time you run the Simulink model you should be able to use the “GenStepPlot.m” to generate a plot in
MATLAB to compare the responses of the three different models.

Things to Turn In

e Printout of your Simulink diagram for the closed loop simulation — no plots necessary
e  Lab 5 narrative completed individually
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m-file code

$setup file

%setup file

i=[-0.15 -0.12 -0.09 -0.06 -0.03 0 0.03 0.06 0.09 0.12 0.15]; %vector of
current data

rpm=[-4270 -2150 -1100 -150 -0 0 O 150 1100 2150 4270]; %vector of wvelocity
data

o

krr = 60/2/pi;

kt = 0.05;

T=kt*i;

w=rpm/krr;
w2=[-450:900/100:450] ;

radians/s to rpm

you know this one ;)

convert vector current to torquer
convert rpm to rad/s

90 oo

o

west=[-4000 4000]/krr;
J=1.1le-5;
best=2e-5;
Test=best*west;

o0

friction estimate for linear model
time constant estimate

a0

blow = 1.25e-5; % low friction (higher speed) - nonlinear model
bhigh = 1.75e-2; % high friction (lower speed) - nonlinear model
fsat = 2.5e-3; % Largest torque contribution from bhigh - NL model

clear Test2
for i=1:1length (w2)
fhigh=0.0175*w2 (1) ;
if (fhigh > fsat)
fhigh = fsat;
elseif (fhigh < -fsat)
fhigh = -fsat;
end
Test2(i)=fhigh + blow*w2(i);
end

plot(w,T,'*',west,Test,w2,Test2);

ylabel ('Friction Torque (N-m)');

xlabel ('Angular Velocity (rad/s)'):

title('Input Torque vs. Angular Velocity with Linear and Nonlinear Models');

VIC=-4250/krr; % Initial velocity
kdr = 180/pi; % Degrees to Radians
Kp = 0.01; % controller Kp
StepSize=200;

Imax=3;

%Generate step plots from simulation output
t=simout(:,1); thl=simout(:,2); th2=simout(:,3); th3=simout(:,4); com=simout(:,5);

plot(t,th2,t,thl,t,th3,t,com);

ylabel ('Angular Position (deg)'):

xlabel ('Time (sec)'):

title('Step Response of Linear and Nonlinear Models with StepSize of 3000');
legend('Linear Model', 'Nonlinear Friction','Nonlinear Friction and Current Limit')
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Simulink diagram for IC response

Initial Velocity

Nonlinear Sy stem Angular Velocity (RPM)

Constant
Galnf Gain  Integrator

Gain3

Satration  Gaing
Scope

Linear Initial Velocity Simulation

Uinear Sy stem Anguiar Velocity (RPM)

Congantl  Gaing Integrator2

Gaind Gain7

Gains

Simulink diagram for closed loop response

[ lgraEssis

Siep GaimiS  Gaimi7

Nonlinear Position Control Simulation

o {0

g

To
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Laboratory #7

Introduction

In this lab we will use the velocity
control system in the Motorlab to look at
the concept of "higher frequency
dynamics." This lab should illustratc
there arc always some higher frequency
dynamics that will affect you if you "turn
up the gains" too much. We can ignore
them to a point, but they are there.

Often, we do not have a good model for
them, or even know for surc what is
causing them, but they arc there.

We have a rule of thumb: We can
ignore open loop poles and zeros when
they are more than 10 times larger (in
terms of magnitude, which is the distance
from the origin of the s plane) than the
closed loop poles that result from
ignoring them. You should note it refers
to the effect of open loop poles on the
closed loop system. This is typical in
control system design. We are usually
trying to make predictions or calculations
for the closed loop system using open
loop models.

Collecting Data

! Velocity Measured
i Motor . M Angular
Velocity  Velocity Controller | Current ~ Mechanical o Velocity
Command Error TF ! (Torque) Dynamics s
@,(s) E(s) 1(s)=1.(5) GP () O(s) kyq 23002 s @y, (5)
—0 1 mmt—— = =
: ‘ 52 +2125 +3007 '
L
Computer ‘ f‘]
Mechanical Low Pass Filter
Dynamics Derivative (“High Freq’ Dyn™")
I(s) G, (5) A(s) B () 3002 @,,(8)
\ ) | 5% +2125+3007
f
Nominal Plant High Freq’ Dynamics
Nominal Plant o " o
() Kk J = motorinertia+ doublecollar(1.29x10" kg -m~)
S dr 3
Gp ()= _l—(;i = Jé +’b' b = viscousfriction coeficient(estimatedtobe3x10 > N-m-s/rad
. s k; = motor torque constant(0.05 N-m/A)
o) =20 Kbarked o0t degirad
S Is)  Js+b 4 i e
lrpm £ 2 £
< ks = ——— =angular vdocityunitconversion
Controller 6deg/s
K, =proportiomlgain of controller(A/rpm)
G[(s):Kl, p = PIOP! g : (A/rpm)
6(1)=angularposition(measuredin degby controllen
o(t)=angularspeed(measuredin rpm by controlled

You should collect data for at least four gains, listed in the table below. Use a sample rate of 500 Hz for all the data. For
the first three gains you should collect a step response, utilizing the Calculate Step Response Timing button to get half a wave
cycle for the first three data points. For the last gain we want to capture the unstable growth of the response and will utilize

the below Special Procedure.

