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Abstract 

There is a trend in the control literature and in university control education research to 

develop inexpensive laboratory equipment for control based laboratories. But can using cheaper 

equipment obfuscate the concepts we are trying to demonstrate in the experiments?  

To investigate this, lab concepts were examined using an inexpensive platform developed 

at Kansas State University, Eeva, and compared to the existing lab equipment used in the 

introductory controls course, the MotorLab. While many lab concepts were successfully 

demonstrated on the cheaper hardware, they were obscured by higher order effects such as speed 

filters, back EMF effects, and encoder resolution. The effective operating range of the hardware 

also suffered from lower saturation limits and higher friction values, making the design of 

experiments more difficult.  

Care should be taken when designing inexpensive laboratory equipment to ensure that the 

lessons desired can still be demonstrated clearly to the students using the equipment.  
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Nomenclature 

C.G. – Center of Gravity 

Eeva – a two-wheeled inverted pendulum robot developed by Dr. Schinstock at Kansas State 

University to help teach a Mechatronics course. 

EMF – the electromotive force, a voltage created by a spinning motor that is proportional to its 

speed and opposes the supplied voltage.  

IR – Infrared  

Li-Po – Lithium Polymer  

MotorLab – lab equipment created by Dr. Schinstock and Dr. White to help teach an 

introductory controls course at K-State 

PI – Proportional Integral controller. 

PID – Proportional Integral Derivative controller.  

SWD – Serial Wire Debug, a standard interface for microcontrollers.  
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Chapter 1 - Introduction 

Laboratories have been shown to help with introductory control systems education ([2], 

[6], [7], & [9]]). Working with physical systems can help students better understand 

mathematical principles. Labs also allow time for instructors to reinforce important concepts and 

correct any mistakes in understanding on the students’ part. For control systems, it also shows 

important concepts such as system instability and bandwidth directly from the real system’s 

characteristics.  

However, enrollment and class sizes are increasing. This adds to the number of students 

in the laboratory, necessitating an increase in the lab equipment required to effectively teach 

courses.  

These considerations make setting up inexpensive, personal lab equipment an attractive 

alternative. It allows students to work on the lab with more freedom in location and time. 

Personal inexpensive equipment also allows laboratory size to scale easier. Additional equipment 

can be purchased and installed to account for growing class sizes. There is a trend in control 

systems literature towards developing such equipment for use in university education ([2], [6], 

[7], [9], [11] & [16]). 

An important question is whether using inexpensive equipment makes the control 

systems concepts demonstrated in labs harder for students to grasp due to some limiting aspects 

of the cheaper equipment. Frequently the lower cost equipment has lower saturation limits, poor 

sensor resolution, and more noise on all levels of the system. Nonlinear effects such as friction, 

gearbox backlash, etc. are magnified as well.  
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To investigate the possible issues of teaching controls laboratories with cheaper 

equipment, this thesis explores the use of such equipment in several different lab exercises that 

were developed using more expensive hardware. These labs are meant to demonstrate key 

concepts for an introductory course in control systems. Each of the labs is investigated on Eeva, 

a small robot developed for a Mechatronics course at Kansas State University. The results are 

compared to results using the MotorLab, the control systems lab hardware that has been in use at 

this university for over a decade. 
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Chapter 2 - Laboratory Hardware 

Two sets of hardware are discussed in this thesis. The MotorLab has been used as the 

laboratory equipment for the introductory controls course at Kansas State University for fifteen 

years with some modifications. It will be the standard to which results will be compared for all 

experiments conducted in this thesis.  

Eeva was developed as an inexpensive, student owned, teaching hardware for a 

Mechatronics course. Since it includes cheaper hardware, this thesis investigates how the sensors 

and hardware on Eeva perform when attempting experiments demonstrating introductory 

controls concepts. 

