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Abstract 

Model Based Design (MBD) has been enabling engineers to rapidly develop, test, 

analyze, and implement control system concepts. Many companies, especially in automotive and 

aerospace industries, have seen increases in design and development productivity and decreases 

in cost and time while retaining the quality of firmware in embedded systems. As MBD is 

becoming a trend in industries’ standard practice, it is important for the university education to 

adapt and integrate these tools into the students’ learning experience. 

The MBD approach enhances the deployment of complex control systems by abstracting 

their complexity into graphical representation of system models. The models support an array of 

analysis and simulation tools that permit the designer to progressively evaluate alternative 

control structures and components to reach the required performance requirements. The tools 

ultimately lead to the auto-generation of the source code for the embedded systems firmware. 

But it is important in the education context that students understand the engineering concepts 

underlying the tools and to not obscure too much of the backend information. To appreciate the 

automation of firmware generation students should have a minimal understanding of basic 

coding practices to maximize the learning outcome. 

This thesis presents the MBD methods used to automate the generation of new firmware 

of an existing laboratory apparatus called the MotorLab and to integrate MBD concepts into an 

undergraduate controls course. MotorLab is used in the introductory controls course at Alan 

Levin Department of Mechanical and Nuclear Engineering at Kansas State University. The 

updated firmware is carefully examined to ensure the full range of functionality of the original 

lab device to deliver the same effective lab exercises and to demonstrate the application and 

benefits of MBD.
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Chapter 1 - Introduction 

University engineering faculty members have always appreciated the importance of 

engaging engineering students in hands-on experiments with laboratory practices. This teaching 

method of applying theories taught in lectures into more tangible applications has given students 

better understanding of engineering principles and practices. It also results in increased 

confidence before heading into industry as engineers [1]. It has also been shown in pedagogical 

studies that young adults in higher education have greater comprehension and retention of 

learning experiences with interactive exercises ( [2], [3], and [4]). But there are significant 

hurdles associated with engineering labs. Teaching laboratories are expensive to develop, 

operate, and maintain and there are few sources from which those resources may be obtained. 

Some institutions have added equipment fees to the students’ tuition but there are many demands 

for those resources. Many institutions and faculty members may lack the resources for operation 

of specific teaching laboratories. This may especially be the case in the controls engineering 

discipline where the equipment often involves hardware and software pertaining to automotive 

and aerospace industries. 

The application of digital computers to control physical systems revolutionized the 

controls industry. The use of a computer to control a physical system is called an embedded 

control system. The design and implementation of embedded control systems involve selection 

of the computer (often a microcontroller), the sensors and actuators that connect the computer to 

the physical system, and the creation of the computer software. The MathWorks company 

capitalized on this transformation by producing a suite of tools to support the development and 

implementation of these systems. Their tools make use of graphical user interfaces and 

mathematical models to represent the components of the systems. These tools reduce the cost 
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and time to design and implement embedded control systems by supporting a progressive set of 

analysis and simulation tools. 

The controls industry has adopted this methodology called Model Based Design (MBD) 

using MathWorks products and other third-party add-on products that integrate into MathWorks 

tools. MBD manages the complex nature of embedded control systems by using graphical 

abstractions and mathematical models. These tools provide an interactive environment to design, 

test, analyze, and deploy these systems. This is achieved by integrating the four main stages of 

MBD: Model-In-Loop (MIL), Software-In-Loop (SIL), Processor-In-Loop (PIL), and Hardware-

In-Loop (HIL). 

MIL is a model development and simulation stage. This stage depends on accurate 

computer models of the physical system being controlled, the controller, and interconnecting 

devices being developed. The models are used for simulation and analysis, and for tuning the 

controller. The MIL stage is important in saving costs since the computer model of the physical 

system can be used instead of setting up expensive hardware under a testing environment. MIL 

provide a means to evaluate various components of the system prior to expenditure for the 

physical devices. The same computer model is then used in MIL, SIL, and PIL to develop and 

test the controller software. 

Once the analysis of the MIL simulation returns adequate performance, the next stage is 

SIL. SIL uses and extends the models from the MIL stage. The SIL stage enables testing the 

controller in a controller emulation process. The MIL and SIL stages are completed in a general-

purpose PC without any special hardware. The software emulated processor mimics the 

constraints of a specific processors to allow various controllers to be evaluated before acquiring 

the microcontroller. 
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Following the SIL stage is the PIL stage which involves a real microcontroller. In 

contrast to SIL, this stage runs the simulation with the control loop running on an actual 

microcontroller. PIL requires a connection with adequate data transfer rate between a host PC 

and microcontroller. 

The final stage is HIL, which is the verification of a deployed embedded control system 

in the most realistic setting using actual physical hardware. There can be various levels of HIL 

from only implementing the interconnecting sensors and actuators to including the entire 

functioning physical system. At any given stages of implementing MBD, reiteration back to prior 

stages is often necessary. 

A major benefit of the MBD methodology is the auto-generation of optimized controller 

code. MBD saves a significant amount of time spent with the debugging process due to 

handwritten code being susceptible to human errors ( [5], [6], and [7]). In the educational 

context, the time saved in code production can provide more time for testing, analyzing, and 

engaging students in learning more about the embedded control system design procedures. 

Instead of repeating the same process of writing and debugging code manually, students will be 

able to focus on the simulation, verifying the response of the hardware, and studying the effects 

of the controllers on the physical system. 

Working with the mathematical and graphical representations of physical systems can aid 

students in understanding mathematical principles in control systems analysis and design. The 

simplified visual representation of each components block will help relating mathematical 

principles to the physical control system. 

The first two stages of MBD can be accomplished on general-purpose PCs without the 

expenditure on any physical system hardware. Additionally, PIL can be accomplished with many 
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inexpensive microcontroller boards. With the help of MBD, students can be exposed to 

designing various embedded control systems that might be very expensive or impossible to 

implement in a university laboratory. But in order for students to experience the full scope of the 

MBD methodology, it is critical to include some level of physical hardware. With more realistic 

HIL setups, students can have more accurate response data to analyze and compare with their 

simulated system from previous stages. And laboratory exercises should be designed carefully to 

maximize the student outcome from learning with the MBD. The lab should also help students 

with retaining the understanding of basic coding practices while reinforcing the control theory 

with more hands-on exercises. 

A faculty member in the Mechanical and Nuclear Engineering Department at Kansas 

State University has developed an embedded system [8]. The system can control various 

operational modes of a small brushless motor. The device is called the MotorLab and has gone 

through several stages of development. The system is used in a set of experiments in a laboratory 

associated with an automatic controls course that is required in the curriculum. The controls 

laboratory consists of 10 experimental stations each with a MotorLab device and a general-

purpose PC. Since the system was developed and is maintained internally using student 

employees, it is difficult to determine its cost. It remains unknown as if it will continue to be 

maintained since the faculty member who developed the hardware, and the embedded firmware 

is no longer with the University. 

Other methods of modifying and updating the laboratory device have been explored ( [9], 

[10], [11], and [12]) at Kansas State University. Most of the effort was aimed at lowering the 

cost and with increasing the distribution of the apparatus. It might produce better learning 

outcomes if a suitable device can be developed at a cost so that each student can own one. 
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Experience with a similar situation in a related course produced outstanding experiences for 

many of the students who became very engaged with the device and could spend as much time as 

they wished learning with the device. 

The current set of laboratory assignments in the controls course do not address MBD 

explicitly. However, several of the assignments involve application of the MathWorks tools to 

model, analyze, design, and simulate the controller for the MotorLab system (essentially the MIL 

stage). But students are not exposed to the embedded MotorLab software or to the other stages of 

MBD. Students are encouraged to change the parameters of the controller and observe the effect 

on the response of the system. The MotorLab device seems well suited for a broader application 

of MBD and that is the subject of this thesis. 

The alternative to internally developing laboratory equipment suitable for teaching the 

concepts of MBD is to purchase laboratory hardware and software. But this solution of 

purchasing all the necessary equipment comes with an exceptionally expensive price tag. Unlike 

the industries’ implementation of MBD using the resources available to them, universities might 

not have the same capacity to purchase the industrial grade software and hardware. Especially 

when the materials are required for every student in the curriculum. 

To minimize the financial burden of an important educational experience for our 

students, this thesis will focus on two main objectives. The first is to lower the cost associated 

with adopting MBD by not requiring acquisition of new hardware and software. It will assume 

the availability of the minimum requirement of essential software and hardware such as 

MATLAB Coder and Simulink Coder, and a microcontroller with a suitable physical system to 

control (the MotorLab system). Then, the thesis will explore creating additional tools to work 

with MATLAB and Simulink along with available free software packages. This will 
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substantially reduce the software acquisition cost to enable MBD functionality. The second 

objective is to examine the quality of generated controller code to ensure that it is suitable for our 

intended educational purposes. It will be carefully compared with the current MotorLab 

firmware by running example labs. The objectives are to reduce the cost without compromising 

the quality so that the students will gain access to the industrial tools that are widely used. It will 

boost students’ confidence and competence as they join the engineering workforce after 

graduation. 

