

OPTIMAL OPERATIONAL STRATEGIES FOR A DAY-AHEAD ELECTRICITY MARKET
IN THE PRESENCE OF MARKET POWER USING MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS

by

DEEPAL RODRIGO

B.S. ENG., University of Moratuwa, 1986
M.B.A., University of Colombo, 1992
M.S., Kansas State University, 1995

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
 College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2007

Abstract

 This dissertation introduces a novel approach for optimally operating a day-ahead

electricity market not only by economically dispatching the generation resources but also by

minimizing the influences of market manipulation attempts by the individual generator-owning

companies while ensuring that the power system constraints are not violated. Since economic

operation of the market conflicts with the individual profit maximization tactics such as market

manipulation by generator-owning companies, a methodology that is capable of simultaneously

optimizing these two competing objectives has to be selected. Although numerous previous

studies have been undertaken on the economic operation of day-ahead markets and other

independent studies have been conducted on the mitigation of market power, the operation of a

day-ahead electricity market considering these two conflicting objectives simultaneously has not

been undertaken previously. These facts provided the incentive and the novelty for this study.

A literature survey revealed that many of the traditional solution algorithms convert

multi-objective functions into either a single-objective function using weighting schemas or

undertake optimization of one function at a time. Hence, these approaches do not truly optimize

the multi-objectives concurrently. Due to these inherent deficiencies of the traditional

algorithms, the use of alternative non-traditional solution algorithms for such problems has

become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA)

have received wide acceptance due to their solution quality and robustness. In the present

research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II

(NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu

search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these

algorithms for applications similar to the problem investigated here reinforced the selection of

these algorithms. The results obtained from each of the three algorithms used in the evaluations

are very comparable. Thus one could safely conclude that the results obtained are valid. Three

distinct test power systems operating under different conditions were studied for evaluating the

suitability of each of these algorithms. The test cases included scenarios in which the power

system was unconstrained as well as constrained. Repeated simulations carried out for the same

test case with varying starting points provided evidence that the algorithms and the solutions

were robust.

Influences of different market concentrations on the optimal economic dispatch are

evidenced by the pareto-optimal-fronts obtained for each test case studied. Results obtained from

a traditional linear programming (LP) based solution algorithm that is used at present by many

market operators are also presented for comparison. Very high market-concentration-indices

were found for each solution from the LP algorithm. This suggests the need to use a formal

method for mitigating market concentration. Operating the market at industry-recommended

threshold levels of market concentration for selecting an optimal operational point is presented

for all test cases studied. Given that a solution-set instead of a single operating point is found

from the multi-objective optimization methods, additional flexibility to select any operational

point based on the preference of those operating the market clearly is an added benefit of using

multi-objective optimization methods. However, in order to help the market operator, a more

logical fuzzy decision criterion was tested for selecting a suitable operating point. The results

show that the optimal operating point chosen using the fuzzy decision criterion provides a higher

economic benefit to the market, although at a slightly increased market concentration.

 Since the main objective of this research was to simultaneously optimize the

economic operation of a day-ahead market while ensuring minimal market power by individual

generator owners, the proposed method is much improved from the current industry practice.

The current practice of after-the-fact mitigation of market power has created various problems

for both the market operator and the market participants, giving rise to a large numbers of

disputes and resettlement activities. Hence, an approach that mitigates market power at the time

of market dispatch as used in this research would bring about a more efficient market operation.

OPTIMAL OPERATIONAL STRATEGIES FOR A DAY-AHEAD ELECTRICITY MARKET
IN THE PRESENCE OF MARKET POWER USING MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS

by

DEEPAL RODRIGO

B.S. ENG., University of Moratuwa, 1986
M.B.A., University of Colombo, 1992
M.S., Kansas State University, 1995

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
 College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2007

Approved by:

Major Professor
Dr. Anil Pahwa

Abstract

This dissertation introduces a novel approach for optimally operating a day-ahead

electricity market not only by economically dispatching the generation resources but also by

minimizing the influences of market manipulation attempts by the individual generator-owning

companies while ensuring that the power system constraints are not violated. Since economic

operation of the market conflicts with the individual profit maximization tactics such as market

manipulation by generator-owning companies, a methodology that is capable of simultaneously

optimizing these two competing objectives has to be selected. Although numerous previous

studies have been undertaken on the economic operation of day-ahead markets and other

independent studies have been conducted on the mitigation of market power, the operation of a

day-ahead electricity market considering these two conflicting objectives simultaneously has not

been undertaken previously. These facts provided the incentive and the novelty for this study.

A literature survey revealed that many of the traditional solution algorithms convert

multi-objective functions into either a single-objective function using weighting schemas or

undertake optimization of one function at a time. Hence, these approaches do not truly optimize

the multi-objectives concurrently. Due to these inherent deficiencies of the traditional

algorithms, the use of alternative non-traditional solution algorithms for such problems has

become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA)

have received wide acceptance due to their solution quality and robustness. In the present

research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II

(NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu

search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these

algorithms for applications similar to the problem investigated here reinforced the selection of

these algorithms. The results obtained from each of the three algorithms used in the evaluations

are very comparable. Thus one could safely conclude that the results obtained are valid. Three

distinct test power systems operating under different conditions were studied for evaluating the

suitability of each of these algorithms. The test cases included scenarios in which the power

system was unconstrained as well as constrained. Repeated simulations carried out for the same

test case with varying starting points provided evidence that the algorithms and the solutions

were robust.

Influences of different market concentrations on the optimal economic dispatch are

evidenced by the pareto-optimal-fronts obtained for each test case studied. Results obtained from

a traditional linear programming (LP) based solution algorithm that is used at present by many

market operators are also presented for comparison. Very high market-concentration-indices

were found for each solution from the LP algorithm. This suggests the need to use a formal

method for mitigating market concentration. Operating the market at industry-recommended

threshold levels of market concentration for selecting an optimal operational point is presented

for all test cases studied. Given that a solution-set instead of a single operating point is found

from the multi-objective optimization methods, additional flexibility to select any operational

point based on the preference of those operating the market clearly is an added benefit of using

multi-objective optimization methods. However, in order to help the market operator, a more

logical fuzzy decision criterion was tested for selecting a suitable operating point. The results

show that the optimal operating point chosen using the fuzzy decision criterion provides a higher

economic benefit to the market, although at a slightly increased market concentration.

 Since the main objective of this research was to simultaneously optimize the

economic operation of a day-ahead market while ensuring minimal market power by individual

generator owners, the proposed method is much improved from the current industry practice.

The current practice of after-the-fact mitigation of market power has created various problems

for both the market operator and the market participants, giving rise to a large numbers of

disputes and resettlement activities. Hence, an approach that mitigates market power at the time

of market dispatch as used in this research would bring about a more efficient market operation.

 vii

Table of Contents

List of Figures ... x

List of Tables .. xii

Glossary of Terms.. xiii

Acknowledgements.. xiv

Dedication... xv

CHAPTER 1 - Introduction .. 1

1.1 Literature Review ... 2

1.2 Summary... 5

CHAPTER 2 - Day-ahead Market Problem.. 6

2.1 Bus Power Balance Constraints.. 7

2.2 Branch-Capacity Limit Constraint.. 8

2.3 Generator Ramp-Rate Constraint.. 8

2.4 Economic Minimum and Maximum Operating Constraint 9

2.5 Operating-Reserves Requirement Constraint ... 9

2.6 Generator on-line/off-line Switching Constraint .. 10

CHAPTER 3 - Economic Models for a Day-Ahead Electricity Market........................... 11

CHAPTER 4 - Market-Power Identification and Mitigation.. 16

CHAPTER 5 - Survey of Prospective Optimization Algorithms for Market Clearing Problem

... 24

5.1 Single and Multi-Objective Optimization... 25

5.2 Tabu-Search Algorithm .. 26

5.3 Multi-objective Tabu-Search-Meta-Heuristic Algorithm....................................... 28

5.4 Genetic Algorithms... 30

5.5 Combined Multi-Objective Tabu/Genetic Algorithm... 37

5.6 Non-Dominated-Sorting-Genetic Algorithm: NSGA-II.. 40

CHAPTER 6 - Application of Evolutionary Algorithms to the Day-Ahead Market Problem

... 43

6.1 Multi-Objective Tabu-Search Algorithm.. 43

 viii

6.1.1 Initial Solution Selection.. 43

6.1.2 Selection of the Length of Tabu-List ... 45

6.1.3 Neighborhood-Solution-Space... 46

6.2 Multi-Objective Tabu/ Genetic Algorithm ... 47

6.2.1 Encoding Schema... 47

6.2.2 Crossover schema .. 49

6.2.3 Mutation Scheme ... 51

6.2.4 Selection Scheme ... 52

6.3 NSGA II Solution Algorithm... 52

6.3.1 Encoding Scheme... 53

6.3.2 Population Size .. 53

6.3.3 Generation Size.. 53

6.3.4 Crossover Scheme.. 53

6.3.5 Mutation Scheme ... 53

6.3.6 Distribution Indices.. 54

6.4 Objective Functions .. 55

6.5 Selection of Optimality from Multi-Objective Optimization Problems 56

CHAPTER 7 - Case Studies ... 59

7.1 Analysis of a 5-Generator, 3-Load Power System with No Market Power............ 59

7.2 Analysis of a 5-Generator, 3-Load power System with Congestion and No Market Power

.. 63

7.3 Analysis of a 5-Generator, 3-Load power System with Congestion and Uncontrolled

Market Power of owners... 67

7.4 Analysis of a 5-Generator, 3-Load Power System with Congestion and Mitigated Market

Power of Owners .. 71

7.5 Analysis of a 10-Generator, 6-Load Power System with Congestion and Mitigated Market

Power of Owners .. 76

7.6 Analysis of a 50-Generator, 20-Load power System with Congestion and Mitigated

Market Power of Owners .. 86

7.7 Analysis of a 50-Generator 20-Load Power System with Congestion and Mitigated Market

Power between Generators with consolidation of generator ownership....................... 95

 ix

7.8 Optimal Operational Point Selection from a Pareto-front for a 50-Generator 20-Load

Power System ... 98

CHAPTER 8 - Conclusions .. 102

Bibliography ... 105

Appendix A – Source Code .. 111

MOTS Algorithm.. 111

MOTS/GA Algorithm... 160

NSGA II Algorithm .. 209

Appendix B – System Parameters .. 264

Buying Offers from Loads.. 264

Test Case 1 – 5-Generator, 3-Load, 8-Bus Power System ... 264

Test Case 2 – 10-Generator, 6-Load, 10-Bus Power System 264

Test Case 3 – 50-Generator, 20-Load, 27-Bus Power System 265

Constraints .. 266

Test Case 1 – 5-Generator, 3-Load, 8-Bus Power System ... 266

Test Case 2 – 10-Generator, 6-Load, 10-Bus Power System 268

Test Case 3 – 50-Generator, 20-Load, 27-Bus Power System 271

 x

List of Figures

Figure 5.1 - Flow Chart of the Multi-Objective Tabu Search Algorithm..................................... 29

Figure 5.2 - Parent Chromosomes .. 33

Figure 5.3 - Offspring Chromosome... 33

Figure 5.4 - Mutated Offspring... 34

Figure 5.5 - Flow Chart representing a Genetic Algorithm.. 37

Figure 5.6 - Flow chart of the combined Tabu/Genetic Algorithm .. 39

Figure 5.7 - Flow chart of the NSGA II Algorithm... 42

Figure 6.1 - Crossover to form and Offspring .. 50

Figure 6.2 - Number of Improved Objectives Plotted Against the Number of Equal Objectives

and (1-kf) Dominance.. 58

Figure 7.1 - 5-Generator, 3-Load, 10-bus Test System .. 60

Figure 7.2 - Load Profile for the Market Day... 61

Figure 7.3 - Generator offer-curves .. 61

Figure 7.4 - Generator Operating Schedule .. 62

Figure 7.5 - Generation operation selection in the presence of congestion using MOTS/GA

algorithm... 65

Figure 7.6 - Generation operation selection in the presence of congestion using MOTS algorithm

... 65

Figure 7.7 - Generation operation selection in the presence of congestion using NSGA II

algorithm... 66

Figure 7.8 - Pareto optimal front graphs under the different solution algorithms 69

Figure 7.9 - DHHI chart for 5-generator test case using NSGA II algorithm 69

Figure 7.10 - Generator Operating Schedule as found by NSGA II algorithm 70

Figure 7.11 - Generator Offer Curves... 72

Figure 7.12 - Pareto Optimal Front Graphs .. 72

Figure 7.13 - Generator operation match-up... 73

Figure 7.14 - DHHI chart for 5 generator test case using NSGA II algorithm.............................. 73

Figure 7.15 - 10-Generator, 6-Load, 10-bus test system .. 76

 xi

Figure 7.16 - Generator offer-curves for the 10 generators .. 77

Figure 7.17 - Load Profiles ... 77

Figure 7.18 – Pareto-optimal front graphs for different algorithms for the 10-generator test case

... 79

Figure 7.19 – Pareto-optimal fronts at different iterations using NSGA II algorithm, 10- generator

test case ... 79

Figure 7.20 - Minimum Optimal Cost of Operation at each iteration using NSGA II Algorithm,

10-generator test case.. 80

Figure 7.21 - Minimum DHHI at each iteration using NSGA II Algorithm, 10-generator test case

... 80

Figure 7.22 - Generator match-up for the 10-generator test case ... 82

Figure 7.23 - DHHI charts for the 10-generator test case... 82

Figure 7.24 - 50-Generator, 20-Load System ... 87

Figure 7.25 - Pareto optimal front graphs from different algorithms for the 50- generator test case

... 90

Figure 7.26 - Modified DHHI for the case where Gen 3, 5, 15, and 18 are owned by one

company.. 90

Figure 7.27 – Pareto-optimal Front Charts with Different Ownership Arrangements using NSGA

II algorithm ... 92

Figure 7.28 - ADHHI value with different generator ownership using NSGA II algorithm; 50-

generator test case 4 .. 97

Figure 7.29 – Pareto-Optimal Front Charts with different generator ownership using NSGA II

algorithm; 50- generator test case 4 .. 97

 xii

List of Tables

Table 7.1 - Performance comparison between algorithms.. 63

Table 7.2 - Comparison of results between algorithms .. 64

Table 7.3 - Comparison of results between algorithms .. 68

Table 7.4 - Comparison of results between algorithms .. 74

Table 7.5 - Results from repeated simulations.. 75

Table 7.6 - DHHI values for the System... 83

Table 7.7 - Comparison of results of algorithms for the 10-generator test case........................... 84

Table 7.8 - Comparison of results between algorithms for the 10-generator test case................. 85

Table 7.9 - Cost Characteristics of 50 Generators ... 86

Table 7.10 - Load Profiles ... 87

Table 7.11 - Comparison of results between algorithms for the 50-generator test case............... 88

Table 7.12 - DHHI values for the 50 –Generator Power System with Generators 3, 5, 15, and 18

owned by a single company.. 93

Table 7.13 - Comparison of results of changing initial random seed using the NSGA II algorithm

for the 50-generator test case .. 94

Table 7.14 - Generator ownership by the company dominating the Market; 50- test case 4 95

Table 7.15 - Results from Consolidation of Generator Ownership .. 96

Table 7.16 - Candidate Solution Set Considered for Multi-Criteria Decision Making 99

 xiii

Glossary of Terms

1. ANN – Artificial Neural Network

2. ADHHI – Average Dynamic Herfindhal-Hirschman Index

3. Bus – An electrical connection point where physical electrical devices are connected

4. Crossover – a term commonly used in Genatic Algorithms to represent the formation

of a child chromosome from a pair of parents

5. Day-Ahead Market – A forward electricity market for the 24 for the next operating

day

6. DHHI – Dynamic Herfindhal-Hirschman Index

7. FERC – Federal Energy Regulations Commission

8. Generator – A physical device that is used for generating electricity

9. Generation – The output from a generator

10. HHI - Herfindhal-Hirschman Index

11. LR – LaGrangian Relaxation Algorithm

12. LP – Linear Programming

13. Load – A physical device that consumes electricity

14. LMP - Locational Marginal Price

15. MW – Megawatts

16. $/MWh – Cost measured in dollors per mega watt hour

17. MOEA – Multi-Objective Evolutionary Algorithms

18. MOTS – Multi-Objective Tabu Search Algorithm

19. MOTS/GA – Multi-Objective Tabu and GA hybrid Algorithm

20. Market day – The 24 hour period an electricity market is operated

21. NSGA II – Non-Dominant Sorting Algorithm

22. RTO – Regional Transmission Organization

23. SA – Simulated Annealing

24. Time horizon – the period that is considered in a market evaluation

25. TS – Tabu Search Algorithm

 xiv

Acknowledgements

First and foremost let me begin by thanking my major professor Dr. Anil Pahwa for his

kindness, unwavering support, patience, constant encouragement and guidance to make me

complete this research. At this point I must also acknowledge the help I received from my

committee members, Dr. Medhat M. Morcos, Dr. Prakash Krishnaswami, Dr. John E. Boyer and

Dr. Robert B. Burckel for their support during my program of study. Special thanks goes to Dr.

Sanjoy Das who took time to review and provide guidance to enhance the work undertaken in

this research with his expertise in the area of evolutionary algorithms as well as Dr. Burckel for

taking the time off his busy schedule to review and provide feedback to enhance the presentation

of my dissertation.

I would also like to mention the constant encouragement I received from my mother

Lalani, my sister Champa, my mother-in law Yasawathie, my sister-in-law Chitra, my brother-in-

law Bandula and various other family members. I deeply appreciate your support throughout this

journey.

Last but not least, let me thank my wife Udeshika and my daughter Ovini for

accommodating and tolerating my busy schedule working on this research while working full

time and never complaining when I am not there for family time. They have given the best

support, encouragement and patience a husband and a father could hope for.

 xv

Dedication

I would like to dedicate this work to all my family members especially to my beloved

deceased father and father-in-law, who I am sure, would have been very proud of my

accomplishment.

 1

CHAPTER 1 - Introduction

With the Federal Energy Regulation Commission’s (FERC) initiative to deregulate

interstate electricity trading, the need for all interacting parties to work more closely to meet the

conditions stipulated by the FERC becomes paramount. Power marketers, generator owners,

transmission owners, companies bidding for electrical power, and regional transmission

organizations responsible for operating electricity markets interact with one another when

participating in electricity trading activities. In this context a market operator is responsible for

offering multiple energy commodities to the market participants so that they can effectively

participate in the electricity market. It is customary for most markets to offer opportunities to the

participants to submit their generator offers and demand bids ahead of the market day. To cater

to the needs of the market, two market products are typically offered: the offering of a day-ahead

market product and the offering of an hourly-market product. As the name implies, the day-

ahead market allows market participants to offer and bid for a given 24-hour period, ahead of the

actual market day. The hourly market then is expected to mitigate short-term energy short-falls

or changes subsequent to their day-ahead offerings and bids. Since a majority of the market

transactions are expected to take place in the day-ahead market, the study of strategies for

solving a typical day-ahead market provided the motivation for this research. Traditionally,

security-constrained-economic-dispatch and unit-commitment algorithms are used to match all

generator offers with demand bids. The objective of these algorithms is to minimize the overall

market operational cost subject to various power system constraints.

However, as mandated by the FERC, while the individual companies strive to reap

maximum individual profits, the market operator has a responsibility to ensure that all parties in

the market have equal opportunities to participate. In their pursuit of individual profit

maximization, many market participants use the geographical and strategic location of their

assets and market share to “game the market” or use their strategic position in the market to their

advantage. This behavior has forced the market operator to take appropriate mitigating measures

to contain adverse market-participant behavior. At present, mitigation of market-power behavior

by market participants is accomplished by utilizing after-the-fact methods. Also many of the

 2

current methodologies do not incorporate the impacts of the power system conditions into their

evaluation. The majority of these methods use individual historical reference-prices of generators

adjusted by fuel-cost variations ignoring the impacts of the condition of the power system. Some

of the large energy markets in the United States that use these approaches of mitigation, show

significant operational challenges to the market operator as well as the participants. Based on

these observations, it is evident that an improvement in current mitigation strategies is needed. A

simultaneous solution methodology that operates the day-ahead market while minimizing market

power shows great promise at this juncture. Evaluation of simultaneous solution methodologies

capable of accomplishing the desired enhanced operation of a day-ahead market and guidance in

making operational decisions based on the results is presented in this dissertation.

The following section presents a wide catalogue of previous work undertaken in this area.

It provides an important basis for demonstrating the significance and relevance of the research

discussed and presented in detail in the ensuing chapters.

1.1 Literature Review

The whole area of market operations starting from the mid-eighties has evolved into one

of the most popular areas on which researchers have focused attention. The fundamental

concepts of location-based pricing of transmission services was first proposed in [1] and was

presented at many international forums such as [2], [3]. It is evident that many researchers

attempted to align known economic models with electricity market operations. Many considered

oligopolistic models to represent the electricity market [4], [5]. Others proposed economic Nash

equilibrium models for electricity markets [6], [7]. Features and definitions of oligopolistic

markets, markets in Nash equilibrium, Cournot [8], and Bertrand market models show the

importance of identifying a model which closely represents the day-ahead market. Some of the

previous studies including work done by Song, et al. [7] considered simplifying assumptions

such as each bidding company having perfect and complete information about every bidder in

the market, and generators being responsible for paying for systems losses. In [6], a real-time

market is evaluated assuming that each market participant can estimate his competitor’s

behavior. This appears to be a more realistic model and therefore is considered in the studies

undertaken in this dissertation. Since one of the most critical requirements of a market operator is

 3

mitigating market power for fostering unbiased operations, the operational strategies proposed

here will focus on minimizing the market power of each company, while maintaining typical

operational constraints. This is a new approach to the day-ahead market operational

methodology. Even though some researchers have proposed new methods for market operations

based on economic models and some others have proposed market-power monitoring methods

[9], [10], [11], the literature review conducted did not reveal any previous work that combined

limiting the market power while simultaneously arriving at an optimum operating strategy for a

day-ahead electricity market. Hence, this research is expected to address a critical need of the

market and formulate a unique approach for obtaining operational strategies.

Finding the optimal operational strategy for the day-ahead market is a complex

optimization problem, in which the bids of generators and the loads are matched at the minimum

overall market expense. A survey of the literature on work undertaken previously has highlighted

a wide variety of methodologies for solving this very complex problem. Extensive work carried

out by Ranatunge, et al.[12], and Dekrajangpetch, et al.[13] using linear programming

techniques, Sugianto, et al. [14] using fuzzy classification models, de la Torre, et al.[5], Galliana,

et al. [15], Sonmez, et al.[16], using nonlinear mixed-integer optimization algorithms, and

Ptetridis, et al.[17] using evolutionary algorithms, show the importance of the problem. It is also

evident that most of the traditional solution algorithms, as found in the work done by Ranatunge,

et al.[12], and Dekrajangpetch, et al.[13] either convert the multiple-objective functions to be

optimized into a single objective function via weighting schemas, or they optimize one objective

function at a time. The fact that these approaches are not true concurrent-optimization methods

led to the consideration of alternative non-traditional algorithms, which have become very

popular due to their concurrent optimization capabilities. Moreover, evolutionary algorithms are

found to perform well on optimization problems with complex optimality solution surfaces,

which provides further justification for using such algorithms in this research. Work done by

King, et al. [18], uses a multi-objective evolutionary algorithm for achieving economic dispatch

taking the environmental impacts into consideration. Although this approach is somewhat closer

to the approach considered in this dissertation, the latter considers a different solution space

altogether. As in [18], a non-dominated sorting multi-objective genetic algorithm, known as

NSGA II, developed by Deb, et al.[19] was selected as one possible suitable solution algorithm.

 4

Successful application of a tabu search algorithm and hybrid tabu search/ genetic algorithm in

solving similar problems, as done by Galloway, et al. [20], and Ongsakal, et al.[21], as well as

problems in other industries as depicted in the work by Zdansky, et al.[22] also provide

additional justification for selecting these algorithms.

After expanding the literature survey further, it became evident that many of the previous

works concentrated on finding an optimal solution at a given time point; this is evident in works

by Dekrajangpetch, et al. [13], and Keshav, et al.[20]. However, the reality is that the day- ahead

market should cover all 24-hours of a given market day. This further complicates the problem,

since not only will the solutions have to be optimal for a given hour, but also be able to provide

an overall optimality in terms of how the generators are selected to feed into the market and how

often they are turned on/off in given 24-hour period.

The research by King, et al.[18] has solved a simple market dispatch problem for a very

small test system consisting of 3 generators. In [23], an optimal day-ahead network-constrained

market problem is solved using the interior-point method for a 14-bus test system. In [24],

although there is reference to evaluation of Locational Marginal Prices in a competitive market,

the influence of market power as undertaken by this research is not considered. Also it is notable

that the simulations in [24] are limited to being applied to a 14-generator test system. Looking

further, it is evident that other researchers have investigated the possibility of combining multiple

algorithms to improve performances of each algorithm operating in isolation. The work done by

[20] and [21] uses a hybrid genetic algorithm and a combined simulated annealing /genetic

algorithm to solve a similar economic dispatch problem successfully. To observe the suitability

of such non-traditional solution algorithms for solving complex multi-objective problems, the

literature survey encompassed studies carried out using combination algorithms and other multi-

objective solution techniques. Merits of the multi-objective tabu search algorithm, as

demonstrated by the work done by Ramirez-Rosado, et al. [25], prompted the selection of this

algorithm as a potentially viable candidate for the work undertaken here. In [26], an

investigation into integrating genetic algorithms with tabu search and simulated annealing for a

unit commitment problem is presented. In [20] and [21] the use of hybrid genetic algorithms for

solving similar complex problems is presented. This stimulated the interest in combinatorial non-

 5

traditional algorithms and eventually was chosen as the third solution algorithm for investigation.

From the studies done previously, the use of domain knowledge as a key contributor to the

success of tabu search algorithm is noteworthy. Considering these merits, the multi-objective

tabu search algorithm was thought to be a strong contender, worthy of being investigated.

Further analysis of the problem being solved presents the challenge of selecting an

optimal operating point from the pareto non-dominant solution-set found from multi-objective

optimization. From an extensive literature review it became quite evident that this was a

challenge faced by all researchers solving multi-objective optimization problems. In recent years,

many researchers have focused their attention on finding approaches for multi-criteria decision

making. The work by [27], [28], [29], [30], and [31] provides many-criteria-decision-making

approaches that have become popular. From these methods, the fuzzy-decision-criteria method

proposed by Farina, et al. [29] was selected and tested for its suitability in this dissertation.

1.2 Summary

A summary of the organization of the succeeding chapters of this dissertation is described

in this section. Chapter 2 discusses the formulation of the mathematical model that represents the

day-ahead market operations. The nature of the transmission systems, and physical system

constraints that impact market operations were incorporated into this model. Chapter 3 focuses

on the investigation of economic models and their applicability to represent a day-ahead market.

Impacts of market power, methods for monitoring and mitigation are presented in Chapter 4.

Chapter 5 presents a survey of algorithms that are deemed suitable for solving the day-ahead

market dispatch and market-power-mitigation problems, while in Chapter 6 the approaches to

modeling the day-ahead market operation problem using the three proposed multi-objective

evolutionary algorithms are discussed. This Chapter also presents a mathematical basis of fuzzy-

decision-making for selecting a better operational point from the non-dominant solution set,

rather than using industry recommended threshold values. Chapter 7 presents results from all

case studies applied to three distinct test systems. Results from different algorithms under

different operational conditions are also compared with one another. Finally, Chapter 8 presents

conclusions derived from the research. This chapter also outlines possible avenues for future

research.

 6

CHAPTER 2 - Day-ahead Market Problem

In the present context, a day-ahead market will mean a 24-hour period starting from the

hour 0 running through the hour 23 of a market day. Typically the market day is the next

calendar day from the day the evaluations are done. In all markets that offer this commodity, the

dispatch schedules for the day-ahead market are compiled hours ahead of the beginning of the

operating day-ahead day. Part of the day-ahead market participation rules are that all generators

and loads willing to participate in the day-ahead market have to supply their offers and bids to

the market operator by a pre-specified deadline. In most markets this time is set at 9 A.M., which

is15 hours ahead of the beginning of the market period. This lead-time is allowed for solving the

security-constrained economic dispatch and unit-commitment for the 24-hour period, and for the

market participants to accept or rebid for the day-ahead market on the basis of first published

results. Once the market operator receives these offers and bids by the deadline, they are

considered as viable, and will be considered in the optimal security-constrained economic

dispatch and unit- commitment. Even though the load bids and generator offers will be done as

integrated hourly values for every hour of the day, the market is considered continuously

operating for the entire 24-hour period transitioning smoothly from the previous day to the

current market day. Hence, a routine that considers the whole 24-hour period rather than each

individual hour in isolation will become more realistic and representative. It is evident that this is

a very special economic dispatch of generating units for every hour of the day, which may bring

new generators online whenever needed. Based on the above, the day-ahead market dispatch

objective function can be formulated mathematically as follows.

 t time index, this represents each hour block of the day-ahead day.

 T optimization horizon, under the present context this spans a 24-hour period

 i generator index

 I generator set that participates in the market

 Si(t) MW (=megawatts) quantity offered by generator i into the market at hour t

 αi(t) price in $/MW received by the generator i, for supplying Si(t) MW at hour t

 7

 j load index

 J load set that participates in the market

 Dj(t) MW load demand by load j at hour t into the market

 βj(t) price in $/MW to be paid by the load j for Dj(t) MW at hour t

Now considering the hour t, the objective of the market should be to match the total load

demanded from the market with the generation supply offers available to the market while

determining an optimal dispatch schedule where the total cost to operate the market is kept at a

minimum. In other words, load demand of the operation region under consideration will be met

by using the most economical and available generators without violating physical line or other

reliability and operational limitations of the operational region. Based on this rationale, the

objective function solved for hour t would be,

{∑
∈Ii

αi(t) Si(t) - ∑
∈Jj

βj(t) Dj(t)}

Considering the 24-hour day-ahead operation period, the objective function to be found

becomes,

[∑
=

T

t 0

{∑
∈Ii

αi(t) Si(t) -∑
∈Jj

 βj(t) Dj(t)}]

However, the problem at hand is constrained due to the fact that the number of generators

available to supply the market is limited and generators as well as other power system

components have physical operational limits. Considering the nature of electricity markets and

physically interconnected power systems, the objective function will be subject to the following

operational constraints.

2.1 Bus Power Balance Constraints

In order to facilitate solving the above optimization problem, linearized power-flow

model also known as “DC loadflow” will be used. Considering the nature of a typical power

system, one can write a power balance equation to represent the fact that net power injected at a

 8

given bus (= a connection node) should be the same as what is being withdrawn. This can be

symbolically represented as follows:

,1,2,...., ,)(

)(

1
,

)(

1
, NLiBFlowBFlowtP

NL

ilto
and
l

tl

NL

ilfr
and
l

tli =−= ∑∑

=

=

=

=

where Pi(t): Net MW injections into bus i at hour t;

NL: Number of buses in the system;

fr(l): from-end of branch l;

to(l): to-end of branch l;

tlBFlow , : Power flow over branch l at hour t.

2.2 Branch-Capacity Limit Constraint

Based on the thermal and other physical limits of transmission lines, each transmission

line in a power system will have a capacity limit. When operating the power system, these

capacity limits are expected to never be exceeded. This requirement can be represented

mathematically as:

max
,, tltl BFlowBFlow ≤ ,

where max
,tl

BFlow : is the capacity limit in MW of branch l at hour t.

2.3 Generator Ramp-Rate Constraint

The MW output change in a generating unit from one hour to the next is limited by the

maximum-ramp-rate of the generating unit. Hence, if the output from a generator i at time t is

given by Si(t), then in order to ensure that the change in generation from one operational state to

the next does not exceed its ability to ramp up or down, the following constraint can be defined:

Si(t-1) - Si(t) ≤ RampRateMaxi(t); t=0,1,2…23,

 9

where RampRateMaxi (t) is the maximum ramp rate of unit i at hour t.

2.4 Economic Minimum and Maximum Operating Constraint

All generators participating in the market are required to be operated so that their

economic maximum and minimum operating limits are maintained. Also, since the power system

is expected to retain its ability to recover from the largest contingency in the system, adequate

reserves need to be maintained. Thus, the contributions from each generator to the reserve

requirements of the market need to be included. The relationship of each generator to its

economic maximum limit can be represented as:

Si(t) + S
spin

i(t) ≤ EcoMaxi(t).

 Similarly all generators are expected to be operated above their minimally economic

limits:

Si(t) ≥ EcoMini(t),

where EcoMaxi(t): Economic maximum limit of unit i at time t,

S
spin

i(t): Spinning reserve dispatch of unit i required at time t,

EcoMini(t): Economic minimum of unit i at time t.

2.5 Operating-Reserves Requirement Constraint

To ensure that the power system can recover from an unplanned contingency, a pre-

specified amount of operating reserves for the system needs to be maintained. This system

operating requirement is then converted into corresponding individual contributions from each of

the generators supplying energy to a given power system. The relationship of the MW output of

a generating unit to its operating-reserve obligation can be represented in the following manner:

Si(t) + S
oper

i(t) ≤ EmergMaxi(t)

where EmergMaxi(t): Emergency maximum limit of the unit i at time t,

S
oper

i(t): Operating reserve dispatch of unit i required at time t.

 10

2.6 Generator on-line/off-line Switching Constraint

In the solution, movement of generators in and out of the dispatch must be minimized to

avoid the need to keep generators running ready to supply the market even when it is

uneconomical to select these generators. In this approach, when the system load demand

increases, all generators that were generating during the previous time period excluding those

that have reached their maximum capacity will be chosen first. If on the other hand the system

load decreased, only a subset of generators which were already supplying the market will be

chosen to reduce output on their economic merit. This pre-selection process is extended to cover

the entire study horizon to ensure that a minimum number of generators are selected for

operating the market. Since the dispatch from the previous hours is always considered for every

subsequent evaluation, the day-ahead market transitioning from the previous day to a new day

will always be smoother than an approach that does not consider the effects of the previous

hours.

The above formulation considers that the offers and bids made by participating entities

would faithfully follow the basic market principles. However, in real life it is a well known fact

that all profit-driven entities will always attempt to maximize their benefits at every opportunity.

By the same token, all other parties who are victimized by such influencing would strive for a

market that treats every participant equally. Given this, the market operator is challenged and is

responsible for ensuring that such undue influences are minimized for the greater good of the

market. In order to represent a realistic and unbiased market-operating process, market power

influences will have to be eliminated while conducting economic-dispatch and unit-commitment

for the market day. Before implementing a market-power mitigation strategy into the economic

solution, one has to first identify the basic nature of the electric industry operating a day-ahead

market. The next section of this research will therefore concentrate on aligning an economic

model to the day-ahead market operations to better understand the influences imposed by various

constituents of a day-ahead market. The chapter following proposes a practical market-mitigation

scheme to be used effectively based on the alignment of an economic model with the day-ahead

electricity market.

 11

CHAPTER 3 - Economic Models for a Day-Ahead Electricity

Market

The main objective of this section is to find out which economic model best represents

the day-ahead electricity market. Looking at the nature of the business, one can say that there are

multiple generator-owning companies that compete with each other for a share of the same

market. For the most part, all these companies share the same geographic and economic

boundaries. For example, only those generators that are within the market region will be able to

offer generation bids. They all compete for one homogeneous commodity, electric power, and all

have the same objective which is to maximize their own net benefits from the market. Moreover,

all competing generator-owning companies anticipate that rival firms will also be competing for

the same market share. Based on the consumer demand for power, the generator-owning

companies will decide how much to generate for a given period so that their profits can be

maximized. It is a well-known fact that electric power has no shelf life, making this commodity

extremely perishable. Also, the ability to influence the market by a given company will depend

on the number of generators and the relative locations of the generators it owns. In the present

context, the market is managed by a regional transmission organization that is expected to take

adequate measures to mitigate market power and offer a fair market to the participants.

Considering all these factors prevalent in a day-ahead market, it would be a worthwhile

exercise to look at some economic models that have evolved in game theory. The next step

would be to evaluate each of these models with respect to the core features of a day-ahead

electricity market.

As presented and analyzed by game theory, a market that exhibits oligopolistic behavior

shows a complex series of strategic moves and reactive countermoves among rival firms. In an

oligopolistic market, firms are assumed to anticipate rival actions. Also, all competing firms in

the same market try to supply a homogeneous consumption good. The consumer side is

represented by a fixed demand function in such a market. The firms decide how much to produce

 12

of a perishable consumption good, and they decide upon a number of information signals to be

sent into the population in order to attract customers. Considering the nature of the day-ahead

energy market, one can see that all generating companies are competing to supply a specified

MW amount of electricity as demanded by the end-user. The features of a homogeneous

commodity, fixed demand for a given time period, and anticipation of rival actions by competing

companies are all present in the day-ahead market and are in line with the core characteristics of

an oligopolistic market [5]. However, in a Regional Transmission Organization (henceforth

RTO) controlled market place, the generating companies are expected to generate what they are

asked to, rather than to decide on their own how much to generate; and these companies are

expected not to exercise market manipulation strategies. Investigating further, some oligopoly

models allow for a few large firms to behave as oligopolists and a fringe of small firms to behave

as competitors. Each oligopolist believes that its actions influence price, and it must consider the

reaction of the other oligopolists when making decisions. It is known that price competition leads

to price wars, which may cause some producers to exit the market or merge with other producers

to strengthen their position. Looking at the history of the electricity markets, one observes these

trends. In some typical oligopolistic markets, firms use product differentiation and advertising

campaigns to gain competitive advantages over their rivals. This however, is not a feature in the

electricity markets. The product offered by every company is the same and firms have no way of

differentiating the product offered for sale. Thus, the electricity market can be considered as a

specialized oligopolistic market. Another feature found in an oligopolistic market is its

expectation that any new entrants to the market will have a large market share after entry. This

condition must be satisfied before they are allowed to enter the market. The next feature of such

a market assumes that only economic barriers would prevent new participants from entering the

market. The first condition does not seem to be applicable to electricity markets. This is because

any independent power producer who wishes to participate in a market can enter the market

without having to hold a major market share. The second condition, however, can be considered

appropriate for the day-ahead electricity market operated by a centrally managed regional

transmission organization.

Another major feature of an oligopoly is that each firm considers its opponents’ response

to any strategy it contemplates. This is true in any market scenario, in an electricity market or

 13

elsewhere. All firms entering a profitable market have to contemplate the opponent’s action if

they are to remain successful in the market. As is evident, there are many variants of an

oligopoly market. Many companies choose price as their primary decision variable, while many

others choose quantity offered for sale as their primary decision variable. As far as the electricity

markets are considered, price can be considered as the strategic decision variable. However,

there could be instances where the quantity also becomes the driver. For example, when the

power system is congested, a company that has generation capacity locally to meet the needs of a

given load will enjoy its strategically advantageous location in the market over another company

which has generation capacity at a different geographic location. Variations to the oligopoly

economic model are available in the literature for different operational scenarios. In some cases,

all firms are assumed to be making simultaneous decisions. In other situations a sequential-move

pattern is assumed. Both these scenarios can be considered to be applicable to electricity

markets. Depending on the positioning of certain firms in the electricity market, some may

become involved in simultaneous decision-making. By the same token, there could be others

which would follow a leader, or be a leader in the market.