Gain,
K Squarc Wave Namc of MATLAB
P (rpm) workspace matrix for data
(units?)
0.0008 1000 datal
0.0016 1000 data2
0.0032 1000 data3
0.008 Use Special datad
Procedure below

Special Procedure:
1. Turn off the amplifier.
2. Set the gain to 0.008.

Table 1: Information for Acquiring Data

3. Change the rpm to 50 rpm in the manual command window.
4. Turn on the amplifier. Then wait one second and save the data to the workspace.
5. Usc mlispecdplots(data4) to plot the data and zoom in on the exponential growth in both speed and current plots.

Laboratory 7
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Laboratory #7

Things to Turn In
¢ Include the three plots for the measured and calculated step response when K, = 0.0008, K, = 0.0016, and

K, =0.0032. These should include three responses, one measured and the two models of the closed loop system.
e Use datatips on the plot for K, =0.0032 to show that the frequency of oscillation and time constant of your

experimental data roughly matches the 2" order pole frequency and time constant returned by the damp () command.
e Include a documented (include units) copy of your MATLAB code.
e Complete the Lab 7 narrative — individually.
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Laboratory #7

Lab 7

Setup & Constants

Include the constants required to construct G, the Nominal Plant, and write the transfer function. Find w,
and {w, from the High Frequency Dynamics transfer function and use them to construct Gy;.

Closed loop pole exploration

figure(1l);
graph_hold = false;
if graph_hold

hold on;
else

clf(1);
end
kp = 0.0002;

Tnominal_slide = feedback(kp*Gs,1); % CL TF for nominal model
Thf_slide = feedback(kp*Ghf*Gs,1); % CL TF for higher order model
[p_ol,z] = pzmap(Ghf*Gs);

[pnominal_slide,z] = pzmap(Tnominal_slide);

[phf_slide,z] = pzmap(Thf_slide);

pl = plot(real(p_ol), imag(p_ol), ‘og’,
real(pnominal_slide),imag(pnominal_slide), ‘+r',
real(phf_slide),imag(phf_slide), '*b"); % Nominal model
set(pl, 'markerfacecolor',['g" ; ; 1);

s=sprintf('Open Loop Poles, o \n');

s=[s sprintf('Poles of nominal CL system, + \n')];
s=[s sprintf('and higher order CL system, * \n')];
title(s);

xlim([-500 3e0]);

ylim([-400 400]);

grid on;

disp(real(pnominal_slide));

disp("");

disp(real(phf_slide));
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Laboratory #7

Determine poles and zeros for each %,

kp=[ ©.0008 0.0016 0.0032 0.008]; % array of kp gains used

for i=1:length(kp) % cycle through the gains
Tnominal(i) = feedback(kp(i)*Gs,1); % CL TF for nominal model
Thf(i) = feedback(kp(i)*Ghf*Gs,1); % CL TF for higher order model

1 = sprintf('----- %d ----- ',kp(i)); % string generated from current kp value
disp(l); % show me the string!
damp(Tnominal(i)) % show the poles in polar form
damp(Thf(i)) % A
end
Plots

Step response for &, = 0. 0008

EEinalS= N3

[speedN,timeN]=step(1000*Tnominal(1), tfinal); % step response of nominal model
[speedHF, timeHF ]=step(1000*Thf(1), tfinal); % ""  of higher order model
speed= datal(:,5); %extract the first speed column of the data matrix
time=datal(:,1); %extract the time column of the data matrix

figure(2);

plot(timeN, speedN,timeHF, speedHF,time, speed);
title('Plot of CL step response for Kp=0.0008');
legend('model with nominal dynamics', ‘model with hi freq
dynamics"', 'actual’, 'location’, 'southeast');

xlabel('time (sec)'); ylabel('speed (rpm)');

Step response for k, = 0.0016

tfinal = .3;

[speedN,timeN]=step(1000*Tnominal(2), tfinal); % step response of nominal model
[speedHF, timeHF ]=step(1000*Thf(2), tfinal); % ""  of higher order model
speed= data2(:,5); %extract the first speed column of the data matrix
time=data2(:,1); %extract the time column of the data matrix

figure(3);

plot(timeN, speedN, timeHF, speedHF,time, speed);
title('Plot of CL step response for Kp=0.0016");

legend( 'model with nominal dynamics', 'model with hi freq
dynamics', 'actual’, 'location’, 'southeast');
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Laboratory #7

xlabel('time (sec)'); ylabel('speed (rpm)');

Step response for k, = 0.0032

Efinal =063

[speedN,timeN]=step(1000*Tnominal(3), tfinal); % step response of nominal model
[ speedHF, timeHF ]=step(1000*Thf(3), tfinal); % ""  of higher order model
speed= data3(:,5); %extract the first speed column of the data matrix
time=data3(:,1); %extract the time column of the data matrix

h = figure(4);

p = plot(timeN, speedN,timeHF, speedHF,time,speed);
title('Plot of CL step response for Kp=0.0032');
legend('model with nominal dynamics', 'model with hi freq
dynamics', 'actual', 'location’', 'southeast');

xlabel('time (sec)'); ylabel('speed (rpm)');

