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Abstract

Spreading processes appear in diverse natural and technological systems, such as the

spread of infectious diseases and the dissemination of information. It has been demonstrated

that the structure of interaction among population members can dramatically influence

spreading dynamics. Therefore, researchers have focused on studying spreading processes

over complex networks, where interaction among individuals could be highly heterogeneous.

This dissertation aims to add to the current understanding of networked spreading processes

by investigating various aspects of the Susceptible-Infected-Susceptible (SIS) model.

Our first contribution is related to the inverse problem of continuous time SIS spreading

over a graph. In other words, we show the possibility of inferring the underlying network

from observations on the node states through time. We formulate the inverse problem as a

Bayesian inference problem and find the posterior probabilities for the existence of uncertain

links.

Second, we study the SIS spreading process over time dependent networks, where the

contact network’s links are not permanent. To analyze the effect of link durations on the

epidemic threshold of the SIS process, we develop a temporal network model. In this model,

the temporal links result from the transition of nodes between two auxiliary node states,

namely active and inactive. Combining the dynamics of the network and the spreading

process, we derive the mean-field equations that describe SIS spreading processes over such

temporal networks. The analysis of these equations reveals the effect of link durations on

the epidemic threshold in the SIS process.

Third, we study the localization of epidemics in the SIS process. In general, the SIS

model has an absorbing state where all individuals are healthy. However, depending on the

infection rate value, this process can reach a metastable state, where the infection does not die

out. In this metastable state, some parts of the network can be disproportionately infected.



We quantify the infection dispersion in the network, and formulate a convex optimization

problem to find an upper bound for the dispersion of infection in the network.

Finally, we focus on the estimation of spreading data from partially available information.

In general, various spreading-related functions are defined over the nodes of a network.

Assuming access to the values of a function for a subset of the nodes, we use the concept of

effective resistance distance and feed forward neural networks, to estimate the function for

the remaining nodes.

Although this dissertation focuses on the SIS model, the methods we have presented and

developed here are applicable to a broad range of stochastic networked spreading processes.

The exact mathematical treatment of such processes is intractable due to their exponential

space size, and therefore there are still various unknown aspects of their behavior that

require further work. Our studies in this dissertation advance the current knowledge about

networked spreading models.
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We quantify the infection dispersion in the network, and formulate a convex optimization

problem to find an upper bound for the dispersion of infection in the network.

Finally, we focus on the estimation of spreading data from partially available information.

In general, various spreading-related functions are defined over the nodes of a network.

Assuming access to the values of a function for a subset of the nodes, we use the concept of

effective resistance distance and feed forward neural networks, to estimate the function for

the remaining nodes.

Although this dissertation focuses on the SIS model, the methods we have presented and

developed here are applicable to a broad range of stochastic networked spreading processes.
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Chapter 1

Introduction

1.1 Stochastic Spreading Processes Over Networks

Spreading processes appear in diverse natural and technological systems. Examples of such

processes are the spread of infectious diseases in biological systems, dissemination of infor-

mation and ideas in human populations and social networks, and the propagation of malware

and fault in technological networks. To understand, predict, and control spreading processes,

researchers rely on mathematical models that aspire to describe the underlying mechanisms

of their propagation2–8. In simple spreading models, the structure of interactions among indi-

viduals is ignored, and a population is categorized into different subpopulations that reflect

the nature of the spreading process. For instance, classical epidemiological models3;9 de-

fine states (or compartment) such as immune, susceptible, exposed, infectious, symptomatic,

recovered, dead, vaccinated, and determine rules for moving individuals from one state to

another, assuming the entire population is fully mixed.

During the past two decades, it has been demonstrated that the structure of interaction

among population members can dramatically influence the spreading dynamics10–15. There-

fore, researchers have focused on studying spreading processes over complex networks where

interaction among individuals could be highly heterogeneous16–22. The motivation for such

studies is rooted in the complexity of modern societies and the advent of new technologies

1



that have created complex interconnected systems.

Many types of dynamics can be conceptualized over a complex network23, such as ran-

dom walks, diffusion24 , synchronization25, influence propagation26, complex contagion27.

Among them, stochastic spreading processes over networks17;18 have drawn substantial at-

tention from researchers of different backgrounds. In such a model, the network’s nodes

represent entities that can assume various states, and the network’s links represent inter-

actions among the nodes that induce the transition of nodes between states. Specifically,

stochastic spreading processes over networks are effective when the description of the process

at the node level includes some uncertainty, which can be described using such models. For

instance, in a biological network, the infection transmission time from an infectious node

to a healthy neighbor is a random variable whose distribution can depend on the disease

and behavior of individuals. Indeed, one of the main motivations for conducting research on

stochastic networked spreading process is to understand and control the collective behavior,

even though there are different sources of uncertainty at the individual node level. For ex-

ample, analysis of the stochastic susceptible-infected-susceptible (SIS) model over complex

networks has clarified the role of the network structure in the emergence of the endemic state,

which in turn provides means to control the epidemic by altering the network structure or

adopting other possible measures18. The obvious real-world instance of stochastic spreading

process is the study of infectious disease transmission. However, such a modeling framework

can be applied to study viral information dissemination among users of online social net-

works, the propagation of malware or fault in technological networks, or any other stochastic

spreading process that can happen in a networked system as a result of interactions among

its agents.

Although extensive studies have been conducted over the topic of stochastic networked

spreading process, there are various topics in this field that needs to be explored. In this

dissertation, we aim to improve our understanding of 1) spreading processes over temporal

networks, 2) identification of interaction from node’s states transitions, 3) epidemic localiza-

tion, and 4) interpolation of networked spreading data.
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1.2 Research Questions

Some of the standard networked spreading models include SI, SIS, SIR and SEIR, where

S (Susceptible), E (Exposed), I (Infectious) and R (Recovered) denote the node states.

Although these models have different transition rules and node states, at a theoretical level,

they can be described using a common framework19. In this dissertation, we study several

aspects of the SIS model, yet some of our methods can be applied to the other stochastic

models.

A theoretical question we aim to answer in this dissertation is the possibility of infer-

ring unknown network links from observed Susceptible-Infected-Susceptible (SIS) temporal

traces. We know that the underlying network affects the epidemic course, and the states

that nodes assume through time. For this study, we assume a setting where we observe the

transitions of nodes among the two states S and I through time. Using such observations,

we want to find the probabilities for the existence of links among different nodes. Such links

represent hidden interactions among the nodes.

Another aspect of the SIS spreading, which we explore in this dissertation, is the effect

of links’ duration in temporal networks over the spreading of infection. This study is par-

ticularly relevant in the context of sexually transmitted diseases (STD) spreading. Recent

findings have stressed the increasing role of casual partnerships in STDs spreading and we

aim to quantify the effect of such temporal links by analyzing the SIS spreading over a

temporal network model that captures casual partnerships.

The third aspect of the SIS model we study in this dissertation is epidemic localiza-

tion. The SIS epidemic process on complex networks can show metastability, resembling an

endemic equilibrium. In a general setting, the metastable state can either involve a large

portion of the network, or be localized on small subgraphs of the contact network. Here, we

aim to quantify the localization of an epidemic and calculate its size for a given underlying

network and transmission parameters.

In our final study we investigate the interpolation of stochastic networked spreading data.

For an SIS spreading or any other type of spreading, various spreading-related functions can
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be defined over the network nodes. In this study, we want to explore the possibility of

estimating such functions assuming access to the value of these functions over a subset of

the nodes.

1.2.1 Contributions

Below is a summary of the main contributions of this dissertation:

1. We developed a software tool capable of simulating a broad range of stochastic spread-

ing models with arbitrary transition time distribution(chapter 2).

2. We derived the likelihood of observed SIS temporal traces and inferred the probabilities

for the existence of uncertain links. (chapter 3).

3. We developed a time dependent network model appropriate for studying STDs spread-

ing and derived the epidemic threshold for the SIS spreading over such a network

(chapter 4).

4. We proposed a dispersion entropy measure to quantify the localization of infections in

a generic contact graph and formulated a maximum entropy problem to find an upper

bound for the dispersion entropy of the possible metastable state in the SIS process

(chapter 5).

5. We developed a new approach that relies on the effective resistance distance and feed-

forward neural network to interpolate spreading data (chapter 6).

1.3 Dissertation Organization

The dissertation is organized as follows. In the rest of this chapter, we introduce the SIS

process and discuss the exact and approximate equations that govern the process dynamics.

In chapter 2, we explain the computational methods for simulating spreading processes in

general. We introduce the software we developed for simulation of networked spreading
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processes, and explain the application of such software. In chapter 3, we first derive the

likelihood of observing an SIS trace, and we proceed by formulating a Bayesian inference

problem that uses the likelihood of observed traces to infer the existence of uncertain links.

Later, in that chapter we perform numerical experiments to validate the proposed Bayesian

method. In chapter 4, we first develop a temporal network model and discuss its implication.

Later, we develop a meanfield approximation that describes the SIS spreading over such a

network. By analyzing the meanfield equations, we study the effect of the temporal network

link durations over the SIS spreading. In chapter 5, the phenomenon of localized epidemics

in SIS processes is explored. We propose entropy as a measure of epidemic localization and

find an upperbound for this measure. Chapter 6 is devoted to the interpolation methods

for spreading data. In that chapter, we proposed a method that uses the effective resistance

distance as a measure of similarity between the nodes to estimate the unknown spreading

data.

1.4 Background: Networked SIS Spreading

In this section we explain the Susceptible-Infected-Susceptible (SIS) model of networked

spreading. By discussing this model we explain important concepts for stochastic spreading

processes over networks.

In the SIS model, the population is represented by a network of N nodes G = {V,E},

where V is the set of nodes and E ⊆ V × V denotes the set of edges between the nodes. An

edge represents possible means of infection transmission between the nodes. For the contact

network, the adjacency matrix A = [aij] ∈ RN×N is defined with the elements aij = 1 if and

only if (i, j) ∈ E else aij = 0.

SIS model assumes the state of node i at time t, denoted by xi(t), is a random variable

and xi(t) = 0 if node i is susceptible or xi(t) = 1 if it is infected. A susceptible node

becomes infected through interaction with infected neighbors in the network. Moreover, an

infected node recovers by itself after some time, and becomes susceptible again. We assume

the infection processes are independent. In other words, if two nodes are trying to infect a
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common neighbor, the two nodes act independently from each other and the susceptible node

becomes infected by the first neighbor that successfully transmits the infection. In general,

the transition time from the infected state to the susceptible state is a random variable that

can have any distribution. In the same manner, the infectious time is a random variable.

In the Markovian SIS model, the recovery time for an infected node is exponentially

distributed with a curing rate δ ∈ R+. In other words, if a node is infected the probability

for that node to stay infected, exponentially decreases with time. Similarly, if a susceptible

node is in contact with an infected node, the probability to stay susceptible exponentially

decreases with time by the infection rate β ∈ R+. If a susceptible node is in contact with more

than one infected neighbor, the infection occurs at rate βyi(t), where yi(t) ,
∑N

j=1 aijxj(t) is

the number of infected neighbors. The exact mathematical treatment of the Markovian SIS

process requires considering the joint state of all the nodes X , [x1, ..., xN ], in other words,

the network state. Indeed, the network state defines a continuous-time Markov process over

a space consisting of 2N possible states. Figure 1.1, shows the Markov process and the

transitions for a network of two nodes. In this figure, we can see the absorbing state of the

Markov process is the state where both nodes are susceptible. For a network with a small

number of nodes, it is possible to write the Kolmogorov equations for the Markov process

resulting from the SIS process. However, when the number of nodes grows, the number of

possible states for the Markov process grows exponentially, i.e., 2N . This hinders the exact

mathematical treatment of the SIS process over networks.

To derive the N-intertwined18 approximation for the Markovian SIS process, we can use

the following equation obtained from the node-level description of the SIS process

d

dt
E[xi] = β

∑
aijE[(1− xi)xj]− δE[xi] (1.1)

= β
∑

aijE[xj]− β
∑

aijE[xixj]− δE[xi]

for i ∈ {1, ..., N}. In this equation E(xi) is the expected value for the node state random

variable xi. Indeed, E(xi) is probability of finding node i infected and similarly, E[(1−xi)xj]

is the joint probability that node i is susceptible and node j is infected. Equation (1.1) is
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Figure 1.1: The Markov process for the network state in the SIS spreading process for a net-
work of two nodes. Red and blue color represent infectious and susceptible state, respectively.
β and δ are infection and recovery rates.

not a closed system as the evolution of E[xi] depends on the joint probabilities of the pairs

xixj. Furthermore, if we proceed to derive the time derivative of E[xixj], it turns out the

time derivative depends on the higher order terms E[xixjxk] which are the expected values

of the triplets. The procedure goes on until we reach a closed system of 2N − 1 equations

involving E[xi...xN ]. Such exponentially enormous state space of the exact model challenges

the feasibility of any analytical investigation of the exact SIS process.

To derive approximated results, researchers use the mean-field approximation where the

term E[xixj] in equation (1.1) is approximated by the multiplication of marginal probabilities

E[xi]E[xj]
18;28. By applying this approximation equation (1.1) can be rewritten as

d

dt
E[xi] = β

∑
aijE[(1− xi)]E[xj]− δE[xi] (1.2)

Equation (1.2) and similar types of approximate equations have been the starting points in

analyzing networked spreading processes18;29;30. For example, by analyzing equation (1.2), it

is shown for β/δ < λ−1
max(A), where λmax(A) is the largest eigenvalue of the adjacency matrix
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A, the prevalence of infection
∑N

i=1 E[xi] in the SIS process dies out exponentially fast18.

This result has motivated research papers on the optimization of the largest eigenvalue of

adjacency matrices to control the SIS spreading process31;32. Finally we want to emphasize

two important facts about the N-intertwined mean-field equations. First, these equations are

only relevant to Markovian processes. Second, they provide an upper-bound for the nodal

infection probabilities28.
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Chapter 2

Simulation of Stochastic Spreading

Processes 1

2.1 Introduction

In general, the exact mathematical treatment of stochastic networked spreading process is

not tractable, even for the simplest spreading models and a small number of nodes in the

network. This problem stems from the fact that in the exact analysis we need to consider

the network state, in other words, the state of all the nodes concurrently, instead of each

node’s state independently. Therefore, we have developed a software tool that can simulate

the exact stochastic process for a broad range of networked spreading models.

In this chapter, we introduce two computational tools that can numerically simulate a

broad range of spreading processes over complex networks. These two tools are based on the

Gillespie algorithm34;35, and a modified Gillespie algorithm36. The Gillespie algorithm gener-

ates statistically correct trajectories of continuous-time Markov processes while the modified

Gillespie algorithm is an approximate method for simulating non-Markovian processes.

Indeed, the number of possible spreading models that can be defined is limitless because

the possible node states and node state transitions are not restricted. However, most net-

1Parts of this chapter are extracted and adapted from our published article33, Copyright © 2017,
Elsevier.
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worked spreading processes share a common fundamental assumption: nodes influence each

other through independent pairwise interactions. Independent means that different nodes in

the network influence a common neighbor through statistically independent processes. Pair-

wise indicates that no higher order interaction is permitted, i.e., joint interaction of three

nodes A–B–C is fully described by A–B, B–C, and A–C interactions.

Based on the independent pairwise interaction characteristic of most spreading models,

Sahneh et al.19 defined the generalized epidemic modeling framework (GEMF) that incorpo-

rates a broad spectrum of stochastic spreading processes over complex networks. In order to

make our computational tools applicable to a broad range of spreading models, we chose to

implement the Gillespie algorithm and the modified Gillespie algorithm for the generalized

epidemic modeling framework.

2.1.1 Generalized Epidemic Modeling Framework

GEMF describes a general epidemic model over a network composed of one set of nodes and

several layers of contact. We represent the network by G(V,E1, · · · , EL), where L is the

number of contact layers, V is a set of N nodes, and El is a set of links between the nodes in

layer l. The incorporation of multilayer typologies in GEMF makes it a flexible framework

for studying epidemic processes.

Similar to the SIS model, state of node n at time t is a random variable denoted by xn(t)

and each node can assume a node state among M possible states, which are labeled with an

integer from 1 to M , i.e., xn(t) ∈ {1, · · · ,M}. In GEMF, transitions of xn over the node

states are classified into two categories.

1. Nodal transitions of a node are similar to the curing process in the SIS model and

they are independent of the neighbors’ state.

2. Edge-based transitions of a node are analogous to the infecting process in the

SIS model. These transitions are caused by the interaction of a node with its neighbors

in the network, and they depend on states of the neighbors. In GEMF each network layer

has its own influencer state. If a node is in an influencer state of a layer it will induce
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some transitions on its neighbors in that network layer. For instance, the influencer state in

the SIS model is the infected state. The network layer provides contacts for a node in the

influencer state to induce and propagate certain transitions over neighboring nodes.

2.2 Simulation of Markovian Processes

The Gillespie algorithm is a method for sampling the earliest event among a set of inde-

pendent events assuming the occurring time for each event is exponentially distributed. To

understand the Gillespie algorithm, consider a set of k independent nodes where each node,

such as node n, will make a transition from state i to state j at a random time Tn ∼ exp(rn).

This random time Tn has an exponential distribution with rate rn. In this case, since the

transition of a node does not affect the transition of other nodes, we can generate the tran-

sition time for each node by drawing a random value from its corresponding distribution.

If we arrange these transition times in increasing order we get a sequence of events. The

Gillespie algorithm is another method that generates such sequences of events. It starts with

all ongoing processes and samples the time for the earliest event and the node that makes

the transition. Next, the algorithm advances the time and repeat the same procedure for

the remaining processes. Although the Gillespie algorithm can be applied to the case of k

independent nodes we described above, it is more applicable in simulating the Markovian

dynamics of a complex system where the occurrence of an event can affect other ongoing

processes in the system. For instance, consider an infection process of a node by two infected

neighbors. In this case the infected neighbors can infect the target node through indepen-

dent processes. However, when an infection event happens the competing infection process

is assumed to be terminated. In order to sample the time for the infection of the target

node, we can generate two random times and accept the shortest time as the infection time.

When we use the Gillespie algorithm we can generate the infection time directly. Indeed,

the Gillespie algorithm relies on the fact that the minimum of exponentially distributed in-

dependent random variables has an exponential distribution with a rate equal to the sum of

the individual rates37. Hence, we only need to generate one random infection time from an
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exponential distribution whose rate is the sum of the competing infection processes’ rates.

2.2.1 Algorithm

Considering the node-level description of transitions in GEMF, the node transition xn → j

may be viable through different possible processes. In other words, node n may undergo a

transition from its current state xn to any state j by interacting with neighbors or through

a nodal transition. In such a case, the processes are assumed to be competing independent

processes that try to induce the transition xn → j. Thus, the actual transition time of

node n, Txn→j, is the minimum of transition times for the competing processes, Txn→j =

min{T1, · · · , Tp}. If the transition times in all the independent processes are distributed

exponentially, T1 ∼ exp(r1), · · · , Tk ∼ exp(rp), distribution of the transition time Txn→j is

exponential with a rate which is sum of all rates for the possible processes, i.e., Txn→j ∼

exp(λn(xn → j)) where λn(xn → j) =
∑

p rp.