 Market environments may also differ with respect to the assumed time horizon. Some

models assume a single decision period while others assume multiple or infinite time periods. In

the day-ahead market it is expected that all firms participating consider the same time period, a

single 24-hour day. Finally, market environments may also differ with respect to the amount of

information each firm has: all firms could have the same information or some firms could have

more complete information than others. This scenario is very representative of the electricity

market. Vertically-integrated electric utilities sometimes have access to information that non-

traditional, non-integrated firms don’t have.

Participants in an oligopoly market can exercise either little or great market power.

Intense price competition between two or more firms can erupt and dissolve market power in

short order. However, firms may recognize that intense price competition is painful and therefore

would prefer to engage in cooperative and non-cooperative collusion that facilitates a shared

exercise of market power. Historical observations on the electricity markets have shown

companies colluding from time to time for their mutual benefit. A variation of collusion is found

 14

in what is known as the Stackelberg strategy [4], [32]. According to the Stakelberg model, two

sets of market participants are considered; market leaders and market followers. Market leaders

make decisions based on the reactions of the market followers. Market followers on the other

hand without recognizing how their decisions affect the leaders’, attempt to follow the actions

taken by the leaders. Market responses as described in the Stackelberg strategy as well as

cooperative and non-cooperative collusions are possible in electricity markets. The challenge for

the market operators then would be to ensure that these strategies are properly mitigated.

Assuming that in an RTO controlled market there is no room for market power, the

generators will therefore become pure price takers. They will honor the price that is set by the

central dispatch entity or the RTO. This model equates to pure competition or the well-known

Bertrand economic model [4]. Even though every RTO strives for this kind of a market, this

model is of only academic interest and is hard to achieve in practice. Trying to generalize this

behavior, economists have come up with an alternative model called a generalized Bertrand

strategy. In this model, the quantity delivered by one company will depend on the price asked by

the company itself as well as the prices asked by other competitors in the market. However,

every company in the market place assumes that the others will not alter their prices based on

what another company offers. It also assumes that if the price quoted by a given generating

company is the lowest offered among rival producers, that generator will be selected to deliver

up to its economically maximum limit before any other generator is chosen. If on the other hand

the company does not ask the lowest price, it is further assumed that it will not be selected to

supply any power to the market. While some of the considerations in this model are applicable to

day-ahead markets, the fact that companies are assumed to be nonresponsive to pricing strategies

of others is definitely not applicable.

The next economic market strategy is based on gaming in quantities; this model is

commonly identified as the Cournot strategy [4], [6], [7]. In it, the price asked by a given

company will be based on the quantity supplied by it as well as the quantities supplied by the

others. However, the model assumes that the quantity supplied by each company will be a fixed

amount. In an RTO controlled market this model will not be applicable for the most part; in this

scenario, unless each participant resorts to manipulating the market by holding back the quantity

 15

supplied, forcing a supply deficit in order to gain higher prices, the supply by each company is

deemed to be fixed. From time to time companies do resort to these sorts of market manipulation

strategies.

Depending on each market participant’s choice, many of the previously discussed market

conditions could exist in a day-ahead market. If companies in the market adopt a Bertrand

strategy, the market will see pure competition. If on the other hand companies adopt a Cournot

strategy, they might see individual benefits depending on the market conditions, with negative

consequences to those not adopting the Cournot strategy. At times some companies also

participate in cooperative and non-cooperative collusion strategies. Considering all possible

behavior patterns that could be adopted by the market participants, an unbiased market clearing

process must be chosen that restrains the market participants from exercising undue market

manipulation. Chapter 4 of this dissertation presents methodologies for identifying, measuring,

and preventing companies from resorting to gaming or exercising undue market power.

 16

CHAPTER 4 - Market-Power Identification and Mitigation

With the evolution of a single market based on price signals, the price of electricity in the

market will be determined by the cost of the most expensive plant scheduled to operate and

fulfill the market demand. This unit is commonly called the marginal unit, and a given market

could end up having a single marginal unit that results in a single Locational Marginal Price

(LMP) for the market or multiple marginal units and multiple LMP’s if the market is congested.

The basis for deciding on the marginal unit and thereby the LMP is a centralized dispatch

conducted by a regional transmission organization. In such a centralized dispatch, all generators

bidding into the market will receive the same price based on the marginal unit. This causes some

companies to receive more than what they asked for, while the generating company that supplied

the marginal amount of power or the unit that sets the price will receive the market-clearing

price, or the cost of production of that generator. Based on this principle, generator owners can

deduce that unless they offer their generators at an economically attractive price they could

potentially be replaced by lower offers from their competitors. Consequently, the generator

owners also know that they will receive the price at which the market was cleared even though

the price they offered to the market was lower. Under this scenario the companies whose

generators were offered at a below the market-clearing price would make a profit. Given these

two scenarios, one can see that it is rather risky to try to manipulate the market when the load on

the system is closer to the base load. This is simply because there is an abundance of generators

that are available at these load levels and hence if a generator owner tries to inflate the price, he

would probably be replaced by another, thereby losing his ability to participate in the market

altogether. However, as the system demand increases, more and more units will be selected and a

fewer number of generators will be left for supplying the load demanded. The remaining

generators will be available at a higher cost to the market. If one company held back its

generation at lower load conditions with the hope of offering the same generator at a higher price

when the load was higher, much above its production cost, the company would clearly make a

higher profit. This behavior however, is not encouraged since the overall price to the market will

increase in this instance and the company adopting this strategy is manipulating the market to

maximize its profits.

 17

Looking closer, one can see that companies that own a large number of generators which

are available to participate in a given electricity market have the ability to create such artificial

conditions. History confirms instances where market regulators had to resort to enforcing

mitigation strategies, such as placement of “market caps”, to control these kinds of behavior

[32]. While “market caps”, is one mechanism for controlling the market, it fails to give any

consideration to the operational conditions prevalent in the market. Clearly, the prices paid by

loads in a given market will be driven by the congestion present in the market. Hence, a market

power identification and mitigation strategy that incorporates the existing power system

conditions is needed.

According to the guidelines set forth by the US Department of Justice, market

concentration of a company is evaluated using an index identified as the Herfindhal-Hirschman

Index [33]. This index is defined as follows:

∑

=
=

N

i
i

sHHI

1

2

Here, the summation considers all N participants in the market and si refers to the market

share of each participant. The market share of each participant is typically expressed as a

percentage. Hence, the maximum HHI that can result in a given market is 10,000. This occurs

when one company owns the whole market or has the market share of 100%. That company has

complete control over the market, there is a complete monopoly. On the other hand, if a given

market has 10 different companies each of which has 10% market share, the resulting HHI will

be 1000. Since clearly none of the companies has any dominance over the others in terms of

market share, none will be able to influence the market. The US Department of Justice divides

the HHI into three ranges. When the index is below 1000 the market is considered

unconcentrated. When the index is between 1000 and 1800 the market is considered moderately

concentrated, while the market is considered heavily concentrated when the index is above 1800.

According to the guidelines, the market share percentage is defined for a given market horizon.

Therefore, determination of this index in a congested electricity market is not straightforward.

 18

This is due to the fact that the generators and the quantity they would be supplying to the market

from one hour to the next tend to change, depending on the power system conditions. The

evaluation becomes even more complicated when the units owned by a given company are

geographically dispersed. Under congested power system operation conditions, these generators

would belong to separate operational islands making it difficult to identify the possible market

manipulation exercises. Moreover, the evaluations need to pay attention to the amount of

capacity left in each generating unit over and above its current dispatch level, along with those

generators that have exhausted their capacity [34]. As discussed in [35], market power exercised

by participants in a day-ahead electricity market is described as demonstrating horizontal market

power. Here the behavior is seen to be prompted by the nature of the market-clearing

methodology in which all generators chosen for dispatch are paid the market-clearing price. In

many cases these generators will be paid a price above their production costs.

Looking closer at the day-ahead market scenario, one would expect the load profile

throughout the day to vary and follow the typical system load profile, which has peaks of high

and valleys of low load demand. As expected, at the base-load levels almost all the generators

are able to participate in the market and any one company trying to inflate the price will risk

being replaced by another generator from a competitor. However, as the system demand goes up,

more and more generators from the pool of available resources will be selected and fewer and

fewer generators will be left with available capacity to offer into the market. At this point, only

those generators which are more expensive will be left, since the overall approach to market

operation is to select the most economical generators first, followed by the next most economical

set of units, and so on. Given this, the use of the standard HHI to measure market concentration

seems inappropriate for the day-ahead market. It is clear that a modified index that represents the

dynamic nature of the market has to be used. In this formulation only those units that have

capacity remaining to offer at a given price-level along with information on ownership share of

each generator-owning company will be considered in arriving at the market-share index.

Formulation of this modified Dynamic Herfindhal-Hirschman Index (DHHI) can be represented

as:

 19

∑
=

+=
)(

1

2)]([
DN

i

i DsDHHI .

Here N(D) is the number of companies with capacity still left to offer to the market, and

Si(D
+
) represents the revised market-share of generator owner i, with capacity still left to offer

into the market. Similar to the static HHI, since the % market share is considered in calculating

the DHHI, the maximum possible value will be 10,000 with this formula as well. Due to its

closeness to the static HHI, a logical approach when using the DHHI is to use the same three

ranges recommended by the Department of Justice.

The merits of using the modified DHHI are best explained by an example. Let’s assume

that there are 10 generators offered into a given day-ahead market. Out of these, assume that a

single company owns 3 generators, while 7 distinct companies own the remaining 7 generators.

Also, to simplify the analysis, suppose the capacities of the generators are 100MW each. If a

static HHI were calculated for this scenario, an index of 1600 = (30^2+7*10^2) is found. Since

this value is below the high concentration threshold guidelines provided by the Department of

Justice, one could inadvertently conclude that the market is only moderately concentrated.

However, when the scenario is such that the system load was 600 MW at the last hour and the

present hour has additional load demands to be met, the generators with capacity left to offer will

be expected to provide the increased load. Assuming that at this operational condition only 1

generator from the company which owns the 3 generators has been fully dispatched and 5 other

generators are also fully dispatched, the market share of the first company now becomes 50%,

with the remaining market share of 50% divided equally among the independent companies.

Using these market-share numbers, the DHHI for this hour becomes 3750 = (50^2+25^2+25^2).

This clearly demonstrates the true market power of the first company and that it could potentially

game-the-market by using its strategic position. At an index value of 3750 the market now is in

the highly concentrated region. Therefore, the market operator has the appropriate signal to

mitigate this condition by adopting a more equitable dispatch arrangement that does not allow

companies this sort of market advantage.

Predictability of market conditions plays an important role in a company’s ability to

manipulate the market to its benefit. If the load profile for the market horizon can be predicted,

 20

individual companies can predict the bidding patterns of other generators in the market. As the

load increases, the number of generators available to the market becomes more limited and this

prediction becomes easier. If the market auction is repeated frequently, the predictability of the

market conditions becomes even easier. Based on these observations, it is seen that the real-time

markets that are closer to the operational window are easier to predict and provide additional

opportunities for manipulation. Because the day-ahead market is cleared once on the previous

day, opportunities for participants to predict possible outcomes of such a market decrease.

Hence it is expected that efforts to manipulate the market by its participants will be less likely to

take place, although they are still possible in day-ahead markets. However, since market

participants always strive for opportunities for their individual benefit, any mitigating strategies

undertaken at the time of day-ahead market dispatch would become very effective.

Generally there are two mechanisms that a company adopts in manipulating a given

market: withholding some fraction of capacity that can be offered, and offering some fraction of

its capacity at a price markedly above the marginal price. Let us assume that all generators bid

their true cost-of-production and that the marginal generator determines the system-clearing

price at the given level of demand. If a company decides to manipulate the market, it will

withhold offering into the market the next economic generator, which would potentially be the

marginal unit. By the same token, a generator that could be a price-taker at its lower operational

price could be withheld. Under both these scenarios the market price will be higher than with the

withheld generator in service. Clearly with this approach, all generators already committed to the

market will receive a higher price, including those generators that are selected by the market

from the company which withheld its last economic generator. The company will still experience

a higher profit, if the opportunity-cost given up by the withheld generator is lower than the

increased profits by the generators already in service by the same company. As an example,

assume that a company owns 3 generators, each having capacity of 100MW each, with

incremental cost rates of 1.2 $/MWh, 2.0$/MWh and 2.6$/MWh, respectively. Also assume that

there are 7 other generators, each owned by independent companies and that each of these

generators has 100 MW in capacity, with each having incremental cost rates of 2.5 $/MWh.

Based on a strict incremental-cost-rate merit order, 2 of the generators owned by the single

company would be selected for dispatch first, while the balance will be supplied by any other

 21

generator. If the load to be served is 400 MW, the corresponding static HHI value will be (30)2+

7x(10)2 = 1600 while the DHHI will be 16.672+5x16.672 = 1666.7. However, if the company

withholds its 2nd generator, the next economic generator will be chosen. Under this scenario, it is

clear that the HHI does not change, since this index uses the static installed capacity of all the

generators. However the corresponding DHHI would reflect the change in the market share for

the company withholding. The resulting DHHI for this case is 33.32+4x16.672=2222.2. Under

the circumstance since there would be more capacity available from the generator that did not

participate in the market, a higher DHHI for the market will be realized. This in turn will send

the correct signal to the market operator, indicating that the company is resorting to market

manipulation practices.

The second approach companies resort to in manipulating the market consists of raising

the price at which a given generator is offered into the market. In this scenario, there are three

possible outcomes. The first occurs when the generator’s offer-price is above the market-clearing

price. Since there are many other lower priced generators available, the generator which inflated

its price offer will not be chosen. It is clear that under this condition the market manipulation

strategy of the company fails. The second possible outcome occurs when the generator’s offer

price is below the market-clearing price. Here the generator will become a price-taker and hence

will receive the market-clearing price and appear to have a lower profit margin, without affecting

the overall market. In the third possible outcome, the gaming company becomes the marginal

unit; it would then reap the profits yielded by the inflated price but would have to be careful to

ensure that its price is still below the next most economical generator. The net gain from gaming

would then depend on two further factors; the predictability of remaining as the marginal

generator, as well as the market-share and price-sensitivity of the marginal generator.

Looking further at the practices adopted and recommended by the FERC, it is evident

that it relies heavily on the static HHI when investor-owned utilities apply for merger approvals.

The use of this index and the procedures governing the process is elaborated in its order 592-

policy statement [32]. By the same token, FERC has also urged each of the regional transmission

organizations to adopt more timely and accurate automatic mitigation strategies than the current

time-lagged mitigation processes used. That the current mitigation practices are performed after-

 22

the-fact, causes serious problems for the RTO’s in justifying their mitigation actions, which

entail corrections and adjustments to invoicing statements. As is evident, the current approach

creates a large number of disputes that need to be resolved, and this requires time and effort from

each of the parties involved. A better approach would be to conduct the evaluation of market

power at the same time the market is cleared so that the dispatch decisions consider the effects of

market concentration/ market-power, thereby avoiding any after-the-fact changes to the invoice

statements.

This dissertation therefore attempts to formulate a new methodology to manage the

market-power of participants while operating the day-ahead market at the lowest operational

cost. Since FERC is well versed with the static HHI, an index that closely follows it but has

alleviated its deficiencies, namely the DHHI, was selected for this study. As will be

demonstrated, the opportunities presented to generator owners participating in the market are

better captured in the DHHI. A look at issues California ISO, a regional transmission

organization, faced during the 2000-2001 period clearly demonstrates the deficiencies of the

static HHI, since the values reported were very low, although widespread gaming had taken

place. This demonstrates that the static HHI for market concentration evaluations is deficient and

hence justifies looking for an alternative but similar index whose evaluations take account of the

true opportunities available for gaming.

In the day-ahead market, the market-power indices for each market hour need to be

calculated. One way to verify that the market-power of all companies is in check for the entire

24-hour period would be to find the average modified DHHI over an entire day. Calculation of

average DHHI (ADHHI) can be represented mathematically as follows:

24/))])(([(
)(

1

2
24

1
∑∑

=

+

=

=
DN

i

i

j

jDsADHHI .

 In the evaluation process, at each economic dispatch strategy, the resulting si(D(j)
+
)

will vary. Here, only those units that can still offer into the market will be used in deriving the

 23

DHHI. In the strategy I am proposing, an acceptable dispatch solution will be obtained while

keeping the value of DHHI below industry recommended values.

 24

CHAPTER 5 - Survey of Prospective Optimization Algorithms for

Market Clearing Problem

 In using the mathematical representation of the day-ahead market dispatch to control

market manipulations by the participants, one needs to find a solution algorithm that allows for

multi-objective optimization. The selection of a suitable method becomes even more difficult

when the solution space is known to have local minima and the solution space is multi-

dimensional. While traditional algorithms such as linear programming, e.g., in the work of

Madrigal and Quintana [23], have been used in the past to solve market-clearing problems, they

predominantly suffer from having to search the entire spectrum to find the optimal solution.

These traditional methods therefore make the time and effort spent on finding the solution

unacceptably long and also suffer from getting trapped near local minima from time to time,

thereby preventing the iterations from getting to the desired global minimum. When dealing with

large power systems where there are thousands of generators and loads in the parameter space,

the solution process becomes cumbersome if all possible combinations are to be evaluated. Due

to these shortfalls in the traditional solution algorithms, researchers have diverted their attention

to alternative optimization techniques.

Furthermore, most real-life problem spaces include minimization of multiple competing

objectives. Most traditional solution techniques either force the solutions to combine multi-

objectives into a single objective-function, or they solve each separate objective-function one at a

time, as is done in classic primal-dual solution algorithms such as LaGrangian Relaxation (LR).

As explained in the work of Dekrajangpetch and Sheble [13], in using a LR algorithm for a

power auction implementation, the main mathematical problem is broken into two: a primal

objective-function and a dual objective-function. The quality of the solutions obtained by this

algorithm is represented by what is known as the “duality gap” or the spread between the primal

and dual objective-function values. The larger the gap between the two functions the more

uncertain one would be of the quality of results. The solution of the problem becomes even

 25

harder when there are constraints that cannot be violated. Due to such deficiencies, researchers

have been forced to look for newer solution techniques.

In recent years global optimization algorithms imitating or borrowed from certain

principles of nature have proven their usefulness in various applications. For example,

algorithms based on annealing processes, algorithms based on the central nervous system,

cognitive human learning algorithms, and algorithms based on biological evolution have become

popular. Of these, simulated annealing algorithms (SA), which are based on physical phenomena,

tabu search algorithms (TS) based on human learning phenomena, and the genetic algorithms

(GA) based on biological phenomena have gained popularity over the years due to their

optimizing merits. The basis of some of these algorithms is biological, while others imitate social

processes in their formulation.

5.1 Single and Multi-Objective Optimization

Most of the traditional algorithms reformulate a given multi-objective optimization

problem into a single objective-function to be minimized or maximized. As an example, the

revised simplex linear programming algorithm used by Huang and Song [35] to solve the

constrained-power-economic-dispatch –control-problem is a good illustration of how a single

objective-function is formed by reducing the given problem to a representative cost function. In

this method a single objective-function is formed by combining the multi-objectives to be

optimized by assigning relative weights to represent the importance of each of them. In order that

this solution approach works, an a priori assumption of the relative importance of each objective

has to be incorporated. This forces the solution to be guided in a given direction based on the

judgment of the investigator. In order to prevent this subjectivity coming into the solution space,

the concept of pareto dominance has been introduced. According to this principle, instead of

giving an absolute (scalar) value to a solution, a partial order is defined based on dominance. A

solution is said to dominate another solution when it is better on one objective, and not worse on

all the other objectives. Considering a decision parameter vector x in a parameter space X, a

decision vector a∈ X is said to dominate decision vector b∈X if and only if,

)()(, bOaO jjij ≤∀ ≠ and)()(bOaO ii < .

 26

This assumes without loss of generality that the objective functions O1,…,On need to be

optimized on all independent vectors a and b considered in the mathematical model. An

objective is said to be non-dominated if no solution can be found that dominates it. The

definition of the dominance relation gives rise to the definition of the pareto-optimal-set, also

called the set of non-dominated solutions. This set contains all solutions that balance the

objectives in a unique and optimal way. Since there is no single scalar judgment, this set usually

contains a wealth of solutions. As there is no notion present of one objective being more

important than another, the aim of multi-objective optimization is to provide this entire set.

Picking a single solution from this set is then an a posteriori judgment, which can be done in

terms of concrete solutions with concrete trade-offs, rather than using predetermined weighting

of objectives.

5.2 Tabu-Search Algorithm

Recognizing the strengths of cognitive learning, and also the deficiencies of other

algorithms such as artificial neural networks and simulated annealing, an algorithm that is based

on this cognitive-learning principle is worth investigation. Of the algorithms developed, the tabu-

search-meta-heuristic algorithm shows strong potential. Since its introduction to the scientific

world, many researchers have made a number of contributions to enhance its features and

capabilities. The word “tabu” or “taboo” comes from the language Tongan, used by aborigines in

the island of Tonga, to indicate things that cannot be touched because they are sacred. According

to the Webster Dictionary [50], the word tabu means, “a prohibition imposed by social custom as

a protective measure” or “something banned as constituting a risk”. Hence, the algorithm follows

the basic premise of avoiding counter-productive courses and retaining memory of those

unsuccessful attempts while moving the overall solution of the given problem towards its global

minimum. However, in the process, one cannot overlook the important association with the

traditional usage where the tabu gets conditionally modified over time, based on the

circumstances and events that succeed the initial tabu imposition. Therefore, to qualify a tabu

search algorithm as intelligent, one has to consider its key features of adaptive memory and

responsive exploration. The adaptive memory feature brings about effective and economic

searching of the solution space. Due to the fact that the local choices are guided by information

 27

collected during a search, tabu-search contrasts with memoryless designs that heavily rely on

semi-random processes based on sampling. Examples of such memoryless algorithms include

common semi-greedy heuristics, and annealing processes that heavily rely on the laws of

physics. The emphasis on collective memory in tabu search derives from the basic premise that a

bad strategic choice can yield more information than a good random choice. In a system that

utilizes memory, a bad choice based on strategy can provide more useful clues about how the

strategy may be profitably changed.

Responsive exploration on the other hand utilizes the basic principles of intelligent search

in which good solution features are exploited by exploring promising neighborhoods near the

good solutions found. In order to effectively design a good tabu algorithm, key memory

structures that retain recentness, frequency, quality and influence must be included. As one can

see, recentness and frequency complement one another. The quality dimension refers to the

ability to differentiate the merits of solutions visited during a given search. Memory can be used

to identify elements that are contributing to good solutions and the paths that lead to such good

solutions. The next dimension, “influence”, considers the impact of the choices made during a

search, not only on quality but also on the structure of possible solutions. Recording information

about the influences of choices on particular solution elements incorporates an additional level of

learning. A good tabu search algorithm utilizes multi-faceted memory structures and flexibility

to allow the search to be guided in a multi-objective environment.

The solution approaches used in tabu search meta-heuristic can be characterized as

identifying a neighborhood of a given solution, which contains other so-called transformed

solutions that can be reached in a single iteration. A transition from a feasible solution to a

transformed feasible solution is referred to as a move. A starting point for tabu search is to note

that such a move may be described by a set of one or more attributes, and these attributes when

properly chosen can become the foundation for creating an attribute-based memory. Following a

steepest descent / mildest ascent approach, a move may either result in a best-possible

improvement or a least-possible deterioration of the objective-function value. Without additional

control, however, such a process can cause a locally optimal solution to be re-visited

immediately after moving to a neighbor, or in a future stage of the search process.

 28

To prevent the search from endlessly cycling between the same solutions, the attribute-

based memory of tabu search is structured at its first level to provide a short-term memory

function, which may be visualized to operate as follows. Imagine that the attributes of all

explored moves are stored in a list, named a running list, representing all solutions previously

encountered. Then, related to a sub-list of the running list a so-called tabu list may be introduced.

Based on certain restrictions, the tabu list implicitly keeps track of moves or more precisely,

salient features of these moves by recording attributes complementary to those of the running

list. These attributes will be forbidden from being embodied in moves selected in subsequent

iterations because their inclusion might lead back to a previously visited solution. Thus, the tabu

list restricts the search to a subset of admissible moves consisting of admissible attributes or

combinations of attributes. The goal is to permit "good" moves without re-visiting solutions

already encountered from one-iteration to the next.

5.3 Multi-objective Tabu-Search-Meta-Heuristic Algorithm

 Given that many real-life problems have multiple objectives to be optimized, the next

focus should be evaluating the potential of the tabu-search algorithm to be used for multi-

objective optimization. Many researchers recently have extended the traditional tabu search

principles to solve multi-objective problems [25], [27], [28]. The multi-objective tabu search

algorithm in this research uses the principles of tabu ranking and tabu list approaches in its

solution criteria. Here, the solutions based on a neighborhood, tabu list and a tabu ranking list are

compared with one another. The solutions that have similar tabu-ranks are grouped together.

Those solutions that have the lowest tabu ranks are incorporated into the tabu list and visiting

them will be prevented in subsequent evaluations. Prospective solutions from one evaluation

cycle to the next are drawn from solutions that are in the neighborhood of previous solutions.

These selections will always be compared with the tabu list to ensure none is on the list.

The general outline of the multi-objective tabu search procedure can be represented by

the flow chart shown in figure 5.1.

 29

Figure 5.1 - Flow Chart of the Multi-Objective Tabu Search Algorithm

 30

5.4 Genetic Algorithms

Genetic algorithms are inspired by Darwin's theory of evolution [20], [21], [22]. In the

theory of genetics, a cell is considered as the basic building block that constructs every living

organism. However, each cell in turn has constituent building blocks called chromosomes.

Chromosomes in turn are made up of strings of DNA that serve as models for each organism.

When a block of DNA is combined together it is called a gene. Each gene encodes a particular

protein or a trait. For example the color of eyes of every human being is a trait. Possible value

settings in a gene to bring up a given trait such as blue or brown in eyes are called alleles. Each

gene has its own position in the chromosome. This position is called a locus. A complete set of

genetic material for all chromosomes in an organism is called a genome. A particular set of genes

in a genome is called a genotype. The genotype with later development after birth forms the base

for the organism's phenotype, its physical and mental characteristics, such as eye color,

intelligence, etc.

Birth of offspring from parents is known as the process of reproduction. During

reproduction, essential traits of each parent are carried forward into the child’s chromosomes.

This process is identified as recombination or crossover. Here, genes from parents form into

whole new chromosomes. These new chromosomes then go through what is identified as

mutation. Mutation is the process whereby elements of DNA are slightly modified. Modification

is actually caused by errors in copying from parents in the reproduction process. This however,

causes offspring to show their own unique characteristics even though exhibiting traits from both

parents they originated from. Once an offspring is created, its ability to reproduce will determine

its success in maintaining its presence in future generations.

The popular genetic-algorithm optimization techniques use the basic biological principles

described above. In these algorithms an approach similar to the evolutionary process is used. The

solution process begins with a set of chromosomes identified as the parents that belong to a

population. Chromosomes that are considered as the “healthiest” in a given generation are used

to form the chromosomes of the new population in the next generation. The selection of the next

population is motivated by the hope it will be better than the old one. The members of the

subsequent generation are called offspring. All offspring are selected according to their fitness or

 31

their ability to reproduce. The process of parents creating their offspring is repeated for a number

of generations until some condition such as the total number of generations the process is

allowed to go through or the relative distinction between a set of parents and their offspring

becomes very insignificant. When a genetic algorithm is used for solving a given problem a

number of factors have to be considered. First, key features of modeling a chromosome have to

be identified. Then the basis of generating offspring chromosomes from the each of the parent

chromosomes has to be determined. Here, heredity of each parent will be used for formulating

the offspring. The notion of using heredity is defined by two basic operations: mutation and

crossover. In the biology analogy, each chromosome of a given species can be represented by an

encoding methodology. Use of binary encoding to represent chromosomes is a very common

practice, although it is not suitable for solving every practical problem. Looking closely at the

day-ahead market and its operation, one could clearly see the benefits of using a value-encoding

methodology. Here the distinction between the value-encoding method and the permutation-

encoding method has to be clearly identified. In contrast to permutation-encoding, where the

order of selection of genes in a chromosome is determined by the problem, value-encoding uses

values that represent a feature of the problem to be solved in the values in the alleles. An

example shown in Figure 5.2 best illustrates the principles of encoding. Considering the

application of a day-ahead market dispatch problem, each allele value in a given chromosome

represents the generator output needed to supply a given load in the system. The values in each

allele in each parent depicted in Figure 5.2, show the order in which generators are chosen in

supplying the given system load for a given market hour along with corresponding output from

each generator. Based on this approach, the values 30, 45, 25, 45, etc., depicted in parent 1,

indicate that when supplying the system load, the first generator will supply 30 MW, while the

second generator will supply 45 MW. The generation offered by the next 2 generators under this

arrangement will be 25 MW and 45 MW, respectively. This process of constructing the

chromosomes will be continued until the total system load is met. The generation supply

arrangement with the second parent chromosome will be in the order 45, 30, 70, etc. Using each

of these parent chromosomes the system load of 260 MW will be met. However, it is worth

noting here that in order for a system to be able to meet the total load demanded, the total

generation available must exceed the highest load that needs to be supplied at any hour of the

day. As an example, if the peak-load to be supplied for a given market day is 350MW, the total

 32

generator capacity available to the market must exceed this 350MW, although the load

demanded at different hours of the day would be less than this peak load.

The principles of crossover are next used to create an offspring from its parents. In the

process, selected genes from one sub set of parents are chosen and mixed with different genes

from other parents. This process is identified as crossover is best explained by an example as

depicted in Figure 5.3. The example described here, represents a very basic crossover method in

which a single crossover point was selected. Depending on the nature of the species and the stage

of evolution, the crossover principles can take many different forms. In the method considered

here, genes that are to the left of the crossover point from the first parent are combined with

genes to the right of the crossover point from the second parent to form an offspring. Thus a new

generator order is created in forming the offspring. To avoid duplication of generators in a

chromosome due to crossover, only those pairs of parents who have the same generators to the

right of the crossover point are used in the crossover process. Any pair of parent chromosomes

that do not satisfy this condition will not be chosen for the crossover process. An example using

3 parent chromosomes would elaborate the selection process described above. Let us assume that

a 1st parent chromosome has a generator order of 2,6,4,1,7,8,5,3, while a 2nd parent chromosome

has a generator order of 8,1,5,7,2,3,6,7 and a 3rd parent chromosome in the population has a

generator order of 1,2,4,6,3,5,8,7. Considering the first two chromosomes, a crossover point that

allows the exchange of generator order between these two chromosomes cannot be found and

therefore the second chromosome will be discarded from the viable list of parent chromosomes

for crossover with the first parent. On the other hand, considering the 1st and 3rd chromosomes, a

crossover point after the 4th gene would allow these two chromosomes to cross over easily and

will form a viable pair. It is worthwhile to note that based on the crossover methodology adopted

for solving the day-ahead market problem, formation of parent chromosomes that are unable to

cross over with one another will be avoided, as explained in the next chapter. The associated

generator outputs are then assigned to the offspring chromosome, so that the total generation is

met by the arrangement. Once the crossover process is complete, the child’s chromosome

undergoes a process called mutation. Mutation is the process leading an offspring to have its own

identity. An example of a simple mutation process is demonstrated in Figure 5.4. Here mutant

offspring are formed by replacing two or more alleles from the original offspring. In the example

 33

presented below, the allele 2 and 4 of the original offspring 1 and original offspring 2 have been

first exchanged and then replaced with two new values to form two new mutant offsprings. This

process creates alleles in the mutant offspring that are not found in the parent chromosomes. The

fact that the mutant offspring have their unique features deviant from their parents is

demonstrated here. Similar to the crossover process, the assignment of gene values that

represent the output from each generator are adjusted so that the total load to be served is met.

Using the example depicted in Figure 5.4, since all other allele values are kept constant from the

parent chromosomes, in order to retain the total system generation at 260MW, the two mutated

allele values in offspring 1 have to sum up to 90 MW, while the mutated allele values in the

offspring 2 have to sum up to 75MW. In the two examples mutated values of 60 and 30 for

offspring 1 and 40 and 35 for offspring 2, which are not values found in the parent

chromosomes, could be chosen. These are selected at random while ensuring that the total

combined outputs from the 2 alleles are kept at the required 90MW and 75MW, respectively. As

depicted in the example below in the mutation process, not only will the order of the generators

be changed, but also allele values will be changed from the parent chromosomes. Also, to keep

chromosomes viable for crossover as explained on the previous page, only the genes to the left of

the crossover point will be selected for mutation.

Figure 5.2 - Parent Chromosomes

Figure 5.3 - Offspring Chromosome

Parent 1 30 45 25 45 60 15 30 10

Parent 2 45 30 70 45 15 10 20 25

Parent 1 30 45 25 45 60 | 15 30 10

Parent 2 45 30 70 45 15 | 10 20 25

Offspring 1 30 45 25 45 60 | 10 20 25

Offspring 2 45 30 70 45 15 | 15 30 10

 34

Figure 5.4 - Mutated Offspring

The selection of a crossover and a mutation mechanism as demonstrated in the examples

in the previous section will not alone guarantee that the generations will migrate toward forming

healthy offspring. The level of crossover and mutation applied when forming a new generation

from a parent generation governs the success of the evolution process. Typically a predetermined

percentage of parent chromosomes from the total population are selected for crossover at every

generation. In theory one could choose a crossover percentage between 0% and 100%. However,

given that at 0% crossover the new population will be an exact copy of the previous generation,

selection of this crossover level is generally avoided. On the other hand if the new population is

formulated using a 100% crossover, all offspring formed will be completely different from the

parents. This would eliminate all good traits of the parent chromosomes from the offspring and is

not recommended due to the fact that there will be no assurance of convergence. Many practical

applications of genetic algorithms have used crossover percentages around 95% with the

intention of allowing some of the fit parent chromosomes to migrate to the next generation

without any alterations.

Typically a very low mutation rate is selected to reduce the amount of randomness

introduced into the solution. Selecting an appropriate level of mutation is the key to preventing a

genetic algorithm from getting entrapped in local minima.

Before proceeding with selecting a crossover and a mutation scheme, a given genetic

algorithm must first use a solid method of forming new offspring from its parent generation.

There are many different techniques that are commonly used for accomplishing this. Following

Original offspring 1 30 45 25 45 60 | 10 20 25

Original offspring 2 45 30 70 45 15 | 15 30 10

Mutant offspring 1 30 60 25 30 60 |10 35 25

Mutant offspring 2 45 40 70 35 15 | 15 30 10

 35

is a listing of some of the most commonly used methods. Probing further one can see that some

of these methods are mutually exclusive of others, while some methods can be used in

combination. One selection process is known as elitist selection. Here, best members from each

parent generation are selected and retained to be included when forming the next generation.

Experience shows that using pure elitism should be discouraged. Many studies recommend the

use a modified form of elitism, in which only the single best or a few of the best individuals from

each generation are retained. A second popular approach is known as Roulette-wheel selection.

This method is based on rating the chance of one individual being selected over its competitor.

Conceptually, as the name implies, this selection process is very much akin to a game of roulette

where each individual gets a slice of the wheel. The size of the slice assigned from the wheel will

be dependent on the fitness of a given chromosome. In the method, fit offspring get a larger slice

of the wheel assigned to them, while the less fit ones get smaller sizes assigned. The wheel is

then spun, and whichever individual "owns" the section on which the pointer lands each time is

chosen. The concepts of a roulette wheel is easily modeled using number ranges to represent the

slice of the wheel, while a random number generator could be used for representing the spinning

of the pointer. Another method commonly known as scaling selection uses a criterion based on

the strength of the selective pressure. In this method the probability of selection increases as the

average fitness of the population increases. This method is more appropriate when all candidates

have a relatively high fitness rating and a small difference distinguishing one another. Another

commonly used selection criterion is tournament selection. This method selects multiple

subgroups from the original population and the reproduction is limited to parents from these

subgroups. A member from one subgroup is combined with another member from a different

subgroup to form an offspring. Hierarchical selection is yet another common method.

According to the principles of this method, individuals go through multiple rounds of selection in

each generation. Lower-level evaluations are faster and less discriminating, while those

individuals that survive to higher levels are evaluated more rigorously. The advantage of this

method is that it reduces overall computation time by using faster, less selective evaluation to

weed out the majority of individuals that show little or no promise only subjecting those who

survive this initial test to more rigorous and more computationally expensive fitness evaluation.

 36

 Population size also plays a vital role in a genetic algorithm (GA). Population size in this

context does not represent all possible solution permutations to a given problem. The population

here represents a sample that is chosen to be representative of the entire solution set. Typically

the population size of a GA is kept at a fraction of the entire solution set. The number of

chromosomes in a generation will govern the time for finding an optimal solution to a given

problem. If there are too few chromosomes, GA has few possibilities to perform crossover and

only a small part of the search space is explored. This may result in GA ending up with a sub-

optimal solution. On the other hand, if there are too many chromosomes, GA will slow down,

outweighing the attractiveness of this algorithm over the traditional solution techniques.

Research shows that moderate-sized populations are best suited for many practical problems. A

flow chart for a typical GA solution algorithm is represented in Figure 5.5.

 37

Figure 5.5 - Flow Chart representing a Genetic Algorithm

5.5 Combined Multi-Objective Tabu/Genetic Algorithm

In the combined tabu/genetic algorithm solution methods the advantages of both systems

are exploited while neutralizing some of the deficiencies of each of the base algorithms. The tabu

search algorithm tends to look around the neighborhood of a selected solution. While it is

capable of moving towards a solution fast once in the neighborhood, depending on the initial

 38

selection, it may not be able to converge to a global minimum. Since on many occasions the

initial solution is selected at random, the chance of selecting a bad initial solution is high. If this

happens the algorithm will not be capable of converging to the global optimum solution since

this algorithm concentrates on searching solutions in a predetermined neighborhood. On the

other hand, retaining memory of bad neighborhoods visited during the attempts to arrive at a

solution and avoiding these bad neighborhoods is a key merit of the tabu search algorithm.

Conversely, the solution quality from a genetic algorithm tends to suffer when the solution space

becomes large. However, a genetic algorithm has the ability to identify fit solutions and generate

offspring without being limited to a fixed neighborhood. Since traditional genetic algorithms do

not have any mechanisms for retaining their previous actions, an algorithm that combines the

cognitive learning capabilities of a tabu search algorithm with a genetic algorithm would offer

great potential. This combined approach can be justified through a real life example where some

plants are cross-pollinated to form strong offspring, while based on previous experiences some

species are not allowed to cross-pollinate since the resulting offspring would be too weak to

survive. The operational logic of the combined Tabu/GA algorithm is presented in Figure 5.6.

As described in the flow chart, the initial population in this algorithm will be formulated similar

to that in a genetic algorithm. However, the successive population selections will be done in a

given neighborhood as in the Tabu algorithm, and a tabu list will be maintained to ensure that

previously visited solutions that have been “tabooed” are not visited in subsequent populations.

Previous work done using a combined Tabu/GA algorithm [16] shows that the results

obtained were much better than those obtained using a plain GA algorithm. As represented in

[17] the combined algorithm is found to be faster and more efficient than each algorithm used in

isolation. The results are depicted for problems with non-linear and discontinuous objective

functions. The work other researchers have done to solve engineering problems and their

reported successes made this algorithm stand out as a promising one to be investigated.