Laboratory 7 ME 570 Labs pg 5
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Laboratory #8 \\ A
S i -
Ry 24V Supply,
. . o
In previous labs you experimented !Jl T ji‘m;“:"“;f
with a proportional (P) controller for @ | controller Current Control
position control in the Motorlab. We¢ b

found that as we raised the gain of the

P controller that we could obtain - . . | Motor Closed (‘f:;’r':;‘ PR
somewhat better control of the EE R e e R
system, but that the improvement was =oor iT(6 ;

limited. We could only raise the gain O (i*;OL(A) Ti(s) £(s) | Gp(s) l i’

so much before the response became T 3

very oscillatory. Furthermore, the

settling time could not be improved. Computer |

Now you are to compare the 0s) kky J = motor inertia and collar (from motor lab handout)
proporlional controller to a Gm(s)= m = Js£ +’bs b = viscous friction coeficient (estimated to be 3x10 SN m-s/rad)

proportional-derivative (PD)
controller. The PD controller adds a
zero to the open-loop TF, changing
the shape of the root locus. To obtain
experimental data you should use the |=Ka(s+K,/Kq)=Ky(s+2)
following three controllers.

G.(s)= KP’ proportional controller k, = motor torque constant (from motor lab handout)

and kg =1 8()“//! (rad) = angular postion unit conversion
G.(5)= Kp +Ks,PD controller T;(s) =1 (amplifier assumed "fast")

K b= proportional gain of controller
K ; = derivative gain of controller

z =K ,/K; =magnitude of controller zero

O(t) = angular position (measured in degrees for this problem)

Three controllers for experimental data
1. P controller, K, =0.001 Amp/deg

2. PD controller, K; =0.00007 Amp-s/deg,z=10rad/s
3. PD controller, K; =0.001 Amp-s/deg,z=10rad/s

Obtaining Data From The Motorlab

One problem with real systems (rather than mathematical models) is saturation. When we use a derivative term in
the controller, a step input will saturate the output of the controller in a real system. Therefore, we often do not get a
good match between experimental results and theoretical models for a step response when derivative control is used.
We will discuss this in the lab preparation. DO NOT LET THIS DISCOURAGE YOU FROM USING
DERIVATIVE CONTROL. It can be very important in obtaining an optimal closed-loop system. Remember that
step inputs are usually used as test signals — not as the actual commands in the operation of real systems such as
machine tools, aircraft, etc. Because of this problem we will be using a triangle wave for the test command in this
lab. You should obtain the triangle wave response for the three different position control systems. Use a
triangle wave with amplitude of 2000 degrees and a wave frequency of 0.5 Hz. You should obtain three
different plots.

Using MATLAB — Complete Lab8Start.mix first

Using the “Sisotool” you should play with the systems to get a feel for the responses as the gains change. You
should also use the Sisotool to get a feel for root locus. We will do an introduction to the Sisotool in lab.
Another related MATLAB function is “rlocus” — try it.

e In the Sisotool, in the MATLAB workspace, or in the m-file, you should find the closed-loop poles and zeros of
each of the three systems.
e Outside of the Sisotool, you should also obtain a single step response plot with the response of all three systems.

By hand, using the basic rules, you should draw two root locus plots.

e One plot should be for the P controller.

e The other should be for the PD controller with the zero at -10.

e On the plots clearly indicate the closed loop poles for the three different systems. (i.e. Where on the root locus
are you?)

Laboratory 8 ME 570 Labs pg 1
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Things to Turn In
A plot with all three step responses from the models.

The triangle wave responses (use mlposplots or add code to the m-file).
The root locus plots (by hand).

Closed-loop poles and zeros for all three systems.

M-file with comments

Narrative on Canvas - Individually

Lab 8

Position control with PD controllers

Setup & Constants

These constants are duplicated from lab 7 since at many of you will have difficulty finding them. Not
all of them will be used. You will need to recall these for the rest of the semester.

s = tf('s');

kt = 0.05; % N-m/A

i = 1.1le-5 + 9.19%e-5; % kg-m”2 or N-m-s”2/rad
b = 3e-5; % N-m-s/rad

kdr = 180/pi; % deg/rad

krd = 1/6; % rpm/(deg/s)

Transfer functions

Create the plant transfer function, G,,, and create the three required controllers - G.;, G, and G
using the form G, = K, + K, * s. Study the equation block in the handout carefully to discover how
to manipulate a given Kp and z into Kp and Kd. Then, apply feedback to close the loop on the three
open loop systems, G, * G, assigning them to 7. 75, and 75,

Step responses and plotting

Generate a 1 second step response for each closed loop system, 7', and keep the resulting 6 and
associated time vectors in variables named th, and 7,. Plot the three responses on the same figure.
Use the help command if you have forgotten how to use step() or plot().