To proceed with the simulation algorithm, we define two arrays:

Nodal transition matrix, Aδ, where the element Aδ(i, j) is the transition rate of a

node from state i to state j via a nodal transition.

Edge based transition array, Aβ, where the element Aβ(i, j; l) is the transition rate

for the transition of a target node from state i to j through an interaction with a neighbor

in layer l while the neighbor is in state q(l). State q(l) is the influencer state for layer l.

In fact, the elements of Aδ and Aβ define the rates for the exponential distribution of

transition times corresponding to the possible processes allowed in GEMF. If a rate is zero

the corresponding transition never happens.

Assuming the joint state of the network at time t is X(t) = [x1, · · · , xN ], we can calcu-

late all node-level transition rates λn(xn → j), for any node n, using the nodal transition

matrix Aδ, edge-based transition array Aβ and the contact network G(V,E1, · · · , EL), where

λn(xn → j) is the transition rate of node n from its current state xn to the state j.

However, the occurrence of any node-level transition can affect other ongoing processes in

the network. Hence, we will follow the Gillespie algorithm and sample the earliest transition.
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If we define S as the set of all node-level transition times

S = {Tn(xn → j)|n ∈ {1, · · · , N}, j ∈ {1, · · · ,M}},

the elements of S are independent exponentially distributed random variables. Using

the theorem concerning the minimum of independent exponential distributions37, then the

probability that Tn(xn → j) would be the minimum of S is

Pr (Tn (xn → j) = min(S)) =
λn(xn → j)

λtot
,

where λtot ,
∑

n

∑
j λn(xn → j). Using this probability distribution, we can sample one of

the node-level transitions. We also must sample the time at which this transition occurs.

Because elements of S have exponential distributions, if we define T = min(S), then T

is exponentially distributed with a rate equal to λtot. Thus, using the distribution of T ,

we sample a time for the network state transition. The memoryless property of Markov

processes allows the entire described procedure to be repeated after the network state is

updated. Particularly, we can directly update the transition rates by the adjustment required

due to the change in the state of node n that made the transition, including updating the

transition rates of node n and neighbors that can be affected by node n. The other rates

remain constant.

The described simulation method is summarized in Algorithm 1, where we assume that

network links can be directed and weighted. If a link is directed from node m to node n,

node m can induce edge-based transitions on node n, but node n cannot induce edge-based

transitions on node m. Moreover, we can assign a weight to each link in order to quantify the

effect of neighbors on edge-based transitions of a node. The rate of an edge-based transition

induced by a link is multiplied by the weight of the link. In Algorithm 1, W (m,n; l) is the

weight of the link directed from nodem to node n in layer l of the network, andW (m,n; l) = 0

indicates that such a link does not exist. However, implementation of Algorithm 1 requires

to only store the nonzero weights. In Algorithm 1, input q(l) is the influencer node state for
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Algorithm 1 GEMFsim algorithm

Input Aδ, Aβ, W , X0, q, Stop condition
Output: event

1: X ← X0

2: for n = 1 to N do
3: for l = 1 to L do

4: wq(n, l)←
N∑
m=1

W (m,n; l)δxm,q(l)

5: end for

6: λn ←
M∑
j=1

Aδ(xn, j) +
L∑
l=1

wq(n, l)Aβ(xn, j; l)

7: end for

8: λtot ←
N∑
n=1

λn

9: k = 0
10: while Stop condition=FALSE do
11: α ∼ Unif(0, 1) . generate α from Unif(0, 1)
12: δtk ← − log(α)/λtot . time period to the next event
13: P1(n)← λn/λtot
14: nk ∼ P1 . sample nk from probability distribution P1

15: ik ← xnk
16: for j = 1 to M do

17: λnk(ik → j)← Aδ(ik, j) +
L∑
l=1

wq(nk, l)Aβ(ik, j; l)

18: end for
19: P2(j)← λnk(ik → j)/λnk
20: fk ∼ P2 . sample fk from distribution P2

21: event(k)← (δtk, nk, fk, ik)
22: xnk ← fk . update network state
23: for l | (q(l) = fk or q(l) = ik) do . Update Rates
24: ∆← δq(l),fk − δq(l),ik
25: for n | W (nk, n; l) 6= 0 do
26: wq(n, l)← wq(n, l) + ∆×W (nk, n; l)

27: λn ← λn + ∆×
M∑
j=1

W (nk, n; l)Aβ(xn, j; l)

28: end for
29: end for

30: λnk ←
M∑
j=1

Aδ(fk, j) +
L∑
l=1

wq(nk, l)Aβ(fk, j; l)

31: λtot ←
N∑
n=1

λn

32: Update Stop condition
33: k ← k + 1
34: end while
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layer l, Aδ and Aβ are nodal transition rates and edge-based transition rates, respectively,

and X0 is the initial network state. Assuming the current network state X = [x1, · · · , xn],

node-level transition rates are calculated as

λn(xn → j) = Aδ(xn, j)

+
L∑
l=1

Aβ(xn, j; l)
N∑
m=1

W (m,n; l)δxm,q(l),

where δs,t is Kronecker delta. In Algorithm 1, we sample a node-level transition in three steps.

First, we generate one sample for a random variable δt which is exponentially distributed

with the rate λtot. In fact, δt is the time period between the network state events, and

λtot =
∑N

n=1 λn, where λn =
∑M

j=1 λn(xn → j). Generating a sample for δt is done by

generating a sample α from the uniform distribution over the interval (0, 1), and inserting

α into the equation δt = − log(α)/λtot. The second step is to select a node according to

the probability distribution Pr(n) = λn/λtot. This is the node that will make the transition.

After the node is picked, we select a new node state j for the node according to the probability

distribution Pr(j | n) = λn(xn → j)/λn. The event-based algorithm explained above is an

adaptation of the Gillespie algorithm34;35, to GEMF-based processes. Implementation of the

algorithm is available online38.

2.2.2 Simulations

A broad spectrum of epidemic models can be formulated in the GEMF framework. Hence, the

algorithm we described above is a flexible platform capable of simulating various stochastic

spreading models.Here, we show how GEMFsim (implementation of Algorithm 1) can be

applied to study various compartment models that fit the description of GEMF processes.

GEMFsim provides realizations of Markov processes over a space consisting of network states.

In theory, GEMFsim can be used to generate enough samples to extract statistics of interest.

In fact, any statistics defined in terms of marginal distributions of the Markov processes can

be estimated using samples generated by the GEMFsim tool.

15



Comparison to Exact Kolmogorov Equations

The sampled network state trajectories generated using algorithm 1 follow a distribution

which is the solution of the Kolmogorov equations for the Markov process governing the

network state evolution. To experimentally test the distribution of the generated samples,

we compared results of the simulation with the exact solution of the Kolmogorov equations

for the SIS model. The Kolmogorov equations for the SIS process over a network of N nodes

is a linear system of 2N coupled equations and the size of linear system becomes gigantic, even

for moderate values of N . Therefore, we considered a small network of N = 10 nodes with

SIS parameters of δ = 1 and β = 2. Assuming an initial condition in which only one node was

infected, we solved the Kolmogorov equations, Ṗ (t) = −QTP (t)19, where P is a probability

distribution over a space consisting of 210 = 1, 024 network states and Q is the infinitesimal

generator matrix. We then extracted the infection probability of each node, pexacti (t), as a

marginal distribution of P (t). Next, using Algorithm 1, we generated n realizations of the

SIS process and obtained an estimation for the infection probability of node i, p̂
[n]
i (t), as the

fraction of realizations that node i was infected at time t. Our objective was to observe if

the difference between p̂
[n]
i (t) and pexacti (t) decreases as the number of realization n increases.

Therefore, we defined two measures of error as

Total Error[n] , max
i

max
t
|p̂[n]
i (t)− pexacti (t)|, (2.1)

Mean Error[n] , max
t

1

N
|
N∑
i=1

p̂
[n]
i (t)− pexacti (t)|. (2.2)

Fig. (2.1a) shows how the defined measures decreased when the number of realization n

increased.

Simulation of the SIS Model

The SIS model is one of the simplest models that can be simulated using GEMFsim. In this

model each node is either susceptible (S) or infected (I), as represented by the integers 1 or 2,

respectively. If a node is infected, it transmits infection to the susceptible neighbors at a rate
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Figure 2.1: The infection probability for each node in a toy network of ten nodes estimated
using simulation in comparison to the exact probability obtained by solving the Kolmogorov
equations for the SIS model: (a) total error and mean error defined in Eqs. (2.1), (2.2), (b)
estimation of infection probability for some nodes obtained by averaging over 1000 simula-
tions. The black (smooth) curves are exact probabilities obtained by solving the Kolmogorov
equations.

β, and the infected node recovers with the rate δ. We simulated SIS spreading over a contact

network consisting of one layer of contact G(V,E). The network we used was the largest

component of the coauthorship network presented in39. We assumed that the links were

undirected and had identical weight. Based on description of the nodal transition matrix,

Aδ, and the edge-based transition array, Aβ, the nonzero elements of them in the SIS model

are Aδ(2, 1) = δ and Aβ(1, 2; 1) = β. Moreover, the influencer node state for this model is

the infected state, i.e., q(1) = 2. Using the implementation of GEMFsim algorithm in R38

we generated 8000 realizations of SIS spreading. We used the results of these simulations

to estimate the probability of being infected for each node in the network at various time

points. The probability of being infected was estimated as the fraction of SIS realizations in

which the node was infected at the given time point. Results for two time points are plotted

in Fig. (2.2). We assumed β = 0.23 and δ = 1. The only node that was initially infected in

all realizations was the node with the highest degree.
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Figure 2.2: Result form simulation of SIS spreading over a network. Color of each node
represents probability of being infected for the node. (a) probability of being infected at time
point t = 0.5 (1/δ), (b) probability at time point t = 90 (1/δ). At t = 0, only the node with
the highest degree was infected. These graphs show evolution of infection in the network

S I R

β, (I, E) δ

Figure 2.3: Schematic of node-level transitions in the SIR model

Simulation of SIR Model

Here we show how GEMFsim can be used to estimate certain statistics which are beyond the

scope of mean-field-type approximations. In fact, GEMFsim can be used to generate several

realizations of a spreading process and estimate probability distribution for the epidemic

measure of interest. We considered an SIR epidemic model in which a susceptible node

becomes infected with the rate β as a consequence of interacting with infected neighbors.

Moreover, an infected individual makes a transition to a removed state that may represent

the recovered immune state. This transition occurs independently of state of neighbors;
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in Fig.(2.3), the transition rate is shown by δ. In the SIR model, a removed node does

not affect its neighbors or undergo any transition, and the network eventually reaches an

absorbing state in which all individuals are susceptible or removed. Although the time at

which the network falls into the absorbing state is not a deterministic variable, the simulation

can be used to estimate the probability distribution for the extinction time. The final

number of removed individuals is an important measure in epidemiology because it shows

the size of outbreak. Similar to extinction time, we can use simulation to estimate probability

distribution of the total number of individuals removed.

We used GEMFsim in MATLAB to generate 4000 realizations of SIR spreading over a

directed and weighted network composed of 1899 nodes and 20296 edges. This network has

been studied in reference40, and its dataset is available online with the name of Facebook-

like social network40. We assumed initially only one node, which is labeled by integer 1 in

the dataset, was infected and the rest of nodes in the network were susceptible. We used

transition rates β = 0.05 and δ = 1 for the simulation. Node states in the SIR model are

susceptible, infected and removed as labeled by the integers 1, 2, and 3, respectively. The

network has one layer of contact with a set of directed and weighted links, and the influencer

state is the infected state, represented by integer 2, i.e., q(1) = 2. The only nonzero elements

of the nodal transition matrix and the edge based transition array are Aδ(2, 3) = δ and

Aβ(1, 2; 1) = β. Using simulation we were able to generate a histogram of the extinction

time and the total fraction of removed individuals in the defined SIR spreading. Fig. (2.4)

shows the total number of affected individuals and extinction time as they follow bimodal

distributions.

Simulation of SAIS Model

The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed to incorporate in-

dividual reactions to the spread of a virus41;42. In the SAIS spreading model, each node

(individual) is either susceptible (S), infected (I), or susceptible-alert (A). A susceptible

node gets infected with a rate β through interaction with an infected node, and an infected
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Figure 2.4: Results from 4000 realizations of SIR spreading over a network: (a) histogram
of the fraction of removed individuals (b) histogram of extinction time defined as the time
when the last infected node in the network is removed

node recovers with a rate δ. The SAIS model also accounts for another possibility that a

susceptible node can become alert with a rate κ if it senses an infected node in its neighbor-

hood. An alert node can also become infected by a process similar to the infection process

of a susceptible node. However, the infection rate for an alert node, denoted by βa, is lower

due to the adoption of preventative behaviors. In order to simulate a realization of the

SAIS process, we set up a problem according to the GEMF framework in which three node

states (S, A, I) were denoted by integers 1, 2, 3, respectively. The network had one layer

of contact, G(V,E), where E represents a set of links that could be generally directed and

weighted. The influencer state in this model was infected state as represented by integer 3,

i.e., q(1) = 3. The only nonzero element of the nodal transition matrix in the SAIS model

is Aδ(3, 1) = δ. The nonzero elements of the edge-based transition array are Aβ(1, 3; 1) = β,

Aβ(2, 3; 1) = βa, and Aβ(1, 2; 1) = κ. Schematic of node-level transitions in the SAIS model

is shown in Fig. (2.5a)

Using the implementation of GEMFsim algorithm in C language38 we generated one

realization of the SAIS model over a network43 of 3,072,441 nodes that were connected
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Figure 2.5: (a) Schematic of node-level transitions in the SAIS model (b) Simulation of
SAIS spreading over a large-scale network. Plot represents the population of each node state
in the network over time.

through 11,7185,083 links. Network links were undirected and had identical weights. The

simulation result is shown in Fig. (2.5b). The simulation initially began with 20 infected

nodes and 20 nodes in the alert state; the other nodes in the network were initially susceptible.

Transition rates for the simulation were δ = 1, β = 2, βa = 0.4, and κ = 0.2.

Simulation of SI1SI2S Model

The SI1SI2S model is an extension of the SIS model in which two types of infection can attack

a susceptible node29. However, we assumed a competitive scenario in which the two viruses

were exclusive, or a node did not harbor both types of infection simultaneously. Therefore,

in this model, each node is either susceptible (S), infected by virus one (I1), or infected by

virus two (I2). Similar to the SIS model, infected nodes recover with a rate δ1 or δ2 depending

on the infection. In general, different infections can be transmitted to a susceptible node

through different contacts. In order to account for different means of spreading for I1 and

I2, the assumption was made that they spread through different layers of contact such that

a susceptible node undergoes a transition to infected state I1 (I2) with a rate β1 (β2) if it is

in contact with an I1 (I2) node through layer E1 (E2). Fig. (2.6) depicts the SI1SI2S model

of spreading. The SI1SI2S model can be described in the GEMF framework, by three node
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Figure 2.6: Node-level transitions in the SI1SI2S spreading model over a two-layer network.
Layers E1 and E2 define two types of contact over the same set of nodes.

states (S, I1, I2) represented by integers 1, 2, 3, respectively. The network consists of two

layers, G(V,E1, E2), where the first layer spreads I1, and the second layer, I2. The influencer

node state for layer one is I1 and the influencer node state for the second layer is I2. The only

nonzero elements of nodal transition matrix are Aδ(2, 1) = δ1 and Aδ(3, 1) = δ2. Nonzero

elements of edge-based transition array are Aβ(1, 2; 1) = β1 and Aβ(1, 3; 2) = β2. In general,

E1, E2 could be two different sets of links between nodes. However, if both types of infection

use the same kind of contacts to spread, E1 and E2 are similar.

The SI1SI2S model described above, exemplifies a competitive spreading scenario in which

two types of infection try to invade a network. However, mean-field-type approximation

shows, in a network with two different layers of contact, I1 and I2 can coexist depending on

their infection rates29. We used the implementation of GEMFsim in Python38 to show this

coexistence via simulation. We adopted a network of 500 nodes with two different contact

layers, E1 and E2. We assumed I1 spreads through contact layer E1, which is a scale-free

network44 of 2,475 edges and that I2 uses a geometric network, E2, of 3,560 edges to invade

the nodes. Assuming B (A) is the adjacency matrix for contact layer E2 (E1), we used value
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Figure 2.7: Fraction of nodes infected by virus type 2 (above) and virus type 1 (below) in
the SI1SI2S competitive spreading model. The infection strength of I2, τ2, was 5/λ1(B), while
the infection strength of I1, τ1, varied. If 2/λ1(A) ≤ τ1 ≤ 5/λ1(A), viruses coexist; only one
virus survives outside this region.

of 5/λ1(B) as the infection strength τ2 = β2/δ2 where λ1(B) is the largest eigenvalue of

adjacency matrix B. However, for infection strength τ1 = β1/δ1 we used seven values from

τ1 = 1/λ1(A) to τ1 = 7/λ1(A); for each value of τ1 we generated 500 realizations of SI1SI2S

processes. For all simulations we assumed that each virus had initially infected 2% of the

nodes. Fig. (2.7) shows metastable state population sizes extracted from simulations for

values of τ1. As shown in the figure, either one of the viruses prevails or the viruses coexist

depending on the value of τ1.

2.3 Simulation of non-Markovian Stochastic Processes

In this section, we discuss a general method that can be used for simulation of independent

non-Markovian processes36. Since this method uses the concept of the earliest event, it can
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Figure 2.8: Three different processes, p1, p2, p3, have been initiated but they have not
occurred up to time t. We want to calculate the probability densities that they occur later at
some time denoted by t+ τ .

be considered a generalized Gillespie algorithm.

Consider a set of N statistically independent processes, each with an inter-event time

distribution ψi(τ); i ∈ {1, · · · , N}. Suppose that, for a given process i, we know ti, which

is the time interval between the process initiation and the latest observation of the process

performed at the current time t (see figure 2.8 for illustration). First, we want to know

what is the probability density that the event for process i will happen in the time interval

[τ, τ + dτ ] where τ is measured from current moment t. This probability density can be

written as

ψi(τ |ti) =
ψi(τ + ti)

Ψi(ti)
,

where Ψi(ti) =
∫∞
ti
ψi(s)ds is the survival function of process i and gives the probability that

the event for process i does not happen in the time interval [0, ti] after the process initiation.

Indeed, ψi is the truncated distribution for the inter-event time and reflects our observation

that the process has survived up to ti from its initiation.