 39

Figure 5.6 - Flow chart of the combined Tabu/Genetic Algorithm

 40

5.6 Non-Dominated-Sorting-Genetic Algorithm: NSGA-II

As described in the previous sections, the presence of multiple objectives gives rise to a

set of optimal solutions, commonly known as pareto-optimal solutions, rather than a single

optimal solution. Classical optimization methods suggest converting the multi-objective

optimization problem to a single-objective optimization problem by selecting one pareto-optimal

solution at a time. This necessitates re-simulating for every alternative condition. In order to

alleviate this need for repeated simulations the multi-objective evolutionary algorithms have

become increasingly popular in the recent years. Using a multi-objective evolutionary algorithm,

multiple optimal solutions can be achieved in a single simulation run. In these approaches, a

simple evolutionary algorithm (EA) is extended to maintain a diverse set of solutions with the

emphasis on moving toward a true pareto-optimal region. The nondominated sorting genetic

algorithm proposed in [36] was one of the first such algorithms. Over the years many

researchers have pointed out some deficiencies of this algorithm. High computational complexity

of the nondominated sorting method used, failure to use an elitism scheme in the solution

algorithm, and the requirement for specifying a sharing parameter in the algorithm are some of

those identified. Based on these issues, Deb, et al. [19], have proposed an improved version of

their NSGA algorithm called NSGA II. In their paper [19] a comparison of two other powerful

algorithms, Pareto-archived evolution strategy (PAES) and strength pareto EA (SPEA) with

NSGA II algorithm for different types of problems, shows that this algorithm out performs its

competitors when used for solving widely varying problems. One major advantage an algorithm

might possess is the ability to include constraints in the solution space. NSGA II algorithm has

the potential for handling constrained problems with ease. This makes the NSGA II algorithm

much more suitable for real life problems such as the day-ahead dispatch problem being

considered in this research.

Two distinct entities are calculated in NSGA II to validate the quality of a given solution.

The first is a domination-count where the number of solutions that dominate a given solution is

tracked. The second keeps track of how many sets of solutions a given solution dominates. In the

 41

process, all solutions in the first non-dominated front will have their domination count set to

zero. The next step is to select each solution in which the non-domination count is set to zero and

visit all other solutions in the solution set and reduce the domination count by one. In doing so, if

the domination count of any other solution becomes zero, this solution is grouped in a separate

list. This list is flagged as the second non-dominated front. This process is then continued with

each member of the second list until the next non-dominated front is identified. The process is

continued until all fronts are identified. Based on the non-domination count given to a solution, a

non-domination level will be assigned. Those solutions that have higher non-domination levels

are flagged as non-optimal and will never be visited again. One of the key requirements of a

successful solution method is ensuring that a good representative sample from all possible

solutions is chosen. Introduction of a density estimation process and a crowded-comparison

operator has helped NSGA II to address the above need. The crowding-distance computation

requires sorting a given population according to each objective function value in an ascending

order of magnitude. Once this is done, the two boundary solutions with the largest and smallest

objective value are assigned distance values of infinity. All other solutions lying in between

these two solutions are then assigned a distance value calculated by the absolute normalized

distance between each pair of adjacent solutions. After each population member is assigned a

crowding-distance value, a crowded-comparison operator is used for comparing each solution

with the others. This operator considers two attributes associated with every solution, which are

non-domination rank and crowding-distance. Every solution is rated with others based on the

non-domination rank. Solutions with lower ranks are deemed better in this attribute. Once all

solutions that belong to the best front are chosen based on the non-domination rank, the solution

that is located in a lesser-crowded region is considered better and forms the basis of the NSGA II

algorithm. The flow chart depicting the NSGA II algorithm is shown in Figure 5.7.

 42

Figure 5.7 - Flow chart of the NSGA II Algorithm

 43

CHAPTER 6 - Application of Evolutionary Algorithms to the Day-

Ahead Market Problem

This chapter presents the criteria used in formulation of the day-ahead market problem

using three of the most promising solution algorithms. Since the solution of a given problem

requires careful modeling to fit into the chosen solution algorithm, the preliminary sections will

attempt to present the rationale used in the modeling process.

6.1 Multi-Objective Tabu-Search Algorithm

All problem-specific parameters were chosen as described below to model the given day-

ahead market dispatch problem. The assumptions and rationale for selecting a given value for

each parameter are described in detail in the following sections.

6.1.1 Initial Solution Selection

The convergence to the optimal solution in the tabu-search algorithm is greatly dependent

on selecting a suitable initial solution. Given that the tabu-search algorithm relies on searching

only in a given neighborhood, time and effort spent on selecting the starting solutions is

worthwhile. Although an initial solution can be chosen at random, an initial solution that is

merit-order based on price characteristics of the generators, combined with the corresponding

market-power indices was chosen in this study. First, all generators were ranked based on their

individual incremental price curves. Next the relative market-power index for each generator at

the selected merit-order commitment was calculated. This selection approach is best explained

by an example. Consider that a given power market had 3 generators available for supplying a

day-ahead market, where the incremental prices for three generators are 2.0, 1.2 and 2.5 $/MW,

respectively. Moreover, these generators are capable of supplying up to a maximum of 100MW,

30MW and 150MW, respectively, to the market. If the generators are selected at random,

 44

generator 2 could be selected first, followed by generator 3 and generator 1 to supply the system

load for a given market hour. Assuming that the system load is 225 MW, generator 2 would

supply 30MW, followed by generator 3 and generator 1, supplying 150MW, 45MW,

respectively, to meet the total system load. The corresponding DHHI for this arrangement is

10000, since only generator 1 has capacity left to offer to the market. The cost of supplying the

market with the above dispatch arrangement is $501.00. As an alternative, if a merit-order based

on incremental costs of generators was used, generator 2 will be chosen first, followed by

generators 1 and 3. Even under this arrangement, if all economic generators are allowed to

supply the market up to their maximum capacity, it would still result in an overall DHHI of

10000, with an overall cost of operating the market of $473.50. Given that this approach is not

any better than the random selection approach described previously, a second selection criterion

to arrive at an initial DHHI that is lower than the maximum value of 10000 was considered. In

this process, the generator that is the most economical is operated to its capacity. The remaining

system load is then supplied by generators 1 and 3, each operated at a level that is equally below

its maximum capacity. For the example considered, with generator 2 operated at 30 MW, the

remaining system load to be supplied becomes 195 MW. With a combined total maximum

capacity of 250MW between generators 1 and 3 and a combined load of 195 MW to be supplied

by these generators, a combined total of 55 MW of unused capacity will be available from these

two generators.With the spare capacity equally divided amongst these generators, generator 1

would supply 72.5MW (100 – 55/2) of the load, while generator 3 would supply 122.5 MW (150

– 55/2). The resulting DHHI for this arrangement using the formula described in Chapter 3

(page 19) of this dissertation is {((100.0-72.5)(100)/((100.0-72.5)+(150.0-122.5)))^2 + 0+ ((150-

122.5)(100)/((100.0-72.5)+(150.0-122.5)))^2} = 5000. The corresponding total cost of supplying

the market under this dispatch scenario was computed and found to be $487.25. The cost

although higher than the previous dispatch arrangement clearly forces the market concentration

index to be half of what it was before. A pre-filtration process based on the approach described

above was adopted when formulating the initial solution candidates. The same process is

extended when there are more than three generators in a given system; dispatch all but the two

most expensive generators to their economic maximum limits, while allowing the last two

generators required to supply the remaining load equally, as described above. As an example, if

we consider a power system with 10 generators and with a system load of 600MW, proceeding

 45

with the approach described above, the most economical 8 generators will be dispatched in their

merit order to their maximum default capacity; assuming that the total generation offered by

these 8 generators is 500 MW, the remaining system load to be supplied by the most expensive

generators would be 100 MW. If the remaining 2 generators had default maximum capacities of

100 MW and 150 MW, respectively, then the generator with a capacity of 100 MW will be

operated at 25MW, while the second generator will be operated at 75MW to meet the required

100 MW of load. This way both generators are operating at 75 MW below their maximum

capacity. This process of allocation will work for most generator pairs since the allocation

process will always assign half of its total available capacity, except in the case of a very small

generator which has a capacity that is less than half its share. As an example, if we consider the

9th most expensive generator to have a capacity of 40 MW, considering the load of 100 MW to

be supplied between the above generator and the 10th generator with a capacity of 150 MW, the

allocation for each generator would be (150+(40 -100))/2 = 90/2 = 45 MW. Since the 9th

generator only has 40 MW to offer, it would be unable to offer the 45 MW expected to be

supplied under this scenario. When such a situation arises, the algorithm could be extended to

include another generator, which would be the the next most expensive generator (or the 8th

most expensive generator in this case), to supply the uncommitted load with all other generators

dispatched to their maximum limits in the merit-order. To elaborate this, when such a situation

arises, the load to be supplied will be equally shared among the three most expensive generators

instead of the two most expensive generators and each will be operated at a level that is one-third

of the load to be supplied below its maximum capacity. The same process is repeated for all

hours of the market day. The whole idea behind this approach is to use initial solutions that do

not result in extreme values for the two objectives being optimized.

6.1.2 Selection of the Length of Tabu-List

The tabu-list refers to a running list of solutions that were previously found and are to be

avoided as possible solutions in subsequent evaluations. If this list is too incomplete, the chances

of revisiting an unsatisfactory solution will be high. This would bring about the possibility of

iterations cycling without finding the optimal solution. If however, the list is made too large, it

will too heavily restrict the solutions to be examined. The length of the tabu-list could be held

 46

constant or could be varied from one iteration to the next. Based on previous work done by

Glover and Anderson, who are considered pioneers of the tabu-search algorithm [37], the tabu-

list length was held constant for the analysis conducted in this research. Many researchers who

have used the tabu-search algorithm for practical applications have recommended the use of a

tabu-list length between 7-15. A tabu-list length of 10 was used in the day-ahead market dispatch

problem. With the tabu-list length constant, a running list of the 10 most recently visited

solutions that are closest to the best solution but worse than the most recent best solution will be

kept. Once a new solution is found, it will first be compared with the best solution found so far.

If the new solution has improved, the last best solution will be added to the top of the tabu-list.

This forces the 10th solution in the tabu-list to roll off the tabu-list and each of the previous

solutions to move down the list, making way for the newest addition. Also the most recently

found solution will become the best solution to be improved. If on the other hand, the latest

solution has not improved on the previous best solution, it will be added to the tabu-list at the

appropriate list ranking. When the next set of solutions is selected, solutions in the tabu-list will

be avoided since the list contains all those solutions most recently visited which are in the

neighborhood of the best solution although not better than the best solution retained.

6.1.3 Neighborhood-Solution-Space

The maximum number of trial solutions considered in each iteration is referred to as the

neighborhood-solution-space-parameter for a TS algorithm. Typically this value is set to be one

less than the tabu-list length selected. Since the tabu-length was selected to be 10 when solving

the day-ahead dispatch problem, a neighborhood-solution-space-parameter value of 9 was

chosen based on the recommendations made by other researchers. The next step is to select

candidate solutions for the neighborhood-solution-space. The best solution found through the last

iteration cycle is used as the foundation for forming the candidate solutions in the neighborhood

space. With this approach, possible candidate solutions in the neighborhood of pervious best

solutions will be chosen by altering the generator output values for a selected subset of

generators available for supplying the market. In the process of selection, potential candidate

solutions are checked against the tabu-list to ensure that tabu solutions are not revisited. An

example to elaborate the selection of a neighborhood solution space for a sample day-ahead

market dispatch problem is described below. For a 3-generator dispatch problem which began

 47

with a first solution of 30MW, 20MW and 30MW, a possible sample pair of neighborhood

candidate solutions is, 25MW,25MW,30MW, and 30MW, 25MW, 35MW. In general, these

candidate solution vectors are formulated based on the step by which each generator can move

up or down from its current dispatch level ensuring that the generator maximum and minimum

limits are maintained. In the example above all three generators are assumed to have adjustment

steps of 5MW each. Hence an equal increase in one generator would be offset by an equal

reduction in a second generator, so that the total power supplied by the generators meets the

system load demanded. In order to truly be in the neighborhood of the first solution, a single

generator will be first adjusted from its current operating point increasing its output based on its

adjustment step. This increased output will then be compensated by either a single generator or a

combination of generators in the pool by having their outputs reduced based on their adjustment

steps, so that the total power generated is kept constant. As an example, if the adjustment step of

the first generator selected at random to find an alternative solution in the neighborhood is

10MW, a second generator that has an incremental step of 10MW or 2 generators with

incremental steps of 5MW each will have to be chosen to compensate for the adjustments made

in the first generator so as to keep the total generation for the hour constant. Generally the

number of generators adjusted in a single neighborhood search is maintained at around 2 to 3

generators at a time. If the system has more generators than is required to supply the total load

demand in a given market hour, some will be turned off.

6.2 Multi-Objective Tabu/ Genetic Algorithm

In this method, the merits of multi-objective tabu-search algorithms and those of the

genetic algorithms were combined. The approaches adopted when selecting the parameters for a

multi-objective tabu-search algorithm are extended in this method so that a comparison between

the MOTS algorithm and the MOTS/GA algorithm can be made. Selection of GA algorithm-

specific parameters such as the encoding schema, crossover probability and mutation schemes,

was done as described in the following sections.

6.2.1 Encoding Schema

A value-encoding schema was adopted to represent the day-ahead market dispatch in this

research. This eliminated the need to define an additional translation schema to convert the

generation offer-values into representative alleles at the time of building the chromosomes. The

 48

length of a chromosome was chosen to be equal to the total number of generators that were

participating in the market for a given hour for a given market day. For example, if 10 generators

were participating in the market, then the length of the chromosome was chosen as10. The

entries in the chromosome first represent the order in which the generators are committed, then

corresponding power outputs of each generator for a given market hour are added to each allele

value. A separate set of chromosomes for each hour of the market day with the corresponding

entries representing the output of each generator at that hour is considered simultaneously. The

order in which the generators are used for supplying the load for a given market hour is

represented by the gene order in the chromosome. As an example, the first gene will represent

the generator which is used for supplying the market first; the second gene will represent the

second generator selected for supplying the remaining potion of the market. This process is

repeated until the total system demand for that hour is met by moving from the left most gene to

the right. The chromosomes for each subsequent hour are begun with the chromosome for the

previous hour. This process will not only minimize the randomness introduced into the generator

selection process but also will minimize the number of generators switched on and off from one

market hour to the next. In most cases only a few allele values are modified to account for the

demand variation from the previous hour to the hour being considered. An example to illustrate

this scheme is presented below. Assuming a power system with 6 generators, the first step is to

select the order in which generators will be selected to supply the demand. This order will be

determined randomly. In this example, for market hour 1 the generator order will be chosen at

random as 3, 4, 2,1 , 6 and 5 for one chromosome, while a second chromosome will be

3,2,4,1,5,6. The next step is to change the allele values of each of the genes to represent the

output from the generators. These allele values will then be populated with appropriate

generator-output values within their economic maximum and minimum limits. In this example,

for chromosome 1, the corresponding outputs could be 100, 40, 60, 70, 0, 0 assuming a total

system load of 270MW. For chromosome 2 one possible allele configuration could be 100, 60,

40, 70, 0, 0. Assuming that the system demand increased to 300 MW for market hour 2, one

possible adjustment to chromosome 1 for hour 2 could be 100, 40, 60, 70, 30, and 0.

Alternatively, chromosome 1 could be 100, 40, 60, 80, 20, 0 or 100, 40, 60, 70, 20, 10, these

being other possible candidate solutions that are in the neighborhood of the original solution. The

values selected for each allele will be based on the maximum and minimum economic limits of

 49

the generator to be used and also based on the step by which each generator could be moved up

or down from its current operating point. Extending the examples above, since generator 3 is

selected as the first gene of chromosome 1, the allele value to be populated will be selected at

random, based on the fact that generator 3 has an economic minimum limit of 30 MW and an

economic maximum limit of 150 MW; a value of 100 is selected at random, and the same

process is repeated for generators 4, 2, 1, 6 and 5. When each subsequent generator is selected,

the output assigned to it will be determined by its minimum and maximum operating limits along

with assuring that the output selected does not exceed the total system demand to be supplied.

Typically the output values selected from each generator are chosen to be multiples of 10 MW.

6.2.2 Crossover schema

For simplicity, a single crossover scheme was adopted in the solution formulation.

Furthermore, the crossover scheme included a single crossover point as well. The location of the

crossover point was selected randomly at the beginning of the study and this value was kept

constant in all subsequent crossover operations when forming a new population from a parent

generation. To illustrate the notion of the crossover point, a crossover point of 2 would indicate

that the last 2 genes of a given chromosome will be interchanged with the last 2 genes of another

chromosome, while a crossover point of 5 would indicate that the last 5 genes of a given

chromosome will be interchanged with another compatible chromosome and its last 5

chromosomes. In order to ensure that the chromosomes in a given population have a sufficient

number of partners to crossover, at first, the generators that are to the right of the crossover point

will be selected based on their incremental costs. The generators which are most expensive will

be used for making up this section. The next step would be to eliminate those generators that

were chosen to form the right portion of the chromosome and select the remaining generators to

form the left half of the chromosome. As an example, if we consider a power system with 10

generators and a crossover point of 4, the 4 most expensive generators will be chosen for the last

4 genes of the chromosome. The remaining 6 generators which are all different from the

generators to the right of the crossover point are then reserved for the left half of the

chromosome. This assignment will then assure a population that has chromosomes that can

crossover with one another. Extending the example with 10 generators, if generators 2,3,5,7 are

found to be the most expensive in the power system, they will be chosen for populating the right

 50

halves of the chromosomes in a population. Then generators 1,4,6,8,9,10 will be automatically

left for selection for the left halves of the chromosomes. Now any chromosome that is formed by

adopting the approach described above would yield a chromosome that is compatible for

crossover with another chromosome that is constructed in the same manner in the same

population. This approach can be graphically shown in Figure 6.1.

Figure 6.1 - Crossover to form and Offspring

Parent 1 Parent 2 Offspring 1

 + =

Here, an offspring can be formed from a pair of parents using the genes up to the

crossover point from one parent and with the genes beyond the crossover point from the second

parent. Typically, a high crossover rate is chosen to ensure that the solution traverses a sufficient

portion of the solution space. Typically it is recommended that 85%-95% of the members from

the current generation be used for crossover operations when creating a new population. The

remaining 5%-15% of the original chromosomes are allowed to propagate to the next generation

without any crossover. As an example, if a crossover rate of 85% is selected with population size

of 200, only 170 chromosomes will be selected for crossover. The remaining 30 parent

chromosomes are allowed to migrate to the next generation without any crossover. The

crossover process will determine the generator selection order. As an example, if one of the

parents has a generator selection order of 3, 1, 2, 4, 6, 5 and the second parent has the order 3, 2,

4, 1, 5, 6 with the crossover point selected to be after gene 4, the resulting offspring

chromosomes would be 3, 1, 2, 4, 5, 6 and 3, 2, 4, 1, 6, 5, respectively. Once the crossover

process is completed, output of each generator is checked to ensure that its limits are not

violated. Using the above generator loading order, let us assume generator outputs are 30, 40,

50, 50, 30, 20 in the first chromosome and 30, 50, 40, 50, 40, 10 in the second chromosome.

Even after the crossover, the generator loading pattern in each chromosome is maintained at the

previous levels. With the revised generator order, if the output of generator 5 in chromosome 2 is

not adjusted appropriately, the economic maximum limit of 30MW in this generator will be

 51

exceeded. In order to ensure that the generators are operated within their economic limits, the

output pattern in chromosome 2 will be adjusted. Thus, the first child chromosome with

crossover would not require any adjustments to its generator outputs while the second

chromosome would need an adjustment to make the chromosome become 30, 50, 40, 50, 30, 20.

Reduction of 10 MW in the fifth generator is compensated by an increase of 10 MW in the sixth

generator. Given that a 24 hour day-ahead market is considered, the same generator selection

order is used for every hour of the day unless the selection is unable to supply the system

demand. This approach would ensure that the least number of generators would be turned on and

off throughout the day. Also with this approach the market would transition from the previous

hours and day without major deviation in the selected generator operating schedule for the day. If

the generator selection order as proposed by a given chromosome is unable to supply the system

load in any one of the market hours, this chromosome will be discarded since it is no longer a

viable solution for supplying the market.

6.2.3 Mutation Scheme

At the conclusion of the crossover, a selected sample of offspring chromosomes is chosen

for mutation. In order to limit the level of randomness introduced into the solution process, the

mutation scheme was kept constant from one generation to the next. Experts have recommended

a mutation rate between 0.5%-1.0% as suitable for solving practical problems. A mutation rate of

0.8% was selected for the test cases analyzed in this research. With an appropriate mutation rate

selected, the next step is to identify a mutation technique. An approach identified as order-

changing mutation was adopted in this research. In this method the gene order between a pair of

genes is reversed to form a new mutated offspring chromosome. Considering a day-ahead market

with 9 generators available, and selecting only 0.8% of the total number of child chromosomes to

be mutated, 2 child offsprings from a population of 250 will be subjected to mutation. The

order-change scheme is kept constant from one population to the next. An example of the order-

changing mutation is shown below. In this example gene 2 is swapped with gene 7 to form a new

chromosome. With position swapping the order in which a given generator is committed to

supply a given day-ahead market is determined. As described in Chapter 5, a random process is

used to assign generator output values for the chromosomes selected for mutation. However,

 52

given that the output levels of all other generators are not altered during mutation, the total

output from these two generators before and after mutation will be maintained to ensure that all

generators collectively are able to supply the system demand. Moreover, the allele values for

each of these genes will have to be selected within the respective minimum and maximum

economic limits of each generator occupying the given gene. In order to ensure that

chromosomes resulting from mutation still would allow for crossover in forming subsequent

populations, the pair of genes selected for mutation has been fixed to the left of the crossover

point. The example presented below considers a mutation process for a chromosome where the

crossover point was 2 or after the 7th gene of the chromosome. During the mutation process the

values that represent the generator output also have been adjusted as the generator order was

reveresed.

(100 20 30 40 50 60 80 90 70) => (100 60 30 40 50 60 40 90 70)

6.2.4 Selection Scheme

A criterion for identifying the best chromosomes from the existing population to be

retained in the next population is needed as part of the GA algorithm. The method adopted to

retain the best chromosomes from one population to the next is identified as the selection

scheme. The parent chromosomes that are retained from one generation to the next are

considered as elite chromosomes. The percentage of elite chromosomes in conjunction with the

crossover proportion and the mutation proportion governs how a new population is formed.

Optimal selection of these parameters increases the performance of a GA.

In the combined algorithm, the original population is selected randomly. Subsequent

populations are formed using an evolutionary process based on elitism, crossover and mutation

principles. Next the fitness of the new population is compared with the original population. The

abilities of a tabu search algorithm to retain the memory of good and taboo neighborhoods are

utilized to ensure that revisiting bad neighborhoods is avoided. This is one of the basic

differences between the combined algorithm and the MOTS algorithm.

6.3 NSGA II Solution Algorithm

 53

As presented in the previous section, the NSGA II is a very specialized genetic solution

algorithm. The following sections describe the parameter selection criteria for the NSGA II

algorithm when used for solving the day-ahead market dispatch problem.

6.3.1 Encoding Scheme

Similar to the MOTS/GA solution algorithm, the NSGA II algorithm requires the careful

selection of the chromosomes to represent the given problem. Here too, a value-encoding

strategy was used. Offer-levels of individual generators were used to construct the genes of a

chromosome. Using an example of 10 generators participating in a given day-ahead market, a

chromosome length of 10 with each allele representing the output from each generator was

chosen. The entries in the chromosome represent power output of each generator for a given

market hour. The same approach as described in the MOTS/GA hybrid solution was adopted

when forming the candidate chromosomes.

6.3.2 Population Size

This parameter is the number of chromosomes considered in a single evaluation. As

recommended by others, a population size of 200 was used in this research.

6.3.3 Generation Size

This is the total number of different generations into which a given population is allowed

to evolve. As recommended by previous works, the generation size was set at 200.

6.3.4 Crossover Scheme

The value chosen for this parameter is very similar to the values chosen in the MOTS/GA

algorithm. Based on the recommendations made by the developers of the NSGA II algorithm, a

binary crossover scheme that is described in the example below was used here. The value chosen

for all evaluations was 0.7, which is in the range [0.6-1.0] recommended by experts who have

used this algorithm extensively.

6.3.5 Mutation Scheme

The values used were similar to those used in the MOTS/GA algorithm. Here, a very low

proportion of mutation was used. As recommended by the developers of the algorithm, a

mutation probability equal to 1/(number of real variables considered in each test case) was used.

 54

6.3.6 Distribution Indices

As required by the NSGA II algorithm, indices to control the simulated binary crossover

distribution and real-variable polynomial mutation distribution of a given population need to be

defined. An index of 10 from the recommended range [5-20] was used for crossover distribution,

while an index of 30, from the recommended range [5-50] was selected for mutation distribution

in all the studies. The values selected were based on the recommendations of researchers who

have used this algorithm.

An offspring using the above parameters can be found as follows. If a pair of parents y1

and y2 have lower and upper limits of yl and yu respectively. With a crossover distribution index

of ηc , the resulting offsprings c1 and c2 can be found using the following formulae [18,19].

β = 1+ [2/(y2 - y1)]Min[((yl - y1), (yu - y2)]

α = 2 – β
-(η

c
+1)

δq =(αu)
1/(η

c
+1)

, where u is a random number within the range [0,1)

C1
 = 0.5{(y1 + y2) - δq[y2 –y1]}

C2
 = 0.5{(y1 + y2) + δq[y2 –y1]}.

If one of the above offspring C is selected to be mutated to form a new offspring mc, the

following formulae can be used along with mutation distribution index of ηm,

δ = Min{(c- yl), (yu - c)}/ (yu - yl)

δr = [2u+(1-2u)(1- δ)
η
m] 1/(η

m
 +1)

 , where u is a random number within the range [0,1)

mc = c+ δr(yu - yl).

An example would help better understand how each of these parameters is used for

formulating children from a given pair of parents. Assume two parent values of 10 and 30 each

with each upper and lower limit of 0 and 50, respectively. Using the above formulae,

β = 1+ [2/(30 - 10)]Min[((10 - 0), (50 -30)]

β = 2

α = 2 – 2-11
 , with ηc = 10.

δq = 0.8 with u = 0.1

 55

C1

= 0.5[(10+30)- 0.8(30-10)] = 12

C2

= 0.5[(10+30)+ 0.8(30-10)] = 28

Now if C1
 is selected for mutation,

δ = Min{(12-10), (30-12)}/(30-10) = 2/20 = 0.1

δr = [2x0.2+(1-2x0.2)(1-0.1)30]1/31 with u = 0.2.

δr = 0.972

mc =12 + 0.972x(50-0) ≈ 49.

6.4 Objective Functions

The key operational objective of the market-clearing problem is to operate the market at the

lowest cost while ensuring that the companies which own generators do not resort to market

manipulation activities. In order to realize these objectives, two competing functions will be

simultaneously optimized. Given that the day-ahead market is constrained, conditions such as the

minimum and maximum limits of the generators, ramp-up and ramp-down requirements of the

generators and transmission-line limitations will also be considered in conjunction with the two

functions that are optimized simultaneously. The inputs used for analysis are the system data

including information on connections between different system buses with impedence values

between them, selling offers from generators, buying offers from loads, and hourly load

variations over the 24 hours for all the loads. The solution algorithm consider these inputs with

the constraints defined previously to evaluate all possible combinations of outputs from

generators to meet the load requirements for every hour of the day. From all the possible

solutions those that are on the Pareto-front are suggested as the optimal solutions for the

problem. Each solution consists of an hourly generation schedule for 24 hours of each generator

to meet the load for each hour of the day.

 56

6.5 Selection of Optimality from Multi-Objective Optimization Problems

Evolutionary multi-objective optimization is aimed at converging toward a non-dominant

pareto-front. The pareto-front results in a set of solutions that are feasible, rather than a single

final optimal solution, as would be found by single-objective optimization. However, given that

all practical problems aim at finding a single optimal point of operation, an unnecessary burden

is placed on the decision-maker, namely that of selecting from among the feasible set. The

challenge of such a selection becomes even more difficult when the number of objectives

increases and a large set of pareto-solutions is available for selecting one optimal solution. As

done in the previous sections of this dissertation, an optimal operational point from each of the

pareto-fronts was selected based on the industry recommendations. The decision criteria in those

studies were to limit the overall average system-wide DHHI for the market-day to a threshold

value of 1800. Although this is one approach for selecting the desired optimal operation point, a

systematic method that validates the above selection is worth investigation. An advance in the

field of many-criteria decision-making that has gained wide acclaim recently is proposed and

used for this purpose. Work presented in [29], [30], and [31] has incorporated fuzzy-set theory

and fuzzy dominance using linguistic knowledge of preferences by the decision-maker. Other

work presented in [38] and [39] shows fuzzy membership functions as a tool for the numerical

formulation and treatment of the dominance definition. Here, techniques for transforming

qualitative relationships between objectives into quantitative attributes are presented. Also,

influences of the decision maker’s preferences are removed when selecting optimal operational

points from multi-objective optimization problems.

A multi-criteria decision-making approach based on fuzzy-set theory as proposed in [31]

was selected for aiding the decision-maker who is responsible for selecting the optimal

operational point for the day-ahead market. The underlying mathematical constructs of this

approach used in this work are presented below.

When two solutions v1 and v2 are compared with one another, based on pareto-optimality

definitions, v1 is considered dominant in a pareto-sense, if in all but one objective, it is better

than v2. However, when dealing with problems with many objective functions, a more general

 57

definition of selecting a solution that involves comparing three possible outcomes to make the

final determination will have to be formulated.

For each pair of points v1 and v2 Ω∈ , the function nb counts the number of objectives

where v1 is better than v2 since the resulting objective function value is lower for v1 when

compared with that for v2 . ne counts the number of objectives where the solutions are equal to

one another and nw counts the number of objectives where v1 is worse than v2. The following

formulae can be used to define the notions discussed:

|)}()(&{:),(2121 vfvfMiNivvn iib <≤∈=

|)}()(&{:),(2121 vfvfMiNivvn iie =≤∈=

|)}()(&{:),(2121 vfvfMiNivvn iiw >≤∈= .

Where M is the number of objectives being optimized and fi represents an objective

function. Based on fuzzy arithmetic for a selected domain with M objectives, v1 is said to (1-kf)

dominate v2 if and only if:

Mne ≤

1+

−
≤

f

e

b
k

nM
n ,

where 10 ≤≤ fk . With the above definition once kf is provided it is easy to check

whether a given candidate solution (1-kf) dominates another solution. A plot of the number of

improved objectives against the equal objectives for a 5 objective case and (1-kf) dominance is

presented in Figure 6.2 below. Using these numbers a decision-maker can select a suitable

operating point among the multiple pareto-front solutions. Based on fuzzy math, for the same

problem with 5 objective functions, a 0.25 dominance value means a candidate-solution from the

pareto-set that is found to be better than another candidate-solution for 4 out of the 5 objectives

could be chosen as the optimal operating point.

 58

Figure 6.2 - Number of Improved Objectives Plotted Against the Number of Equal

Objectives and (1-kf) Dominance

0 1 2 3 4 5
0

0.4

0.8

0

1

2

3

4

5

Improved

Objectives

Equal Objectives

(kf-1)

Dominance

(kf -1)

 59

CHAPTER 7 - Case Studies

In order to evaluate the suitability of the each of the solution algorithms for solving the

day-ahead market problem, three test systems were investigated. The first test system comprised

5 generators and 3 loads. The second system comprised 10 generators and 6 loads. The third test

system had 50 generators and 30 loads. Impacts of operating a power system without constraints

on line-loading as well as with constraints on line-loading were simulated. Influences of market-

power exhibition by individual market players on the overall day-ahead market dispatch problem

were evaluated on the first two test systems using each of the chosen algorithms. A larger

system comprising 50 generators and 20 loads was then used to evaluate the ability of each of the

solution algorithms to scale up successfully and thereby demonstrate the practicality of using

each of the solution algorithms for large power systems found in real life. The impact of market

domination due to increasing the ownership share of one company was tested to validate the

robustness of the NSGA II algorithm. Results from the three multi-objective-evolutionary

algorithms (MOEA) algorithms were compared with one another and with the results from a

traditional linear programming (LP) algorithm that is widely used in the industry at a specified

industry-recommended market-power index. Benefits of using a fuzzy decision criterion to select

a more suitable optimal point from the pareto-set rather than using a threshold value are also

presented. The results and details of the studies conducted are presented in the ensuing sections.

7.1 Analysis of a 5-Generator, 3-Load Power System with No Market Power

The suitability of each of the solution algorithms for solving the day-ahead market

dispatch problem was first evaluated using a power system consisting of 5 generators and 3

loads. The test system used for this analysis is depicted in Figure 7.1. In this case, all generators

are assumed to be available for participation in the market, with no generators or lines taken off-

line for maintenance. In the evaluations, the generators were assumed to have their own offer-

curves with their own operational characteristics. The demands from each one of the loads at are

also considered to be varying from one hour to the next. Since one requirement of any day-ahead

 60

market is to dispatch generators at the lowest possible cost while fully recognizing the power

system conditions, the market-dispatch problem under this scenario becomes a constrained

economic dispatch.

The corresponding load profiles from each of the three loads used in the simulation for

the chosen 24-hour period are shown in Figure 7.2. The offer-curves for the five generators

considered in this study are assumed to be monotonically increasing as shown in Fig. 3 with

economic minimum and maximum limits available for supplying into the market. Information on

buying offers from the loads used in simulations are shown in Appendix B.

Figure 7.1 - 5-Generator, 3-Load, 10-bus Test System

1 2

3

4

5

1 2

3

 61

Figure 7.2 - Load Profile for the Market Day

Figure 7.3 - Generator offer-curves

 62

Figure 7.4 - Generator Operating Schedule

A power system with all generators available to offer to the market, with no system

congestion, generator-limit violations or transmission-line-constraint violations present was

simulated. The effects of market-power manipulation attempts by individual generator owners

were disregarded in this study. Based on the above, the problem became a single objective

minimization. Each of the solution algorithms was applied for solving this test case in order to

evaluate its suitability. The multi-objective tabu search algorithm (MOTS) was used first. The

generator-dispatch scheme to serve the total load for the market day as recommended by the

MOTS algorithm is presented in Figure 7.4. The results show that a minimum number of

generators were turned on and off throughout the market day.

From the results it is evident that generator 4, which is the most economical to operate, is

chosen first, followed by generator 1. Both these generators are recommended to be operated

throughout the day. Generator 3 which is the next most economical unit supplements generators

1 and 4 to meet the load profile changes. The other more expensive generators are selected to

operate in specific multiple time periods. The same problem scenario was analyzed using the

 63

two other algorithms: combined MOTS/GA algorithm and the NSGA II algorithm. The

generation-dispatch levels recommended by each of the algorithms are seen to be identical.

However, the time taken by each algorithm to arrive at the final solution was different. The total

cost of operating the market for the selected market day was found to be $12,375.00. The NSGA

II algorithm found the optimal solutions in the shortest time, followed by the MOTS/GA

algorithm. The MOTS algorithm took the longest time to converge. These simulations were

carried out on a 1.8GHz Pentium IV server running the Linux operating system. Simulations were

carried out utilizing software that was developed using the ANSI C language. Since results from

each of the algorithms were identical, one can conclude that any one of these algorithms can be

used successfully to solve the simple 5-generator day-ahead market. A table comparing results

from using each of the three algorithms for this test case is presented below.

Table 7.1 - Performance comparison between algorithms

Algorithm # of Trials/ Generations to

find solutions

CPU Time for solution

(Sec.)

MOTS 657 2.15

MOTS/GA 421 1.76

NSGA II 497 0.95

7.2 Analysis of a 5-Generator, 3-Load power System with Congestion and No

Market Power

Next, the same power system was used to evaluate a day-ahead market when a

transmission line has reached its thermal limits. The investigation here was to evaluate the

suitability of each of the algorithms when an additional constraint is introduced into the solution

space. In order to create a transmission-line over-load constraint condition, the load profile for

the entire market day was increased by 15% from the previous case. This forced the transmission

line between generator 4 and load 3 to reach its thermal limit. As in the previous analysis, each

of the algorithms was capable of finding an optimal operating solution for this scenario. The

resulting operational scheme for every hour of the selected market day using the MOTS/GA

 64

algorithm is depicted in Figure 7.5. Looking closer at the results, it is notable that the minimum

operating limit of generator 5 is maintained during the hours of 7 and 16.This demonstrates that

the dispatch scheme found by the algorithm has ensured that the minimum-operating-limit

constraint of the generators is enforced. It is also evident that although generator 4 is one of the

more economical units, it was unable to offer its full capacity into the market due to the line

constraint existing in the system. This shows that the algorithm has successfully enforced the

influences of branch-capacity limit constraints discussed in chapter 3. The corresponding results

using the MOTS and NSGA II algorithms for the same test system are presented in Figures 7.6

and 7.7, respectively. From the results it is evident that all three algorithms dispatched generators

1 and 4 at the same level. Also notable is the fact that all algorithms enforced the branch-capacity

limit constraint by partially dispatching generator 4. The dispatch schemes recommended for the

next 3 most expensive units varies from one algorithm to the other. Also notable from the results

is the fact that each algorithm ensured that the minimum operating limits of the generators are

maintained when finding the generator dispatch schedule as described above for the MOTS/GA

results. The results confirm that each of the algorithms is successful in finding an optimal

constrained economic dispatch scheme for the day-ahead market. From the results presented in

Table 7.2, the optimal costs found by each of the algorithms are seen to have marginal cost

differences explainable by the differences in the dispatch schemes between the algorithms. The

lowest operational cost of $12,382.00 was obtained by the MOTS/GA algorithm. The next lower

cost of $13,435.00 was obtained by the NSGA II algorithm with a difference of $1053.00. The

highest operational cost was obtained by the MOTS algorithm. This cost was $1140.00 higher

than that obtained from the NSGA II algorithm. Also, as demonstrated in the table, the NSGA II

algorithm took the shortest time to find its optimal solution.

Table 7.2 - Comparison of results between algorithms

Algorithm # Of Trials/

Generations to

convergence

CPU Time (Sec.) Total Minimum

Operational Cost ($)

MOTS 921 2.96 14,575.00

MOTS/GA 756 1.96 12,382.00

NSGA II 524 1.60 13,435.00

 65

Figure 7.5 - Generation operation selection in the presence of congestion using MOTS/GA

algorithm

Figure 7.6 - Generation operation selection in the presence of congestion using MOTS

algorithm

 66

Figure 7.7 - Generation operation selection in the presence of congestion using NSGA II

algorithm

 67

7.3 Analysis of a 5-Generator, 3-Load power System with Congestion and

Uncontrolled Market Power of owners

The next step was to extend the scope of the study to incorporate the notions of market

power exhibited by companies. Here, the test was to evaluate whether companies owning

generators can exercise market power to their advantage. The solution space now becomes that

for optimizing two competing objective functions: how to minimize the overall market

operational costs, while minimizing the opportunity for market-power exhibition by individual

generator-owning companies.

In order to simulate such a scenario, generators 3 and 5 were assumed to belong to the

same company. The incremental costs of generators 3 and 5 were left unaltered from the

previous case, with generator 5 being the most expensive unit offered to the market. The load

profile was kept as it was in the previous test case, hence the congestion on the transmission line

between generator 4 and load 3 was included in the analysis. In the solution process, the

Dynamic Herfindhal-Hirschman Index (DHHI) for the entire market day was calculated,

concurrently while selecting the optimally economic dispatch scheme.