 MotorLab 

The latest version of the MotorLab consists of a brushless motor, a motor amplifier, 

power supply, and an ST Discovery microcontroller board as shown in Figure 2.1. The motor 

specifications as provided by the motor manufacturer are shown in the modelling chapter. All 

components were designed and specified to provide the cleanest, easiest to follow control 

systems lab results by having much larger bandwidths and operating limits than the students use 

in the labs. This has allowed the MotorLab system to reliably service students for many years. A 

cost estimate is difficult to make for the MotorLab since it was fabricated using the facilities at 

Kansas State University. However, the materials alone (not accounting for manufacturing, 

design, or labor) cost about $700 per unit. 
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Figure 2.1: Components of the MotorLab 

 Eeva: 

Eeva has two brushed motors with 30:1 gearboxes for increasing the torque supplied to 

the drive wheels. Power is supplied by a two cell Li-Po battery. All components (shown in 

Figure 2.2) were designed to be as inexpensive as possible while allowing a platform for 

Mechatronics students to program different scenarios involving several layers of controls on the 

motors. Since the introductory controls course is not a prerequisite for mechatronics, the course 

only covers simple tuning procedures for PID controllers and a very basic modelling problem for 

the IR detector array for a line following project. The hardware chosen was designed to perform 

the required functions adequately while being affordable for students to personally own the 

robot. Eeva has an estimated commercial cost of a little over $200, but the components on it 

could be made into a much cheaper device designed for controls experiments by removing un-
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necessary components. This thesis uses Eeva as an example of inexpensive hardware for control 

systems laboratory experiments, even though that was not the original purpose for this design. 

 

Figure 2.2: Components of Eeva 

 

  

STM32F4
microcontroller

Bluetooth

IR detector
array

expansion
header

geared motors
with encoders

3 axis gyros and
accelerometers

dual
h-bridge

motor
current
sensing
amplifiers

SWD port



6 

Chapter 3 - Modelling 

This chapter describes the measurement/determination of parameters for the dynamic 

models for the MotorLab and Eeva as well as the derivation of the dynamic models used. First 

the parameters for the MotorLab are given in Table 3.1. Then the parameters for Eeva are given 

in Table 3.2 with details on the determination for each value. Finally, the dynamic models used 

in the experiments conducted for this thesis are presented along with general concepts used. 

 MotorLab System Parameters: 

The important parameters for the dynamic model development are given in Table 3.1. 

The motor inertia and motor torque constant are provided by the manufacturer. This along with 

the inertia of the shaft collar provides the lumped inertia. The speed filter is implemented in 

computer code, and therefore known. The viscous friction coefficient is determined in the 

experiment described in Chapter 4. Finally, the spring is only used in the last lab covered in this 

thesis, that coefficient is found in the experiment described in Chapter 7. 

Table 3.1: System Parameters for the MotorLab 

 Value Description 

𝑘𝑡𝑚 0.05 N-m/A Motor Torque Constant 

𝐽𝑚 1.29e-5 kg-m2 Lumped Inertia 

𝑏𝑚 1e-5 N-m-s Viscous Friction Coefficient 

𝜔𝑓𝑚 300 rad/s Speed Filter Cutoff Frequency 

𝑘𝑠𝑚 0.22 N-m/rad Spring Constant (Found in Chapter 7) 

The parameters needed to develop dynamic models for the MotorLab form a smaller set 

than those required for Eeva (compare Table 3.1 to Table 3.2). This is true because the motor 

amplifier implements closed loop current control for the motor. The bandwidth of this closed-

loop system is high (on the order of 2400 rad/s), and much faster than any of the other dynamics 
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considered. Therefore, the input to the plant can be considered current (torque), eliminating the 

need to include components of the electrical system in the model. 

 Eeva System Parameters: 

Table 3.2: System Parameters for Eeva 

 Value Description 

𝑅𝑒 6.8 Ohms Motor Resistance 

𝐿𝑒 0.9 mH Motor Inductance 

𝑘𝑏𝑒 0.0025 V-s/rad Motor Back EMF Constant 

𝑘𝑡𝑒 0.0025 N-m/A Motor Torque Constant 

𝐽𝑒 3.23e-8 kg-m2 Lumped Inertia 

𝑏𝑒 2.6e-7 N-m-s Viscous Friction Coefficient 

𝜔𝑓𝑒 126 rad/s Speed Filter Cutoff Frequency 

𝑚𝑒 0.137 kg Total Eeva Mass without wheels 

𝑙𝑒 0.0315 m Distance from C.G. to Motor Shaft 

𝐽𝑏𝑜𝑎𝑟𝑑 3.3e-4 kg-m2 Board Inertia, Experimentally Found in Chapter 7 

 Eeva Motor Resistance: 

The motor resistance was measured directly from the motor leads using a multi-meter. 