To generate a statistically correct sequence of events for the set of all ongoing processes,

in the next step, we should calculate the probability density that the next event corresponds

to the process i among all the processes, and it will occur at time τ + ti. This probability is

φ(τ, i|{tk}) = ψi(τ |ti)
∏
k 6=i

Ψk(τ |tk) =
ψi(τ + ti)

Ψi(τ + ti)

N∏
k=1

Ψk(τ |tk), (2.3)
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where Ψi(τ |ti) is the conditional survival probability,

Ψi(τ |ti) =

∫ ∞
τ

ψi(s|ti)ds =
Ψi(τ + ti)

Ψi(ti)
,

which is the probability that the event for the process i occurs after t+τ , assuming we know

it did not happened before t. To sample a time for the occurrence of next event, we evaluate

the joint conditional survival function, which is the probability that no event happens before

t+ τ and it can be written as

Φ(τ |{tk}) =
N∏
k=1

Ψk(τ |tk) =
N∏
k=1

Ψk(τ + tk)

Ψk(tk)
. (2.4)

Now we can express the algorithm for the generation of a statistically correct sequence

of events as follows:

1. draw u a random number in the interval (0, 1) and find the random time for the next

event τ by solving u = Φ(τ |{tk}).

2. choose a process that corresponds to the next event by sampling the following discrete

distribution

p(i) =
φ(τ, i|{tk})∑
j φ(τ, j|{tk})

=
λi(τ + ti)∑
j λj(τ + tj)

,

where λi(s) ≡ ψi(s)/Ψi(s) is the instantaneous rate of the process.

3. update the elapsed time for the processes

tk → tk + τ, ∀k 6= i and ti = 0;

4. update the processes. Terminate some processes or activate new processes if needed.

Go to step 1.

To understand the connection between the algorithm above and the original Gillespie

algorithm, assume that all the processes in the algorithm are Markovian, i.e., the transition
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times are exponentially distributed, ψk(t) = rk exp(−rkt) for k ∈ {1, · · · , N}. With this

assumption, the survival function for any process k becomes exp(−rkt). Therefore, the joint

conditional survival function in the equation 2.4 can be written as

Φ(τ |{tk}) =
N∏
k=1

Ψk(τ |tk) =
N∏
k=1

exp(−rkτ) = exp(−τ
∑
k

rk). (2.5)

Using this equation, we can see the distribution of the earliest transition time, τ , is expo-

nential with the rate equal
∑

k rk. This is the result of the Markovian nature of exponential

distributions, which make the conditional survival functions, Ψk(τ |tk), independent of the

age of processes, tk. Hence, step one in the algorithm for the simulation of non-Markovian

processes is the generalization of the step in the Gillespie algorithm where we sample the

earliest event for a set of independent Markovian processes. Moreover, the instantaneous

rates defined in step 2 of the non-Markovian algorithm reduce to the rates of exponential

distributions, λi(s) = ri, which are constant. Therefore, the non-Markovian algorithm fol-

lows the same logic as the Gillespie algorithm except that the processes have variable ages,

and the rates are not constant.

Although the non-Markovian algorithm is statistically exact, it can be computationally

expensive. In step one of the algorithm, we need to solve the equation u = Φ(τ |{tk}), to

find the time to the next event, τ . This step can be computationally expensive. However, if

we use the following approximation

Ψk(τ + tk) ≈ Ψk(tk) + τΨ′k(tk) = Ψk(tk)− τψk(tk) = Ψk(tk)(1− τλk(tk)), (2.6)

where we have assumed τ ∼ 0, the joint conditional distribution can be approximated as

Φ(τ |{tk}) ≈
N∏
k=1

(1− τλk(tk)) ≈ 1− τ
N∑
k=1

λk(tk). (2.7)

Now solving u = Φ(τ |{tk}) for τ , in the first step of the algorithm, is a simple task and that
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leads to

τ = − ln(u)∑N
k=1 λk(tk)

(2.8)

for the earliest event time. As it is explained in the reference36, when the number of processes,

N , is large the total rate,
∑N

k=1 λk(tk), is large and with a high probability, τ is small. Hence,

the approximation is valid. However, in some cases it is possible that the total rate is not

always large through the course of the simulation, for instance at the start of an epidemic.

In order to always keep τ small, we can include an independent auxiliary Markovian process

in the set of active processes such that it has a large constant rate of λ0. Adding this process

to the pool of other active processes changes the denominator on r.h.s of equation 2.8 to the

larger rate of λ0 +
∑N

k=1 λk(tk). Therefore, we always obtain a small value for τ .

To understand this approximated algorithm, assume a case where an independent node

repeatedly is transitioning between two states while the transition times have a truncated

normal distribution,

ψ(t) =
2

1 + erf( µ

σ
√

2
)

1

σ
√

2π
e−

1
2

( t−µ
σ

)2 for t ≥ 0. (2.9)

In this distribution, erf stands for the error function and µ, σ are the mean and standard

deviation for the normal distribution before truncation. In figures 2.9a and 2.9b, we have

plotted the distribution of equation 2.9 and its instantaneous rates for two different sets

of σ and µ. The instantaneous rates are calculated as λ(t) = ψ(t)/
∫∞
t
ψ(s) ds. From

figure 2.9b we can see the initial rate for the distribution with µ = 5 is close to zero.

If we try to find the transition time by plugging the initial rate in equation 2.8, with a

high probability we will get a very large τ , which is not acceptable. Therefore, we add

another independent node that makes similar transitions except that the transition times

are exponentially distributed with the rate λ0 = 20. Now, if we consider both nodes together

and sample the earliest transition time using equation 2.8 and the total rate of λ0 +λ(t), the

average of transition time ,τ , is smaller than 1/λ0 = 0.05. Moreover, the probability that

τ > 0.25 is smaller than e−5 = 0.0068. After sampling τ , we can follow the remaining steps
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Figure 2.9: Panel (a) shows distribution in the equation 2.9 for two different sets of the
distribution parameters, and panel(b)shows the corresponding instantaneous rates

in the non-Markovain algorithm of page 25, and sample the node that makes the transition,

which can be either one of the two independent nodes. If we sample the auxiliary node, in

that iteration of the algorithm, we only advance time and update the instantaneous rate for

our initial target node. Figure 2.10 shows the distribution of transition times for the target

node in the two simulations performed using the approximated non-Markovian algorithm.

In the first simulation, we assumed the distribution of transition time is truncated normal

with µ = 0, σ = 1.5, and for the second simulation we used µ = 5, σ = 1.5. We can see in

both cases the density of transition time obtained from the simulation follows the theoretical

curve.

2.3.1 Algorithm

In this section we discuss an implementation of the approximated version of the non-

Markovian algorithm on page 25 for GEMF processes. As we described in section 2.1.1,

GEMF is a general framework to model spreading processes. In this framework each node,

depending on its current state, can have several active nodal processes, independent from the

state of the other nodes in the network. Each active process represents a possible transition

from the current to other possible node states. In addition to the nodal processes, each
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Figure 2.10: panels (a) and (b) compare the distribution of transition time in the simulation
performed using the approximate non-Markovian algorithm with their exact truncated normal
distribution.

directed link in the multilayer network can activate several processes, where each process

represents a possible transition for the node at the head of the link. These processes de-

pend on the states of the nodes at the head and the tail of the links. In GEMF, each layer

represents a set of links that have the same influencer states. Figure 2.11 shows possible

processes in an instance of a spreading process. Each node can be in one of three states.

In the figure, the blue node is in state 2 and can go to the states 1 or 3 through the nodal

processes p1 and p2, respectively. Moreover, the blue nodes can go to state 1 through an

edge based transition, p3, induced by the red node. Red node is in state 1 and can go to

state 3 through the nodal process p4. In this example, the influencer state for the link is

state 1, which is the reason that the node at the tail of the link, the red node, can induce

some edge based transitions on the blue node. If the blue node was not in the influencer

state for the link, it could not use the link to induce the edge based transitions.

The main difference between the approximate non-Markovian algorithm and the Gillespie

algorithm is that the distribution of transition times for the non-Markovian processes in the

system are not exponential, so their rates change with the age of the processes. Therefore,

we need to keep track of the age of each non-Markovian process, and update the age and

the instantaneous rate after each event accordingly.
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Figure 2.11: An example of non-Markovian networked spreading discussed in section 2.3.1

Now we can express the approximated algorithm for the generation of a network state

trajectory with non-exponential distributions of the transition times as follows:

1. Identify all the possible active processes in the network. This depends on the state of

the nodes and the network links. Initialize the age for all the non-exponential transition

times and calculate the instantaneous rates accordingly. Choose a large value for λ0,

which determines the preferred maximum advance in time. We denote the set of all

active processes in the network by P .

2. Draw u, a random number in the interval (0, 1) and find the random time for the next

event τ as

τ = − ln(u)

λ0 +
∑

p∈P λp(tp)
.

In the equation above the summation is over all the active processes in the network

and tp is the process age. If some of the active processes in the network are Markovian

their rates are constant and do not depend on the age, λp(tp) = λp.

3. Choose a process i, that corresponds to the next event by sampling the following

discrete distribution

Pr(i) =
λi∑

j∈{0}∪P λj
, i ∈ {0} ∪ P,

where λj is the instantaneous rate of the non-Markovian processes process.
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4. Advance time by τ and update the age of non-Markovian processes in P accordingly,

tp → tp + τ, ∀p ∈ P − {i}.

5. Terminate process i if i 6= 0, and activate new processes if needed. Go to step 2.

We have implemented the algorithm above in MATLAB and the related code is available

online38.

2.3.2 Simulations

To see the application of the non-Markovian algorithm in studying spreading processes we

performed simulations of an SEIR spreading model in a network of 60000 individuals. For

the network, we assumed each node is connected to 60 other nodes randomly. In the SEIR

model, each node can be found in one the four states: susceptible (S), exposed (E), infectious

(I), or removed (R). In this model if a node is susceptible, it becomes exposed (infected) via

contact with an infectious neighbor in the network. We assume the infecting process is a

Markovian process with a constant rate. When a node becomes exposed, after going through

the incubation period it becomes infectious and start infecting other neighbors. However, an

infectious node does not stay infectious for a long time. At some random time the infectious

node is removed from the network. In general the incubation period and the infectious

period can be non-exponential. For instance, recent papers1;45 analyzing data from the

Wuhan outbreak of COVID-19, highlighted non-exponential distributions for some critical

transition times, such as the infectious period (figure 2.12.a) and the incubation period.

To study the effect of the distribution for the incubation and infectious periods on the

outcome of a spreading model for COVID-19 in Wuhan, China, we performed two sets of

simulations. For the first set, we used the lognormal distribution of mean 5.5 days and

median 5 days for the incubation period. For the infectious period, we used a lognormal

distribution of mean 5.5 days and median 5 days, up to day number 57, and after day 57,

we used a lognormal distribution of mean 4 days and median 1.5 days. We changed the
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Figure 2.12: (a) Empirical distributions of the infectious period from reference1. These
curves are clearly non-exponential; (b) Our simulations of the spreading process obtained
using the empirical distributions of figure 2.12.a (upper panel) and using exponential distri-
butions (lower panel) with similar means as the empirical distributions. Fig. 2.12.b shows
two sets of epidemic curves, infected undetected (exposed and infectious) and confirmed (re-
moved) for the empirical and exponential distributions. Even though the two distributions
share the same mean, they have different quantitative behaviors.

distribution of the infectious period to follow the spreading process according to the Wuhan

data (figure 2.12.a). We chose the distribution of incubation period based on Wuhan data

as well.

For the second set of simulations, we used the same setting as the first set, except we

changed the infectious period distributions to exponential distributions with similar means

as the distributions in the first set of simulations. In all the simulations, we assumed the

infectious transmission rate was 0.4/60. In figure 2.12.b, we have shown the result of the

simulations. We can see how different distributions for the duration of the infectious period,

even though having the same mean, lead to different epidemic curves.

In another experiment, we estimate the reproductive number of COVID-19 in Wuhan. To

this end, we performed multiple sets of simulations with different infection rates to observe

which value of the infection transmission rate produces the closest epidemic curve with

respect to the reported number of cases in the early phase of the outbreak in Wuhan (see

figure 2.13). In these simulations, based on some estimations we assumed the spreading
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Figure 2.13: Non-Markovian simulation of the SEIR model over a population of 60,000
nodes for three different values of the infection transmission rates. For the infectious period
we used the distributions in figure 2.12.a and we switched to the distribution with the smaller
mean at day 57, while keeping the infection transmission rate constant. We can see that
panel (b) shows a better fitting of the number of reported cases in Wuhan, China, compared
with panels a and c.

processes started around November 20, and we changed the distribution of the infectious

period after January 18, to account for the specific policies implemented in Wuhan that

decreased the mean detection time (see figure 2.12.a). For the incubation period, we used a

lognormal distribution of mean 5.5 and median 5.

In epidemiology, the basic reproduction number R0 of an infection can be thought of

as the expected number of cases directly generated by one case in a population where all

individuals are susceptible to infection. Using these simulations, we estimated R0 at 2.7

before January 18, and at 1.4 after January 18 (see figure 2.13.b). Although we heuristically

explored a limited number of values for the transmission rate, our estimation of R0 is close

to the average of the estimated values of R0 for the COVID-1946.
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Chapter 3

Identification of Missing Links Using

SIS Spreading Traces1

3.1 Introduction

Recently, the effect of the network structure on the epidemic has been an active line of

research10;48–52. Because the network structure leaves its imprint on the epidemic data, we

expect the possibility of recovering some information about the network using the observed

epidemic data. This inverse problem can be of particular interest when we have only partial

information about the network structure that may render control of spreading impossible.

To have an intuitive picture of how the epidemic data can be applied in the network structure

inference, consider the simple graph in Fig. (3.1) where the links bc and ac are uncertain.

Let’s assume we have observed an SI process such that the infection times for the nodes

a, b, c are Ta = 0, Tb = α and Tc = 2α, respectively. If the transmission time through any

network link is an exponential random variable with the expected value α, the probability

of link bc to exist is higher than that of the link ac. This is due to the higher value of the

argument of exponential function for the link ac, α−1(Tc − Ta), than that of the link bc.

Here, we address the problem of recovering network structure from the traces of contin-

1This chapter is a slightly modified version of our published article47, Copyright© 2019, IEEE.
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a b

c

= 0 =  

= 2  

Figure 3.1: In this network, we know the link ab exists, but the links bc and ac are uncertain.
Also, we know the expected time for transmission of infection through any link is α. Since
the difference between the infection time of nodes b and c equals the expected transmission
time α and the same difference calculated for the nodes a and c is 2α, link bc is expected to
be present in the network with a higher probability than link ac.

uous time SIS spreading processes. We assume a setting where we observe the state of all

the individual nodes through time. In section (3.2) we review some of the related works.

In section (3.3) we derive the likelihood of the observed SIS traces in term of transmission

rates as model parameters. When the domain of the transmission rates is a convex set,

maximum likelihood estimation (MLE) of the transmission rates is a convex optimization

problem. Since the transmission rates are disease-specific parameters, there are cases where

we have prior knowledge about the transmission rate over an existing link. In such cases,

the network-links recovery process could be cast as an MLE problem where the transmission

rates are either zero or specific values. Instead of trying to solve such a binary optimization

problem, in section (3.4) we formulate the binary network reconstruction within a Bayesian

framework. Comparing to MLE approach, Bayesian inference can incorporate our prior belief

regarding the existence of the links in the inference problem. This property of Bayesian infer-

ence is particularly useful when there are other layers of information concerning the presence

of the links, independently of the SIS traces. Moreover, using Bayesian inference, unlike the

maximum likelihood method which is a point estimator, we obtain posterior probabilities

for the existence of the links. Thus, we have a measure for confidence of the estimation.

In section (3.5), we perform numerical experiments on synthetic data, and we use Gibbs

sampling to find the posterior probabilities of the links.
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3.2 Related Works

Network structure inference using spreading data has been an active research area in data

mining53–64. One of the earlier works in this field uses sequences of cascading events to

recover the links among the nodes of a network53. In their model, the cascades spread as

directed trees over an underlying graph, such that all the possible trees can happen with

the same probability. But for a fixed tree, the cascades with different timings occur with

different probabilities. Although this model may resemble the conventional SI model, there

is a clear difference in the node-level description. Indeed, it is straightforward to see that

different spreading trees have different probabilities in the SI model. Therefore, the algorithm

proposed in53 does not reconstruct the binary network of SI cascades.

In56, the authors consider the spreading process that follows SI model in the node-level.

They formulate the network reconstruction problem as a maximum likelihood estimation

(MLE) of transmission rates among the nodes of the network. They assume that the domain

of transmission rates is a convex set, which turns the MLE problem into a convex optimization

problem. Moreover, another assumption is made that the transmission rates between any

two nodes could be asymmetric. This assumption decouples the global maximum likelihood

problem into N local problems, where N is the number of nodes in the network. In56, it

is shown that by adding the L1 norm of transmission rates to the likelihood function the

transmission rates can be recovered with a finite sample of SI traces. The authors of54 assume

a discrete time SIR model and use the maximum likelihood estimator to make inferences

about the network structure. Moreover, they address the question concerning the number

of required samples for the graph recovery. Finally, the network structure inference is not

limited to link inference. In the existing literature, authors find the community structure

among the network nodes using epidemic data65;66. In a different setting, the researchers’

goal was to identify the source of infection from some observation of epidemic data63;67–71.

After deriving the likelihood of SIS traces–equation (3.5)–it turns out we can use a similar

approach as56 to recover the network links from the observed SIS traces. In fact, if we

assume the domain for the transmission rates is a convex set, the MLE problem is a convex
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optimization problem and decouples into local problems, if the rates between the nodes are

asymmetric. Although the consistency of the MLE approach guarantees the recovery of

correct transmission rates, we expect that including the known information in the likelihood

function decreases the amount of data required for an accurate estimation of the network.

For instance, if the transmission rate of the existing links is the specific value β0, we can use

{0, β0} as the domain of the rates. In section (3.5.2), we experimentally show how this extra

information about the links’ transmission rate affect the inference.

Our original contribution in this work includes (1) deriving the exact likelihood of

continuous-time SIS traces, assuming complete nodes’ state observation, and (2) formu-

lating the binary network reconstruction in a Bayesian framework which enables us to use

Gibbs sampling approach to find the exact probability that an uncertain link exists or not.

3.3 Likelihood of SIS Traces

In the susceptible-infected-susceptible (SIS) stochastic epidemic model, the individuals are

either susceptible or infected. Here, we assume if a node is infected the probability to stay

infected decreases with a constant rate δ. Thus, after the node gets infected at time t0, it

becomes susceptible again at time t + t0 where t is a random variable with the exponential

probability density function, f(t) = δ exp(−δt). In this model, the transition from suscepti-

ble to infected state is caused by the interaction with an infected neighbor in the network.