Since the problem involves optimizing two competing objective functions, a set of non-

dominant solutions is obtained. The pareto-optimal front graphs obtained from each of the

solution algorithms are shown in Figure 7.8. Comparing the three graphs obtained from each of

the algorithms, one can clearly see that the NSGA II provides a solution set superior to those of

the other two because its pareto-front lies below the other two fronts. It is also notable that this

algorithm took the least time to arrive at the final pareto-front, as shown in Table 7.3. As one

can see from the graphs, the pareto-fronts from the other two algorithms are in the same general

neighborhood. Since the differences in the three algorithms are not significant, any one of the

three algorithms can be used for solving the given market problem. Since the solutions now take

the form of a solution vector rather than a single optimal value (as would be obtained in a single

optimization problem), the challenge is to select the best operation point for clearing the day-

ahead market. Since there was no attempt to minimize the market concentration in this

 68

evaluation, one could choose the lowest market operational cost point for clearing the market.

However, the ADHHI calculated for the entire system by considering the corresponding index for

every hour of the day at the lowest optimal cost from the pareto-front for the NSGA II algorithm

is seen to be significantly above the acceptable market concentration index of 1800

recommended by the Department of Justice. This calls for further scrutiny of the results obtained

for the systems for the entire market day.

The corresponding plots of the DHHI changes for the market day for the entire system,

for generators 3 and 5 combined and the DHHI curves for the 3 other independent companies is

depicted in Figure 7.9. From this graph one can see that for all hours of the day, the system-wide

DHHI exceeds the U.S. Department of Justice recommended market-concentration-value of

1800. The average DHHI for the 24-hour market day based purely on economic dispatch and unit

commitment is seen to be 3569. Since this value is significantly higher than the perceived

moderate market concentration threshold, one can conclude that the generator owners will have

opportunities to exercise market power. Investigating further, the individual average DHHI for

the company owning generators 3 and 5 is found to be 858. This number is clearly below the

market concentration threshold. The resulting market concentration values for generator 2 and

generator 4 show the owners could use their market share to influence the market. Since the

overall DHHI is above the recommended market concentration threshold, pro-active monitoring

to watch for sudden changes in the offer-prices of the generators owned by the same company is

recommended to ensure that participants do not take undue advantage of the market condition.

Table 7.3 provides a good comparison between the results based on the final dispatch-schemes

that were chosen from each of the pareto-front graphs obtained from the 3 algorithms.

Table 7.3 - Comparison of results between algorithms

Algorithm #Trials/ Generations

to converge

CPU Time

(Sec.)

Total Minimum

Cost ($)

Average DHHI /Hr at

Min. Cost

MOTS 2096 3.50 14,996.00 4865

MOTS/GA 1867 2.40 14,725.00 4432

NSGA II 2034 2.10 14,526.00 3569

 69

Figure 7.8 - Pareto optimal front graphs under the different solution algorithms

Figure 7.9 - DHHI chart for 5-generator test case using NSGA II algorithm

 70

Figure 7.10 - Generator Operating Schedule as found by NSGA II algorithm

 71

7.4 Analysis of a 5-Generator, 3-Load Power System with Congestion and

Mitigated Market Power of Owners

How the company owning generators 3 and 5 uses its strategic position to its advantage

to manipulate the market was considered next. In this scenario, it is assumed that the offer-prices

of units 3 and 5 are increased from their previous values, with the power system conditions and

the load to be served remaining unchanged. The same transmission-line-limit constraint prevails

for this study as well. The generator offer-curves used for this scenario are shown in Figure 7.11.

 As done previously, all three algorithms were used to solve for optimal cost of operating

the market while ensuring that the market power is controlled. The resulting pareto-optimal front

graphs from each of the algorithms are presented side by side in Figure 7.12. These graphs

showthat the pareto-front obtained from the NSGA II algorithm lies closest to the origin. This

indicates that this algorithm offers the best set of solutions to be used for operating the market.

With the goal of limiting market power exercised by generator-owning companies, and selecting

a threshold value of 1800 for the DHHI, the non-dominant solution point with an average DHHI

of 1802 at an overall cost of $16,487.00 was chosen from the optimal set derived from the NSGA

II algorithm. Figure 7.13 shows the generator-dispatch scheme obtained from this operating

point. The fact that the two most economical generators, namely generators 1 and 4, were

chosen first to supply the system load is evident from the results. However, generator 4 is able to

offer its capacity partially due to the line-constraint condition, which is preventing it from

dispatching up to its economic maximum limit. One can see that the outputs from generators 3

and 5 have been reduced considerably from the previous test scenario to ensure that the market

manipulation capabilities of these two generators are contained. In order to ensure that the total

system load is met, generator 2 is selected to operate throughout the whole day.

 72

Figure 7.11 - Generator Offer Curves

Figure 7.12 - Pareto Optimal Front Graphs

 73

Figure 7.13 - Generator operation match-up

Figure 7.14 - DHHI chart for 5 generator test case using NSGA II algorithm

 74

As Figure 7.13 shows, in order to inhibit the company owning generators 3 and 5 from

using its market concentration to its advantage, it has been forced to turn off unit 5 between the

hours of 1-4, 8-13 and 18-24, respectively, so as to minimize the average DHHI for the market

day. The changes in DHHI throughout the day for the entire power system, generators 3 and 5

combined, together and that for each independent generator is depicted in Figure 7.14. The

results show that the DHHI of all companies are below the recommended threshold of 1800 with

the exception of hours 8 and 19 for the company owning generators 3 and 5. The line-constraint

condition limiting generator 4 from dispatching beyond 60 MW has forced upon it a DHHI

higher than the 1800 threshold value.

Key performance charachteristics for each of the algorithms are provided as a comparison

in Table 7.4. In order to compare the process presented in this dissertation with the currently

used practice of solving the day-ahead market minimizing only the cost, the problem was solved

using a Lagrangian-relaxation-based Linear Programming (LP) method [11]. The same

constrained power system under the same operational conditions was used for this analysis, so

that the results can be compared effectively. The results from the LP-based method are shown in

row 4 of Table 7.4 below. The corresponding DHHI at the optimal economic dispatch was also

computed for comparison purposes. The minimum operational cost for operating the market as

recommended by the LP method is clearly below the values chosen by the other three algorithms.

However, the resulting average DHHI of 3870 for this case shows that the owner of generators 3

and 5 has used its market concentration to its advantage. It is also noteworthy that the LP

algorithm took over three times as long as the other methods to find its final solution.

Table 7.4 - Comparison of results between algorithms

Algorithm # Trials/

Generations to

Converge

CPU Time

(Sec.)

Selected Total

Minimum

Operational Cost ($)

Selected

DHHI/Hour

MOTS 2645 4.70 17,484.00 1802

MOTS/GA 1984 4.20 16,889.00 1802

NSGA II 2156 3.90 16,487.00 1802

LP 7645 12.40 14,974.00 3870

 75

In order to verify the repeatability, stability and robustness of a solution algorithm, the

effect of the initial solution on the final solution was evaluated. A different initial solution is

obtained by using a different random seed in each solution. For this, the same test scenario was

analyzed 10 times using different starting solutions, while keeping all other operational

constraints and system conditions constant. The NSGA II algorithm, which yielded the best

minimum operation cost for the test case, was used for this evaluation. The minimum costs

predicted for each run by NSGA II differed from one another by $47.00 or less, with a largest

minimum operating cost of $16,496.00 and a smallest minimum operating cost of $16,449.00.

Under all these simulations the DHHI was held around 1800. The results of each of these

independent runs are presented in Table 7.5 below.

Table 7.5 - Results from repeated simulations

Random Seed

Used

Trials/

Generations to

Converge

CPU Time (Sec.) Selected Total

Minimum

Operational Cost

($)

DHHI/Hour

0.1 2157 3.80 16,452.00 1803

0.2 2159 3.90 16,478.00 1804

0.3 2156 3.70 16,449.00 1802

0.4 2153 3.60 16,456.00 1803

0.5 2156 3.50 16,478.00 1800

0.6 2159 3.70 16,496.00 1801

0.7 2156 3.90 16,487.00 1802

0.8 2157 3.60 16,463.00 1801

0.9 2155 3.70 16,459.00 1804

0.95 2158 3.90 16,479.00 1804

 76

7.5 Analysis of a 10-Generator, 6-Load Power System with Congestion and

Mitigated Market Power of Owners

In order to ensure that the solutions obtained previously by applying each of the three

algorithms have no dependency on the size and nature of the power system, a second sample

power system comprising 10 generators and 6 loads was chosen. A schematic of this power

system is shown in Figure 7.15. The corresponding offer-curves for the 10 generators are shown

in Figure 7.16. Profiles of the 6 loads in the system are shown in Figure 7.17 and information on

their buying offers is included in Appendix B . In order to learn the impacts of market power

when a given company owns a majority share of the market, generators 3 and 5 were assumed to

be owned by a single company, while the remaining 8 generators were assumed to be owned by

different independent companies with each company owning one generator.

Figure 7.15 - 10-Generator, 6-Load, 10-bus test system

1 3

9

4

7

1 2

5
2 5

6

8

10

3

4

6

 77

Figure 7.16 - Generator offer-curves for the 10 generators

Figure 7.17 - Load Profiles

 78

All three algorithms were applied to find the lowest operating cost of a given market day

while minimizing the market power exhibited by individual generator owning companies. The

final pareto-front graphs found from each of the three algorithms namely MOTS, MOTS/GA and

NSGA II are presented in Figure 7.18. The progression of pareto-fronts towards their final front

at 500, 1000, 1500 iterations when the NSGA II algorithm was used is presented in Figure 7.19.

The fact that the pareto-fronts moved from right towards the origin as the solutions progressed

demonstrates the improvements the algorithm achieves with each iteration, moving toward the

pareto-solution-set that is not dominating either of the two objective-functions being optimized.

A plot of minimum values of each objective function at different iteration-count values is

presented in Figures 7.20 and 7.21, respectively. These graphs show the improvement in each

objective function as the solution process progressed. The relative improvement achieved after

the 1220th iteration for each objective function is seen to be very small. As a comparison, the

values in Figures 7.20 and 7.21 correspond to the minimum values of the pareto-front at a given

iteration cycle shown in Figure 7.19, while the final pareto-front graph presented in Figure 7.18

is the same as that is presented in Figure 7.19 for the NSGA II algorithm. As an example, the

minimum optimal cost of operating the market after iteration 1500 is $20430.00, while the

corresponding DHHI value after this iteration is 1602. These two values are the corresponding

lowest optimal operating cost and the lowest DHHI value from the pareto-front found after 1500

iterations in Figure 7.19.

 79

Figure 7.18 – Pareto-optimal front graphs for different algorithms for the 10-generator test

case

Figure 7.19 – Pareto-optimal fronts at different iterations using NSGA II algorithm, 10-

generator test case

 80

Figure 7.20 - Minimum Optimal Cost of Operation at each iteration using NSGA II

Algorithm, 10-generator test case

Figure 7.21 - Minimum DHHI at each iteration using NSGA II Algorithm, 10-generator test

case

 81

The next step is to select a single operating point at which the market will be dispatched

based on the final pareto-front. Given that one of the key objectives is to ensure that the

generator owners do not exhibit any market power, the industry-recommended moderate market-

concentration-threshold value of 1800 for the DHHI was used as a guide to choose the suitable

operating point from the pareto-front. From the pareto-front graph obtained for the NSGA II

algorithm, a DHHI value of 1817 was found to be the closest to this threshold for the given

power system and was chosen as the point at which the market was to be dispatched. The

resulting generator-dispatch schedule for meeting the system load under this operating point is

shown in Figure 7.22. From the results it is evident that the generators are chosen based on their

economic-merit-order with many generators dispatched at their maximum economic values,

while the dispatch of one generator was limited below its maximum economic dispatch value due

to a line-overload-constraint preventing it from dispatching further. The rest of the generators are

brought online to meet the load for those hours when the most economical generators cannot

meet the demand. This is accomplished while minimizing the number of times a given generator

is turned on and off during the 24-hour period. All dispatch schema recommended by each of

the algorithms are reviewed to avoid any generator being turned on and off constantly within the

24 hour period. The approach taken here to minimize the number of times a given generator is

turned on and off is by selecting the operating order of the generators for the entire market day

and adjusting the output of each of the generators starting from the dispatch schema from the

previous hour as part of the algorithm.

 The resulting DHHI indices for generators 3 and 5 combined together is shown in Figure

7.23 for the selected operating point. The corresponding DHHI indices for each of the other 8

generators as well as for the entire system for every hour of the market day are also presented in

the same figure for completeness. A tabular representation of the DHHI indices for the system

for the market day chosen is shown in Table 7.6. The optimal final solution was chosen when

the average DHHI for the entire system is just above 1800, and when the individual indices of

generators 3 and 5 are also not above the recommended 1800. The overall average index for the

entire system for the chosen market day was 1817.

 82

Figure 7.22 - Generator match-up for the 10-generator test case

Figure 7.23 - DHHI charts for the 10-generator test case

 83

Table 7.6 - DHHI values for the System

Hour

of

Day

Gen

1

Gen

2

Gen 3& 5

Combined

Gen

4

Gen

6

Gen

7

Gen

8

Gen

9

Gen

10

Total

System

1 86 0 1050 238 4 188 294 294 57 1663

2 90 0 948 246 4 194 304 304 59 1623

3 116 0 723 296 5 131 365 365 72 1643

4 129 0 653 320 5 98 395 395 79 1694

5 918 0 0 1011 19 312 0 611 302 2098

6 1275 0 0 1171 23 361 0 361 363 1921

7 918 0 0 1011 19 312 0 611 302 1663

8 216 0 14 452 7 139 558 558 117 1663

9 85 0 1050 238 4 188 294 294 57 1589

10 85 0 1050 238 4 188 294 294 57 1596

11 110 0 685 285 4 172 352 352 69 1663

12 94 0 848 285 4 201 315 315 62 1589

13 86 0 1050 238 4 188 294 294 57 1596

14 116 0 722 296 4 131 365 365 72 1663

15 122 0 763 307 5 94 379 379 76 1643

16 129 0 653 320 5 98 395 395 79 1711

17 610 0 0 826 5 255 0 1020 237 1694

18 484 0 30 730 15 225 9 901 204 2396

19 297 0 0 552 13 170 334 681 147 2092

20 297 0 0 552 9 170 334 681 147 1938

21 129 0 653 320 9 98 395 395 79 1694

22 122 0 763 307 5 94 379 379 76 1711

23 90 0 1437 246 4 76 304 304 59 1916

24 88 0 1404 242 4 90 299 299 58 1880

 84

The results obtained from using the LP algorithm to solve the same market operation

problem are also presented in Table 7.7 for comparison purposes. The total minimum operational

cost using the LP algorithm, although lower than that of the other three methods, is seen to result

in a DHHI beyond the desired values. The difference between the total minimum operation cost

found from the NSGA II algorithm and the LP algorithm for this case is only $342.00. Since no

effort to mitigate market power is undertaken in the LP algorithm, market manipulation activities

through price inflations by the company owning generators 3 and 5 will go undetected, possibly

creating a biased market. This clearly is an undesirable effect, given that the cost differentials

between the results are insignificant for this case. It is also evident that the LP algorithm takes

more than three times as long as the other three algorithms to find the optimal solution.

Table 7.7 - Comparison of results of algorithms for the 10-generator test case

Algorithm # of Trials or

Generations to

convergence

CPU Time

(Sec)

Total Minimum

Operational

Cost ($)

System ADHHI

MOTS 3126 7.34 20,571.00 1804

MOTS/GA 2113 6.01 20,256.00 1802

NSGA II 2265 5.85 20,202.00 1802

LP 8058 19.05 19,856.00 2460

In order to validate the robustness of an algorithm, and its ability to find the optimal

solution with insensitivity to small changes in the starting solution, ten simulations on the same

test system were conducted using the NSGA II algorithm. Here, the random seed input to the

solution was changed from one test run to the next. As discussed previously, the effect of

changing the initialization seed is to begin the iterations from a different starting solution set.

From Table 7.8 it is evident that the random seed has a minimal impact on the final solution

obtained. From the table it is also evident that the minimum operation costs in each test

simulation are very close to one another. The largest of these minimum operating costs obtained

in the repeated runs was $20,720.00, while the smallest was $20,182.00. Hence the difference

between the best optimal cost and the worst optimal cost was only $538.00, which is less than a

3% variation.

 85

Table 7.8 - Comparison of results between algorithms for the 10-generator test case

Random Seed

Used

of Generations

to Converge

CPU Time

(Sec.)

 Total Minimum

Operational Cost

($)

System ADHHI

0.1 2254 5.85 $20,656.00 1804

0.2 2251 5.98 $20,212.00 1801

0.3 2256 5.76 $20,720.00 1804

0.4 2256 5.68 $20,314.00 1803

0.5 2265 5.85 $20,202.00 1802

0.6 2256 5.77 $20,209.00 1803

0.7 2258 5.95 $20,182.00 1802

0.8 2256 5.68 $20,344.00 1801

0.9 2254 5.77 $20,468.00 1803

0.95 2253 5.93 $20,606.00 1800

 86

7.6 Analysis of a 50-Generator, 20-Load power System with Congestion and

Mitigated Market Power of Owners

In order to test the ability of each of the chosen algorithms to scale as the size of the

problem grew, a power system comprising 50 generators and 20 loads was tested next. The test

system used for this analysis is depicted in Figure 7.24. The corresponding linearized cost

characteristics of the 50 generators are presented in Table 7.9. The intercept of the curve with the

y-axis is presented as parameter “a” while the slope is represented as parameter “b” in the table.

Pmax and Pmin values are the operation limits of a given generator. The load characteristics for

the market day considered are presented in Table 7.10 and information on their buying offers is

included in Appendix B.

Table 7.9 - Cost Characteristics of 50 Generators

Gen # a b Pmin Pmax

1 9 0.45 20 160

2 15 0.75 20 300

3 30 0.6 50 265

4 16 0.8 20 60

5 15 0.75 20 250

6 30 1.5 20 400

7 25 0.5 50 500

8 66 2.2 30 400

9 22 1.1 20 100

10 90 1.8 50 250

11 60 3 20 60

12 15 0.75 20 300

13 19 0.95 20 200

14 12 0.6 20 60

15 35 1.75 20 300

16 60 3 20 90

17 75 2.5 30 300

18 48 2.4 20 350

19 8 0.4 20 100

20 6 0.3 20 60

21 10 0.5 20 60

22 10 0.5 20 100

23 10 0.2 50 400

24 18 0.9 20 60

25 15 0.75 20 60

26 8 0.4 20 90

27 6 0.3 20 150

28 46 2.3 20 50

29 15 0.3 50 500

30 8 0.4 20 60

31 24 1.2 20 60

32 10 0.5 20 300

33 18 0.9 20 100

34 22 1.1 20 60

35 22 1.1 20 60

36 22 1.1 20 400

37 10 0.5 20 100

38 12 0.6 20 50

39 6 0.3 20 100

40 4 0.2 20 60

41 6 0.3 20 60

42 10 0.5 20 100

43 8 0.4 20 100

44 16 0.8 20 150

45 10 0.5 20 60

46 6 0.3 20 90

47 4 0.2 20 100

48 10 0.5 20 50

49 18 0.9 20 100

50 14 0.7 20 60

 87

Table 7.10 - Load Profiles

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total Load 5000 5680 5800 5850 6050 5950 5960 5000 5000 5140 5250 5000 5180 5600 5700 5800 6150 6110 6090 5500 5160 5000 5000 4500

Load_1 330 530 480 450 570 570 570 350 360 370 380 390 390 470 550 570 570 570 570 350 340 330 330 330

Load_2 150 150 150 170 160 160 160 160 180 180 200 200 200 180 180 180 180 180 160 160 160 160 130 125

Load_3 400

Load_4 280 280 280 280 280 230 230 220 200 200 200 200 200 200 230 250 250 260 260 260 280 280 250 250

Load_5 140 150 200 200 200 200 200 160 160 150 170 130 110 190 170 160 200 200 200 200 200 200 200 200

Load_6 340 350 400 400 400 400 400 360 360 350 370 330 310 390 370 360 400 400 400 400 400 400 400 400

Load_7 150 150 150 170 160 160 160 160 180 180 200 200 200 180 180 180 180 150 160 160 160 160 130 125

Load_8 400

Load_9 380 380 380 380 380 330 330 320 300 300 300 300 300 300 330 350 350 360 360 360 380 380 350 350

Load_10 140 150 200 200 200 200 200 160 160 150 170 130 110 190 170 160 200 200 200 200 200 200 200 200

Load_11 230 230 230 230 230 230 240 250 260 270 280 290 290 290 290 290 290 290 280 250 240 230 230 230

Load_12 150 150 150 170 160 160 160 160 180 180 200 200 200 180 180 180 180 150 160 160 160 160 130 125

Load_13 400

Load_14 380 380 380 380 380 330 330 320 300 300 300 300 300 300 330 350 350 360 360 360 380 380 350 340

Load_15 140 150 200 200 200 200 200 160 160 150 170 130 110 190 170 160 200 200 200 200 200 200 200 200

Load_16 220 500 570 570 570 570 570 280 260 430 340 270 550 570 570 570 570 570 570 420 0 0 0 0

Load_17 150 150 150 170 160 160 160 160 180 180 200 200 200 180 180 180 180 170 160 160 160 160 130 125

Load_18 100

Load_19 380 480 380 380 500 550 550 320 300 300 300 300 300 300 330 400 550 550 550 360 400 260 470 0

Load_20 140 200 200 200 200 200 200 160 160 150 170 130 110 190 170 160 200 200 200 200 200 200 200 200

Figure 7.24 - 50-Generator, 20-Load System

 88

The effects of market concentration were investigated by considering generators 3, 5, 15,

and 18 to be owned by a single company, while each of the other generators was considered to

be owned by a different company. The resulting non-dominated pareto-optimal front graphs from

each of the algorithms are depicted in Figure 7.25. The pareto-front from the NSGA II algorithm

is observed to be closest to the origin, with results from MOTS/GA and MOTS algorithms being

very close to one another along the fronts.

As done previously, the optimal point at which the market is to be operated was chosen

using the industry-recommended DHHI of 1800 as a reference point. The corresponding DHHI

that is closest to this reference value for the NSGA II solution is 1802. The lowest DHHI

obtained from the MOTS/GA algorithm was 1806, while the corresponding value for MOTS

algorithm was 1801. The optimal operating cost to operate the market at these market-power

values is found to be $118,310.00 for NSGA II, $120,552.00 for the hybrid MOTS/GA and

$120,630.00 for the MOTS algorithm. A few other performance-related metrics along with these

operational details for each of the algorithms are presented in Table 7.11 for comparison.

Table 7.11 - Comparison of results between algorithms for the 50-generator test case

Algorithm #Trials or

Generations to

Converge

CPU Time

(Sec.)

Total Minimum

Operational

Cost ($)

ADHHI

MOTS 4598 18.50 120,630.00 1801

MOTS/GA 2130 14.50 120,552.00 1806

NSGA II 2456 12.50 118,310.00 1802

LP 13045 46.07 115,960.00 2640

 From the results one can see that all three algorithms can be successfully used for solving

the given market-dispatch problem while suppressing the exercise of market power by individual

generator-owning companies. When comparing the results obtained for all three power systems,

one could conclude that any of these algorithms can be successfully applied when the selected

problem scales from a small 5-generator power system by a 10-fold increase to a 50-generator

test case, as done in this simulation. As expected, the time for obtaining feasible non-dominant

 89

solutions in each of the solution algorithms is seen to increase with the increase in scale of the

problem. The total minimum operational cost found from the LP algorithm for this test case was

$115,960.00, while the resulting average DHHI for the entire market day was 2640. This cost is

$3,137.00 lower than what was found from the NSGA II algorithm. Considering the fact that the

system has 50 generators, per-generator average difference is found to be approximately $62.75.

That the observed average system-wide DHHI under the LP method falls into the high-market-

concentration region, shows the merit of using a dual optimization method over a single

optimization method.

 The resulting ADHHI values found from the NSGA II algorithm for the entire system

along with those for the company owning generators 3,5,15 and 18 are presented in Figure 7.26.

As a comparison the corresponding ADHHI values for the three independent companies owning

generators 7, 8 and 17, respectively, are also presented in the same figure. The fact that the

market power of the company owning multiple generators has a high influence on the overall

system market power is observable from these results. At an ADHHI of 1806 for the system, the

DHHI values for the company owning multiple generators are seen to be contributing

significantly to the overall system DHHI values. However, that the overall average DHHI value

for the company with multiple generators is below the recommended threshold value is the

guarantee that this company is not using its power under the selected operating point to

manipulate the market.

 90

Figure 7.25 - Pareto optimal front graphs from different algorithms for the 50- generator

test case

Figure 7.26 - Modified DHHI for the case where Gen 3, 5, 15, and 18 are owned by one

company

 91

 The corresponding ADHHI values for the entire system along with those for the company

owning the generators 3,5,15, and 18 are presented in the Table 7.12 below. The ADHHI values

for every hour of the day for the remaining 46 generators are also presented in the table for

completeness. From these results one can see that the potential of a given company to manipulate

the market diminishes as the size of the market increases.

 The effect when the generators owned by a single company are changed from the

previously considered set of 3, 5, 15, and 18 to 40, 41, 42, 43, 49, and 50 while making

generators 3, 5, 15 and 18 each be owned by a different company, without any other change to

the system operating conditions, was considered next. In order to evaluate the effects of

ownership change, the pareto-fronts obtained for each ownership arrangement were drawn in the

same chart and are depicted in Figure 7. 27. As done previously, an operating point with a

system ADHHI value of 1802 and an overall system operating cost of $118,310.00 was chosen.

At this same operating cost the corresponding ADHHI value for the second ownership

arrangement was found to be 894. If one were to move up the pareto-front for the second

ownership arrangement, an alternative operating point with a lower economic operational cost

could be selected. Using the same rationale as before, if the new operating point under this

ownership arrangement was also selected around the industry-recommended 1800, a

corresponding optimal operating cost of $115,460.00 with an ADHHI value of 1804 would be

found. This demonstrates that a meager change of ownership or the strategic position of

generators owned by a given company allows opportunities for market manipulation.

 92

Figure 7.27 – Pareto-optimal Front Charts with Different Ownership Arrangements using

NSGA II algorithm

 Next, the impact of two companies owning multiple generators was considered at the

previously selected operational point. Each other generator is considered to be owned by

different company. For this analysis, company 1 was assumed to own generators 3, 5, 15, and 18

while company 2 was assumed to own generators 40, 41, 42, 43, 49, 50, respectively. With this

arrangement, the resulting system ADHHI was found to be 2112 if we retain the overall cost of

operating the market at $118,310.00. The fact that more companies owning more generators

results in higher overall market concentration is evident from these results. Since this ownership

arrangement is above the desired market-power threshold, a different operating point that would

bring down the market power of the system while concurrently adjusting the market operating

cost has to be found. If the system operator would move to the right of the corresponding pareto-

optimal-front, an appropriate operating point where an ADHHI value is 1805, a value closer to

the industry-recommended threshold value, could be found. At this value the total operating cost

is found to be $131,858.00.

 93

Table 7.12 - DHHI values for the 50 –Generator Power System with Generators 3, 5, 15,

and 18 owned by a single company

Hour of Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total System 1522 1519 1589 1791 2943 2742 2482 1555 1283 1385 1372 1290 1350 1404 1470 1734 2711 2592 2285 1795 1608 1520 1621 1480

Combined 1132 1076 1102 1329 2336 2174 1962 912 683 820 729 683 767 939 1015 1274 2231 2117 1808 1230 1053 970 1090 994

Gen_1 0

Gen_2 0

Gen_4 0

Gen_6 0

Gen_7 39 0 0 0 0 0 0 245 245 268 288 245 275 59 16 0 0 0 0 40 271 245 245 183

Gen_8 10 16 17 18 37 34 31 157 10 11 12 10 11 15 16 17 28 26 23 220 11 10 10 16

Gen_9 0

Gen_10 0

Gen_11 0

Gen_12 10 16 17 18 37 34 31 10 10 11 12 10 11 15 16 17 28 26 23 14 11 10 10 7

Gen_13 39 63 70 31 37 34 31 10 39 43 46 39 44 59 64 63 28 32 23 14 18 39 39 29

Gen_14 0

Gen_16 0

Gen_17 88 142 157 164 148 138 124 88 88 96 104 88 99 134 145 157 111 117 165 100 98 88 88 66

Gen_19 0

Gen_20 0

Gen_21 0

Gen_22 0

Gen_23 157 142 157 164 333 310 279 88 157 96 141 157 99 134 145 157 251 238 203 124 98 88 88 117

Gen_24 0

Gen_25 1 1 0 1

Gen_26 0

Gen_27 22 36 39 41 9 9 8 22 17 3 3 22 3 4 4 4 7 7 6 20 3 22 2 16

Gen_28 1 2 2 0 0 0 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1

Gen_29 0

Gen_30 0

Gen_31 0

Gen_32 0

Gen_33 5 0 0 0 0 0 0 0 5 5 5 5 5 6 6 0 0 0 0 0 2 5 0 4

Gen_34 0

Gen_35 1 1 0 2 0 0 0 0 1 1 0 0 1 0 0 2 0 0 0 0 2 0 2 1

Gen_36 0

Gen_37 5 6 7 7 0 0 0 5 5 5 5 5 5 6 6 7 0 0 4 3 5 5 5 4

Gen_38 1 2 2 0 0 0 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1

Gen_39 0

Gen_40 0

Gen_41 0

Gen_42 0

Gen_43 5 6 7 1 0 0 0 0 5 5 5 5 5 6 6 1 0 0 0 0 0 5 5 4

Gen_44 0

Gen_45 1 1 0 2 0 0 0 0 1 1 0 0 1 0 0 2 0 0 0 0 2 0 2 1

Gen_46 0

Gen_47 5 6 7 7 0 0 0 5 5 5 5 5 5 6 6 7 0 0 4 3 5 5 5 4

Gen_48 1 2 2 0 0 0 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1

Gen_49 0

Gen_50

 94

 Repeated simulations for the power system with the single company owning the group of

generators 40, 41, 42, 43, 49, 50 using the NSGA II algorithm with different initialization seeds

were conducted to ensure that the initial solution set does not have any impact on the algorithms’

ability to arrive at the final pareto-solution-set. Results from 10 repeated simulations

demonstrate the robustness in the solution algorithm. From the results it is evident that the

difference between the highest and lowest minimum operational costs is $1435.00. When

compared with the overall cost of operating the market, this is seen to be less than 2%. The

results from these repeated simulations are presented in Table 7.13 below.

Table 7.13 - Comparison of results of changing initial random seed using the NSGA II

algorithm for the 50-generator test case

Random Seed

Used

of Generations

to Converge

CPU Time

(Sec.)

 Total Minimum

Operational Cost

($)

 Modified

HHI/Hour

0.1 2559 12.80 115,156.00 1803

0.2 2556 12.50 115,460.00 1804

0.3 2554 12.40 115,490.00 1803

0.4 2562 13.10 116,425.00 1802

0.5 2550 12.30 115,650.00 1805

0.6 2557 12.60 114,990.00 1806

0.7 2551 12.35 115,750.00 1801

0.8 2548 12.20 115, 512.00 1802

0.9 2556 12.55 115,248.00 1804

0.95 2564 13.20 115, 765.00 1806

 95

7.7 Analysis of a 50-Generator 20-Load Power System with Congestion and

Mitigated Market Power between Generators with consolidation of generator

ownership

The next test case considered was to evaluate the impact of ownership consolidation on

the market. For this the same test power system was used, keeping all other constraints and

conditions the same, except the number of generators owned by a given company. Here, it was

assumed that only one company was involved in acquiring more and more generators from one

situation to the other, while each of the remaining generators was owned by a different company.

The study began with the case where the given company owned 5 generators. The ownership was

increased by 5 more generators at each step. The lowest ADHHI value from each pareto-front

resulting from each change of ownership is shown in Figure 7.28. As expected, the ADHHI value

goes beyond acceptable levels when the number of generators owned by the given company

increases beyond 20. Groupings of generators owned by the same company for each scenario

considered are tabulated below.

Table 7.14 - Generator ownership by the company dominating the Market; 50- test case 4

Number of Generators

owned by company

Generator identifier

5 3,5,15,18,23

10 3,5,15,18,23,40,41,42,43,49

15 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35

20 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22

25 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22,8,9,10,11,12

30 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22,8,9,10,11,12,

27,28,29,30,31

35 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22,8,9,10,11,12,

27,28,29,30,31,1,2,4,6,7

40 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22,8,9,10,11,12,

27,28,29,30,31,1,2,4,6,7,13,36,37,38,39

45 3,5,15,18,23,40,41,42,43,49,50,32,33,34,35,14,16,20,21,22,8,9,10,11,12,

27,28,29,30,31,1,2,4,6,7,13,36,37,38,39,44,45,46,47,48

50 All 50 generators

 96

The results from this study are presented in Table 7.15 below. From the results one can

observe that as the number of generators owned by the company increases, the lowest ADHHI

achievable is always higher than the industry-recommended threshold value of 1800. The

corresponding pareto-optimal fronts are also depicted in Figure 7.29. It is evident that as the

ownership increases the point with the lowest possible ADHHI is selected as the appropriate

operational point since the industry-recommended index value cannot be achieved.

Table 7.15 - Results from Consolidation of Generator Ownership

Number of Generators Owned

by the Consolidated Company

System-wide ADHHI

5 1802

10 1805

15 1812

20 1817

25 3447

30 4012

35 5829

40 7217

45 8373

50 10000

 97

Figure 7.28 - ADHHI value with different generator ownership using NSGA II algorithm;

50- generator test case 4

Figure 7.29 – Pareto-Optimal Front Charts with different generator ownership using

NSGA II algorithm; 50- generator test case 4

 98

7.8 Optimal Operational Point Selection from a Pareto-front for a 50-

Generator 20-Load Power System

Although the Department of Justice has suggested a prescriptive set of market-

concentration ranges, the use of these ranges to make operational decisions without evaluating

their reasonableness in a given problem seems too naive. In all previous analysis in this thesis, a

DHHI value of 1800, which is the upper limit for moderate market concentration, was chosen as

the suitable operating point from the pareto-optimal-solution-set found by the multi-objective

optimization. A more justifiable selection criteria as used by [27], [28], based on fuzzy

optimality definitions, as presented in section 6.5 of this dissertation was next evaluated for the

day-ahead market dispatch problem.

 The reasonability of using a threshold-based average DHHI for the entire system

as used in the previous analysis was investigated. For this the average system-wide DHHI along

with the peak system-wide DHHI for the market day considered, average DHHI for the

company that has the highest market power, and the peak DHHI for that company were

compared side by side with the overall optimal economic operational cost of the market. Given

that the company which owns generators 3, 5, 15, and 18 has a higher market-power than the

company which owns generators 40,41,42,43,49 and 50, the corresponding values for the first

company were compared with the system-wide values. The results obtained from the NSGA II

algorithm were used in the evaluations. Table 7.16 shows the results from this analysis.

 99

Table 7.16 - Candidate Solution Set Considered for Multi-Criteria Decision Making

Total Operational

Cost ($)

System-

wide

ADHHI

System-

wide Peak

DHHI

ADHHI for a

company owing

multiple

generators

Peak DHHI for a

company owing

multiple

generators

130811.90 1924 4221 1371 3360

131092.10 1914 4212 1363 3352

131132.30 1913 4105 1380 3278

131232.30 1913 3945 1375 3148

131309.00 1899 3567 1338 2880

131309.00 1899 3563 1390 2859

131310.90 1899 3561 1406 2867

131318.70 1873 3496 1361 2800

131342.00 1855 3421 1377 2757

131595.80 1828 3356 1338 2693

131595.80 1828 3265 1306 2601

131604.40 1827 3179 1290 2573

131802.10 1808 3087 1271 2496

131835.70 1805 2936 1267 2335

131839.00 1804 2932 1301 2343

131840.00 1803 2933 1340 2369

131875.40 1784 2857 1325 2307

132238.80 1750 2824 1253 2251

132560.00 1743 2812 1226 2277

132561.90 1743 2809 1227 2276

Each of the solutions was compared with the other 19 from the above table. Each time a

competing solution is found less desirable on any one of the five objectives being evaluated

when compared with the candidate solution being considered, the rank of the corresponding

comparison cell of the matrix shown below is updated so that the number of objectives in which

 100

a given candidate solution is better than another is reflected. As an example, if the first candidate

solution is compared with the 3rd candidate solution, one can see that out of the five objectives,

the total operational cost and average DHHI for the company owning multiple generators are

better in the 1st candidate solution than in the 3rd, resulting in a ranking of 2 for the cell [1,3] of

the matrix below. Similarly one can clearly see that cell [3,1] will be 3 to ensure that the sum of

[1,3] and [3,1] will always be equal to 5, which are total number of criteria being considered.

This procedure was repeated to fill out the entire matrix shown below.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1

2 4 0 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1

3 3 3 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

4 3 3 3 0 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1

5 4 4 4 4 0 3 3 2 2 1 1 2 1 1 1 1 1 1 1 1

6 3 3 3 3 2 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1

7 3 3 3 3 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

8 4 4 4 4 3 4 4 0 2 1 1 1 1 1 1 1 1 1 1 1

9 3 3 4 3 3 4 4 3 0 1 1 1 1 1 1 1 1 1 1 1

10 4 4 4 4 4 4 4 4 4 0 2 1 1 1 1 2 1 1 1 1

11 4 4 4 4 4 4 4 4 4 3 0 1 1 1 1 2 2 1 1 1

12 4 4 4 4 4 4 4 4 4 4 4 0 1 1 2 2 2 1 1 1

13 4 4 4 4 4 4 4 4 4 4 4 4 0 1 2 2 2 1 1 1

14 4 4 4 4 4 4 4 4 4 4 4 4 4 0 3 2 2 1 1 1

15 4 4 4 4 4 4 4 4 4 4 4 3 3 2 0 1 2 1 1 1

16 4 4 4 4 4 4 4 4 4 3 3 3 3 2 1 0 1 1 1 1

17 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 4 0 2 2 2

18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 2 2

19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 0 2

20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 0

The next step is to retain only those solutions that are kf -dominant based on fuzzy multi-

decision criteria. Using a dominance factor of 0.25, one could eliminate all solutions where the

ranking is either 1 or 4. This results in the reduced matrix as shown below and it is clear that

only the solutions 2,3,4 and 6 are left from the starting set of 20 candidate solutions. From this

reduced matrix, it is evident that candidate solution 6 is better than all three of the other solutions

and will be selected as the optimal solution from the candidate pareto-set of solutions.

 101

 2 3 4 6

2 0 2 2 2

3 3 0 2 2

4 3 3 0 2

6 3 3 3 0

At this optimal solution, the cost of operating the day-ahead market is $131,309.00 with a

system-wide ADHHI of 1899. The corresponding peak of system-wide DHHI is found to be

3563, while the ADHHI for the company with the highest market power is found to be 1390. The

peak DHHI for the same company is found to be 2859 at this optimal solution. If this solution is

compared with the cost of operating the market around the industry-recommended ADHHI index

of 1803, with a total operating cost of $131,840.00, one will observe an overall reduction of

$531.00 for operating the market. However, the resulting ADHHI has increased by 96, while the

peak of system-wide DHHI has increased by 230. The corresponding increase in ADHHI for the

company with the highest market power is 50, while there is an overall reduction of 490 in the

peak DHHI for the same company. From these comparisons one could conclude that the solution

found from the multi-decision-making criteria is better in many regards: it lowered the total cost

of operating the market, while reducing the peak DHHI for the company that has the highest

potential to influence the market. At this operating scheme, the total cost of operating the market

over a 30-day period would realize a reduction of $15,930.00 or 12% in total operating costs.

