
Improving HPC system performance by predicting job resources for

submitted jobs using machine learning techniques

by

Mohammed Tanash

B.Sc., Irbid National University, Jordan, 2005

M.Sc., University Utara Malaysia, Malaysia, 2008

M.Sc., New Mexico State University, USA, 2014

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Abstract

Overestimation of High Performance Computing (HPC) job resources allocation typically

happens because of the wide variety of HPC applications, environment configuration options,

and the lack of knowledge of the complex structure of HPC systems. This overestimation

of resources will waste and devour HPC resources; hence, this will lead to inefficient cluster

utilization, increased wait times, and increased turnaround time for submitted jobs.

With this background, this dissertation aims to investigate the benefits, effects, and

challenges of using machine learning techniques for predicting job resources on HPC systems

from different perspectives.

First, we have developed a machine learning model based on using several supervised ML

discriminative models from the scikit-learn machine learning library applied on historical

data from SunGrid Engine (SGE) provided by an HPC service provider at the Kansas State

University called Beocat. Our methodology achieved high accuracy in predicting the amount

of required time and the amount of required memory for Beocat HPC resources.

Second, we have designed a machine learning methodology called Mixed Account Re-

gression Model (MARM) built based on several supervised machines learning discriminative

models from the scikit-learn machine learning library and LightGBM. Our work has been

implemented and tested using historical data (sacct data) provided from two HPC providers,

an XSEDE service provider at the University of Colorado-Boulder (RMACC Summit) and

the Kansas State University (Beocat). Our models help dramatically reduce computational

average waiting time, reduce turnaround time. Moreover, our models help achieve higher

utilization, throughput, and efficiency for HPC resources.

Third, we introduced our first-ever implemented, fully-offline, fully-automated, stand-

alone, and open-source Machine Learning tool called AMPRO-HPCC. Our tool aims to help

HPC admins and HPC users predict memory and time requirements for their submitted jobs

on HPC Clusters.

Finally, we study and investigate the impact of our machine learning models in running

jobs on the cloud by comparing the cost of running the jobs with and without using our

machine learning models on most popular cloud computing resources, including Amazon

Web Services such as (AWS), Microsoft Azure, Google Cloud Platform, Digital Ocean, IBM

Cloud, and using the local resources of Holland Computing Center at the University of

Nebraska - Lincoln.

In summary, in this work, we present and develop novel methodologies for predicting job

resources (memory and time) for submitted jobs on HPC systems based on historical jobs

data provided by the HPC systems scheduler. The outcomes are expected to dramatically

reduce computational average waiting time, reduce turnaround time for submitted jobs.

Moreover, increased utilization, increased throughput, improved efficiency, and decreased

power consumption for the HPC systems.

Improving HPC system performance by predicting job resources for

submitted jobs using machine learning techniques

by

Mohammed Tanash

B.Sc., Irbid National University, Jordan, 2005

M.Sc., University Utara Malaysia, Malaysia, 2008

M.Sc., New Mexico State University, USA, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Approved by:

Major Professor
Daniel Andresen

Copyright

© Mohammed Tanash.

2021

Abstract

Overestimation of High Performance Computing (HPC) job resources allocation typically

happens because of the wide variety of HPC applications, environment configuration options,

and the lack of knowledge of the complex structure of HPC systems. This overestimation

of resources will waste and devour HPC resources; hence, this will lead to inefficient cluster

utilization, increased wait times, and increased turnaround time for submitted jobs.

With this background, this dissertation aims to investigate the benefits, effects, and

challenges of using machine learning techniques for predicting job resources on HPC systems

from different perspectives.

First, we have developed a machine learning model based on using several supervised ML

discriminative models from the scikit-learn machine learning library applied on historical

data from SunGrid Engine (SGE) provided by an HPC service provider at the Kansas State

University called Beocat. Our methodology achieved high accuracy in predicting the amount

of required time and the amount of required memory for Beocat HPC resources.

Second, we have designed a machine learning methodology called Mixed Account Re-

gression Model (MARM) built based on several supervised machines learning discriminative

models from the scikit-learn machine learning library and LightGBM. Our work has been

implemented and tested using historical data (sacct data) provided from two HPC providers,

an XSEDE service provider at the University of Colorado-Boulder (RMACC Summit) and

the Kansas State University (Beocat). Our models help dramatically reduce computational

average waiting time, reduce turnaround time. Moreover, our models help achieve higher

utilization, throughput, and efficiency for HPC resources.

Third, we introduced our first-ever implemented, fully-offline, fully-automated, stand-

alone, and open-source Machine Learning tool called AMPRO-HPCC. Our tool aims to help

HPC admins and HPC users predict memory and time requirements for their submitted jobs

on HPC Clusters.

Finally, we study and investigate the impact of our machine learning models in running

jobs on the cloud by comparing the cost of running the jobs with and without using our

machine learning models on most popular cloud computing resources, including Amazon

Web Services such as (AWS), Microsoft Azure, Google Cloud Platform, Digital Ocean, IBM

Cloud, and using the local resources of Holland Computing Center at the University of

Nebraska - Lincoln.

In summary, in this work, we present and develop novel methodologies for predicting job

resources (memory and time) for submitted jobs on HPC systems based on historical jobs

data provided by the HPC systems scheduler. The outcomes are expected to dramatically

reduce computational average waiting time, reduce turnaround time for submitted jobs.

Moreover, increased utilization, increased throughput, improved efficiency, and decreased

power consumption for the HPC systems.

Table of Contents

Table of Contents viii

List of Figures xii

List of Tables xvi

Acknowledgements xvii

Dedication xix

Preface xx

1 Introduction 1

1.1 Introduction and Background . 1

1.2 Research questions and contributions . 3

1.3 Dissertation structure . 5

2 Improving HPC System Performance by Predicting Job Resources via

Supervised Machine Learning 7

2.1 abstract . 7

2.2 Introduction . 8

2.2.1 Slurm Workload Manager . 9

2.2.2 Slurm Simulator . 9

2.3 Related Work . 10

2.4 Implementation . 12

viii

2.4.1 Workflow Model . 12

2.4.2 Data Preparation and Feature Analysis 12

2.4.3 Machine Learning Algorithms . 12

2.5 Results and Discussion . 14

2.5.1 Machine Learning Techniques . 14

2.5.2 Evaluating Our Model . 15

2.5.3 Predicting Memory Required vs. Predicting Time Required 20

2.6 Summary . 22

3 Ensemble Prediction of Job Resources to Improve System Performance

for Slurm-Based HPC Systems 25

3.1 abstract . 25

3.2 Introduction . 26

3.2.1 Why the Slurm Workload Manager and Slurm Simulator? 28

3.3 Related Work . 28

3.4 Methodology . 30

3.4.1 Data Preparation and Feature Analysis 30

3.4.2 Regression Models . 32

3.4.3 Multi-Technique prediction: Mixed Account Regression Models . . . 32

3.5 Results and Discussion . 34

3.5.1 Benchmarking predictive performance of regression models 35

3.5.2 Evaluating Our Model . 37

3.6 Summary . 44

4 AMPRO-HPCC: A Machine-Learning Tool for Predicting Resources on

Slurm HPC Clusters 56

4.1 Abstract . 56

ix

4.2 Introduction . 57

4.3 Related Work . 58

4.4 Prediction Tool (AMPRO-HPCC) . 59

4.4.1 AMPRO-HPCC Workflow Model . 60

4.4.2 Data Preparation . 62

4.4.3 Evaluating individual regression models 62

4.4.4 Evaluating mixed account regression models 63

4.4.5 Building MARM for prediction . 64

4.4.6 Job resource prediction . 64

4.5 Results and Discussion . 65

4.5.1 Preprocessing and PerAccount Models 65

4.5.2 MARM models in BEOCAT . 66

4.5.3 Evaluating Our Model . 67

4.6 Summary . 69

5 Cost-Effective Resource Provisioning of Cloud Computing via Supervised

Machine Learning 75

5.1 Abstract . 75

5.2 Introduction and Background . 76

5.3 Related Work . 78

5.4 Implementation . 80

5.4.1 Calculate the Cost of Running Jobs on the cloud 82

5.5 Results . 87

5.5.1 RMACC-Summit . 87

5.5.2 Beocat . 91

5.6 Summary . 95

x

6 Conclusion and future work 96

6.1 Summary . 96

6.2 Limitations and directions for future work 97

Bibliography 101

xi

List of Figures

2.1 Work Flow Diagram for our Model . 13

2.2 Jobs Submission and Running time (Requested vs Actual vs Predicted) for

Jobs in Testbed-1. Note dramatic improvement of Y axis range between graphs 17

2.3 Utilization (Requested vs Actual vs Predicted) for Jobs in Testbed-1 18

2.4 Backfill-Sched Performance for Jobs in Testbed-1 19

2.5 Utilization (Requested vs Actual vs Predicted) For Testbed-2 20

2.6 Backfill-Sched Performance for Testbed-2 . 21

2.7 Jobs Submission and Running time (Predicted Time Required vs Memory . 22

2.8 Utilization (Requested vs Actual vs Required Time Predicted vs Memory

Predicted vs Required Time and Memory Predicted) 23

2.9 ackfill-Sched Performance for (Requested vs Actual vs Required Time Pre-

dicted vs Memory Predicted vs Required Time and Memory Predicted) . . . 24

3.1 R2 for predicting memory of seven methods across 50 accounts in RMACC-

Summit . 36

3.2 RMSE for predicting memory of seven methods across 50 accounts in RMACC-

Summit . 37

3.3 Runtime for predicting memory of seven methods across 50 accounts in RMACC-

Summit . 38

3.4 R2 for predicting time of seven methods across 50 accounts in RMACC-

Summit . 39

xii

3.5 RMSE for predicting time of seven methods across 50 accounts in RMACC-

SUMMIT . 40

3.6 Runtime for predicting time of seven methods across 50 accounts in RMACC-

Summit . 41

3.7 R2 for predicting memory of seven methods across 50 accounts in BEOCAT 43

3.8 RMSE for predicting memory of seven methods across 50 accounts in BEOCAT 44

3.9 Runtime for predicting memory of seven methods across 50 accounts in BEO-

CAT . 45

3.10 R2 for predicting time of seven methods across 50 accounts in BEOCAT . . 46

3.11 RMSE for predicting time of seven methods across 50 accounts in BEOCAT 47

3.12 Runtime for predicting time of seven methods across 50 accounts in BEOCAT 48

3.13 R2 versus Number of Accounts in predicting memory using MARM across

BEOCAT . 49

3.14 R2 versus Number of Accounts in predicting memory using MARM across

RMACC-Summit . 50

3.15 R2 versus Number of Accounts in predicting time using MARM across BEOCAT 51

3.16 R2 versus Number of Accounts in predicting time using MARM across RMACC-

Summit . 52

3.17 Jobs Submission and Running time (Requested vs Actual vs Predicted) for

RMACC-Summit Jobs . 53

3.18 Jobs Submission and Running time (Requested vs Actual vs Predicted) for

Beocat Jobs . 53

3.19 Utilization (Requested vs Actual vs Predicted) for RMACC-Summit Jobs . . 54

3.20 Utilization (Requested vs Actual vs Predicted) for Beocat Jobs 54

3.21 Backfill-Sched Performance for RMACC-Summit Jobs 55

xiii

4.1 Use-Case Diagram for AMPRO-HPC . 60

4.2 AMPRO-HPCC Work-Flow Diagram . 61

4.3 Beocat 2018-2021 MaxRSS 10 Fold CV Report on R2 65

4.4 Beocat 2018-2021 MaxRSS 10 Fold CV Report on Negative RMSE 66

4.5 Beocat 2018-2021 CPUTimeRAW 10 Fold CV Report on R2 67

4.6 Beocat 2018-2021 CPUTimeRAW 10 Fold CV Report on Negative RMSE . . 68

4.7 Beocat 2018-2021 MaxRSS MARM based on CART 69

4.8 Beocat 2018-2021 MaxRSS MARM based on LightGBM 70

4.9 Beocat 2018-2021 MaxRSS MARM based on RandomForest 71

4.10 Beocat 2018-2021 CPUTimeRAW MARM based on CART 72

4.11 Beocat 2018-2021 CPUTimeRAW MARM based on LightGBM 72

4.12 Beocat 2018-2021 CPUTimeRAW MARM based on RandomForest 73

4.13 Jobs Submission and Running Time. (Note Dramatic Improvement of Y Axis

Range . 73

4.14 Utilization (Requested vs Actual vs Predicted) for Beocat Jobs 74

4.15 Backfill-Sched Algorithm Performance (Requested vs Actual vs Predicted)

for Beocat Jobs . 74

5.1 (a) Total aggregate execution time requested (green), used (red), and pre-

dicted (blue) in hours and (b) Total aggregate memory requested (green),

used (red), and predicted (blue) in gigabytes on RMACC-Summit HPC sys-

tem across 2.8 million jobs. 87

xiv

5.2 Logarithm of cost distribution incurred in dollars for running 2.8 million jobs

with requested (green), actual (red), and predicted (blue) configurations for

execution time and memory on (a) Amazon Web Services, (b) Google Cloud

Platform, (c) Microsoft Azure, (d) Digital Ocean, (e) Holland Computing

Center, and (f) IBM Cloud. 88

5.3 Mean cost incurred in dollars for running 2.8 million jobs across various cloud

platform with requested (green), actual (red), and predicted (blue) configu-

rations. 89

5.4 Total aggregate cost incurred in dollars for running 2.8 million jobs across

various cloud platform with requested (green), actual (red), and predicted

(blue) configurations. 89

5.5 (a) Total aggregate execution time requested (green), used (red), and pre-

dicted (blue) in hours and (b) Total aggregate memory requested (green),

used (red), and predicted (blue) in gigabytes on Beocat HPC system across

4.5 million jobs. 91

5.6 Logarithm of cost distribution incurred in dollars for running 4.5 million jobs

with requested (green), used (red), and predicted (blue) configurations for

execution time and memory on (a) Amazon Web Services, (b) Google Cloud

Platform, (c) Microsoft Azure, (d) Digital Ocean, (e) Holland Computing

Center, and (f) IBM Cloud. 92

5.7 Mean cost incurred in dollars for running 4.5 million jobs across various cloud

platform with requested (green), used (red), and predicted (blue) configurations. 93

5.8 Total aggregate cost incurred in dollars for running 4.5 million jobs across var-

ious cloud platform with requested (green), used (red), and predicted (blue)

configurations. 93

xv

List of Tables

2.1 Feature Selected . 14

2.2 Wall Clock Time Limit Prediction Algorithms Results 15

2.3 Memory Required Prediction Algorithms Results 15

2.4 Average Waiting and Turnaround Time (Requested vs Actual vs Predicted)

For Jobs in Testbed-1 . 19

2.5 Average Waiting and Turnaround Time (Requested vs Actual vs Predicted)

For Jobs in Testbed-2 . 20

3.1 Feature Selected . 30

3.2 Average Waiting Time (Requested vs Actual vs Predicted) For RMACC-

Summit . 42

3.3 Median Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit 42

3.4 Average Waiting Time (Requested vs Actual vs Predicted) For RMACC-

Summit . 42

3.5 Median Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit 42

4.1 Average Waiting and Turnaround Time (Requested vs Actual vs Predicted)

For Beocat . 69

4.2 Median Waiting and Turnaround Time (Requested vs Actual vs Predicted)

For Beocat . 70

5.1 Google Cloud Platform Cost for 1 Core / 4 GB Seat 83

5.2 Google Cloud Platform Cost for 1 Core / 8 GB Seat 83

xvi

5.3 Microsoft Azure Cost for 1 Core / 4 GB Seat 84

5.4 Microsoft Azure Cost for 1 Core / 8 GB Seat 84

5.5 Digital Ocean Cost for 1 Core / 4 GB Seat 84

5.6 Digital Ocean Cost for 1 Core / 8 GB Seat 85

5.7 IBM Cloud Cost for 1 Core / 4 GB Seat . 85

5.8 IBM Cloud Cost for 1 Core / 8 GB Seat . 85

5.9 Amazon Web Services Cost for 1 Core / 4 GB Seat 86

5.10 Amazon Web Services Cost for 1 Core / 8 GB Seat 86

5.11 Holland Computing Center Cost for 1 Core / 4 GB Seat 86

5.12 Holland Computing Center Cost for 1 Core / 8 GB Seat 86

5.13 Mean, median, 75th-quantile, and 95th-quantile cost incurred across various

cloud platforms when using requested, actual, and predicted configurations

of time and memory. 90

5.14 Mean, median, 75th-quantile, and 95th-quantile cost incurred across various

cloud platforms when using requested, actual, and predicted configurations

of time and memory. 94

xvii

Acknowledgments
Praise be to Allah for the strengths and blessings in completing this dissertation. The

success and outcome of this dissertation required a lot of guidance and assistance, I am

extremely fortunate to have gotten this all along with the completion of my thesis work.

Whatever I have done is only due to such guidance and assistance.

I would like to express my deep gratitude and very great appreciation to Prof. Daniel

Andresen, for providing me with his high support, unlimited guidance, and patience. I

could not have imagined having a better advisor and I could not have done this dissertation

without his excellent help, assistance, and advice. Thank you so much from the bottom of

my heart.

I would like to express my special appreciation and thanks to Prof. William Hsu for his

assistance, guidance, support, scientific advice, and valuable input.

Prof. Daniel Andresen and Prof. William Hsu are two of the smartest people I know,

and they are the best advisors to work with.

I would like to thank and acknowledge the committee members for their helpful sugges-

tions and advice.

A special thanks to the graduate advisor of the Computer Science at Kansas State

University Prof. Mitchell Neilsen for his help, support, and guidance to all Computer

Science graduate students.

I would like to thank the people in the Computer Science department office, especially

Sheryl Cornell and Wynne Reichart for their help.

I greatly appreciate the HPC staff at Kansas State University and Holloand Computing

Center at University of Nebraska-Lincoln including Adam Tygart, Kyle Hutson, and Caugh-

lin Bohn for their help and technical support. Having a good support system is important

to surviving in graduate school journey.

xviii

I also thank the authors of the Slurm simulator at SUNY U. of Buffalo for releasing their

work.

Last but not the least, I place a deep sense of thankfulness and appreciation to my

parents, my brothers, my sisters, and my friends for all of the sacrifices that you have made

on my behalf. Your prayer for me was what sustained me thus far.

This research was supported by NSF awards CHE-1726332, ACI-1440548, CNS-1429316,

NIH award P20GM113109, and Kansas State University.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE),

which is supported by the National Science Foundation grant number ACI-1548562.

This work utilized resources from the University of Colorado Boulder Research Comput-

ing Group, which is supported by the National Science Foundation (awards ACI-1532235

and ACI-1532236), the University of Colorado Boulder, and Colorado State University.

xix

Dedication

This thesis is wholeheartedly dedicated to my role models Mom Randa Tanash, and to

my Dad Awad Tanash. This work would not be complete without your pray, love, support,

and patience.

xx

Chapter 1

Introduction

1.1 Introduction and Background

High Performance Computing (HPC) systems are referred to as supercomputers, and are

comprised of the aggregation of many computer resources. HPC systems are also commonly

referred to as computing clusters. A cluster consists of a group of compute nodes. Each

node in a cluster has an operating system, processors with multiple cores, storage unit, and

networking capabilities to communicate with other nodes in the cluster1. HPC has been

used extensively in many fields of science including, astrophysics, bioinformatics, artificial

intelligence, financial, weather and climate, big data analytics, molecular dynamics, cyber-

security, and much more. Moreover, HPC drives research, development, and innovation in

many industries, from rendering the visual effects of the latest blockbuster movie, to se-

quencing the human genome to cure diseases, to risk analysis in financial services, or even

to design the next generation of cars2 3. Hence, HPC is typically used to solve complex

problems with large datasets (gigabytes, terabytes, petabytes, and zettabytes) by leverag-

ing distributed compute resources to produce results in a relatively short amount of time.