We assume, for a susceptible node that has one infected neighbor, the probability to remain

susceptible up to time t is exp(−λt), where t is the duration of contact and λ is a constant.

In other words, the transmission time for the infection is a random variable that is exponen-

tially distributed with the rate λ. In general, exponential distribution can be understood as

limit of a discrete time process. For example consider a discrete infection process where in

each time step the infected neighbor succeeds to transmit the infection with probability λ dt

and fails with probability 1−λ dt. In this scenario the probability that the susceptible node

survives for k steps and gets the infection at step k + 1 is (1− λ dt)k λ dt. If dt is small we
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recover the the exponential distribution for the infection time,

(1− λ dt)kλ dt dt→0−−−→ exp(−λt) λdt, (3.1)

where k dt = t. Considering this discrete time limit, we deduce that in the exponential

distribution, λ exp(−λt), the exponential function is the probability that the system survives

up to time t and λ is a time-independent density.

In practice, a susceptible node may have several infected neighbors trying to infect it. In

this case, the infection processes by different neighbors are independent, and the susceptible

node gets the infection from the first neighbor that transmits it. If at t = 0 node a is

susceptible and the infected neighbors set is NI , the probability density function for the

infection time, assuming all the infected neighbors remain infected, is

f(t) =
∏
n′∈NI

exp(−λn′,at)
∑
n∈NI

λn,a

= λ0 exp(−λ0t)

(3.2)

where λ0 =
∑

n∈NI λn,a. In the first line of the equation above, the product term is the

probability that the susceptible node a survives up to time instant t and the summation

term is the probability that at least one of the infected neighbors transmits the infection in

the interval (t, t+dt). The second line in the equation indicates that the minimum of several

exponentially distributed random variables has an exponential distribution with a rate equal

to the sum of all the rates for the independent variables.

Based on the node level description of the SIS process, clearly the transition of a node

from susceptible state to infectious state depends on the state of its neighbors; this implies

the dynamics of a node can not be decoupled from those of its neighbors. Instead, the joint

state of all the N nodes in the network denoted as S = [s1, s2, · · · , sN ], where si = 1 (si = 0)

if ni is infectious (susceptible) , is a continuous-time Markov chain over a space consisting of

2N possible network states. To derive the likelihood of a network state trace, we first obtain

the likelihood of events happening in the network. Assuming at t = t0 the network state is
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S(t0), by an event we mean the first time that a node makes a transition after t0. We specify

an event by the ordered pair e = (n(e), t(e)) where n(e) is the node that makes the transition

and t(e) is the time at which the event happens. Based on the node level description of the

SIS process, we can write the probability density function of the event as

f(t(e) | S(t0),Λ, δ) =(
sn(e)(t0)δn(e) + (1− sn(e)(t0))

∑
q∈N

sq(t0)λq,n(e)

)
× exp

(
−∆

(
S(t0)δ + S(t0)Λ

(
1− S†(t0)

)))
,

(3.3)

where ∆ = t(e) − t0. In Eq.(3.3), Λ is the matrix of interaction rates among the nodes of

the network Λq,p = λq,p , δ is a column vector of recovery rates for different nodes and 1 is

a column vector with all the elements equal one.

The second line on the r.h.s of the of Eq.(3.3) is the probability that the network state S

stays constant in the time interval (t0, t0 + ∆), while the first line gives the density for the

transition of the node n(e).

3.4 Bayesian Inference of Missing Links

To use the Bayesian method of inference, we need to calculate the likelihood of observed

data conditioned on the parameters. In our problem statement, we assumed we have access

to the complete history of nodes’ traces for a period of time from t = 0 to t = T . Although

in theory it is possible to observe the state of each node, si(t), on the continuous timeline, in

practice we may observe the node’s state only at some points on the continuous timeline. For

such kind of observation we assume the observation window is much smaller than the inverse

of transition rate of the nodes. With this assumption the probability that two different

events happen in the same time window goes to zero as we make the time window smaller.

Moreover, the likelihood of the events tends to the one for the continuous observation in

Eq.(3.3).
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Using the nodes’ traces, we can extract all the network state events that occur for that

period of time. In other words, the observed data is the sequence of network state events.

Assuming C = {e1, e2,···} is the observed sequence of events ordered by occurrence in time,

t(e1) < t(e2) < · · · , the likelihood of the sequence C is

f(C | Λ, δ) =
∏
i=1

f(t(ei) | S(t(ei−1)),Λ, δ) (3.4)

where the terms in the product are calculated from Eq.(3.3) Since we want to make an

inference about the interaction rates, in the expression for the likelihood of sequence C,

we are only interested in those terms that are a function of λ. After inserting the density

function of events from Eq.(3.3) into Eq.(3.4) and absorbing the terms that are a function

of δ into the variable K(δ), the probability density function of sequence C simplifies as

f(C | Λ, δ) = K(δ)× exp
(
−
∑
q,p∈N

Tq,p λq,p

)
×
∏
ei∈CI

∑
q∈N

sq(t(ei−1)) λq,n(ei)

(3.5)

In this expression, CI refers to the set of all the events ei in the sequence C that are infecting

events, sn(ei)(t(ei−1)) = 0 and sn(ei)(t(ei)) = 1. Here, sq(t(ei−1)) is the state of node q just

before the event ei happens. The constant parameter Tq,p in Eq.(3.5) is the total period of

time that node q had the possibility to infect node p, in other words

Tq,p =

∫ T

0

(1− sp(t))sq(t) dt.

The likelihood of sequence C presented in Eq.(3.5) is valid for both directed and undirected

networks. When the network is directed λq,p is assumed to be a parameter different from

λp,q. Instead, when the network is undirected, λq,p and λp,q refer to the same parameter.

Although in deriving the likelihood of the SIS trace we assumed a link between any two

nodes p, q with a corresponding rate λp,q, the expression in Eq.(3.5) is also valid when some
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of these links are absent. For nonexisting links, we can simply apply λp,q = 0 and arrive at

the correct expression for the likelihood.

Now that we have an expression for the likelihood of observed data, we can use Bayes’

theorem to find the posterior distribution for the uncertain links. If we use Λu to indicate

the set of transmission rates for the uncertain links, Bayes’ theorem gives the joint posterior

distribution of the transmission rates as

f(Λu | C) = κ× exp
(
−
∑
λ∈Λu

Tλ λ
)

×
∏
ei∈CI

(
βei +

∑
λ∈Λuei

λ
)
× F(Λu).

(3.6)

In this equation, κ is a normalization factor, and F(Λu) is the prior distribution of the

transmission rates for the uncertain links. Here we have used Λu
ei

to refer to the set of

transmission rates for those uncertain links that were active in the event ei. The link (q, n(ei))

is active in the infecting event ei if and only if the node q is infectious at the time when the

event happens. Moreover, in Eq.(3.6), βei is the sum of all the transmission rates for the

active links in the event ei except those active links that are uncertain.

Λu
ei

=
{
λq,n(ei) | λq,n(ei) ∈ Λu, sq(t(ei−1)) = 1

}
βei =

∑
q∈N

λq,n(ei) /∈Λu

sq(t(ei−1)) λq,n(ei)

As we mentioned before, if an uncertain link is undirected, both λq,p and λp,q refer to the

same parameter λ ∈ Λu. In such cases Tλ = Tp,q + Tq,p. Conversely, when λ ∈ Λu refers to a

directed link λp,q, then we have Tλ = Tp,q.

The expression in Eq.(3.6) provides a joint distribution for the uncertain links. However,

we are often interested in some marginal probability distribution such as the distribution of

a specific link λ0. To obtain the posterior distribution f(λ0 | C), we need to integrate the
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joint distribution over all the other uncertain links. If Λ− = Λu − {λ0}, we have

f(λ0 | C) =

∫
f(Λ | C) dΛ− . (3.7)

Although in some cases this integration is a straightforward task, when we have a large

number of uncertain links, the integration might be intractable. Nevertheless, when the

prior distribution in Eq.(3.6) is a product of independent factors

F(Λu) =
∏
λ∈ Λu

fλ(λ) , (3.8)

the integration in Eq.(3.7) results in a marginal distribution that has a functional form of

f(λ0 | C) = κ0 × exp
(
− Tλ0λ0

)
fλ0(λ0)

×
J∑
j=0

aj λ0
j.

(3.9)

In this equation, J is the number of infecting events that the link λ0 has been active in,

κ0 is a normalization factor, and the coefficients in the polynomial term can be calculated

by performing the integration. However, for a general case when λ0 is coupled with a large

number of uncertain links through the factor terms in the joint distribution of Eq. (3.6), the

integration is not tractable. In such cases, it is possible to apply one of the commonly used

numerical methods in Bayesian inference such as the Markov chain Monte Carlo (MCMC)

or Belief propagation. Here, we use the prior distribution of Eq.(3.8) where the independent

factors have the functional form as

fλ(λ) = Pλ δ(λ− rλ) + (1− Pλ) δ(λ) (3.10)

Here, Pλ is the prior probability for the existence of the link, rλ is the transmission rate

assuming the link exists, and δ(λ) is the Dirac delta function. To find Pλ, one can use some

source of information about the network other than the epidemic traces. For example, when
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the existence of links between the nodes stochastically depends on some kind of distance

between the nodes, one can use the known distance to find the prior probability Pλ. Fur-

thermore, when we do not have any prior information about a link, we can use Pλ = 1/2 as

the prior probability. In cases where the integration in Eq.(3.7) is tractable, we can find the

posterior probability for existence of the link, P̂λ, from the equation below

P̂λ

1− P̂λ

=
Pλ exp

(
− Tλrλ

) ∑J
j=0 aj rλ

j

(1− Pλ) a0

. (3.11)

In practice, for most cases where it is not possible to calculate polynomial coefficients an-

alytically, we can use Gibbs sampling to find the posterior probability P̂λ. Gibbs sampling

requires constructing a Markov chain over the parameters’ space that has an equilibrium

distribution similar to the joint distribution of the parameters. In our inference problem,

the parameters’ space is the direct sum of transmission rate space of uncertain links, and

the Gibbs sampling constructs a Markov chain X = (λ1, λ2, · · · , λk), λi ∈ Λu, which has an

equilibrium distribution similar to that in Eq.(3.6). When we use the prior distribution in

Eq.(3.10) for the transmission rate λ, the corresponding component of the Markov chain can

only assume values of 0 or rλ, and using samples from the Markov chain, we can estimate

P̂λ as the fraction of samples with λ = rλ.

3.4.1 Illustrative Example

To clarify the formulas discussed previously through the text, here we apply the Bayesian

reconstruction method to a simple example. Consider the graph in Fig.(3.2) where the

link (1, 2) exists and the links (1, 4), (2, 4), (1, 3) and (2, 3) are uncertain and we want to

find out the probability that they exist. Moreover, we assume the links in the graph are

undirected and the transmission rates over all the links are symmetric and if a link exists the

transmission rate is β. For the network state trace, we use a trace of three events where in

the first event, shown by ea, node 3 recovers, in the event b node 1 gets infected and in the

event c node 2 gets infected. This network state trace is shown in Eq.(3.12) where ∆ over
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Figure 3.2: Network used in section 3.4.1. In this network, the link (1, 2) exists, but the
links (1, 4), (2, 4), (1, 3) and (2, 3) are uncertain. Moreover, we assume the transmission
rates are symmetric.

each arrow is the period of time that network state has remained constant before the event.
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Using the formula in the equation 3.6, the joint posterior distribution of the transmission

rates can be written as

f
(
λ1,4, λ2,4, λ1,3, λ2,3 | C

)
= κ× λ1,4 ×

(
λ2,4 + λ1,2)

× e−
(
λ1,4(∆a+∆b)+λ2,4(∆a+∆b+∆c)+λ1,3(∆a+∆c)+λ2,3∆a

)
× f(λ1,4)× f(λ2,4)× f(λ1,3)× f(λ2,3),

(3.13)

where κ is a normalization factor and we have used independent prior distribution such that

each of the uncertain links could exit with a probability equals 1/2 independent from the

other links,

f(λ) =
1

2
δ(λ− β) +

1

2
δ(λ).
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However, in a different setup we could define a prior distribution such that the existence of

several uncertain links were tangled together.

In order to find the posterior distribution of a specific uncertain link we need to integrate

the joint distribution in Eq.(3.13) over all the other uncertain links. For example, the

posterior distribution of λ2,4 is

f
(
λ2,4 | C

)
=

∫
f
(
λ1,4, λ2,4, λ1,3, λ2,3 | C

)
dλ1,4 dλ2,3 dλ1,3

= κ×
(
λ2,4 + β)× e−λ2,4(∆a+∆b+∆c) f(λ2,4),

where κ is again a normalization factor and after normalization, the posterior distribution

for λ2,4 becomes

f(λ2,4) =
2e−β(∆a+∆b+∆c) δ(λ2,4 − β) + δ(λ2,4)

1 + 2e−β(∆a+∆b+∆c)
.

In the equation above, the coefficient of Dirac delta function δ(λ2,4−β), gives the probability

that the link (2, 4) exists.

3.5 Numerical Experiments

In this section, we report the result of two numerical experiments on synthetic data. In

both experiments, we assume if an uncertain link exists, it is undirected, and the infection

rate is known. In the first experiment, we show how the extra information incorporated

in the Bayesian link inference as a prior distribution affects the posterior probabilities. In

the second experiment, we compare two different approaches to the binary network recon-

struction where we estimate the transmission rates using MLE and compare the result with

the posterior probabilities for the existence of the links obtained using Bayesian approach.

Although in these experiments we use two specific underlying networks, our network recon-

struction approach is independent of the underlying network topology and only depends on

the spreading model.
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Figure 3.3: Plots for the experiment in the section (3.5.1). (a) node degree distribution of
the underlying scale-free network. (b) proportion of the infected and susceptible nodes in the
SIS trace. (c) distribution of the posterior probabilities for the actual links of the network
and (c) distribution of posterior probabilities for the non-edge pairs, when different prior
distributions and traces of different length were used in the link inference.

3.5.1 Experiment Using Informative Prior

In this experiment, we first generated a random scale-free network with 1000 nodes following

Barabasi–Albert (BA) model44. The nodes’ degree of the networks resulting from this model

has a Power law distribution, P (k) ∼ k−3. The generated network we used in this experiment

has 3980 undirected links and the average node degree is 7.96. The node degree distribution

of the network is plotted in Fig(3.3a), which shows there are a few hubs in the network.

After generating the network, we simulated an SIS spreading over the network using

the GEMF simulator33;38. We assumed all the nodes are initially infected and the infection

transmission rate for all the links is β = 0.15 δ, where δ is the recovery rate. Fig.(3.3b)
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shows the infected and susceptible population for the simulated SIS process.

For this experiment, we randomly chose a set of uncertain links, and we find the posterior

probabilities for the uncertain links using the information in the SIS epidemic trace. An

uncertain link can be an actual link of the network or a possible link that is not realized

in the network. If the network is shown by G = (N,E), where N is the set of nodes and

E ⊆ N×N is the set of actual links, we refer to the elements of Ē = N×N−E as non-edge

pairs. For the set of uncertain links we randomly chose 800 actual links and 800 non-edge

pairs. Figure (3.3c) shows the distribution of posterior probabilities for those uncertain

links that are the actual links and Fig.(3.3d) shows the similar distribution for the non-edge

pairs. Moreover, in figures (3.3c) and (3.3d) we can see the comparison between two cases

with different prior distributions. In one case we used uninformative prior such that in the

equation (3.8)

fλ(λ) =
1

2
δ(λ− β) +

1

2
δ(λ).

This prior distribution does not favor the presence or absence of an uncertain link, but it

limits the transmission rate of a link to the known value of β = 0.15. In the figures those

distributions denoted by ”Unbiased prior” are the result of using the uninformative prior. In

the second case we used a prior distribution that assigns a prior probability of 0.7 to those

uncertain links that are actual links of the network and assigns 0.3 to the non-edge pairs,

fλ(λ) = 0.7 δ(λ− β) + 0.3 δ(λ) for the actual links

fλ(λ) = 0.3 δ(λ− β) + 0.7 δ(λ) for the non-edge pairs

(3.14)

This prior distribution reflects our beliefs about the uncertain links. If these beliefs are

correctly biased, as we have assumed here, we need less amount of data to infer a posterior

probability that is closer to the true value, 1 for the actual links and 0 for the non-edge pairs.

In figures 3.3c and 3.3d, the plots denoted by ”Biased prior” are obtained starting from the

informative prior in the equation (3.14).

In Fig.(3.3c) we can see the difference between distribution of posterior probabilities for
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the actual links when the SIS traces of different time lengths are used in the inference. When

the SIS trace is long enough, regardless of the prior, the distributions are close to the true

distribution, which is nonzero only for the posterior probability equals 1. However, when the

SIS trace does not contain enough information (plots with T ≈ 17), using the biased priors

leads to the posterior probabilities that are closer to the true values. In Fig.(3.3d) we can

see a similar trend in the inferred posterior probabilities for the non-edge pairs. The only

difference is that the true value of the posterior probabilities for the non-edge pairs is zero.

3.5.2 Experiment to Compare MLE and Bayesian Approaches

In the next experiment, we considered inferring all the links in a network of 100 nodes using

an SIS spreading trace. We assumed the nodes are positioned on the vertices of a square grid,

and we constructed a synthetic network by connecting any two nodes a, b with a probability

that decreases with their distance as

p(a, b) =
0.3

d(a, b)
, (3.15)

d(a, b) is the Euclidean distance of nodes a, b in a length unit defined by the grid’s edges.

This resulted in a network with 390 edges. For this network, we assumed the transmission

rates over the links are β = 0.21δ where δ is the recovery rate of the nodes. We simulated

an SIS epidemic initiated from 10 randomly infected nodes using the GEMF simulator38. In

the simulation the population of infected nodes on average was about 1/3 of the nodes.

In this experiment, the set of uncertain links includes all possible links between the

nodes and we infer them using two different methods and compare the results. For the first

method, we use Maximum Likelihood Estimation (MLE) and for the second method we

adopt Bayesian approach with an uninformative prior.

If we assume the network is directed, the likelihood of SIS trace in Eq.(3.5) decouples

into a set of independent functions,
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Figure 3.4: Results of the experiment in section 3.5.2. (a) and (b) show distributions
of the maximum likelihood estimation of the transmission rates for the actual links and the
non-edge pairs respectively. (c) and (d) show distributions of the posterior probabilities for
the actual links and the non-edge pairs. In the plots, the curves with different T are obtained
using SIS traces with different length.

f(C | Λ, δ) = K(δ)×
∏
p∈N

g(CpI | Λp), (3.16)

where

g(CpI | Λp) = exp
(
−
∑
q∈N

Tq,p λq,p

)
×
∏
ei∈CpI

∑
q∈N

sq(t(ei−1)) λq,p.
(3.17)
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In the equation above, g(CpI | Λp) is the likelihood of the set events that node p got infected,

denoted by CpI , and Λp = {λq,p | q ∈ N} is the set of transmission rates from all the other

nodes to the node p. In56, authors have used a similar decoupling to reduce the size of

optimization problem in the MLE estimation of links using SI cascades. They have assumed

the transmission rates are continuous variables and they maximize the objective function

of each node p separately. If the domain of transmission variables is convex, the resulting

optimization is convex. Although this approach leads to a simple convex problem, in some

cases it is not preferable. Assume we know the value of transmission rate if a link exists.