Although a net positive optimal operating cost is found for each of the cases studied in

this research, a day-ahead market operated by ISO/RTO needs to ensure that there is no revenue

imbalance. Therefore, the optimal operational cost found in each case will have to be socialized

based on the load share of each load in the system in addition to the price they are willing to pay

to the market. This process will ensure the cost of operating all generators and the power system

is recovered. The revenue imbalance is socialized using a pro-rata share to each load based on its

consumption in each hour of the market day. This revenue allocation is commonly referred to as

revenue sufficiency guarantee (RSG) distribution process in market operations.

 102

CHAPTER 8 - Conclusions

The work in this dissertation demonstrates the applicability of three promising non-

traditional optimization algorithms for solving a multi-objective, day-ahead, market-clearing

problem. Given that a majority of transactions in an electricity market take place in its day-ahead

market, optimal operation of the day-ahead market would yield definite benefits to all market

participants. The algorithms tested and the methodologies used offer a coherent and a consistent

framework for analyzing different operational scenarios of a given day-ahead market, including

conditions when the power system is constrained as well as when companies resort to market

manipulation.

From the results, it is evident that all three algorithms perform satisfactorily for the

problem being solved. However, it is also observed that each of these algorithms has its own

merits and demerits. Looking closely at the MOTS algorithm, one can see that one of the biggest

challenges in the method is the selection of a good initial solution. This is because the method

heavily relies on searching around a given neighborhood of solutions. It is also evident that the

selection of other key parameters such as the tabu list length plays a vital role in overall solution

quality and the time it takes for finding the optimal global solution. Similarly, the combined

MOTS/GA algorithm, although not so heavily dependent on its initial solution, has its own

challenges in selecting key parameters such as the population size, generation size and other

pertinent parameters. Of the three algorithms investigated, the NSGA II algorithm appears to

have the least sensitivity to changes in the configuration parameters.

Comparing the results between the 3 test systems one can clearly see that all three

algorithms tested have the ability to scale up as the size and complexity of problem scales up.

The results from many test cases also show that the times for solving the given market-dispatch

problem with a secondary objective of operating at a minimal market-power increase

exponentially as the size of the power system increases. From the results one could conclude that

any one of the tested algorithms could be interchangeably used by a regional transmission

organization that operates a day-ahead market. Based on factors such as ease of use, speed of

 103

solving and solution quality, one can lean towards using the NSGA II algorithm, with the

combined MOTS/GA algorithm following behind. It is worthwhile to note that although the

MOTS algorithm appears the least favorite when compared with the other two algorithms based

on the solution quality and performance, it has the advantage of not needing to model the

problem using chromosomes. Work done previously using genetic algorithms indicates that the

solution time has a key dependence on the length of the chromosome that is modeled to represent

a given problem, especially when the problem-space becomes large. Given that both NSGA II

and MOTS/GA methods were able to find the pareto-fronts successfully, one could conclude that

the chromosome design approach that was used in this study was appropriate. Impact of

chromosome modeling when applied to a large system is a possible proposal for future research.

The fact that the operational solutions recommended by the LP algorithm resulted in high

market concentrations clearly demonstrate the challenges currently faced by market operators.

This is due to the fact that a two-step approach to mitigating the effects of market manipulations

is currently used.

One strength of this study is its use of multi-objective solutions that optimize two

competing objective functions simultaneously when evaluating the market operations. Since all

three algorithms are multi-objective optimization algorithms, they can be easily extended to

include more than two objective functions. Measures of lost opportunity and environmental

impact are some possible dimensions that can be easily incorporated into future analyses.

The first set of evaluations considered the market to be operated at an industry

recommended threshold value. When the results from each algorithm were compared at this

threshold value, one could see that the NSGA II algorithm offers the best solution for most of the

scenarios studied.

Since almost all market regions have to deal with their neighbors, interactions from

neighboring regions in terms of buying from the market, selling into the market and moving

power through the market region need to be considered. The influences of neighboring regions

on the day-ahead market are yet another extension that can be included in future research.

 104

From the results, one can conclude that all three algorithms investigated are suitable for

solving the given day-ahead-market-dispatch problem. The introduction of fuzzy decision

methods enriched the capabilities of the solution approaches investigated by providing additional

insights to selecting an operational point where each of the considered objective functions is not

dominating any other.

 105

Bibliography

1. F.C. Schweppes, M. Caramanis, R. Taboras and R. Bohn, Spot Pricing of Electricity,

Kluwer Academic Publishers, Boston 1988.

2. J. Ma, Y.H. Song, Q. Lu, and S. Mei, “Framework for dynamic congestion management

in open power markets”, IEE Proceedings on Generation, Transmission and

Distribution, Volume 149, Issue 2, March 2002 Page(s):157 - 164.

3. A.K. David, “Dispatch Methodologies for Open Access Transmission Systems”, IEEE

Transactions on Power Systems, Volume 13, No. 1, February 1998 Page(s): 46-53.

4. C. J. Day, B. F. Hobbs, J. Pang, “Oligopolistic Competition in Power Networks: A

Conjectured Supply Function Approach”, IEEE Transactions on Power Systems, Volume

17, No. 3, August 2001 Page(s): 597-607.

5. A.J. Conejo, J. Contreras, J. M. Arroyo, S. de la Torre, “Optimal Response of an

Oligopolistic Generating Company to a Competitive Pool-Based Electric Power Market”,

IEEE Transactions on Power Systems, Volume 17, No. 2, May 2002 Page(s): 424-430.

6. A.R. Kian, J. B. Cruz, Jr. “Nash Strategies for Load Serving Entities in Dynamic Energy

Multi Markets”, Proceedings for the Hawaii International Conference on System

Sciences, January 7-10, 2002 Page(s): 730-738.

7. H. Song, C. Liu, and J. Lawarree, “Nash Equilibrium Bidding Strategies in a Bilateral

Electricity Market”, IEEE Transactions on Power Systems, Volume 17, No.1 , February

2002 Page(s): 73-79.

8. J. Yao, B. Williams, S. Oren, “Cournot Equilibrium in Price Capped Two Settlement

Electricity Markets”, Proceedings of the 38
th

 Hawaii International Conference on System

Sciences, 2005 Page(s): 58c-58e.

9. J. Yang, G. Jordan, “System Dynamic Index for Market Power Mitigation in the

Restructuring Electricity Industry”, IEEE Society Summer Meeting, Volume 4,16-20 July

2000 Page(s):2217 – 2222.

10. J.W. Bailek, “Gaming the Uniform-Price Spot market: Quantitative Analysis”, IEEE

Transactions on Power Systems, Volume 17, No.3, August 2002 Page(s): 768-773.

 106

11. F.L. Alvarado, “Market Power: A Dynamic Definition”, Conference on Bulk Power

System Dynamics and Control – IV Restructuring, Santorini, Greece, August 24-28, 1998

Page(s):1-4.

12. R.A.S.K. Ranatunge, U.D. Annakkage, C.S. Kimble, “Linear Programming based

Algorithm for Reactive Power Constrained Real Power Dispatch and Pricing”,

LESCOPE ’01, 2001 Conference on Large Engineering Systems in Power Engineering,

July, 11-13, July 2001 Page(s): 2-6.

13. S. Dekrajangpetch, G. Sheble, “Auction Implementation Problem using LaGrangian

Relaxation”, IEEE Transactions on Power Systems, Volume 14, No 1, February 1999

Page(s): 82-88.

14. L. F. Sugianto, M Widjaja, “Optimizing Bidding Strategy in the Australian National

Electricity Market”, International Journal of Fuzzy Systems, Volume 3, December 2-5,

2001 Page(s): 532-540..

15. L. Motto, and F.D. Galliana, “Equilibrium of Action Markets with Unit Commitment:

The Need for Augmented Pricing”, IEEE Transactions on Power Systems, Volume 17,

No. 3, August 2002 Page(s): 798-805.

16. A. Baykasoglu, L. Özbakir, A.I. Sönmez, “Using Multiple Objective Tabu Search and

Grammars to model and solve multi-objective flexible Job Shop Scheduling”, Journal of

Intelligent Manufacturing, December 2004, Page(s): 777-785.

17. A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, V. Ptetridis, “Optimal Power Flow by

Enhanced Genetic Algorithm”, IEEE Transactions on Power Systems, Volume 17, No. 2,

May 2002 Page(s):229-236.

18. R.T.F.A. King, and H.C.S. Rughooputh, “Elitist Multiobjective Evolutionary Algorithm

for Environmental/Economic Dispatch”, The 2003 Congress on Evolutionary

Computation, Volume 2, December, 8-12, 2003. Page(s):1108-1114.

19. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Volume 6, No.

2, April 2002 Page(s): 182-197.

20. K.P. Dahal, S.J. Galloway, G.M. Burt, J.R. McDonald, “Generation Scheduling using

Genetic Algorithm based Hybrid Techinques”, LESCOPE ’01, 2001 Conference on

 107

Large Engineering Systems in Power Engineering, July, 11-13, July 2001 Page(s): 74-

78.

21. W. Ongsakal, N. Ruangpayoongsak, “Constrained Dynamic Economic Dispatch by

Simulated Annealing/ Genetic Algorithms” , 22nd IEEE Power Engineering Society

International Conference on Power Industry Computer Applications, May 20-24, 2001

Page(s): 207-212.

22. M. Zdansky, J. Pozivil, “Combination Genetic/Tabu search Algorithm for Hybrid

Flowship Optimization”, Proceedings of Algoritmy 2002 ,16th Conference on Scientific

Computing, Vysoke Tatry –Podbanske, Sloakia, September 8-13, 2002 Page(s): 230-236.

23. M. Madrigal, V. H. Quintana, “Optimal Day-ahead Network Constrained Power

System’s Market Operations Planning Using and Interior Point Method”, IEEE

Transactions on Power Systems, Volume 14, No. 1, February 1998 Page(s):401-404.

24. G. Hammond, I. Bradley, “Assessment of Transmission Congestion Cost and Locational

Marginal Pricing in a Competitive Electricity Market”, IEEE Transactions on Power

Systems, Volume 19, No. 2, May 2004 Page(s): 769-775.

25. I. J. Ramirez-Rosado, J. A. Dominguez-Navarro, “New Multi-Objective Tabu Search

Algorithm for Fuzzy Optimal Planning of Power Distribution Systems”, IEEE

Transactions on Power Systems, Volume 21, No. 1, Feb. 2006 Page(s):224 – 233.

26. A. H. Mantawy, Y.L. Abdel-Magid, S. Z. Selim, “Integrating Genetic Algorithms, Tabu

Search, and Simulated Annealing for the Unit Commitment Problem”, IEEE

Transactions on Power Systems, Volume 14, No. 3, Aug. 1999 Page(s): 829 – 836.

27. R.R. Yager, “On Ordered Weighted Averaging Aggregation Operators in Multi-Criteria

Decision Making”, IEEE Transactions on Systems Man and Cybernetics, Volume 18,

January/February 1988 Page(s): 183-190.

28. F. Herrera, E. Herrera-Viedma, and J.L. Verdegay, “On Dominance Degrees in Group

Decision Making with Linguistic Preferences”, Proceedings Current Issues Fuzzy

Technologies, Trento, Italy, June 1-3, 1994 Page(s): 113-117.

29. M. Farina and P. Amanto, “A Fuzzy Definition of Optimality for Many- Criteria

Optimization Problems”, IEEE Transactions on Systems Man and Cybernetics, Volume

34, No. 3, May 2004 Page(s):315-326.

 108

30. M. Farina and P. Amanto, “On the Optimal Solution Definition for Multi-Criteria

Optimization Problems”, Proceedings of the NAFIPS-FLINT International Conference,

IEEE Service Center, Piscataway, New Jersey, June 2002 Page(s): 233-238.

31. M. Koppen, R. Vicente-Garcia, and B. Nickolay, “Fuzzy-Pareto-Dominance and its

Application in Evolutionary Multi-Objective Optimization”, Evolutionary Multi-

Criterion Optimization, Third International Conference, Guanajuato, Mexico, March

2005 Page(s): 399-412.

32. Restructured Electricity Markets: California Market Desgin Enabled Excercise of Market

Power, Report to Congressional Requestors for the United States General accounting

Office, June 2002. Page(s): 1-47.

33. J. Yang, G., Jordan, “System Dynamic Index for Marekt Power Mitigation in the

Restructuring Electricity Industry, IEEE Power Engineering Socieity Meeting, Volume 4,

No. 4, 2000 Page(s): 2217-2222.

34. G. Huang, K. Song, “A Simple Two Stage Optimization Algorithm for Constrained

Power Economic Dispatch”, IEEE Transactions on Power Systems, Volume 9, No. 4,

November 1994 Page(s): 1818-1824.

35. A.F. Rahimi, A.Y. Sheffrin,”Effective Market Montoring in Deregulated Electricity

Markets”, IEEE Transactions on Power Systems, Volume 18, No 2, May 2003 Page(s):

486-493.

36. J. Yao, B. Williams, S. Oren, “Cournot Equilibrium in Price Capped Two Settlement

Electricity Markets”, Proceedings of the 38
th

 Hawaii International Conference on System

Sciences, 2005 Page(s) 1-10.

37. A. Bayasoglu, “A MultiObjective Tabu Serach based Simulation Optimization Approach

for Loading of Cellular Manufacturing Systems”, Industrial Engineering, 12(1), 2001

Page(s): 2-24.

38. A.J. Svoboda, S.S Oren, “Integrating Price-based Resources in Short-Term Scheduling of

Electric Power Systems”, IEEE Transactions on Energy Conversion, Volume 9, No.

4, Dec. 1994. Page(s): 760 – 769.

39. C.C. Rajan, M.R. Mohan, “An Evolutionary Programming-based Tabu Search Method

for Solving the Unit Commitment Problem”, IEEE Transactions on Power Systems,

Volume 19, No. 1, Feb. 2004 Page(s): 577 – 585.

 109

40. A.T. Bryant, D.M. Jaeggi, G.T. Parks, P.R. Palmer, “The Influence of Operating

Conditions on Multi-Objective Optimization of Power Electronic Devices and Circuits”,

Industry Applications Conference, 2005. Fortieth IAS Annual Meeting. Conference

Record of the 2005, Volume 2, 2-6 Oct. 2005 Page(s):1449 – 1456.

41. M. A. Plazas, A. J. Conejo, F. J. Prieto, “Multimarket Optimal Bidding for a Power

Producer”, IEEE Transactions on Power Systems, Volume 20, No. 4, Nov. 2005 Page(s):

2041 – 2050.

42. A. Kanagala, M. Sahni, S. Sharma, B. Gou, J. Yu, “A Probabilistic Approach of

Hirschman-Herfindahl Index (HHI) to Determine Possibility of Market Power

Acquisition”, IEEE PES Power Systems Conference and Exposition, Volume 3, Oct.

2004 Page(s): 1277 - 1282.

43. J. Tippayachai, W. Ongsakul, I. Ngamroo, “Nonconvex Economic Dispatch by Enhanced

Tabu Search Algorithm”, IEEE Power Engineering Society General Meeting, Volume

2, 13-17 July 2003 Page(s):908-913.

44. Z. Li, Z. Jianguo, H. Xueshan, N. Lin, “Day-Ahead Generation Scheduling with Demand

Response”, IEEE/PES Transmission and Distribution Conference and Exhibition: Asia

and Pacific, 2005, 15-18 Aug. 2005 Page(s): 1 – 4.

45. R.C. Garcia, J. Contreras, M. van Akkeren, J. B. C. Garcia, “A GARCH Forecasting

Model to Predict Day-Ahead Electricity Prices”, IEEE Transactions on Power Systems,

Volume 20, No. 2, May 2005 Page(s):867 – 874.

46. F. Yong, M. Shahidehpour, L. Zuyi, “Security-Constrained Unit Commitment with AC

Constraints”, IEEE Transactions on Power Systems, Volume 20, No 2, May 2005

Page(s): 1001 – 1013.

47. C. Chen, J. Cruz, Jr., “Stackelburg Solution for Two-Person Games with Biased

Information Patterns”, IEEE Transactions on Automatic Control,

Volume 17, No. 6, Dec 1972 Page(s):791 – 798.

48. T. Ray, K Tai, C. Seow, “An Evolutionary Algorithm for Multi-Objective Optimization”,

Engineering Optimization, Volume 33, No 3, 2001 Page(s): 339-424.

49. Milosevic, B.; Begovic, M, “Nondominated Sorting Genetic Algorithm for Optimal

Phasor Measurement Placement”, IEEE Transactions on Power Systems, Volume 18, No.

1, 2003 Page(s): 69-75.

 110

50. Michael E. Agnes, Webster New World College Dictionary, John Wiley and Sons, 4th

Edition, May 2004.

51. F. Mendoza, J.L. Bernal-Agustin, J.A. Dominguez-Navarro, “NSGA and SPEA Applied

to Multi-Objective Design of Power Distribution Systems”, IEEE Transactions on Power

Systems, Volume 21, No. 4, November 2003 Page(s): 1938-1945.

52. R.T.F.A. King, H.C.S. Rughooputh, K. Deb, “Stochastic Evolutionary Multi-Objective

Environmental/Economic Dispatch”, IEEE Congress on Evolutionary Computation , 16-

21 July 2006 Page(s): 946-995.

53. R.T.F.A. King, H.C.S. Rughooputh, “Environmental/Economic Dispatch of Thermal

Units using an Elitist Multi-Objective Evolutionary Algorithm.”, IEEE International

Conference on Industrial Technology, Volume 1, No. 1, 10-12 Dec. 2003 Page(s): 48-53.

54. B. Milosevic, M. Begovic, “Capacitor Placement for Conservative Voltage Reduction on

Distribution Feeders”, IEEE Transactions on Power Delivery, Volume 19, No. 3, July

2004 Page(s): 1360-1367.

55. M.A. Abido, “A New Multi-Objective Evolutionary Algorithm for

Environmental/Economic Power Dispatch”, IEEE Power Engineering Society Summer

Meeting, 2001, Volume 2, 15-19 July 2001 Page(s): 1263-1268.

56. M.A. Abido, “Multi-Objective Evolutionary Algorithms for Electric Power Dispatch”,

IEEE Transactions on Evolutionary Computation, Volume 10, No. 3, June 2006 Page(s):

315-329.

 111

Appendix A – Source Code

MOTS Algorithm

/* Memory allocation and deallocation routines */
include <stdio.h>
include <stdlib.h>
include <math.h>
include "global.h"
include "rand.h"
/* Function to allocate memory to variables of an individual */
void allocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 ind->xreal = (double **)malloc(nbits*sizeof(double));
 ind->gen_cost = (double **)malloc(nbits*sizeof(double));
 ind->gene = (int *)malloc(nbits*sizeof(int));
 for (hr=0; hr<24; j++)
 {
 ind->xreal[hr] = (double *)malloc(nbits*sizeof(double));
 ind->gen_cost[hr] = (double *)malloc(nbits*sizeof(double))
 }
 }

 ind->obj = (double *)malloc(nobj*sizeof(double));
 ind->ia = (int *)malloc(nobj*sizeof(int));
 if (ncon != 0)
 {
 ind->constr = (double *)malloc(ncon*sizeof(double));
 }
 right_genes = (double *)malloc((nbits-site1)*sizeof(double));
 max_gen = (double *)malloc((nbits-site1)*sizeof(double));
 assinged = (double *)malloc(nbits*sizeof(double));
 return;
}

/* Function to deallocate memory of variables of an individual */
void deallocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 for (hr=0; hr<24; j++)
 {

 112

 free(ind->xreal[hr]);
 free(ind->gen_cost[hr]);
 }
 free(ind->xreal);
 free(ind->gen_cost);

 free(ind->gene);

 }
 free(ind->obj);
 free(ind->ia);
 if (ncon != 0)
 {
 free(ind->constr);
 }
 free(right_genes);
 free(max_gen);
 free(assigned);
 return;
}

/* Routine for mergeing two populations */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to copy an individual 'ind1' into another individual 'ind2' */
void copy (individual *ind1, individual *ind2)
{
 int i, j;
 ind2->constr_violation = ind1->constr_violation;
 if (nreal!=0)
 {
 for (i=0; i<nreal; i++)
 {
 ind2->xreal[i] = ind1->xreal[i];
 }
 }
 if (nbits!=0)
 {

 113

 for (j=0; j<nbits; j++)
 {
 ind2->gene[j] = ind1->gene[j];
 for (hr =0; hr <24; hr++)
 ind2->xreal[j][hr] = ind1->xreal[j][hr];
 ind2->gen_cost[j][hr] = ind1->gen_cost[j];
 }

 }
 for (i=0; i<nobj; i++)
 {
 ind2->obj[i] = ind1->obj[i];
 ind2->ia[i] = ind1->ia[i];
 }
 if (ncon!=0)
 {
 for (i=0; i<ncon; i++)
 {
 ind2->constr[i] = ind1->constr[i];
 }
 }
 return;
}
/* Crossover routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to cross two individuals */
void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2)
{

 if (nbits!=0)
 {
 bincross (parent1, parent2, child1, child2);
 }
 return;
}

/* Routine for single point binary crossover */

 114

void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2)
{
 int i, j;
 double rand;
 int temp, site1;

 rand = randomperc();
 if (rand <= pcross_bin)
 {
 nbincross++;

 for (j=0; j<site1; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }

 for (j=site1; j<nbits; j++)
 {
 child1->gene[j] = parent2->gene[j];
 child2->gene[j] = parent1->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent2->xreal[j][hr];
 child2->xreal[j][hr]= parent1->xreal[j][hr];
 }
 }
 }
 else
 {
 for (j=0; j<nbits; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }
 }

 115

 return;
}

/* Domination checking routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* It returns the following
 1 if a dominates b
 2 if b dominates a
 3 if a and b are non-dominated and a!=b (identification arrays unequal)
 4 if a and b are non-dominated and a=b */

int check_box_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;
 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);
 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (2);
 }
 else
 {
 return (4);
 }
 }
 }
 else
 {

 116

 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (2);
 }
 else
 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)
 {
 return (1);
 }
 else
 {
 for (i=0; i<nobj; i++)
 {
 if (a->ia[i] < b->ia[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->ia[i] > b->ia[i])
 {
 flag2 = 1;
 }
 }
 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }
 else
 {
 if (flag1==0 && flag2==1)
 {
 return (2);
 }
 else
 {
 if (flag1==1 && flag2==1)
 {
 return(3);
 }
 else
 {
 return(4);

 117

 }
 }
 }
 }
 }
 }
}

/* Routine for usual non-domination checking
 It will return the following values
 1 if a dominates b
 -1 if b dominates a
 0 if both a and b are non-dominated */

int check_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;
 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);
 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 else
 {
 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (-1);
 }
 else

 118

 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)
 {
 return (1);
 }
 else
 {
 for (i=0; i<nobj; i++)
 {
 if (a->obj[i] < b->obj[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->obj[i] > b->obj[i])
 {
 flag2 = 1;
 }
 }
 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }
 else
 {
 if (flag1==0 && flag2==1)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 }
 }
}

/* EPS-MOTS routine (implementation of the 'main' function) */
/*
 *
 */

 119

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

int nreal;
int nbin;
int nobj;
int ncon;
int popsize;
double pcross_real;
double pcross_bin;
double pmut_real;
double pmut_bin;
double eta_c;
double eta_m;
int neval;
int currenteval;
int nbinmut;
int nrealmut;
int nbincross;
int nrealcross;
int *nbits;
int *array;
double *min_realvar;
double *max_realvar;
double *min_binvar;
double *max_binvar;
double *epsilon;
double *min_obj;
int bitlength;
int elite_size;

int main (int argc, char **argv)
{
 int i;
 int index, index1, index2;
 FILE *fpt1;
 FILE *fpt2;
 FILE *fpt3;
 FILE *fpt4;
 FILE *fpt5;
 individual *ea;
 individual *parent1, *parent2, *child1, *child2;

 120

 ind_list *elite, *cur;
 if (argc<2)
 {
 printf("\n Usage ./main random_seed \n");
 exit(1);
 }
 seed = (double)atof(argv[1]);
 if (seed<=0.0 || seed>=1.0)
 {
 printf("\n Entered seed value is wrong, seed value must be in (0,1) \n");
 exit(1);
 }
 fpt1 = fopen("initial_pop.out","w");
 fpt2 = fopen("final_pop.out","w");
 fpt3 = fopen("final_archive.out","w");
 fpt4 = fopen("all_archive.out","w");
 fpt5 = fopen("params.out","w");
 fprintf(fpt1,"# This file contains the data of initial population\n");
 fprintf(fpt2,"# This file contains the data of final population\n");
 fprintf(fpt3,"# This file contains the best obtained solution(s)\n");
 fprintf(fpt4,"# This file contains the data of archive for all generations\n");
 fprintf(fpt5,"# This file contains information about inputs as read by the program\n");
 printf("\n Enter the problem relevant and algorithm relevant parameters ... ");
 printf("\n Enter the population size (>1) : ");
 scanf("%d",&popsize);
 if (popsize<2)
 {
 printf("\n population size read is : %d",popsize);
 printf("\n Wrong population size entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of function evaluations : ");
 scanf("%d",&neval);
 if (neval<popsize)
 {
 printf("\n number of function evaluations read is : %d",neval);
 printf("\n Wrong nuber of evaluations entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of objectives (>=2): ");
 scanf("%d",&nobj);
 if (nobj<2)
 {
 printf("\n number of objectives entered is : %d",nobj);
 printf("\n Wrong number of objectives entered, hence exiting \n");
 exit (1);

 121

 }
 epsilon = (double *)malloc(nobj*sizeof(double));
 min_obj = (double *)malloc(nobj*sizeof(double));
 for (i=0; i<nobj; i++)
 {
 printf("\n Enter the value of epsilon[%d] : ",i+1);
 scanf("%lf",&epsilon[i]);
 if (epsilon[i]<=0.0)
 {
 printf("\n Entered value of epsilon[%d] is non-positive, hence exiting\n",i+1);
 exit(1);
 }
 printf("\n Enter the value of min_obj[%d] (if not known, enter 0.0) : ",i+1);
 scanf("%lf",&min_obj[i]);
 }
 printf("\n Enter the number of constraints : ");
 scanf("%d",&ncon);
 if (ncon<0)
 {
 printf("\n number of constraints entered is : %d",ncon);
 printf("\n Wrong number of constraints enetered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of generators : ");
 scanf("%d",&nbits);
 if (nbits<0)
 {
 printf("\n number of real generators entered is : %d",nbits);
 printf("\n Wrong number of generators entered, hence exiting \n");
 exit (1);
 }
 if (nbits != 0)
 {
 min_realvar = (double *)malloc(nreal*sizeof(double));
 max_realvar = (double *)malloc(nreal*sizeof(double));
 for (i=0; i<nbits; i++)
 {
 for (hr=0; hr <24; hr++)
 {
 printf ("\n Enter the output for generator %d : ",i+1);
 scanf ("%lf",&xreal[i][hr]);
 printf ("\n Enter the cost rate for generator %d : ",i+1);
 scanf ("%lf",&gen_cost[i][hr]);
 }
 printf ("\n Enter the lower limit of real variable %d : ",i+1);
 scanf ("%lf",&min_realvar[i]);

 122

 printf ("\n Enter the upper limit of real variable %d : ",i+1);
 scanf ("%lf",&max_realvar[i]);
 if (max_realvar[i] <= min_realvar[i])
 {
 printf("\n Wrong limits entered for the min and max bounds of generator %d, hence
exiting \n",i+1);
 exit(1);
 }
 }
 printf ("\n Enter the probability of crossover (0.6-1.0) : ");
 scanf ("%lf",&pcross_real);
 if (pcross_real<0.0 || pcross_real>1.0)
 {
 printf("\n Probability of crossover entered is : %e",pcross_real);
 printf("\n Entered value of probability of crossover of real variables is out of bounds,
hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the probablity of mutation (1/nreal) : ");
 scanf ("%lf",&pmut_real);
 if (pmut_real<0.0 || pmut_real>1.0)
 {
 printf("\n Probability of mutation entered is : %e",pmut_real);
 printf("\n Entered value of probability of mutation of real variables is out of bounds,
hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the value of distribution index for crossover (5-20): ");
 scanf ("%lf",&eta_c);
 if (eta_c<=0)
 {
 printf("\n The value entered is : %e",eta_c);
 printf("\n Wrong value of distribution index for crossover entered, hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the value of distribution index for mutation (5-50): ");
 scanf ("%lf",&eta_m);
 if (eta_m<=0)
 {
 printf("\n The value entered is : %e",eta_m);
 printf("\n Wrong value of distribution index for mutation entered, hence exiting \n");
 exit (1);
 }
 }

 123

 if (nbits==0)
 {
 printf("\n Number of variables is zero, hence exiting \n");
 exit(1);
 }
 printf("\n Input data successfully entered, now performing initialization \n");
 fprintf(fpt5,"\n Population size = %d",popsize);
 fprintf(fpt5,"\n Number of function evaluations = %d",neval);
 fprintf(fpt5,"\n Number of objective functions = %d",nobj);
 for (i=0; i<nobj; i++)
 {
 fprintf(fpt5,"\n Epsilon for objective %d = %e",i+1,epsilon[i]);
 fprintf(fpt5,"\n Minimum value of objective %d = %e",i+1,min_obj[i]);
 }
 fprintf(fpt5,"\n Number of constraints = %d",ncon);
 fprintf(fpt5,"\n Number of real variables = %d",nreal);
 if (nreal!=0)
 {
 for (i=0; i<nbits; i++)
 {
 fprintf(fpt5,"\n Lower limit of real variable %d = %e",i+1,min_realvar[i]);
 fprintf(fpt5,"\n Upper limit of real variable %d = %e",i+1,max_realvar[i]);
 }
 fprintf(fpt5,"\n Probability of crossover of real variable = %e",pcross_real);
 fprintf(fpt5,"\n Probability of mutation of real variable = %e",pmut_real);
 fprintf(fpt5,"\n Distribution index for crossover = %e",eta_c);
 fprintf(fpt5,"\n Distribution index for mutation = %e",eta_m);
 }
 fprintf(fpt5,"\n Number of binary variables = %d",nbin);

 fprintf(fpt5,"\n Seed for random number generator = %e",seed);
 bitlength = 0;

 fprintf(fpt1,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt2,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt3,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt4,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 nbinmut = 0;
 nrealmut = 0;
 nbincross = 0;
 nrealcross = 0;
 currenteval = 0;

 124

 elite_size = 0;
 randomize();
 ea = (individual *)malloc(popsize*sizeof(individual));
 array = (int *)malloc(popsize*sizeof(int));
 for (i=0; i<popsize; i++)
 {
 allocate (&ea[i]);
 initialize(&ea[i]);
 decode(&ea[i]);
 eval(&ea[i]);
 }
 report_pop (ea, fpt1);
 elite = (ind_list *)malloc(sizeof(ind_list));
 elite->ind = (individual *)malloc(sizeof(individual));
 allocate (elite->ind);
 elite->parent = NULL;
 elite->child = NULL;
 insert (elite, &ea[0]);
 for (i=1; i<popsize; i++)
 {
 update_elite (elite, &ea[i]);
 }
 child1 = (individual *)malloc(sizeof(individual));
 allocate (child1);
 child2 = (individual *)malloc(sizeof(individual));
 allocate (child2);
 cur = elite;
 while (currenteval<neval)
 {
 index1 = rnd(0, popsize-1);
 index2 = rnd(0, popsize-1);
 parent1 = tournament (&ea[index1], &ea[index2]);
 index = rnd(0, elite_size-1);
 cur = elite->child;
 for (i=1; i<=index; i++)
 {
 cur=cur->child;
 }
 parent2 = cur->ind;
 crossover (parent1, parent2, child1, child2);
 mutation (child1);
 decode (child1);
 eval (child1);
 update_elite (elite, child1);
 update_pop (ea, child1);
 mutation (child2);

 125

 decode (child2);
 eval (child2);
 update_elite (elite, child2);
 update_pop (ea, child2);
 printf("\n Currenteval = %d and Elite_size = %d",currenteval,elite_size);
 /* Comment following three lines if information at all
 evaluation is not desired, it will speed up execution of the code */
 fprintf(fpt4,"# eval id = %d\n",currenteval);
 report_archive (elite, fpt4);
 fflush(fpt4);
 }
 printf("\n Generations finished, now reporting solutions");
 report_pop (ea, fpt2);
 report_archive (elite, fpt3);
 if (nreal!=0)
 {
 fprintf(fpt5,"\n Number of crossover of real variable = %d",nrealcross);
 fprintf(fpt5,"\n Number of mutation of real variable = %d",nrealmut);
 }
 if (nbin!=0)
 {
 fprintf(fpt5,"\n Number of crossover of binary variable = %d",nbincross);
 fprintf(fpt5,"\n Number of mutation of binary variable = %d",nbinmut);
 }
 fflush(stdout);
 fflush(fpt1);
 fflush(fpt2);
 fflush(fpt3);
 fflush(fpt4);
 fflush(fpt5);
 fclose(fpt1);
 fclose(fpt2);
 fclose(fpt3);
 fclose(fpt4);
 fclose(fpt5);
 if (nreal!=0)
 {
 free (min_realvar);
 free (max_realvar);
 }
 if (nbin!=0)
 {
 free (min_binvar);
 free (max_binvar);
 free (nbits);
 }

 126

 free (epsilon);
 free (min_obj);
 free (array);
 for (i=0; i<popsize; i++)
 {
 deallocate (&ea[i]);
 }
 free (ea);
 cur = elite->child;
 while (cur!=NULL)
 {
 cur = del(cur);
 cur = cur->child;
 }
 deallocate (elite->ind);
 free (elite->ind);
 free (elite);
 printf("\n Routine successfully exited \n");
 return (0);
}

/* Routine for evaluating individuals */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to evaluate objective function values and constraints for an individual */
void eval (individual *ind)
{
 int j;
 test_problem (ind->xreal,ind->gen_cost, ind->gene, ind->obj, ind->constr);
 for (j=0; j<nobj; j++)
 {
 ind->ia[j] = (int)floor((ind->obj[j]-min_obj[j])/epsilon[j]);
 }
 if (ncon==0)
 {
 ind->constr_violation = 0.0;
 }
 else
 {
 ind->constr_violation = 0.0;

 127

 for (j=0; j<ncon; j++)
 {
 if (ind->constr[j]<0.0)
 {
 ind->constr_violation += ind->constr[j];
 }
 }
 }
 currenteval++;
 return;
}

/* This file contains the variable and function declarations */

ifndef _GLOBAL_H_
define _GLOBAL_H_

define INF 1.0e99
define EPS 1.0e-14
define E 2.71828182845905
define PI 3.14159265358979

/* global variables */
typedef struct
{
 double constr_violation;
 double **xreal;
 int *gene;
 double *gen_cost;
 double *obj;
 int *ia;
 double *constr;
} individual;

typedef struct ind_lists
{
 individual *ind;
 struct ind_lists *parent;
 struct ind_lists *child;
} ind_list;

extern int nreal;
extern int nbin;
extern int nobj;
extern int ncon;
extern int popsize;

 128

extern double pcross_real;
extern double pcross_bin;
extern double pmut_real;
extern double pmut_bin;
extern double eta_c;
extern double eta_m;
extern int neval;
extern int currenteval;
extern int nbinmut;
extern int nrealmut;
extern int nbincross;
extern int nrealcross;
extern int nbits;
extern int *array;
extern int *right_genes;
extern int *assigned;
extern double max_gen;
extern double *min_realvar;
extern double *max_realvar;
extern double *min_binvar;
extern double *max_binvar;
extern double *epsilon;
extern double *min_obj;
extern int bitlength;
extern int elite_size;
extern int site1;
/* global function declarations */
void allocate (individual *ind);
void deallocate (individual *ind);

void copy (individual *ind1, individual *ind2);

void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2);
void realcross (individual *parent1, individual *parent2, individual *child1, individual *child2);
void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2);

void decode (individual *ind);

int check_box_dominance (individual *a, individual *b);
int check_dominance (individual *a, individual *b);

void eval (individual *ind);

void initialize (individual *ind);

void insert (ind_list *node, individual *ind);

 129

ind_list* del (ind_list *node);

void mutation (individual *ind);
void bin_mutate (individual *ind);
void real_mutate (individual *ind);

void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr);

void report_pop (individual *ind, FILE *fpt);
void report_archive (ind_list *elite, FILE *fpt);

individual* tournament (individual *ind1, individual *ind2);

void update_elite (ind_list *elite, individual *ind);
void update_pop (individual *ea, individual *ind);

endif

/* Data initializtion routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to initialize an individual randomly */
void initialize (individual *ind, int site1)
{
 int i, j, k, found, found2,res;
 if (nbits !=0)
 {

 for (i=0; i < (nbits - site1); i++)
 {
 max_gen[i]= 0.0;
 for (j=0; j<nbits; j++)
 {
 if (i == 0)
 {
 if (max_gen[i] < gen_cost[j])
 max_gen[i]= gen_cost[j];
 }
 else
 {

 130

 if ((max_gen[i] < gen_cost[j]) && (max_gen[i] < max_gen[i-1]))
 max_gen[i]= gen_cost[j];
 }
 }
 /*fetch a single random integer at a time to select each gene to the right of the crossover point
and is one of the expensive generators */
 k =0;
 j= site1;
 right_genes[0] =10000;

 while (k < nbits -site1)
 {
 res = rnd[0,nbits];

 if (gen_cost[res] >= max_gen[nbits -site1-1])
 {
 found =0;
 for (i=0; i < k ; i++)
 if (res == right_genes[i])
 found=1;
 if (found == 0)
 {
 ind->gene[j] = res;
 for (hr=0; hr <24; hr++)
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);
 right_genes[k] = res;
 j++;
 k++;
 }
 }
 }
 /* next assign all remaining generators not assigned to the appropreate gene */
 jump=k;
 j=0;
 assigned[0]=10000;
 while (j < site1)
 {
 res = rnd[0,bits];
 found =0;
 found2=0;
 for (k=0 ; k < jump; k++)
 if(res == right_genes[k])
 found =1;

 for (i=0; i < j; i++)
 if(res == assigned[i])

 131

 found2=1;
 if (found1 ==0 && found2 ==0)
 {
 ind->gene[j] = res;
 for (hr= 0 ; hr < 24; hr++)
 {
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);

 }
 assigned [j] =res;
 j++;
 }

 }
 }
 return;
}

/* A custom doubly linked list implemenation */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to insert an element after the location specified by node NODE */
void insert (ind_list *node, individual *ind)
{
 ind_list *temp;
 if (node==NULL)
 {
 printf("\n Error!! asked to enter after a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = (ind_list *)malloc(sizeof(ind_list));
 temp->ind = (individual *)malloc(sizeof(individual));
 allocate (temp->ind);
 copy (ind, temp->ind);
 temp->child = node->child;
 temp->parent = node;
 if (node->child != NULL)
 {
 node->child->parent = temp;