Therefore, the primary purpose of HPC is to solve complex problems which are either too

large or would take too long for a laptop or a desktop to handle.

1

One of the most important parts of HPC systems is a scheduler, which is a software

package that decides when and where to run jobs in the cluster. When an HPC user

submits a job to the scheduler, they specify the resource requirements they need, such as

the number of nodes, the number of processors, the amount of time, and the amount of

memory. When an HPC user submits a job, the job scheduler assigns which resources the

job is allowed to run on, ensuring that jobs do not overlap. At some point, the cluster will

reach a point where there are no more resources for more jobs to run. At this stage, the

job scheduler will hold jobs in a wait queue. As the running jobs complete, making more

resources available, the job scheduler then allows queued jobs to run to best ensure the

compute resources are being fully utilized. Another task of the job scheduler is to assign

a priority to each job waiting in the queue. The highest priority job sits at the top of the

queue, waiting for computing resources to become available. Every short period of time,

the job queue is re-evaluated, and adjustments are made to the queue based on waiting jobs

and the respective priority levels. The job scheduler will frequently re-arrange the order of

jobs in the queue based on the priority. For the job scheduler to calculate a job’s priority,

it uses a formula based on various factors, including jobs already running on the cluster,

number of resources required, fairness, and usage history. Another task of the job scheduler

is to look at resources limitations set by the system administrators. Common limits include

the maximum number of jobs a single user can run on the cluster, the maximum number

of processors a single user or a group can request, or the maximum number of processors a

single job can consume on the HPC system. If limits are exceeded, the job scheduler will

place waiting jobs in the blocked queue. Jobs in the blocked queue will not run regardless

of whether system resources are available as long as they remain in the blocked queue. As

jobs complete, a user with blocked jobs will drop below the threshold limits, and their jobs

will move up in the eligible wait queue.

Usually, in the HPC system, there are more jobs that can run at any one time on

the compute nodes. Therefore, the scheduler needs to delay some submitted jobs to allow

2

another set of jobs to run. Every HPC job has an environment that the scheduler will

consider for scheduling and then distributes the jobs to the cluster. This environment

includes the run time limit, core requirements, memory limits, and the running command.

Another big responsibility of the scheduler is to allocate required resources on the cluster

and other resources such as licenses or I/O bandwidth.

One of the common challenges with HPC is processing and producing more data and

generating more information and results than the infrastructure of HPC resources can han-

dle. Hence, the HPC jobs have to wait for weeks or months in the queue in order to get

start computations and produce results, which typically delays innovation and slows down

research. On the other hand, it is the HPC users’ responsibility to keep their jobs as effi-

cient as possible to ensure less waiting time on the queue and keep the efficiency of the HPC

system at the highest possible level. Many HPC users do not know the amount of resources

their jobs need for calculation, so they are often encouraged to overestimate the amount of

resources required for their submitted jobs, so their jobs will not be killed during the run-

ning time due to the insufficient amount of the resources. This overestimation of resources

will negatively affect the performance, efficiency, throughput, and power consumption of the

HPC system by consuming more resources than needed for a job’s computations.

1.2 Research questions and contributions

In this dissertation, we study the potential benefits of using Machine learning (ML) methods

in order to help HPC users to predict the resources needed (memory and time) for their

submitted jobs on the cluster and the cloud.

This dissertation explores and investigate the following research questions:

• How to improve the performance of HPC systems via applying machine learning algo-

rithms on historical jobs log data provided from the scheduler? Improving performance

means decreasing average job turnaround time, decreasing average job waiting time,

3

increasing HPC system utilization, increasing the performance of the HPC scheduling

and back-filling, and decreasing the power consumption of the HPC systems.

• How accurate is our proposed model in terms of prediction of the resource needed for

submitted jobs?

• Which is more significant to predict in terms of job resources? Required memory or

required time for submitted jobs on the HPC systems?

• Can we enhance the performance of HPC systems by applying supervised machine

learning algorithms using Slurm-based HPC historical data?

• Can we create a tool that helps HPC users decide the amount of resources needed

for their submitted jobs? Our work focuses on making the process of determining

the amount of the required resources (memory and time) accurate and easy for the

submitted jobs.

• How much resources (memory and time) in average do HPC users overestimate for

their submitted jobs?

• How efficient and effective is using our machine learning model for predicting job

resources (memory and time) in terms of average cost and resources reduction for

running jobs on the cloud, especially the economic impact of predicting job resources?

The major contributions referenced in this dissertation are summarized as follows:

• M. Tanash, B. Dunn, D. Andresen, Y. Huichen, A. Okanlawon, W. Hsu, “Improv-

ing HPC System Performance by Predicting Job Resources via Supervised Machine

Learning,” in the Proceedings of the 2019 Conference on Practice and Experience in

Advanced Research Computing (PEARC19), Chicago, IL, July 28-August 1, 2019.

• M. Tanash, H. Yang, D. Andresen, W. Hsu, “Ensemble Prediction of Job Resources

to Improve System Performance for Slurm-Based HPC Systems,” selected as Best Full

4

Paper for the Systems and Systems Software Track and awarded the Phil Andrews

Award for paper likely to be most impactful on the practice of research computing,

in the Proceedings of the 2021 ACM Conference on Practice and Experience in Ad-

vanced Research Computing (PEARC21), pp. 1-8, Portland, OR, July 19–22, 2021.

https://doi.org/10.1145/3437359.3465574

• M. Tanash, D. Andresen, W. Hsu, “AMPRO-HPCC: A Machine-Learning-Tool for

Predicting Resources On Slurm HPC Clusters,” to appear in the Proceedings of The

Fifteenth International Conference on Advanced Engineering Computing and Appli-

cations in Sciences (ADVCOMP 2021), Barcelona, Spain, October 3-7, 2021.

• M. Tanash, R. Knepper, D. Andresen, “Improving XSEDE Systems Performance by

Predicting Job Resources via Supervised Machine Learning,” in the poster session of

the Rocky Mountain Advanced Computing Consortium HPC Symposium (RMACC

20), Boulder, CO, May 20-21, 2020.

• M. Tanash, B. Dunn, D. Andresen, Y. Huichen, A. Okanlawon, W. Hsu, “Improving

HPC System Performance by Predicting Job Resources via Supervised Machine Learn-

ing,” in poster session of the Rocky Mountain Advanced Computing Consortium HPC

Symposium (RMACC 19), 2nd place winner in best poster competition, Boulder, CO,

May 21-23, 2019.

1.3 Dissertation structure

The dissertation is organized as follows. Chapter 1 introduces the introduction, background,

problem statement, research questions, and contributions of this dissertation. Chapter 2

demonstrates the impact and benefits of using machine learning from the scikit-learn ma-

chine learning library for predicting the job resources needed (memory and time) for sub-

mitted jobs on the HPC systems applied over historical data from SunGrid Engine (SGE).

5

Chapter 3 introduces our Mixed Account Regression Model (MARM) designed for better

accuracy of predicting job resources (memory and time) for submitted jobs on the HPC

systems using the historical data provided from the Slurm workload manager. Chapter 4 in-

troduces and discusses the implementation of our first-ever implemented, fully-offline, fully-

automated, stand-alone, and open-source Machine Learning tool for predicting resources

on Slurm HPC clusters (AMPRO-HPCC). Our accurate predicting tool has been tested

over millions of jobs provided from the slurm scheduler of the HPC cluster of the Kansas

State University called Beocat. In Chapter 5 we study and investigate the impact and

effectiveness of using our supervised machine learning methodology for resource provision-

ing of cloud computing, especially the cost and resource provisioning using most popular

cloud computing resources such as Amazon Web Service (AWS), Microsoft Azure, Google

Cloud Platform, Digital Ocean, IBMCloud, and using the local resources of Holland Com-

puting Center at the University of Nebraska - Lincoln. Finally, Chapter 6 presents the key

conclusions, reflects on the limitations, and intimates directions for future research work.

6

Chapter 2

Improving HPC System Performance

by Predicting Job Resources via

Supervised Machine Learning 1

2.1 abstract

High-Performance Computing (HPC) systems are resources utilized for data capture, shar-

ing, and analysis. The majority of our HPC users come from other disciplines than Computer

Science. HPC users including computer scientists have difficulties and do not feel proficient

enough to decide the required amount of resources for their submitted jobs on the cluster.

Consequently, users are encouraged to over-estimate resources for their submitted jobs, so

their jobs will not be killing due to insufficient resources. This process will waste and devour

HPC resources; hence, this will lead to inefficient cluster utilization. We created a super-

vised machine learning model and integrated it into the Slurm resource manager simulator

to predict the amount of required memory resources (Memory) and the required amount

of time to run the computation. Our model involves using different machine learning algo-

1This chapter is a slightly modified version of our published article4

7

rithms. Our goal is to integrate and test the proposed supervised machine learning model

on Slurm. We used over 10000 tasks selected from our HPC log files to evaluate the per-

formance and the accuracy of our integrated model. The purpose of our work is to increase

the performance of the Slurm by predicting the amount of required jobs memory resources

and the time required for each particular job to improve the utilization of the HPC system

using our integrated supervised machine learning model.

Our results indicate that for larger jobs our model helps dramatically reduce computa-

tional turnaround time (from five days to ten hours for large jobs), substantially increased

utilization of the HPC system, and decreased the average waiting time for the submitted

jobs.

2.2 Introduction

HPC systems have become more well-known and available to users among the universities

and research centers, to name a few. Users rely on running their extensive computations on

these machines. One of the most critical parts of the HPC system is the scheduler, which

is a piece of software on a high-performance computing cluster that decides and controls

what calculations to run next and wherein the HPC systems5. Schedulers can become a

bottleneck for HPC systems through handling vast numbers of submitted jobs that are

requesting an extensive amount of cluster resources (CPUs and memory). Users of the HPC

systems come from different disciplines. Particular fields in science and engineering such

as atmospheric sciences, chemical separations, astrophysics, geo-information science, and

evolutionary biology rely on and demand HPC resources through simulations, experiments,

and dealing with a tremendous amount of data6 7. These users are usually not familiar

and do not have the good knowledge and experience to estimate what exactly their jobs

need, and the scheduler does not know any better. Calculating the resource needs for a

particular job is a hard thing even for computer scientists. On the other hand, HPC users

8

are implicitly encouraged to overestimate predictions in terms of memory, CPUs, and time

so they will avoid severe consequences and their jobs will not be killed due to an insufficient

amount of resources. Overestimate job resources will negatively impact the performance

of the scheduler by wasting infrastructure resources; lower throughput; and leads to longer

user response time.

2.2.1 Slurm Workload Manager

There are different varieties of job schedulers such as Sun Grid Engine (SGE)8, Maui Clus-

ter Scheduler9, Tera-scale Open-source Resource and Queue manager (TORQUE)10, and

Portable Batch System (PBS)11. Simple Linux Utility for Resource Management (Slurm)

which is one of the most popular among all of them5. Slurm is open-source; fault-tolerant;

secure; highly configurable; highly scalable, and supports most Unix variants. Slurm’s role

is both workload manager and a job scheduler, which makes Slurm more convenient to

use. The Resource manager role is allocating resources such as nodes, sockets, cores, hyper-

threads, memory, interconnect, and other generic resources within the HPC environment.

While the scheduler role is managing the queue of work jobs including different scheduling

algorithms such as fairshare scheduling, preemption, gang scheduling, advanced reservation,

etc.12.

2.2.2 Slurm Simulator

In order to test our module, we implemented a machine learning module and testing it

using the Slurm simulator developed by the Center for Computational Research, SUNY

University at Buffalo. The Slurm simulator is located in Github13. The Slurm simulator was

developed to help the administrators to choose the best Slurm configuration while avoiding

impacting the existing production system. We used this Slurm simulator because it is

implemented from a modification of the actual Slurm code while disabling some unnecessary

functionalities which does not affect the functionality of the real Slurm, and it can simulate

9

up to 17 days of work in an hour14. hence, we can test our models accurately and quickly.

Slurm is a vital component of supercomputers but using it is hard, and this leads to

inefficiencies. Hence, we are trying to use supervised machine learning to address these

efficiencies. This entails first defining inference tasks: regression-based estimation of the

probability of a job being killed given its runtime parameters and given a user’s historical

track record to date; a classification-based prediction of the outcome of the current run,

computed by estimating the odds of specific outcomes (or log odds, in the case of logistic

regression), and finally an expected utility based on a probability distribution over out-

comes. While the first two use cases are purely predictive and solvable by supervised or

semisupervised inductive learning, the third presents an opportunity for sequential problem

solving, towards reinforcement learning-based automation (learning to act).

We are focused on developing a predictive analytics capability for Slurm so it can predict

the needed amount of memory resources and required running time for each particular

submitted job (regression). We hope to improve the efficiency of Slurm and the HPC systems

themselves by increase system throughput; increase system utilization; decrease turnaround

time, and decrease average job waiting time. To do so, we train different models with

different machine learning algorithms described in Section 3.4. In Section 3.5 we present

the results of our experiments and conclude in Section 3.6.

2.3 Related Work

The primary research conducted in a related field of study focused on predicting the length

of time of the jobs temporarily waiting in the queue. Besides, the previous research either

predicted memory usage of the jobs or predicted the execution time of the jobs running on the

cluster. The central point and novel contribution of our study are to predict and determine

the resources needed to accomplish the jobs submitted on the cluster and determine which is

more harmful to the HPC system, overestimate the memory or the time for the jobs running

10

on the cluster?

Matsunaga and Fortes15 introduced an extended machine learning tree algorithm called

Predicting Query Runtime 2 (PQR2). This method is a modified implementation of an

existing classification tree algorithm (PQR). PQR2 focused on the two bioinformatics appli-

cations, BLAST, and RAxML. Their method increased the accuracy of predicting the job

execution time, memory and space usage, and decreased the average percentage error for

those applications.

Warren Smith16 introduced a lower prediction error rate machine learning method based

on instance-based learning (IBL) techniques to predict job execution times, queue wait time,

and file transfer time.

Kumar and Vadhiyar17 developed a prediction system called Predicting Quick Starters

(PQStar) for identified and predicting quick starters jobs (jobs that have waiting time ¡ 1

hour). PQStar prediction based on jobs request size and estimated run-time time, queue,

and processor occupancy states.

Garćıa18 study and found that automatically collecting and combining real performance

running job data specifically ”memory bandwidth usage of applications”, and scheduling

data that extracted from the hardware counters during jobs execution and used it again

in the future for scheduling purposes can improve HPC scheduling performance and reduce

the amount of waste resources and decrease the number of killed jobs due to reaching their

execution time limit.

Gaussier et al. found that using a more limited approach to machine learning on HPC

log data to predict jobs running time is an effective method for helping and improving

scheduling algorithms and reduced the average bounded slowdown19.

Other works focused on predict and maximize power consumption for scientific applica-

tions and maximize performance using machine learning techniques20 21 .

11

2.4 Implementation

In this section, we will explain the workflow for our model, our machine learning algorithms

used in our model, the data and the experimental testbeds used, and the features used for

our machine learning modeling.

2.4.1 Workflow Model

The workflow model of our work is described in Figure 4.2 as follows. 1) The user submits

their job which is including the amount of memory and requested time limit for the proposed

job. 2) The submitted job will be passed through our machine learning model to predict

the amount of the required memory and the amount of time needed for the job to run. 3)

Our model will update the amount of memory resources and update the amount of time

required for the submitted job. 4) The user will be notified about the changes to their jobs.

5) Finally, The updated job will be scheduled for running on the cluster.

2.4.2 Data Preparation and Feature Analysis

For training our machine learning model, we used fourteen million instances that cover

approximately eight years of log history data between the years 2009 to 2017 from our local

HPC cluster, “Beocat.” Each instance on the log file has forty-five features. We chose eight

features as described in Table 2.1 in each instance of the fourteen million total instances

used for training the machine learning model. Beocat is no-cost educational system, and

the most significant cluster in the state of Kansas. It is located at Kansas State University

and operated by the Computer Science department22.

2.4.3 Machine Learning Algorithms

Several discriminative models from the scikit-learn machine learning library23 24 were

trained to implement predictive functionality in our experiments. Data preparation steps

12

Figure 2.1: Work Flow Diagram for our Model

included data cleaning by means of validating the data model for logged data and applying

transformations to normalize the data, reduce redundancies, and otherwise standardize the

coalesced data model. For the baseline predictive task, we specified a classification target:

specifically, learning the concept of a job that is more likely than not to be killed given

historical and runtime variables. This admits the use of a logistic regression or logit model,

support vector machines, or k-nearest neighbor, whereas for the planned expected utility

estimation task, estimating the actual probability of a job being killed is a genera regression

task25 that admits linear, distance-weighted, or support vector regression, as well as probit

and generative models.

For the regression task, we used several supervised models, including linear regression,

LassoLarsIC (L1 regularization), ridge regression (L2 regularization), ElasticNetCV (L1/L2

13

Feature Type Description
job id Numeric ID of submitted job

username Text User name of submitted job
submit Date Date and time to submit job
wclimit Numeric Requested time in minutes

(predicted variable)
duration Numeric Actual running wall time for the job in seconds

cpu per task Numeric Number of requested CPU’s per task
req mem Numeric Requested memory for job at submission time in MB

(predicted variable)
req mem per cpu Numeric Required memory per CPU

Table 2.1: Feature Selected

ratio), and a decision tree regressor. For the linear discriminants and their use on this task,

we refer the interested reader to26. Using these flexible representations admits a balance of

generalization quality (via overfitting control) and explainability.

2.5 Results and Discussion

In this section, we describe, discuss and evaluate our machine learning algorithms results,

and the strategy used for our experiment by presenting results and graphs consisting of

quantitative metrics.

2.5.1 Machine Learning Techniques

There are various machine learning algorithms available, and it is difficult to decide which

supervised machine learning algorithm provided the best results for our module. Hence, we

implemented our model using five supervised machine learning algorithms and trained them

using our 14 million instances to predict the required time and memory. The statistical

measures of the coefficient of determination of the machine learning algorithms are shown

in Table 2.2 and Table 2.3 respectively. Based on our results we chose DecisionTreeRe-

gressor algorithm in our model since it has the most significant R-squared value which

14

Model R2 (%) Time (Second)
LR 0.0677 0.30
LLIC 0.0677 0.44
ENCV 0.0677 4.32
RG 0.0677 0.18
DTR 0.611 7.53

Table 2.2: Wall Clock Time Limit Prediction Algorithms Results

Model R2 (%) Time (Second)
LR 0.174 0.39
LLIC 0.174 0.46
ENCV 0.174 4.98
RG 0.174 0.12
DTR 0.638 8.28

Table 2.3: Memory Required Prediction Algorithms Results

means the most fitted data to the regression line.