If we incorporate this information in the MLE estimation, instead of a convex problem, we

need to solve an integer-programming problem which is not linear. One may claim if the

SIS trace contains enough information, there is no need to incorporate the known value of

transmission rates in the MLE. However, when the observed data is limited, considering

all the known facts about the process results in a more accurate estimation. In order to

investigate the effect of neglecting such prior information we perform the MLE estimation

of the links and compare the result with the true values. Moreover, we followed56 and add

a constraint on the L1-norm of transmission rates such that

∑
q∈N

λq,p ≤ d× β = 3.4,

where d is the largest degree of the nodes in the network and β = 0.21. This constraint

encourages sparsity and it is shown that by applying such type of constraints, the network

can be recovered with finite samples of SI epidemic model,56. Since the likelihood function

of SIS model in Eq.(3.17) is similar to the likelihood obtained from the traces of SI model,

we applied the L1-norm constraint to guarantee the recovery of network with a finite length

SIS trace. Figures 3.4a and 3.4b show the distribution of estimated transmission rates for

the actual links and the non-edges pairs correspondingly. Since in the MLE we assumed the

links are directed, there are two estimated values per link. In the plots we have used the

average of the two estimated values.
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In addition to the MLE, we performed Bayesian inference with an uninformative prior,

fλ(λ) =
1

2
δ(λ− β) +

1

2
δ(λ),

where β = 0.21. Figures 3.4c and 3.4d show the distribution of posterior probabilities for

the actual links of the network and the non-edge pairs correspondingly. From the figures it

is obvious when the SIS trace is long, T ≈ 600, the posterior probabilities for almost all the

links are close to the true probabilities, 1 for the actual links, and 0 for the non-edge pairs.

In practice one can assume a threshold for the transmission rates such that if the maximum

likelihood estimation of transmission rate for a link is higher than the threshold, the link is

considered as an actual link of the network,56. Since the distribution of transmission rates

for the actual links and the non-pair edges overlap (compare figures 3.4a and 3.4b), this

thresholding procedure identifies some non-edge pairs as the actual links of the network. In

figure 3.5 the curves denoted by ”MLE” show the number of non-edge pairs and the number

of the actual links that are recovered as the actual link of the network when the threshold

value varies. Similarly, we can define a threshold for the posterior probability such that if

the inferred posterior probability of a link is higher than the threshold, the link is considered

as an actual link of the network. In figure 3.5 the curves denoted by ”Bayesian” show the

number of actual links that are recovered, respect to the number of non-edge pairs that are

wrongly identified as the actual links if the posterior threshold changes. In the figures 3.5

we can see when the SIS trace is short Bayesian inference has a better performance than

the MLE approach since it can recover more actual links if the number of falsely identified

non-edge pairs is fixed.

3.5.3 Experiment on Different Underlying Network

To study influence of the underlying network topology on network recovery, we perform an

experiment using three different networks. The first one is the largest component of the

co-authorship network39. This network has 379 nodes and 913 links. The second network is
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a Barabasi-Albert network with 350 nodes and 1035 links and the third network is a random

network with 350 nodes and 1035 links. Although these networks almost have the same

number of nodes and links, their structures are extremely different. Figure 3.6a shows the

node degree distribution of the three networks. We can see the Barabasi-Albert (scale-free)

network has several hubs while the co-authorship (real network) has fewer hubs and the

random network contains no nodes with high degrees. Figure 3.6b shows the population

of infected nodes through time in the simulation of SIS processes over these underlying

networks. We adjusted the transmission rate, β, such that the populations of infected nodes

in the steady state are almost similar. Thus, we expect the accuracy of network recovery

mainly would be influenced by the networks’ structure. In this experiment, we assumed

a set of uncertain links composed of all the actual network links and an equal number of

randomly chosen non-edge pairs. Moreover, we used the uninformative prior probabilities for

the uncertain links where each uncertain link is an actual link of the network with probability

1/2. Finally, in order to measure the accuracy of network recovery, we used average error

that we define as

e =

∑n
i=1 |γi − P̂i|

n
. (3.18)

In this equation, P̂i is the posterior probability of the uncertain link i. If the uncertain link

is an actual link in the network, γi = 1, otherwise, γi = 0.

Figures 3.6c and 3.6d shows the average error in the recovery of the actual inks and the

non-edge pairs as a function of the SIS trace lengths used in the inference. We can see the

error in the recovery of the Random network and the scale-free network are very similar

even though they are quite different in their structure. In general it is not obvious how the

network structure should affect the network recovery. However, we expect the error in the

recovery of actual links should depend on the number of infecting events at either side of

the link and the population of the infected nodes. In fact when there is a small number

of infected nodes that could transmit infection it should be easier to trace the source of

infecting events. In the same manner, we expect the inference of the uncertain link which is

a non-edge pair becomes more accurate when the SIS trace contains incidents where one side
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of the link is infected and the other side is susceptible. In this case the probability for the

existence of the link decreases exponentially with the total time duration of such incidents.

When the population of infected nodes is high it is less possible to see such cases and the

inference gets less accurate and we need to use SIS traces with longer duration. From this

argument we expect the population of infected nodes in the SIS trace should play a more

important role than the underlying network structure in the accuracy of network recovery.

In fact figures 3.6c and 3.6d show when the infection populations are the same for the two

completely different network structures, scale-free and random network, the accuracy of the

network recovery are very similar. On the other hand, from figure 3.6d we see the accuracy

in the inference of non-edge links in the real network is higher than that of the other two

networks. We think this is due to the slow rise of the infection population that provides

more events where one end of the uncertain link is infected and the other end is susceptible.

In general, since the population of the infection is very influential in network recovery, we

expect the SIS traces that the transition from small infection population to the steady state

takes longer time contains more information about the uncertain links and this leads to a

more accurate inference.

3.6 Summary

In this work, we investigated the inverse problem of continuous time SIS spreading over a

graph. We derived the likelihood of SIS traces assuming we observe the states of the nodes

over a period of time. Here, we formulated the binary network reconstruction as a Bayesian

inference problem. Using this approach we obtain the probability that an uncertain exists.

In section (3.5) we saw when the SIS traces contain enough information these probabilities

were close to 1 for almost all the actual network links and close to 0 for the non-existing

links. Although we only considered the links recovery using the SIS traces, the generalization

to the traces of SI and SIR models of spreading is straightforward. Indeed, in the SI and SIR

models, the only nodal transition that depends on the network links is the transition from

susceptible state to the infected state, therefore the posterior distributions are similar to the
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one in the equation (3.6). Moreover, if we want to recover the binary network using the SI

or SIR traces we can follow the same approach we adopted for the SIS traces and perform

Gibbs sampling. Finally, the numerical comparison in section 3.5.2 shows when the trans-

mission rates are known and the SIS traces does not contain enough information, the binary

network reconstruction leads to a more accurate result than the weighted network recovery.

Moreover, by employing the Bayesian approach we can obtain the posterior probabilities for

the existence of the links, which provides a proper measure to evaluate the confidence of the

estimation.
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Figure 3.5: Plots show the number of recovered actual links compared to the falsely recovered
non-edge pairs when we apply the thresholding procedure explained in section (3.5.2). The
curves are generated by changing the threshold value. To obtain each point on the curves
denoted by ”MLE”, we associate a link for any pair of nodes if the MLE of transmission rate
between them is higher than the threshold. For the curves denoted by ”Bayesian” we apply
threshold on the posterior probabilities. Plots (a), (b), (c), (d) are the result of applying SIS
traces of length T ≈ 150, T ≈ 300, T ≈ 450, T ≈ 600 , respectively. In plot (b), λthreshold and
P threshold are the transmission rate and the posterior probability thresholds that are applied
to obtain the specified point on the curves.
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Figure 3.6: Plots for the experiment in the section (3.5.3). (a) node degree distribution of
the three different underlying network used in the experiment. (b) proportion of the infected
nodes in the simulated SIS process over the underlying networks. (c) ,(d) average error,
Eq.(3.18), in the inference of the actual links and the non-edge pairs, respectively.
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Chapter 4

A Multilayer Temporal Network

Model for STD Spreading 1

4.1 Introduction

The rising number of infected individuals with sexually transmitted diseases (STD) is a

significant concern for public health. It is estimated there are one million new cases of

curable STDs acquired each day globally73. Indeed, with the increasing trend in online

dating, sexual networks become more complex and dynamic. For example, a recent study

indicates a relationship between using an online dating application and having had five or

more previous sexual partners in young adults74. In this chapter we study the effect of

casual partnerships in the propagation of STDs. We develop a temporal network model that

incorporates the effect of each individual in the sexual network on the spread of STDs. The

susceptible-infected-susceptible (SIS) model over a complex network is used for describing

the spread of a pathogen in a population with heterogeneous connectivity among individuals.

In the existing literature, we can find several works analyzing the SIS processes over

various models of dynamic networks75–77. Paré et al. analyze the N-intertwined approx-

imation of the SIS process when the adjacency matrix of the network is a deterministic

1This chapter is a slightly modified version of our published article72
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and continuous function of time78. Another approach to model the temporariness of part-

nerships is to adopt the switching network concept. In such a model the contact network

randomly switches among a set of predetermined adjacency matrices. In79;80 the authors

have studied sufficient conditions for the stability of the disease-free equilibrium in the SIS

spreading model over switching networks. In81 the authors analyze the initial phase of an

SIS epidemic on a network with preventive rewiring. Another class of time-varying network

that has been studied in the existing literature is the edge-Markovian networks where the

edges appear and disappear following independent Markov processes82. In83, the authors

have used an improved effective degree compartmental modeling framework to study the

SIS spreading process in the edge-Markovian networks. Ogura et al. consider a generalized

version of edge-Markovian model where the inter-event time distribution for the appearance

and disappearance of the links is not necessarily exponential84. Moreover, they provide a suf-

ficient condition for the exponential stability of the disease-free state in the SIS process that

is unfolding on such a time-varying network. A different approach to model time-varying

networks is the so-called activity-driven network models that have been studied mostly in

the physics literature85–87. In these models, the probability that an individual engages in

a connection with other individuals is determined by a random variable called “activity”.

Typically, in a discrete-time activity-driven model (see85 and, for multiplex networks,87), at

each time step all the existing links are deleted and each node becomes active according to

this activation probability. Then, if active, a node establishes links with randomly selected

nodes (active or not) in the population. Certainly, in some practical cases most of the previ-

ous models are oversimplifications of the real scenario and it may miss some critical aspects

for the infection spreading in a population.

In the next section, we develop a temporal network model and a mean-field type approx-

imation to describe the SIS spreading process over such a temporal network. In sections 4.3,

we analyze the disease-free state of the SIS spreading process using the mean-field equations

and we find a condition that guarantees the exponential die out of an infection in a time-

varying network that can be described via our modeling approach. Finally, using the exact

simulation of the process, in section 4.4 we show how the duration of casual partnerships
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can affect the metastable state of the SIS spreading process.

4.2 The Model

In the following, we first introduce the notation and the assumptions of the two-layer tem-

poral network model, and later, we develop the SIS mean field-equations on this network

model.

4.2.1 Two-layer Temporal Network Model

We consider a population of N agents that are connected with two different types of links.

The first network layer, L1, represents steady partnerships among the agents. Independently

of the relationship paradigm, one wants to account for (serial monogamy, polygamy, etc.),

it is reasonable to expect that L1 is a quite sparse disconnected network, especially when

considering a time scale of interest for SIS-type infections. Besides these permanent links,

we assume a second type of links that correspond to potential casual partnerships. These

links become active with a probability p0 only when the agents at both ends of the links

are simultaneously seeking casual partners. This second layer of links is denoted by L2. In

general, p0 can be different for each pair of nodes. However, for clarity of the presentation

and since it is straightforward to generalize our result to the heterogeneous case, we assume

the same p0 value for all potential links. By definition, the intersection of the sets of links in

L1 and L2 is empty. In contrast to the low connectivity of L1, it is plausible, especially from

the advent of match-making apps outside social networks, that L2 is highly connected. So,

we will assume that L2 is connected (that is, for any pair {i, j} of nodes there is a path of

links in L2 joining i and j). While the links in layer L1 always can transmit infection, a link

in layer L2 transmits the infection only when it becomes an active link. In the model the

activation of a potential link in L2 depends on the activity state of agents at both ends of the

link. Apart from the node infection state, we assume that nodes are either active or inactive

at any time t. When a node becomes active, it seeks a partner among its active neighbors in
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Figure 4.1: A snapshot from a realization of the network model. At any time t the nodes
are either active or inactive. A potential link is activated with probability p0 if its both ends
are active at the same time.

L2 and, with a probability p0, it is established a casual partnership. Later, when one of the

two nodes goes to the inactive state, the link is inactivated. This node transition between

active and inactive states introduces temporariness in the sexual network. Here, we assume

node activation processes are independent Poisson processes, where node i becomes active

with rate γi1, and if it is active, it goes to the inactive state with rate γi2. Since the inverse of

the transition rate is the expected value of transition time, if node i is active, it is expected

to stay active for a period of time of length (γi2)−1. Thus, when we want to model a node

that is frequently activating occasional links, we can assign high values of γ2 and γ1 to that

node. Moreover, if a node does not participate in casual partnerships —it never becomes

active— γ1 is set equal to zero for that node. Figure 4.1 shows a snapshot of a realization

of the temporal network.

Since the inactivation time for each node has an exponential distribution, and the inac-

tivation of a temporal link depends on its both ends, it is straightforward to see that the

duration of a casual partnership has an exponential distribution. In fact, a temporal link

disappears when one of its ends becomes inactive. Since the minimum of two independent

random variables with exponential distributions is distributed exponentially with a rate that

is summation of the rates in the independent distributions, it follows that the duration of a
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temporal link between nodes i and j has an exponential distribution with the rate γi2 + γj2.

Hence, the expected duration of a casual partnership is Ti,j = (γi2 + γj2)−1. Moreover, a

straightforward calculation shows that, after some initial period of time, the probability to

find node i in the active state is pi2 = γi1/(γ
i
2 + γi1). Hence, in the steady state of the process,

the probability for the existence of a casual link between the two nodes is Pi,j = pi2 p
j
2 p0.

Temporal Characteristics of the Network Structure

Here, we calculate the probability that any two nodes i, j develop a link, during the period

that node i is active.

Based on the description of the model, when node i becomes active, node j is active with

probability pj2 and they develop a link with probability p0 or the link formation fails with

probability 1 − p0. Assuming they do not develop link, node j has another possibility to

develop link with i, if it becomes inactive and active again before node i becomes inactive.

Assuming that the two nodes are active, the probability that node j becomes inactive sooner

than node i is f1 = γj2/(γ
j
2 + γi2). This stems from the fact that for any two competing

exponential processes A and B, the probability that A will be the minimum is rateA/(rateB+

rateA). Now, if we assume that node j became inactive sooner than i, the probability that

node j becomes active again before node i goes to the inactive state is f2 = γj1/(γ
j
1 + γi2). In

summary, the probability that the two nodes develop a link in a second trial, assuming the

first trial fails, is f1f2p0.

Figure 4.2 depicts the process we described above. Moreover, in that figure we have

accounted for the possibility that the node j might be initially inactive when node i becomes

active. Hence, accounting for all the possibilities shown in figure 4.2, and allowing for a higher

number of link development trials, we can obtain the probability for the establishment of a

link between nodes i and j while node i is active as

Pj|i = pj2p0

∞∑
r=0

(f1f2(1−p0))r+(1−pj2)f2p0

∞∑
r=0

(f1f2(1−p0))r =
pj2p0

1− f1f2(1− p0)

(
1 +

pj1
pj2
f2

)
,

(4.1)
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Figure 4.2: Different processes that result in link establishment between nodes i, j while
node i is active. The values in red are the probabilities for each step in the process.

where pj1 = γj2/(γ
j
2 + γj1) and pj1 + pj2 = 1. To confirm this result we performed a simulation

to find the probability of existence of link between the nodes i, j during the periods that i is

active and the probability we obtained from the simulation perfectly matches this theoretical

result.

If we assume that node i has k2 neighbors in the layer L2 and all these nodes have the

same activity rates, γ1, γ2, then the distribution of number of developed links, during the

period that i is active, follows binomial distribution P (NL = r) =
(
k2
r

)
prL(1− pL)k2−r where

pL = Pj|i is obtained from equation 4.1. Moreover, duration of the links is exponentially

distributed with the rate 2γ2. Figure 4.3a shows the probability mass function of number

of developed links obtained from a simulation in which we counted number of established

links in each period that node i was active. For this simulation, we assumed that node i has

k2 = 100 potential neighbors in the layer L2. In addition, figure 4.3b shows the distribution

of link durations. These figures show the result of simulation follows the expected theoretical

distributions.

From the expression for Pj|i in equation 4.1 , we can easily determine the average number

of links li that node i develops every time it becomes active, namely, li =
∑

j Pj|i. As an

example, consider a population where each node has k2 potential links in L2 and the values

of γi2 and γi1 are the same for all the nodes (γi2 = γ2 and γi1 = γ1 ∀i). In this case, the

duration of temporal links are distributed exponentially with the average value of (2γ2)−1.
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Figure 4.3: Distribution of number of developed links (a) and their duration (b), during
the period a node is active. The relevant model parameters are shown in panel (a).

Moreover, the average number of active links for any node i during its active period becomes

li =
k2p0p2(1 + p1)

1− 0.5p2(1− p0)
, (4.2)

where we have used that f2 = p2 when the nodes have the same γ1 and γ2.

4.2.2 SIS Epidemics on Two-Layer Temporal Networks

In this section we develop a mean-field type approximation to describe the spreading of

infection on the temporal network introduced in section 4.2.1. Next, we discuss the relevance

of such an approximation to the exact spreading process.

The susceptible-infected-susceptible (SIS) model has been adopted for studying several

STDs because it assumes no immunity after recovering from infection and, hence, it allows

for multiple re-infections. This is the case, for instance, for Chlamydia and gonorrhoea

where little or no immunity is acquired after infection88;89. In this model, each node is either

susceptible (S) or infectious (I). We assume the infection and recovery processes are Poisson

processes, where an infectious node recovers at a rate δ and transmits the infection to a

susceptible neighbor at a rate β. When a susceptible node is in contact with several infectious
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nodes, it is assumed each infected neighbor acts independently. Thus, the susceptible node

contracts the infection with a rate that is the sum of the rates of all the independent infection

processes.