The measurement was repeated at several motor positions to account for variation. An average 

value of 6.8 Ω was chosen as the resistance. 

 Eeva Motor Inductance: 

The inductance was calculated experimentally using a square wave of current while the 

wheels were held stationary (to eliminate back EMF effects). The output from the current 

measuring hardware on EEVA was captured on an oscilloscope (see Figure 3.1), showing the 

decay of current from an initial condition. The time constant of that decay is equal to the motor 

inductance divided by the motor resistance. Knowing the motor resistance and this time constant, 

we can calculate the motor inductance. 
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Figure 3.1: Oscilloscope Reading Used to Measure Eeva's Motor Inductance 

From the screenshot of the oscilloscope, the time constant is 132 µs. With that and the motor 

resistance given above the inductance is: 𝐿𝑒 = 𝑅𝑒 ∙ 𝜏 = (6.8 Ω) ∙ (132𝑒−6 sec) = 8.976𝑒−4 𝐻. 

 Motor Torque Constant / Back EMF Constant: 

These constants are equivalent values with different units, and it is easier to measure the 

back EMF constant. Therefore, the back EMF coefficient was measured. With two motors 

coupled together using a small plastic hub across both drive shafts, one was driven at constant 

speeds, and the other unconnected motor had the voltage across its leads measured. 

Measurements were made at several speeds and then the slope of the resultant line gave the back 

EMF, Kb, coefficient as shown in Figure 3.2. 
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Figure 3.2: Eeva Back EMF Constant Measurement 

𝐾𝑏𝑒 =  
(1.98 − 0.75)𝑉

(796.3 − 298.6)𝑟𝑎𝑑/𝑠
= 0.0025 

𝑉 ∙ 𝑠

𝑟𝑎𝑑
 

 Eeva Motor Inertia: 

To calculate the moment of inertia, the motor was disassembled to measure the diameter 

of the armature as well as its mass. The armature was assumed to be a solid cylinder, using Je =

1

2
mr2 to approximate the mass moment of inertia. Here m = 2 g and r = 4.08 mm. This gives a 

moment of inertia of 1.66464 e-8 kg-m2. The experiment described in Chapter 4 was used to 

obtain a total lumped inertia estimate of the motor and gearbox effects (not including the 

wheels), which is the number in Table 3.2. 

 Gear Ratio: 

The gear ratio was provided by the manufacturer as 29.86, this can be confirmed by 

counting the gear teeth. Although it is provided here for completeness, all lab results presented 

here are given at the motor shaft, bypassing the gearbox and wheel completely. 
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 Mass of Eeva: 

For most labs Eeva is supported with its wheels off the ground, meaning the mass is not 

needed. However, if it is supported by the wheels to model a hanging pendulum, the mass will be 

part of the dynamics. Since the wheels are supported, the mass of the robot without the wheels 

was measured on a lab scale, giving a mass of 137 grams. 

 Center of Gravity for Eeva: 

To estimate the location for the C.G. of Eeva, the robot was balanced on the point of pen 

along a line drawn on the center of the board, and then the distance between the balancing point 

and the center of the motor shaft was measured and found to be 31.5 mm.  

 MotorLab Model Development: 

Current control is used on the MotorLab, which simplifies the modeling significantly. 