The legend for Table 2.2 and table 2.3 described as follows:

• LR: Linear Regression

• LLIC: LassoLarsIC Regression

• ENCV: ElasticNetCV Regression

• RG: Ridge Regression

• DTR: Decision Tree Regression

2.5.2 Evaluating Our Model

In this subsection, we show results and evaluate our model. To do so, we test our model

using two testbeds (Testbed-1) and (Testbed-2). Each testbed is evaluated based on three

metrics as follows:

• Submission and Execution Time

15

• System Utilization

• Backfill-Sched Performance

Submission and Execution Time shows the difference between the job submission

time and the execution time (when the job is submitted, start and duration of the run).

Job submission time is the time stamp that represents when the job was submitted, while

the execution time is calculated as the difference between the start execution time and end

execution time. System Utilization measures how efficiently the system is utilizing the

resources, while the Backfill-Sched Performance shows the performance of the backfill-sched

algorithm helping the main scheduler to fit more jobs within the cluster to increase resource

utilization.

We used the Slurm Simulator to examine each metric above by comparing the results of

the following:

• Running each testbed using user requested memory and run time.

• Running each testbed using the actual memory usage and duration.

• Running each testbed using predicted memory and run time.

Testbed-1

Testbed-1 contains larger jobs (jobs that are requesting at least 4GB of memory and four

cores per task). Testbed-1 includes a set of a thousand jobs. Figure 2.2 shows the submis-

sion and execution time metric based on the job id, start time, and the execution time for

(Requested vs. Actual vs. Predicted) for the jobs included in Testbed-1. The graph

shows that it takes around five days to complete the execution for all of the jobs using user

requested memory and time, while it takes only around ten hours to complete the running

for the jobs using the actual and predicted time and memory for the jobs. Based on the

results, our model predicted the values for the required time and memory accurately.

16

Figure 2.2: Jobs Submission and Running time (Requested vs Actual vs Predicted) for Jobs
in Testbed-1. Note dramatic improvement of Y axis range between graphs

Figure 2.3 shows that using our module helped the HPC system achieved higher uti-

lization compared to the utilization of the HPC system that used unmodified user requested

resources. Figure 2.4 indicates that the backfill-sched algorithm has achieved more effi-

ciency on the testbed that used our module compared to the ones that did not.

These results were achieved because using our model in most cases reduces the amount

of resources required by the user submitted jobs. Hence, the HPC system has more available

resources to fit more jobs in the system. Thus, the backfill schedule becomes less needed

and the overall system more efficient by using these available resources.

Table 2.4 provides the calculated average waiting time and average turn-around

time for the jobs in Testbed-1 for each requested, actual, and predicted runs. Using our

17

model significantly reduced the average waiting time from 45.37 hours to 3.9 hours and the

average turnaround time from 46.29 hours to 4.94. Both predicted average waiting time

and turn-around time are almost exactly the same as the actual average waiting time and

turnaround time for jobs in testbed-1.

Figure 2.3: Utilization (Requested vs Actual vs Predicted) for Jobs in Testbed-1

Testbed-2

Testbed-2 contains smaller jobs (jobs that are requesting less than 4GB of memory and four

cores per task). Testbed-2 includes a set of ten thousand jobs.

While the results were less impressive than Testbed-2, Figures 2.5 and 2.6 shows

that our predicted model achieved better utilization and better backfilling performance.

Moreover, Table 2.5 shows that our predicted model incrementally reduced the average

18

Figure 2.4: Backfill-Sched Performance for Jobs in Testbed-1

Avg Wait Time (Hour) Avg TA Time (Hour)
Requested 45.37 46.29
Actual 3.90 4.82

Predicted 4.00 4.94

Table 2.4: Average Waiting and Turnaround Time (Requested vs Actual vs Predicted) For
Jobs in Testbed-1

waiting and turnaround time from (0.08 to 0.06 hours) and from (3.90 to 3.54 hours)

respectively.

19

Avg Wait Time (Hour) Avg TA Time (Hour)
Requested 0.08 3.90
Actual 0.05 3.23

Predicted 0.06 3.54

Table 2.5: Average Waiting and Turnaround Time (Requested vs Actual vs Predicted) For
Jobs in Testbed-2

Figure 2.5: WUtilization (Requested vs Actual vs Predicted) For Testbed-2

2.5.3 Predicting Memory Required vs. Predicting Time Required

In this results subsection, we will discuss and show the results that answer the question

”Which is more important to predict? Required memory or required time?”

Figure 2.7 shows the submission and running times for two runs of Testbed-1. One run

is using our model where we are predicting only the required memory (Red) and the other

20

Figure 2.6: Backfill-Sched Performance for Testbed-2

one predicting the required time (Blue). This is mostly caused by inaccurate estimation of

the time and memory equally by jobs submitted by the users.

Figures 2.8 and 2.9 show the comparison of the utilization and the performance of

the backfill-sched for the system by running jobs in Testbed-1 on the Slurm Simulator using

((Requested vs Actual vs Required Time Predicted vs Memory Predicted vs Required Time

and Memory Predicted).

Our results indicate that both memory prediction and time requested prediction are

highly valuable and are almost equally important because they achieved similar performance

as shown in the graphs. We achieved peak performance and utilization by combining both

of them in one model.

21

Figure 2.7: Jobs Submission and Running time (Predicted Time Required vs Memory

2.6 Summary

Our model is an important link between HPC users, scheduler, and HPC resources. The rule

of our model is predicting the amount of memory and time required for any submitted jobs

using supervised machine learning algorithms. Our model helps to reduce computational

time, increase utilization of the HPC system, decrease average waiting time, and decrease the

average turn-around time for the submitted jobs. As a result, our analysis indicates that our

model helps maximize efficiency, increase capability, and decrease the power consumption

of the cluster.

22

Figure 2.8: Utilization (Requested vs Actual vs Required Time Predicted vs Memory Pre-
dicted vs Required Time and Memory Predicted)

23

Figure 2.9: ackfill-Sched Performance for (Requested vs Actual vs Required Time Predicted
vs Memory Predicted vs Required Time and Memory Predicted)

24

Chapter 3

Ensemble Prediction of Job Resources

to Improve System Performance for

Slurm-Based HPC Systems 1

A paper accepted by Practice and Experience in Advanced Research Computing (PEARC

’21), July 18–22, 2021, Boston, MA, USA

3.1 abstract

In this paper, we present a novel methodology for predicting job resources (memory and

time) for submitted jobs on HPC systems. Our methodology is based on historical jobs

data (saccount data) provided from the Slurm workload manager using supervised machine

learning. This Machine Learning (ML) prediction model is effective and useful for both

HPC administrators and HPC users. Moreover, our ML model increases the efficiency

and utilization of HPC systems, thus reducing power consumption as well. Our model

involves using Several supervised machine learning discriminative models from the scikit-

1This chapter is a slightly modified version of our published article27

25

learn machine learning library and LightGBM applied on historical data from Slurm.

Our model helps HPC users to determine the required amount of resources for their sub-

mitted jobs and make it easier for them to use HPC resources efficiently. This work provides

the second step towards implementing our general open-source tool towards HPC service

providers. For this work, our Machine learning model has been implemented and tested using

two HPC providers, an XSEDE service provider (University of Colorado-Boulder (RMACC-

Summit) and Kansas State University (Beocat)).

We used more than two hundred thousand jobs: one-hundred thousand jobs from SUM-

MIT and one-hundred thousand jobs from Beocat, to model and assess our ML model

performance. In particular, we measured the improvement of running time, turnaround

time, average waiting time for the submitted jobs; and measured utilization of the HPC

clusters.

Our model achieved up to 86% accuracy in predicting the amount of time and the

amount of memory for both RMACC-Summit and Beocat HPC resources. Our results show

that our model helps dramatically reduce computational average waiting time (from 380 to

4 hours in RMACC-Summit and from 662 hours to 28 hours in Beocat); reduced

turnaround time (from 403 to 6 hours in RMACC-Summit and from 673 hours to

35 hours in Beocat); and achieved up to 100% utilization for both HPC resources.

3.2 Introduction

High Performance Computing (HPC) users rely on running their extensive computations on

HPC clusters. Determining the allocation of HPC resources such as determining the amount

of memory and the number of processor cores for submitted jobs is a difficult process, because

of a lack of knowledge about the structure and implementation of HPC systems, running

applications, and size of submitted jobs. Moreover, there is no existing software that can

help to predict and determine the needed resources required for submitted jobs. On the

26

other hand, HPC users are implicitly encouraged to overestimate predictions in terms of

memory, CPUs, and time so they will avoid severe consequences and their jobs will not

be killed due to an insufficient amount of resources. The overestimation of job resources

negatively impacts the performance of the scheduler by wasting infrastructure resources;

lower throughput and leads to longer user response times.

We extended our earlier work28, improving and expanding our previous work4 29 by

designing a predictive ML model for Slurm based HPC resources; improving predictive ac-

curacy; and achieving better results for our ML predictive model. Our work focuses on

accurately predicting and determining the required amount of resources (time and mem-

ory) for submitted jobs and making it easier for users to use HPC resources efficiently.

Hence, increasing efficiency, decreasing waiting and turnaround time for submitted jobs,

and decreasing power consumption for HPC systems. This work provides a big step towards

implementing our open-source software tool to predict and determine the needed resources

required for submitted jobs.

Our ML methodology involves implementing different machine learning algorithms (five

discriminative models from the scikit-learn and Microsoft LightGBM) applied on the his-

torical data (sacct data) from Simple Linux Utility for Resource Management (Slurm). Our

tool will increase the utilization and help to decrease the power consumption of the HPC

resources.

In this work, our method has been implemented for two HPC resources (An XSEDE

service provider, University of Colorado-Boulder (RMACC-Summit), and Kansas State Uni-

versity(BEOCAT)). In this paper, we answered several research questions as the following:

Can we enhance the performance of HPC resources by applying supervised machine learning

algorithms using Slurm-based HPC historical data? How accurate is our proposed model in

terms of prediction of the resource needed for submitted jobs? Can we create a tool that

helps HPC users decide the amount of resources needed for their submitted jobs? Our work

focuses on making the process of deciding the amount of the required resources (memory

27

and time) accurate and easy for the submitted jobs.

3.2.1 Why the Slurm Workload Manager and Slurm Simulator?

Improving the performance of Simple Linux Utility for Resource Management (Slurm)30

will increase the efficiency of the HPC systems. Slurm can become a bottleneck of the

HPC system through handling the big amount of these requested resources. The scheduler

decides and controls what calculations to run next, and wherein the cluster5. Slurm is the

most popular job scheduler over all of the other schedulers such as SGE (Sun Grid Engine)8,

TORQUE (Tera-scale Open-source Resource and Queue manager)10, PBS (Portable Batch

System)11, and the Maui Cluster Scheduler31. Testing our model on a real cluster is a hard

process due to security and reliability issues, impacting the real cluster and the time needed

to run all of the jobs needed for testing. Hence, The Slurm simulator developed by the

Center for Computational Research, SUNY University at Buffalo was the best way in order

to be able to test our model accurately and quickly. On the other hand, the Slurm simulator

was chosen for testing because it is implemented from a modification of the actual Slurm

code while disabling some unnecessary functionalities which do not affect the functionality

of the real Slurm, and it can simulate up to 17 days of work in an hour14. The Slurm

simulator is located in the Github13

3.3 Related Work

Job scheduling in HPC systems is affected by several factors such as job submission time,

job duration time, number of requested processors, amount of requested time and memory,

group ID, etc.32. While there are some other main scheduling strategies that researchers

focuse on the past by using different priority functions such as Shortest Job First (SJF),

First Come First Serve (FCFS), Priority Scheduling, etc.33 which don’t achieve maximum

performance and utilization in multiple nodes clusters. Previous studies show that batch

28

job scheduling is an NP-complete problem34.

There have been many studies focused on predicting the run time for running applications

on the HPC systems or the cloud35 36 37 38 39 40, while there are very few studies focuses on

predicting memory for running jobs on the cluster such as Taghavi et al. who introduced

a machine learning recommender system for predicting the amount of memory for jobs

submitted to Load Sharing Facility (LSF®)41.

Fan et al. proposed another HPC scheduling technique using deep reinforcement learning

(DARS), which uses neural networks for resource reservation and backfilling.42.

Similarly, Zhang et al. proposed a deep reinforcement learning-based job scheduler called

RLScheduler which is capable of learning high-quality scheduling policy.43. Some other work

focused on measuring power consumption based on submitted jobs on a cluster.44.

Tyryshkina et al. used three machine learning algorithms: extra trees regressor, the

gradient boosting regressor, and the random forest regressor for predicting run time for

bioinformatics tools and found best performance is by using random forests.44

Other different methods presented by Aaziz et al. for measuring the performance of a

running job. The method uses historical application data (job parameters and hardware

counter metrics) of specific applications during the running time. This method increases

the application overhead by around 5%45.

Our work combines both predicting memory and time required for submitted jobs on

HPC systems. In addition, we could not find any work that tested their work in a real or

simulated resource workload manager as we did for Slurm.

Our work proposes a stand-alone ML model which dramatically improves efficiency, and

utilization. In addition, our model will decrease turnaround time, waiting time for the

submitted jobs.

29

Feature Type Description
Account Text Account the job ran under.
ReqMem Text Minimum required memory for the job.

(in MB per CPU or MB per node).
Timelimit Text Timelimit set for the job in [DD-[HH:]]MM:SS format.
ReqNodes Numeric Requested number minimum Node count.
ReqCPUS Numeric Number of requested CPUs.

QOS Text Name of Quality of Service.
Partition Text The partition on which the job ran.
MaxRSS Numeric Maximum resident set size of all tasks in job (in MB).

CPUTimeRAW Numeric Time used (Elapsed time * CPU count) by a job.
(in seconds).

State Text The job status.

Table 3.1: Feature Selected

3.4 Methodology

In this section, we will explain Data Preparation and Feature Analysis; Regression Models;

and multi-technique prediction: Mixed Account Regression Models.

3.4.1 Data Preparation and Feature Analysis

Two data sets (sacct data) were collected from the Slurm database. The first data set

was collected from the HPC resources of the XSEDE service provider at the University of

Colorado Boulder (RMACC-Summit)46. The data set has 7.8 million instances and covers

the years from 2016 – 2019 of the usage. The second data set was collected from the HPC

resources of Kansas State University (Beocat)22. The data side has 10.9 million instances

and covers the years 2018-2019.

Given logs of accounting information for jobs invoked with Slurm and HPC system-

specific requirements such as default time-limit, memory-limit, quality of service (QOS),

partition, etc., we began by extracting useful features from the data, as shown in table 3.1.

Among the features, State and Partition were used for filtering, while others were used

for data modeling. We selected CPUTimeRAW over Elapsed time as the ‘time to predict’

30

because it naturally incorporates the number of requested CPUs into actual runtime. It is

well known that using more CPUs does not necessarily translate to reduced runtime47 due to

the limited bandwidth of memory access, overhead in resource management and protection,

etc., thus, we considered CPUTimeRAW as a relatively robust and conservative estimate

of runtime over Elapsed time. The selected features were processed in three stages: i) data

treatment and filtration ii) feature standardization and iii) data normalization.

Data Treatment and Filtration : At this stage, we dealt with missing values (NaN) in

the data and removed certain types of jobs. Based on the respective HPC system policies,

missing Timelimit, Partition, and QOS were replaced with default values. Jobs missing

values for either MaxRSS or CPUTimeRAW were removed. Jobs belonging to premium

Partition / QOS were removed; so were jobs with incomplete State (‘Cancelled’, ’Failed’,

’Deadline’, etc.), or ’Unlimited’ Timelimit. Post filtration. We had 4.45 million jobs left

in Beocat, while RMACC-Summit had 2.8 million jobs left.

Feature Standardization : Timelimit was parsed to numeric hours. MaxRSS was stan-

dardized to gigabytes (GB). Account, QoS, and Partitions were factorized to unique integer

codes. ReqMem was converted from MB per CPU (suffix c) or MB per node (suffix n) to a

numeric total MB, and was subsequently standardized to GB.

Data Normalization : Only Account, ReqMem, ReqNodes, Timelimit, QoS, MaxRSS

and CPUTimeRAW were selected for further processing and analysis. All seven features

except QOS and Account were normalized by shifting to their respective means and scaling

by their respective standard deviation, using the StandardScalarTransform() in the Scikit-

learn Python package48.

31

3.4.2 Regression Models

Our objective was to model time (CPUTimeRAW) and memory (MaxRSS) as a function of

requested parameters Account, Timelimit, ReqNodes, ReqMem, ReqCPUS, and QsS. Thus,

we considered the following seven popular regression models for the task: i) Lasso Least

Angle Regression (LL)49,50, ii) Linear Regression (LR)50, iii) Ridge Regression (RG)50, iv)

Elastic Net Regression (EN)50, v) Classification and Regression Trees (DTR)51, vi) Random

Forest Regression (RFR)52, and vii) LightGBM (LGBM)53. We used the Coefficient of

determination (R2)50 and root mean squared error (RMSE)50 to evaluate the regression

models. We used scikit-learn’s48 implementation for all models and performance metrics.

3.4.3 Multi-Technique prediction: Mixed Account Regression

Models

Using Timelimit, ReqNodes, ReqMem, ReqCPUS, and QoS to predict CPUTimeRAW and

MaxRSS, we found that it was challenging to faithfully model all job accounting information

for large HPC systems. This happened due to a plethora of job requests having an identical

amount of requested resources, but leading to substantially different actual resource allo-

cation. Such jobs, invariant in independent variables and highly variant in the dependent

variable, resulted in sub-par performance across all regression models.

Nevertheless, we found that partitioning the data by ‘Account’ led to significant improve-

ments in performance in certain slices of data, suggesting that some accounts had better job

request specifications, predictive of the actual parameters. Thus, instead of modeling the en-

tire data, we deliberately built a mixed account regression model by iteratively adding best

performing accounts to an account pool until peak performance is reached with reasonable

data utilization. Algorithm 1 shows the Mixed Account Regression Model (MARM) that

takes a dependent variable Y , independent variables X, account ids acc for each observation

in X and Y , number of accounts to consider num acc, and a regression model m.

32

Algorithm 1 MARM(Y , X, acc, num acc m)

1 unacc = unique(acc)
2 acc pool = {}
3 Repeat num acc times:
4 for i ∈ unacc
5 tac = append(acc pool, i), if not i ∈ acc pool
6 indices = which tac ∈ acc
7 Xa, Ya = X[indices], Y [indices]
8 Repeat 20 times:
9 Split Xa, Ya into 80% training and 20% testing.
10 RM = Build model using m.
11 Calculate training and testing R2 of RM.
12 R2tr[i] = mean R2 of RM using training data.
13 R2te[i] = mean R2 of RM using testing data.
14 best aid = Choose i with best mean R2tr and R2te ranks.
15 best r2 tr = R2tr[best aid]
16 best r2 te = R2te[best aid]
17 acc pool = append(acc pool, best aid)
18 Return best r2 tr, best r2 te, acc pool

33

The algorithm begins with an empty account pool (acc pool). Accounts are added to a

temporary account pool (tac) using the current account pool (acc pool) and an account i

among unique accounts unacc, only if i does not already exist in acc pool, next we find a

data subset Xa, Ya corresponding to accounts in tac. The data subset is then randomly split

20 times into 80% (training) / 20% (testing) ratio and modeled using the regression model

m. In each run R2 scores on training and testing data are computed, that are averaged and

stored in R2tr[i] for training data and in R2te[i] for testing data. Finally, after all unique

accounts in unacc have been evaluated, we select the best account id (best aid) based on

R2tr, R2te to be added to the current account pool. The algorithm continues until acc pool

contains num acc accounts.