In the following chapters, the development and deployment of MBD capability will be 

covered as follows:  

• description of the hardware currently used in the control course,  

• modelling of the physical hardware,  

• acquisition and development of additional tools and software and adapting to their 

limitations with workarounds, and  

• verification using the HIL.  

Finally, several lab exercises from the introductory controls course, ME570, will be performed 

using the MBD approach and compared to the results to the original MotorLab exercises. They 

will be used to demonstrate the practicality of using MBD for the development of embedded 

control systems in an educational setting. 
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Chapter 2 - Hardware 

2.1 MotorLab 

To investigate the implementation of MBD capability, the existing laboratory apparatus 

has been evaluated and modifications required to support the four stages of MBD identified. The 

existing device called MotorLab is pictured in Figure 2.1 and Figure 2.2. It has been in use for 

over a decade in the laboratory associated with the mechanical engineering automatic controls 

course. It features a rugged design and construction, as well as well written custom firmware. It 

also includes a custom graphical user interface which provides access to the setup the laboratory 

experiments and record system responses. To make the MBD approach more familiar for 

students and cost effective, this thesis aims to utilize the hardware that is already provided in the 

laboratory and to replicate the graphical user interface functionality. 

 

Figure 2.1 MotorLab Apparatus 
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Figure 2.2 Components of MotorLab Apparatus 

 

The apparatus is composed of four main components:  

• a brushless motor with an encoder, 

• an amplifier, 

• a 24 Volt power supply, and 

• a microcontroller development board. 

The vendor of the microcontroller used is STMicroelectronics. It is a multi-national company 

that offers a variety of Micro-Controller Units (MCU) and Micro-Processor Units (MPU) used in 

a wide range of embedded control applications. Exposure to this type of hardware can help 

students become familiar with the capabilities and resources they provide, and the tools used to 

integrate these devices into physical systems. This exposure makes the students attractive to 

companies that seek employees with relative experience with specific MCU or MPU products. 

More details about the hardware, the driver libraries, and the Hardware Abstraction Layer driver 

will be covered in the software chapter. 

Power Supply 

Motor Encoder 

Power Switch 

Discovery Board 

Motor Amplifier 

Brushless Motor Double Collar 
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2.2 STM32 Discovery Board 

The development board used is the STM32F4 Discovery Board manufactured by 

STMicroelectronics. The embedded software for the MotorLab application was developed for 

this hardware and for this specific application. The primary task of the software is the interrupt 

driven control loop that is executed at 10kHz. Other peripheral tasks with lower priorities run in 

the background without compromising the primary task. The MBD processes are implemented 

on a general-purpose host PC. The PC must be capable of performing the MBD algorithms at the 

same control loop rate. In the PIL and HIL stages, the host PC and the microcontroller must be 

able to exchange data at this same loop rate. 

Software for the Discovery board is developed in an application on a PC and ported to the 

Discovery board through a USB port. The USB port communicates with the onboard processor 

through the ST-LINK, a device on the board that manages that communication process. The ST-

LINK also supports software debugging and limited data retrieval which is not fast enough to 

support the PIL and HIL applications. 

Three options were pursued to obtain the required exchange data between the host PC 

and the Discovery board. The Discovery board has several Universal Synchronous-

Asynchronous Receiver/Transmitter (USART) ports. The Transmit and Receive (TX/RX) lines 

are available on the board as designated pins. The first option considered was to utilize the VCP 

(Virtual Com Port) modification. This modification consists of the Transmit and Receive pins 

(TX/RX) of any available USART to be soldered to the ST-LINK TX/RX pins. The TX/RX pins 

are adjacent to the bottom left corner of the ST-LINK chip. A picture of this modification is 

shown below in Figure 2.3. 
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Figure 2.3 ST-LINK VCP Modification 

 

The benefit of this modification is the simple interface. Only one USB cable is required to 

exchange data between the Discovery board and host PC. The same connection can be used to 

flash the firmware to the Discovery board as well. 

This option is the simplest setup out of the three, but the data exchange rate is 

significantly throttled by the hardware. Data acquisition can be done but the speed at which this 

port is able to read and write data is too slow to support the PIL and HIL applications. Thus, 

making the first option not feasible for MBD purposes. To mitigate the physical limitation with 

the Discovery board, additional hardware is required moving forward. 

2.3 FTDI Adapter 

Future Technology Devices International (FTDI) is a semiconductor device company 

specializing in Universal Serial Bus technology [13]. It develops, manufactures, and supports 

devices and their related cables and software drivers for converting RS-232 or TTL serial 

transmissions to and from USB signals, in order to provide support for legacy devices with 

modern computer interfaces. 

ST-LINK 

TX/RX Pins 

Mini-USB 
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The second option to achieve the required communication rates was to create a new 

communication channel from the onboard USART TX/RX pins to a USB port on the host 

computer. The USART pins are TTL level and the FTDI adapter is used to convert them to be 

compatible with the host PC’s USB port. The hardware setup of the USART interface using 

FTDI converter is shown in Figure 2.4 below. This allows serial port communication between 

the microcontroller and host PC while running the SIL and PIL applications. 

 

Figure 2.4 SIL and PIL Hardware Setup 

 

The second option noticeably improves the data exchange rate. This is achieved by using a 

hardware with better data transmission capability. According to FTDI chip’s specification [14], 

the maximum baud rate achievable is 3M baud. This can be beneficial in theory, but the 

maximum speed is limited by MATLAB and Simulink software which has been tested to be 

below 1M (921600) baud. However, the second option’s data rate is still not sufficient for the 

HIL verification. 

FTDI USB-TTL converter 

ST-Link to host PC 

USART2 TX/RX pins 

To host PC 

Micro-USB 
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In contrast to the SIL and PIL, the HIL will accomplish data acquisition using the third 

option: USB On-The-Go Full-Speed (USB OTG FS). The implementation of this USB protocol 

further improves the data transmission rate for HIL. This option has the best data transfer rate 

when compared to the other two. Unfortunately, USB OTG FS cannot be utilized during SIL and 

PIL due to compatibility issues with Simulink. Simulink’s proprietary code does not allow for a 

third-party patch to use different protocols. Only UART is supported for SIL and PIL. The 

second option of FTDI board will suffice for the operation of SIL and PIL using MotorLab. The 

USB OTG FS will be implemented using the micro-USB port on the Discovery board. The 

micro-USB port is on the opposite side of the board to the mini-USB as shown in Figure 2.4 

above. The detailed steps on setting up, running the various simulations, and verifications with 

plots will be covered in Chapter 4, 5, and 6. 

2.4 Motor, Encoder, and Amplifier 

In this section, the characteristics of the motor, encoder and amplifier will be presented. 

In the next section the mathematical model of the system will be developed for position and 

speed control applications. 

The motor is a three-phase DC brushless motor. It has a maximum speed of 4000 RPM 

with the 24 Volt power supply. The detailed specifications from the manufacturer of the motor, 

excerpted from Appendix B, are shown in Table 2.1 below. 
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Table 2.1 Motor Dynamic Specs from the Manufacturer 

LA052-040E Motor Dynamic Specs from Shinano Kenshi 

 Units Value 

Rated Power 𝑊 40 

Rated Voltage 𝑉𝐷𝐶 24 

Rated Speed 𝑅𝑃𝑀 3,000 

Rated Torque 𝑁 ∙ 𝑐𝑚 12.7 

 𝑘𝑔𝑓 ∙ 𝑐𝑚 1.3 

Rated Current 𝐴 2.5 

Torque Constant 
𝑁 ∙ 𝑐𝑚

𝐴
 5.0 

 
𝑘𝑔𝑓 ∙ 𝑐𝑚

𝐴
 0.51 

Back EMF Constant 
𝑉

𝑘𝑅𝑃𝑀
 5.2 

Phase Resistance 𝛺 1.18 

Phase Inductance 𝑚𝐻 4.4 

Instantaneous Peak Torque 𝑁 ∙ 𝑐𝑚 38.2 

Max Speed 𝑅𝑃𝑀 5,000 

Rotor Inertia 𝑔 ∙ 𝑐𝑚2 110 

Power Rate 
𝑘𝑊

𝑠
 1.48 

Mechanical Time Constant 𝑚𝑠 5.2 

Electrical Time Constant 𝑚𝑠 3.7 

Mass 𝑘𝑔 0.6 

 

The motor position is measured by the incremental encoder attached directly to the motor 

shaft. The encoder is a two-channel encoder with a resolution of 0.225
𝑑𝑒𝑔

𝑐𝑜𝑢𝑛𝑡
 which is 1600 

counts in a full revolution. The encoder signals are attached to a timer counter on the Discovery 

board. Motor position is measured by counting pulses from the encoder. The two channels 
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provide indication of the direction of rotation so that encoder count is incremented or 

decremented depending on the direction of rotation. The measured position can be numerically 

differentiated in the software on the Discovery board to approximate the motor speed. 