Combining the network model and the SIS spreading process, we deduce that each node

can assume one of four different states: S1 susceptible and inactive, S2 susceptible and

active, I1 infectious and inactive, I2 infectious and active. If Si1, Si2, I i1 and I i2 represent the

probabilities that the node i is in one of the four states in the mean-field approximation, the

equations for the time evolution of Si1, Si2, I i1 and I i2 can be written as

Ṡi1 = −γi1Si1 + γi2S
i
2 + δI i1 − β

∑
j

aij1 S
i
1(Ij1 + Ij2), (4.3a)

İ i1 = −γi1I i1 + γi2I
i
2 − δI i1 + β

∑
j

aij1 S
i
1(Ij1 + Ij2), (4.3b)

Ṡi2 = −γi2Si2 + γi1S
i
1 + δI i2 − β

∑
j

aij1 S
i
2(Ij1 + Ij2) (4.3c)

− β′
∑
j

aij2 S
i
2I
j
2 ,

İ i2 = −γi2I i2 + γi1I
i
1 − δI i2 + β

∑
j

aij1 S
i
2(Ij1 + Ij2) (4.3d)

+ β′
∑
j

aij2 S
i
2I
j
2 ,

where β′ = p0β. In the equations above, aij1 is an element of the adjacency matrix A1 for

layer L1 with aij1 = 1, if the nodes i and j form a steady partnership, and aij1 = 0 otherwise.

Similarly, aij2 is the (i, j) element of the adjacency matrix A2 corresponding to layer L2. It

is important to note that, when p0 has different values for each pair, we can absorb p0 in

the adjacency matrix A2 and the elements of the A2 become the pair-specific probabilities

of developing casual partnerships.

The first term on the r.h.s. of equation (4.3a) reflects the fact that the inactive susceptible

node i becomes active with a rate γi1 and the second term indicates if the node i is in the state

S2 it goes to the inactive state with a rate γi2. The third term originates from the recovering
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process of inactive infected nodes. In the fourth term, each addend is the multiplication of

the probability that the node i is inactive susceptible and the probability that a permanent

neighbor of node i is infected.

In equation (4.3c), we take into account the two different sets of neighbors that propagate

infection to the active susceptible node i. The fourth term on the r.h.s. arises from the

contagion propagation by infectious steady partners of node i. In the fifth term, every

summand is the multiplication of the probability that the node i is in the state S2 and the

probability that a potential neighbor of node i in the activity layer L2 is infectious and also

active. When the nodes i and j are active and they are neighbors in L2, they develop a link

with probability p0. Hence, the summation in the fifth term of this equation is multiplied

by p0.

Equations (4.3) describe approximately the (stochastic) spreading model whose exact

mathematical description requires tracking the probability of the system being in any of

4N possible states which is intractable. Our numerical simulations show these approximate

equations lead to nodal infection probabilities that are upper bounds for the infection proba-

bilities in the exact spreading model. In the following, we give an intuitive picture to justify

the result of our simulations. Readers familiar with continuous-time Markov chain and the

mean-field approximation of SIS process over static one-layer network90 may recognize that

the equations (4.3) are the N-intertwined approximation of a continuous Markov process

similar to our model but with a difference. In contrast to the exact description of our model,

for this Markov process a link in layer L2 is activated whenever the nodes at both ends of the

link are active with the infection transmission through the link being β′ = p0β instead of β.

Figure 4.4a shows the nodal transitions in the Markov process. Instead, in our model, when

both ends of a link are active, the link becomes activated with probability p0, and transmits

infection with rate β if one of the nodes is infected. Figure 4.4b shows the nodal transitions in

our model. Our simulations show that the equations (4.3) give an upper bound for the nodal

infection probabilities in the Markov process described above which, in turn, are higher than

those of our stochastic model. To explain these results we invoke the argument in28, where

the authors show the Markovian SIS process over a static one-layer network is upper bounded
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Figure 4.4: The figures show the diagrams of node transitions among different node states.
The rate of each transition is specified on the arrow that indicates the transition. (a) shows a
diagram of the Markov process which is discussed in section 4.2.2, and (b) shows diagram of
the exact process. In these figures Ij1 = 1 (Ij2 = 1) if node j is infected and inactive (active),
otherwise it is zero. In diagram (b) X i,j

0 is a Bernoulli random variable that has value one
with probability p0. This random variable is drawn each time a pair of active nodes (i, j)
with a potential link between them occurs, regardless of their disease status.

by the N-intertwined approximation. In fact, equation (4.3b) would be an exact equation for

the Markov process if we replace in this equation Si1(Ij1 +Ij2) with Pr(xi = S1, xj = I1 or I2),

which is the joint probability that node i is inactive and susceptible, and node j is infected.

Moreover, since two neighboring nodes can only enhance the infection probabilities of each

other and their activity states are independent, the infection states would be non-negatively

correlated. In other words, when we know node j is infected, the expectation to observe

node i in the susceptible state is less than the case when we do not know the state of node

j,

Pr(xi = S1|xj = I1 or I2) ≤ Pr(xi = S1).
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If we rewrite the inequality above as

Pr(xi = S1, xj = I1 or I2) ≤ Si1(Ij1 + Ij2),

we can see the addends in equation (4.3b) are upper bounds for the corresponding terms,

Pr(xi = S1, xj = I1 or I2), in the exact equation for the Markov process. Since these

terms appear with positive sign, they only increase the infection probability. Using the

same argument about the correlation of nodal infection in equation (4.3d), we expect the

N-intertwined approximation in equation (4.3) gives an upper bound for the nodal infection

probabilities in the Markov process and our simulations show that it is in fact an upper

bound. In order to compare the nodal infection probabilities in the Markov model and the

exact description of our stochastic model, consider an instance where at time t1 one end of

an L2 link is active susceptible while the other end is active infected. If t2 is the later instant

when either the infectious node recovers or one of the nodes becomes inactive, in the Markov

process, the probability for transmission of infection through the link is 1− e−p0β(t2−t1). But

in our model this probability of transmission is p0(1 − e−β(t2−t1)) which is always smaller.

Thus, we expect the infection probabilities in our model will be upper bounded by the

probabilities from the Markov process which are in turn smaller than the values obtained

from the N-intertwined approximation in equation (4.3). This property of equations (4.3)

is particularly useful in controlling the infection spreading. In fact, if any initial infection

that is governed by equation (4.3) dies out we know that the infection can not survive in our

model.

4.3 Epidemic Threshold

In this section, we analyze the disease-free equilibrium of the SIS spreading equations (4.3),

and we find a condition that guarantees the exponential die out of any small initial infection

that is introduced in the population. A bifurcation analysis similar to the one in90;91 shows

that, when this condition is not satisfied, there exists another equilibrium state that it is
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not disease-free. We first present the analysis when the network layers are random regular

network, and later we provide the epidemic threshold for a generic network with an arbitrary

structure.

Consider the case where L1 and L2 are regular random networks of degree k1 and k2,

respectively. Moreover, let us assume that all the nodes have the same transition rates, i.e.

γij = γj > 0∀ i (j = 1, 2). This means that, for any node, the probability of being active is

p2 = γ1/(γ1 + γ2), and similarly for being inactive (p1 = γ2/(γ1 + γ2)). Hence, Sij = pj − I ij
(j = 1, 2). Introducing this relation in the previous system and summing the equations for

the infected nodes in each state, we have

İ1 = (βk1p1 − (γ1 + δ))I1 + (βk1p1 + γ2)I2

−βk1

∑
j

(∑
i

aij1 I
i
1

)
(Ij1 + Ij2)

İ2 = (βk1p2 + γ1)I1 + (βp2(k1 + p0k2)− (γ2 + δ)) I2

− β
∑
j

(∑
i

aij1 I
i
2

)
(Ij1 + Ij2)− βp0

∑
j

(∑
i

aij2 I
i
2

)
Ij2 ,

where I1 =
∑

i I
i
1 and I2 =

∑
i I

i
2 are the expected number of inactive and active infected

nodes, respectively. Let us now approximate the sums
∑
i

aijl I
i
l by klIl/N , which is a good

approximation as long as the degree distribution has low variance (as in regular random

or Ërdos-Rény networks) and the mean degree is high. Then, after dividing both sides of

the equations by N , we have the following system of equations for the disease prevalence
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ρj = Ij/N in each layer:

ρ̇1 = (βk1p1 − (γ1 + δ))ρ1 + (βk1p1 + γ2)ρ2

−βk1ρ1(ρ1 + ρ2) (4.4)

ρ̇2 = (βk1p2 + γ1)ρ1 + (βp2(k1 + p0k2)− (γ2 + δ))ρ2

−βρ2(k1(ρ1 + ρ2) + p0k2ρ2). (4.5)

To study the linear stability of the disease-free equilibrium (DFE), we consider the Ja-

cobian matrix of the previous system around the DFE

J0 =

βk1p1 − (γ1 + δ) βk1p1 + γ2

βk1p2 + γ1 βp2(k1 + p0k2)− (γ2 + δ)

 .

One can see that the discriminant ∆ of the characteristic equation det(J0−λI) = 0 is always

positive. Precisely, after some algebra and using that p1 + p2 = 1, we end up with

∆ = (β(k1 − k2p0p2) + γ1 + γ2)2 + 4βk2p0p2(γ1 + βk1p2) > 0,

which implies that J0 has two distinct real eigenvalues λ1 > λ2. Therefore, to guarantee that

λ1 traverses 0 when using a tuning parameter of interest, we need that trace(J0) < 0. Then,

the condition for λ1 = 0 follows from det(J0) = 0 which is equivalent to

βk2p0p2(βk1p1 − (γ1 + δ)) = (βk1 − δ)(γ1 + γ2 + δ). (4.6)

The previous condition defines a polynomial of degree 2 for the critical value of β, β∗. It

is easy to see that this equation has two real roots 0 < β1 < β2. Since we want the value of

β for which λ1 goes from negative to positive, β∗ = β1. Fig. 4.5 shows the dependence of

β∗ with the transition rate γ1 obtained by solving the previous equation for γ1 = γ2. So, in

this figure, the probability p2 for a node of being active is always 1/2. However, although a
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node always spends half of its time with partners in L2, the figure reveals that how it visits

this layer (short and frequent visits or longer but less frequent ones) affects the spread of

the disease.
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Figure 4.5: Critical value of β as a function of γ1 in regular random networks. Parameters:
k1 = 4, k2 = 50, p0 = 0.1, δ = 1, γ2 = γ1 (p2 = 0.5).
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Figure 4.6: Disease prevalence as a function of p2 in regular random networks. Circles
show, for each set of parameters values, the median of the prevalence

in networks of size 500 after 1000 runs of the Markov process approximated by the
mean-field model, and error bars show the corresponding interquartile range. Parameters:

k1 = 4, k2 = 50, p0 = 0.5, β = 0.2, δ = 1, γ1 = 0.01 (red), γ1 = 10 (black).

A second feature of the mean-field (MF) model is the possibility of having a lower preva-

lence at the endemic equilibrium for values of γ1 leading to lower epidemic thresholds. We

illustrate this fact in Fig. 4.6 where a bifurcation curve from the DFE is shown using the

probability of being active, p2, as a tuning parameter. Note that, in order to have p2 as a bi-
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furcation parameter, the epidemic has to die out if inactive individuals alone (γ1 = 0, p1 = 1)

are not enough to sustain the epidemic, i.e., if βk1/δ < 1. As expected, the higher p2 is, the

higher the prevalence because infection transmission routes in L2 are used longer. The figure

also shows a quite surprising fact: although γ1 = 0.01 leads to a lower epidemic thresh-

old in terms of p2 when compared to that of γ1 = 10, it also leads to a lower equilibrium

prevalence for p2 > 0.37. We can also observe this feature of the solutions in the output

of the simulations over regular random networks of the Markov process corresponding to

the mean-field model (see section 4.2.2). These simulations have been performed using the

Gillespie algorithm until a final time T=600. Finally, Fig. 4.6 also reveals that the MF

model underestimates the epidemic threshold observed from the stochastic simulations. As

discussed in section 4.2.2, this is due to the higher infection probabilities assumed under the

mean-field approach.

The Disease-Free Equilibrium on General Networks

The analysis of disease-free equilibrium we presented for random regular networks can be

generalized for any generic network structure with heterogeneous activity parameters. In this

section we focus on the stability analysis of the disease-free equilibrium of the SIS spreading

equations 4.3, and we find a condition that guarantees the exponential die out of any small

initial infection that is introduced in the population.

For the SIS spreading equations, it is a straightforward observation that the disease-free

state given by

Si1 = pi1 =
γi2

γi2 + γi1
, Si2 = pi2 =

γi1
γi2 + γi1

, I i1 = 0, I i2 = 0, (4.7)

is an equilibrium state. In equation (4.7), pi1 and pi2 are the probabilities that node i is ac-

tive and inactive, respectively, at the steady-state of the continuous-time Markov chain that

governs the activity of node i. Here, we study the evolution of the initial infection around

the disease-free equilibrium using the corresponding linearized version of SIS spreading equa-

tions. In the analysis that comes later, we use state variables I i = I i1 + I i2 and I i2 instead of
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I i1, I i2. Particularly, this choice of variables directly leads to a relation between the network

structure and the model parameters such that, if it is satisfied, the disease-free equilibrium

is exponentially stable. If we choose I i1, I i2, we would need extra algebraic manipulation to

get the same relation.

If Ii and Ii2 represent small perturbations from the disease-free equilibrium, using the

linearized version SIS spreading equations we obtain the following linear dynamical system

İi = −δIi + β
∑
j

aij1 Ij + β′
∑
j

aij2 p
i
2I
j
2, (4.8a)

İi2 = −(γi2 + γi1)Ii2 + γi1I
i − δIi2 + β

∑
j

aij1 p
i
2I
j (4.8b)

+ β′
∑
j

aij2 p
i
2I
j
2,

that determines the evolution of the state variables

X = (I1, · · · , IN , I1
2, · · · , IN2 ).

We can write equations (4.8) as Ẋ = JX where J = B −D with

B =

 βA1 β′p2A2

βp2A1 + γ1 β′p2A2

 , D =

δ 0

0 δ + γ1 + γ2

 .

In the definition of matrices B and D above, p2, γ1, γ2, δ, are diagonal matrices whose entries

are the corresponding parameters for different nodes. It is well known that the linear system

is stable if the stability modulus

α(J) := max{<(λ)|λ ∈ spectrum of J} < 0.

In the following, we show there exists a threshold β∗ such that for any value of the

transmission rate β < β∗ the disease-free equilibrium is exponentially stable, i.e. α(J) < 0.
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Lemma 1. If γ1¿0, p0 > 0 and β > 0, then the following statements hold:

a) There is a real eigenvalue of J , denoted by λmax(J), such that any other eigenvalue λ

satisfies <(λ) ≤ λmax(J), and the eigenvector Z corresponding to λmax(J) is unique

and positive, Z > 0.

b) mini
∑

k Jik ≤ λmax(J) ≤ maxi
∑

k Jik

c) If there exists a vector X ≥ 0 such that JX ≤ µX, then X > 0 and λmax(J) ≤ µ with

λmax(J) = µ if and only if X is a multiple of Z.

Proof. Let us prove that the matrix B is irreducible. Consider the associated graph GB with

2N nodes {v1, . . . , vN , w1, . . . , wN} such that there is a directed link from node i to node j

if and only if Bij > 0. As it is well known, B will be irreducible if and only if GB is strongly

connected, that is, for any pair of nodes x, y there is a path of links in GB from x to y. Recall

that, by hypothesis, L2 is connected and, in consequence (since A2 is symmetric), strongly

connected. Observe that p2 > 0, because γ1 > 0. The following facts about the structure of

the graph GB follow from the four blocks defining the matrix B:

A) The block βA1 implies that the subgraph of GB induced by the nodes {v1, . . . , vN} is

isomorphic to L1

B) The lower right block β′p2A2 implies that the subgraph of GB induced by the nodes

{w1, . . . , wN} is isomorphic to L2

C) The diagonal entry γ1 in the block βp2A1 + γ1 implies that there is a link from wi to

vi for every 1 ≤ i ≤ N

D) The upper right block β′p2A2 implies that for every 1 ≤ k ≤ N there are links from vi

to some nodes wk.

Now, to prove that there is a path between any pair of nodes in GB, we must consider four

cases. If the pair has the form {vi, vj}, by (D) there is a link from vi to some wk, by (B)

there is a path from wk to wj (since L2 is strongly connected) and by (C) there is a link
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from wj to vj. The existence of a path for the three remaining forms of the pair, {vi, wj},

{wi, vj} and {wi, wj}, follows analogously using (A–D).

From the definition of J , we have J = B −D where B is a nonnegative matrix and D is

a nonnegative diagonal matrix. If we assume τ = maxkDkk then matrix C = B −D + τI,

with I denoting the identity matrix, is also nonnegative. Since B is irreducible, then C

becomes irreducible. Now we can use Perron-Frobenius theorem for non-negative irreducible

matrices92 to show the statements of Lemma 1 hold for the matrix C = J + τI. Since

the eigenvectors of J are similar to the eigenvectors of C and the eigenvalues of J can be

obtained by subtracting τ from the eigenvalues of C, we deduce the statements of Lemma 1

also hold for J .

If we assume β∗ is the transmission rate for which λmax(Jβ∗) = 0 and Zβ∗ > 0 is the

corresponding eigenvector, using Lemma 1 it is straightforward to show that for any β < β∗

we have JβZβ∗ ≤ 0. Next, we can use the last part of Lemma 1 and conclude λmax(Jβ) < 0.

This shows that, if β < β∗, the disease-free equilibrium is exponentially stable. Moreover,

to prove the existence of β∗, we can use statement (b) of Lemma 1 and consider the limiting

cases β → 0 and β → ∞ to show that there are β1 and β2 such that λmax(Jβ1) < 0 and

λmax(Jβ2) > 0. Since λmax(Jβ) is a continuous function of β there should be a β∗ such that

λmax(Jβ∗) = 0.

In the proof of Lemma 1, the irreducibility condition on B was derived from the positivity

of the rates γ1, p0 and β and our standing assumption that both layers were connected. If for

some reason one wants to relax these assumptions, then one cannot assure that the graph GB

of the proof is strongly connected. In this case, we can separate it into strongly connected

components and the threshold analysis which was presented in this section can be done on

different components separately. Particularly, for an individual i that never gets active we

have γi1 = 0 or equivalently pi2 = 0. In such a case we can see the node that corresponds

to I i2 in the associated graph GB is disconnected from the rest of nodes and the threshold

analysis can be carried out by eliminating the row and column for I i2 in the J matrix. In

fact, if in the matrix J we exclude all those rows and columns that correspond to I2 for the
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individuals that never get active we can see the resulting matrix B is irreducible if and only

if union of the two layers, L1 and L2, is strongly connected.