In principle, MARM is a greedy-strategy to find best the ‘n’ account combination to

maximize performance. The growing account pool (acc pool) finds the best account combi-

nations starting from one to ‘n’, assuming that the best i account combination is constructed

by the union of the best i−1 account combination and an account that results in the best R2

performance. Thus, a Slurm administrator can set num acc to the total number of accounts

N in the HPC system and use MARM to generate a R2 score distribution along with all

best account combinations (one to N) and the number of jobs covered by these accounts.

The administrator can then choose the number of account combination that offers the best

performance across reasonable number of jobs.

3.5 Results and Discussion

In this section, we will explain the benchmarking predictive performance of regression mod-

els; the MARM models for Beocat and RMACC-Summit; and Evaluating Our Model.

34

3.5.1 Benchmarking predictive performance of regression models

Instead of directly using all seven regression models for building MARM, we benchmarked

these models to select ones that offered superior empirical evidence of effectiveness. We

evaluated all seven methods based on their performance across data slices corresponding to

single accounts in predicting CPUTimeRAW (Time) and MaxRSS (Memory). Beocat con-

tained 4.45 million jobs spread across 20 unique accounts, while RMACC-Summit contained

2.8 million jobs spread across 50 unique accounts. We employed 5-fold cross-validation and

used average R2 and RMSE obtained on testing data, as well as average time to build

the model, as our performance metrics. Figurse 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 shows

boxplots illustrating the distribution of average R2, log (RMSE+1) and log (runtime+1)

in predicting memory and time among 50 accounts in RMACC-Summit for each regression

model. Figurse 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 shows boxplots illustrating the distri-

bution of average R2, log (RMSE+1) and log (runtime+1) in predicting memory and time

among 50 accounts in BEOCAT for each regression model. We found similar trends among

20 accounts in both RMACC-Summit and BEOCAT.

LGBM, DTR, and RFR are similarly outstanding in R2 performance in both memory

and time. RMSE does not show significant variation among the seven methods. In terms

of runtime, RFR is consistently the slowest of all methods followed by EN. Based on these

results, we decided to move forward with LGBM, RFR, and DTR for building MARMs for

Beocat and RMACC-Summit.

We constructed MARMs to predict memory and time in Beocat and RMACC-Summit

using 80% of the total accounts, 40 out of 50 accounts in RMACC-Summit and 16 out

of 20 accounts in Beocat. Figures 3.13, 3.14, 3.15, and 3.16 shows the mean R2 score

distribution of DTR, RFR, and LGBM on testing data versus the number of best account

combinations. It can be seen that the R2 decreases as the number of accounts (and jobs)

increases. While all three methods DTR, RFR, and LBGM perform similarly, DTR does

slightly better across all cases. The dotted lines show the best number of account combina-

35

Figure 3.1: R2 for predicting memory of seven methods across 50 accounts in RMACC-
Summit

tions we choose to build memory and time models across the two datasets. In particular, we

choose, i) best nine accounts combination (spanning across 1.25 million jobs) with average

R2 of 0.77, for building a DTR based memory model in BEOCAT; ii) best eight accounts

combination (spanning across 1.8 million jobs) with average R2 of 0.81, for building a DTR

based time model in BEOCAT; iii) best 29 accounts combination (spanning 847,000 jobs)

with average R2 of 0.86, for building a DTR based memory model in RMACC-Summit;

and iv) best 37 accounts combinations (spanning across 1.74 million jobs) with average

36

Figure 3.2: RMSE for predicting memory of seven methods across 50 accounts in RMACC-
Summit

R2 of 0.78, for building a DTR based time model in RMACC-Summit.

3.5.2 Evaluating Our Model

In order to assess our model, we have examined our model using two testbeds (RMACC-

Summit testbed) and (Beocat testbed). Each testbed contains one hundred thousand jobs.

Each testbed was assessed based on three metrics i) Submission and Execution Time, which

indicate the difference between the job submission time (timestamps that represent when

37

Figure 3.3: Runtime for predicting memory of seven methods across 50 accounts in
RMACC-Summit

the job was submitted) and the execution time (the difference between the start and end

execution time). ii) System Utilization which measures how effective and efficient the system

utilizing its resources. iii) Backfill-Sched Performance, shows the performance of the backfill-

sched algorithm assisting the main scheduler to schedule more jobs within the cluster to

enhance resource utilization. We used the Slurm Simulator to assess each metric above by

comparing the results of running each testbed using users’ requested memory and run time;

using actual memory usage and duration, and using our ML model predicted memory and

38

Figure 3.4: R2 for predicting time of seven methods across 50 accounts in RMACC-Summit

run time. Each RMACC-Summit and Beocat testbed contains one hundred thousand jobs.

Figure 3.17 and Figure 3.18 show submission and execution time metrics based on the

job-id, start time, and the execution time for (Requested vs. Actual vs. Predicted) for five

thousand jobs included in RMACC-Summit Testbed and five thousand jobs included

in Beocat testbed, respectively. The graphs show that it takes around fifty-five days for

RMACC-Summit and eighty-two days for Beocat to complete the execution for all of the

submitted jobs using user-requested memory and time, while it takes less than twenty-four

days for both RMACC-Summit and Beocat to complete the running of the submitted jobs

39

Figure 3.5: RMSE for predicting time of seven methods across 50 accounts in RMACC-
SUMMI

using the actual and predicted time and memory. Based on the results, our model predicted

the values for the required time and memory accurately.

Figure 3.19 and Figure 3.20 show that using our module to facilitate the RMACC-

Summit and Beocat HPC systems allows them to reach similar utilization (up to 100%)

compared to the utilization of the HPC system that used actual job resources.

Figure 3.21 indicates that the backfill-sched algorithm has achieved more efficiency

on the Beocat testbed that used our module compared to the ones that did not base on

40

Figure 3.6: Runtime for predicting time of seven methods across 50 accounts in RMACC-
Summit

measuring the density of jobs attempts to schedule over time. While our model achieved

similar BEOCAT results for the RMACC-Summit testbed. These results were achieved

because using our model in most cases reduces the amount of resources required by the

user-submitted jobs. Hence, the HPC system has more available resources to fit more jobs

in the system. Thus, the backfill schedule becomes less needed and the overall system more

efficient by using these available resources.

Tables 3.2, 3.3, 3.4, and 3.5 provide the calculated average waiting time with the

41

Average Wait Time (Hour) Average TA Time (Hour)
Requested 380.6 ±241.2 403.14 ±243.3
Actual 1.3 ±0.7 2.9 ±3.2

Predicted 3.7 ±1.1 5.5 ±4.8

Table 3.2: Average Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit

Median Wait Time (Hour) Median TA Time (Hour)
Requested 401.2 425.7
Actual 0.5 1.1

Predicted 1.3 4.5

Table 3.3: Median Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit

Average Wait Time (Hour) Average TA Time (Hour)
Requested 662.9 ±193.6 673.5±196.6
Actual 1.5 ±1.1 4.1 ±2.2

Predicted 27.7±25.3 34.8 ±27.1

Table 3.4: Average Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit

Median Wait Time (Hour) Median TA Time (Hour)
Requested 681.6 652.2
Actual 0.9 3.2

Predicted 6.2 13.9

Table 3.5: Median Waiting Time (Requested vs Actual vs Predicted) For RMACC-Summit

42

Figure 3.7: R2 for predicting memory of seven methods across 50 accounts in BEOCAT

median, average turn-around (TA) time, median Avg Wait Time (Hour), and median TA

Time for the jobs in RMACC-Summit and Beocat HPC resources for each requested, actual,

and predicted runs. Using our model drastically reduced the average waiting time from 380

hours to 4 hours and the average turnaround time from 403 hours to 6 hours for RMACC-

Summit. And reduced the average waiting time from 662 hours to 28 hours and average

turnaround time from 673 hours to 35 hours for Beocat.

43

Figure 3.8: RMSE for predicting memory of seven methods across 50 accounts in BEOCAT

3.6 Summary

Our machine learning model is valuable for both HPC users and administrators. Our model

helps HPC users to estimate and recommend the amount of resources (Time and Memory)

required for their submitted jobs on the HPC cluster. Our ML model is built based on the

implementation of different machine learning algorithms (Six discriminative models from the

scikit-learn and Microsoft LightGBM) applied on the historical data (sacct data) from Slurm

for one XSEDE service provider (The University of Colorado Boulder (RMACC-Summit)

44

Figure 3.9: Runtime for predicting memory of seven methods across 50 accounts in BEO-
CAT

and Kansas State University (Beocat)) HPC resources. We tested our ML model using one

hundred thousand jobs for each testbed.

Our results show dramatically increased utilization of up to 100%, decreased average

waiting time (from 380 to 4 hours in RMACC-Summit and from 662 to 28 hours

in Beocat), and decreased the average turn-around time for the submitted jobs (from 403

to 6 hours in RMACC-Summit and from 673 hours to 35 hours in Beocat). This

implies a dramatic increase the efficiency and decreased power consumption for Slurm-based

45

Figure 3.10: R2 for predicting time of seven methods across 50 accounts in BEOCAT

HPC resources.

46

Figure 3.11: RMSE for predicting time of seven methods across 50 accounts in BEOCAT

47

Figure 3.12: Runtime for predicting time of seven methods across 50 accounts in BEOCAT

48

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BEOCAT−MARM: Memory

R
2

on
 T

es
tin

g

1(
38

K)

2(
25

1K
)

3(
25

9K
)

4(
26

9K
)

5(
27

4K
)

6(
35

1K
)

7(
35

2K
)

8(
35

3K
)

9(
12

53
K)

10
(1

26
2K

)

11
(1

36
6K

)

12
(3

55
0K

)

13
(3

55
6K

)

14
(3

56
9K

)

15
(3

70
9K

)

16
(3

72
0K

)

Accounts(Total Jobs)

RFR
DTR
LGBM

Figure 3.13: R2 versus Number of Accounts in predicting memory using MARM across
BEOCAT

49

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RMACC SUMMIT−MARM: Memory

R
2

on
 T

es
tin

g

1(
3K

)
3(

12
K)

5(
17

K)
7(

38
K)

9(
10

4K
)

11
(1

10
K)

13
(5

43
K)

15
(6

91
K)

17
(7

32
K)

19
(7

59
K)

21
(8

17
K)

23
(8

21
K)

25
(8

29
K)

27
(8

44
K)

29
(8

47
K)

31
(8

69
K)

33
(8

93
K)

35
(8

95
K)

37
(9

11
K)

39
(9

40
K)

Accounts(Total Jobs)

RFR
DTR
LGBM

Figure 3.14: R2 versus Number of Accounts in predicting memory using MARM across
RMACC-Summit

50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BEOCAT−MARM: Time

R
2

on
 T

es
tin

g

1(
21

3K
)

2(
21

5K
)

3(
86

2K
)

4(
86

7K
)

5(
17

66
K)

6(
17

77
K)

7(
17

86
K)

8(
17

91
K)

9(
17

93
K)

10
(1

80
1K

)

11
(1

86
9K

)

12
(2

00
9K

)

13
(4

19
4K

)

14
(4

23
1K

)

15
(4

33
5K

)

16
(4

41
2K

)

Accounts(Total Jobs)

RFR
DTR
LGBM

Figure 3.15: R2 versus Number of Accounts in predicting time using MARM across BEO-
CAT

51

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RMACC SUMMIT−MARM: Time

R
2

on
 T

es
tin

g

1(
1K

)
3(

33
K)

5(
13

1K
)

7(
13

3K
)

9(
15

7K
)

11
(1

63
K)

13
(1

66
K)

15
(1

72
K)

17
(1

78
K)

19
(1

92
K)

21
(2

28
K)

23
(2

32
K)

25
(5

41
K)

27
(5

63
K)

29
(5

68
K)

31
(5

77
K)

33
(6

55
K)

35
(6

85
K)

37
(1

74
9K

)
39

(2
54

2K
)

Accounts(Total Jobs)

RFR
DTR
LGBM

Figure 3.16: R2 versus Number of Accounts in predicting time using MARM across
RMACC-Summit

52

Figure 3.17: Jobs Submission and Running time (Requested vs Actual vs Predicted) for
RMACC-Summit Jobs. Note dramatic improvement of Y axis range between graphs.

Figure 3.18: Jobs Submission and Running time (Requested vs Actual vs Predicted) for
Beocat Jobs. Note dramatic improvement of Y axis range between graphs

53

Figure 3.19: Utilization (Requested vs Actual vs Predicted) for RMACC-Summit Jobs

Figure 3.20: Utilization (Requested vs Actual vs Predicted) for Beocat Jobs

54

Figure 3.21: Backfill-Sched Performance for RMACC-Summit Jobs

55

Chapter 4

AMPRO-HPCC: A Machine-Learning

Tool for Predicting Resources on

Slurm HPC Clusters 1

4.1 Abstract

Determining resource allocations (memory and time) for submitted jobs in High Performance

Computing (HPC) systems is a challenging process even for computer scientists. HPC users

are highly encouraged to overestimate resource allocation for their submitted jobs, so their

jobs will not be killed due to insufficient resources. Overestimating resource allocations

occurs because of the wide variety of HPC applications and environment configuration op-

tions, and the lack of knowledge of the complex structure of HPC systems. This causes a

waste of HPC resources, a decreased utilization of HPC systems, and increased waiting and

turnaround time for submitted jobs. In this paper, we introduce our first ever implemented

fully-offline, fully-automated, stand-alone, and open-source Machine Learning (ML) tool to

help users predict memory and time requirements for their submitted jobs on the cluster.

1This chapter is a slightly modified version of our published article54

56

Our tool involves implementing six ML discriminative models from the scikit-learn and Mi-

crosoft LightGBM applied on the historical data (sacct data) from Simple Linux Utility for

Resource Management (Slurm). We have tested our tool using historical data (saact data)

using HPC resources of Kansas State University (Beocat), which covers the years from Jan-

uary 2019 - March 2021, and contains around 17.6 million jobs. Our results show that our

tool achieves high predictive accuracy R2 (0.72 using LightGBM for predicting the memory

and 0.74 using Random Forest for predicting the time), helps dramatically reduce compu-

tational average waiting-time and turnaround time for the submitted jobs, and increases

utilization of the HPC resources. Hence, our tool decreases the power consumption of the

HPC resources.

4.2 Introduction

High Performance Computing (HPC) resources have become more available to users to run

their extensive computations and simulations. One of the most important parts of the HPC

system is the batch scheduler. The batch scheduler manages resources and queues of all

submitted jobs in the cluster. Hence, it is the part that decides where and when jobs will

run in the cluster. On the other hand, batch scheduler performance depends on the resource

requirements from the user such as the amount of memory, requested time, and the number of

cores32. While these resource requirements are the responsibility of HPC users to determine,

it is a fact that users may determine resource needs inaccurately55. Also, users are highly

encouraged to overestimate these resources in order to satisfy job requirements, so their jobs

will not be killed during the run time due to insufficient resources56. Overestimating job

resource requirements negatively impacts the performance and the utilization of the HPC

system. Moreover, over-estimating job resource process will increase average turn-around

time and average waiting time for submitted jobs.

In this paper, we introduce the first-ever open-source, stand-alone, highly-accurate, fully-

57

offline, and fully-automated tool called AMPRO-HPCC, which stands for ”A Machine-

Learning-Tool for Predicting Resources On Slurm HPC Clusters”. AMPRO-HPCC aims

to help HPC users predict and estimate the required job resource allocations (memory and

time) for their submitted jobs. Our tool uses Simple Linux Utility for Resource Management

(Slurm) historical logs-data (sacct) and involves implementation of six Machine Learning

(ML) discriminative models from the scikit-learn48 and Microsoft LightGBM (LGBM)53.

Our ML tool is invoked through Command Line Interface (CLI), and it consists of two parts:

i) System administrator part, which is responsible for preparing data and all the required

models for building the final models and tool; ii) HPC user side, which will automatically

read the submission job script provided from the HPC user and recommend the required

job allocation resources (memory and time) for the associated submitted job.

We have extended our previous work28,27,4, and designed the AMPRO-HPCC tool to

help HPC users determine the allocation of HPC resource needs (memory and time) using

supervised ML over historical data (sacct). Our open-source tool can be found on GitHub57.

The rest of this paper is organized as follows: Section 2, discusses the related work.

Section 3 describes our prediction tool, AMPRO-HPCC, which includes the workflow model,

data preparation, evaluation and building of our Mixed Account Regression Model (MARM),

and the job resource prediction. Section 4 shows our promising results. Finally, Section 5

presents our conclusion.

4.3 Related Work

Simple Linux Utility for Resource Management (Slurm) is a resource manager, which en-

ables HPC resources to execute parallel jobs efficiently30. Slurm turns a set of hundreds or

tens of thousands of computers into a single unit that you can run jobs on. So Slurm makes

parallel computers easy to use. Slurm allocates resources within a cluster, manages the

nodes, and keeps track of architecture within a node such as sockets, NUMA boards, cores,

58

hyper threads, memory, interconnect, generic resources, and managing licenses. Slurm man-

ages jobs through varieties of scheduling algorithms (fair share, gang, advanced reservation,

etc.)12.

While there are many kinds of resource management scheduler such as Sun Grid En-

gine (SGE)8, Tera-scale Open-source Resource and Queue manager (TORQUE)58,10, and

Portable Batch System (PBS)59,11, Slurm is the most popular and most used among them.

Hence, we implemented our tool based on Slurm workload manager HPC systems.

There are many studies and research focusing on predicting the running time

and the time required for running application on the HPC systems or the

cloud35,60,36,15,37,61,38,62,63,39,40,45,44, while there are quite a lot of research that focuses on

predicting the amount of memory required for the submitted jobs41,64.

Our work differs by the methodology used and the ability to predict both memory and

time required for submitted jobs on the HPC systems. We conclude ”there does not yet exist

software that can help to fully automate the allocation of HPC resources or to anticipate

resource needs reliably by generalizing over historical data, such as determining the number

of processor cores and the amount of memory needed.”28. Hence, we are introducing the

first-ever open-source ML tool for predicting job resources (memory and time) for submitted

jobs on the HPC systems.

4.4 Prediction Tool (AMPRO-HPCC)

Figure 4.1 illustrates the use-case diagram of our ML tool. We have two types

of users: i) system administrators (referred to as admin henceforth) and ii) HPC

users (referred to as users henceforth). Modules PreProcess, BuildPerAccountModels,

BuildMixedAccountModels and TrainSelectedMARM are available to admins, while the

Ampro-hpcc module is available to both admins and users. The main objective of our tool

is to build Mixed Account Regression Models (MARM), which are regression models built

59

on a subset of slurm Accounts with the best overall predictive performance, containing a

reasonable percentage of jobs. Here, we provide descriptions of each module along with its

inputs and outputs.