The position or speed of motor are controlled by the amplifier and microcontroller. The 

amplifier has a current control circuit that outputs a current to the motor windings proportional to 

the input command. This is known as a torque-controlled motor since the magnetic torque is 

proportional to the current in the windings. The command input to the amplifier is an analog 

signal. The microcontroller provides this signal by means of a ±3 Volt analog output connected 

to the amplifier. The microcontroller uses a Digital-to-Analog Converter (DAC) to achieve this 

output. By controlling this analog voltage signal, the current inside the motor can be controlled. 

The amplifier has a pin connected to the microcontroller’s Analog-to-Digital Converter (ADC) 

where the current output to the motor is measured. This signal is not utilized in the 

microcontroller’s control loop, but it is recorded for analysis purposes. The current command to 

the motor can be implied by scaling the microcontroller’s analog voltage command with 1
𝐴𝑚𝑝

𝑉𝑜𝑙𝑡
. 

Therefore, the unit of proportional gain in the position controller is 
𝑉𝑜𝑙𝑡

𝑑𝑒𝑔
. Similarly, the 

proportional gain in the velocity controller is 
𝑉𝑜𝑙𝑡

𝑅𝑃𝑀
. The scaling of the amplifier current command 

and the encoder will be used in the next chapter to determine the scaling of the controller gains. 
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Chapter 3 - Physical System Modeling 

This chapter will describe the parameters of the current MotorLab device and its electro-

mechanical system characteristics. It will be used to model the system. This system model will 

be used in the first three phases of MBD: MIL, SIL, and PIL. 

3.1 MotorLab System Block Diagram 

Figure 3.1 below shows the schematic representation of MotorLab system in a closed-

loop position or speed control configuration. 

 

Figure 3.1 MotorLab Schematic Diagram 

 

 

Figure 3.2 Proportional Position Control Block Diagram 

 

For convenience, the desired motor command position, θc, will be represented in degrees. The 

measured position of the motor, θm, will also be in degrees as will the command error, ec. Kp is 

the proportional gain of the controller (
𝑉𝑜𝑙𝑡

𝑑𝑒𝑔
). The input signal to the amplifier, Vc, is the analog 

output from the microcontroller’s DAC converter with a range of ±3 Volts. Since the amplifier is 

Kp Ka 

ec 1

𝐽𝑚𝑠2 + 𝑏𝑠
 

Vc Ic θm Tm 
θc 

+ 
- 

Kt 
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supplied with 24 Volts, the current input to the motor windings is changed with varying the duty 

cycle with ±3 Volts. Also known as Pulse Width Modulation (PWM), the average power with a 

fixed voltage delivered to the motor is varied by modulating the time duration of a pulse 

described by duty cycle. This drives the motor to change either its position or speed with current 

control. Ka is the amplifier gain and is denoted as 1
𝐴𝑚𝑝

𝑉𝑜𝑙𝑡
. This amplifier gain is used to scale the 

voltage output into the current command, Ic, delivered to the motor. With the microcontroller’s 

peak voltage of 3 Volts, the maximum current command is 3 Amps. As a note, the amplifier is 

mathematically assumed to be ‘1’ meaning it is “fast” with no loss in the controller output. When 

a current command feeds into the motor windings, the torque produced by the brushless motor is 

proportional to the current input and is denoted by Kt and has a unit of 
𝑁∙𝑚

𝐴
. Then the applied 

torque drives the motor to the commanded position while the feedback loop provides the encoder 

reading of the motor shaft position, θm. 

3.2 MotorLab System Parameters 

The introductory lab exercises are designed for students to identify system parameters 

experimentally. Some hardware specific constants require further reading of the manufacturer’s 

reference manuals and hardware specification data sheets. The most important parameters for 

modeling the dynamic system are in Table 3.1, excerpted from Appendix B. The numeric 

constants for the system model used in this thesis are gathered from it. The Table 3.1 below also 

contains the motor constants which the students identify during the second lab experiment. 
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Table 3.1 MotorLab System Parameters 

 Value Description 

𝑘𝑡 0.05
𝑁∙𝑚

𝐴
 Motor Torque Constant 

𝑏 3𝑒−5𝑁 ∙ 𝑚 ∙ 𝑠 Viscous Friction Coefficient 

𝐽𝑚 1.29𝑒−5𝑘𝑔 ∙ 𝑚2 Total Rotor Inertia 

𝜔𝑐𝑓 300
𝑟𝑎𝑑

𝑠
 Speed Filter Cutoff Frequency 

 

3.3 MotorLab Model Development 

The motor shown in Figure 3.2 above can be modeled as a continuous time transfer 

function. The total inertia of the motor is given below: 

𝐽𝑚 = 𝐽1 + 𝐽2  

Where 𝐽1 is the rotor inertia from Table 3.1 above and 𝐽2 is the inertia of the double shaft collar 

which is 19𝑔 ∙ 𝑐𝑚2 taken from Appendix B. According to the Newton’s law, the moment of 

inertia times the angular acceleration is equal to the sum of the torques which consist of the 

motor torque Tm and the friction torque: 

𝐽𝑚�̇� + 𝑏𝜔(𝑡) =  𝑇𝑚(𝑡) (3.1)  

The motor torque is equal to the motor torque constant from Table 3.1 times the motor current: 

𝑇𝑚(𝑡) = 𝑘𝑡𝑖(𝑡) (3.2) 

Now equating (3.1) and (3.2) then taking the Laplace transform to obtain the following: 

𝐽𝑚(𝑠𝜔(𝑠) − 𝜔0) + 𝑏𝜔(𝑠) =  𝑘𝑡𝑖(𝑠) (3.3) 

The time domain solution of (3.3) can be found for some arbitrary initial condition 𝜔0 and no 

input by setting the input current 𝑖 to zero and solving for the speed:  

𝐽𝑚(𝑠𝜔(𝑠) − 𝜔0) + 𝑏𝜔(𝑠) =  𝑘𝑡𝑖(𝑠) = 0 

(𝐽𝑚𝑠 + 𝑏)𝜔(𝑠) =  𝐽𝑚𝜔0 

𝜔(𝑠) =
𝐽𝑚𝜔0

𝐽𝑚𝑠 + 𝑏
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𝜔(𝑠) =
𝜔0

𝑠 +
𝑏

𝐽𝑚

  

Take the inverse Laplace transform to obtain the following exponential decay model to express 

the initial condition motor response: 

𝐿−1{𝜔(𝑠)} =  𝜔(𝑡) = 𝜔0𝑒
−

𝑏
𝐽𝑚

𝑡
  

To model the speed output from the motor using the current control, the following 

transfer function has been obtained by rearranging Equation (3.3): 

𝜔(𝑠)

𝑖(𝑠)
=

𝑘𝑡

𝐽𝑚𝑠 + 𝑏
(3.4) 

Since the position of the motor is the integral of the velocity, the position output from the motor 

is obtained by adding an integrator to Equation (3.4): 

𝜃(𝑠)

𝑖(𝑠)
=

𝜔(𝑠)

𝑖(𝑠)
∙

1

𝑠
=

𝑘𝑡

𝐽𝑚𝑠2 + 𝑏𝑠
(3.5) 

Equation (3.4) is the speed response model and Equation (3.5) is the position response model in 

MBD, specifically for MIL, SIL, and PIL. 

 Motor position can be measured directly with the incremental encoder. There is no device 

on the MotorLab system to measure its motor speed. To be able to operate as a speed control 

system, a software differentiation of the motor position is implemented in the microcontroller. 

To reduce the noise induced on the speed signal by the discrete nature of the encoder, a low-pass 

filter is implemented with the differentiator.  