Laboratory 8 ME 570 Labs pg 2
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Example C function for PID control

HW float simple PTD controller(float error, float de
— FIQN {

-a time)

float output, Kp=1, Ki=2, Kd-3, max output=100;

static float integral, last_error; // static vars for memory
integral = integral + Ki*error*delta time; // numerical integration
if (integral < -max_output) integral = -max_ ouput; // anti-integral windup
if (integral > max_output) integral = max_ouput; // anti-integral windup
output = Kp*error + integral + Kd*(error-error last)/delta_time; //PID
error_ last = error; // remember for next call

return (output) ;

Laboratory 8 ME 570 Labs pg 3

14



Appendix B — MES570 MotorLab Hardware Specifications

“Motorlab” Dynamics and Controls System

Motor

Amplifier “Motorlab”

Power
Al Apparatus

Mechanical

Microcontroller
Board

Load
Encoder

Motor

Load Encoder
Inertia  Load Spring

Locking Screw  Coupling

Brushless
Motor

System Description

Below is a schematic representation of the Motorlab system in a closed-loop position or speed control
configuration. There are two position sensors on the apparatus, a motor encoder and a load encoder. The speeds of
the two incrtias are measured by numerically differentiating the position signals in the computer controlling the
system (microcontroller). The motor amplifier has a control loop that measurcs and controls the clectric current in
the motor windings. This results in what is commonly known as a “torque controlled” motor, sincc the magnetic
torque is proportional to the current in the windings. The microcontroller is interfaced to the motor amplificr
through a +/-10V analog signal. By varying the magnitude of this voltage the microcontroller can change the current
in the motor. This voltage, which is proportional to the controlled current, serves as a current command (desired
current) for the current control loop in the amplifier. An additional sensor. not shown below, is the current sensor in
the amplifier used to implement the current control. The signal from this sensor is also read by the microcontroller,
using an analog to digital converter. Although this signal is not used in the control loops on the microcontroller, it is
recorded for data analysis.

Motor (Electromechanical Dynamics)

24V Supply.
and Motor
Amp with

A
'
controller Current Control

\ 01.05,01,0 \'g




Several different configurations of the system can be utilized in experiments. Either sensor, the motor or load
encoder. can be used for the feedback of the control loop. The selection is made in the software interface. The
motor encoder is known as a “collocated™ sensor since it is co-located with the input to the mechanical system, the
motor torque. The load sensor is separated from the input to the system by a spring and is therefore known as a
“non-collocated” sensor. In addition to varying which sensor is used, the mechanical system can be changed with
the lock down screw and the spring coupling. Also, a choice can be made between velocity control or position
control by selecting the appropriate control program. Any of the following mechanical models may be realized
using the Motorlab hardware and software.

T 0
by
Fourth order system Second order system Second order system
with a free integrator with a free integrator
T e
by
Third order system Second order system First order system

with a free differentiator

Software

The software for the system can be found in the “c:\Motorlab™ directory on the laboratory machines. All the
needed Matlab functions can be found there. The software that is on the microcontroller is included in this directory
in the motorlabRepo.zip file. This program is burned into the flash memory of the microcontroller and runs on
power up. The software that runs on the PC is a GUI written in Matlab ("motorlabGUI.m"). There are additional
m-files in the "Motorlab" directory that can be used to plot data from the system.

User Interface

To run the Motorlab GUI you must open Matlab and add the “c:\Motorlab™ directory to the Matlab path or set
this directory as the current directory. Normally you will add it to the path and set the current directory to the
location where you are storing your files. The microcontroller should be plugged into USB. In the Matlab command
window type "motorlabGUL" The opening dialog (below) asks you to select the communication port for the
microcontroller. If more than one port is listed you should be able to detect which is the Motorlab by unplugging
the USB or powering it down and then clicking the "Refresh List" button. The GUI should open after selecting the
com port.

Select Motorlab Com Port

Available Com Ports
(| [ou—

r
‘ Refresh List | |CON7

Select

Connection Dialog
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Data Acquisition

The microcontroller stores data in a circular buffer that is 2048 data samples in length with 9 variables in each
sample. After 2048 sample periods the buffer begins to be overwritten with the more recent data. At any time the
buffer contains the most recent 2048 samples. Pressing the "Save Data Buffer to Workspace" button will write this
data to a 2048x9 matrix in thc Matlab workspacc. Pressing the "Run Wave AutoSave" button starts the wave type
sclected and then writes the data to the Matlab workspace once the buffer has filled with new data. The time length
of the data depends on the sample rate. If for example the sample rate is set to 500 Hz, then the last 4.096 scconds
(2048/500) of data will be saved in the buffer.

The data matrix saved in the Matlab workspace contains 9 variables (columns). The ninth column is reserved.
The other eight are listed below. Note that the variable in the second column changes. It depends on the "Controller
Mode" chosen at the time of the data storage.

Column 1 2 3 4 5 6 7 8
Description Time Command | Motor Load Motor Load Current Motor
Encoder | Encoder Speed Speed Command | Current
Variable 1 (sec) 0, (deg), 0, (deg) | O, (deg) | @y (rpm) @y (rpm) | i.(Amp) | i(Amp)
o (1pm),
ic (Amp)

M-files for plotting

There are m-files provided in the "c:\Motorlab" directory that can be used to plot the data from the Motorlab.
Although you will frequently want the access the data with your own m-files, these files are useful for quickly
viewing the data after acquiring it. There is one file for each of the "Controller Mode" settings.

File: mlolplots.m [unction: mlolplots(data.Iscale): Uses data generated by the Motorlab in open loop control. If
an "Iscale" argument is supplied then the commanded current values are scaled by the Iscale value in the plots.
example: mlolplots(data); Does not scale the current command.

example: mlolplots(data.Iscale). Multiplies commanded current values by Iscale.