Figure 4.1: Use-Case Diagram for AMPRO-HPC

4.4.1 AMPRO-HPCC Workflow Model

Figure 4.2 describes the workflow model of our work as follows: i) The user prepares and

creates a new job, which includes the requested amount of memory, time limit, quality of

60

service (QoS), and partition name for the proposed job. ii) The HPC user will submit their

job and passes it through our ML model in order to predict the amount of the required

memory and the amount of time needed for the job to run. iii) Our ML model will process

the submitted job by parsing all of the parameters needed, then predicting required memory

and time for the specific job. iv) The HPC user will get feedback from our model regarding

the needed amount of memory and time for their submitted jobs. v) The user will have the

option to confirm or deny to use the predicted values for the required memory and time. vi)

If the user confirms the use of the predicted amounts for either the required memory or the

required time or both, then our ML model will update the amounts of memory and time as

needed for the submitted job. If not, then the submitted job will remain the same. vii) The

user will be notified about the changes to their jobs. viii) Finally, either an updated job or

the original job will be scheduled for running on the cluster.

Figure 4.2: AMPRO-HPCC Work-Flow Diagram

61

4.4.2 Data Preparation

The data preparation or Preprocess module takes the path (path to data) to logs of slurm

jobs accounting information (sacct) to extract Account, ReqMem, Timelimt, ReqNodes, Re-

qCPUS, QoS, Partition, MaxRSS, CPUTimeRAW, and State from the dataset. A descrip-

tion of these features can be found at65. The module also asks the admin to provide default

time-limit (def time), default quality of service (def qos), and default partition assignment

(def partition) to deal with some of the missing values in the data. Finally, the admin

also has the ability to specify a set of QoS (sel qos) and partitions (sel partition) that

they want to select over the entire data. In addition, the Pre-processing module does its

own filtration by only selecting jobs with State equals to ’COMPLETED’, and having non-

zero MaxRSS and CPUTimeRAW. Next, this module standardizes Timelimit to numeric

hours, MaxRSS and ReqMem to gigabytes (GB), and Account and QoS to numeric factors.

Finally, Account, ReqMem, ReqNodes, Timelimit, QoS, MaxRSS, and CPUTimeRAW are

normalized using the StandardScaler transform in Scikit-learn Python package48.

4.4.3 Evaluating individual regression models

Before building the Mixed Account Regression Models (MARM), the admin can evaluate

individual regression models to note what may be most suited to their dataset. Although

optional, the BuildPerAccModels module can provide initial insights on the quality of data

and can significantly speed up MARM building time by nominating promising regression

models for MARM overall possibilities. The BuildPerAccModelsmodule requires the admin

to provide the path to processed data (path to data), independent variables or features

(indep vars), and a dependent variable (dep var) to train and evaluate seven popular

regression models on all data-subsets containing individual Account. At this point, the

admin can specify the minimum number of jobs an individual Account should have in order

to be considered (min num jobs). The seven regression models include: i) Lasso Least Angle

Regression (LL)49,50, ii) Linear Regression (LR)50, iii) Ridge Regression (RG)50, iv) Elastic

62

Net Regression (EN)50, v) Classification and Regression Trees (DTR)51, vi) Random Forest

Regression, (RFR)52, and vii) LightGBM (LGBM)53. The regression models are evaluated

by means of the Coefficient of determination (R2), and root mean squared error (RMSE)50.

We used scikit-learn’s48 implementation for all models and performance metrics.

4.4.4 Evaluating mixed account regression models

Once the individual regression models have been evaluated, the admin can select what

models should be considered for MARM. The admin can also decide to select all seven

regression models for MARM. Our BuildMixedAccountModels module requires a path to

processed data (path to data), independent variables (indep vars), dependent variable

(dep var), the minimum number of jobs (min num jobs), and the names of the regression

models to be considered for MARM (methodnames). A mixed account regression model

MARM(N,M,X, Y) is constructed by finding N accounts with the best performance score

for a given regression model M in predicting a dependent variable Y using independent

variables X. MARM is constructed iteratively and can be summarized as follows:

MARM(N,M,X, Y) =


N

′
N = 1

MARM(N − 1,M,X, Y) ∪N
′

otherwise

where N
′ ∈ N is the Account that results in the best overall aggregate score in terms of

R2 on training (R2tr) and testing (R2te) datasets and number of jobs (SN ′), given by:

N
′
= argmaxn∈N(R2tr(M,XA[n], YA[n]), R2te(M,XA[n], YA[n]), SA[n])

where XA[n] and YA[n] correspond to independent and dependent variables respectively

63

for an unique Account A[n]. Thus, the MARM of N accounts depends upon the MARM of

N − 1 accounts appended with the best overall Account N
′
that results in the best overall

performance. R2 scores R2tr and R2te are calculated by randomly splitting the data into

80% (training) / 20% (testing), five times (5-fold) modeling using the regression model M ,

and averaging the R2 scores on training and testing data subsets over the five runs. A

comprehensive explanation of the Mixed Account Regression Model (MARM) can be found

in our publication27.

4.4.5 Building MARM for prediction

The BuildMixedAccountModels module generates R2 score distributions over 1, 2, · · · , N

for each regression model M specified by the admin in methodnames. Thus, the admin

can determine which regression model performs the best along with the best number of

accounts n̂ ≤ N to use. Thus, our TrainSelectedMARM module takes the selected regression

model (sel model), path to processed data (path to data), path to the intermediate results

produced by BuildMixedAccountModelsmodule (path to marm res) independent variables

(indep vars), dependent variable (dep var) and number of accounts (num acc) to build the

final MARM for resource prediction.

4.4.6 Job resource prediction

Finally, the users of the slurm system can use Ampro-hpcc module by providing a path

to their Slurm job submission script (path to script), a path to selected MARM model

(path to model), a path to system default (path to defaults), and a path to the normal-

ization transform (standard Scalar inverse transform) (path to stdscale) to obtain the

recommended values of time and memory. To be conservative and prevent failure due to

time and memory requirements that may underestimate of the actual memory and time

utilization, our recommended values are increased by 10%.

64

4.5 Results and Discussion

4.5.1 Preprocessing and PerAccount Models

We applied our ML tool using the HPC resources at Kansas State University, called Beocat.

The data side has 17.6 million instances and covers the years 2018 - 2021 of the usage. After

using PreProcessing module only selecting ’normal’ QoS, the dataset contained 7.8 million

jobs spread across 21 unique accounts. Employing BuildPerAccountModels, we evaluated

all seven regression models across 21 accounts, resulting in Figures 4.3, 4.4, 4.5 , and 4.6

for predicting time (CPUTimeRAW) and memory (MaxRSS) that shows boxplots of R2 and

negative RMSE score distributions. We found LGBM, DTR, and RFR to be clear winners.

Thus, we decided to only utilize LGBM, DTR, and RFR to build MARM.

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

R2

Beocat_2018_2021 MaxRSS 10 Fold CV Report on R2

Figure 4.3: Beocat 2018-2021 MaxRSS 10 Fold CV Report on R2

65

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Ne
ga

tiv
e R

MS
E

Beocat_2018_2021 MaxRSS 10 Fold CV Report on Negative RMSE

Figure 4.4: Beocat 2018-2021 MaxRSS 10 Fold CV Report on Negative RMSE

4.5.2 MARM models in BEOCAT

Utilizing BuildMixedAccountModels, we constructed MARMs to predict memory and

time in Beocat using 17 out of 21 accounts (80% of the total accounts) in Beocat. Fig-

ures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 shows the mean R2 score distribution of DTR,

RFR, and LGBM on training and testing datasets versus the number of best account com-

binations in predicting time. It can be seen that the R2 decreases as the number of accounts

(and jobs) increases. We found RFR was the best performer in predicting time, while

LGBM was the best performer in predicting memory. Thus, we finalized the memory and

time MARM using TrainSelectedMARM to be i) best five account combination (spanning

across 1.8 million jobs) with an average R2 of 0.74, for building an RFR based time model

as shown in Figures 4.12 and ii) best thirteen accounts combination (spanning across 1.4

million jobs) with average R2 of 0.72, for building an LGBM based memory model as shown

in Figures 4.8. Using the finalized MARMs, we randomly sampled 5000 jobs from Beocat

and ran them on a Slurm simulator with requested, actual, and predicted time and memory

66

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.26

0.28

0.30

0.32

0.34

0.36

0.38
R2

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on R2

Figure 4.5: Beocat 2018-2021 CPUTimeRAW 10 Fold CV Report on R2

values.

4.5.3 Evaluating Our Model

We assessed our model using the Slurm simulator66,13, which was developed by the Center

for Computational Research, SUNY Buffalo. The Slurm simulator was chosen because it is

implemented from a modification of the actual Slurm code while disabling some unnecessary

functions, which do not affect the functionality of the real Slurm66.

Figure 4.13 shows submission and execution time, which indicates the difference be-

tween the job submission time (timestamp that represents when the job was submitted) and

the execution time (difference between the start and end execution time) for five thousand

jobs. Our results indicate that we have achieved almost identical running time compared to

the actual running time.

Figure 4.14measures and compares system utilization using requested jobs resources

versus actual job resources versus predicted job resources using the AMPRO-HPCC tool.

67

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.86

0.84

0.82

0.80

0.78

0.76

Ne
ga

tiv
e R

MS
E

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on Negative RMSE

Figure 4.6: Beocat 2018-2021 CPUTimeRAW 10 Fold CV Report on Negative RMSE

Our results show that our tool reached almost similar utilization compared to the utilization

of the HPC system that used actual job resources because of the high prediction accuracy

of our ML tool.

Figure 4.15 compares and assesses the backfill-sched algorithm’s performance. The

graph shows more efficient performance on the backfill-sched algorithm on the Beocat

testbeds that used our ML module than the ones that did not. The graph shows fewer

density results when using predicted values since using our AMPRO-HPCC model decreases

the number of resources required by the user for the submitted jobs in most cases. This

situation results in helping Slurm fit more jobs on the cluster. It also reduces the need to use

the backfill-sched algorithm and resulting in more overall system efficiency by using these

available resources.

Tables 4.1 and 4.2 provides the calculated average waiting time, and average turn-

around time for Beocat jobs for requested, actual, and predicted job resources allocation.

Our results show that our tool was able to reduce the average waiting time for submitted

68

1 (
54

84
K)

2 (
56

97
K)

3 (
66

00
K)

4 (
66

52
K)

5 (
66

54
K)

6 (
66

55
K)

7 (
66

59
K)

8 (
67

99
K)

9 (
68

10
K)

10
 (6

91
4K

)

11
 (6

99
3K

)

12
 (6

99
5K

)

13
 (7

00
0K

)

14
 (7

00
9K

)

15
 (7

01
7K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.56

0.58

0.60

0.62

0.64

R2
Beocat_2018_2021 MaxRSS MARM based on

CART
TrainR2
TestR2

Figure 4.7: Beocat 2018-2021 MaxRSS MARM based on CART

Avg Wait Time (Hour) Avg TA Time (Hour)
Requested 680 ±128 692.8 ±130
Actual 0.4 ±0.08 3.62 ±1.8

Predicted 8.0±1.1 6.36 ±1.9

Table 4.1: Average Waiting and Turnaround Time (Requested vs Actual vs Predicted) For
Beocat

jobs from 680 hours to 8.0 hours and the average turnaround time from 692 hours to 16.4

hours.

4.6 Summary

Determining the allocation of HPC resources for submitted jobs is a difficult process for HPC

users. It is still an open question how many resources the user should specify (memory and

time) for their submitted jobs on the cluster. HPC users are encouraged to overestimate

job resources for their submitted jobs. In this paper, we have developed a novel and the

69

1 (
52

K)

2 (
95

5K
)

3 (
96

0K
)

4 (
96

1K
)

5 (
96

8K
)

6 (
97

9K
)

7 (
11

92
K)

8 (
11

94
K)

9 (
11

95
K)

10
 (1

27
4K

)

11
 (1

37
9K

)

12
 (1

38
7K

)

13
 (1

40
1K

)

14
 (1

40
7K

)

15
 (1

54
7K

)

16
 (1

55
8K

)

17
 (7

04
2K

)

of users (# of jobs)

0.2

0.3

0.4

0.5

0.6

0.7

R2
Beocat_2018_2021 MaxRSS MARM based on

LightGBM
TrainR2
TestR2

Figure 4.8: Beocat 2018-2021 MaxRSS MARM based on LightGBM

Median Wait Time (Hour) Median TA Time (Hour)
Requested 713.6 715.6
Actual 0 3.09

Predicted 1.4 5.9

Table 4.2: Median Waiting and Turnaround Time (Requested vs Actual vs Predicted) For
Beocat

first-ever open-source, stand-alone, fully-automated, highly-accurate, and fully-offline ML

tool to help HPC users to determine the amount of required resources (memory and time)

for their submitted jobs on the HPC clusters. Our tool was built using supervised ML

algorithms. Our tool consists of two parts: i) the system admin part, which is responsible

for preparing and building the ML model based on Slurm historical data and providing it to

the users; ii) the user part, which uses the ML model provided from the system admin part,

reads the submitted job script, and predicts the required amount of the resources (memory

and time). Our tool achieves high accuracy and can significantly increase the performance

and utilization of the HPC systems. Moreover, our ML tool can dramatically decrease the

70

1 (
54

84
K)

2 (
63

87
K)

3 (
65

27
K)

4 (
65

79
K)

5 (
65

87
K)

6 (
68

00
K)

7 (
68

05
K)

8 (
68

06
K)

9 (
68

07
K)

10
 (6

91
1K

)

11
 (6

92
2K

)

12
 (6

93
6K

)

13
 (6

94
4K

)

14
 (6

95
0K

)

15
 (7

02
9K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.50

0.55

0.60

0.65

0.70

0.75
R2

Beocat_2018_2021 MaxRSS MARM based on
RandomForest

TrainR2
TestR2

Figure 4.9: Beocat 2018-2021 MaxRSS MARM based on RandomForest

average turnaround and waiting time for the submitted jobs. Hence, our tool increases the

efficiency and decreases the power consumption of the Slurm-based HPC resources.

71

1 (
21

3K
)

2 (
22

4K
)

3 (
87

2K
)

4 (
87

6K
)

5 (
87

8K
)

6 (
17

80
K)

7 (
17

89
K)

8 (
17

94
K)

9 (
18

02
K)

10
 (7

28
6K

)

11
 (7

39
0K

)

12
 (7

47
0K

)

13
 (7

61
0K

)

14
 (7

61
1K

)

15
 (7

68
0K

)

16
 (7

73
3K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2
Beocat_2018_2021 CPUTimeRAW MARM based on

CART
TrainR2
TestR2

Figure 4.10: Beocat 2018-2021 CPUTimeRAW MARM based on CART

1 (
11

K)

2 (
91

4K
)

3 (
92

1K
)

4 (
93

0K
)

5 (
93

1K
)

6 (
11

45
K)

7 (
17

92
K)

8 (
17

97
K)

9 (
18

02
K)

10
 (1

87
1K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (7

49
7K

)

14
 (7

60
1K

)

15
 (7

68
0K

)

16
 (7

69
4K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
LightGBM

TrainR2
TestR2

Figure 4.11: Beocat 2018-2021 CPUTimeRAW MARM based on LightGBM

72

1 (
21

3K
)

2 (
21

8K
)

3 (
21

9K
)

4 (
86

7K
)

5 (
17

69
K)

6 (
17

78
K)

7 (
17

89
K)

8 (
17

94
K)

9 (
17

96
K)

10
 (1

80
4K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (2

06
5K

)

14
 (7

54
9K

)

15
 (7

65
4K

)

16
 (7

73
3K

)

17
 (7

74
3K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R2
Beocat_2018_2021 CPUTimeRAW MARM based on

RandomForest
TrainR2
TestR2

Figure 4.12: Beocat 2018-2021 CPUTimeRAW MARM based on RandomForest

Figure 4.13: Jobs Submission and Running Time. (Note Dramatic Improvement of Y Axis
Range

73

Figure 4.14: Utilization (Requested vs Actual vs Predicted) for Beocat Jobs

Figure 4.15: Backfill-Sched Algorithm Performance (Requested vs Actual vs Predicted) for
Beocat Jobs

74

Chapter 5

Cost-Effective Resource Provisioning

of Cloud Computing via Supervised

Machine Learning 1

5.1 Abstract

Cloud computing has become more readily available and users are getting the advantage

of the powerful resources and receiving results of running their extensive computations and

simulations that require lots of resources in a short period of time. Cloud computing is

highly capable because of the powerful hardware provided by cloud service providers such

as AWS, Microsoft Azure, Google cloud, and IBM Spectrum Computing. Two of the critical

challenges of running jobs on the cloud are: cost-effectiveness and meeting critical deadlines.

In this work, we investigate the impact of using our Machine Learning techniques for

predicting job resources (memory and time) in terms of resources and cost provisioning for

running HPC jobs on the cloud.

1This work will be submitted to Practice and Experience in Advanced Research Computing (PEARC
’22), July 10-14, 2022, Boston, MA, USA

75

We found that HPC users are overestimating job resources needed for their submitted

jobs by upwards of 10X, which will highly impact the cost of running their jobs on the cloud.

We can assist HPC users by recommending the amount of resources (memory and time)

needed for their submitted jobs by predicting the amount of memory and time required for

their submitted jobs on the cloud via our proposed first-ever implemented, fully-offline, fully-

automated, stand-alone, and open-source machine learning tool called AMPRO-HPCC. We

have evaluated our tool by comparing the run time and cost of 4.46 million jobs from 2018 to

2021 from the Kansas State University (BEOCAT), and 2.81 million jobs covered the years

2018-2019 from the University of Colorado-Boulder (RMACC-Summit) HPC resources. We

found that our cost-effective Machine Learning tool can reduce the average cost of running

jobs on the cloud by up to 39% for the BEOCAT jobs and up to 47% for the RMACC-

Summit resources. Moreover, decrease the average running time to meet the deadlines by

39% for the BEOCAT jobs and up to 52% for the RMACC-Summit resources.

5.2 Introduction and Background

Cloud computing service providers such as Amazon Web Services (AWS)67, Microsoft

Azure68, Google Cloud69, and IBM Spectrum Computing70 have been caught the attention

in the field of High Performance Computing (HPC) and scientific computing community in

the last decade due to availability and competition71. At the same time, cloud computing

infrastructures are becoming more well known and popular because of the various number

of services and different quality of service (QoS) they offer72 73. On the other hand, running

many of jobs on the cloud can become quite costly, especially when users require significant

resources for their submitted jobs. Moreover, cloud users frequently request many more

resources than their submitted jobs actually need to avoid potential jobs being terminated

due to an insufficient amount of resources requested. Therefore, ”one of the most challeng-

ing problems with real-time workflows in cloud computing is to get a cost-effective way to

76

complete the workflow within the deadline”74. Thus, HPC users would benefit from getting

feedback about determining resource allocations (memory and time) for their submitted jobs

on the cloud, such as getting information about whether the amount of resources (memory

and time) required of a particular submitted job were not enough, or too much of a particu-

lar run. Such feedback requires more information history about actual usage of the resources

of previous runs to assess and give feedback regarding required resources for any new runs.

This data can be found in the sacct data provided by the Slurm resource manager.