As we have shown, the threshold value β∗ is the smallest transmission rate β for which

the eigenvalue problem JβZ = 0 has a nontrivial solution. Writing Z = (Z1, Z2)T with

Z1 = I and Z2 = I2, we have Z1 = β/δ (A1Z1 + p0p2A2Z2) from equaling the r.h.s. of (4.8a)

to 0. Then, replacing Z1 by this expression in the term γi1Z
i
1 of the r.h.s. of (4.8b) and

rearranging terms, we can rewrite the eigenvalue problem as τB?Z = Z, where

B? =

 A1 p0p2A2

p2A1 p0p
?
2A2

 , (4.9)

τ = β/δ is the so-called effective spreading rate10, and p?2 is a diagonal matrix such that

(p?2)i,i = pi2
1− pi2 + γi2p

i
2

1− pi2 + γi2

with γi2 = γi2/δ. From the expression τB?Z = Z, we can find the threshold value β∗ from

τ ∗ =
β∗

δ
= λ−1

max(B
∗). (4.10)

We can see this threshold depends not only on p2 and p0 but also on γ2. Hence, it captures

the effect of the probability for the existence of a casual link and its duration. Indeed, in

section 4.2.1 we explained that the probability for the existence of a temporal link between

any nodes i, j (casual partnership) in the steady state is pi2p
j
2p0 and the expected duration of

the link is (γi2 + γj2)−1. Thus, this threshold value is different from that of a static network

with a link of weight pi2p
j
2p0 between nodes i and j.

4.4 Simulations

In the following, we present the results from the simulation of the exact process (Fig. 4.4b),

which we described in section 4.2.2, over random regular networks. These simulations clarify
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Figure 4.7: Results of numerical and stochastic simulations of the spreading processes on
random regular graphs, discussed in section 4.4. Panel (a) shows the comparison of different
approximate processes with the exact process; panel (b) shows the epidemic threshold of the
exact process, as a function of p2 (probability of being active in L2) and the parameter γ2,
which is proportional to the inverse of expected duration of active potential links; panel (c)
shows how the infection prevalence in the metastable state is affected by different parameters
in the exact process. Error bars show the median and the interquartile range.

the relation between the exact process and its approximating counterpart, which are the N-

intertwined equations and the stochastic Markov process (Fig. 4.4a) we described in section

4.2.2. In addition, using the simulations we explore effect of the model parameters on the

infection spreading.

As usual in the setting of continuous-time stochastic simulations, we use the well-known

Gillespie algorithm93 in all experiments. All random regular networks are generated using

the configuration model algorithm94. We run this algorithm twice and independently to get

layers L1 and L′2. To get the empty intersection condition, we extract L2 from L′2 by deleting

the links that are common to L1. When the respective prescribed degrees k1 and k2 are small

with respect to the number N of nodes, this happens with very small probability, and the

obtained graph L2 has a mean degree very close to k2. The reported experimental prevalence

values are always computed by averaging over several hundreds of independent realizations

of the stochastic process, each corresponding to a particular random initial condition with

a fixed number of infected individuals (see the captions of figures for more details on each

experiment). Since the average prevalence does not show the distribution of prevalence

across independent simulations, we calculated the median and the interquartile range and

show them as error bars in the figures.
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Here we assumed a population of 500 nodes, and for the layer L1, we generated a random

regular network where each node has four neighbors, while for the layer L2 we used a random

regular network of degree 50. Moreover, for the layer L2 we have assumed p0 = 0.5. In these

simulations, to estimate the expected number of infected nodes in the Markov process and

the exact process, we generated 200 independent realizations and calculated the average,

median and interquartile range for the total number of infected nodes over these realizations

at different times. Moreover, we assumed that all the nodes were infected and active at

t = 0. Figure 4.7a shows the infection prevalence curves obtained from the N-intertwined

approximation, the Markov process, and the exact spreading process. As we expect, the

N-intertwined equations provide an upper bound for the prevalence values obtained from

the Markov process and the exact process.

4.4.1 Impact of Partnership Duration on the Epidemic

In Fig. 4.7b, we have shown the epidemic threshold, obtained from the simulation of the exact

process, as a function of the probability of being active, p2, and γ2, which is proportional to

the inverse of the expected duration of active links. From this figure, we can see that, when

p2 increases, the epidemic threshold decreases. However, when the number of active nodes is

small (lower values of p2), the epidemic threshold increases as the duration of links decreases

(larger values of γ2). This effect of the link duration in L2 on the epidemic threshold is also

clear from Fig. 4.7c. In this figure, we see that reaching the metastable state requires less

active nodes (smaller p2) when the link duration is longer (note that, for a given p2, γ2 is

proportional to γ1).

Figs. 4.7c and 4.7b show that the epidemic threshold decreases with increasing link

duration and this result can appear counter-intuitive, especially when we consider sexual

networks. For instance, one can conclude that, due to the higher epidemic threshold, a

population in which the sexual behavior is dominated by short-duration casual partnerships

is less vulnerable to epidemics, compared to a population with longer-duration casual part-

nerships. We can interpret this result thinking about two counterbalancing processes; the
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probability of transmission during the partnership duration, and the frequency of changing

partners. With short-duration casual partnerships, the number of partners in a given interval

is greater but the probability of transmission is smaller; with long-duration casual partner-

ships, the number of partners is smaller but the probability of disease transmission is higher.

Our numerical simulations show that these two processes do not obtain a complete balance;

rather, the duration of the partnership plays a more important role than the number of

partners. For this reason, the threshold is increased by short-duration partnerships in spite

of the increased number of partners. If this result seems counterintuitive we need to keep in

mind that they are obtained by keeping a constant value for the infection transmission rate.

To understand the role of infection transmission rate in explaining our results, we can

compare the two scenarios (long-duration casual partnership and short-duration casual part-

nership) keeping the same probability of infection transmission per sexual intercourse, instead

of the same infection probability per unit of time. In this case, we impose a similar average

number of sexual intercourse in these two scenarios, which in turn corresponds to different

infection rates of the disease. To understand the difference, assume a population where the

average number of sexual intercourse for an individual in a long-term casual partnership

is once per week, and the probability of infection transmission in an intercourse with an

infected individual is 0.5. Consequently, the infection transmission rate in partnerships with

duration significantly larger than a week can be estimated as βp = − ln(0.5)/7 = 0.1 day−1.

Indeed, we have set the value of βp such that, if a partner is infected, the probability that the

susceptible partner stays susceptible is multiplied by one half each week during an infection

period of length T days; in other words, e−βpT = (0.5)T/7. In contrast, assuming the same

probability of infection during an intercourse with an infected individual, for short-duration

partnerships with one intercourse, we can assign the transmission rate by solving

∫ ∞
0

α−1e−t/α(1− e−βt) dt = 0.5, (4.11)

for β, while for consistency in the mathematical modeling, we can assume a duration of α =

0.5 day for short-duration partnerships. In the equation above, α−1e−t/α is the probability
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Figure 4.8: Infection transmission rate threshold as a function of the recovery rate for three
different temporal networks discussed in section. Case a corresponds to partnerships of 60
days duration and cases b, c correspond to casual sexual encounters.

density for a link with duration t, and 1−e−βt is the probability for transmission of infection

from an infected node within the period that the link exists. Thus, the integral in equation

4.11 gives the expected value of transmission probability, which is easily computed. A simple

expression for β follows from equation 4.11, namely, β = α−1. Therefore, the equivalent

transmission rate for a short-duration partnership becomes βe = 2 day−1.

In order to compare the vulnerability of populations with different duration of partnership

under this viewpoint, in Fig. 4.8 we have plotted the epidemic threshold, obtained from

equation 4.6, corresponding to three different sets of model parameters,

a. γ−1
2 = 120 days, γ−1

1 = 1 day, l = 1, k1 = 0

b. γ−1
2 = 1 day, γ−1

1 = 6 days, l = 1, k1 = 0

c. γ−1
2 = 1 day, γ−1

1 = 13 days, l = 1, k1 = 0

Among these selections of parameters, case a corresponds to partnerships with an average

duration of (2γ2)−1 = 60 days. Moreover, using equation 4.2, we set k2p0 such that the

average number of links in each activity period is l = 1. For simplicity, we assumed that

there is no static links, k1 = 0. Contrarily, cases b and c correspond to sexual encounters
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with frequencies that are once per week or two weeks, respectively. Indeed, case c is more

comparable to case a because they provide a similar average number of sexual intercourses

per year.

From the curve for case a, in Fig. 4.8 we conclude that the epidemic threshold β∗ is

greater than the estimated value of transmission rate in partnership, βp = 0.1, when the

average recovery rate, δ, is greater than 0.05 day−1 or, equivalently, for the expected average

recovery time of δ−1 < 20 days. Hence, the infection dies out when the recovery time is

smaller than 20 days. On the other hand, for case c, which corresponds to sexual encounters

with the frequency of once per two weeks, the transmission rate βe = 2 is smaller than the

epidemic threshold only for the expected recovery time δ−1 < (0.241)−1 u 4 days. This

suggests that the population with sexual encounter behavior is more vulnerable than the

population with partnership behavior.

4.5 Summary

In this chapter, we have developed a network model that incorporates the process of switching

between two network layers –steady and casual partners– driven by individual activities,

which define the propensity of individuals to be engaged in casual partnerships. Hence,

the temporal characteristic of the model appears as a consequence of the existence of such

partnerships. This scenario is suitable for studying the dynamics of sexually transmitted

diseases in real communities where casual partners are not always disclosed in partner-

notification programs. These partnerships are modeled by considering the activation of links

drawn from a set of potential links. Each of these links is activated with probability p0 when

the nodes at both ends are willing to develop a casual partnership, i.e., when both nodes are

active.

The model incorporates two ingredients, namely, change of partners and partnership du-

ration, that have also been discussed in pair formation models. The contribution of casual

partnerships to the disease spread by increasing the basic reproduction number has already

been highlighted in these models (see, for instance, Eq. (5) in95 and Eq. (3) in96). Here, our
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model allows us to assess the role of the layer of casual partnerships by quantifying its uti-

lization through the activity probability parameter p2, and by considering the mean duration

of partnerships by means of γ2. In particular, we have studied how different parameters of

the model affect the epidemic threshold and the disease prevalence in the metastable state

–endemic equilibrium of the mean-field model. We have found that, given a fixed value of

the infection transmission rate β, the prevalence of infection strongly depends on the uti-

lization of the layer of casual partnerships and on the duration of these partnerships. Our

simulations show that the epidemic threshold decreases with increasing link duration, while

short partnership durations decrease the probability of disease transmission, thus increasing

the threshold. Finally, and without contradiction, our analysis shows that casual sexual

behavior, which implies extremely short partnerships, makes the population vulnerable to

the infection spreading.
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Chapter 5

Delocalized SIS Spreading 1

5.1 Introduction

Despite the simple description of the SIS process, only a few exact results about the SIS

process on a generic graph G have been proposed. In the SIS process, the disease–free

state is an absorbing state, i.e., any initial infection will ultimately die out regardless of

the infection rate90;98. The extinction time depends on the structure of the network, the

infection rate β, curing rate δ, and the initial infection. For this model, Ganesh et al.98

rigorously proved that any initial infection dies out exponentially in time if the infection

strength, τ , β/δ, is smaller than the inverse of the spectral radius of the graph ρ(G) (ρ(G)

is the largest eigenvalue of the adjacency Matrix for the graph). However, for the values

of τ larger than 1/ρ(G), the process may reach metastability where the extinction time is

exponentially long with respect to the population size and the process stays in a state that

resembles equilibrium99.

A true epidemic outbreak concerns network–wide invasion of the contact graph rather

than localized infection of certain sites within the contact network. This argument leads us

to the concept of infection localization in the SIS model over a generic graph. To illustrate

this phenomenon, consider the Line–Clique graph in Fig.(5.1) consisting of two subgraphs,

1This chapter is a slightly modified version of our published article97, Copyright© 2016, IEEE.
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Figure 5.1: The Line-Clique graph consisting of a complete graph of size m and a line graph
of size N >> m. It is possible to observe a metastable state where infections mostly localize
on the clique part — a tiny portion of the network.

the clique part of size m and the line part with size N >> m. The spectral radii of the clique

part and the line part separately are m − 1 and ∼ 2, respectively. However, the spectral

radius of the Line–Clique graph is close to that of the clique subgraph. For such a graph,

any infection dies out exponentially in time as long as the infection strength τ is smaller

than 1/(m − 1). But, what does happen if τ > 1/(m − 1)? We know for τ ≤ 1/2, the line

subgraph, considered separately, cannot sustain infections for a long time. The argument

above leads to the speculation that for 1/(m − 1) ≤ τ ≤ 1/2, if the Line–Clique network

with N >> m reaches a metastable state, the infection should be mostly localized on the

clique part of the network.

Localization of SIS process has recently been reported in the literature. Goltsev et al.52

studied the steady–state solution of the mean–field approximated SIS model for τ close to

1/ρ(G), where the equilibrium solution is proportional to the dominant eigenvector of the

contact network adjacency matrix. The major drawback of such approaches52;100;101 is that

they fully rely on approximate models in a region where they are least accurate. Mean–field

models perform more accurately for large values of τ and homogeneous networks, while they

can perform very poorly at steady–state and for τ close to 1/ρ(G).

Here, we propose a dispersion measure based on Kullback–Leibler divergence102 that

quantifies how the marginal probability of infection is far from a homogeneous spread over

the nodes of the network. We show that by formulating a maximum entropy problem, we

can find an upper bound for the dispersion entropy of the possible metastable state. As a

result, any initial infection over the network either dies out or reaches a metastable state
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that has lower entropy than the upper bound. Unlike existing studies, our investigation of

epidemic localization does not use mean-field approximation of the SIS process and is based

on exact equations arguments. convex optimization techniques allow for efficient solution of

the maximum entropy problem even for large networks. Numerous Monte Carlo simulations

of the SIS model support our results.

5.2 Method

In section 1.4 we have described the SIS spreading process over networks. Equation (1.1) in

that section describes the evolution of the expected value of random variable xi, denoted by

E(xi). Indeed, E(xi) is equivalent to the marginal infection probability of node i, which we

denote it by pi. Similarly, E[xixj] is equivalent to the joint infection probability of nodes i

and j.

In the SIS process, summation of marginal infection probabilities
∑N

i pi (N is the number

of nodes in the network) provides a descriptor for the expected size of the epidemic. However,

this measure does not provide any information on how the infection is distributed among the

nodes. In order to study the dispersion of infection, regardless of its size, first we normalize

infection probabilities and define pi , pi/
∑N

i pi. Since
∑N

i pi = 1, we propose to treat

P = [p1, ..., pN ]T as a probability distribution and then utilize concept of distance between

distributions to quantify the distance between P and uniform distribution U = [ 1
N
, ..., 1

N
]T .

In particular, we use Kullback-Leibler divergence102 which is

DKL(P ||U) = −
N∑
i

pi ln pi − ln(N). (5.1)

Therefore, to study the degree of delocalization we use entropy, which is the variable term

on the r.h.s of equation above,

S(P ) = −
N∑
i

pi ln pi, (5.2)

The defined entropy reaches its maximum, ln(N), when all the nodes have the same none-zero
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probability of infection and this leads to DKL(P ||U) = 0.

We are particularly interested in study of infection delocalization in the metastable state.

Metastable state resembles an equilibrium where the infection probability of each node stays

(almost) constant, i.e., dP (t)/dt→ 0. To begin with, we use a simple observation from the

exact SIS equations (1.1) that dpi/dt ≤ β
∑
aijpj− δpi, which is due to the fact that E[xixj]

is nonnegative. Therefore, when meta-stability is achieved, we must have

(βA− δI)P ≥ 0, (5.3)

where P = [p1, ..., p2]T and A is the adjacency matrix of the graph. Assuming condition (5.3)

holds for the metastable state, in the next step we will find the most delocalized distribution

that satisfies the condition.

Theorem 1. Assuming a contact graph G, infection strength τ = β/δ and initial infection

probability P (0), if a metastable state is achieved, the dispersion entropy of the metastable

state is upper-bounded by S∗ which is the solution of the following maximum entropy problem:

maximize : S = −
∑N

i pi ln pi,

subject to : (τA− I)P ≥ 0,

∑N
i pi = 1,

P > 0.

Proof. The solution to the above optimization problem maximizes the entropy defined in

Eq. (5.2) because, instead of normalization of the probabilities,
∑N

i pi = 1 has been added

to the constraints set and inequality (5.3) is linear which is not altered by scaling P .

The maximum entropy problem can be solved efficiently for large network sizes using

convex optimization tools such as CVX package103.

85



Lemma 2. If τ < 1/ρ(G), there does not exist any P that satisfies condition (5.3). Fur-

thermore, for τ > 1/ρ(G), the constraint of Theorem 2 has a non-empty feasible set.

Proof. Any feasible probability distribution P > 0 that satisfies condition (5.3) satisfies

P T (τA− I)P ≥ 0. (5.4)

However, if τ < 1/ρ(G), matrix (τA − I) is a negative definite matrix which cannot allow

(5.4). Therefore, if τ < 1/ρ(G), there does not exist any P that satisfies condition (5.3). On

the other hand, for τ > 1/ρ(G), the dominant eigenvector of A, i.e., P = 1
||x1(A)||1x1(A), is

always feasible.

We would like to remark the existence of a distribution with a high value of dispersion

entropy that satisfies condition (5.3) does not indicate the existence of a metastable state.

However, if there exists a metastable state, our analysis assigns an upper bound to its dis-

persion entropy. Therefore, if the optimization problem yields a small value for entropy, the

infection does not invade a large number of nodes in the metastable state, hence providing a

sufficient condition for either complete extinction of infections or their localized persistence.

Moreover, if τ ↓ 1/ρ(G), Lemma 2 indicates the feasible space of optimization problem

is a small neighborhood including the dominant eigenvector of the adjacency matrix x1(A),

which makes S∗ ' S(x1(A)). In this case, the results of our analysis are compatible with

those of52, except we use a different measure for localization. However, for higher values

of τ , our analysis can still provide an upper bound for the delocalization of SIS process;

while an analysis based on the mean-field approximation does not necessarily characterize

the infection delocalization in exact SIS process.

5.3 Numerical Result

Considering the example graph depicted in Fig.(5.1), we generated a Line-Clique graph with

280 nodes in the line subgraph and 40 nodes in the clique subgraph. We used a convex
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Figure 5.2: (a) The entropy of the optimized distribution for the Line-Clique graph in Fig.
5.1. As can be seen, there is a sudden jump at τ = 1

2
. (b) Monte Carlo simulation of the SIS

model over the Line-Clique graph. Color represents dispersion entropy of infection probability
distribution divided by ln(N).
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Figure 5.3: (a) Optimized probability distribution for β/δ = 0.125, showing only a few
localized sites of the network have active nodes (b) Optimized probability distribution for
β/δ = 0.23.
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optimization package103 and found a distribution with maximum entropy for different values

of infection strength. The result is plotted in Fig.(5.2a). As we can see for β/δ < 1
2
, the

optimized entropy is smaller than the entropy of homogeneous distribution which is ln(N).