File: miposplots.m function: mlposplots(data); Uses data generated by the Motorlab position control mode.
example: mlposplots(data);

File: mispeedplots.m function: mlspeedplots(data): Uses data generated by the Motorlab velocity control mode.
example: mlvelplots(data);

File: trapprof-m function: [x,v.t] =trapprof(DX.Vmax,Amax,DT) Trapezoidal-velocity motion profile generation
Outputs: x=position vector, v=trapezoidal velocity vector, t=time vector

Inputs: DX=distance to move, Vmax=maximum velocity, Amax=maximum acceleration, DT=time step for outputs
example: [x.v,t] =trapprof(DX.Vmax,Amax.DT)

Hardware Specifications

Important Scaling Considerations

e Motor Amplifier Scaling = 1 Amp/Volt. Therefore, one Volt output from the microcontroller corresponds to a
one Amp command to the current control loop in the motor amplifier. The plotting routines provided take this
scaling into consideration.

e Position is measured in degrees and velocity is measured in RPM. The output of the control algorithm in the
microcontroller is measured in Volts. Therefore, for example, the units of the proportional and derivate gains in
the position controller would be Volts/deg and Volts*sec/deg, respectively. When multiplied by the amplifier
scaling (1 Amp/Volt) these gains become Amp/deg and Amp*sec/deg. The units of the proportional gain in the
velocity controller would be Volts/RPM (or Amp/RPM if amplifier scaling is included).

Inertias

A Few Other Details

e Max Data Acquisition Sample Rate = 10 kHz (the control update rate of the microcontroller software)
e Motor Encoder Resolution = 360 deg/1600 counts = 0.225 deg/count

e Load Encoder Resolution = 360 deg/2000 counts = 0.18 deg/count

e  Max motor velocity with the 24 Volt power supply is about 4000 rpm



Speed Measurement
The two speeds measured by the Motorlab system are found using a discrete time approximation (i.e. computer
code) of a derivative with a low pass filter. The continuous time transfer function for this filter is given below. It
uses the encoder position measurement for input. Note the free s in the numerator performs the differentiation and
the filter with a cutoff frequency of 300 rad/s helps to filter spikes in the speed measurement caused by
differentiating the discrete steps inherent in an encoder position measurement.

Position Speed Speed
Measurement (deg) Filter Measurement (rpm)
0 r. 3002 o(s)
— g rd $ L

s +2125+3002
k.q =1(rpm)/6(deg/ s)

Specs from Motor Manufacturer’s Data Sheet

LA052-040E Motor Dynamic Specs From Shinano Kenshi
UNITS Value
RATED POWER \Y 40
RATED VOLTAGE VDC 24
RATED SPEED pm 3.000
RATED TORQUE N-cm 127
kgf-cm 1.3
RATED CURRENT A 2.5
TORQUE CONSTANT N-ci/A 5.0
kgf-cim/A 0.51
BACK EMF CONSTANT V/krpm 52
PHASE RESISTANCE Ohm 1.18
PHASE INDUCTANCE mH 44
INSTANTANEOUS PEAK TORQUE N-cm 38.2
MAX SPEED pm 5,000
ROTOR INERTIA g-cm’ 110
POWER RATE kW/s 1.48
MECHANICAL TIME CONSTANT ms 52
ELECTRICAL TIME CONSTANT ms 3
MASS kg 0.6

Current Control Loop Model

The motor amplifier has a current control loop. As configured in the Motorlab apparatus this loop has a
bandwidth of approximately 400 Hz. Using data acquired from step and sinusoidal responses the following two
closed loop transfer functions have been identified as approximate models for the closed-loop current control
dynamics.

2 () where :
@, (s+z g
) Tidetay =—§"—2@ s z=170-27 (radlsec)
+ 7 ; 6
Ti=—5 Pin Ciet) 3 2"+ 227([)"\ * @) b ,  ©,=230-27 (radlsec)
z(s* +2¢w,5+@,") T _ ®," (s +2) sT—6s/ty +12/t, ook
ipade = ¢=0.

2 ] CTIN) i 2
2(s” +2¢c0,5 +@,") s°+6s/ty; +12/t, 1y =0.0002 (sec)

Two of the models above contain a time dclay while the other docs not. One model with the time delay uses the
exponential (exact) representation with the delay, while the other uses a second order Pade' approximation of the



delay. In the following two figures the responses of these two models are compared with actual data acquired from
one of the Motorlab systems. Both the step response and the frequency response models are shown.
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FEATURES

CE Compliance to
89/336/EEC

Recognized Component
to UL 508C

Complete torque ( current ) mode
functional block

Drives motor with
60° or 120° Halls

Single supply voltage
18-55VDC

5A continuous, 10A peak more
than double the power output of
servo chip sets

Fault protected
Short-circuits from output to
output, output to ground
Over/under voltage

Over temperature

Self-reset or latch-off

2.5kHz bandwidth

Wide load inductance range
0.2 to 40 mH.

+5, +15V Hall power

Separate continuous, peak, and
peak-time current limits

Surface mount technology

APPLICATIONS

X-Y stages

Robotics

Automated assembly machinery
Component insertion machines

THE OEM ADVANTAGE

NO POTS: Internal component
header configures amplifier for
applications

Conservative design for high
MTBF

Low cost solution for small
brushless motors to 1/3 HP

Model 503

DC Brushless Servo Amplifier

PRODUCT DESCRIPTION

Model 503 is a complete pwm servoamplifier for applications using DC
brushless motors in torque ( current ) mode. It provides six-step commu-
tation of three-phase DC brushless motors using 60° or 120° Hall
sensors on the motor, and provides a full complement of features for
motor control. These include remote inhibit/enable, directional enable
inputs for connection to limit switches, and protection for both motor and

amplifier.