Executing each particular job using cloud provider services is similar to submitting jobs

on a local cluster. After an HPC user submits a job with a specific resource requirement,

the cloud provider will then assign and reserve the needed computing resources from the

resources pool. The job will then be assigned to the best-suited resources in order to be

executed. The cost of running a particular job on the cloud depends on the amount of

resources the user asked for that job. This means the more resources requested, the more

cost for executing the job. On the other hand, the more resources the job requires, the more

probability the job will be waiting on the queue for allocating the required resources and

vice versa75.

One of the most important factors of using HPC in the cloud is the cost. The cost to

use the HPC cloud depends on many factors such as types of hardware offered, the amount

of resources needed (cores, memory, time, etc.), and the capacity of storage needed. While

most of the HPC intensive usage users are looking for cost-effective HPC cloud resources,

it is still hard and challenging to decide how many resources are needed for a particular

submitted job on the cloud. Hence, HPC cloud users usually consume much more resources

than needed for their submitted jobs. This process is not cost efficient and can consume

significant funding from their budgets and grants.

The basic ideas of our work are: i) Helping HPC users estimate and reduce the amount of

money and resources needed on the cloud while maintaining the minimum resources needed

for their submitted jobs on the cloud. Hence, reduce the budget. ii) measure the average

77

saving budget using our machine learning model published in27, and4, versus not using our

model for most popular HPC cloud services providers such as (AWS, Azure, Google Cloud,

and IBM Spectrum Computing).

To achieve our goals, we calculate the amount of average resources and costs of usage

of running millions of jobs from both HPC resources of the University of Colorado Boulder

RMACC-Summit and from the Kansas State University Beocat, using actual, requested,

and predicted usage generated from our ML tool AMPRO-HPCC54. We finally provide

the comparison of resource usage and costs for both HPC resources using four well known

cloud services providers Amazon Web Services (AWS), Microsoft Azure, Google Cloud, IBM

Spectrum Computing, and on on-premises machine.

In this work, we investigate the impact of using our ML tool AMPRO-HPCC54 in running

jobs in the cloud by comparing the cost of running all jobs with and without using our

machine learning tool on the most popular cloud computing resources.

Our research focuses on the following research question: i) How much resources (memory

and time) on average do HPC users overestimate for their submitted jobs? ii) How efficient

and effective is using our machine learning model for predicting job resources (memory

and time) in terms of average cost and resources reduction for running jobs on the cloud,

especially the economic impact of predicting job resources?.

5.3 Related Work

Using local HPC resources could be inadequate for application executions in many cases,

such as big jobs that request more resources than the available ones on the local cluster.

Moreover, big jobs need to wait a long time in a queue76. Thus, the ideal solution would

be running these resource intensive jobs to the HPC cloud, which is known as HPCaaS

(HPC as a Service)77,78. While cost-effective resource provisioning in clouds is still a critical

challenge74.

78

There are studies that focus on when and how to move HPC jobs to the cloud, where it

helps HPC users to determine whether jobs need to run on the cloud-based cluster or to run

on local clusters79,80,81. Another study focuses on evaluating the performance on running

applications on the cloud82,76,83,84.

Eduardo Roloff et al. introduced a comparison of three important factors: deployment,

performance, and cost of the cloud compared to the performance of an on-premises ma-

chine by running NAS Parallel Benchmarks (NPB)85 using three different cloud providers:

Amazon EC2, Microsoft Azure and Rackspace86.

Renato Cunha et al. proposed an advisor tool to choose where HPC users should submit

their jobs, either cloud or on-premises, based on computing a turnaround time estimate for

a certain job81.

Other areas of research focus on predicting the amount of waiting time in an HPC queue

using several techniques87,88,89,90. In addition, more effort was made in the area of predict-

ing the amount of execution time on the HPC resources91,92. Warren Smith introduced

a technique based on instance-based learning93 and historical information to predict HPC

scheduler queue waiting times and execution times for submitted jobs94.

Researchers also focused on studying and improving job scheduling techniques in the

HPC environments95,96,97,98,99. While task scheduling is an NP-hard problem, which means

that up to now, there is no scheduling algorithm that can achieve an optimal solution within

polynomial time100.

Jiyuan Shi et al. introduced an elastic resource provisioning and task scheduling mech-

anism to perform scientific workflows in the cloud. Their goal is to complete as many

high-priority workflows as possible under budget and deadline constraints. Their techniques

consist of three phases: workflow pre-processing, elastic resource provisioning, and task

scheduling101.

Lei Wu et al. proposed a cost optimization algorithm that emphasizes on resource

provisioning in order to meet the deadlines of real-time workflow74.

79

In the area of cost provisioning for real-time workflow in cloud computing environment,

recent studies show that resource provisioning is much capable and successful than task

scheduling100.

Verma and Kaushal introduced a heuristic that benefits trade-off between deadline and

budget under given constraints. Their proposed constrained heuristic is based on Hetero-

geneous Earliest Finish Time (HEFT) to schedule workflow tasks over the available cloud

resources102.

Wei Zheng proposed a variety of algorithms to help minimize the monetary cost of run-

ning big jobs on the cloud with deadline constraints to a satisfactory level. Their proposed

work uses separate CPU frequency for each task to reduce the overall user cost103.

Our work focuses on studying the effects of using machine learning techniques provided in

our work27,57, and conducting a detailed comparison of resource usage and costs of running

jobs on the cloud. We mainly study the benefits of using our ML techniques in terms of

saving resources usage and costs on running jobs on the cloud providers such as AWS, Azure,

Google Cloud, and IBM Spectrum Computing.

5.4 Implementation

In this work, we focus on resource provisioning in cloud computing using our proposed ML

tool AMPRO-HPCC provided in GitHub57, which uses our ML Mixed Account Regression

Model (MARM), explained in detail in4, that helps and recommends the HPC users for

predicting the amount of resources needed (memory and time) for their submitted jobs.

To be able to perform and implement our work, the workflow process includes the fol-

lowing four stages:

80

Stage 1: Collecting the HPC log data (sacct data)

Two data sets (sacct data) were collected from the Slurm workload manager database as

the following:

• HPC resources of the XSEDE service provider at the University of Colorado Boulder

(RMACC-Summit)46: The data set has 7.8 million instances and covers the years

from 2018 – 2021 of the usage.

• HPC resources of the Kansas State University (Beocat)22. The data side has 10.9

million instances and covers the years 2018-2019.

The collected data include the required features for the time requested set for each job

(Timelimit), actual time usage for running each job (CPUTimeRAW), Minimum required

memory (ReqMem), Maximum resident set the size of all tasks in each job (MaxRSS), State

of the job (State), accounts information, name of Quality of Service (QoS), etc. We need

that information in order to calculate the cost and build our MARM ML model to predict

the amount of resources for each newly submitted job.

Stage 2: Data Cleaning and Filtration

At this stage, we prepare the sacct data by removing all certain jobs associated with missing

values (NaN) associated with features MaxRSS or CPUTimeRAW. We replaced missing

values of Timelimit, Partition, and QoS with default values. We consider all completed

jobs only, therefore, jobs with incomplete State (‘Cancelled’, ’Failed’, ’Deadline’, etc.) were

removed. At the end of this stage, we ended up having 4.46 million jobs left in Beocat,

while RMACC-Summit had 2.81 million jobs left.

Stage 3: Resources Prediction

At this stage, we calculate the predicted amount of resources (memory and time) using our

ML tool AMPRO-HPCC that uses our MARM methodology. So, we can use the predicted

81

values to calculate the accuracy of our ML model, the amount of resources provisioning,

and the cost-effective resource provisioning in the cloud.

Stage 4: Calculate HPC resources needed

At this stage, we extract the amount of resources required (memory and time) for each job

in both Beocat and RMACC-Summit resources from the cleaned data and calculate the

average usage of memory and time for all jobs for each HPC resource as the following:

• Calculate the amount of resources (memory and time) required for each job using

the amount of requested resources provided by the user (ReqMem, and Timelimit).

Hence, we can calculate the total and average amount of resources using the requested

usage of all completed jobs for each HPC resource.

• Calculate the amount of resources (memory and time) required for each job using

the amount of actual usage of resources provided from the Slurm workload manager

(MaxRSS, and CPUTimeRAW). Hence, we can calculate the total and average amount

of resources used by all of the completed jobs for each HPC resource.

• Calculate the amount of resources (memory and time) required for each job using the

amount of predicted usage of resources provided from our ML tool AMPRO-HPCC

that uses our MARM methodology. Hence, we can calculate the total and average

amount of resources using the predicted usage of all completed jobs for each HPC

resource.

5.4.1 Calculate the Cost of Running Jobs on the cloud

Our study will provide analytical comparison and calculation for the cost of running all

successfully completed jobs for both Beocat and RMACC-Summit resources using multiple

cloud service providers (Amazon Web Services, Google Cloud, Microsoft Azure, Digital

Ocean, IBM Cloud, and Holland Computing Center)

82

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 e2-standard-2 0.07 2 0.0350
4 16 e2-standard-4 0.13 4 0.0325
8 32 e2-standard-8 0.27 8 0.0337
16 64 e2-standard-16 0.54 16 0.0337
32 128 e2-standard-16 1.07 32 0.0334

Table 5.1: Google Cloud Platform Cost for 1 Core / 4 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 e2-standard-2 0.09 2 0.045
4 16 e2-standard-4 0.18 4 0.045
8 32 e2-standard-8 0.36 8 0.045
16 64 e2-standard-16 0.72 16 0.045

Table 5.2: Google Cloud Platform Cost for 1 Core / 8 GB Seat

We have used the Seat Pricing model to estimate the cost of a computing job. A seat

will be used as a portion of a compute node, either with 1 CPU Core and 4 GB of RAM or

1 CPU Core and 8 GB of RAM as the unit. For example, an HPC job requesting 4 CPU

cores and 20GB of RAM would require a minimum of 4 ”seats”. The RAM requirement

could fit in three 8 GB seats or five 4 GB seats. Whichever of the two combinations is the

lowest will be the price used as the estimated cost of the job being analyzed.

Tables 5.1 and 5.2 describes the cost for the calculated pricing using Google Cloud

Platform104. Tables 5.3 and 5.4 describes the cost for the calculated pricing using Mi-

crosoft Azure105. Tables 5.5 and 5.6 describes the cost for the calculated pricing using

Digital Ocean106. Tables 5.7 and 5.8 describes the cost for the calculated pricing using

IBM Cloud107. Tables 5.9 and 5.10 describes the cost for the calculated pricing using

Amazon Web Services (AWS)108.

While we chose Holland Computing Center at the University of Nebraska-Lincoln as an

example to calculate the cost for using the local resource. Tables 5.11 and 5.12 describes

the cost for the calculated pricing using Holland Computing Center at the University of

Nebraska - Lincoln109.

83

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 D2 v4 0.096 2 0.048
4 16 D4 v4 0.192 4 0.048
8 32 D8 v4 0.384 8 0.048
16 64 D16 v4 0.768 16 0.048
32 128 D32 v4 1.536 32 0.048
48 192 D48 v4 2.304 48 0.048
64 256 D64 v4 3.072 64 0.048

Table 5.3: Microsoft Azure Cost for 1 Core / 4 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 16. E2 v5 0.063 2 0.0315
4 32 E4 v5 0.126 4 0.0315
8 64 E8 v5 0.252 8 0.0315
16 128 E16 v5 0.504 16 0.0315
20 160 E20 v5 0.630 20 0.0315
32 256 E32 v5 1.008 32 0.0315
48 384 E48 v5 1.512 48 0.0315
64 512 E64 v5 2.016 64 0.0315
96 672 E96 v5 3.024 96 0.0315

Table 5.4: Microsoft Azure Cost for 1 Core / 8 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 General Purpose 0.08929 2 0.0446
4 16 General Purpose 0.17857 4 0.0446
8 32 General Purpose 0.35714 8 0.0446
16 64 General Purpose 0.71429 16 0.0446
32 128 General Purpose 1.42857 32 0.0446
40 192 General Purpose 1.78571 40 0.0446

Table 5.5: Digital Ocean Cost for 1 Core / 4 GB Seat

84

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 16. Memory Optimized 0.11905 2 0.0595
4 32 Memory Optimized 0.23810 4 0.0595
8 64 Memory Optimized 0.47619 8 0.0595
16 128 Memory Optimized 0.95238 16 0.0595
24 160 Memory Optimized 1.42857 24 0.0595
32 256 Memory Optimized 1.90476 32 0.0595

Table 5.6: Digital Ocean Cost for 1 Core / 8 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 bx2-2x8 0.096 2 0.048
4 16 bx2-4x16 0.192 4 0.048
8 32 bx2-8x32 0.384 8 0.048
16 64 bx2-16x64 0.768 16 0.048
32 128 bx2-32x128 1.536 32 0.048
48 192 bx2-48x192 2.305 48 0.048
64 256 bx2-64x256 3.073 64 0.048
96 384 bx2-96x384 4.609 96 0.048
128 512 bx2-128x512 6.146 128 0.048

Table 5.7: IBM Cloud Cost for 1 Core / 4 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 16. mx2-2x16 0.124 2 0.0620
4 32 mx2-4x32 0.248 4 0.0620
8 64 mx2-8x64 0.497 8 0.0621
16 128 mx2-16x128 0.994 16 0.0621
32 160 mx2-32x256 1.987 32 0.0621
48 256 mx2-48x384 2.981 48 0.0621
64 384 mx2-64x512 3.974 64 0.0621
96 512 mx2-96x768 5.961 96 0.0621
128 1024 mx2-128x1024 7.949 128 0.0621

Table 5.8: IBM Cloud Cost for 1 Core / 8 GB Seat

85

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 8 t4g.large 0.0672 2 0.0336
4 16 t4g.xlarge 0.1344 4 0.0336
8 32 t4g.2xlarge 0.2688 8 0.0336
16 64 m6g.4xlarge 0.616 16 0.0385
32 128 m6g.8xlarge 1.232 32 0.0385
48 192 m6g.12xlarge 1.848 48 0.0385
64 256 m6g.16xlarge 2.464 64 0.0385
96 384 m5a.24xlarge 4.128 96 0.0430
128 512 m6i.32xlarge 6.144 128 0.0480

Table 5.9: Amazon Web Services Cost for 1 Core / 4 GB Seat

Cores RAM (GB) Instance name Hourly Cost Seats Cost Per Seat
2 16. r6g.large 0.1008 2 0.0504
4 32 r6g.xlarge 0.2016 4 0.0504
8 64 r6g.2xlarge 0.4032 8 0.0504
16 128 r6g.4xlarge 0.8064 16 0.0504
32 256 r6g.8xlarge 1.6128 32 0.0504
48 384 r6g.12xlarge 2.4192 48 0.0504
64 512 r6g.metal 3.2256 64 0.0504
96 768 r5a.24xlarge 5.424 96 0.0565

Table 5.10: Amazon Web Services Cost for 1 Core / 8 GB Seat

Cores RAM (GB) Instance name Yearly Cost Hourly Cost Seats Cost Per Seat
16 64 Crane 633 0.0723 16 0.0045

Table 5.11: Holland Computing Center Cost for 1 Core / 4 GB Seat

Cores RAM (GB) Instance name Yearly Cost Hourly Cost Seats Cost Per Seat
36 256 CraneOPA 1967 0.2245 32 0.0070

Table 5.12: Holland Computing Center Cost for 1 Core / 8 GB Seat

86

5.5 Results

5.5.1 RMACC-Summit

a

To
ta

l T
im

e
in

 H
rs

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Requested
Actual
Predicted

b

To
ta

l M
em

or
y

in
 G

B
s

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

3.
0e

+
08

Requested
Actual
Predicted

Figure 5.1: (a) Total aggregate execution time requested (green), used (red), and predicted
(blue) in hours and (b) Total aggregate memory requested (green), used (red), and predicted
(blue) in gigabytes on RMACC-Summit HPC system across 2.8 million jobs.

Figures 5.1a and b show the total aggregate execution time and memory requested, used,

and predicted by our MARM algorithm on 2.8 million job logs obtained from RMACC-

Summit. It can be seen that the requested time and memory are significantly higher than

the actual and time and memory used. Our predicted time and memory are both closer to

the actual than requested configurations.

Figures 5.2 (a) to (f) show the logarithm of cost distribution across six cloud platforms

using requested, actual, and predicted configurations of time and memory. These statistics

were obtained on the 2.8 million job logs from RMACC-Summit. In all cases, the cost of

running services with the requested configuration is significantly higher than the actual cost.

Our MARM predicted configurations incur smaller costs that are close to the actual costs.

Figures 5.3 shows the mean cost distribution across various cloud platforms when using

requested, actual, and predicted time and memory configurations. Holland Computing

Center costs the least amount of money. The mean cost of other services is seen in the

following increasing order: i) Google Cloud Platform, ii) Amazon Web Services, iii) Digital

87

a b

c d

e f

Figure 5.2: Logarithm of cost distribution incurred in dollars for running 2.8 million jobs
with requested (green), actual (red), and predicted (blue) configurations for execution time
and memory on (a) Amazon Web Services, (b) Google Cloud Platform, (c) Microsoft Azure,
(d) Digital Ocean, (e) Holland Computing Center, and (f) IBM Cloud.

88

M
ea

n
C

os
t i

n
$

0
10

20
30

40

Amazon Web Services Google Cloud Platform Microsoft Azure Digital Ocean IBM Cloud Holland Computing Center

Requested
Actual
Predicted

Figure 5.3: Mean cost incurred in dollars for running 2.8 million jobs across various cloud
platform with requested (green), actual (red), and predicted (blue) configurations.

Ocean, iv) IBM Cloud, and v) Microsoft Azure. The cost distribution changes in magnitude,

being the highest for requested configuration followed by predicted configuration, the lowest

being the actual configuration. However, the cost distribution itself does not change among

cloud platforms.

To
ta

l C
os

t i
n

$
0.

0e
+

00
2.

0e
+

07
4.

0e
+

07
6.

0e
+

07
8.

0e
+

07
1.

0e
+

08
1.

2e
+

08

Amazon Web Services Google Cloud Platform Microsoft Azure Digital Ocean IBM Cloud Holland Computing Center

Requested
Actual
Predicted

Figure 5.4: Total aggregate cost incurred in dollars for running 2.8 million jobs across var-
ious cloud platform with requested (green), actual (red), and predicted (blue) configurations.

Figure 5.4 and table 5.13 show some more cost related statistics across cloud platforms,

where, consistently, the cost of MARM predicted configuration is smaller than the requested

configuration.

89

Requested
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 27.50$ 0.92$ 6.35$ 29.03$
Google Cloud Platform 25.58$ 0.84$ 5.99$ 27.36$

Microsoft Azure 39.02$ 1.32$ 8.98$ 41.04$
Digital Ocean 32.25$ 1.07$ 7.50$ 34.28$

IBM Cloud 37.54$ 1.27$ 8.63$ 39.46$
Holland Computing Center 3.61$ 0.11$ 0.88$ 4.04$

Actual
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 5.41$ 0.15$ 0.46$ 4.62$
Google Cloud Platform 4.92$ 0.14$ 0.42$ 4.20$

Microsoft Azure 7.73$ 0.22$ 0.66$ 6.60$
Digital Ocean 6.27$ 0.18$ 0.54$ 5.35$

IBM Cloud 7.44$ 0.21$ 0.64$ 6.36$
Holland Computing Center 0.64$ 0.02$ 0.05$ 0.54$

Predicted
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 12.89$ 0.92$ 3.22$ 22.18$
Google Cloud Platform 11.73$ 0.84$ 2.92$ 20.16$

Microsoft Azure 18.41$ 1.32$ 1.32$ 31.68$
Digital Ocean 14.94$ 1.07$ 2.17$ 25.69$

IBM Cloud 17.74$ 1.2$ 3.12$ 30.53$
Holland Computing Center 1.52$ 0.11$ 1.04$ 2.60$

Table 5.13: Mean, median, 75th-quantile, and 95th-quantile cost incurred across various
cloud platforms when using requested, actual, and predicted configurations of time and mem-
ory.