 132

 }
 node->child = temp;
 elite_size++;
 return;
}

/* Delete the element specified by node NODE */
ind_list* del (ind_list *node)
{
 ind_list *temp;
 if (node==NULL)
 {
 printf("\n Error!! asked to delete a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = node->parent;
 temp->child = node->child;
 if (temp->child!=NULL)
 {
 temp->child->parent = temp;
 }
 deallocate(node->ind);
 free (node->ind);
 free (node);
 elite_size--;
 return (temp);
}

/* Mutation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to perform mutation of an individual */
void mutation (individual *ind)
{
 if (nreal!=0)
 {
 real_mutate(ind);
 }
 if (nbits!=0)
 {

 133

 bin_mutate(ind);
 }
 return;
}

/* Routine for binary mutation of an individual */
void bin_mutate (individual *ind)
{
 int j, k, found,found2,temp;
 double prob, temp_real[24],new_real[24];

 for(hr=0; hr <24; hr++)
 {
 temp_real[24]=0.0;
 new_real[24]=0.0;
 }

 prob = randomperc();
 if (prob <=pmut_bin)
 {
 found =0;
 res = rnd[0,site1];
 while (found !=1)
 {
 res1 = rnd[0,site1];
 if (res !=res1)
 {

 for(hr=0; hr <24; hr++)
 temp_real[24] = ind->xreal[res][hr]+ind->xreal[res1][hr];
 temp = ind->gene[res];
 ind-> gene[res] = ind->gene[res1];
 ind-> gene[res1] = temp;
 for(hr=0; hr <24; hr++)
 {
 found2=0;
 while(found2 !=1)
 {
 ind->xreal[res][hr] =rndreal (min_realvar[res], max_realvar[res]);
 new_real[24] = temp_real[24] - ind->xreal[res][hr];

 if (new_real[24] > min_realvar[res1])&&(new_real[24] < max_realvar[res1]))
 {
 ind->xreal[res1][hr] = new_real[24];
 found2=1;

 134

 }
 }
 }
 found=1;
 }
 }
 }

 return;
}

/* Routine for real polynomial mutation of an individual */
void real_mutate (individual *ind)
{
 int j;
 double rnd, delta1, delta2, mut_pow, deltaq;
 double y, yl, yu, val, xy;
 for (j=0; j<nreal; j++)
 {
 if (randomperc() <= pmut_real)
 {
 y = ind->xreal[j];
 yl = min_realvar[j];
 yu = max_realvar[j];
 delta1 = (y-yl)/(yu-yl);
 delta2 = (yu-y)/(yu-yl);
 rnd = randomperc();
 mut_pow = 1.0/(eta_m+1.0);
 if (rnd <= 0.5)
 {
 xy = 1.0-delta1;
 val = 2.0*rnd+(1.0-2.0*rnd)*(pow(xy,(eta_m+1.0)));
 deltaq = pow(val,mut_pow) - 1.0;
 }
 else
 {
 xy = 1.0-delta2;
 val = 2.0*(1.0-rnd)+2.0*(rnd-0.5)*(pow(xy,(eta_m+1.0)));
 deltaq = 1.0 - (pow(val,mut_pow));
 }
 y = y + deltaq*(yu-yl);
 if (y<yl) y = yl;
 if (y>yu) y = yu;
 ind->xreal[j] = y;
 nrealmut+=1;
 }

 135

 }
 return;
}

/* Test problem definitions */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* # define sch1 */
/* # define sch2 */
/* # define fon */
/* # define kur */
/* # define pol */
/* # define vnt */
/* # define zdt1*/
/* # define zdt2 */
/* # define zdt3 */
/* # define zdt4 */
/* # define zdt5 */
/* # define zdt6 */
/* # define bnh */
/* # define osy */
/* # define srn */
/* # define tnk */
/* # define ctp1 */
/* # define ctp2 */
/* # define ctp3 */
/* # define ctp4 */
/* # define ctp5 */
/* # define ctp6 */
/* # define ctp7 */
/* # define ctp8 */
#define generator_matchup
/* Test problem SCH1
 # of real variables = 1
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch1

 136

void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = pow(xreal[0],2.0);
 obj[1] = pow((xreal[0]-2.0),2.0);
 return;
}
#endif

/* Test problem SCH2
 # of real variables = 1
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 if (xreal[0]<=1.0)
 {
 obj[0] = -xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=3.0)
 {
 obj[0] = xreal[0]-2.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=4.0)
 {
 obj[0] = 4.0-xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 obj[0] = xreal[0]-4.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
}
#endif

/* Test problem FON
 # of real variables = n
 # of bin variables = 0
 # of objectives = 2

 137

 # of constraints = 0
 */

#ifdef fon
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double s1, s2;
 int i;
 s1 = s2 = 0.0;
 for (i=0; i<nreal; i++)
 {
 s1 += pow((xreal[i]-(1.0/sqrt((double)nreal))),2.0);
 s2 += pow((xreal[i]+(1.0/sqrt((double)nreal))),2.0);
 }
 obj[0] = 1.0 - exp(-s1);
 obj[1] = 1.0 - exp(-s2);
 return;
}
#endif

/* Test problem KUR
 # of real variables = 3
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef kur
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i;
 double res1, res2;
 res1 = -0.2*sqrt((xreal[0]*xreal[0]) + (xreal[1]*xreal[1]));
 res2 = -0.2*sqrt((xreal[1]*xreal[1]) + (xreal[2]*xreal[2]));
 obj[0] = -10.0*(exp(res1) + exp(res2));
 obj[1] = 0.0;
 for (i=0; i<3; i++)
 {
 obj[1] += pow(fabs(xreal[i]),0.8) + 5.0*sin(pow(xreal[i],3.0));
 }
 return;
}
#endif

/* Test problem POL
 # of real variables = 2

 138

 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef pol
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double a1, a2, b1, b2;
 a1 = 0.5*sin(1.0) - 2.0*cos(1.0) + sin(2.0) - 1.5*cos(2.0);
 a2 = 1.5*sin(1.0) - cos(1.0) + 2.0*sin(2.0) - 0.5*cos(2.0);
 b1 = 0.5*sin(xreal[0]) - 2.0*cos(xreal[0]) + sin(xreal[1]) - 1.5*cos(xreal[1]);
 b2 = 1.5*sin(xreal[0]) - cos(xreal[0]) + 2.0*sin(xreal[1]) - 0.5*cos(xreal[1]);
 obj[0] = 1.0 + pow((a1-b1),2.0) + pow((a2-b2),2.0);
 obj[1] = pow((xreal[0]+3.0),2.0) + pow((xreal[1]+1.0),2.0);
 return;
}
#endif

/* Test problem VNT
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 3
 # of constraints = 0
 */

#ifdef vnt
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 0.5*(xreal[0]*xreal[0] + xreal[1]*xreal[1]) + sin(xreal[0]*xreal[0] +
xreal[1]*xreal[1]);
 obj[1] = (pow((3.0*xreal[0] - 2.0*xreal[1] + 4.0),2.0))/8.0 + (pow((xreal[0]-
xreal[1]+1.0),2.0))/27.0 + 15.0;
 obj[2] = 1.0/(xreal[0]*xreal[0] + xreal[1]*xreal[1] + 1.0) - 1.1*exp(-(xreal[0]*xreal[0] +
xreal[1]*xreal[1]));
 return;
}
#endif

/* Test problem ZDT1
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

 139

#ifdef zdt1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT2
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;

 140

}
#endif

/* Test problem ZDT3
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt3
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g) - (f1/g)*sin(10.0*PI*f1);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT4
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<10; i++)

 141

 {
 g += xreal[i]*xreal[i] - 10.0*cos(4.0*PI*xreal[i]);
 }
 g += 91.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT5
 # of real variables = 0
 # of bin variables = 11
 # of bits for binvar1 = 30
 # of bits for binvar2-11 = 5
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i, j;
 int u[11];
 int v[11];
 double f1, f2, g, h;
 for (i=0; i<11; i++)
 {
 u[i] = 0;
 }
 for (j=0; j<30; j++)
 {
 if (gene[0][j] == 1)
 {
 u[0]++;
 }
 }
 for (i=1; i<11; i++)
 {
 for (j=0; j<4; j++)
 {
 if (gene[i][j] == 1)
 {
 u[i]++;

 142

 }
 }
 }
 f1 = 1.0 + u[0];
 for (i=1; i<11; i++)
 {
 if (u[i] < 5)
 {
 v[i] = 2 + u[i];
 }
 else
 {
 v[i] = 1;
 }
 }
 g = 0;
 for (i=1; i<11; i++)
 {
 g += v[i];
 }
 h = 1.0/f1;
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT6
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = 1.0 - (exp(-4.0*xreal[0]))*pow((sin(4.0*PI*xreal[0])),6.0);
 g = 0.0;
 for (i=1; i<10; i++)
 {
 g += xreal[i];
 }

 143

 g = g/9.0;
 g = pow(g,0.25);
 g = 1.0 + 9.0*g;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem BNH
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef bnh
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 4.0*(xreal[0]*xreal[0] + xreal[1]*xreal[1]);
 obj[1] = pow((xreal[0]-5.0),2.0) + pow((xreal[1]-5.0),2.0);
 constr[0] = 1.0 - (pow((xreal[0]-5.0),2.0) + xreal[1]*xreal[1])/25.0;
 constr[1] = (pow((xreal[0]-8.0),2.0) + pow((xreal[1]+3.0),2.0))/7.7 - 1.0;
 return;
}
#endif

/* Test problem OSY
 # of real variables = 6
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 6
 */

#ifdef osy
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = -(25.0*pow((xreal[0]-2.0),2.0) + pow((xreal[1]-2.0),2.0) + pow((xreal[2]-1.0),2.0) +
pow((xreal[3]-4.0),2.0) + pow((xreal[4]-1.0),2.0));
 obj[1] = xreal[0]*xreal[0] + xreal[1]*xreal[1] + xreal[2]*xreal[2] + xreal[3]*xreal[3] +
xreal[4]*xreal[4] + xreal[5]*xreal[5];
 constr[0] = (xreal[0]+xreal[1])/2.0 - 1.0;
 constr[1] = 1.0 - (xreal[0]+xreal[1])/6.0;
 constr[2] = 1.0 - xreal[1]/2.0 + xreal[0]/2.0;

 144

 constr[3] = 1.0 - xreal[0]/2.0 + 3.0*xreal[1]/2.0;
 constr[4] = 1.0 - (pow((xreal[2]-3.0),2.0))/4.0 - xreal[3]/4.0;
 constr[5] = (pow((xreal[4]-3.0),2.0))/4.0 + xreal[5]/4.0 - 1.0;
 return;
}
#endif

/* Test problem SRN
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef srn
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 2.0 + pow((xreal[0]-2.0),2.0) + pow((xreal[1]-1.0),2.0);
 obj[1] = 9.0*xreal[0] - pow((xreal[1]-1.0),2.0);
 constr[0] = 1.0 - (pow(xreal[0],2.0) + pow(xreal[1],2.0))/225.0;
 constr[1] = 3.0*xreal[1]/10.0 - xreal[0]/10.0 - 1.0;
 return;
}
#endif

/* Test problem TNK
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef tnk
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = xreal[0];
 obj[1] = xreal[1];
 if (xreal[1] == 0.0)
 {
 constr[0] = -1.0;
 }
 else
 {
 constr[0] = xreal[0]*xreal[0] + xreal[1]*xreal[1] - 0.1*cos(16.0*atan(xreal[0]/xreal[1])) -
1.0;
 }

 145

 constr[1] = 1.0 - 2.0*pow((xreal[0]-0.5),2.0) + 2.0*pow((xreal[1]-0.5),2.0);
 return;
}
#endif

/* Test problem CTP1
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef ctp1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*exp(-obj[0]/g);
 constr[0] = obj[1]/(0.858*exp(-0.541*obj[0]))-1.0;
 constr[1] = obj[1]/(0.728*exp(-0.295*obj[0]))-1.0;
 return;
}
#endif

/* Test problem CTP2
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.2;
 b = 10.0;
 c = 1.0;
 d = 6.0;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];

 146

 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP3
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp3
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;
 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP4
 # of real variables = 2
 # of bin variables = 0

 147

 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.75;
 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP5
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;
 b = 10.0;
 c = 2.0;

 148

 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP6
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

 149

/* Test problem CTP7
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp7
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.05*PI;
 a = 40.0;
 b = 5.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP8
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef ctp8
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;

 150

 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 theta = -0.05*PI;
 a = 40.0;
 b = 2.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[1] = exp1/exp2 - 1.0;
 return;
}
#endif

#ifdef generator_matchup
void test_problem (double **xreal,double *gen_cost, double *load_cost, double **load, double
*max_realvar, int num_loads, int nreal, int *group, int group_max, double *obj, double *constr)
{
 int i,j,k,l, hrs=24;
 obj[0] =0.0;
 obj[1] = 0.0;
double sum =0.0, sum1=0.0;
/* Objective function definition */

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 obj[0] += (gen_cost[j]*xreal[j][i];

 151

 }
 for (k= 0; k < num_loads ; k++)
 {
 obj[0] -= load_cost[k]*load[k][i];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)
 {
 if (j == group[l])
 sum1 += max_realvar[j] - xreal[j][i];
 }
 sum += max_realvar[j] -x real[j][i];
 }
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)
 {
 if (j != group[l])
 obj[1] += ((max_realvar[j]- xreal[j][i])/sum)^2;
 }
 }
 obj[1] += (sum1/sum)^2;
 }
 obj[1] = obj[1]/24;
/* constraints definition */
/* Economic Minimum and Maximum Operating Cosntaraint *

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j]=max_realvar[j] -(xreal[j][i]+ Spin[j];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+nreal]=max_realvar[j] -(xreal[j][i]+ SOper[j];
 }
 }
 for (i = 0; i < hrs ; i++)

 152

 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+2*nreal]=(xreal[j][i] -min_realvar[j];
 }
 }

 return;
}
#endif

/* Definition of random number generation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

double seed;
double oldrand[55];
int jrand;

/* Get seed number for random and start it up */
void randomize()
{
 int j1;
 for(j1=0; j1<=54; j1++)
 {
 oldrand[j1] = 0.0;
 }
 jrand=0;
 warmup_random (seed);
 return;
}

/* Get randomize off and running */
void warmup_random (double seed)
{
 int j1, ii;
 double new_random, prev_random;
 oldrand[54] = seed;
 new_random = 0.000000001;
 prev_random = seed;

 153

 for(j1=1; j1<=54; j1++)
 {
 ii = (21*j1)%54;
 oldrand[ii] = new_random;
 new_random = prev_random-new_random;
 if(new_random<0.0)
 {
 new_random += 1.0;
 }
 prev_random = oldrand[ii];
 }
 advance_random ();
 advance_random ();
 advance_random ();
 jrand = 0;
 return;
}

/* Create next batch of 55 random numbers */
void advance_random ()
{
 int j1;
 double new_random;
 for(j1=0; j1<24; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1+31];
 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
 for(j1=24; j1<55; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1-24];
 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
}

/* Fetch a single random number between 0.0 and 1.0 */
double randomperc()
{

 154

 jrand++;
 if(jrand>=55)
 {
 jrand = 1;
 advance_random();
 }
 return((double)oldrand[jrand]);
}

/* Fetch a single random integer between low and high including the bounds */
int rnd (int low, int high)
{
 int res;
 if (low >= high)
 {
 res = low;
 }
 else
 {
 res = low + (randomperc()*(high-low+1));
 if (res > high)
 {
 res = high;
 }
 }
 return (res);
}

/* Fetch a single random real number between low and high including the bounds */
double rndreal (double low, double high)
{
 return (low + (high-low)*randomperc());
}

/* Declaration for random number related variables and routines */

ifndef _RAND_H_
define _RAND_H_

/* Variable declarations for the random number generator */
extern double seed;
extern double oldrand[55];
extern int jrand;

/* Function declarations for the random number generator */
void randomize(void);

 155

void warmup_random (double seed);
void advance_random (void);
double randomperc(void);
int rnd (int low, int high);
double rndreal (double low, double high);

endif

/* Routines for storing population data into files */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to print the information of a population in a file */
void report_pop (individual *ind, FILE *fpt)
{
 int i, j, k;
 for (i=0; i<popsize; i++)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",ind[i].obj[j]);
 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)
 {
 fprintf(fpt,"%e\t",ind[i].constr[j]);
 }
 }
 if (nreal!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 156

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",ind[i].gene[k]);
 }

 }
 fprintf(fpt,"%e\n",ind[i].constr_violation);
 }
 return;
}

/* Function to print the information of feasible and non-dominated population in a file */
void report_archive (ind_list *elite, FILE *fpt)
{
 int j, k;
 ind_list *cur;
 cur = elite->child;
 while (cur!=NULL)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",cur->ind->obj[j]);
 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)
 {
 fprintf(fpt,"%e\t",cur->ind->constr[j]);
 }
 }
 if (nbits!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",cur->ind->gene[k]);
 }

 157

 }
 fprintf(fpt,"%e\n",cur->ind->constr_violation);
 cur = cur->child;
 }
 return;
}

/* Tournamenet Selections routine */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine for binary neigborhood */
individual* tournament (individual *ind1, individual *ind2)
{
 int flag;
 flag = check_dominance (ind1, ind2);
 if (flag==1)
 {
 return (ind1);
 }
 if (flag==-1)
 {
 return (ind2);
 }
 if ((randomperc()) <= 0.5)
 {
 return(ind1);
 }
 else
 {
 return(ind2);
 }
}

/* Routines for updating elite and EA populations */

include <stdio.h>
include <stdlib.h>
include <math.h>

 158

include "global.h"
include "rand.h"

/* Routine to update archive */
void update_elite (ind_list *elite, individual *ind)
{
 int i, end, flag;
 double d1, d2;
 ind_list *temp;
 temp = elite->child;
 end = 0;
 do
 {
 flag = check_box_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1: /* ind dominates temp->ind */
 {
 temp = del (temp);
 temp = temp->child;
 break;
 }
 case 2: /* temp->ind dominates ind */
 {
 return;
 }
 case 3: /* both are non-dominated and are in different boxes */
 {
 temp = temp->child;
 break;
 }
 case 4: /* both are non-dominated and are in same hyper-box */
 {
 end = 1;
 break;
 }
 }
 }
 while (end!=1 && temp!=NULL);
 if (end==0)
 {
 insert(elite, ind);
 }
 else
 {
 if (flag==4) /* in same hyperbox */

 159

 {
 flag = check_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1:
 {
 temp = del(temp);
 insert (elite, ind);
 break;
 }
 case -1:
 {
 return;
 }
 case 0:
 {
 d1 = 0.0;
 d2 = 0.0;
 for (i=0; i<nobj; i++)
 {
 d1 += pow(((ind->obj[i]-ind->ia[i])/epsilon[i]),2.0);
 d2 += pow(((temp->ind->obj[i]-temp->ind->ia[i])/epsilon[i]),2.0);
 }
 if (d1<=d2)
 {
 temp = del(temp);
 insert(elite,ind);
 }
 break;
 }
 }
 }
 }
 return;
}

/* Routine to update population */
void update_pop (individual *ea, individual *ind)
{
 int size;
 int i;
 int flag;
 size = 0;
 for (i=0; i<popsize; i++)
 {
 flag = check_dominance (ind, &ea[i]);

 160

 switch (flag)
 {
 case 1:
 copy (ind, &ea[i]);
 return;
 case -1:
 return;
 case 0:
 array[size++] = i;
 break;
 }
 }
 if (size>0)
 {
 i = rnd(0,size-1);
 copy (ind, &ea[array[i]]);
 }
 return;
}

MOTS/GA Algorithm

/* Memory allocation and deallocation routines */
include <stdio.h>
include <stdlib.h>
include <math.h>
include "global.h"
include "rand.h"
/* Function to allocate memory to variables of an individual */
void allocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 ind->xreal = (double **)malloc(nbits*sizeof(double));
 ind->gen_cost = (double **)malloc(nbits*sizeof(double));
 ind->gene = (int *)malloc(nbits*sizeof(int));
 for (hr=0; hr<24; j++)
 {
 ind->xreal[hr] = (double *)malloc(nbits*sizeof(double));
 ind->gen_cost[hr] = (double *)malloc(nbits*sizeof(double))
 }
 }

 161

 ind->obj = (double *)malloc(nobj*sizeof(double));
 ind->ia = (int *)malloc(nobj*sizeof(int));
 if (ncon != 0)
 {
 ind->constr = (double *)malloc(ncon*sizeof(double));
 }
 right_genes = (double *)malloc((nbits-site1)*sizeof(double));
 max_gen = (double *)malloc((nbits-site1)*sizeof(double));
 assinged = (double *)malloc(nbits*sizeof(double));
 return;
}

/* Function to deallocate memory of variables of an individual */
void deallocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 for (hr=0; hr<24; j++)
 {
 free(ind->xreal[hr]);
 free(ind->gen_cost[hr]);
 }
 free(ind->xreal);
 free(ind->gen_cost);

 free(ind->gene);

 }
 free(ind->obj);
 free(ind->ia);
 if (ncon != 0)
 {
 free(ind->constr);
 }
 free(right_genes);
 free(max_gen);
 free(assigned);
 return;
}

/* Routine for mergeing two populations */

include <stdio.h>

 162

include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to copy an individual 'ind1' into another individual 'ind2' */
void copy (individual *ind1, individual *ind2)
{
 int i, j;
 ind2->constr_violation = ind1->constr_violation;
 if (nreal!=0)
 {
 for (i=0; i<nreal; i++)
 {
 ind2->xreal[i] = ind1->xreal[i];
 }
 }
 if (nbits!=0)
 {

 for (j=0; j<nbits; j++)
 {
 ind2->gene[j] = ind1->gene[j];
 for (hr =0; hr <24; hr++)
 ind2->xreal[j][hr] = ind1->xreal[j][hr];
 ind2->gen_cost[j][hr] = ind1->gen_cost[j];
 }

 }
 for (i=0; i<nobj; i++)
 {
 ind2->obj[i] = ind1->obj[i];
 ind2->ia[i] = ind1->ia[i];
 }
 if (ncon!=0)
 {
 for (i=0; i<ncon; i++)
 {
 ind2->constr[i] = ind1->constr[i];
 }
 }
 return;
}
/* Crossover routines */

 163

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to cross two individuals */
void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2)
{

 if (nbits!=0)
 {
 bincross (parent1, parent2, child1, child2);
 }
 return;
}

/* Routine for single point binary crossover */
void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2)
{
 int i, j;
 double rand;
 int temp, site1;

 rand = randomperc();
 if (rand <= pcross_bin)
 {
 nbincross++;

 for (j=0; j<site1; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }

 for (j=site1; j<nbits; j++)
 {
 child1->gene[j] = parent2->gene[j];
 child2->gene[j] = parent1->gene[j];

 164

 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent2->xreal[j][hr];
 child2->xreal[j][hr]= parent1->xreal[j][hr];
 }
 }
 }
 else
 {
 for (j=0; j<nbits; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }
 }

 return;
}

/* Domination checking routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* It returns the following
 1 if a dominates b
 2 if b dominates a
 3 if a and b are non-dominated and a!=b (identification arrays unequal)
 4 if a and b are non-dominated and a=b */

int check_box_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;

 165

 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);
 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (2);
 }
 else
 {
 return (4);
 }
 }
 }
 else
 {
 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (2);
 }
 else
 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)
 {
 return (1);
 }
 else
 {
 for (i=0; i<nobj; i++)
 {
 if (a->ia[i] < b->ia[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->ia[i] > b->ia[i])
 {
 flag2 = 1;
 }
 }

 166

 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }
 else
 {
 if (flag1==0 && flag2==1)
 {
 return (2);
 }
 else
 {
 if (flag1==1 && flag2==1)
 {
 return(3);
 }
 else
 {
 return(4);
 }
 }
 }
 }
 }
 }
}

/* Routine for usual non-domination checking
 It will return the following values
 1 if a dominates b
 -1 if b dominates a
 0 if both a and b are non-dominated */

int check_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;
 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);

 167

 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 else
 {
 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (-1);
 }
 else
 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)
 {
 return (1);
 }
 else
 {
 for (i=0; i<nobj; i++)
 {
 if (a->obj[i] < b->obj[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->obj[i] > b->obj[i])
 {
 flag2 = 1;
 }
 }
 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }

 168

 else
 {
 if (flag1==0 && flag2==1)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 }
 }
}

/* EPS-MOTS routine (implementation of the 'main' function) */
/*
 *
 */
include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

int nreal;
int nbin;
int nobj;
int ncon;
int popsize;
double pcross_real;
double pcross_bin;
double pmut_real;
double pmut_bin;
double eta_c;
double eta_m;
int neval;
int currenteval;
int nbinmut;
int nrealmut;
int nbincross;
int nrealcross;
int *nbits;
int *array;

 169

double *min_realvar;
double *max_realvar;
double *min_binvar;
double *max_binvar;
double *epsilon;
double *min_obj;
int bitlength;
int elite_size;

int main (int argc, char **argv)
{
 int i;
 int index, index1, index2;
 FILE *fpt1;
 FILE *fpt2;
 FILE *fpt3;
 FILE *fpt4;
 FILE *fpt5;
 individual *ea;
 individual *parent1, *parent2, *child1, *child2;
 ind_list *elite, *cur;
 if (argc<2)
 {
 printf("\n Usage ./main random_seed \n");
 exit(1);
 }
 seed = (double)atof(argv[1]);
 if (seed<=0.0 || seed>=1.0)
 {
 printf("\n Entered seed value is wrong, seed value must be in (0,1) \n");
 exit(1);
 }
 fpt1 = fopen("initial_pop.out","w");
 fpt2 = fopen("final_pop.out","w");
 fpt3 = fopen("final_archive.out","w");
 fpt4 = fopen("all_archive.out","w");
 fpt5 = fopen("params.out","w");
 fprintf(fpt1,"# This file contains the data of initial population\n");
 fprintf(fpt2,"# This file contains the data of final population\n");
 fprintf(fpt3,"# This file contains the best obtained solution(s)\n");
 fprintf(fpt4,"# This file contains the data of archive for all generations\n");
 fprintf(fpt5,"# This file contains information about inputs as read by the program\n");
 printf("\n Enter the problem relevant and algorithm relevant parameters ... ");
 printf("\n Enter the population size (>1) : ");
 scanf("%d",&popsize);
 if (popsize<2)

 170

 {
 printf("\n population size read is : %d",popsize);
 printf("\n Wrong population size entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of function evaluations : ");
 scanf("%d",&neval);
 if (neval<popsize)
 {
 printf("\n number of function evaluations read is : %d",neval);
 printf("\n Wrong nuber of evaluations entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of objectives (>=2): ");
 scanf("%d",&nobj);
 if (nobj<2)
 {
 printf("\n number of objectives entered is : %d",nobj);
 printf("\n Wrong number of objectives entered, hence exiting \n");
 exit (1);
 }
 epsilon = (double *)malloc(nobj*sizeof(double));
 min_obj = (double *)malloc(nobj*sizeof(double));
 for (i=0; i<nobj; i++)
 {
 printf("\n Enter the value of epsilon[%d] : ",i+1);
 scanf("%lf",&epsilon[i]);
 if (epsilon[i]<=0.0)
 {
 printf("\n Entered value of epsilon[%d] is non-positive, hence exiting\n",i+1);
 exit(1);
 }
 printf("\n Enter the value of min_obj[%d] (if not known, enter 0.0) : ",i+1);
 scanf("%lf",&min_obj[i]);
 }
 printf("\n Enter the number of constraints : ");
 scanf("%d",&ncon);
 if (ncon<0)
 {
 printf("\n number of constraints entered is : %d",ncon);
 printf("\n Wrong number of constraints enetered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of generators : ");
 scanf("%d",&nbits);
 if (nbits<0)

 171

 {
 printf("\n number of real generators entered is : %d",nbits);
 printf("\n Wrong number of generators entered, hence exiting \n");
 exit (1);
 }
 if (nbits != 0)
 {
 min_realvar = (double *)malloc(nreal*sizeof(double));
 max_realvar = (double *)malloc(nreal*sizeof(double));
 for (i=0; i<nbits; i++)
 {
 for (hr=0; hr <24; hr++)
 {
 printf ("\n Enter the output for generator %d : ",i+1);
 scanf ("%lf",&xreal[i][hr]);
 printf ("\n Enter the cost rate for generator %d : ",i+1);
 scanf ("%lf",&gen_cost[i][hr]);
 }
 printf ("\n Enter the lower limit of real variable %d : ",i+1);
 scanf ("%lf",&min_realvar[i]);
 printf ("\n Enter the upper limit of real variable %d : ",i+1);
 scanf ("%lf",&max_realvar[i]);
 if (max_realvar[i] <= min_realvar[i])
 {
 printf("\n Wrong limits entered for the min and max bounds of generator %d, hence
exiting \n",i+1);
 exit(1);
 }
 }
 printf ("\n Enter the probability of crossover (0.6-1.0) : ");
 scanf ("%lf",&pcross_real);
 if (pcross_real<0.0 || pcross_real>1.0)
 {
 printf("\n Probability of crossover entered is : %e",pcross_real);
 printf("\n Entered value of probability of crossover of real variables is out of bounds,
hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the probablity of mutation (1/nreal) : ");
 scanf ("%lf",&pmut_real);
 if (pmut_real<0.0 || pmut_real>1.0)
 {
 printf("\n Probability of mutation entered is : %e",pmut_real);
 printf("\n Entered value of probability of mutation of real variables is out of bounds,
hence exiting \n");
 exit (1);

 172

 }
 printf ("\n Enter the value of distribution index for crossover (5-20): ");
 scanf ("%lf",&eta_c);
 if (eta_c<=0)
 {
 printf("\n The value entered is : %e",eta_c);
 printf("\n Wrong value of distribution index for crossover entered, hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the value of distribution index for mutation (5-50): ");
 scanf ("%lf",&eta_m);
 if (eta_m<=0)
 {
 printf("\n The value entered is : %e",eta_m);
 printf("\n Wrong value of distribution index for mutation entered, hence exiting \n");
 exit (1);
 }
 }

 if (nbits==0)
 {
 printf("\n Number of variables is zero, hence exiting \n");
 exit(1);
 }
 printf("\n Input data successfully entered, now performing initialization \n");
 fprintf(fpt5,"\n Population size = %d",popsize);
 fprintf(fpt5,"\n Number of function evaluations = %d",neval);
 fprintf(fpt5,"\n Number of objective functions = %d",nobj);
 for (i=0; i<nobj; i++)
 {
 fprintf(fpt5,"\n Epsilon for objective %d = %e",i+1,epsilon[i]);
 fprintf(fpt5,"\n Minimum value of objective %d = %e",i+1,min_obj[i]);
 }
 fprintf(fpt5,"\n Number of constraints = %d",ncon);
 fprintf(fpt5,"\n Number of real variables = %d",nreal);
 if (nreal!=0)
 {
 for (i=0; i<nbits; i++)
 {
 fprintf(fpt5,"\n Lower limit of real variable %d = %e",i+1,min_realvar[i]);
 fprintf(fpt5,"\n Upper limit of real variable %d = %e",i+1,max_realvar[i]);
 }
 fprintf(fpt5,"\n Probability of crossover of real variable = %e",pcross_real);
 fprintf(fpt5,"\n Probability of mutation of real variable = %e",pmut_real);
 fprintf(fpt5,"\n Distribution index for crossover = %e",eta_c);

 173

 fprintf(fpt5,"\n Distribution index for mutation = %e",eta_m);
 }
 fprintf(fpt5,"\n Number of binary variables = %d",nbin);

 fprintf(fpt5,"\n Seed for random number generator = %e",seed);
 bitlength = 0;

 fprintf(fpt1,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt2,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt3,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt4,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 nbinmut = 0;
 nrealmut = 0;
 nbincross = 0;
 nrealcross = 0;
 currenteval = 0;
 elite_size = 0;
 randomize();
 ea = (individual *)malloc(popsize*sizeof(individual));
 array = (int *)malloc(popsize*sizeof(int));
 for (i=0; i<popsize; i++)
 {
 allocate (&ea[i]);
 initialize(&ea[i]);
 decode(&ea[i]);
 eval(&ea[i]);
 }
 report_pop (ea, fpt1);
 elite = (ind_list *)malloc(sizeof(ind_list));
 elite->ind = (individual *)malloc(sizeof(individual));
 allocate (elite->ind);
 elite->parent = NULL;
 elite->child = NULL;
 insert (elite, &ea[0]);
 for (i=1; i<popsize; i++)
 {
 update_elite (elite, &ea[i]);
 }
 child1 = (individual *)malloc(sizeof(individual));
 allocate (child1);
 child2 = (individual *)malloc(sizeof(individual));
 allocate (child2);

 174

 cur = elite;
 while (currenteval<neval)
 {
 index1 = rnd(0, popsize-1);
 index2 = rnd(0, popsize-1);
 parent1 = tournament (&ea[index1], &ea[index2]);
 index = rnd(0, elite_size-1);
 cur = elite->child;
 for (i=1; i<=index; i++)
 {
 cur=cur->child;
 }
 parent2 = cur->ind;
 crossover (parent1, parent2, child1, child2);
 mutation (child1);
 decode (child1);
 eval (child1);
 update_elite (elite, child1);
 update_pop (ea, child1);
 mutation (child2);
 decode (child2);
 eval (child2);
 update_elite (elite, child2);
 update_pop (ea, child2);
 printf("\n Currenteval = %d and Elite_size = %d",currenteval,elite_size);
 /* Comment following three lines if information at all
 evaluation is not desired, it will speed up execution of the code */
 fprintf(fpt4,"# eval id = %d\n",currenteval);
 report_archive (elite, fpt4);
 fflush(fpt4);
 }
 printf("\n Generations finished, now reporting solutions");
 report_pop (ea, fpt2);
 report_archive (elite, fpt3);
 if (nreal!=0)
 {
 fprintf(fpt5,"\n Number of crossover of real variable = %d",nrealcross);
 fprintf(fpt5,"\n Number of mutation of real variable = %d",nrealmut);
 }
 if (nbin!=0)
 {
 fprintf(fpt5,"\n Number of crossover of binary variable = %d",nbincross);
 fprintf(fpt5,"\n Number of mutation of binary variable = %d",nbinmut);
 }
 fflush(stdout);
 fflush(fpt1);

 175

 fflush(fpt2);
 fflush(fpt3);
 fflush(fpt4);
 fflush(fpt5);
 fclose(fpt1);
 fclose(fpt2);
 fclose(fpt3);
 fclose(fpt4);
 fclose(fpt5);
 if (nreal!=0)
 {
 free (min_realvar);
 free (max_realvar);
 }
 if (nbin!=0)
 {
 free (min_binvar);
 free (max_binvar);
 free (nbits);
 }
 free (epsilon);
 free (min_obj);
 free (array);
 for (i=0; i<popsize; i++)
 {
 deallocate (&ea[i]);
 }
 free (ea);
 cur = elite->child;
 while (cur!=NULL)
 {
 cur = del(cur);
 cur = cur->child;
 }
 deallocate (elite->ind);
 free (elite->ind);
 free (elite);
 printf("\n Routine successfully exited \n");
 return (0);
}

/* Routine for evaluating individuals */

include <stdio.h>
include <stdlib.h>
include <math.h>

 176

include "global.h"
include "rand.h"

/* Routine to evaluate objective function values and constraints for an individual */
void eval (individual *ind)
{
 int j;
 test_problem (ind->xreal,ind->gen_cost, ind->gene, ind->obj, ind->constr);
 for (j=0; j<nobj; j++)
 {
 ind->ia[j] = (int)floor((ind->obj[j]-min_obj[j])/epsilon[j]);
 }
 if (ncon==0)
 {
 ind->constr_violation = 0.0;
 }
 else
 {
 ind->constr_violation = 0.0;
 for (j=0; j<ncon; j++)
 {
 if (ind->constr[j]<0.0)
 {
 ind->constr_violation += ind->constr[j];
 }
 }
 }
 currenteval++;
 return;
}

/* This file contains the variable and function declarations */

ifndef _GLOBAL_H_
define _GLOBAL_H_

define INF 1.0e99
define EPS 1.0e-14
define E 2.71828182845905
define PI 3.14159265358979

/* global variables */
typedef struct
{
 double constr_violation;

 177

 double **xreal;
 int *gene;
 double *gen_cost;
 double *obj;
 int *ia;
 double *constr;
} individual;

typedef struct ind_lists
{
 individual *ind;
 struct ind_lists *parent;
 struct ind_lists *child;
} ind_list;

extern int nreal;
extern int nbin;
extern int nobj;
extern int ncon;
extern int popsize;
extern double pcross_real;
extern double pcross_bin;
extern double pmut_real;
extern double pmut_bin;
extern double eta_c;
extern double eta_m;
extern int neval;
extern int currenteval;
extern int nbinmut;
extern int nrealmut;
extern int nbincross;
extern int nrealcross;
extern int nbits;
extern int *array;
extern int *right_genes;
extern int *assigned;
extern double max_gen;
extern double *min_realvar;
extern double *max_realvar;
extern double *min_binvar;
extern double *max_binvar;
extern double *epsilon;
extern double *min_obj;
extern int bitlength;
extern int elite_size;
extern int site1;

 178

/* global function declarations */
void allocate (individual *ind);
void deallocate (individual *ind);

void copy (individual *ind1, individual *ind2);

void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2);
void realcross (individual *parent1, individual *parent2, individual *child1, individual *child2);
void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2);

void decode (individual *ind);

int check_box_dominance (individual *a, individual *b);
int check_dominance (individual *a, individual *b);

void eval (individual *ind);

void initialize (individual *ind);

void insert (ind_list *node, individual *ind);
ind_list* del (ind_list *node);

void mutation (individual *ind);
void bin_mutate (individual *ind);
void real_mutate (individual *ind);

void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr);

void report_pop (individual *ind, FILE *fpt);
void report_archive (ind_list *elite, FILE *fpt);

individual* tournament (individual *ind1, individual *ind2);

void update_elite (ind_list *elite, individual *ind);
void update_pop (individual *ea, individual *ind);

endif

/* Data initializtion routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

 179

/* Function to initialize an individual randomly */
void initialize (individual *ind, int site1)
{
 int i, j, k, found, found2,res;
 if (nbits !=0)
 {

 for (i=0; i < (nbits - site1); i++)
 {
 max_gen[i]= 0.0;
 for (j=0; j<nbits; j++)
 {
 if (i == 0)
 {
 if (max_gen[i] < gen_cost[j])
 max_gen[i]= gen_cost[j];
 }
 else
 {
 if ((max_gen[i] < gen_cost[j]) && (max_gen[i] < max_gen[i-1]))
 max_gen[i]= gen_cost[j];
 }
 }
 /*fetch a single random integer at a time to select each gene to the right of the crossover point
and is one of the expensive generators */
 k =0;
 j= site1;
 right_genes[0] =10000;

 while (k < nbits -site1)
 {
 res = rnd[0,nbits];

 if (gen_cost[res] >= max_gen[nbits -site1-1])
 {
 found =0;
 for (i=0; i < k ; i++)
 if (res == right_genes[i])
 found=1;
 if (found == 0)
 {
 ind->gene[j] = res;
 for (hr=0; hr <24; hr++)
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);
 right_genes[k] = res;