For the implementation of HIL, a block must be added to create the speed signal from the 

measured position signal. This will perform the same functionality as the derivative and filter in 

the original MotorLab firmware. In the MotorLab firmware the filter was specifically 

implemented with a lower frequency bandwidth (300Hz) that could be used to teach the students 

about higher-order dynamic effects in control systems. The intention of the MBD system being 
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developed in this thesis is to retain the functionality of the original MotorLab system, so the 

block that is added must be created in such a way that the lower bandwidth characteristic of the 

original system is retained. So, the block that is created must include not only the derivative but 

also the filter characteristics. The second order continuous time transfer function for the filter 

with a derivative can be described as the following: 

𝜔𝑓(𝑠)

𝜃(𝑠)
=

𝜔𝑐𝑓
2𝑠

𝑠2 + 2𝜁𝜔𝑐𝑓𝑠 + 𝜔𝑐𝑓
2

(3.6) 

Where 𝜔𝑓(𝑠) is the filtered speed output, 𝜃(𝑠) is the measured encoder position input, 

and 𝜔𝑐𝑓 is the cutoff frequency to filter out large spikes in the speed approximation. Also note 

the free 𝑠 in the numerator for differentiating the position. The natural frequency of the filter, 

which is the cutoff frequency, is chosen based on the 10x rule of thumb. This allows the system 

to ignore the effects of the high frequency dynamics from the filter itself. It is high enough to 

acquire clean signal from the motor but also low enough to help students realize this critical 

concept. When the students increase controller gains pushing the magnitude of this closed loop 

system closer towards the magnitude of the filter’s open loop poles, or its cutoff frequency, it is 

expected to affect the system performance. The direct system outputs with the high frequency 

dynamics sometimes are not possible to predict or are complex to model. The effect of high 

frequency dynamics will be demonstrated later in Chapter 6 using both the speed and position 

responses of motor plant with Equation (3.4) and (3.5) above. 

The block for implementing the speed filter is developed as a function in C code. The 

continuous time transfer function must be discretized. Discretization is accomplished using 

Tustin’s method by setting  

𝑠 =  
2

𝑇
 
𝑧 − 1

𝑧 + 1
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Discretizing (3.6) symbolically results in the following expression: 

𝜔(𝑧)

𝜃(𝑧)
=

2𝑇𝑤𝑛
2(𝑧2 − 1)

𝑇2𝑤𝑛
2𝑧2 + 4𝑇𝜁𝑤𝑛𝑧2 + 4𝑧2 + 2𝑇2𝑤𝑛

2𝑧 − 8𝑧 + 𝑇2𝑤𝑛
2 − 4𝑇𝜁𝑤𝑛 + 4

  

With the common 𝑧 terms factored out in the denominator: 

𝜔(𝑧)

𝜃(𝑧)
=

2𝑇𝑤𝑛
2(𝑧2 − 1)

(𝑇2𝑤𝑛
2 + 4𝑇𝜁𝑤𝑛 + 4)𝑧2 + (2𝑇2𝑤𝑛

2 − 8)𝑧 + 𝑇2𝑤𝑛
2 − 4𝑇𝜁𝑤𝑛 + 4

(3.7) 

Then the following coefficient can be obtained to simplify (3.7): 

(𝑇2𝑤𝑛
2 + 4𝑇𝜁𝑤𝑛 + 4)𝑧2 (3.8) 

Finally, dividing (3.7) with (3.8) above to find the filter coefficients: 

𝜔(𝑧)

𝜃(𝑧)
=

2𝑇𝑤𝑛
2

𝑇2𝑤𝑛
2 + 4𝑇𝜁𝑤𝑛 + 4

𝑧−2 −
2𝑇𝑤𝑛

2

𝑇2𝑤𝑛
2 + 4𝑇𝜁𝑤𝑛 + 4

1 +
2𝑇2𝑤𝑛

2 − 8
𝑇2𝑤𝑛

2 + 4𝑇𝜁𝑤𝑛 + 4
𝑧−1 +

𝑇2𝑤𝑛
2 − 4𝑇𝜁𝑤𝑛 + 4

𝑇2𝑤𝑛
2 + 4𝑇𝜁𝑤𝑛 + 4

𝑧−2

(3.9) 

Implementing (3.9) in C code is included in Listing 3.1 below: 

Listing 3.1 Low Pass Filter with a Derivative to get Velocity from Position Measurement 

void initLPF(float sampleT, float cutoffFreq, float dampingRatio) { 
    float wn   = 2*3.14159f*cutoffFreq; 
    float T    = sampleT; 
    float zeta = dampingRatio; 
     
    //set filter coefficients 
    b0 = (T*T*wn*wn + 4*zeta*T*wn + 4); 
    b1 = (2*T*T*wn*wn - 8)/b0; 
    b2 = (T*T*wn*wn - 4*zeta*T*wn + 4)/b0; 
    a0 = 2*T*wn*wn/b0; 
    a1 = 0/b0; 
    a2 = (-2*T*wn*wn)/b0; 
     
    //init previous values 
    Vk_1 = Vk_2 = Pk_1 = Pk_2 = 0;   
} 
 
float getVelocity(float pos) { 
    float vel; 
     
    vel = a0*pos + a1*Pk_1 + a2*Pk_2 - b1*Vk_1 - b2*Vk_2; 
     
    // update values 
    Pk_2=Pk_1; Pk_1=pos; Vk_2=Vk_1; Vk_1=vel; 
 
    return vel; 
} 
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Note the coefficient a1 is zero because the numerator of (3.9) does not have a 𝑧−1 term. The 

function getVelocity will take position measurement as an input argument and return the filtered 

velocity approximation. The verification of speed control using the C code above will be shown 

in Chapter 6 along with other response data comparisons using the HIL method.  
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Chapter 4 - Software 

4.1 MathWorks 

MATLAB has become a standard high-level modeling and analysis software for both the 

industry and academia. Its capabilities make the software very user friendly when coupled with 

Simulink. Simulink provides graphical user interface for simulation and code generation based 

on block diagrams. MathWorks Toolboxes such as Simulink Coder, MATLAB Coder, and 

Embedded Coder support automated code generation with optimization available [15]. In 

combination, they can use Simulink diagrams to produce firmware for specific microcontrollers. 

Similarly, hardware support packages provide microcontroller specific add-ons for Simulink and 

MATLAB. Once installed, these packages can configure Simulink diagrams to generate code for 

the targeted microcontroller to communicate with the host PC during simulation runtime. This is 

useful during PIL where the microcontroller computes controller output and the host PC 

computes the system response. Simulink labels this proprietary feature as External mode. It 

provides graphical representation of the simulation response and allows the user to pause the 

simulation and change simulation parameters using the host PC. Although hardware support 

packages are free for users with adequate MathWorks licenses, for the typical educational license 

there are limitations. The educational license provides some support for the popular Arduino 

processors but no support for the more capable Discovery board used in this thesis. These 

limitations and workarounds will be evaluated later in Chapter 5. 

The following is a summary of all the necessary programs, toolboxes, and additional 

hardware support packages from MathWorks. 

MathWorks base software with licensing requirement: 

• Simulink and MATLAB 
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Toolboxes with licensing requirement: 

• Simulink Coder and MATLAB Coder 

• Embedded Coder 

• Control System Toolbox 

Required hardware support packages available for free: 

• ARM Cortex-M Support from Embedded Coder 

• ST Discovery Board Support from Embedded Coder 

4.2 STMicroelectronics 

In order to support MBD, STMicroelectronics provides software tools that integrate into 

MATLAB and Simulink to access the features of their microcontrollers. The following programs 

must be downloaded from the vendor’s webpage: 

• STM32-MAT/TARGET, STM32CubeIDE and STM32CubeMX 

STM32-MAT/TARGET is a particular software package developed by 

STMicroelectronics to extend the target support for Simulink and MATLAB. This software 

comes with prebuilt peripheral driver blocks including but not limited to General Purpose Input 

Output (GPIOs) and Timers. 

STM32CubeIDE is an Integrated Development Environment (IDE) based on Eclipse 

CDT [16]. This open-source IDE comes with support for the Arm toolchain as well as various 

helpful debugging tools such as Serial Wire Debug (SWD) interface based on the Gnu Debugger 

(GDB). 

STM32CubeMX is a GUI based embedded C code project initialization generator which 

incorporates Hardware Abstract Layer (HAL) drivers into the base project [17]. The generated 

project file has an extension of .ioc. The generated project file then can be imported into the 
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workspace of STM32CubeIDE or any other supported IDE such as the IAR Embedded 

Workbench or Keil MDK. STM32CubeIDE was chosen over these IDEs due to the fact that it is 

not a subscription-based product. 

 Detailed description of the workflow for each of the simulations will be included in the 

following chapter.  
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Chapter 5 - Code Generation with MBD 

The original MotorLab microcontroller’s firmware is a sophisticated custom Real Time 

Operating System (RTOS), a modified version of an OS developed for used in Unmanned Aerial 

System (UAS) flight controller. The system supports the level of complexity and computational 

bandwidth required for flight control systems so it will have more than adequate capacity for the 

introductory controls lab exercises. To allow students to continue to use a well performing 

controller, the MBD generated firmware must be required to run control loop rates at 10kHz. All 

the other peripheral tasks such as data acquisition must be intricately developed to not interfere 

with the main control loop rate. Available methods for verifying the system performance will be 

explored later in this chapter using HIL and their respective performance and limitations will be 

discussed in Chapter 6. 