The first three speed control labs can be modeled by summing torques, taking the Laplace 

transform, and solving for a transfer function as follows: 

𝐽𝑚𝜔̇(𝑡) = 𝑘𝑡𝑚𝑖(𝑡) − 𝑏𝑚𝜔(𝑡) 

𝐽𝑚𝑠𝜔(𝑠) = 𝑘𝑡𝑚𝑖(𝑠) − 𝑏𝑚𝜔(𝑠) 

𝜔(𝑠)

𝑖(𝑠)
=

𝑘𝑡𝑚

𝐽𝑚𝑠 + 𝑏𝑚
. (1) 

A speed filter is used on the MotorLab to measure speed. An analysis and discussion of the speed 

filters for both the MotorLab and Eeva is provided later in this chapter. The speed filter for the 

MotorLab is given below, although it isn’t a factor in most of the labs discussed, as will be 

shown in each lab’s respective section. 

𝐺𝑓𝑚(𝑠) =
𝜔𝑚(𝑠)

𝜔(𝑠)
=

𝜔𝑓𝑚
2

𝑠2 + 0.707𝜔𝑓𝑚𝑠 + 𝜔𝑓𝑚
2

(2) 
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An initial condition response is also investigated in the first lab. For this the initial 

condition is speed, then the motor amplifier is turned off, driving the motor torque to zero. A 

simple, time-domain solution for our linear modeled system can be arrived at as follows. First 

sum torques for our system: 

𝜏𝑚(𝑡) = 𝐽𝑚𝜔̇(𝑡) + 𝑏𝑚𝜔(𝑡). 

Then we set the input torque to zero and take the Laplace transform, making sure to account for 

initial conditions: 

0 = 𝐽𝑚𝑠𝜔(𝑠) − 𝐽𝑚𝜔0 + 𝑏𝑚𝜔(𝑠). 

Then we can collect terms and take the inverse Laplace transform to get a time domain solution: 

𝜔(𝑡) = ℒ {
𝐽𝑚𝜔0

𝐽𝑚𝑠+𝑏𝑚
} = 𝜔0 ∙ ℒ−1 {

1

𝑠+
𝑏𝑚
𝐽𝑚

}. 

The inverse Laplace gives us equation 3, a simple exponential decay model for our system 

response to the initial condition: 

𝜔(𝑡) = 𝜔0𝑒
−

𝑏𝑚
𝐽𝑚

∙𝑡
. (3) 

 For the resonance lab, the last lab discussed, a spring is included in the system. A picture of the 

model is given below in Figure 3.3. 

 

Figure 3.3: Electromechanical Model for Motor Position on the MotorLab 

The position control model can be modelled by summing torques, taking the Laplace transform, 

and solving for a transfer function as follows: 

𝐽𝜃̈(𝑡) = 𝑘𝑡𝑖(𝑡) − 𝑏𝜃̇(𝑡) − 𝑘𝑠𝜃(𝑡) 

𝐽𝑠2𝜃(𝑠) = 𝑘𝑡𝑖(𝑠) − 𝑏𝑠𝜃(𝑠) − 𝑘𝑠𝜃(𝑠) 
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𝜃(𝑠)

𝑖(𝑠)
=

𝑘𝑡𝑚

𝐽𝑚𝑠2 + 𝑏𝑚𝑠 + 𝑘𝑠𝑚
. (4) 

 

 Eeva Model Development: 

Several related dynamic models for Eeva are developed in this section, using the 

parameters presented in the previous section. These models are used in Chapters 4 through 7, 

which describe the experiments. Figure 3.4 is a schematic model of the motor speed model used 

for Eeva in the three experiments described in Chapters 4 through 6. 

 

Figure 3.4: Electromechanical Model for Motor Speed on Eeva 

The hardware used on Eeva did not allow for good current control, as a result the system 

must be modelled with Voltage as the input. This means that the back EMF effects need to be 

included in our model. The motor inductance is not needed because the electrical pole at −
𝑅𝑒

𝐿𝑒
  

has a magnitude of 7600 rad/s; which is well over ten times larger than the bandwidth of any of 

our controllers or any of the other poles in the model, including the speed filter. 

For the first three labs covered in this thesis the input is voltage and the output is the 

speed of the motor. The motor torque is 
𝑘𝑡𝑒

𝑅𝑒
(𝑉 − 𝑘𝑏𝑒𝜔) where V is the voltage supplied to the 

motor. This takes into account the back EMF effects. A transfer function can be derived using 

this motor torque and by writing the sum of torques, taking the Laplace transform, and solving 

for output over input to get equation (1) below.  