The /Enable input has selectable active level ( +5V or gnd ) to interface

with most control cards.

/Pos and /Neg enable inputs use fail-safe (ground to enable) logic.

Power delivery is four-quadrant for

bi-directional acceleration and deceleration of motors.
Model 503 features 500W peak power output in a compact package

using surface mount technology.

An internal header socket holds components which configure the various
gain and current limit settings to customize the 503 for different loads and

applications.

Separate peak and continuous current limits allow high acceleration
without sacrificing protection against continuous overloads. Peak current
time limit is settable to match amplifier to motor thermal limits.

Header components permit compensation over a wide range of load
inductances to maximize bandwidth with different motors.

Package design places all connectors along one edge for easy connec-
tion and adjustment while minimizing footprint inside enclosures.

High quality components and conservative ratings insure long service life
and high reliability in industrial installations.

A differential amplifier buffers the reference voltage input to reject
common-mode noise resulting from potential differences between

controller and amplifier grounds.

Output short circuits and heatplate overtemperature cause the amplifier
to latch into shutdown. Grounding the reset input will enable an auto-
reset from such conditions when this feature is desired.

‘ ((:Egﬁ't%ls
Corp.

Corporate Offices: 410 University Avenue

Westwood, MA 02090

Telephone: (781) 329-8200
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Model 503
DC Brushless Servo Amplifier

FUNCTIONAL DIAGRAM
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APPLICATION INFORMATION

To use the model 503 set up the internal header with the
components that configure the transconductance, current
limits, and load inductance. Current-limits and load
inductance set up the amplifier for your particular motor,
and the transconductance defines the amplifiers overall
response in amps/volt that is required by your system.

COMPONENT HEADER SETTINGS

Use the tables provided to select values for your load and
system. We recommend that you use these values as
starting points, adjusting them later based on tests of the
amplifier in your application.

LOAD INDUCTANCE (RH1,CH2)

Maximizes the bandwidth with your motor and supply
voltage. First replace CH2 with a jumper (short). Adjust the
value of RH1 using a step of 1A or less so as not to
experience large signal slew-rate limiting. Select RH1 for
the best transient response ( lowest risetime with minimal
overshoot). Once RH1 has been set. choose the smallest
value of CH2 that does not cause additional overshoot or
degradation of the step response.

TRANSCONDUCTANCE (RH6,7)

The transconductance of the 503 is the ratio of output
current to input voltage. It is equal to 10k€/RH6 (Amps/
Volt). RH6,and RH7 should be the same value and should
be 1% tolerance metal film type for good common-mode
noise rejection.

CURRENT LIMITS (RH3, 4, & 5)

The amplifier operates at the 5A continuous, 10A peak
limits as delivered. To reduce the limit settings, choose
values from the tables as starting points, and test with your
motor to determine final values. Limit action can be seen
on current monitor when output current no longer changes
in response to input signals. Separate control over peak,
continuous, and peak time limits provides protection for
motors, while permitting higher currents for acceleration.

SETUP BASICS

. Set RH1 and CH2 for motor load inductance (see

following section).

2.Set RH3, 4, & 5 if current limits below standard values is
required.

3. Ground the /Enable (/Enable Pol open), /Pos Enable,

and /Neg Enable inputs to signal ground.

Connect the motor Hall sensors to J2 based on the

manufacturers suggested signal names. Note that

different manufacturers may use

A-B-C, R-S-T, or U-V-W to name their Halls. Use the

required Hall supply voltage (+5 or +15V). Note that

there is a 30 mA limit at +5V. Encoders that put-out Hall

signals typically consume 200-300 mA, so if these are

used, then they must be powered from an external

power supply.

5. Connect J1-4,5 to a transformer-isolated source of DC

power,

+18-55V. Ground the amplifier and power supply with an

additional wire from J1-5 to a central ground point.

—_

>

Model 503
DC Brushless Servo Amplifier

6. With the motor windings disconnected, apply power and
slowly rotate the motor shaft. Observe the Normal (green)
led. If the lamp blinks while turning then the 60/120°
setting is incorrect. If J2-2 is open, then ground it and
repeat the test. In order to insure proper operation, the
correct Hall phasing of 60° or 120° must be made.

6.Turn off the amplifier and connect the motor leads to
J1-1,2,3 in U-V-W order. Power up the unit. Apply a
sinusoidal reference signal of about 1 Hz. and 1Vrms
between
Ref(+) and Ref(-), J2-10,11.

7. Observe the operation of the motor as the current monitor

signal passes through zero. When phasing is correct the

speed will be smooth at zero crossing and at low speeds. If
it is not, then power-down and re-connect the motor.

There are six possible ways to connect the motor windings,

and only one of these will result in proper motor operation.

The six combinations are listed in the table below. Incorrect

phasing will result in erratic operation, and the motor may

not rotate. When the correct combination is found, record
your settings.

J1-1 J1-2 J1-3
#1 U \ w
#2 \ W U
#3 w u \
#4 U A \Y
#5 w \ U
#6 \ U w

GROUNDING & POWER SUPPLIES

Power ground and signal ground are common ( internally
connected ) in this amplifier. These grounds are isolated
from the amplifier case which can then be grounded for best
shielding while not affecting the power circuits.