Figure 5.1 and Figure 5.2 captures the major differences between the MIL, SIL, PIL, and 

HIL stages of MBD development for MotorLab. The four stages will be described in the 

following subsections. The MIL and SIL are simulations performed only on the host PC and do 

not require microcontroller. The PIL and HIL stages require both the microcontroller and 

sometimes the actual physical system depending on the level of HIL verification. In advanced 

industry testing environment, especially in aerospace where HIL testing sometimes can be 

difficult, additional industrial grade hardware and software are used to test the plant response in 

real-time simulation. These real-time simulation solutions are provided from a partnership 

between MathWorks and Speedgoat. Speedgoat is the exclusive hardware manufacturer for 

Simulink Real-Time toolbox and supports much higher data bandwidth for detailed simulation in 

real-time [18]. 



26 

 

Figure 5.1 MIL and SIL Verification 

 

 

Figure 5.2 PIL and HIL Verification 

 

5.1 Model-In-Loop 

The very first step in MBD is the realization of the plant model to design a controller. 

Figure 5.3 below shows the Simulink model containing two identical system models. It is 

modified from the lab exercise #7, where students are taught to construct a system similar to the 

MIL phase. The block diagrams in Chapter 3 are used as components of this model. The closed 

loop system on top uses a continuous PID controller and the other uses a discrete PID controller. 

The two feedback gains named blow and bhigh denote the difference in friction coefficient 

values at high and low speed of the motor respectively. This will allow for the model to use a 
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higher coefficient of friction at low speed and lower coefficient at high speed. Once the plant 

model is created, the controller model can be developed to verify the controllability of the plant. 

In the MIL simulation, only the top closed loop system model is required. The continuous PID 

controller will drive the simulated system response. This step is to make sure the controller logic 

can in fact control the plant model within the desired performance criteria. 

 

Figure 5.3 Simulink Block Diagram for MIL, SIL, and PIL 

 

The resulting Simulink data output will be exported back into the MATLAB workspace (to 

out.simout) using the export block as shown above. This workspace variable will contain the 

time series variable and position reading at each time step and can be used to plot the result. It is 

important to record simulation results to compare responses between the other simulations, as 

well as the final HIL verification stage. The resulting plots should show very similar responses 

between the continuous and discrete controllers driving the same plant model. The comparison 
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plots are included in Chapter 6 and note that this step does not require any hardware and can be 

done with only the host PC running MathWorks products. 

5.2 Software-In-Loop 

After verifying the controller and plant model in the MIL step, the next step is to 

configure the Simulink diagram to run SIL. The difference between MIL and SIL is that the 

former uses the host PC to simulate everything, and the latter uses a microcontroller emulator to 

simulate the controller hardware. Figure 5.4 below shows the configuration required for the 

model to use ARM Cortex-M3 emulator. Note that the microcontroller on the Discovery board is 

an ARM Cortex-M4 based controller, but the emulator for M4 is not yet available with the 

hardware implementation package. 

 

Figure 5.4 SIL Hardware Configuration 

 

After configuring the Simulink diagram to run in SIL mode, the next step is to generate the 

controller block that will contain the C code. As shown in Figure 5.5 below, right click on the 

discrete controller block and navigate to the hardware deployment option. 
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Figure 5.5 SIL/PIL Block Generation Dialog Box 

 

After choosing the deployment option, a new dialog window will open as shown in Figure 5.6. 

 

Figure 5.6 Build Code Dialog Box 

 

Click on the Build button and when the build process completes, a new Simulink diagram 

window opens with the C code controller block as shown in Figure 5.7. Replace the discrete 

controller block with this new SIL controller block and run the simulation. Similar to the 

previous stage, SIL does not require the actual hardware. Also, note the block is named PIL, but 

this is due to Simulink not differentiating the name between SIL and PIL steps. The Simulink 
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diagram will run the controller based on the SIL configuration from Figure 5.4 above regardless 

of the block name. 

 

Figure 5.7 PIL Simulink Block 

 

Once again, when the simulation completes make sure to save the simulation response 

and exported workspace variable for the analysis. 

5.3 Processor-In-Loop 

Running the simulation in PIL is similar to SIL from the previous subsection. To deploy 

PIL, configure the Simulink diagram to run the controller block outside of host PC with the 

hardware select dropdown menu. For this thesis, STM32F4-Discovery is chosen but other 

hardware boards are also available depending on which hardware support package is installed. 

Repeat the process from Figure 5.5 through Figure 5.7 and replace the SIL controller block with 

the new PIL block. 

Unlike the SIL stage, it is critical at this point to setup the hardware to have correct 

communication between the host PC and microcontroller board. As described in Chapter 2, the 

FTDI cables are connected to the designated TX/RX GPIO pins which are configured as shown 

in Figure 5.8 from MathWorks webpage [19]. Note the COM port number is arbitrary and will 

depend on the port which the FTDI board is connected to. 
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Figure 5.8 PIL Configuration for the Target Hardware 

 

When the run button is clicked, Simulink will build, deploy, and run the simulation in series with 

the target microcontroller and manage the data exchange. Observe the exported data back in the 

MATLAB workspace and save the response data when the simulation terminates. 

When the modified ST-LINK VCP is used instead of the FTDI solution as mentioned in 

Chapter 2, the ST-LINK will block until its serial communication task is completed, making the 

total simulation time extremely long and impractical. The use of FTDI is also recommended by 

MathWorks documentation. 

5.4 Hardware-In-Loop 

HIL is the final verification step of MBD development cycle. HIL may include the 

complete plant setup or be partially made up of simulation models. Factors such as safety, cost, 
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time, and size may influence what physical devices may be included or simulated. Several 

repetition of HIL may be required with additional physical devices integrating into the system at 

each repetition. Following the HIL, further investigation and reiteration back to previous stages 

may become necessary as the real-world problems, such as the high frequency dynamics and 

nonlinearity, can start to occur. Analysis of the expected occurrence of high frequency dynamics 

from Chapter 3 are included in Chapter 6. 

In the following subsections, limitations of the software used in the HIL development, 

specifically from Simulink and STM32-MAT/TARGET, are introduced and the method 

developed to mitigate the said limitation will be presented. 

5.4.1 Simulink External Mode 

 External mode is a feature of the Simulink Coder package. External mode provides the 

user with real-time execution of I/O driver code blocks while exchanging parameter data 

between the host PC and the target microcontroller board. This feature uses a shared memory 

interface, enabling users to manipulate signals, such as PID gain values or step input value, 

during the simulation runtime. This can be helpful for tuning the controller while observing the 

system response. Below is a figure from MathWorks webpage describing External mode. 



33 

 

Figure 5.9 Excerpt of External Mode from MathWorks Help Center 

 

5.4.2 STM32CubeMX Configuration 

 The microcontroller on the Discovery board includes several peripherals and components 

that can be used in wide range of applications. For example, the Discovery board includes 

multiple counters, timers, registers, ADCs and DACs, and communications interfaces. Before the 

release of STM32CubeMX, all of the peripheral drivers had to be manually developed using 

their reference manual and their Application Programming Interface (API). To ease the burden of 

developers manually configuring each microcontroller board, the manufacturer developed 

STM32CubeMX that works with Simulink. 

STM32CubeMX is an interactive software that supports Simulink as a base hardware 

setup tool. In this subsection, the detailed description of C code project initialization using the 

STM32CubeMX program is presented. With the help of STM32CubeMX, the hardware target 

and its peripherals can be configured as desired. Open STM32CubeMX then navigate to 
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ACCESS TO MCU SELECTOR under New Project and find a desired hardware target. Double 

clicking on the target selected will bring up Pinout & Configuration tab like Figure 5.10 below. 

If a dialog window asking about initialization of every peripheral pin appears, select no. This 

will prevent the project from including unnecessary initialization code and keep the project files 

streamlined. 

 

Figure 5.10 STM32CubeMX Pinout & Configuration Tab 

 

The Pinout & Configuration tab will be used to setup required peripherals used for controlling 

the MotorLab device. Note the device category pane along the left of Figure 5.10. The first thing 

to configure is System Core. Within System Core, select the RCC section and set High Speed 

Clock to use Crystal/Ceramic Resonator. This will configure the clock to use the maximum 

possible clock frequency for driving peripherals. Other peripherals like Timer settings for 

generating PWM and reading encoder counts can be configured within this tab as well. Refer to 

Figure 5.10 above to see various GPIO pins and their names which reflect their respective 

functions. For example, TIM1 and TIM3 are used to drive PWM signals and count encoder 

angles respectively. 
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The next step is Clock Configuration. The specific parameter values for the clock 

configuration were found by studying the MotorLab device information files and the C-code file 

“system_stm32f4xx.c”. This is the setup code that runs in the original MotorLab device which 

was created by Dr. Schinstock. The view of the complete Clock Configuration is shown in 

Figure 5.11. This will configure the microcontroller to use its maximum clock cycle for 

peripheral devices. This maximum clock cycle is 168MHz for the Discovery board. 