90

5.5.2 Beocat

a

To
ta

l T
im

e
in

 H
rs

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

Requested
Actual
Predicted

b

To
ta

l M
em

or
y

in
 G

B
s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08 Requested

Actual
Predicted

Figure 5.5: (a) Total aggregate execution time requested (green), used (red), and predicted
(blue) in hours and (b) Total aggregate memory requested (green), used (red), and predicted
(blue) in gigabytes on Beocat HPC system across 4.5 million jobs.

Figures 5.5 (a) and (b) show the total aggregate execution time and memory requested,

used and predicted by our MARM algorithm on 4.5 million job logs obtained from Beocat.

Similar to RMACC-Summit, the requested time and memory is significantly higher than

the actual and time and memory used. Our predicted time and memory are both closer to

the actual configurations.

Figures 5.6 (a) to (f) show the logarithm of cost distribution across six cloud platforms

using requested, actual and predicted configurations of time and memory. These statistics

were obtained on the 4.5 million job logs from Beocat. Similar RMACC-Summit, the cost of

running services with requested configuration is significantly higher than actual cost in all

cases. Our MARM predicted configurations incur smaller costs that are close to the actual

costs.

Figures 5.7 shows the mean cost distribution across various cloud platforms when us-

ing requested, actual, and predicted time and memory configurations. The cost distri-

butions are comparable for RMACC-Summit with the Holland Computing Center costing

the least amount of money and other services costing in the order as aforementioned for

RMACC-Summit. Similarly, the cost distribution changes in magnitude, being the highest

91

a b

c d

e f

Figure 5.6: Logarithm of cost distribution incurred in dollars for running 4.5 million jobs
with requested (green), used (red), and predicted (blue) configurations for execution time and
memory on (a) Amazon Web Services, (b) Google Cloud Platform, (c) Microsoft Azure, (d)
Digital Ocean, (e) Holland Computing Center, and (f) IBM Cloud.

92

M
ea

n
C

os
t i

n
$

0
2

4
6

8

Amazon Web Services Google Cloud Platform Microsoft Azure Digital Ocean IBM Cloud Holland Computing Center

Requested
Actual
Predicted

Figure 5.7: Mean cost incurred in dollars for running 4.5 million jobs across various cloud
platform with requested (green), used (red), and predicted (blue) configurations.

for requested configuration followed by predicted configuration, the lowest being the actual

configuration.

To
ta

l C
os

t i
n

$
0e

+
00

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Amazon Web Services Google Cloud Platform Microsoft Azure Digital Ocean IBM Cloud Holland Computing Center

Requested
Actual
Predicted

Figure 5.8: Total aggregate cost incurred in dollars for running 4.5 million jobs across
various cloud platform with requested (green), used (red), and predicted (blue) configurations.

Figure 5.8 and table 5.14 show some more cost related statistics across cloud platforms,

where, similar to RMACC-Summit, consistently, the cost of MARM predicted configuration

is smaller than the requested configuration.

93

Requested
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 5.31$ 1.21$ 1.85$ 10.58$
Google Cloud Platform 4.91$ 1.14$ 1.71$ 9.97$

Microsoft Azure 7.55$ 1.71$ 2.64$ 14.96$
Digital Ocean 6.20$ 1.43$ 2.14$ 12.50$

IBM Cloud 7.27$ 1.64$ 2.54$ 14.39$
Holland Computing Center 0.68$ 0.17$ 0.25$ 1.47$

Actual
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 1.08$ 0.04$ 0.12$ 0.77$
Google Cloud Platform 0.99$ 0.04$ 0.10$ 0.70$

Microsoft Azure 1.55$ 0.06$ 0.17$ 1.10$
Digital Ocean 1.26$ 0.04$ 0.13$ 0.89$

IBM Cloud 1.49$ 0.05$ 0.16$ 1.06$
Holland Computing Center 0.13$ 0.00$ 0.01$ 0.09$

Predicted
Mean Median 75th Quantile 95th Quantile

Amazon Web Services 2.08$ 0.25$ 0.50$ 2.04$
Google Cloud Platform 1.90$ 0.24$ 0.46$ 1.89$

Microsoft Azure 2.97$ 0.36$ 0.71$ 2.92$
Digital Ocean 2.42$ 0.30$ 0.58$ 2.38$

IBM Cloud 2.86$ 0.34$ 0.69$ 2.81$
Holland Computing Center 0.25$ 0.03$ 0.06$ 0.25$

Table 5.14: Mean, median, 75th-quantile, and 95th-quantile cost incurred across various
cloud platforms when using requested, actual, and predicted configurations of time and mem-
ory.

94

5.6 Summary

High Performance Computing and cloud computing has become more and more available

over recent history. The performance and availability of these resources have allowed re-

searchers to accelerate their research, using a large quantity of resources in a short period

of time to meet their deadlines. Cloud computing services such as AWS, Microsoft Azure,

Google cloud, and IBM Spectrum Computing have helped further increase availability by

sacrificing a more considerable financial cost to projects and researchers. This study fur-

ther verified the machine learning models, AMPRO-HPCC and MARM, to help use both

financial and computational resources more efficiently by better predicting the resources re-

quired for HPC jobs, reducing the overall cost of running HPC jobs on the cloud anywhere

from 39% to 47%. This provides a great benefit to researchers by saving their budget on

resources and allowing researchers to more efficiently reach their deadlines quicker. This

study also demonstrated the financial and computational cost of the overestimation of time

and memory resources by HPC users on a project or researcher’s budget and the impact it

can have on HPC systems.

95

Chapter 6

Conclusion and future work

6.1 Summary

This thesis summarizes the author’s contributions in improving the performance of HPC

systems by presenting novel methodologies for predicting job resources (memory and time)

for submitted jobs on HPC systems based on historical jobs data provided from the HPC

systems scheduler.

Our work involves using several supervised machine learning discriminative models from

the scikit-learn machine learning library and LightGBM applied on historical data from

Simple Linux Utility for Resource Management (Slurm Workload Manager) and Sun Grid

Engine (SGE).

Our work has been implemented and tested using two HPC providers, an XSEDE service

provider at the University of Colorado-Boulder (RMACC-Summit) and the Kansas State

University (Beocat).

Our methodologies achieved high accuracy (up to 86 %) in predicting the amount of time

and the amount of memory for both RMACC-Summit and Beocat HPC resources. Moreover,

our results show that our model helps dramatically reduce computational average waiting

time (from 380 to 4 hours in RMACC-Summit and from 662 hours to 28 hours in Beocat),

96

reduces turnaround time (from 403 to 6 hours in RMACC-Summit and from 673 hours to

35 hours in Beocat), and achieves high utilization (up to 100 %), higher throughput and

efficiency for HPC resources.

Moreover, we introduced our first-ever implemented fully-offline, fully automated, stand-

alone, and open-source Machine Learning tool to help HPC users predict job resources

requirements for their submitted jobs on HPC Clusters. We have been tested our AMPRO-

HPCC tool using historical data (saact data) of the HPC resources of Kansas State Uni-

versity (Beocat), which covers years from January 2019 - March 2021, and contains around

17.6 million jobs. Our results show that our tool achieves high predictive accuracy R2 (72 %

using LightGBM for predicting the memory and 74 % using Random Forest for predicting

the time).

Finally, we demonstrate the financial and computational cost impact of the overesti-

mation of job resources on the cloud. We compare the cost of running the jobs with and

without using our machine learning tool on the most popular cloud computing resources

such as Amazon Web Services (AWS), Microsoft Azure, Digital Ocean, Google Cloud, and

the local resources of Holland Computing Center at the University of Nebraska-Lincoln.

Our work shows that the significance of our study on a project or researcher’s budget and

the impact it can have on HPC systems. We found that our cost-effective Machine Learning

tool can reduce the average cost of running jobs on the cloud by up to 39% for the BEOCAT

jobs and up to 47% for the RMACC- Summit resources. Moreover, decrease the average

running time to meet the deadlines by 39% for the BEOCAT jobs and up to 52% for the

RMACC-Summit resources.

6.2 Limitations and directions for future work

Our future work will include continuing to improve our model by applying additional ma-

chine learning algorithms and sophisticated models such as Convolutional Neural Networks

97

(CNN), Deep Neural Networks (DNN), and Deep Reinforcement Learning (DRL). This will

include testing our module in a real HPC system, and a bigger testbed to achieve more

accurate results.

In addition, future work on the machine learning approach will incorporate both the

classification (logit and other discriminative modes) and regression (probit estimation and

other maximum likelihood estimation) into a decision support system. This system will

provide a testbed for personalized recommendations and experimental evaluation of the

pros, cons, and effectiveness of off-loading large jobs to the cloud service. As a use case of

data science, it will also facilitate exploration of variables that are exogenous to a single job,

such as a user’s history of job submission and rates of success or failure by mode (memory

vs. CPU). This can also potentially provide insights into the effectiveness of training and

the skill acquisition curve of a user as related to self-efficacy (as indicated on surveys) and

as discovered automatically by clustering of users.

Moreover, our future work can include the following:

• Evaluate our machine learning model using different cluster configurations

We assumed our machine learning models are effective and working on 100 % healthy

cluster. We meant by healthy cluster is that applications are running using 100 % of

the cores and memory capabilities. That means nothing that affects the performance

of the cluster such as memory leak or zombie processes running on the background.

Hence, one potential future work is to examine our machine learning model on different

configurations in the sense of anomaly using Cluster configuration tool and LDMS (

a low-overhead, low-latency framework for collecting, transferring, and storing metric

data on a large distributed computer system)110.

The workflow model of our work will be as follows: i) Install multiple well known

applications such as (CoMD, MiniFE, MiniGhost, Lulish, etc.) on a real cluster ii)

Run around thousands of jobs using 100 % healthy cluster in order to extract historical

98

data to be used in our machine learning model. iii) Extract the historical data (sacct)

from the cluster after finishing all runs. iv) Build a machine learning model for the

extracted sacct data via our MARM algorithm and AMPRO-HPCC tool. v) Predict

the amount of memory and time for all jobs. vi) Replace all requested memory and

time with predicted values. vii) Re-submit all jobs to the cluster using different healthy

cluster configurations starting from 100 % healthy cluster; 90% of healthy nodes and

10% of unhealthy nodes; 80% of healthy nodes and 20% of unhealthy nodes; 70% of

healthy nodes and 30% of unhealthy nodes; etc. viii) Evaluate the performance and

the accuracy of our tool for each configuration.

The purpose of this future work is to test the performance and accuracy of our machine

learning model using different configurations in real scenarios. This work will involve

three stages as the following: i) Verifying the prediction of our machine learning model

in a real-time system for a single job. ii) Verifying the prediction of our machine

learning model per system. iii) Verifying the prediction of our machine learning model

and how the system behaves for a real system in the presence of anomalies.

• Integrate our ML methodology to Slurm Workload manager

Integrate our software based tool AMPRO-HPCC as an application program interface

(API) into Slurm workload manager and other HPC schedulers. This will make the

process of building the ML models and predicting job resources for the HPC users

much easier and smooth.

• Build ML models for other schedulers such as Tera-scale Open-source Re-

source and Queue manager (TORQUE), Portable Batch System (PBS),

and HTCondor

We have developed our research based on Sun Grid Engine and Simple Linux Utility

for Resource Management (Slurm Workload Manager). The future work can involve

expanding our work to involve more well known HPC schedulers such as Maui Cluster

99

Scheduler, Tera-scale Open-source Resource and Queue manager (TORQUE), and

Portable Batch System (PBS). In addition, build and investigate the performance of

our ML model using HTCondor111 on Open Science Grid (OSG)112.

100

Bibliography

[1] Thomas Sterling, Maciej Brodowicz, and Matthew Anderson. High performance com-

puting: modern systems and practices. Morgan Kaufmann, 2017.

[2] Earl Joseph and Steve Conway. Major trends in the worldwide hpc market, 2021.

[3] HPC America’s. The vital importance of high-performance computing to us compet-

itiveness.

[4] Mohammed Tanash, Brandon Dunn, Daniel Andresen, William Hsu, Huichen Yang,

and Adedolapo Okanlawon. Improving hpc system performance by predicting job re-

sources via supervised machine learning. In Proceedings of the Practice and Experience

in Advanced Research Computing on Rise of the Machines (learning), pages 1–8. 2019.

[5] Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Simple linux utility for

resource management. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,

editors, Job Scheduling Strategies for Parallel Processing, pages 44–60, Berlin, Heidel-

berg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-39727-4.

[6] N.R. Council, D.E.L. Studies, D.E.P. Sciences, and C.P.I.H.E.C.I.F.S. Engineering.

The Potential Impact of High-End Capability Computing on Four Illustrative Fields

of Science and Engineering. National Academies Press, 2008. ISBN 9780309124850.

URL https://books.google.com/books?id=2XadAgAAQBAJ.

[7] Chaowei Yang, David Wong, Qianjun Miao, and Ruixin Yang, editors. Advanced

Geoinformation Science. CRC Press, October 2010. doi: 10.1201/b10280. URL

https://doi.org/10.1201/b10280.

101

https://books.google.com/books?id=2XadAgAAQBAJ
https://doi.org/10.1201/b10280

[8] W. Gentzsch. Sun grid engine: towards creating a compute power grid. In Proceedings

First IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE

Comput. Soc. doi: 10.1109/ccgrid.2001.923173. URL https://doi.org/10.1109/

ccgrid.2001.923173.

[9] Maui Scheduler Steering Committee. Maui scheduler open cluster software. URL

http://mauischeduler.sourceforge.net/.

[10] Torque resource manager. http://www.adaptivecomputing.com/products/

torque/. (Accessed on 02/02/2019).

[11] Pbs professional open source project. https://www.pbspro.org/. (Accessed on

02/03/2019).

[12] Slurm workload manager - documentation. https://slurm.schedmd.com/. (Accessed

on 01/07/2019).

[13] Github - ubccr-slurm-simulator/slurm simulator: Slurm simulator: Slurm modifi-

cation to enable its simulation. https://github.com/ubccr-slurm-simulator/

slurm_simulator. (Accessed on 01/03/2019).

[14] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert L. DeLeon,

Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. A slurm

simulator: Implementation and parametric analysis. In Stephen Jarvis, Steven Wright,

and Simon Hammond, editors, High Performance Computing Systems. Performance

Modeling, Benchmarking, and Simulation, pages 197–217, Cham, 2018. Springer In-

ternational Publishing. ISBN 978-3-319-72971-8.

[15] Andréa Matsunaga and José A.B. Fortes. On the use of machine learning to predict the

time and resources consumed by applications. In 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing. IEEE, 2010. doi: 10.1109/ccgrid.

2010.98. URL https://doi.org/10.1109/ccgrid.2010.98.

102

https://doi.org/10.1109/ccgrid.2001.923173
https://doi.org/10.1109/ccgrid.2001.923173
http://mauischeduler.sourceforge.net/
http://www.adaptivecomputing.com/products/torque/
http://www.adaptivecomputing.com/products/torque/
https://www.pbspro.org/
https://slurm.schedmd.com/
https://github.com/ubccr-slurm-simulator/slurm_simulator
https://github.com/ubccr-slurm-simulator/slurm_simulator
https://doi.org/10.1109/ccgrid.2010.98

[16] Warren Smith. Prediction services for distributed computing. In 2007 IEEE Inter-

national Parallel and Distributed Processing Symposium. IEEE, 2007. doi: 10.1109/

ipdps.2007.370276. URL https://doi.org/10.1109/ipdps.2007.370276.

[17] Rajath Kumar and Sathish Vadhiyar. Identifying quick starters: Towards an in-

tegrated framework for efficient predictions of queue waiting times of batch parallel

jobs. In Walfredo Cirne, Narayan Desai, Eitan Frachtenberg, and Uwe Schwiegelshohn,

editors, Job Scheduling Strategies for Parallel Processing, pages 196–215, Berlin, Hei-

delberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-35867-8.

[18] Fenoy Garćıa and Carlos. Improving hpc applications scheduling with predictions

based on automatically collected historical data, Oct 2014. URL https://upcommons.

upc.edu/handle/2099.1/23049.

[19] Eric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. Improving back-

filling by using machine learning to predict running times. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis on - SC '15. ACM Press, 2015. doi: 10.1145/2807591.2807646. URL

https://doi.org/10.1145/2807591.2807646.

[20] Josep Ll. Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà,

and Jordi Torres. Towards energy-aware scheduling in data centers using machine

learning. In Proceedings of the 1st International Conference on Energy-Efficient Com-

puting and Networking - e-Energy '10. ACM Press, 2010. doi: 10.1145/1791314.

1791349. URL https://doi.org/10.1145/1791314.1791349.

[21] Bruce Bugbee, Caleb Phillips, Hilary Egan, Ryan Elmore, Kenny Gruchalla, and

Avi Purkayastha. Prediction and characterization of application power use in a high-

performance computing environment. Statistical Analysis and Data Mining: The ASA

Data Science Journal, 10(3):155–165, February 2017. doi: 10.1002/sam.11339. URL

https://doi.org/10.1002/sam.11339.

103

https://doi.org/10.1109/ipdps.2007.370276
https://upcommons.upc.edu/handle/2099.1/23049
https://upcommons.upc.edu/handle/2099.1/23049
https://doi.org/10.1145/2807591.2807646
https://doi.org/10.1145/1791314.1791349
https://doi.org/10.1002/sam.11339

[22] Beocat. https://support.beocat.ksu.edu/BeocatDocs/index.php/Main_Page.

(Accessed on 03/013/2019).

[23] Getting started with scikit-learn for machine learning. In Python® Machine Learning,

pages 93–117. John Wiley & Sons, Inc., April 2019. doi: 10.1002/9781119557500.ch5.

URL https://doi.org/10.1002/9781119557500.ch5.

[24] L. Massaron and A. Boschetti. Regression Analysis with Python. Packt Publish-

ing, 2016. ISBN 9781783980741. URL https://books.google.com/books?id=

d2tLDAAAQBAJ.

[25] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine learning: a review of

classification and combining techniques, Nov 2007. URL https://link.springer.

com/article/10.1007/s10462-007-9052-3.

[26] Dan Andresen, William Hsu, Huichen Yang, and Adedolapo Okanlawon. Machine

learning for predictive analytics of compute cluster jobs. CoRR, abs/1806.01116,

2018. URL http://arxiv.org/abs/1806.01116.

[27] Mohammed Tanash, Huichen Yang, Daniel Andresen, and William Hsu. Ensemble

prediction of job resources to improve system performance for slurm-based hpc sys-

tems. In Practice and Experience in Advanced Research Computing, pages 1–8. 2021.

[28] Dan Andresen, William Hsu, Huichen Yang, and Adedolapo Okanlawon. Ma-

chine learning for predictive analytics of compute cluster jobs. arXiv preprint

arXiv:1806.01116, 2018.