Currents flowing in the power supply connections will create
noise that can appear on the amplifier grounds.

This noise will be rejected by the differential amplifier at the
reference input, but will appear at the digital inputs. While
these are filtered, the lowest noise system will result when
the power-supply capacitor is left floating, and each ampli-
fier is grounded at its power ground terminal ( J1-5). In
multiple amplifier configurations, always use separate
cables to each amplifier, twisting these together for lowest
noise emission. Twisting motor leads will also reduce
radiated noise from pwm outputs. If amplifiers are more than
1m. from power supply capacitor, use a small (500-1000uF.)
capacitor across power inputs for local bypassing.

‘ @ESR&"%B
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Model 503
DC Brushless Servo Amplifier

APPLICATION INFORMATION (CONT’D)

COMPONENT HEADER

HEADER LOCATION
(COVER

[

J2

eos B D

WARNING!

DISCONNECT POWER WHEN CHANGING HEADER
COMPONENTS. REPLACE COVER BEFORE APPLYING
POWER TO PREVENT CONTACT WITH LIVE PARTS.

] LOAD INDUCTANCE SETTING

CONTINUOUS CURRENT LIMIT
PEAK CURRENT TIME LIMIT
PEAK CURRENT LIMIT

] REFERENCE GAIN SETTING

NOTE: Components in dotted lines are
not installed at factory

CONTINUOUS CURRENT LIMIT (RH3)

Icont (A) RH3 (Q)
5 open *
4 20k
3 8.2k
2 3.9k
1 1.5k

INPUT TO OUTPUT GAIN SETTING ( RH6, RH7)
Note 1
Example: Standard value of RH6 is 10k, thus G = 1 AV
PEAK CURRENT LIMIT (RH5) Note 3

Ipeak (A) RH5 (Q)
10 open *
8 12k

6 4.7k
4 2k

2 750

LOAD INDUCTANCE SETTING (RH1 & CH2) Note2 =~ PEAK CURRENT TIME-LIMIT (RH4) Note 4

Load (mH) RH1 CH2 Tpeak (s) RH4 (Q)
0.2 49.9 k 1.5nF 0.5 open *
1 150 k 1.5nF 0.4 10M

3 499 k 1.5nF* 0.2 3.3M
10 499 k 3.3nF 0.1 1M

33 499 k 6.8 nF

40 499 k 10 nF Times shown are for 10A step from 0A

Notes:* Standard values installed at factory are shown in italics.
1. RH6 & RH7 should be 1% resistors of same value.

2. Bandwidth and values of RH1, CH2 are affected by supply voltage and load inductance. Final selection should be
based on customer tests using actual motor at nominal supply voltage.

3. Peak current setting should always be greater than continuous current setting.

4. Peak times will double when current changes polarity. Peak times decrease as continuous current increases.

224
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TECHNICAL SPECIFICATIONS

Model 503
DC Brushless Servo Amplifier

Typical specifications @ 25°C ambient, +HV = +55VDC. Load = 200pH. in series with 1 ohm unless otherwise specified.

OUTPUT POWER
Peak power
Unidirectional
After direction change
Continuous power

+10A @ 50V for 0.5 second, 500W
+10A @ 50V for 1 second, 500W
+5A @ 50V, 250W

OUTPUT VOLTAGE

Vout = 0.97HV -(0.4)(lout)

MAXIMUM CONTINUOUS OUTPUT CURRENT
Convection cooled, no conductive cooling
Mounted on narrow edge, on steel plate, fan-cooled 400 ft/min

+2A @ 35°C ambient
+5A @ 55°C

LOAD INDUCTANCE
Selectable with components on header socket

200 pH to 40mH (Nominal, for higher inductances consult factory)

BANDWIDTH
Small signal

-3dB @ 2.5kHz with 200pH load

Note: actual bandwidth will depend on supply voltage, load inductance, and header component selection

PWM SWITCHING FREQUENCY

25kHz

ANALOG INPUT CHARACTERISTICS

Reference Differential, 20K between inputs with standard header values
GAINS
Input differential amplifier X1 as delivered. Adjustable via header components RH6, RH7
PWM transconductance stage 1 A/V (output vs. input to current limit stage )
OFFSET
Output offset current ( 0 V at inputs ) 20 mA max. ( 0.2% of full-scale )
Input offset voltage 20 mV max ( for 0 output current, RH6,7 = 10kQ )
LOGIC INPUTS
Logic threshold voltage HI:= 2.5V, LO: 1.0V, +5V Max on all logic inputs
/Enable LO enables amplifier (/Enable Pol open) , HI inhibits; 50 ms turn-on delay
/POS enable, /NEG enable LO enables positive and negative output currents, Hl inhibits
/Reset LO resets latching fault condition, ground for self-reset every 50 ms.
/Enable Pol (Enable Polarity) LO reverses logic of /Enable input only (HI enables unit, LO inhibits)
LOGIC OUTPUTS
+Normal HI when unit operating normally, LO if overtemp, output short, disabled, or power supply (+HV) out of tolerance
HI output voltage = 2.4V min at -3.2 mA max., LO output voltage = 0.5V max at 2 mA max.
Note: Do not connect +Normal output to devices that operate > +5V
INDICATORS (LED's)
Normal (green) ON = Amplifier enabled, no shorts or overtemp, power within limits
Power fault (red) ON = Power fault: +HV <18V OR +HV > 55V
Short/Overtemp (red) ON = Output short-circuit or over-temperature condition
CURRENT MONITOR OUTPUT +5V @ +10A (2A/volt), 10kQ, 3.3nF R-C filter
DC POWER OUTPUTS
+5VDC 30mA (Includes power for Hall sensors)
+15VDC 10mA
Total power from all outputs not to exceed 200mW.
PROTECTION