 

Figure 5.11 Project Clock Configuration 

 

Once the configuration is complete and the parameters entered, select GENERATE CODE to 

autogenerate the initialization code for the selected peripheral devices. This will generate and 

export the project code (with the .ioc extension) to the IDE and toolchain specified under Project 

Manager tab. The firmware code that will be generated by Simulink will be appended to this 

base C project code. 
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5.4.3 STM32-MAT/TARGET Block Set 

One of the limitations of Simulink and its External mode is the lack of target support for 

STM32 microcontrollers. The hardware support package provided by MathWorks includes only 

three microcontroller boards and lacks the ability to configure individual peripherals. To mitigate 

this issue, this thesis will make use of another support package from STM called STM32-

MAT/TARGET. It will be used for the HIL verification. This support package provides the users 

with more advanced and customizable driver blocks. But the most beneficial feature from 

STM32-MAT/TARGET package is that it supports the integration of configuration code file 

generated by the STM32CubeMX in the previous subsection. In Figure 5.12 is the STM32 

Configuration block and its parameter dialog box. 

 

Figure 5.12 STM32 Configuration Block and Parameter Dialog Box 
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This block configures the Simulink and Simulink Coder to generate source files using the .ioc 

file specific to the target hardware. With the Simulink diagram using the STM32-

MAT/TARGET configuration block, the development ecosystem now incorporates Simulink, 

STM32CubeMX, and STM32CubeIDE. This in essence extends the available target hardware 

from three boards that are included in the MathWorks’ support package, to virtually every MCUs 

manufactured and supported by STM. 

After setting up the hardware target using the block shown in Figure 5.12 above, the next 

step is to configure Simulink to use a different system target file. The Configuration Parameters 

dialog box within Simulink is shown below in Figure 5.13: 

 

Figure 5.13 Simulink Target Selection using STM32-MAT/TARGET 

 

The selected system target file with the file extension of .tlc in the figure above is included in the 

STM32-MAT/TARGET package. This setup will instruct Simulink Coder to compile the block 

diagram and generate code using stm32.tlc to the target the hardware specified by the 
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configuration block. After the system target file has been configured, the next step is to specify 

the installed path of STM32CubeMX. As shown in Figure 5.14 below, STM32CubeMx Path 

update box should be checked. This will search for a directory containing the software and 

autofill the empty installation path box. 

 

Figure 5.14 STM32 Options for STM32CubeMX Installation Path 

 

The last step of configuring the Simulink diagram for External mode is to set the 

verification interface method. Navigate to Interface under Code Generation within Configuration 

Parameters dialog box. Select External mode as highlighted in Figure 5.15 below. Also note that 

inside the Interface section, there are other options such as External mode configuration to setup 

communication port, but this will be ignored during the build as described in the following 

subsection as a bug. 
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Figure 5.15 Selection of Verification Interface 

 

Now the Simulink diagram is configured to be verified using External mode along with the 

hardware in real-time as the HIL. 

5.4.4 Limitations of STM32-MAT/TARGET 

At the time of the development, an existing bug in the system prevents the program from 

launching STM32CubeIDE at the end of the code generation in External mode. 

 

Figure 5.16 The Diagnostics Window with the Error Message 

 

To bypass this bug, the Build button under DEPLOYMENT should be used instead of Build, 

Deploy & Start as shown in Figure 5.17. 
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Figure 5.17 Build Button 

 

Refer to Figure 5.18. When the build is initiated, a series of dialog windows will appear to 

configure the host PC COM port where the FTDI converter is connected and to select IDE. This 

will also override any values set within Figure 5.15. 

 

Figure 5.18 External Mode Dialog Windows 

 

When the build completes, the generated project can be opened using the IDE selected with 

STM32CubeMX in the previous step. Run the debugger within the IDE, then open External 

Mode Control Panel from the Simulink diagram toolbar. While the debugger is running in the 

IDE, the hardware can be connected to the Simulink diagram using Connect button as shown in 

Figure 5.19. 
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Figure 5.19 External Mode Control Panel 

 

The method described in this subsection bypasses the error message shown in Figure 5.16 and 

connect to the hardware while communicating in real-time using External mode. The complete 

Simulink diagram for the motor control apparatus utilizing the STM32-MAT/TARGET, 

MATLAB, and Simulink block sets and detailed view of subsystems is shown in Figure 5.20 and 

Figure 5.21 respectively. 
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Figure 5.20 The Simulink Diagram of MotorLab 

 

 

 

Figure 5.21 Timer Blocks for PWM and Encoder Subsystems 

 

At this point of the development, the microcontroller can exchange data with the host PC to edit 

parameters of the motor controller to test and verify the system response. However, as soon as 

the data acquisition block is implemented within the diagram, running the simulation in External 

mode becomes impractical. The increase in required bandwidth for data acquisition is too much 

when added on top of the External mode’s overhead. The low-cost microcontroller board cannot 

physically handle the required data transmission rate. For instance, when External mode is used 
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to interact with the hardware in real-time while transferring velocity data back to the host PC, the 

control loop will deviate from its fixed loop frequency of 10kHz. This results in instability of the 

motor control. The physical setup of measurement is shown in Figure 5.22. The measured 

abnormal control loop frequency is shown in Figure 5.23. 

 

Figure 5.22 Control Loop Rate Verification using Oscilloscope 

 

 

Figure 5.23 Abnormality in Control Loop Frequency 
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This problem arises from the generated External mode source code that utilizes interrupt-based 

communication between the hardware and host PC. The affected speed control plot is shown in 

Figure 5.24 below and is identified to occur near the same interval. 

 

Figure 5.24 Resulting Plot of Speed Control with External Mode 

 

Also, HAL_UART_RxCpltCallback function is hardcoded within the External mode’s source 

code. This is a callback function that is called when the data receive is completed on a UART 

port. The MathWorks’ usage of the function, as shown in Listing 5.1, prevents any new custom 

blocks to define a new behavior of the callback function during receive interrupts. The 

compilation will fail with the multiple definition error. This severely hinders the performance of 

the serial communication, and the user is forced to utilize communication with blocking. 
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Listing 5.1 STM32SerialRtiostream.c Interrupt Callback Function Snippet 

/****************************************************************************

*** 

* Function Name  : HAL_UART_RxCpltCallback 

* Description    : Rx Transfer completed callbacks. 

* Input          : UART handle 

*****************************************************************************

**/ 

void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart) 

{ 

    HAL_StatusTypeDef status; 

 

    /* Increment pointer on receive buffer. */ 

    ptSet++; 

 

    /* Increment number of receive char. */ 

    nbRcv++; 

 

    /* Test end of receive buffer. */ 

    if (ptSet == &buffRcv[BUF_RCV_LEN]) 

    { 

        ptSet = buffRcv; 

    } 

 

    if (ptSet == ptGet) 

    { 

        /* Stop Rcv. */ 

        rcvOn = 0; 

    } 

    else 

    { 

        rcvOn = 1; 

        /* Rcv one more. */ 

        status = HAL_UART_Receive_IT(EXT_MODE_USART_HANDLE, ptSet, 

(uint16_t)1); 

 

        /* Test if ask for Rcv can't be done. */ 

        if (status != HAL_OK) 

        { 

            rcvOn = 0; 

 

            if (EXT_MODE_USART_HANDLE->Lock == HAL_UNLOCKED && 

HAL_UART_GetState(EXT_MODE_USART_HANDLE) == HAL_UART_STATE_BUSY_RX) 

            { 

                HAL_UART_Init(EXT_MODE_USART_HANDLE); 

            } 

        } 

    } 

} 
 

 
 

Another issue coupled with the External mode code is the usage of HAL functions by 

STM32-MAT/TARGET peripheral driver blocks. When the debugger first initializes the project 

before connecting to the Simulink diagram, the CCR value within the register viewer is observed 

to be at an arbitrary value instead of zero. This is undesirable as the CCR register is responsible 

for the PWM generation. It will result in indeterministic behavior, and the system response will 

be random. The last bug observed within the Simulink diagram using External mode is the usage 

of dashboard blocks. To make the simulation more user friendly, implementing visual blocks 

without complex signal lines can be beneficial in contrast to the diagram shown in Figure 5.20 

above. But when the diagram is running, either the dashboard blocks do not update or disappear, 

giving no control of the device in real-time. 