IkT te

eJ



bek

+

_

eR
eL

V

eb

I
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𝐽𝑒𝜔̇ =
𝑘𝑡𝑒

𝑅𝑒

(𝑉 − 𝑘𝑏𝑒𝜔) − 𝑏𝑒𝜔 

𝐽𝑒𝑠𝜔(𝑠) =
𝑘𝑡𝑒

𝑅𝑒
𝑉(𝑠) −

𝑘𝑡𝑒𝑘𝑏𝑒

𝑅𝑒
𝜔(𝑠) − 𝑏𝑒𝜔(𝑠) 

𝐺𝑚𝑒(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=

𝑘𝑡𝑒

𝑅𝑒𝐽𝑒𝑠 + 𝑘𝑏𝑒𝑘𝑡𝑒 + 𝑅𝑒𝑏𝑒

(5) 

A speed filter on Eeva is represented by the following transfer function.  

𝐺𝑓𝑒(𝑠) =
𝜔𝑚(𝑠)

𝜔(𝑠)
=

𝜔𝑓𝑒
2

𝑠2 + 1.414𝜔𝑓𝑒𝑠 + 𝜔𝑓𝑒
2

(6) 

It is the result of the method used to measure the speed of the motor using the encoder. A 

discrete time implementation of (6), which includes a derivative, is used to estimate the speed of 

the motor from the position measured by the encoder. This filter has the transfer function of: 

𝜔𝑚(𝑠)

𝜃(𝑠)
=

𝜔𝑓𝑒
2 𝑠

𝑠2 + 1.414𝜔𝑓𝑒 + 𝜔𝑓𝑒
2  

 

Figure 3.5 Eeva Pendulum Model 
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In the fourth lab discussed in this thesis we investigate an inverted pendulum setup for 

Eeva to find a resonant frequency as shown in Figure 3.5. Two motors are used to apply torque. 

The effect of gravity must be included in this model. It applies a torque opposing the motor 

torque equal to 𝑚𝑒𝑔𝑙𝑒𝑠𝑖𝑛𝜃. If the angle of the robot remains small, a small angle approximation 

can be used to replace 𝑠𝑖𝑛𝜃 with 𝜃. At an angle of 𝜋/4 this approximation has 11% error. With 

all this taken into account the sum of torques gives: 

𝐽𝑏𝑜𝑎𝑟𝑑𝜃̈(𝑡) =
2𝑘𝑡𝑒

𝑅𝑒
(𝑉(𝑡) − 𝑘𝑏𝑒𝜃̇(𝑡)) − 𝑚𝑒𝑔𝑙𝑒𝜃(𝑡) − 𝑏𝑏𝑜𝑎𝑟𝑑𝜃̇(𝑡). 

Taking the Laplace transform results in  

𝐽𝑏𝑜𝑎𝑟𝑑𝑠2𝜃(𝑠) =
2𝑘𝑡𝑒

𝑅𝑒
𝑉(𝑠) −

2𝑘𝑡𝑒𝑘𝑏𝑒

𝑅𝑒
𝑠𝜃(𝑠) − 𝑚𝑒𝑔𝑙𝑒𝜃(𝑠) − 𝑏𝑏𝑜𝑎𝑟𝑑𝑠𝜃(𝑠). 

Note the difference between 𝐽𝑏𝑜𝑎𝑟𝑑 (containing the lumped inertia of the motors, battery, 

components, and board) and 𝐽𝑒, which only contains the inertia of the motor. Gathering terms, 

solving for output over input, and putting the result in standard second order form gives the 

following transfer function. 