 180

 j++;
 k++;
 }
 }
 }
 /* next assign all remaining generators not assigned to the appropreate gene */
 jump=k;
 j=0;
 assigned[0]=10000;
 while (j < site1)
 {
 res = rnd[0,bits];
 found =0;
 found2=0;
 for (k=0 ; k < jump; k++)
 if(res == right_genes[k])
 found =1;

 for (i=0; i < j; i++)
 if(res == assigned[i])
 found2=1;
 if (found1 ==0 && found2 ==0)
 {
 ind->gene[j] = res;
 for (hr= 0 ; hr < 24; hr++)
 {
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);

 }
 assigned [j] =res;
 j++;
 }

 }
 }
 return;
}

/* A custom doubly linked list implemenation */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"

 181

include "rand.h"

/* Routine to insert an element after the location specified by node NODE */
void insert (ind_list *node, individual *ind)
{
 ind_list *temp;
 if (node==NULL)
 {
 printf("\n Error!! asked to enter after a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = (ind_list *)malloc(sizeof(ind_list));
 temp->ind = (individual *)malloc(sizeof(individual));
 allocate (temp->ind);
 copy (ind, temp->ind);
 temp->child = node->child;
 temp->parent = node;
 if (node->child != NULL)
 {
 node->child->parent = temp;
 }
 node->child = temp;
 elite_size++;
 return;
}

/* Delete the element specified by node NODE */
ind_list* del (ind_list *node)
{
 ind_list *temp;
 if (node==NULL)
 {
 printf("\n Error!! asked to delete a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = node->parent;
 temp->child = node->child;
 if (temp->child!=NULL)
 {
 temp->child->parent = temp;
 }
 deallocate(node->ind);
 free (node->ind);
 free (node);
 elite_size--;
 return (temp);

 182

}

/* Mutation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to perform mutation of an individual */
void mutation (individual *ind)
{
 if (nreal!=0)
 {
 real_mutate(ind);
 }
 if (nbits!=0)
 {
 bin_mutate(ind);
 }
 return;
}

/* Routine for binary mutation of an individual */
void bin_mutate (individual *ind)
{
 int j, k, found,found2,temp;
 double prob, temp_real[24],new_real[24];

 for(hr=0; hr <24; hr++)
 {
 temp_real[24]=0.0;
 new_real[24]=0.0;
 }

 prob = randomperc();
 if (prob <=pmut_bin)
 {
 found =0;
 res = rnd[0,site1];
 while (found !=1)
 {
 res1 = rnd[0,site1];

 183

 if (res !=res1)
 {

 for(hr=0; hr <24; hr++)
 temp_real[24] = ind->xreal[res][hr]+ind->xreal[res1][hr];
 temp = ind->gene[res];
 ind-> gene[res] = ind->gene[res1];
 ind-> gene[res1] = temp;
 for(hr=0; hr <24; hr++)
 {
 found2=0;
 while(found2 !=1)
 {
 ind->xreal[res][hr] =rndreal (min_realvar[res], max_realvar[res]);
 new_real[24] = temp_real[24] - ind->xreal[res][hr];

 if (new_real[24] > min_realvar[res1])&&(new_real[24] < max_realvar[res1]))
 {
 ind->xreal[res1][hr] = new_real[24];
 found2=1;
 }
 }
 }
 found=1;
 }
 }
 }

 return;
}

/* Routine for real polynomial mutation of an individual */
void real_mutate (individual *ind)
{
 int j;
 double rnd, delta1, delta2, mut_pow, deltaq;
 double y, yl, yu, val, xy;
 for (j=0; j<nreal; j++)
 {
 if (randomperc() <= pmut_real)
 {
 y = ind->xreal[j];
 yl = min_realvar[j];
 yu = max_realvar[j];
 delta1 = (y-yl)/(yu-yl);
 delta2 = (yu-y)/(yu-yl);

 184

 rnd = randomperc();
 mut_pow = 1.0/(eta_m+1.0);
 if (rnd <= 0.5)
 {
 xy = 1.0-delta1;
 val = 2.0*rnd+(1.0-2.0*rnd)*(pow(xy,(eta_m+1.0)));
 deltaq = pow(val,mut_pow) - 1.0;
 }
 else
 {
 xy = 1.0-delta2;
 val = 2.0*(1.0-rnd)+2.0*(rnd-0.5)*(pow(xy,(eta_m+1.0)));
 deltaq = 1.0 - (pow(val,mut_pow));
 }
 y = y + deltaq*(yu-yl);
 if (y<yl) y = yl;
 if (y>yu) y = yu;
 ind->xreal[j] = y;
 nrealmut+=1;
 }
 }
 return;
}

/* Test problem definitions */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* # define sch1 */
/* # define sch2 */
/* # define fon */
/* # define kur */
/* # define pol */
/* # define vnt */
/* # define zdt1*/
/* # define zdt2 */
/* # define zdt3 */
/* # define zdt4 */
/* # define zdt5 */
/* # define zdt6 */
/* # define bnh */

 185

/* # define osy */
/* # define srn */
/* # define tnk */
/* # define ctp1 */
/* # define ctp2 */
/* # define ctp3 */
/* # define ctp4 */
/* # define ctp5 */
/* # define ctp6 */
/* # define ctp7 */
/* # define ctp8 */
#define generator_matchup
/* Test problem SCH1
 # of real variables = 1
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = pow(xreal[0],2.0);
 obj[1] = pow((xreal[0]-2.0),2.0);
 return;
}
#endif

/* Test problem SCH2
 # of real variables = 1
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 if (xreal[0]<=1.0)
 {
 obj[0] = -xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=3.0)
 {

 186

 obj[0] = xreal[0]-2.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=4.0)
 {
 obj[0] = 4.0-xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 obj[0] = xreal[0]-4.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
}
#endif

/* Test problem FON
 # of real variables = n
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef fon
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double s1, s2;
 int i;
 s1 = s2 = 0.0;
 for (i=0; i<nreal; i++)
 {
 s1 += pow((xreal[i]-(1.0/sqrt((double)nreal))),2.0);
 s2 += pow((xreal[i]+(1.0/sqrt((double)nreal))),2.0);
 }
 obj[0] = 1.0 - exp(-s1);
 obj[1] = 1.0 - exp(-s2);
 return;
}
#endif

/* Test problem KUR
 # of real variables = 3
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

 187

#ifdef kur
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i;
 double res1, res2;
 res1 = -0.2*sqrt((xreal[0]*xreal[0]) + (xreal[1]*xreal[1]));
 res2 = -0.2*sqrt((xreal[1]*xreal[1]) + (xreal[2]*xreal[2]));
 obj[0] = -10.0*(exp(res1) + exp(res2));
 obj[1] = 0.0;
 for (i=0; i<3; i++)
 {
 obj[1] += pow(fabs(xreal[i]),0.8) + 5.0*sin(pow(xreal[i],3.0));
 }
 return;
}
#endif

/* Test problem POL
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef pol
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double a1, a2, b1, b2;
 a1 = 0.5*sin(1.0) - 2.0*cos(1.0) + sin(2.0) - 1.5*cos(2.0);
 a2 = 1.5*sin(1.0) - cos(1.0) + 2.0*sin(2.0) - 0.5*cos(2.0);
 b1 = 0.5*sin(xreal[0]) - 2.0*cos(xreal[0]) + sin(xreal[1]) - 1.5*cos(xreal[1]);
 b2 = 1.5*sin(xreal[0]) - cos(xreal[0]) + 2.0*sin(xreal[1]) - 0.5*cos(xreal[1]);
 obj[0] = 1.0 + pow((a1-b1),2.0) + pow((a2-b2),2.0);
 obj[1] = pow((xreal[0]+3.0),2.0) + pow((xreal[1]+1.0),2.0);
 return;
}
#endif

/* Test problem VNT
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 3
 # of constraints = 0
 */

 188

#ifdef vnt
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 0.5*(xreal[0]*xreal[0] + xreal[1]*xreal[1]) + sin(xreal[0]*xreal[0] +
xreal[1]*xreal[1]);
 obj[1] = (pow((3.0*xreal[0] - 2.0*xreal[1] + 4.0),2.0))/8.0 + (pow((xreal[0]-
xreal[1]+1.0),2.0))/27.0 + 15.0;
 obj[2] = 1.0/(xreal[0]*xreal[0] + xreal[1]*xreal[1] + 1.0) - 1.1*exp(-(xreal[0]*xreal[0] +
xreal[1]*xreal[1]));
 return;
}
#endif

/* Test problem ZDT1
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT2
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0

 189

 */

#ifdef zdt2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT3
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt3
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g) - (f1/g)*sin(10.0*PI*f1);
 f2 = g*h;
 obj[0] = f1;

 190

 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT4
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<10; i++)
 {
 g += xreal[i]*xreal[i] - 10.0*cos(4.0*PI*xreal[i]);
 }
 g += 91.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT5
 # of real variables = 0
 # of bin variables = 11
 # of bits for binvar1 = 30
 # of bits for binvar2-11 = 5
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i, j;
 int u[11];

 191

 int v[11];
 double f1, f2, g, h;
 for (i=0; i<11; i++)
 {
 u[i] = 0;
 }
 for (j=0; j<30; j++)
 {
 if (gene[0][j] == 1)
 {
 u[0]++;
 }
 }
 for (i=1; i<11; i++)
 {
 for (j=0; j<4; j++)
 {
 if (gene[i][j] == 1)
 {
 u[i]++;
 }
 }
 }
 f1 = 1.0 + u[0];
 for (i=1; i<11; i++)
 {
 if (u[i] < 5)
 {
 v[i] = 2 + u[i];
 }
 else
 {
 v[i] = 1;
 }
 }
 g = 0;
 for (i=1; i<11; i++)
 {
 g += v[i];
 }
 h = 1.0/f1;
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}

 192

#endif

/* Test problem ZDT6
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = 1.0 - (exp(-4.0*xreal[0]))*pow((sin(4.0*PI*xreal[0])),6.0);
 g = 0.0;
 for (i=1; i<10; i++)
 {
 g += xreal[i];
 }
 g = g/9.0;
 g = pow(g,0.25);
 g = 1.0 + 9.0*g;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem BNH
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef bnh
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 4.0*(xreal[0]*xreal[0] + xreal[1]*xreal[1]);
 obj[1] = pow((xreal[0]-5.0),2.0) + pow((xreal[1]-5.0),2.0);
 constr[0] = 1.0 - (pow((xreal[0]-5.0),2.0) + xreal[1]*xreal[1])/25.0;
 constr[1] = (pow((xreal[0]-8.0),2.0) + pow((xreal[1]+3.0),2.0))/7.7 - 1.0;
 return;

 193

}
#endif

/* Test problem OSY
 # of real variables = 6
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 6
 */

#ifdef osy
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = -(25.0*pow((xreal[0]-2.0),2.0) + pow((xreal[1]-2.0),2.0) + pow((xreal[2]-1.0),2.0) +
pow((xreal[3]-4.0),2.0) + pow((xreal[4]-1.0),2.0));
 obj[1] = xreal[0]*xreal[0] + xreal[1]*xreal[1] + xreal[2]*xreal[2] + xreal[3]*xreal[3] +
xreal[4]*xreal[4] + xreal[5]*xreal[5];
 constr[0] = (xreal[0]+xreal[1])/2.0 - 1.0;
 constr[1] = 1.0 - (xreal[0]+xreal[1])/6.0;
 constr[2] = 1.0 - xreal[1]/2.0 + xreal[0]/2.0;
 constr[3] = 1.0 - xreal[0]/2.0 + 3.0*xreal[1]/2.0;
 constr[4] = 1.0 - (pow((xreal[2]-3.0),2.0))/4.0 - xreal[3]/4.0;
 constr[5] = (pow((xreal[4]-3.0),2.0))/4.0 + xreal[5]/4.0 - 1.0;
 return;
}
#endif

/* Test problem SRN
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef srn
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 2.0 + pow((xreal[0]-2.0),2.0) + pow((xreal[1]-1.0),2.0);
 obj[1] = 9.0*xreal[0] - pow((xreal[1]-1.0),2.0);
 constr[0] = 1.0 - (pow(xreal[0],2.0) + pow(xreal[1],2.0))/225.0;
 constr[1] = 3.0*xreal[1]/10.0 - xreal[0]/10.0 - 1.0;
 return;
}
#endif

/* Test problem TNK

 194

 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef tnk
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = xreal[0];
 obj[1] = xreal[1];
 if (xreal[1] == 0.0)
 {
 constr[0] = -1.0;
 }
 else
 {
 constr[0] = xreal[0]*xreal[0] + xreal[1]*xreal[1] - 0.1*cos(16.0*atan(xreal[0]/xreal[1])) -
1.0;
 }
 constr[1] = 1.0 - 2.0*pow((xreal[0]-0.5),2.0) + 2.0*pow((xreal[1]-0.5),2.0);
 return;
}
#endif

/* Test problem CTP1
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef ctp1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*exp(-obj[0]/g);
 constr[0] = obj[1]/(0.858*exp(-0.541*obj[0]))-1.0;
 constr[1] = obj[1]/(0.728*exp(-0.295*obj[0]))-1.0;
 return;
}
#endif

/* Test problem CTP2

 195

 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.2;
 b = 10.0;
 c = 1.0;
 d = 6.0;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP3
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp3
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;

 196

 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP4
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.75;
 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;

 197

}
#endif

/* Test problem CTP5
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;
 b = 10.0;
 c = 2.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP6
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;

 198

 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP7
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp7
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.05*PI;
 a = 40.0;
 b = 5.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);

 199

 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP8
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef ctp8
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 theta = -0.05*PI;
 a = 40.0;
 b = 2.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);

 200

 constr[1] = exp1/exp2 - 1.0;
 return;
}
#endif

#ifdef generator_matchup
void test_problem (double **xreal,double *gen_cost, double *load_cost, double **load, double
*max_realvar, int num_loads, int nreal, int *group, int group_max, double *obj, double *constr)
{
 int i,j,k,l, hrs=24;
 obj[0] =0.0;
 obj[1] = 0.0;
double sum =0.0, sum1=0.0;
/* Objective function definition */

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 obj[0] += (gen_cost[j]*xreal[j][i];
 }
 for (k= 0; k < num_loads ; k++)
 {
 obj[0] -= load_cost[k]*load[k][i];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)
 {
 if (j == group[l])
 sum1 += max_realvar[j] - xreal[j][i];
 }
 sum += max_realvar[j] -x real[j][i];
 }
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)
 {
 if (j != group[l])
 obj[1] += ((max_realvar[j]- xreal[j][i])/sum)^2;
 }
 }
 obj[1] += (sum1/sum)^2;

 201

 }
 obj[1] = obj[1]/24;
/* constraints definition */
/* Economic Minimum and Maximum Operating Cosntaraint *

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j]=max_realvar[j] -(xreal[j][i]+ Spin[j];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+nreal]=max_realvar[j] -(xreal[j][i]+ SOper[j];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+2*nreal]=(xreal[j][i] -min_realvar[j];
 }
 }

 return;
}
#endif

/* Definition of random number generation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

double seed;
double oldrand[55];
int jrand;

/* Get seed number for random and start it up */

 202

void randomize()
{
 int j1;
 for(j1=0; j1<=54; j1++)
 {
 oldrand[j1] = 0.0;
 }
 jrand=0;
 warmup_random (seed);
 return;
}

/* Get randomize off and running */
void warmup_random (double seed)
{
 int j1, ii;
 double new_random, prev_random;
 oldrand[54] = seed;
 new_random = 0.000000001;
 prev_random = seed;
 for(j1=1; j1<=54; j1++)
 {
 ii = (21*j1)%54;
 oldrand[ii] = new_random;
 new_random = prev_random-new_random;
 if(new_random<0.0)
 {
 new_random += 1.0;
 }
 prev_random = oldrand[ii];
 }
 advance_random ();
 advance_random ();
 advance_random ();
 jrand = 0;
 return;
}

/* Create next batch of 55 random numbers */
void advance_random ()
{
 int j1;
 double new_random;
 for(j1=0; j1<24; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1+31];

 203

 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
 for(j1=24; j1<55; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1-24];
 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
}

/* Fetch a single random number between 0.0 and 1.0 */
double randomperc()
{
 jrand++;
 if(jrand>=55)
 {
 jrand = 1;
 advance_random();
 }
 return((double)oldrand[jrand]);
}

/* Fetch a single random integer between low and high including the bounds */
int rnd (int low, int high)
{
 int res;
 if (low >= high)
 {
 res = low;
 }
 else
 {
 res = low + (randomperc()*(high-low+1));
 if (res > high)
 {
 res = high;
 }
 }
 return (res);

 204

}

/* Fetch a single random real number between low and high including the bounds */
double rndreal (double low, double high)
{
 return (low + (high-low)*randomperc());
}

/* Declaration for random number related variables and routines */

ifndef _RAND_H_
define _RAND_H_

/* Variable declarations for the random number generator */
extern double seed;
extern double oldrand[55];
extern int jrand;

/* Function declarations for the random number generator */
void randomize(void);
void warmup_random (double seed);
void advance_random (void);
double randomperc(void);
int rnd (int low, int high);
double rndreal (double low, double high);

endif

/* Routines for storing population data into files */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to print the information of a population in a file */
void report_pop (individual *ind, FILE *fpt)
{
 int i, j, k;
 for (i=0; i<popsize; i++)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",ind[i].obj[j]);

 205

 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)
 {
 fprintf(fpt,"%e\t",ind[i].constr[j]);
 }
 }
 if (nreal!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",ind[i].gene[k]);
 }

 }
 fprintf(fpt,"%e\n",ind[i].constr_violation);
 }
 return;
}

/* Function to print the information of feasible and non-dominated population in a file */
void report_archive (ind_list *elite, FILE *fpt)
{
 int j, k;
 ind_list *cur;
 cur = elite->child;
 while (cur!=NULL)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",cur->ind->obj[j]);
 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)

 206

 {
 fprintf(fpt,"%e\t",cur->ind->constr[j]);
 }
 }
 if (nbits!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",cur->ind->gene[k]);
 }

 }
 fprintf(fpt,"%e\n",cur->ind->constr_violation);
 cur = cur->child;
 }
 return;
}

/* Tournamenet Selections routine */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine for binary neigborhood */
individual* tournament (individual *ind1, individual *ind2)
{
 int flag;
 flag = check_dominance (ind1, ind2);
 if (flag==1)
 {
 return (ind1);
 }

 207

 if (flag==-1)
 {
 return (ind2);
 }
 if ((randomperc()) <= 0.5)
 {
 return(ind1);
 }
 else
 {
 return(ind2);
 }
}

/* Routines for updating elite and EA populations */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to update archive */
void update_elite (ind_list *elite, individual *ind)
{
 int i, end, flag;
 double d1, d2;
 ind_list *temp;
 temp = elite->child;
 end = 0;
 do
 {
 flag = check_box_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1: /* ind dominates temp->ind */
 {
 temp = del (temp);
 temp = temp->child;
 break;
 }
 case 2: /* temp->ind dominates ind */
 {
 return;
 }

 208

 case 3: /* both are non-dominated and are in different boxes */
 {
 temp = temp->child;
 break;
 }
 case 4: /* both are non-dominated and are in same hyper-box */
 {
 end = 1;
 break;
 }
 }
 }
 while (end!=1 && temp!=NULL);
 if (end==0)
 {
 insert(elite, ind);
 }
 else
 {
 if (flag==4) /* in same hyperbox */
 {
 flag = check_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1:
 {
 temp = del(temp);
 insert (elite, ind);
 break;
 }
 case -1:
 {
 return;
 }
 case 0:
 {
 d1 = 0.0;
 d2 = 0.0;
 for (i=0; i<nobj; i++)
 {
 d1 += pow(((ind->obj[i]-ind->ia[i])/epsilon[i]),2.0);
 d2 += pow(((temp->ind->obj[i]-temp->ind->ia[i])/epsilon[i]),2.0);
 }
 if (d1<=d2)
 {
 temp = del(temp);

 209

 insert(elite,ind);
 }
 break;
 }
 }
 }
 }
 return;
}

/* Routine to update population */
void update_pop (individual *ea, individual *ind)
{
 int size;
 int i;
 int flag;
 size = 0;
 for (i=0; i<popsize; i++)
 {
 flag = check_dominance (ind, &ea[i]);
 switch (flag)
 {
 case 1:
 copy (ind, &ea[i]);
 return;
 case -1:
 return;
 case 0:
 array[size++] = i;
 break;
 }
 }
 if (size>0)
 {
 i = rnd(0,size-1);
 copy (ind, &ea[array[i]]);
 }
 return;
}

NSGA II Algorithm

/* Memory allocation and deallocation routines */
include <stdio.h>
include <stdlib.h>
include <math.h>

 210

include "global.h"
include "rand.h"
/* Function to allocate memory to variables of an individual */
void allocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 ind->xreal = (double **)malloc(nbits*sizeof(double));
 ind->gen_cost = (double **)malloc(nbits*sizeof(double));
 ind->gene = (int *)malloc(nbits*sizeof(int));
 for (hr=0; hr<24; j++)
 {
 ind->xreal[hr] = (double *)malloc(nbits*sizeof(double));
 ind->gen_cost[hr] = (double *)malloc(nbits*sizeof(double))
 }
 }

 ind->obj = (double *)malloc(nobj*sizeof(double));
 ind->ia = (int *)malloc(nobj*sizeof(int));
 if (ncon != 0)
 {
 ind->constr = (double *)malloc(ncon*sizeof(double));
 }
 right_genes = (double *)malloc((nbits-site1)*sizeof(double));
 max_gen = (double *)malloc((nbits-site1)*sizeof(double));
 assinged = (double *)malloc(nbits*sizeof(double));
 return;
}

/* Function to deallocate memory of variables of an individual */
void deallocate (individual *ind)
{
 int j;
 if (nbits != 0)
 {
 for (hr=0; hr<24; j++)
 {
 free(ind->xreal[hr]);
 free(ind->gen_cost[hr]);
 }
 free(ind->xreal);
 free(ind->gen_cost);

 free(ind->gene);

 211

 }
 free(ind->obj);
 free(ind->ia);
 if (ncon != 0)
 {
 free(ind->constr);
 }
 free(right_genes);
 free(max_gen);
 free(assigned);
 return;
}

/* Routine for mergeing two populations */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to copy an individual 'ind1' into another individual 'ind2' */
void copy (individual *ind1, individual *ind2)
{
 int i, j;
 ind2->constr_violation = ind1->constr_violation;
 if (nreal!=0)
 {
 for (i=0; i<nreal; i++)
 {
 ind2->xreal[i] = ind1->xreal[i];
 }
 }
 if (nbits!=0)
 {

 for (j=0; j<nbits; j++)
 {
 ind2->gene[j] = ind1->gene[j];
 for (hr =0; hr <24; hr++)
 ind2->xreal[j][hr] = ind1->xreal[j][hr];
 ind2->gen_cost[j][hr] = ind1->gen_cost[j];
 }

 212

 }
 for (i=0; i<nobj; i++)
 {
 ind2->obj[i] = ind1->obj[i];
 ind2->ia[i] = ind1->ia[i];
 }
 if (ncon!=0)
 {
 for (i=0; i<ncon; i++)
 {
 ind2->constr[i] = ind1->constr[i];
 }
 }
 return;
}
/* Crossover routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to cross two individuals */
void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2)
{

 if (nbits!=0)
 {
 bincross (parent1, parent2, child1, child2);
 }
 return;
}

/* Routine for single point binary crossover */
void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2)
{
 int i, j;
 double rand;
 int temp, site1;

 rand = randomperc();
 if (rand <= pcross_bin)

 213

 {
 nbincross++;

 for (j=0; j<site1; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }

 for (j=site1; j<nbits; j++)
 {
 child1->gene[j] = parent2->gene[j];
 child2->gene[j] = parent1->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent2->xreal[j][hr];
 child2->xreal[j][hr]= parent1->xreal[j][hr];
 }
 }
 }
 else
 {
 for (j=0; j<nbits; j++)
 {
 child1->gene[j] = parent1->gene[j];
 child2->gene[j] = parent2->gene[j];
 for (hr= 0 ; hr < 24; hr++)
 {
 child1->xreal[j][hr]= parent1->xreal[j][hr];
 child2->xreal[j][hr]= parent2->xreal[j][hr];
 }
 }
 }

 return;
}

/* Crowding distance computation routines */

include <stdio.h>
include <stdlib.h>

 214

include <math.h>

include "global.h"
include "rand.h"

/* Routine to compute crowding distance based on ojbective function values when the population
in in the form of a list */
void assign_crowding_distance_list (population *pop, list *lst, int front_size)
{
 int **obj_array;
 int *dist;
 int i, j;
 list *temp;
 temp = lst;
 if (front_size==1)
 {
 pop->ind[lst->index].crowd_dist = INF;
 return;
 }
 if (front_size==2)
 {
 pop->ind[lst->index].crowd_dist = INF;
 pop->ind[lst->child->index].crowd_dist = INF;
 return;
 }
 obj_array = (int **)malloc(nobj*sizeof(int));
 dist = (int *)malloc(front_size*sizeof(int));
 for (i=0; i<nobj; i++)
 {
 obj_array[i] = (int *)malloc(front_size*sizeof(int));
 }
 for (j=0; j<front_size; j++)
 {
 dist[j] = temp->index;
 temp = temp->child;
 }
 assign_crowding_distance (pop, dist, obj_array, front_size);
 free (dist);
 for (i=0; i<nobj; i++)
 {
 free (obj_array[i]);
 }
 free (obj_array);
 return;
}

 215

/* Routine to compute crowding distance based on objective function values when the population
in in the form of an array */
void assign_crowding_distance_indices (population *pop, int c1, int c2)
{
 int **obj_array;
 int *dist;
 int i, j;
 int front_size;
 front_size = c2-c1+1;
 if (front_size==1)
 {
 pop->ind[c1].crowd_dist = INF;
 return;
 }
 if (front_size==2)
 {
 pop->ind[c1].crowd_dist = INF;
 pop->ind[c2].crowd_dist = INF;
 return;
 }
 obj_array = (int **)malloc(nobj*sizeof(int));
 dist = (int *)malloc(front_size*sizeof(int));
 for (i=0; i<nobj; i++)
 {
 obj_array[i] = (int *)malloc(front_size*sizeof(int));
 }
 for (j=0; j<front_size; j++)
 {
 dist[j] = c1++;
 }
 assign_crowding_distance (pop, dist, obj_array, front_size);
 free (dist);
 for (i=0; i<nobj; i++)
 {
 free (obj_array[i]);
 }
 free (obj_array);
 return;
}

/* Routine to compute crowding distances */
void assign_crowding_distance (population *pop, int *dist, int **obj_array, int front_size)
{
 int i, j;
 for (i=0; i<nobj; i++)
 {

 216

 for (j=0; j<front_size; j++)
 {
 obj_array[i][j] = dist[j];
 }
 quicksort_front_obj (pop, i, obj_array[i], front_size);
 }
 for (j=0; j<front_size; j++)
 {
 pop->ind[dist[j]].crowd_dist = 0.0;
 }
 for (i=0; i<nobj; i++)
 {
 pop->ind[obj_array[i][0]].crowd_dist = INF;
 }
 for (i=0; i<nobj; i++)
 {
 for (j=1; j<front_size-1; j++)
 {
 if (pop->ind[obj_array[i][j]].crowd_dist != INF)
 {
 if (pop->ind[obj_array[i][front_size-1]].obj[i] == pop->ind[obj_array[i][0]].obj[i])
 {
 pop->ind[obj_array[i][j]].crowd_dist += 0.0;
 }
 else
 {
 pop->ind[obj_array[i][j]].crowd_dist += (pop->ind[obj_array[i][j+1]].obj[i] - pop-
>ind[obj_array[i][j-1]].obj[i])/(pop->ind[obj_array[i][front_size-1]].obj[i] - pop-
>ind[obj_array[i][0]].obj[i]);
 }
 }
 }
 }
 for (j=0; j<front_size; j++)
 {
 if (pop->ind[dist[j]].crowd_dist != INF)
 {
 pop->ind[dist[j]].crowd_dist = (pop->ind[dist[j]].crowd_dist)/nobj;
 }
 }
 return;
}

/* Domination checking routines */

include <stdio.h>

 217

include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* It returns the following
 1 if a dominates b
 2 if b dominates a
 3 if a and b are non-dominated and a!=b (identification arrays unequal)
 4 if a and b are non-dominated and a=b */

int check_box_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;
 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);
 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (2);
 }
 else
 {
 return (4);
 }
 }
 }
 else
 {
 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (2);
 }
 else
 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)

 218

 {
 return (1);
 }
 else
 {
 for (i=0; i<nobj; i++)
 {
 if (a->ia[i] < b->ia[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->ia[i] > b->ia[i])
 {
 flag2 = 1;
 }
 }
 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }
 else
 {
 if (flag1==0 && flag2==1)
 {
 return (2);
 }
 else
 {
 if (flag1==1 && flag2==1)
 {
 return(3);
 }
 else
 {
 return(4);
 }
 }
 }
 }
 }
 }
}

 219

/* Routine for usual non-domination checking
 It will return the following values
 1 if a dominates b
 -1 if b dominates a
 0 if both a and b are non-dominated */

int check_dominance (individual *a, individual *b)
{
 int i;
 int flag1;
 int flag2;
 flag1 = 0;
 flag2 = 0;
 if (a->constr_violation<0.0 && b->constr_violation<0.0)
 {
 if (a->constr_violation > b->constr_violation)
 {
 return (1);
 }
 else
 {
 if (a->constr_violation < b->constr_violation)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 else
 {
 if (a->constr_violation<0.0 && b->constr_violation==0.0)
 {
 return (-1);
 }
 else
 {
 if (a->constr_violation==0.0 && b->constr_violation<0.0)
 {
 return (1);
 }
 else
 {

 220

 for (i=0; i<nobj; i++)
 {
 if (a->obj[i] < b->obj[i])
 {
 flag1 = 1;

 }
 else
 {
 if (a->obj[i] > b->obj[i])
 {
 flag2 = 1;
 }
 }
 }
 if (flag1==1 && flag2==0)
 {
 return (1);
 }
 else
 {
 if (flag1==0 && flag2==1)
 {
 return (-1);
 }
 else
 {
 return (0);
 }
 }
 }
 }
 }
}

/* Routine for evaluating population members */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to evaluate objective function values and constraints for a population */
void evaluate_pop (population *pop)

 221

{
 int i;
 for (i=0; i<popsize; i++)
 {
 evaluate_ind (&(pop->ind[i]));
 }
 return;
}

/* Routine to evaluate objective function values and constraints for an individual */
void evaluate_ind (individual *ind)
{
 int j;
 test_problem (ind->xreal, ind->gene, ind->obj, ind->constr);
 if (ncon==0)
 {
 ind->constr_violation = 0.0;
 }
 else
 {
 ind->constr_violation = 0.0;
 for (j=0; j<ncon; j++)
 {
 if (ind->constr[j]<0.0)
 {
 ind->constr_violation += ind->constr[j];
 }
 }
 }
 return;
}

/* NSGA-II routine (implementation of the 'main' function) *//*
 *
 */
include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

int nreal;
int nbin;
int nobj;
int ncon;

 222

int popsize;
double pcross_real;
double pcross_bin;
double pmut_real;
double pmut_bin;
double eta_c;
double eta_m;
int neval;
int currenteval;
int nbinmut;
int nrealmut;
int nbincross;
int nrealcross;
int *nbits;
int *array;
double *min_realvar;
double *max_realvar;
double *min_binvar;
double *max_binvar;
double *epsilon;
double *min_obj;
int bitlength;
int elite_size;

int main (int argc, char **argv)
{
 int i;
 int index, index1, index2;
 FILE *fpt1;
 FILE *fpt2;
 FILE *fpt3;
 FILE *fpt4;
 FILE *fpt5;
 individual *ea;
 individual *parent1, *parent2, *child1, *child2;
 ind_list *elite, *cur;
 if (argc<2)
 {
 printf("\n Usage ./main random_seed \n");
 exit(1);
 }
 seed = (double)atof(argv[1]);
 if (seed<=0.0 || seed>=1.0)
 {
 printf("\n Entered seed value is wrong, seed value must be in (0,1) \n");
 exit(1);

 223

 }
 fpt1 = fopen("initial_pop.out","w");
 fpt2 = fopen("final_pop.out","w");
 fpt3 = fopen("final_archive.out","w");
 fpt4 = fopen("all_archive.out","w");
 fpt5 = fopen("params.out","w");
 fprintf(fpt1,"# This file contains the data of initial population\n");
 fprintf(fpt2,"# This file contains the data of final population\n");
 fprintf(fpt3,"# This file contains the best obtained solution(s)\n");
 fprintf(fpt4,"# This file contains the data of archive for all generations\n");
 fprintf(fpt5,"# This file contains information about inputs as read by the program\n");
 printf("\n Enter the problem relevant and algorithm relevant parameters ... ");
 printf("\n Enter the population size (>1) : ");
 scanf("%d",&popsize);
 if (popsize<2)
 {
 printf("\n population size read is : %d",popsize);
 printf("\n Wrong population size entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of function evaluations : ");
 scanf("%d",&neval);
 if (neval<popsize)
 {
 printf("\n number of function evaluations read is : %d",neval);
 printf("\n Wrong nuber of evaluations entered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of objectives (>=2): ");
 scanf("%d",&nobj);
 if (nobj<2)
 {
 printf("\n number of objectives entered is : %d",nobj);
 printf("\n Wrong number of objectives entered, hence exiting \n");
 exit (1);
 }
 epsilon = (double *)malloc(nobj*sizeof(double));
 min_obj = (double *)malloc(nobj*sizeof(double));
 for (i=0; i<nobj; i++)
 {
 printf("\n Enter the value of epsilon[%d] : ",i+1);
 scanf("%lf",&epsilon[i]);
 if (epsilon[i]<=0.0)
 {
 printf("\n Entered value of epsilon[%d] is non-positive, hence exiting\n",i+1);
 exit(1);

 224

 }
 printf("\n Enter the value of min_obj[%d] (if not known, enter 0.0) : ",i+1);
 scanf("%lf",&min_obj[i]);
 }
 printf("\n Enter the number of constraints : ");
 scanf("%d",&ncon);
 if (ncon<0)
 {
 printf("\n number of constraints entered is : %d",ncon);
 printf("\n Wrong number of constraints enetered, hence exiting \n");
 exit (1);
 }
 printf("\n Enter the number of generators : ");
 scanf("%d",&nbits);
 if (nbits<0)
 {
 printf("\n number of real generators entered is : %d",nbits);
 printf("\n Wrong number of generators entered, hence exiting \n");
 exit (1);
 }
 if (nbits != 0)
 {
 min_realvar = (double *)malloc(nreal*sizeof(double));
 max_realvar = (double *)malloc(nreal*sizeof(double));
 for (i=0; i<nbits; i++)
 {
 for (hr=0; hr <24; hr++)
 {
 printf ("\n Enter the output for generator %d : ",i+1);
 scanf ("%lf",&xreal[i][hr]);
 printf ("\n Enter the cost rate for generator %d : ",i+1);
 scanf ("%lf",&gen_cost[i][hr]);
 }
 printf ("\n Enter the lower limit of real variable %d : ",i+1);
 scanf ("%lf",&min_realvar[i]);
 printf ("\n Enter the upper limit of real variable %d : ",i+1);
 scanf ("%lf",&max_realvar[i]);
 if (max_realvar[i] <= min_realvar[i])
 {
 printf("\n Wrong limits entered for the min and max bounds of generator %d, hence
exiting \n",i+1);
 exit(1);
 }
 }
 printf ("\n Enter the probability of crossover (0.6-1.0) : ");
 scanf ("%lf",&pcross_real);

 225

 if (pcross_real<0.0 || pcross_real>1.0)
 {
 printf("\n Probability of crossover entered is : %e",pcross_real);
 printf("\n Entered value of probability of crossover of real variables is out of bounds,
hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the probablity of mutation (1/nreal) : ");
 scanf ("%lf",&pmut_real);
 if (pmut_real<0.0 || pmut_real>1.0)
 {
 printf("\n Probability of mutation entered is : %e",pmut_real);
 printf("\n Entered value of probability of mutation of real variables is out of bounds,
hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the value of distribution index for crossover (5-20): ");
 scanf ("%lf",&eta_c);
 if (eta_c<=0)
 {
 printf("\n The value entered is : %e",eta_c);
 printf("\n Wrong value of distribution index for crossover entered, hence exiting \n");
 exit (1);
 }
 printf ("\n Enter the value of distribution index for mutation (5-50): ");
 scanf ("%lf",&eta_m);
 if (eta_m<=0)
 {
 printf("\n The value entered is : %e",eta_m);
 printf("\n Wrong value of distribution index for mutation entered, hence exiting \n");
 exit (1);
 }
 }

 if (nbits==0)
 {
 printf("\n Number of variables is zero, hence exiting \n");
 exit(1);
 }
 printf("\n Input data successfully entered, now performing initialization \n");
 fprintf(fpt5,"\n Population size = %d",popsize);
 fprintf(fpt5,"\n Number of function evaluations = %d",neval);
 fprintf(fpt5,"\n Number of objective functions = %d",nobj);
 for (i=0; i<nobj; i++)
 {

 226

 fprintf(fpt5,"\n Epsilon for objective %d = %e",i+1,epsilon[i]);
 fprintf(fpt5,"\n Minimum value of objective %d = %e",i+1,min_obj[i]);
 }
 fprintf(fpt5,"\n Number of constraints = %d",ncon);
 fprintf(fpt5,"\n Number of real variables = %d",nreal);
 if (nreal!=0)
 {
 for (i=0; i<nbits; i++)
 {
 fprintf(fpt5,"\n Lower limit of real variable %d = %e",i+1,min_realvar[i]);
 fprintf(fpt5,"\n Upper limit of real variable %d = %e",i+1,max_realvar[i]);
 }
 fprintf(fpt5,"\n Probability of crossover of real variable = %e",pcross_real);
 fprintf(fpt5,"\n Probability of mutation of real variable = %e",pmut_real);
 fprintf(fpt5,"\n Distribution index for crossover = %e",eta_c);
 fprintf(fpt5,"\n Distribution index for mutation = %e",eta_m);
 }
 fprintf(fpt5,"\n Number of binary variables = %d",nbin);

 fprintf(fpt5,"\n Seed for random number generator = %e",seed);
 bitlength = 0;

 fprintf(fpt1,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt2,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt3,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 fprintf(fpt4,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of
bin_var = %d, constr_violation\n",nobj,ncon,nreal,bitlength);
 nbinmut = 0;
 nrealmut = 0;
 nbincross = 0;
 nrealcross = 0;
 currenteval = 0;
 elite_size = 0;
 randomize();
 ea = (individual *)malloc(popsize*sizeof(individual));
 array = (int *)malloc(popsize*sizeof(int));
 for (i=0; i<popsize; i++)
 {
 allocate (&ea[i]);
 initialize(&ea[i]);
 decode(&ea[i]);
 eval(&ea[i]);
 }