5.4.5 Workarounds Using STM32-MAT/TARGET 

To keep the integrity of MBD approach with user friendliness from start-to-end 

development cycle and to avoid students from having to debug code manually, Simulink 

External mode will not be employed for HIL verification. Instead, a USB serial communication 

protocol will be developed to allow students to interact with the hardware in real-time. This 

approach will alleviate the bandwidth issue as well as establishing a simple and swift connection 

with the microcontroller. Thus, making it an efficient method for the hardware testing in HIL. 
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To enable a serial communication protocol over the micro-USB port, STM’s USB Device 

middleware will be used to implement USB OTG FS. Once the firmware is flashed, the 

Discovery board only requires the micro-USB for data acquisition. This simpler connectivity 

also makes it a desirable approach to hardware testing without cluttering up the apparatus with 

additional wiring. In contrast, FTDI converter requires minimum of three wires and a USB cable. 

Listing 5.2 below shows the transmit function that will send string data with a length of 2048 

lines. Each string contains time, position, velocity, and the current measured from the amplifier.  

Listing 5.2 USB OTG FS Transmit Function 
            for (uint16_t i=0; i < 2048; i++) { // send over the float data 

                __disable_irq(); 

                snprintf(strBuffer, 51, "t:%0.3f|p:%0.3f|v:%0.4f|a:%0.3f|", 

                         data[i].floatVals[0],data[i].floatVals[1], 

                         data[i].floatVals[2],data[i].floatVals[3]); 

                __enable_irq(); 

                while(CDC_Transmit_FS((void*)strBuffer, sizeof(strBuffer))); 

            } 

            return; 
 

 

To use the custom source code files within the Simulink context, MATLAB System Block can 

be implemented. MATLAB System Block is like an interpreter between the two programming 

languages. It will translate C functions to be used within Simulink’s code generation. Listing 5.3 

is a snippet of the MATLAB System Block source code. It is a template file that can be modified 

to fit the use. The MATLAB function coder.cinclude() is used to include the header file during 

its initialization as the function name suggests. Then, another MATLAB function coder.ceval() is 

used to call the C function in the main control loop. The copyStr function contains the code 

snippet in Listing 5.2. Additional variable names such as posMeasured are the input arguments to 

the function. 



47 

Listing 5.3 MATLAB System Source Block
methods (Access=protected) 
    function setupImpl(obj) 
        if coder.target('Rtw') 
            % Call C-function implementing device initialization 
            coder.cinclude('ReceiveTransmit.h'); 
        else 
            % Place simulation setup code here 
        end 
    end 
    function stepImpl(obj,posMeasured,velMeasured,currentMeasured) 
        if coder.target('Rtw') 
            % Call C-function implementing device output 
            coder.ceval('copyStr',posMeasured,velMeasured,currentMeasured);     
        else 
            % Place simulation output code here 
        end 
    end 
 

 

  



48 

Chapter 6 - HIL Verification and Analysis 

This chapter will cover a few lab exercises to compare the results and performance 

between the original MotorLab and the MBD deployed embedded controller. Figure 6.1 below 

depicts the full HIL Simulink diagram developed for this thesis. 

 

Figure 6.1 HIL Simulink Diagram 

 

Starting from the left, the blue block is the target hardware configuration block. Below that is the 

communication-receive block. It will listen to the host PC’s commands such as PID gains or 

what type of input wave to be used. Next block is the PID subsystem. It has an additional input 

parameter which is the input wave magnitude. Following the PID is PWM Analog Out block. As 

the name suggests, this block sends the PWM signal to the amplifier. Note there is no signal 

coming out of the block. This is because the feedback sensor is the encoder, which is the next 

block. Encoder block will read encoder counts to measure the position of the motor. The position 

values are also used to calculate the speed using the low pass filter inside. The next block named 

Feedback Mode Selector is used to send back either the position or velocity depending on the 

controller mode. The last two are the communication-transmit and Amp Enable blocks. The 
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communication-transmit block will send the data back to the host PC when the transmit buffer is 

full. More details on the data acquisition will be covered in the following subsection. 

Shown in Figure 6.2 below highlighted in red is the control loop timing verification using 

an oscilloscope. Comparing the measured frequency to Figure 5.23 in the previous chapter, the 

final embedded controller developed by this thesis shows a uniform interval at 10kHz. 

 

Figure 6.2 Oscilloscope reading of GPIO pin at 10kHz 

 

6.1 Data Acquisition 

Table 6.1 below shows the structure of the incoming data stream from the 

microcontroller. The Command value will depend on the controller mode. The rest is always sent 

from the microcontroller to be used for analysis. 

Table 6.1 Data Acquisition Stream Format 

Column 1 2 3 4 5 

Description Time Command Motor Position Motor Speed Motor Current 

Variable 𝑡 (sec) 

𝜃𝑐 (deg), 

𝑤𝑐 (rpm), 

𝑖𝑐 (amp) 

𝜃 (deg) 𝜔 (rpm) 𝑖 (amp) 
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6.2 Velocity Control 

As introduced in Chapters 3 and 5, the high frequency dynamics affecting the system will 

be discussed using the speed control responses. Refer to Figure 6.4 below. The legend name HIL 

denotes the embedded controller generated from the MBD, Nominal model is from the 

MATLAB simulation code without the low pass filter, and High Freq. Model from the same 

MATLAB simulation but with the low pass filter added. 

The nominal plant is described as the following from Equation (3.4) where 𝑘𝑡 is the 

motor torque constant, 𝑘𝑑𝑟 is the conversion from radian to degree, and 𝑘𝑟𝑑 is the output 

conversion to RPM: 

𝐺𝑠𝑦𝑠𝑡𝑒𝑚 =  
𝑘𝑡𝑘𝑑𝑟𝑘𝑟𝑑

𝐽𝑚𝑠 + 𝑏
 

Multiplying the above equation with a proportional controller 𝐺𝑐 = 𝐾𝑝 = 0.0032
𝐴𝑚𝑝

𝑅𝑃𝑀
, the first 

order closed loop system response can be obtained using the MATLAB syntax as shown below: 

Listing 6.1 Nominal Closed Loop System Response 

Tnominal = feedback(kp*Gs, 1); 
 

 

For the higher order system response with the low pass filter, the following equation is used: 

𝐺ℎ𝑓 =  
𝜔𝑐𝑓

2

𝑠2 + 2𝜁𝜔𝑐𝑓𝑠 + 𝜔𝑐𝑓
2
 

Similar to the nominal response, the closed loop response is obtained: 

Listing 6.2 High Frequency Closed Loop System Response 

Thf = feedback(kp*Ghf*Gs, 1); 
 

 

For the actual system response using the embedded controller, the GUI based on Simulink 

function blocks and various dashboard blocks are used as shown in Figure 6.3 below. Users can 

edit various parameters to observe and collect system output data. 
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Figure 6.3 HIL Graphical User Interface 

 

The HIL GUI is developed to reflect the current MotorlabGUI parameters in order to offer 

students the same required functionality to conduct lab exercises. The resulting plot of a speed 

control using a specific Kp gain is shown below in Figure 6.4. 

 

Figure 6.4 High Frequency Dynamics in the System Responses 
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As the plot above clearly shows, there are some differences between the plots induced from the 

high frequency dynamics of the filter. The filter’s cutoff frequency, or its natural frequency, is 

set at 300
𝑟𝑎𝑑

𝑠
. Applying the 10x rule of thumb, this gives the upper limit for the closed loop poles 

of the system at around 30
𝑟𝑎𝑑

𝑠
. With a proportional gain of 0.0032

𝐴𝑚𝑝

𝑅𝑃𝑀
, the magnitude of the 

closed loop pole from the nominal model is 120.8
𝑟𝑎𝑑

𝑠
, and is close to the real pole of the system 

with the filter at -136.1
𝑟𝑎𝑑

𝑠
. These are well over the rule of thumb limit and resulted in the 

oscillations with noticeable amplitude. Moreover, the other two poles from the model with the 

filter have a magnitude of 282.6
𝑟𝑎𝑑

𝑠
 which is much closer to the magnitude of the real pole and 

therefore the complex poles affect the system response noticeably. And further deviation can be 

observed from the actual system response. This phenomenon will be observed again in position 

control using the embedded controller. 

6.3 Position Control with P Controller 

When a proportional gain is 0.01
𝐴𝑚𝑝

𝑑𝑒𝑔
, the responses between the HIL and MotorlabGUI 

are the same, but the difference between the two and the MIL, SIL, and PIL responses can be 

recognized as shown in Figure 6.5 and Figure 6.6 below. This is due to the high frequency 

dynamics or other non-linear dynamics that are not modeled in the simulations as Kp gets higher. 

To compare this higher Kp to the lower Kp of 0.005
𝐴𝑚𝑝

𝑑𝑒𝑔
, the noticeable difference in plot 

vanishes. 
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Figure 6.5 Proportional Position Control with Higher Gain 

 

The above figure is the position control comparison between the MotorLab device and 

the HIL response. To minimize the variables in system response, same motor was used with 

different microcontrollers. 