[29] Adedolapo Okanlawon, Huichen Yang, Avishek Bose, William Hsu, Dan Andresen,

and Mohammed Tanash. Feature selection for learning to predict outcomes of compute

cluster jobs with application to decision support. arXiv preprint arXiv:2012.07982,

2020.

104

https://support.beocat.ksu.edu/BeocatDocs/index.php/Main_Page
https://doi.org/10.1002/9781119557500.ch5
https://books.google.com/books?id=d2tLDAAAQBAJ
https://books.google.com/books?id=d2tLDAAAQBAJ
https://link.springer.com/article/10.1007/s10462-007-9052-3
https://link.springer.com/article/10.1007/s10462-007-9052-3
http://arxiv.org/abs/1806.01116

[30] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for

resource management. InWorkshop on job scheduling strategies for parallel processing,

pages 44–60. Springer, 2003.

[31] Documentation index. http://www.adaptivecomputing.com/support/

documentation-index/. (Accessed on 02/011/2019).

[32] Dror G Feitelson, Dan Tsafrir, and David Krakov. Experience with using the parallel

workloads archive. Journal of Parallel and Distributed Computing, 74(10):2967–2982,

2014.

[33] Michael Pinedo. Scheduling, volume 29. Springer, 2012.

[34] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and Sys-

tem sciences, 10(3):384–393, 1975.

[35] Ju-Won Park and Eunhye Kim. Runtime prediction of parallel applications with

workload-aware clustering. The Journal of Supercomputing, 73(11):4635–4651, 2017.

[36] Seounghyeon Kim, Young-Kyoon Suh, and Jeeyoung Kim. Extes: An execution-time

estimation scheme for efficient computational science and engineering simulation via

machine learning. IEEE Access, 7:98993–99002, 2019.

[37] Anastasia Tyryshkina, Nate Coraor, and Anton Nekrutenko. Predicting runtimes of

bioinformatics tools based on historical data: five years of galaxy usage. Bioinformat-

ics, 35(18):3453–3460, 2019.

[38] Qiqi Wang, Jing Li, Shuo Wang, and Guibao Wu. A novel two-step job runtime

estimation method based on input parameters in hpc system. In 2019 IEEE 4th

International Conference on Cloud Computing and Big Data Analysis (ICCCBDA),

pages 311–316. IEEE, 2019.

105

http://www.adaptivecomputing.com/support/documentation-index/
http://www.adaptivecomputing.com/support/documentation-index/

[39] D Ardagna, E Barbierato, E Gianniti, M Gribaudo, TBM Pinto, APC da Silva, and

JM Almeida. Predicting the performance of big data applications on the cloud. The

Journal of Supercomputing, pages 1–33, 2020.

[40] Young-Kyoon Suh, Seounghyeon Kim, and Jeeyoung Kim. Clutch: A clustering-driven

runtime estimation scheme for scientific simulations. IEEE Access, 8:220710–220722,

2020.

[41] Taraneh Taghavi, Maria Lupetini, and Yaron Kretchmer. Compute job memory rec-

ommender system using machine learning. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 609–616,

2016.

[42] Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, and

Michael E Papka. Deep reinforcement agent for scheduling in hpc. arXiv preprint

arXiv:2102.06243, 2021.

[43] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. Rlscheduler:

an automated hpc batch job scheduler using reinforcement learning. In SC20: In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–15. IEEE, 2020.

[44] Théo Saillant, Jean-Christophe Weill, and Mathilde Mougeot. Predicting job power

consumption based on rjms submission data in hpc systems. In International Confer-

ence on High Performance Computing, pages 63–82. Springer, 2020.

[45] Omar Aaziz, Jonathan Cook, and Mohammed Tanash. Modeling expected application

runtime for characterizing and assessing job performance. In 2018 IEEE International

Conference on Cluster Computing (CLUSTER), pages 543–551. IEEE, 2018.

[46] Jonathon Anderson, Patrick J Burns, Daniel Milroy, Peter Ruprecht, Thomas Hauser,

and Howard Jay Siegel. Deploying rmacc summit: an hpc resource for the rocky

106

mountain region. In Proceedings of the Practice and Experience in Advanced Research

Computing 2017 on Sustainability, Success and Impact, pages 1–7. 2017.

[47] Chao Mei, Gengbin Zheng, Filippo Gioachin, and Laxmikant V Kalé. Optimizing a

parallel runtime system for multicore clusters: a case study. In Proceedings of the 2010

TeraGrid Conference, pages 1–8, 2010.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[49] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle

regression. Annals of statistics, 32(2):407–499, 2004.

[50] Giuseppe Bonaccorso. Machine learning algorithms. Packt Publishing Ltd, 2017.

[51] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data

mining and knowledge discovery, 1(1):14–23, 2011.

[52] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[53] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei

Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.

Advances in neural information processing systems, 30:3146–3154, 2017.

[54] Mohammed Tanash, Daniel Andresen, and William Hsu. Ampro-hpcc: A machine-

learning tool for predicting resources on slurm hpc clusters. In The Fifteenth Interna-

tional Conference on Advanced Engineering Computing and Applications in Sciences

ADVCOMP 2021, pages 20–27. 2021.

[55] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. Are user

107

runtime estimates inherently inaccurate? In Workshop on Job Scheduling Strategies

for Parallel Processing, pages 253–263. Springer, 2004.

[56] Matthias Hovestadt, Odej Kao, Axel Keller, and Achim Streit. Scheduling in hpc

resource management systems: Queuing vs. planning. In Workshop on Job Scheduling

Strategies for Parallel Processing, pages 1–20. Springer, 2003.

[57] tanash1983. Tanash1983/ampro-hpcc: A machine-learning-tool for predicting job re-

sources on hpc clusters. URL https://github.com/tanash1983/AMPRO-HPCC.

[58] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, pages 8–es, 2006.

[59] Bill Nitzberg, Jennifer M Schopf, and James Patton Jones. Pbs pro: Grid computing

and scheduling attributes. In Grid resource management, pages 183–190. Springer,

2004.

[60] Thanh-Phuong Pham, Juan J Durillo, and Thomas Fahringer. Predicting workflow

task execution time in the cloud using a two-stage machine learning approach. IEEE

Transactions on Cloud Computing, 8(1):256–268, 2017.

[61] Mina Naghshnejad and Mukesh Singhal. Adaptive online runtime prediction to im-

prove hpc applications latency in cloud. In 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), pages 762–769. IEEE, 2018.

[62] Farrukh Nadeem, Daniyal Alghazzawi, Abdulfattah Mashat, Khalid Faqeeh, and Ab-

dullah Almalaise. Using machine learning ensemble methods to predict execution

time of e-science workflows in heterogeneous distributed systems. IEEE Access, 7:

25138–25149, 2019.

[63] Muhammad Hafizhuddin Hilman, Maria Alejandra Rodriguez, and Rajkumar Buyya.

Task runtime prediction in scientific workflows using an online incremental learning

108

https://github.com/tanash1983/AMPRO-HPCC

approach. In 2018 IEEE/ACM 11th International Conference on Utility and Cloud

Computing (UCC), pages 93–102. IEEE, 2018.

[64] Eduardo R Rodrigues, Renato LF Cunha, Marco AS Netto, and Michael Spriggs. Help-

ing hpc users specify job memory requirements via machine learning. In 2016 Third

International Workshop on HPC User Support Tools (HUST), pages 6–13. IEEE, 2016.

[65] Slurm workload manager. URL https://slurm.schedmd.com/sacct.html. retrieved:

04, 2021.

[66] Nikolay A Simakov, Martins D Innus, Matthew D Jones, Robert L DeLeon, Joseph P

White, Steven M Gallo, Abani K Patra, and Thomas R Furlani. A slurm simulator:

Implementation and parametric analysis. In International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computer Systems,

pages 197–217. Springer, 2017.

[67] EC Amazon. Amazon web services. Available in: http://aws. amazon.

com/es/ec2/(November 2012), page 39, 2015.

[68] David Chappell et al. Introducing the azure services platform. White paper, Oct, 1364

(11), 2008.

[69] John J JJ Geewax. Google Cloud Platform in Action. Simon and Schuster, 2018.

[70] Angelo Bernasconi, Cristiano Beretta, Walter Bernocchi, Giorgio Richelli, et al. IBM

Spectrum Virtualize and IBM Spectrum Scale in an Enhanced Stretched Cluster Im-

plementation. IBM Redbooks, 2015.

[71] Adam G Carlyle, Stephen L Harrell, and Preston M Smith. Cost-effective hpc: The

community or the cloud? In 2010 IEEE Second International Conference on Cloud

Computing Technology and Science, pages 169–176. IEEE, 2010.

109

https://slurm.schedmd.com/sacct.html

[72] Ye Hu, Johnny Wong, Gabriel Iszlai, and Marin Litoiu. Resource provisioning for

cloud computing. In Proceedings of the 2009 Conference of the Center for Advanced

Studies on Collaborative Research, pages 101–111, 2009.

[73] Wenwen Gong, Lianyong Qi, and Yanwei Xu. Privacy-aware multidimensional mo-

bile service quality prediction and recommendation in distributed fog environment.

Wireless Communications and Mobile Computing, 2018, 2018.

[74] Lei Wu, Ran Ding, Zhaohong Jia, and Xuejun Li. Cost-effective resource provisioning

for real-time workflow in cloud. Complexity, 2020, 2020.

[75] Maria Alejandra Rodriguez and Rajkumar Buyya. Deadline based resource provi-

sioningand scheduling algorithm for scientific workflows on clouds. IEEE transactions

on cloud computing, 2(2):222–235, 2014.

[76] Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R De Supinski, Barry

Rountree, Martin Schulz, and Xin Yuan. A comparative study of high-performance

computing on the cloud. In Proceedings of the 22nd international symposium on High-

performance parallel and distributed computing, pages 239–250, 2013.

[77] Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya. High-performance cloud

computing: A view of scientific applications. In 2009 10th International Symposium

on Pervasive Systems, Algorithms, and Networks, pages 4–16. IEEE, 2009.

[78] Moustafa AbdelBaky, Manish Parashar, Hyunjoo Kim, Kirk E Jordan, Vipin

Sachdeva, James Sexton, Hani Jamjoom, Zon-Yin Shae, Gergina Pencheva, Reza

Tavakoli, et al. Enabling high-performance computing as a service. Computer, 45

(10):72–80, 2012.

[79] Abhishek Gupta, Laxmikant V Kale, Filippo Gioachin, Verdi March, Chun Hui Suen,

Bu-Sung Lee, Paolo Faraboschi, Richard Kaufmann, and Dejan Milojicic. The who,

110

what, why, and how of high performance computing in the cloud. In 2013 IEEE 5th

international conference on cloud computing technology and science, volume 1, pages

306–314. IEEE, 2013.

[80] Renato LF Cunha, Eduardo R Rodrigues, Leonardo P Tizzei, and Marco AS Netto.

Job placement advisor based on turnaround predictions for hpc hybrid clouds. Future

Generation Computer Systems, 67:35–46, 2017.

[81] Marco AS Netto, Renato LF Cunha, and Nicole Sultanum. Deciding when and how

to move hpc jobs to the cloud. Computer, 48(11):86–89, 2015.

[82] Iman Sadooghi, Jesús Hernández Martin, Tonglin Li, Kevin Brandstatter, Ketan Ma-

heshwari, Tiago Pais Pitta de Lacerda Ruivo, Gabriele Garzoglio, Steven Timm, Yong

Zhao, and Ioan Raicu. Understanding the performance and potential of cloud comput-

ing for scientific applications. IEEE Transactions on Cloud Computing, 5(2):358–371,

2015.

[83] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange,

and Cesar AF De Rose. Performance evaluation of container-based virtualization for

high performance computing environments. In 2013 21st Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing, pages 233–240.

IEEE, 2013.

[84] Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas

Cholia, John Shalf, Harvey JWasserman, and Nicholas J Wright. Performance analysis

of high performance computing applications on the amazon web services cloud. In

2010 IEEE second international conference on cloud computing technology and science,

pages 159–168. IEEE, 2010.

[85] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo, and

111

Maurice Yarrow. The nas parallel benchmarks 2.0. Technical report, Technical Report

NAS-95-020, NASA Ames Research Center, 1995.

[86] Eduardo Roloff, Matthias Diener, Alexandre Carissimi, and Philippe OA Navaux.

High performance computing in the cloud: Deployment, performance and cost effi-

ciency. In 4th IEEE International Conference on Cloud Computing Technology and

Science Proceedings, pages 371–378. IEEE, 2012.

[87] Prakash Murali and Sathish Vadhiyar. Qespera: an adaptive framework for prediction

of queue waiting times in supercomputer systems. Concurrency and Computation:

Practice and Experience, 28(9):2685–2710, 2016.

[88] Rajath Kumar and Sathish Vadhiyar. Identifying quick starters: towards an inte-

grated framework for efficient predictions of queue waiting times of batch parallel

jobs. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 196–

215. Springer, 2012.

[89] Daniel Nurmi, John Brevik, and Rich Wolski. Qbets: Queue bounds estimation from

time series. In Workshop on Job Scheduling Strategies for Parallel Processing, pages

76–101. Springer, 2007.

[90] Hui Li, Juan Chen, Ying Tao, David Gro, and Lex Wolters. Improving a local learning

technique for queuewait time predictions. In Sixth IEEE International Symposium on

Cluster Computing and the Grid (CCGRID’06), volume 1, pages 335–342. IEEE, 2006.

[91] Leo T Yang, Xiaosong Ma, and Frank Mueller. Cross-platform performance prediction

of parallel applications using partial execution. In SC’05: Proceedings of the 2005

ACM/IEEE Conference on Supercomputing, pages 40–40. IEEE, 2005.

[92] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using system-generated

predictions rather than user runtime estimates. IEEE Transactions on Parallel and

Distributed Systems, 18(6):789–803, 2007.

112

[93] C Atkeson. Locally weighted regression. Artificial Intelligence Review, 1997.

[94] Warren Smith. Prediction services for distributed computing. In 2007 IEEE Interna-

tional Parallel and Distributed Processing Symposium, pages 1–10. IEEE, 2007.

[95] Maciej Malawski, Kamil Figiela, and Jarek Nabrzyski. Cost minimization for com-

putational applications on hybrid cloud infrastructures. Future Generation Computer

Systems, 29(7):1786–1794, 2013.

[96] Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel. Scheduling parallel

applications on utility grids: Time and cost trade-off management. In ACSC, volume 9,

pages 139–147. Citeseer, 2009.

[97] Nik Bessis, Stelios Sotiriadis, Fatos Xhafa, Florin Pop, and Valentin Cristea. Meta-

scheduling issues in interoperable hpcs, grids and clouds. International Journal of

Web and Grid Services, 8(2):153–172, 2012.

[98] Stelios Sotiriadis, Nik Bessis, and Nick Antonopoulos. Towards inter-cloud schedulers:

A survey of meta-scheduling approaches. In 2011 International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing, pages 59–66. IEEE, 2011.

[99] Marcos Dias De Assunção, Alexandre Di Costanzo, and Rajkumar Buyya. Evaluating

the cost-benefit of using cloud computing to extend the capacity of clusters. In Pro-

ceedings of the 18th ACM international symposium on High performance distributed

computing, pages 141–150, 2009.

[100] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick HJ Epema. Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds. Future Genera-

tion Computer Systems, 29(1):158–169, 2013.

[101] Jiyuan Shi, Junzhou Luo, Fang Dong, and Jinghui Zhang. A budget and deadline

aware scientific workflow resource provisioning and scheduling mechanism for cloud. In

113

Proceedings of the 2014 IEEE 18th International Conference on Computer Supported

Cooperative Work in Design (CSCWD), pages 672–677. IEEE, 2014.

[102] Amandeep Verma and Sakshi Kaushal. Cost-time efficient scheduling plan for execut-

ing workflows in the cloud. Journal of Grid Computing, 13(4):495–506, 2015.

[103] Wei Zheng, Yingsheng Qin, Emmanuel Bugingo, Dongzhan Zhang, and Jinjun Chen.

Cost optimization for deadline-aware scheduling of big-data processing jobs on clouds.

Future Generation Computer Systems, 82:244–255, 2018.

[104] URL https://cloud.google.com/products/calculator.

[105] Pricing microsoft azure, . URL https://azure.microsoft.com/en-us/pricing/

details/virtual-machines/linux/.

[106] . URL https://www.digitalocean.com/pricing.

[107] URL https://cloud.ibm.com/vpc-ext/provision/vs.

[108] URL https://calculator.aws/#/createCalculator/EC2.

[109] Priority access pricing, . URL https://hcc.unl.edu/priority-access-pricing.

[110] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos, Joshi

Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden, et al. The

lightweight distributed metric service: a scalable infrastructure for continuous mon-

itoring of large scale computing systems and applications. In SC’14: Proceedings of

the International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 154–165. IEEE, 2014.

[111] HTCondor Team. Htcondor, Jan 2020. URL https://zenodo.org/record/3595387#

.YXmektnMKbs.

114

https://cloud.google.com/products/calculator
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.digitalocean.com/pricing
https://cloud.ibm.com/vpc-ext/provision/vs
https://calculator.aws/#/createCalculator/EC2
https://hcc.unl.edu/priority-access-pricing
https://zenodo.org/record/3595387#.YXmektnMKbs
https://zenodo.org/record/3595387#.YXmektnMKbs

[112] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy, Paul

Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, et al. The open science grid.

In Journal of Physics: Conference Series, volume 78, page 012057. IOP Publishing,

2007.

115

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Preface
	Introduction
	Introduction and Background
	Research questions and contributions
	Dissertation structure

	Improving HPC System Performance by Predicting Job Resources via Supervised Machine Learning
	abstract
	Introduction
	 Slurm Workload Manager
	 Slurm Simulator

	Related Work
	Implementation
	Workflow Model
	Data Preparation and Feature Analysis
	Machine Learning Algorithms

	Results and Discussion
	Machine Learning Techniques
	Evaluating Our Model
	Predicting Memory Required vs. Predicting Time Required

	Summary

	Ensemble Prediction of Job Resources to Improve System Performance for Slurm-Based HPC Systems
	abstract
	Introduction
	 Why the Slurm Workload Manager and Slurm Simulator?

	Related Work
	Methodology
	Data Preparation and Feature Analysis
	Regression Models
	Multi-Technique prediction: Mixed Account Regression Models

	Results and Discussion
	Benchmarking predictive performance of regression models
	Evaluating Our Model

	Summary

	AMPRO-HPCC: A Machine-Learning Tool for Predicting Resources on Slurm HPC Clusters
	Abstract
	Introduction
	Related Work
	Prediction Tool (AMPRO-HPCC)
	AMPRO-HPCC Workflow Model
	Data Preparation
	Evaluating individual regression models
	Evaluating mixed account regression models
	Building MARM for prediction
	Job resource prediction

	Results and Discussion
	Preprocessing and PerAccount Models
	MARM models in BEOCAT
	Evaluating Our Model

	Summary

	Cost-Effective Resource Provisioning of Cloud Computing via Supervised Machine Learning
	Abstract
	Introduction and Background
	Related Work
	Implementation
	Calculate the Cost of Running Jobs on the cloud

	Results
	RMACC-Summit
	Beocat

	Summary

	Conclusion and future work
	Summary
	Limitations and directions for future work

	Bibliography