 227

 report_pop (ea, fpt1);
 elite = (ind_list *)malloc(sizeof(ind_list));
 elite->ind = (individual *)malloc(sizeof(individual));
 allocate (elite->ind);
 elite->parent = NULL;
 elite->child = NULL;
 insert (elite, &ea[0]);
 for (i=1; i<popsize; i++)
 {
 update_elite (elite, &ea[i]);
 }
 child1 = (individual *)malloc(sizeof(individual));
 allocate (child1);
 child2 = (individual *)malloc(sizeof(individual));
 allocate (child2);
 cur = elite;
 while (currenteval<neval)
 {
 index1 = rnd(0, popsize-1);
 index2 = rnd(0, popsize-1);
 parent1 = tournament (&ea[index1], &ea[index2]);
 index = rnd(0, elite_size-1);
 cur = elite->child;
 for (i=1; i<=index; i++)
 {
 cur=cur->child;
 }
 parent2 = cur->ind;
 crossover (parent1, parent2, child1, child2);
 mutation (child1);
 decode (child1);
 eval (child1);
 update_elite (elite, child1);
 update_pop (ea, child1);
 mutation (child2);
 decode (child2);
 eval (child2);
 update_elite (elite, child2);
 update_pop (ea, child2);
 printf("\n Currenteval = %d and Elite_size = %d",currenteval,elite_size);
 /* Comment following three lines if information at all
 evaluation is not desired, it will speed up execution of the code */
 fprintf(fpt4,"# eval id = %d\n",currenteval);
 report_archive (elite, fpt4);
 fflush(fpt4);
 }

 228

 printf("\n Generations finished, now reporting solutions");
 report_pop (ea, fpt2);
 report_archive (elite, fpt3);
 if (nreal!=0)
 {
 fprintf(fpt5,"\n Number of crossover of real variable = %d",nrealcross);
 fprintf(fpt5,"\n Number of mutation of real variable = %d",nrealmut);
 }
 if (nbin!=0)
 {
 fprintf(fpt5,"\n Number of crossover of binary variable = %d",nbincross);
 fprintf(fpt5,"\n Number of mutation of binary variable = %d",nbinmut);
 }
 fflush(stdout);
 fflush(fpt1);
 fflush(fpt2);
 fflush(fpt3);
 fflush(fpt4);
 fflush(fpt5);
 fclose(fpt1);
 fclose(fpt2);
 fclose(fpt3);
 fclose(fpt4);
 fclose(fpt5);
 if (nreal!=0)
 {
 free (min_realvar);
 free (max_realvar);
 }
 if (nbin!=0)
 {
 free (min_binvar);
 free (max_binvar);
 free (nbits);
 }
 free (epsilon);
 free (min_obj);
 free (array);
 for (i=0; i<popsize; i++)
 {
 deallocate (&ea[i]);
 }
 free (ea);
 cur = elite->child;
 while (cur!=NULL)
 {

 229

 cur = del(cur);
 cur = cur->child;
 }
 deallocate (elite->ind);
 free (elite->ind);
 free (elite);
 printf("\n Routine successfully exited \n");
 return (0);
}

/* Routine for evaluating individuals */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to evaluate objective function values and constraints for an individual */
void eval (individual *ind)
{
 int j;
 test_problem (ind->xreal,ind->gen_cost, ind->gene, ind->obj, ind->constr);
 for (j=0; j<nobj; j++)
 {
 ind->ia[j] = (int)floor((ind->obj[j]-min_obj[j])/epsilon[j]);
 }
 if (ncon==0)
 {
 ind->constr_violation = 0.0;
 }
 else
 {
 ind->constr_violation = 0.0;
 for (j=0; j<ncon; j++)
 {
 if (ind->constr[j]<0.0)
 {
 ind->constr_violation += ind->constr[j];
 }
 }
 }
 currenteval++;
 return;
}

 230

/* This file contains the variable and function declarations */

ifndef _GLOBAL_H_
define _GLOBAL_H_

define INF 1.0e99
define EPS 1.0e-14
define E 2.71828182845905
define PI 3.14159265358979

/* global variables */
typedef struct
{
 double constr_violation;
 double **xreal;
 int *gene;
 double *gen_cost;
 double *obj;
 int *ia;
 double *constr;
} individual;

typedef struct ind_lists
{
 individual *ind;
 struct ind_lists *parent;
 struct ind_lists *child;
} ind_list;

extern int nreal;
extern int nbin;
extern int nobj;
extern int ncon;
extern int popsize;
extern double pcross_real;
extern double pcross_bin;
extern double pmut_real;
extern double pmut_bin;
extern double eta_c;
extern double eta_m;
extern int neval;
extern int currenteval;
extern int nbinmut;
extern int nrealmut;
extern int nbincross;

 231

extern int nrealcross;
extern int nbits;
extern int *array;
extern int *right_genes;
extern int *assigned;
extern double max_gen;
extern double *min_realvar;
extern double *max_realvar;
extern double *min_binvar;
extern double *max_binvar;
extern double *epsilon;
extern double *min_obj;
extern int bitlength;
extern int elite_size;
extern int site1;
/* global function declarations */
void allocate (individual *ind);
void deallocate (individual *ind);

void copy (individual *ind1, individual *ind2);

void crossover (individual *parent1, individual *parent2, individual *child1, individual *child2);
void realcross (individual *parent1, individual *parent2, individual *child1, individual *child2);
void bincross (individual *parent1, individual *parent2, individual *child1, individual *child2);

void decode (individual *ind);

int check_box_dominance (individual *a, individual *b);
int check_dominance (individual *a, individual *b);

void eval (individual *ind);

void initialize (individual *ind);

void insert (ind_list *node, individual *ind);
ind_list* del (ind_list *node);

void mutation (individual *ind);
void bin_mutate (individual *ind);
void real_mutate (individual *ind);

void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr);

void report_pop (individual *ind, FILE *fpt);
void report_archive (ind_list *elite, FILE *fpt);

 232

individual* tournament (individual *ind1, individual *ind2);

void update_elite (ind_list *elite, individual *ind);
void update_pop (individual *ea, individual *ind);

endif

/* Data initializtion routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to initialize an individual randomly */
void initialize (individual *ind, int site1)
{
 int i, j, k, found, found2,res;
 if (nbits !=0)
 {

 for (i=0; i < (nbits - site1); i++)
 {
 max_gen[i]= 0.0;
 for (j=0; j<nbits; j++)
 {
 if (i == 0)
 {
 if (max_gen[i] < gen_cost[j])
 max_gen[i]= gen_cost[j];
 }
 else
 {
 if ((max_gen[i] < gen_cost[j]) && (max_gen[i] < max_gen[i-1]))
 max_gen[i]= gen_cost[j];
 }
 }
 /*fetch a single random integer at a time to select each gene to the right of the crossover point
and is one of the expensive generators */
 k =0;
 j= site1;
 right_genes[0] =10000;

 while (k < nbits -site1)

 233

 {
 res = rnd[0,nbits];

 if (gen_cost[res] >= max_gen[nbits -site1-1])
 {
 found =0;
 for (i=0; i < k ; i++)
 if (res == right_genes[i])
 found=1;
 if (found == 0)
 {
 ind->gene[j] = res;
 for (hr=0; hr <24; hr++)
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);
 right_genes[k] = res;
 j++;
 k++;
 }
 }
 }
 /* next assign all remaining generators not assigned to the appropreate gene */
 jump=k;
 j=0;
 assigned[0]=10000;
 while (j < site1)
 {
 res = rnd[0,bits];
 found =0;
 found2=0;
 for (k=0 ; k < jump; k++)
 if(res == right_genes[k])
 found =1;

 for (i=0; i < j; i++)
 if(res == assigned[i])
 found2=1;
 if (found1 ==0 && found2 ==0)
 {
 ind->gene[j] = res;
 for (hr= 0 ; hr < 24; hr++)
 {
 ind->xreal[j][hr]= rndreal (min_realvar[res], max_realvar[res]);

 }
 assigned [j] =res;
 j++;

 234

 }

 }
 }
 return;
}

/* A custom doubly linked list implemenation */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to insert an element after the location specified by node NODE */
void insert (ind_list *node, individual *ind)
{
 ind_list *temp;
 if (node==NULL)
 {
 printf("\n Error!! asked to enter after a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = (ind_list *)malloc(sizeof(ind_list));
 temp->ind = (individual *)malloc(sizeof(individual));
 allocate (temp->ind);
 copy (ind, temp->ind);
 temp->child = node->child;
 temp->parent = node;
 if (node->child != NULL)
 {
 node->child->parent = temp;
 }
 node->child = temp;
 elite_size++;
 return;
}

/* Delete the element specified by node NODE */
ind_list* del (ind_list *node)
{
 ind_list *temp;
 if (node==NULL)

 235

 {
 printf("\n Error!! asked to delete a NULL pointer, hence exiting \n");
 exit(1);
 }
 temp = node->parent;
 temp->child = node->child;
 if (temp->child!=NULL)
 {
 temp->child->parent = temp;
 }
 deallocate(node->ind);
 free (node->ind);
 free (node);
 elite_size--;
 return (temp);
}

/* Mutation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to perform mutation of an individual */
void mutation (individual *ind)
{
 if (nreal!=0)
 {
 real_mutate(ind);
 }
 if (nbits!=0)
 {
 bin_mutate(ind);
 }
 return;
}

/* Routine for binary mutation of an individual */
void bin_mutate (individual *ind)
{
 int j, k, found,found2,temp;
 double prob, temp_real[24],new_real[24];

 236

 for(hr=0; hr <24; hr++)
 {
 temp_real[24]=0.0;
 new_real[24]=0.0;
 }

 prob = randomperc();
 if (prob <=pmut_bin)
 {
 found =0;
 res = rnd[0,site1];
 while (found !=1)
 {
 res1 = rnd[0,site1];
 if (res !=res1)
 {

 for(hr=0; hr <24; hr++)
 temp_real[24] = ind->xreal[res][hr]+ind->xreal[res1][hr];
 temp = ind->gene[res];
 ind-> gene[res] = ind->gene[res1];
 ind-> gene[res1] = temp;
 for(hr=0; hr <24; hr++)
 {
 found2=0;
 while(found2 !=1)
 {
 ind->xreal[res][hr] =rndreal (min_realvar[res], max_realvar[res]);
 new_real[24] = temp_real[24] - ind->xreal[res][hr];

 if (new_real[24] > min_realvar[res1])&&(new_real[24] < max_realvar[res1]))
 {
 ind->xreal[res1][hr] = new_real[24];
 found2=1;
 }
 }
 }
 found=1;
 }
 }
 }

 return;
}

 237

/* Routine for real polynomial mutation of an individual */
void real_mutate (individual *ind)
{
 int j;
 double rnd, delta1, delta2, mut_pow, deltaq;
 double y, yl, yu, val, xy;
 for (j=0; j<nreal; j++)
 {
 if (randomperc() <= pmut_real)
 {
 y = ind->xreal[j];
 yl = min_realvar[j];
 yu = max_realvar[j];
 delta1 = (y-yl)/(yu-yl);
 delta2 = (yu-y)/(yu-yl);
 rnd = randomperc();
 mut_pow = 1.0/(eta_m+1.0);
 if (rnd <= 0.5)
 {
 xy = 1.0-delta1;
 val = 2.0*rnd+(1.0-2.0*rnd)*(pow(xy,(eta_m+1.0)));
 deltaq = pow(val,mut_pow) - 1.0;
 }
 else
 {
 xy = 1.0-delta2;
 val = 2.0*(1.0-rnd)+2.0*(rnd-0.5)*(pow(xy,(eta_m+1.0)));
 deltaq = 1.0 - (pow(val,mut_pow));
 }
 y = y + deltaq*(yu-yl);
 if (y<yl) y = yl;
 if (y>yu) y = yu;
 ind->xreal[j] = y;
 nrealmut+=1;
 }
 }
 return;
}

/* Test problem definitions */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"

 238

include "rand.h"

/* # define sch1 */
/* # define sch2 */
/* # define fon */
/* # define kur */
/* # define pol */
/* # define vnt */
/* # define zdt1*/
/* # define zdt2 */
/* # define zdt3 */
/* # define zdt4 */
/* # define zdt5 */
/* # define zdt6 */
/* # define bnh */
/* # define osy */
/* # define srn */
/* # define tnk */
/* # define ctp1 */
/* # define ctp2 */
/* # define ctp3 */
/* # define ctp4 */
/* # define ctp5 */
/* # define ctp6 */
/* # define ctp7 */
/* # define ctp8 */
#define generator_matchup
/* Test problem SCH1
 # of real variables = 1
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = pow(xreal[0],2.0);
 obj[1] = pow((xreal[0]-2.0),2.0);
 return;
}
#endif

/* Test problem SCH2
 # of real variables = 1
 # of bin variables = 0

 239

 # of objectives = 2
 # of constraints = 0
 */

#ifdef sch2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 if (xreal[0]<=1.0)
 {
 obj[0] = -xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=3.0)
 {
 obj[0] = xreal[0]-2.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 if (xreal[0]<=4.0)
 {
 obj[0] = 4.0-xreal[0];
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
 }
 obj[0] = xreal[0]-4.0;
 obj[1] = pow((xreal[0]-5.0),2.0);
 return;
}
#endif

/* Test problem FON
 # of real variables = n
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef fon
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double s1, s2;
 int i;
 s1 = s2 = 0.0;
 for (i=0; i<nreal; i++)
 {

 240

 s1 += pow((xreal[i]-(1.0/sqrt((double)nreal))),2.0);
 s2 += pow((xreal[i]+(1.0/sqrt((double)nreal))),2.0);
 }
 obj[0] = 1.0 - exp(-s1);
 obj[1] = 1.0 - exp(-s2);
 return;
}
#endif

/* Test problem KUR
 # of real variables = 3
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef kur
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i;
 double res1, res2;
 res1 = -0.2*sqrt((xreal[0]*xreal[0]) + (xreal[1]*xreal[1]));
 res2 = -0.2*sqrt((xreal[1]*xreal[1]) + (xreal[2]*xreal[2]));
 obj[0] = -10.0*(exp(res1) + exp(res2));
 obj[1] = 0.0;
 for (i=0; i<3; i++)
 {
 obj[1] += pow(fabs(xreal[i]),0.8) + 5.0*sin(pow(xreal[i],3.0));
 }
 return;
}
#endif

/* Test problem POL
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef pol
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double a1, a2, b1, b2;
 a1 = 0.5*sin(1.0) - 2.0*cos(1.0) + sin(2.0) - 1.5*cos(2.0);
 a2 = 1.5*sin(1.0) - cos(1.0) + 2.0*sin(2.0) - 0.5*cos(2.0);

 241

 b1 = 0.5*sin(xreal[0]) - 2.0*cos(xreal[0]) + sin(xreal[1]) - 1.5*cos(xreal[1]);
 b2 = 1.5*sin(xreal[0]) - cos(xreal[0]) + 2.0*sin(xreal[1]) - 0.5*cos(xreal[1]);
 obj[0] = 1.0 + pow((a1-b1),2.0) + pow((a2-b2),2.0);
 obj[1] = pow((xreal[0]+3.0),2.0) + pow((xreal[1]+1.0),2.0);
 return;
}
#endif

/* Test problem VNT
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 3
 # of constraints = 0
 */

#ifdef vnt
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 0.5*(xreal[0]*xreal[0] + xreal[1]*xreal[1]) + sin(xreal[0]*xreal[0] +
xreal[1]*xreal[1]);
 obj[1] = (pow((3.0*xreal[0] - 2.0*xreal[1] + 4.0),2.0))/8.0 + (pow((xreal[0]-
xreal[1]+1.0),2.0))/27.0 + 15.0;
 obj[2] = 1.0/(xreal[0]*xreal[0] + xreal[1]*xreal[1] + 1.0) - 1.1*exp(-(xreal[0]*xreal[0] +
xreal[1]*xreal[1]));
 return;
}
#endif

/* Test problem ZDT1
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }

 242

 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT2
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT3
 # of real variables = 30
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt3

 243

void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<30; i++)
 {
 g += xreal[i];
 }
 g = 9.0*g/29.0;
 g += 1.0;
 h = 1.0 - sqrt(f1/g) - (f1/g)*sin(10.0*PI*f1);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT4
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = xreal[0];
 g = 0.0;
 for (i=1; i<10; i++)
 {
 g += xreal[i]*xreal[i] - 10.0*cos(4.0*PI*xreal[i]);
 }
 g += 91.0;
 h = 1.0 - sqrt(f1/g);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

 244

/* Test problem ZDT5
 # of real variables = 0
 # of bin variables = 11
 # of bits for binvar1 = 30
 # of bits for binvar2-11 = 5
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 int i, j;
 int u[11];
 int v[11];
 double f1, f2, g, h;
 for (i=0; i<11; i++)
 {
 u[i] = 0;
 }
 for (j=0; j<30; j++)
 {
 if (gene[0][j] == 1)
 {
 u[0]++;
 }
 }
 for (i=1; i<11; i++)
 {
 for (j=0; j<4; j++)
 {
 if (gene[i][j] == 1)
 {
 u[i]++;
 }
 }
 }
 f1 = 1.0 + u[0];
 for (i=1; i<11; i++)
 {
 if (u[i] < 5)
 {
 v[i] = 2 + u[i];
 }
 else

 245

 {
 v[i] = 1;
 }
 }
 g = 0;
 for (i=1; i<11; i++)
 {
 g += v[i];
 }
 h = 1.0/f1;
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

/* Test problem ZDT6
 # of real variables = 10
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 0
 */

#ifdef zdt6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double f1, f2, g, h;
 int i;
 f1 = 1.0 - (exp(-4.0*xreal[0]))*pow((sin(4.0*PI*xreal[0])),6.0);
 g = 0.0;
 for (i=1; i<10; i++)
 {
 g += xreal[i];
 }
 g = g/9.0;
 g = pow(g,0.25);
 g = 1.0 + 9.0*g;
 h = 1.0 - pow((f1/g),2.0);
 f2 = g*h;
 obj[0] = f1;
 obj[1] = f2;
 return;
}
#endif

 246

/* Test problem BNH
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef bnh
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 4.0*(xreal[0]*xreal[0] + xreal[1]*xreal[1]);
 obj[1] = pow((xreal[0]-5.0),2.0) + pow((xreal[1]-5.0),2.0);
 constr[0] = 1.0 - (pow((xreal[0]-5.0),2.0) + xreal[1]*xreal[1])/25.0;
 constr[1] = (pow((xreal[0]-8.0),2.0) + pow((xreal[1]+3.0),2.0))/7.7 - 1.0;
 return;
}
#endif

/* Test problem OSY
 # of real variables = 6
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 6
 */

#ifdef osy
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = -(25.0*pow((xreal[0]-2.0),2.0) + pow((xreal[1]-2.0),2.0) + pow((xreal[2]-1.0),2.0) +
pow((xreal[3]-4.0),2.0) + pow((xreal[4]-1.0),2.0));
 obj[1] = xreal[0]*xreal[0] + xreal[1]*xreal[1] + xreal[2]*xreal[2] + xreal[3]*xreal[3] +
xreal[4]*xreal[4] + xreal[5]*xreal[5];
 constr[0] = (xreal[0]+xreal[1])/2.0 - 1.0;
 constr[1] = 1.0 - (xreal[0]+xreal[1])/6.0;
 constr[2] = 1.0 - xreal[1]/2.0 + xreal[0]/2.0;
 constr[3] = 1.0 - xreal[0]/2.0 + 3.0*xreal[1]/2.0;
 constr[4] = 1.0 - (pow((xreal[2]-3.0),2.0))/4.0 - xreal[3]/4.0;
 constr[5] = (pow((xreal[4]-3.0),2.0))/4.0 + xreal[5]/4.0 - 1.0;
 return;
}
#endif

/* Test problem SRN
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2

 247

 # of constraints = 2
 */

#ifdef srn
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = 2.0 + pow((xreal[0]-2.0),2.0) + pow((xreal[1]-1.0),2.0);
 obj[1] = 9.0*xreal[0] - pow((xreal[1]-1.0),2.0);
 constr[0] = 1.0 - (pow(xreal[0],2.0) + pow(xreal[1],2.0))/225.0;
 constr[1] = 3.0*xreal[1]/10.0 - xreal[0]/10.0 - 1.0;
 return;
}
#endif

/* Test problem TNK
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef tnk
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 obj[0] = xreal[0];
 obj[1] = xreal[1];
 if (xreal[1] == 0.0)
 {
 constr[0] = -1.0;
 }
 else
 {
 constr[0] = xreal[0]*xreal[0] + xreal[1]*xreal[1] - 0.1*cos(16.0*atan(xreal[0]/xreal[1])) -
1.0;
 }
 constr[1] = 1.0 - 2.0*pow((xreal[0]-0.5),2.0) + 2.0*pow((xreal[1]-0.5),2.0);
 return;
}
#endif

/* Test problem CTP1
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

 248

#ifdef ctp1
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*exp(-obj[0]/g);
 constr[0] = obj[1]/(0.858*exp(-0.541*obj[0]))-1.0;
 constr[1] = obj[1]/(0.728*exp(-0.295*obj[0]))-1.0;
 return;
}
#endif

/* Test problem CTP2
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp2
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.2;
 b = 10.0;
 c = 1.0;
 d = 6.0;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

 249

/* Test problem CTP3
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp3
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;
 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP4
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp4
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;

 250

 a = 0.75;
 b = 10.0;
 c = 1.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP5
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp5
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.2*PI;
 a = 0.1;
 b = 10.0;
 c = 2.0;
 d = 0.5;
 e = 1.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;

 251

 return;
}
#endif

/* Test problem CTP6
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp6
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP7
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 1
 */

#ifdef ctp7
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{

 252

 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 theta = -0.05*PI;
 a = 40.0;
 b = 5.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 return;
}
#endif

/* Test problem CTP8
 # of real variables = 2
 # of bin variables = 0
 # of objectives = 2
 # of constraints = 2
 */

#ifdef ctp8
void test_problem (double *xreal, double *xbin, int **gene, double *obj, double *constr)
{
 double g;
 double theta, a, b, c, d, e;
 double exp1, exp2;
 g = 1.0 + xreal[1];
 obj[0] = xreal[0];
 obj[1] = g*(1.0 - sqrt(obj[0]/g));
 theta = 0.1*PI;
 a = 40.0;
 b = 0.5;
 c = 1.0;
 d = 2.0;
 e = -2.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);

 253

 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[0] = exp1/exp2 - 1.0;
 theta = -0.05*PI;
 a = 40.0;
 b = 2.0;
 c = 1.0;
 d = 6.0;
 e = 0.0;
 exp1 = (obj[1]-e)*cos(theta) - obj[0]*sin(theta);
 exp2 = (obj[1]-e)*sin(theta) + obj[0]*cos(theta);
 exp2 = b*PI*pow(exp2,c);
 exp2 = fabs(sin(exp2));
 exp2 = a*pow(exp2,d);
 constr[1] = exp1/exp2 - 1.0;
 return;
}
#endif

#ifdef generator_matchup
void test_problem (double **xreal,double *gen_cost, double *load_cost, double **load, double
*max_realvar, int num_loads, int nreal, int *group, int group_max, double *obj, double *constr)
{
 int i,j,k,l, hrs=24;
 obj[0] =0.0;
 obj[1] = 0.0;
double sum =0.0, sum1=0.0;
/* Objective function definition */

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 obj[0] += (gen_cost[j]*xreal[j][i];
 }
 for (k= 0; k < num_loads ; k++)
 {
 obj[0] -= load_cost[k]*load[k][i];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)

 254

 {
 if (j == group[l])
 sum1 += max_realvar[j] - xreal[j][i];
 }
 sum += max_realvar[j] -x real[j][i];
 }
 for (j = 0; j < nreal ; j++)
 {
 for(l = 0; l < group_max ; l++)
 {
 if (j != group[l])
 obj[1] += ((max_realvar[j]- xreal[j][i])/sum)^2;
 }
 }
 obj[1] += (sum1/sum)^2;
 }
 obj[1] = obj[1]/24;
/* constraints definition */
/* Economic Minimum and Maximum Operating Cosntaraint *

 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j]=max_realvar[j] -(xreal[j][i]+ Spin[j];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+nreal]=max_realvar[j] -(xreal[j][i]+ SOper[j];
 }
 }
 for (i = 0; i < hrs ; i++)
 {
 for (j = 0; j < nreal ; j++)
 {
 constr[j+2*nreal]=(xreal[j][i] -min_realvar[j];
 }
 }

 return;
}
#endif

 255

/* Definition of random number generation routines */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

double seed;
double oldrand[55];
int jrand;

/* Get seed number for random and start it up */
void randomize()
{
 int j1;
 for(j1=0; j1<=54; j1++)
 {
 oldrand[j1] = 0.0;
 }
 jrand=0;
 warmup_random (seed);
 return;
}

/* Get randomize off and running */
void warmup_random (double seed)
{
 int j1, ii;
 double new_random, prev_random;
 oldrand[54] = seed;
 new_random = 0.000000001;
 prev_random = seed;
 for(j1=1; j1<=54; j1++)
 {
 ii = (21*j1)%54;
 oldrand[ii] = new_random;
 new_random = prev_random-new_random;
 if(new_random<0.0)
 {
 new_random += 1.0;
 }
 prev_random = oldrand[ii];
 }

 256

 advance_random ();
 advance_random ();
 advance_random ();
 jrand = 0;
 return;
}

/* Create next batch of 55 random numbers */
void advance_random ()
{
 int j1;
 double new_random;
 for(j1=0; j1<24; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1+31];
 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
 for(j1=24; j1<55; j1++)
 {
 new_random = oldrand[j1]-oldrand[j1-24];
 if(new_random<0.0)
 {
 new_random = new_random+1.0;
 }
 oldrand[j1] = new_random;
 }
}

/* Fetch a single random number between 0.0 and 1.0 */
double randomperc()
{
 jrand++;
 if(jrand>=55)
 {
 jrand = 1;
 advance_random();
 }
 return((double)oldrand[jrand]);
}

/* Fetch a single random integer between low and high including the bounds */
int rnd (int low, int high)

 257

{
 int res;
 if (low >= high)
 {
 res = low;
 }
 else
 {
 res = low + (randomperc()*(high-low+1));
 if (res > high)
 {
 res = high;
 }
 }
 return (res);
}

/* Fetch a single random real number between low and high including the bounds */
double rndreal (double low, double high)
{
 return (low + (high-low)*randomperc());
}

/* Declaration for random number related variables and routines */

ifndef _RAND_H_
define _RAND_H_

/* Variable declarations for the random number generator */
extern double seed;
extern double oldrand[55];
extern int jrand;

/* Function declarations for the random number generator */
void randomize(void);
void warmup_random (double seed);
void advance_random (void);
double randomperc(void);
int rnd (int low, int high);
double rndreal (double low, double high);

endif

/* Routines for storing population data into files */

include <stdio.h>

 258

include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Function to print the information of a population in a file */
void report_pop (individual *ind, FILE *fpt)
{
 int i, j, k;
 for (i=0; i<popsize; i++)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",ind[i].obj[j]);
 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)
 {
 fprintf(fpt,"%e\t",ind[i].constr[j]);
 }
 }
 if (nreal!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",ind[i].gene[k]);
 }

 }
 fprintf(fpt,"%e\n",ind[i].constr_violation);
 }
 return;
}

 259

/* Function to print the information of feasible and non-dominated population in a file */
void report_archive (ind_list *elite, FILE *fpt)
{
 int j, k;
 ind_list *cur;
 cur = elite->child;
 while (cur!=NULL)
 {
 for (j=0; j<nobj; j++)
 {
 fprintf(fpt,"%e\t",cur->ind->obj[j]);
 }
 if (ncon!=0)
 {
 for (j=0; j<ncon; j++)
 {
 fprintf(fpt,"%e\t",cur->ind->constr[j]);
 }
 }
 if (nbits!=0)
 {
 for (j=0; j<nbits; j++)
 {
 for (hr <0; hr <24; hr++)
 fprintf(fpt,"%e\t",cur->ind->xreal[j][hr]);
 fprintf(fpt,"\n");
 }
 }
 if (nbits!=0)
 {

 for (k=0; k<nbits; k++)
 {
 fprintf(fpt,"%d\t",cur->ind->gene[k]);
 }

 }
 fprintf(fpt,"%e\n",cur->ind->constr_violation);
 cur = cur->child;
 }
 return;
}

/* Tournamenet Selections routine */

include <stdio.h>

 260

include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine for binary neigborhood */
individual* tournament (individual *ind1, individual *ind2)
{
 int flag;
 flag = check_dominance (ind1, ind2);
 if (flag==1)
 {
 return (ind1);
 }
 if (flag==-1)
 {
 return (ind2);
 }
 if ((randomperc()) <= 0.5)
 {
 return(ind1);
 }
 else
 {
 return(ind2);
 }
}

/* Routines for updating elite and EA populations */

include <stdio.h>
include <stdlib.h>
include <math.h>

include "global.h"
include "rand.h"

/* Routine to update archive */
void update_elite (ind_list *elite, individual *ind)
{
 int i, end, flag;
 double d1, d2;
 ind_list *temp;
 temp = elite->child;
 end = 0;

 261

 do
 {
 flag = check_box_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1: /* ind dominates temp->ind */
 {
 temp = del (temp);
 temp = temp->child;
 break;
 }
 case 2: /* temp->ind dominates ind */
 {
 return;
 }
 case 3: /* both are non-dominated and are in different boxes */
 {
 temp = temp->child;
 break;
 }
 case 4: /* both are non-dominated and are in same hyper-box */
 {
 end = 1;
 break;
 }
 }
 }
 while (end!=1 && temp!=NULL);
 if (end==0)
 {
 insert(elite, ind);
 }
 else
 {
 if (flag==4) /* in same hyperbox */
 {
 flag = check_dominance (ind, temp->ind);
 switch (flag)
 {
 case 1:
 {
 temp = del(temp);
 insert (elite, ind);
 break;
 }
 case -1:

 262

 {
 return;
 }
 case 0:
 {
 d1 = 0.0;
 d2 = 0.0;
 for (i=0; i<nobj; i++)
 {
 d1 += pow(((ind->obj[i]-ind->ia[i])/epsilon[i]),2.0);
 d2 += pow(((temp->ind->obj[i]-temp->ind->ia[i])/epsilon[i]),2.0);
 }
 if (d1<=d2)
 {
 temp = del(temp);
 insert(elite,ind);
 }
 break;
 }
 }
 }
 }
 return;
}

/* Routine to update population */
void update_pop (individual *ea, individual *ind)
{
 int size;
 int i;
 int flag;
 size = 0;
 for (i=0; i<popsize; i++)
 {
 flag = check_dominance (ind, &ea[i]);
 switch (flag)
 {
 case 1:
 copy (ind, &ea[i]);
 return;
 case -1:
 return;
 case 0:
 array[size++] = i;
 break;
 }

 263

 }
 if (size>0)
 {
 i = rnd(0,size-1);
 copy (ind, &ea[array[i]]);
 }
 return;
}

 264

Appendix B – System Parameters

Buying Offers from Loads

The intercept of the curve with the y-axis is presented as parameter “a” while the slope is

represented as parameter “b” in the table. The load characteristics for the 3 power systems

considered are presented in the following Tables. The units of the x-axis for these load

characteristics are in MW while the units of the y-axis will be in $/MW.

Test Case 1 – 5-Generator, 3-Load, 8-Bus Power System

Load # a b

1 5 0.1

2 12 0.1

3 -2.5 0.05

Test Case 2 – 10-Generator, 6-Load, 10-Bus Power System

Load # a b

1 70 1.0

2 -20 1.0

3 0 1.0

4 70 0.5

5 -40 1.5

6 20 2.0

 265

Test Case 3 – 50-Generator, 20-Load, 27-Bus Power System

Load # a b

1 70 1.0

2 -20 1.0

3 0 1.0

4 70 0.5

5 -40 1.5

6 20 2.0

7 5 0.1

8 12 0.1

9 -2.5 0.05

10 70 0.5

11 -40 1.5

12 20 2.0

13 5 0.1

14 5 0.1

15 12 0.1

16 -2.5 0.05

17 70 0.5

18 -40 1.5

19 20 2.0

20 5 0.1

 266

Constraints

Test Case 1 – 5-Generator, 3-Load, 8-Bus Power System

a) Branch Capacity Limit Constraints

30

50

45

35

50

40

30

40

20

45

,28

,78

,67

,57

,56

,45

,34

,34

,13

,12

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

t

t

t

t

t

t

t

t

t

t

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

b) Generator Ramp Rate Constraints

S1(t-1) – S1(t) ≤ 30

S2(t-1) – S2(t) ≤ 50

S3(t-1) – S3(t) ≤ 60

S4(t-1) – S4(t) ≤ 40

S5(t-1) – S5(t) ≤ 60

c) Economic Maximum and Minimum Operating Constraints

S1(t) + Sspin
1(t) ≤ 63

S2(t) + Sspin
2(t) ≤ 90

S3(t) + Sspin
3(t) ≤ 90

 267

S4(t) + Sspin
4(t) ≤ 54

S5(t) + Sspin
5(t) ≤ 90

Sspin
1(t)+ Sspin

2(t)+ Sspin
3(t)+ Sspin

4(t)+ Sspin
5(t) ≤ Sspin

system(t)

S1(t) ≥ 33

S2(t) ≥ 22

S3(t) ≥ 22

S4(t) ≥ 22

S5(t) ≥ 22

d) Generator Operating Reserves Requirement Constraints

S1(t) + Soper
1(t) ≤ 70

S2(t) + Soper
2(t) ≤ 100

S3(t) + Soper
3(t) ≤ 100

S4(t) + Soper
4(t) ≤ 60

S5(t) + Soper
5(t) ≤ 100

Soper
1(t)+ Soper

2(t)+ Soper
3(t)+ Soper

4(t) + Soper
5(t) ≤ Soper

system(t)

 268

Test Case 2 – 10-Generator, 6-Load, 10-Bus Power System

a) Branch Capacity Limit Constraints

30

30

40

30

40

30

60

45

35

40

40

30

40

30

40

,79

,24

,110

,23

,910

,89

,78

,67

,57

,56

,45

,37

,34

,23

,12

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

b) Generator Ramp Rate Constraints

S1(t-1) – S1(t) ≤ 40

S2(t-1) – S2(t) ≤ 50

S3(t-1) – S3(t) ≤ 60

S4(t-1) – S4(t) ≤ 40

S6(t-1) – S6(t) ≤ 60

 269

S7(t-1) – S7(t) ≤ 40

S8(t-1) – S8(t) ≤ 50

S9(t-1) – S9(t) ≤ 60

S10(t-1) – S10(t) ≤ 40

c) Economic Maximum and Minimum Operating Constraints

S1(t) + Sspin
1(t) ≤ 63

S2(t) + Sspin
2(t) ≤ 90

S3(t) + Sspin
3(t) ≤ 90

S4(t) + Sspin
4(t) ≤ 54

S5(t) + Sspin
5(t) ≤ 90

S6(t) + Sspin
6(t) ≤ 63

S7(t) + Sspin
7(t) ≤ 90

S8(t) + Sspin
8(t) ≤ 80

S9(t) + Sspin
9(t) ≤ 64

S10(t) + Sspin
10(t) ≤ 34

Sspin
1(t)+ Sspin

2(t)+ …+ Sspin
9(t)+ Sspin

10(t) ≤ Sspin
system(t)

S1(t) ≥ 33

S2(t) ≥ 22

S3(t) ≥ 22

S4(t) ≥ 22

 270

S5(t) ≥ 22

S6(t) ≥ 33

S7(t) ≥ 22

S8(t) ≥ 32

S9(t) ≥ 22

S10(t) ≥ 32

d) Generator Operating Reserves Requirement Constraints

S1(t) + Soper
1(t) ≤ 70

S2(t) + Soper
2(t) ≤ 100

S3(t) + Soper
3(t) ≤ 100

S4(t) + Soper
4(t) ≤ 60

S5(t) + Soper
5(t) ≤ 100

S6(t) + Soper
6(t) ≤ 60

S7(t) + Soper
7(t) ≤ 100

S8(t) + Soper
8(t) ≤ 100

S9(t) + Soper
9(t) ≤ 70

S10(t) + Soper
10(t) ≤ 100

Soper
1(t)+ Soper

2(t)+ Soper
3(t)+ ….+ Soper

9(t) + Soper
10(t) ≤ Soper

system(t)

 271

Test Case 3 – 50-Generator, 20-Load, 27-Bus Power System

a) Branch Capacity Limit Constraints

30

30

40

30

40

30

60

45

35

40

40

30

50

30

40

,79

,24

,110

,911

,910

,89

,78

,67

,57

,56

,45

,121

,321

,23

,12

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

BFlow

b) Generator Ramp Rate Constraints

S1(t-1) – S1(t) ≤ 40

S2(t-1) – S2(t) ≤ 50

S3(t-1) – S3(t) ≤ 60

S4(t-1) – S4(t) ≤ 40

S6(t-1) – S6(t) ≤ 60

S7(t-1) – S7(t) ≤ 40

 272

S8(t-1) – S8(t) ≤ 50

S9(t-1) – S9(t) ≤ 60

S10(t-1) – S10(t) ≤ 40

S11(t-1) – S11(t) ≤ 40

S12(t-1) – S12(t) ≤ 50

S13(t-1) – S13(t) ≤ 60

S14(t-1) – S14(t) ≤ 40

S15(t-1) – S15(t) ≤ 60

S16(t-1) – S18(t) ≤ 40

S17(t-1) – S17(t) ≤ 50

S18(t-1) – S18(t) ≤ 50

S19(t-1) – S19(t) ≤ 60

S20(t-1) – S20(t) ≤ 40

c) Economic Maximum and Minimum Operating Constraints

S1(t) + Sspin
1(t) ≤ 63

S2(t) + Sspin
2(t) ≤ 90

S3(t) + Sspin
3(t) ≤ 90

S4(t) + Sspin
4(t) ≤ 54

S5(t) + Sspin
5(t) ≤ 90

S6(t) + Sspin
6(t) ≤ 63

S7(t) + Sspin
7(t) ≤ 90

 273

S8(t) + Sspin
8(t) ≤ 80

S9(t) + Sspin
9(t) ≤ 64

S10(t) + Sspin
10(t) ≤ 34

S11(t) + Sspin
11(t) ≤ 63

S12(t) + Sspin
12(t) ≤ 90

S13(t) + Sspin
13(t) ≤ 90

S14(t) + Sspin
14(t) ≤ 54

S15(t) + Sspin
15(t) ≤ 90

S16(t) + Sspin
16(t) ≤ 63

S17(t) + Sspin
17(t) ≤ 90

S18(t) + Sspin
18(t) ≤ 80

S19(t) + Sspin
19(t) ≤ 64

S20(t) + Sspin
20(t) ≤ 34

Sspin
1(t)+ Sspin

2(t)+ …+ Sspin
49(t)+ Sspin

50(t) ≤ Sspin
system(t)

S1(t) ≥ 33

S2(t) ≥ 22

S3(t) ≥ 22

S4(t) ≥ 22

S5(t) ≥ 22

S6(t) ≥ 33

 274

S7(t) ≥ 22

S8(t) ≥ 32

S9(t) ≥ 22

S10(t) ≥ 32

d) Generator Operating Reserves Requirement Constraints

S1(t) + Soper
1(t) ≤ 70

S2(t) + Soper
2(t) ≤ 100

S3(t) + Soper
3(t) ≤ 100

S4(t) + Soper
4(t) ≤ 60

S5(t) + Soper
5(t) ≤ 100

S6(t) + Soper
6(t) ≤ 60

S7(t) + Soper
7(t) ≤ 100

S8(t) + Soper
8(t) ≤ 100

S9(t) + Soper
9(t) ≤ 70

S10(t) + Soper
10(t) ≤ 100

Soper
1(t)+ Soper

2(t)+ Soper
3(t)+ ….+ Soper

49(t) + Soper
50(t) ≤ Soper

system(t)