Figure 6.6 below compares the same system response using the two different MBD steps, 

PIL and HIL. The PIL utilizes microcontroller in loop with the host PC to run the embedded 

controller with the simulated plant. In contrast, the HIL is a full verification method with the 

actual plant and the embedded controller. 
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Figure 6.6 PIL vs. HIL Proportional Control Comparison 

 

The visible difference closely resembles the speed response plot above when the high frequency 

dynamics start to affect the system, but the frequency of the oscillations are in phase. 

In order to confirm that the higher gain is affecting the system response, the following 

figures were obtained using a lower gain of 0.005
𝐴𝑚𝑝

𝑑𝑒𝑔
. 
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Figure 6.7 Comparison Between the MBD Simulations and the HIL Verification 

 

Unlike the response resulting from the higher gain, the system response above shows well 

matching plots. This can be expected as the gain gets lower, the magnitude of higher order poles 

gets further away from the magnitude of the real pole. The following Figure 6.8 and Figure 6.9 

are comparisons between the various MBD stages.  
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Figure 6.8 Comparison Between the MBD Simulations and the HIL Verification 

 

Figure 6.8 above replaces the SIL response from Figure 6.7 with the PIL response. Again, the 

plots appear to be a good match with the HIL response slightly larger in amplitude. And the final 

MBD response figure below is the pure simulation without the actual motor in the loop. 
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Figure 6.9 Comparison Between the MBD Simulations 

 

6.4 Position Control with PD Controller 

The lab #6 students conduct is the utilization of Proportional-Derivative controller. This 

lab is designed to teach students the limitations of using the square wave input to test systems. 

Up until this lab, students are only required to use step input to the system. To establish a diverse 

understanding of control theory coupled with the limitations of physical system, students learn 

about the output saturation and why different input wave types are necessary. For example, 

suppose a step input of 2000 deg is used with a PD controller as the following: 

𝜃𝑐 = 2000𝑑𝑒𝑔 

𝐾𝑑 = 0.0001
𝑎𝑚𝑝 ∙ 𝑠𝑒𝑐

𝑑𝑒𝑔
 

𝐺𝑐(𝑠) = 𝐾𝑝 + 𝐾𝑑𝑠 
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With the initial error of 2000 deg at the first timestep, then the output from the controller 

becomes: 

𝑒(𝑡) = 2000𝑑𝑒𝑔 

𝐿{𝑒(𝑡)} = 𝐸(𝑠) =
2000

𝑠
 

𝐼𝑐(𝑠) = 𝐸(𝑠) ∙ 𝐺𝑐(𝑠) =
𝐾𝑝 ∙ 2000

𝑠
+ 𝐾𝑑 ∙ 2000 

Then, taking the inverse Laplace transform to get the step and impulse functions: 

𝐿−1{𝐼𝑐(𝑠)} = 𝐾𝑝 ∙ 2000 ∙ 𝑢(𝑡) + 𝐾𝑑 ∙ 2000 ∙ 𝛿(𝑡) 

Here, impulse function has an area of 𝐾𝑑 ∙ 2000 = 0.2𝑎𝑚𝑝 ∙ 𝑠𝑒𝑐. Since the embedded controller 

has a finite step size of 10kHz, or 0.0001sec, this suggests that the amplifier needs to output 

20,000,000 amp or extremely small time steps to correct the initial error. For obvious reasons, 

this is not feasible for lab exercises or even for the most industrial applications. 

This control problem highlights that the actual energy which drives the plant is much 

smaller than predicted by the linear model due to the amplifier saturation at ±3amps. To mitigate 

this inadequate PD controller response, triangle input wave function will be implemented. It is 

also a good idea to test systems with various input signals, not just step inputs. 
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Figure 6.10 Smaller PD Gains with Large Command Input 

 

Figure 6.10 above shows the system response when triangle input wave is used against lower PD 

controller gains. There exists a small deviation from the command tracking, but it is sufficient in 

correcting the error signal. In contrast, Figure 6.11 below shows the system response with higher 

PD gains. Comparing the two different PD controllers, the higher PD gains show better tracking 

to the input command. 
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Figure 6.11 Higher PD Gains with Large Command Input 

 

Finally, the embedded controller produced from the MBD is compared to the original 

MotorLab device using the same gains as Figure 6.11. Figure 6.12 below shows very closely 

matching plots and Figure 6.13 shows a zoomed in window of Figure 6.12. Note the difference is 

miniscule, showing that the MBD deployed control system matches well with the current device. 
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Figure 6.12 HIL vs. MotorlabGUI with Higher PD Gains 

 

 

Figure 6.13 Closer Look at Figure 6.12 
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Chapter 7 - Additional MBD Applications 

As stated in the previous chapter, taking advantage of the software used in this thesis can 

assist with extending the MBD approach in embedded control applications. This chapter will 

introduce the basic MBD deployment of an embedded control using the Arduino based robot car. 

The robot car is equipped with a distance measuring sensor as its feedback signal. Below is the 

hardware image. It is composed of a basic motor driver, Arduino Uno, and distance sensor. The 

distance sensor has ultrasonic transmitter and receiver. The distance is calculated by measuring 

the time it takes for the sound to reflect from an object back to the receiver. The range of 

distance it can measure is between 2 cm to 400 cm. 

 

Figure 7.1 Arduino Robot Car with Ultrasonic Distance Sensor 

 

 The Simulink diagram is shown below in Figure 7.2. For this Arduino target board to 

work with Simulink, additional hardware support packages must be downloaded. To note, there 

are many communities and forums dedicated to setting up Arduino with Simulink. This can be 
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helpful with troubleshooting the setup. Unfortunately, this was not the case for the Discovery 

board since it requires steeper learning curve when compared to Arduino boards. 

 

Figure 7.2 Visual Deployment of Embedded Controller using Arduino Uno 

 

The diagram is designed to control the distance in front of the robot car, which is a simple 

position control application. This was chosen because the concept of control system can be more 

obvious when it relates to something students can grasp. In this case, an overly simplified 

adaptive cruise control using PID. The block named Target Distance is the reference input by a 

user. The vehicle will try to keep this distance. It is measured in meter. The block named Motor 

Driver is a Simulink subsystem which can help with simplifying the topmost view of the 

diagram. The detailed view of the subsystem block is shown in Figure 7.3 below. Additional 

logic was required to drive the system forward or backward depending on the distance sensor 

readings. 
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Figure 7.3 Motor Driver Subsystem 

 

 As this vehicle was inexpensive and intended for only visualizing the concept of PID 

controller, there is room for performance improvements such as adding wheel encoders. Wheel 

encoders can be used as an additional feedback sensor, making the system more controllable. But 

nevertheless, the entire system costs less than $30 and is capable of integrating a basic MBD 

development. It is also modular where students can take it around and work with it at their own 

leisure. 
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Chapter 8 - Conclusions 

The main objective of this thesis was to demonstrate the application of MBD to expand 

and advance the current motor control apparatus. This was achieved by adopting the modern 

methodology used in embedded controller development. The primary goal of this research was to 

develop an easy-to-use graphical interface for developing and verifying the embedded control 

system for students. This would allow students to drag and drop proper blocks within Simulink 

to design and implement an embedded controller. For the verification using HIL, a few example 

lab exercises from the introductory control theory course were examined and analyzed using the 

rapidly deployed embedded controller based on MBD. The degree to which the newly created 

controller matched the performance of the original device was very encouraging. Furthermore, 

an additional inexpensive MBD application based on the Arduino robot car was briefly 

introduced. 

Many difficulties were encountered trying to minimize the cost associated with the MBD 

implementation. The free to use software had limited documentation or resources were not 

available from the supplier for it to function properly. Thus, to integrate the MBD required a 

very lengthy process of trial and error for some parts of the program to work. Other parts had to 

be completely redeveloped and substituted for the MBD to function as intended. 

When the rapidly deployed embedded controller was compared to the original MotorLab 

device, the difference in performance was insignificant and satisfactory. The operating procedure 

is very similar to that used by the MotorLab software, making the embedded controller familiar 

to instructors and students. Applying the researched method of creating new blocksets to more 

complex systems, a new course on teaching students the MBD process could be created. The 

outcome of the course could include the MBD designing process, testing with hardware, analysis 
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of auto-generated firmware, and the controller tuning process to drive the system more 

efficiently. 

Realistically, the solution developed by combining many tools from marginally supported 

sources create a significant problem for continued use. Maintaining a functioning system in the 

face of uncoordinated software updates and the need to update locally created tools to retain 

compatibility would require support from well-trained individuals. The elegant option is to 

acquire the more extensive MathWorks tool set that are designed specifically for MBD . The 

problems confronted in this thesis highlight many of the basic issues associated with 

establishing, maintaining, and operating effective teaching laboratories in an educational 

environment. 
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Appendix A - ME570 MotorLab Laboratory Assignments 
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Appendix B – ME570 MotorLab Hardware Specifications 
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