Therefore, for β/δ < 1
2
, if the epidemic reaches metastability, the infection will not spread

to the whole nodes of the network. On the other hand, for β/δ > 1
2
, the optimized entropy

is close to ln(N). In this case, the solution of the optimization problem gives the trivial

upper bound. Moreover, to show the relation between the optimized entropy and the true

entropy of infection evolving over time, we performed the Monte Carlo simulation of the

SIS model using GEMF-Tool package19;38 over the line-clique graph. For this simulation,

we assumed an initial condition where only one node in the clique subgraph was infected.

Fig. (5.2b) shows the result of the simulation. In this figure, color represents the entropy

of infection divided by ln(N). As we can see in the Fig. (5.2b), for different β/δ < 1
2
, the

dispersion entropy of infection grows very fast and stays constant with values less than the

optimized entropy. In this case, the epidemic reaches meta-stability but is localized on the

clique subgraph.

As another example, we chose the largest component of a coauthorship network from39

as shown in Fig. (5.3). For this network, the spectral radius of the adjacency matrix is about

10.4. The entropy of the optimized distribution, shown in Fig. (5.4a), is an upper bound

for the metastable state of SIS model over the network. Although for 0.13 < β/δ < 0.15 the

optimized entropy has a considerable value, we cannot predict the existence of a metastable

state. In fact, the result of Monte Carlo simulation (Fig. (5.4b)) for SIS model over the

network shows the metastable state starts at much higher values of β/δ (larger than 0.2)

where the optimized entropy is almost ln(N).

Moreover, as an illustration for the relation between the entropy of a distribution and

delocalization of the distribution, we plotted the network and colored the nodes based on

the value of its probability in the optimized distribution. In Fig. (5.3a,5.3b) , the optimized

distribution for two different values of β/δ is plotted. For β/δ = 0.125, where the optimized

entropy is small, the distribution is mainly localized on a few nodes. On the other hand

when β/δ increases to 0.23, the entropy of the optimized distributions increases and more
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nodes get involved.
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Figure 5.4: (a) The entropy of the optimized distribution normalized by ln(N) for coauthor-
ships network of Fig. 5.3. (b) Monte Carlo simulation for the SIS where all the nodes were
initially infected. Color represents dispersion entropy of the infection probability distribution
divided by ln(N)

5.4 Summary

In summary, we investigated the infection localization of SIS process. We used dispersion

entropy defined in Eq.(5.2) as a measure of delocalization. We believe, in addition to infection

size, measures such as dispersion entropy are relevant in epidemic spreading processes and

should be included in numerical simulations. Moreover, we find an upper bound for the

infection dispersion entropy when a metastable state exist. This upper bound which depends

on the infection strength suggests the maximum number of nodes that can be active in a

metastable state. A small upper bound for the dispersion entropy of a metastable state

provides a sufficient condition for either complete extinction of infections or their localized

persistence.
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Chapter 6

Interpolation of Networked Spreading

Data

6.1 Introduction

In this chapter we compare two different heuristic methods to interpolate a target function,

f , defined over the nodes of a network, i.e., f : V → R where V is the set of network node.

We assume the value of target function, f , is known for some of the nodes in the network,

and by interpolation, we mean the estimation of this function over those nodes for which the

value of f is unknown. Here, we apply the heuristic methods to a specific target function,

which is an outcome of an SIS stochastic spreading process.

In the SIS stochastic spreading process, we define the infection prevalence at time t as

the expected number of infected individuals in the network at time t. Our simulations for

the SIS process show that the value of prevalence depends on the node where the initial

infection starts. Here, we define the target function f such that the value of the function at

any node n is the prevalence at some specific time, after the infection, started from node n,

spreads through the network. Indeed, we use this function as an example to compare the

heuristic methods, and in the future, we plan to perform similar studies on other functions

defined on networks.
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6.2 Methods

In general, an interpolation method relies on the assumption that the nodes which are close

to each other have similar values. However, for any two nodes in a network, we can define

different closeness measures, such as the weight of the link between the nodes (if there is

no link, the weight is considered to be zero), the length of the shortest path or the effective

resistance distance between them. In designing an interpolation method, one factor that we

need to consider is the distance measure that we use to quantify closeness. It is reasonable

to expect that the choice of the distance measure affects the accuracy of the interpolation.

For instance, an interpolation method that uses the function values of adjacent nodes to

estimate the value of the unknown node relies on local information, and it might not capture

global information.

6.2.1 Energy Minimization

The first interpolation method which we are going to employ is from reference104. This

algorithm assumes that the value of function f : V → R, defined over the graph G = (V,E),

is known only for a subset of nodes, Vl ⊂ V . For the rest of the nodes , Vu = V − Vl, value

f is estimated by minimizing the quadratic energy function

E(f) =
∑
i,j

wi,j(f(i)− f(j))2,

where wi,j is the weight of the link between node i, j. In this algorithm, for the nodes in

Vl, f is constrained to the known values of the nodes. For the nodes in Vu we determine

values off such that E(f) is minimized. It can be shown that the unknown value of f is the

average of f at neighboring nodes104,

f(j) =
1∑
iwi,j

∑
wi,jf(i) for j ∈ Vu.

This implies a notion of smoothness for f that assumes neighboring nodes have similar
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values of the target function f . To compute the minimization solution, we split the weight

matrix W = [wi,j] into 4 blocks, Wll Wlu

Wul Wuu

 ,
where Wll is the weight matrix over the set Vl, and the elements of Wlu are the weight of

links between nodes in Vl and Vu. A similar definition holds for Wul and Wuu. If fu and fl

denote the values of f over the sets Vu and Vl, respectively, from the energy minimization

we obtain104,

fu = (Duu −Wuu)
−1Wulfl.

In the equation above Duu = diag(di) is a diagonal matrix with entries that are the degrees,

di =
∑

j wi,j, of nodes in the set Vu.

6.2.2 Effective resistance

Next, we propose a novel interpolation method that relies on the notion of effective resistance

distance between the nodes in a graph. We use effective resistance distance as the measure

of similarity because it is a global measure over a graph, and it accounts for all paths

connecting a node pair in addition to the length of the paths. Indeed, for a graph of N

nodes, we can map the nodes to an N − 1 dimensional Euclidean space through eigenvectors

of the Laplacian matrix, and the effective resistance distance becomes the distance between

the nodes in the embedding space. The Laplacian of a graph is defined by L = D −W ,

where W is the adjacency matrix, and D is a diagonal matrix with diagonal elements equal

to the degree of nodes. If we denote the orthogonal eigenvectors of the Laplacian matrix by

ui, (i = 1, · · · , N), and the corresponding eigenvalues by λi, the coordinates of node n in

the embedding space are105 (
u2(n)√
λ2

, · · · , uN(n)√
λn

)
.

While designing the interpolation method, we assume the function defined over the nodes is

smooth in the embedding space, i.e, nodes that are close to each other have similar values.
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One method of interpolation that we can use to estimate the unknown values f is the radial

basis function. In this method, f in the embedding space is estimated by

f e(x) =
∑
k

akϕ(‖x− xk‖).

In the equation above, the summation is over the training nodes for which we know the value

of f . The vector xk represents the set of training node coordinates in the embedding space.

ϕ is a radial basis function, such as a Gaussian function, ‖x − xk‖ is the distance between

two points in the embedding space, and f e(x) is the estimation of the target function for

the point x. ak is the weight associated to each function ϕ(‖x− xk‖), and can be obtained

by minimizing the total error,
∑

k(f(xk) − f e(xk))2, calculated using the known values of

function f for the training nodes.

Another method of estimation that takes effective resistance distances as input, uses a

feedforward neural network method. Figure 6.1 illustrates the type of neural network we use

in the estimation. In this approach, we want to estimate the value of function f at a point x

in the embedding space. We first use the effective resistance distances between x and all the

training points xk in the Laplacian embedding space as the inputs for the neural network.

Next, the weighted inputs are passed through several hidden layers with sigmoid activation

functions to obtain the output, which is the estimated value of function f(x). If we only use

two hidden layers the estimated output can be written as

f e(x) =
∑
s

β3
sr σ

(∑
q

β2
rq σ

(∑
k

β1
qk ‖x− xk‖

))
.

In this equation f e(x) is the estimation of function f at point x in the embedding space, β

matrices define link weights between different layers of the neural network and σ is a sigmoid

function. xk represents a training point in the embedding space for which we know the value

of function f . To find the weight matrix, we can minimize the total error,
∑

k(f(xk) −

f e(xk))
2, calculated using the known values of function f for the training nodes. However, to

avoid overfitting, we can modify the total error by adding regularization terms that depends
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Figure 6.1: An example of feedforward neural network

on weight matrices for the neural network.

6.3 Numerical Results

In this experiment, we used the largest component of the coauthorship network from refer-

ence39. The network is shown in Fig. (5.3) and it has N = 379 nodes. For the first step

in the experiment, for each node n in the network we generated a set of 100 simulated SIS

trajectories assuming the only initial infected node is n. Then, for each set of simulations, we

calculated the average number of infected nodes at some time t, i.e, the infection prevalence

at time t. For this experiment, we assume t is large enough that the SIS process reaches the

metastable state. We denote the value of infection prevalence for each set of simulations by

I(n), where n refers to the initial infected node in the simulations. Indeed, we can think
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of I(n) as a measure of impact for the node n in the SIS spreading. After calculating I(n)

for each node n in the graph, we used the values of I for a set of randomly chosen training

nodes, denoted by Vl, to estimate I for the remaining nodes in the network, Vu = V − Vl.

Figure 6.2 compares the estimated and true values of I(n) for n ∈ Vu. Figures 6.2a, 6.2b

shows the estimation results using the energy minimization method from section 6.2.1. In

figure 6.2a and 6.2b, we used 20 percent and 50 percent of the nodes in the network, respec-

tively, as the training nodes. Figures 6.2c and 6.2d show the estimation outcomes of when

the radial basis function and feedforward neural network methods were employed(see section

6.2.2). In figures 6.2c and 6.2d , we used 20 percent of nodes as training nodes. We can see

the feedforward network method generated more accurate estimations compared with the

estimations obtained by the radial basis function. In summary, machine learning approaches

coupled with effective resistance as the measure of distance among nodes is a very promising

approach for estimating function values on networks.

6.4 Summary

We applied two different methods for interpolation of a function defined over a graph. The nu-

merical results show that our approach, section 6.2.2, which uses effective resistance distance

as the measure of similarity and employs the neural network as the function approximator,

provides the most accurate estimation. This might be due to the fact that the function we

estimated was generated via a stochastic spreading process. Such processes depend on the

global characteristics of the graph, and this might be the reason that using the effective

resistance provides a better estimation. In future works, we plan to use our method on

different types of functions.
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(a) (b)

(c) (d)

Figure 6.2: The plots compare the estimated values of the infection prevalence, I(n), with
their true values. For plots (a) and (b), we used the energy minimization method for the
estimation and used 20 and 50 percent of the nodes, respectively, for training. Plots (c) and
(d) show the estimation result when we used the radial basis function and the feedforward
neural network methods, respectively. In plots (c), (d) we used 20 percent of the nodes for
training.
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Chapter 7

Conclusion

7.1 Conclusions

In this dissertation, we presented new knowledge about networked spreading processes. Par-

ticularly, even though we studied various aspects of the SIS process, the methods we devel-

oped in chapters 2,3,4 and 6 are applicable to other networked spreading models as well.

First, we studied the inverse problem of continuous–time SIS spreading over a network.

We obtained the likelihood function of observing an SIS trace. Using this likelihood function

and powerful Gibbs sampling, we were able to show the feasibility of reconstructing the

underlying network from the observed SIS traces. However, our numerical simulations show

that accurate network reconstruction requires a long observation of the network nodes.

To understand the effect of link duration in spreading processes, we developed a temporal

network model where the temporariness of the links resulted from the transition of nodes

between an active and an inactive state. To start our analysis, we derived the temporal

characteristic of the network model. Combining the dynamics of the network and the SIS

spreading, we studied the effect of link durations on the epidemic of sexually transmitted dis-

eases. Given a fixed value of the infection transmission rate β, we found that, the prevalence

of infection strongly depends on the number of casual partnerships and the duration of these

partnerships. Our simulations show that the epidemic threshold decreases with increasing
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link duration. In addition, our analysis shows that casual sexual behavior, which implies

short partnerships, makes the population vulnerable to the infection spreading.

Furthermore, we studied the infection localization of SIS processes. We proposed the

dispersion entropy as a measure of infection delocalization, and found an upper bound for

the infection dispersion entropy when a metastable state exist. This upper bound depends on

the infection strength and quantifies the spread of infection in the metastable state. A small

upper bound for the dispersion entropy of a metastable state provides a sufficient condition

for either complete extinction of an epidemic or its localized persistence.

Finally, we addressed the interpolation of a function defined over the nodes of a network.

The function we considered resulted from an SIS spreading unfolding over a network, and

it captures the expected number of infected nodes. In particular, the value of the function

on a node is the infection size obtained when the infection starts from that specific node.

In general, calculating such a function for a networked spreading process requires lengthy

simulations. In this dissertation we developed a method based on effective resistance distance

between the nodes, and feed forward neural network to interpolate the function based on its

values over a limited subset of nodes.

7.2 Future Works

In chapter 4, we proposed a temporal network model that can be combined with specific

spreading dynamics to analyze epidemics in temporal networks. One assumption that we

made in our analysis was that the nodes’ transition time between the active and inactive

states have exponential distributions. That leads to link durations that are also exponen-

tially distributed. This distribution of the link duration is a limitation in our model, and

generalization of the model to include link durations with different distributions will be rel-

evant. One possible path that might lead to this generalization can be the change of the

node transition time distributions. We expect this would, in turn, lead to non-exponential

distributions for link durations. If this conjecture is correct it will be possible to write a set of

mean–field equations, using phase–type distributions, to describe the spreading process over
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such a temporal network. A phase–type distribution can be considered as the distribution of

the absorbing time in a continuous-time Markov process with several transient states and one

absorbing state. It is well known that any positively valued distribution can be approximated

with a phase-type distribution. The use of a phase-type distribution consists of adding some

auxiliary states to the original spreading model, replacing all non-exponential distributions

of inter-event times in the original model with a mixture of exponential distributions. Since

all inter-event times will have exponential distributions in the modified spreading process,

we can develop differential equations that describe the spreading process.

In Chapter 6 section 6.2.2, we proposed a method for interpolating networked spreading

data. Although we applied the method for a specific function, we expect this method can

be applied to various functions defined over a network. It is possible that only the state of

a subset of nodes is available during an outbreak. We expect our method would be able to

estimate the state of remaining nodes in the network using the available information about

the known subset. Therefore, extending the method to other functions can have a great

impact in practical cases.
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[50] Marián Boguná, Romualdo Pastor-Satorras, and Alessandro Vespignani. Absence of

epidemic threshold in scale-free networks with degree correlations. Physical review

letters, 90(2):028701, 2003.

[51] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec, and Christos

Faloutsos. Epidemic thresholds in real networks. ACM Transactions on Information

and System Security (TISSEC), 10(4):1, 2008.

[52] Alexander V Goltsev, Sergey N Dorogovtsev, Joao G Oliveira, and Jose FF Mendes.

Localization and spreading of diseases in complex networks. Physical review letters,

109(12):128702, 2012.

[53] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks

of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1019–1028. ACM, 2010.

[54] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cascades.

In ACM SIGMETRICS Performance Evaluation Review, volume 40, pages 211–222.

ACM, 2012.

[55] Takayuki Kamei, Keiko Ono, Masahito Kumano, and Masahiro Kimura. Predicting

missing links in social networks with hierarchical dirichlet processes. In Neural Net-

works (IJCNN), The 2012 International Joint Conference on, pages 1–8. IEEE, 2012.

105



[56] Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, and Bernhard Schoelkopf.

Estimating diffusion network structures: Recovery conditions, sample complexity &

soft-thresholding algorithm. In International Conference on Machine Learning, pages

793–801, 2014.

[57] Edward Choi, Nan Du, Robert Chen, Le Song, and Jimeng Sun. Constructing disease

network and temporal progression model via context-sensitive hawkes process. In Data

Mining (ICDM), 2015 IEEE International Conference on, pages 721–726. IEEE, 2015.

[58] Quang Duong, Michael P Wellman, and Satinder Singh. Modeling information diffusion

in networks with unobserved links. In Privacy, Security, Risk and Trust (PASSAT)

and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011

IEEE Third International Conference on, pages 362–369. IEEE, 2011.

[59] Varun R Embar, Rama Kumar Pasumarthi, and Indrajit Bhattacharya. A bayesian

framework for estimating properties of network diffusions. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 1216–1225. ACM, 2014.

[60] Emre Sefer and Carl Kingsford. Convex risk minimization to infer networks from

probabilistic diffusion data at multiple scales. In Data engineering (ICDE), 2015 IEEE

31st international conference on, pages 663–674. IEEE, 2015.

[61] Alfredo Braunstein and Alessandro Ingrosso. Network reconstruction from infection

cascades. arXiv preprint arXiv:1609.00432, 2016.

[62] Zhuozhao Li, Haiying Shen, and Kang Chen. Learning network graph of sir epidemic

cascades using minimal hitting set based approach. In Computer Communication and

Networks (ICCCN), 2016 25th International Conference on, pages 1–9. IEEE, 2016.

[63] Fabrizio Altarelli, Alfredo Braunstein, Luca Dall’Asta, Alejandro Lage-Castellanos,

and Riccardo Zecchina. Bayesian inference of epidemics on networks via belief propa-

gation. Physical review letters, 112(11):118701, 2014.

106



[64] Mehrdad Farajtabar, Manuel Gomez-Rodriguez, Nan Du, Mohammad Zamani,

Hongyuan Zha, and Le Song. Back to the past: Source identification in diffusion

networks from partially observed cascades. In Artificial Intelligence and Statistics,

2015.

[65] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Cascade-based community

detection. In Proceedings of the sixth ACM international conference on Web search

and data mining, pages 33–42. ACM, 2013.

[66] Long Tran, Mehrdad Farajtabar, Le Song, and Hongyuan Zha. Netcodec: Community

detection from individual activities. In Proceedings of the 2015 SIAM International

Conference on Data Mining, pages 91–99. SIAM, 2015.
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with prescribed degree distribution. Journal of Statistical Physics, 124(6):1377 – 1397,

2006. doi: https://doi.org/10.1007/s10955-006-9168-x.

[95] Mirjam Kretzschmar and Janneke CM Heijne. Pair formation models for sexually

transmitted infections: a primer. Infectious Disease Modelling, 2(3):368–378, 2017.

[96] D Hansson, KY Leung, T Britton, and S Strömdahl. A dynamic network model to
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