Output short circuit (output to output, output to ground)
Overtemperature

Power supply voltage too low (Undervoltage)

Power supply voltage too high (Overvoltage)

Latches unit OFF (self-reset if /RESET input grounded)

Shutdown at 70°C on heatplate (Latches unit OFF)

Shutdown at +HV < 18VDC (operation resumes when power >18VDC)
Shutdown at +HV > 55VDC (operation resumes when power <55VDC)

POWER REQUIREMENTS

DC power (+HV)

+18-55 VDC @ 10A peak.

Minimum power consumption 25W

Power dissipation at 5A output, 55VDC supply ow

Power dissipation at 10A output, 55VDC supply 40W
THERMAL REQUIREMENTS

Storage temperature range -30to +85°C

Operating temperature range

0 to 70°C baseplate temperature

MECHANICAL

Size 3.27 x4.75x 1.281in. (83 x 121 x 33mm)
Weight 0.521b (0.24 kg.)
CONNECTORS
Power & motor Weidmuller: BL-125946; Phoenix: MSTB 2.5/5-ST-5.08
Signal & Halls Molex: 22-01-3167 housing with 08-50-0114 pins

o
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Model 503
DC Brushless Servo Amplifier

OUTLINE DIMENSIONS

Dimensions in inches (mm.)

4.75
(19.4) (120.7)
I
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ORDERING GUIDE
Model 503 5A Continuous, 10A Peak, +18-55VDC Brushless Servoamplifier

OTHER BRUSHLESS AMPLIFIERS

Model 505 Same power output as 503. Adds Hall / Encoder tachometer feature for velocity loop
operation.

5001 Series  Six models covering +24-225VDC operation, 5-15A continuous, 10-30A peak.
With optional Hall / Encoder tachometer, and brushless tachometer features.

Model 513R  Resolver interface for trapezoidal-drivemotors. Outputs A/B quadrature encoder signals
and analog tachometer signal for velocity loop operation. +24-180VDC operation, 13A
continuous, 26A peak.

Copley Telephone: (781) 329-8200
226 @ Controls Corporate Offices: 410 University Avenue Fax: (781) 329-4055
Corp. Westwood, MA 02090 E-mail: sales@copleycontrols.com

http://www.copleycontrols.com
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Excerpt of Data Sheet for the
STM32F4 Microcontroller
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r UM1472
YI User Manual
STM32F4DISCOVERY

STM32F4 high-performance discovery board

Introduction

The STM32F4DISCOVERY helps you to discover the STM32F4 high-performance features
and to develop your applications. It is based on an STM32F407VGT6 and includes an ST-
LINK/V2 embedded debug tool interface, ST MEMS digital accelerometer, ST MEMS digital
microphone, audio DAC with integrated class D speaker driver, LEDs, pushbuttons and an
USB OTG micro-AB connector.

Figure 1. STM32F4DISCOVERY
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Hardware and layout STM32F4DISCOVERY

Figure 6. STM32F407VGT6 block diagram
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Wiring for the “Motorlab” Apparatus
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15 Pin Microcontroller Connections
Amp J2 Hardware Wire Color | 15pin Connectorl Function | 15pin Cible | STMSZ_M Discovery |
Motor Encoder Ground
Red 2 Red 45V Power 2 Brown Voltage Regulator
I . [3]vellow | [ 3lred ____Ip
Blue 4 Blue Motor Encoder Channel B 4 Orange PE11(TIM1-Ch2)
|| 5] EX
Black 6 Black Inertia Encoder Ground 6 Green GN
| ] Jred  f7fRea | [ 7lplie v
Orange 8 Orange Inertia Encoder Index 8 Purple -
I I 7 B BE
Blue 10 Green Inertia Encoder Channel B 10 White PA1 (TIM2-Ch2)
|__GND)
Enable 6 Green 12 Green Amp Signal (Amp Enable) 12 Light Green  PB11 (Digital Out)
Red ____ Ji3fRed |
Ref- 10 Orange 14 Black Current Command - 14 Brown-White PB5(TIM3-Ch2)
GNDJ] 12]Black 15]Orange GND 15|Red-White |-

Wiring Diagram

CUl, inc.
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2 —_— ' lGND—
J V2- 24V
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)

Enable- §-{SBM A
7
CURR MON- 3 . [ 1
REF--10 oRH ! ol |
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GND- 1224 \ 7
13 \ B
+5V- 14TAM T
L W 1o /5
HALL U- 17--joa | L7
GND- 18 ! }\7 :
n - = “
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TOR W- 3————
MOTOR V-2
MOTOR U- 18X e
|
PWR HALL
CHA-= g
MOTOR LAB WIRING SCHEMATIC . |L_cHed

Shinano Kenshi __ Molor Encoder

LADS2-040E3NL]
Brushless DC Motor
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STM32F4Discovery Host Board

STM3274 - Discovery

15 PIN CABLE
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