𝜃(𝑠)

𝑉(𝑠)
=

2𝑘𝑡𝑒

𝑅𝑒𝐽𝑏𝑜𝑎𝑟𝑑

𝑠2 + (
2𝑘𝑡𝑒𝑘𝑏𝑒

𝑅𝑒𝐽𝑏𝑜𝑎𝑟𝑑
+

𝑏𝑏𝑜𝑎𝑟𝑑

𝐽𝑏𝑜𝑎𝑟𝑑
) 𝑠 +

𝑚𝑒𝑔𝑙𝑒

𝐽𝑏𝑜𝑎𝑟𝑑

(7) 

 Speed Filters 

On both sets of hardware, speed is found by taking any change in encoder count and 

dividing it by the change in time, a crude differentiation of the position measurement. Because 

the encoder readings are quantized, this approximation of speed gives large spikes at each 

change in encoder reading. This noisy signal is filtered using a low pass filter with a tunable 

cutoff frequency. On the MotorLab this cutoff frequency was chosen high enough to give a clean 

signal but low enough that students could observe its effects when increasing controller gains to 
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drive the system harder. On Eeva the cutoff frequency was chosen at the highest point that 

allowed clear measurement of speed.  A graph showing the discrete implementation of a speed 

filter used on Eeva compared to a continuous model is given in Figure 3.6. This figure confirms 

that our continuous model approximates the discrete implementation used on Eeva, so we can 

vary the cutoff frequency in the continuous model to easily observe how increasing this cutoff 

frequency would affect the resulting speed measurements. 

 

Figure 3.6: Speed Filter and Continuous Model 

If the cutoff frequency is increased the speed filter dynamics will affect observed 

responses less in more of the labs we consider, but the resulting speed measurement will be 

noisier as well. In Figure 3.7 the cutoff frequencies are varied and the results are demonstrated. It 

is shown that the cutoff frequency could be increased a little for this case while still removing a 

lot of the noise, but large increases will not filter out the noise from the quantized encoders. The 

small increase in the cutoff frequency will not allow the speed filter dynamics to be ignored in 

the majority of the labs discussed in this thesis, since the dynamics of the speed filter are close to 
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the dynamics of motors until the speed filter cutoff frequency is increased by at least a factor of 

3, which prevents it from filtering out the noise from the quantized encoders. 

 

Figure 3.7: Speed Filter Performance with Varying Cutoff Frequencies 

 

 High Frequency Dynamics 

Throughout this thesis the concept of high frequency dynamics is used. This is the 

concept that there are always un-modeled dynamics in our system that may cause it to become 

unstable or behave in a non-predicted manner when pushing the system to high performance. In 

the introductory controls systems course at Kansas State University this concept is used as 

analog to a system’s bandwidth before the students are introduced to frequency response. It 

serves to illustrate some of the real-world reasons why controller gains cannot be increased 

limitlessly without leading to issues.  
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Chapter 4 - Experiment I – Friction Coefficient Estimate 

This experiment is taken directly from the ME 570, Control of Mechanical Systems I, 

course in the ME curriculum at KSU. In this lab, students validate the concept of using a transfer 

function model to capture the behavior of a physical system and to make connections between 

model parameters and physical characteristics of the real system. Using the MotorLab, this is 

accomplished with a simple transfer function. The lab takes place early in the semester, so 

students have not yet dealt with complicated models or advanced control systems topics.  

One of the core concepts of controls is that system behavior can often be predicted with 

simple models. Estimating a linear coefficient of friction demonstrates how a simple model can 

predict the response of more complicated systems while demonstrating how the model and real 

parameters interact. Students are also familiar with the nonlinear (static and viscous) nature of 

friction, making it a good introduction to modeling. 

 MotorLab: 

The open loop speed model for the MotorLab is given in Figure 4.1 with equations (1) 

and (2) from chapter 3. The speed filter is provided here for completeness, although it will be 

shown that it does not have a large effect on the system’s response.  

 

Figure 4.1: MotorLab Open Loop Speed Model 
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For the MotorLab, students first put the motor in open loop (current) control and take 

steady state speed values at different values of current. Then a plot of motor input torque 

(current) vs motor speed is created, allowing a friction coefficient to be estimated from a best-fit 

line, as shown in Figure 4.2, because the dc gain of the system from equation (1) is given by: 

𝐾𝑑𝑐𝑚 =
𝐾𝑡𝑚

𝑏𝑚
. 

 

Figure 4.2: MotorLab Friction Coefficient Estimate 

Once the students have estimated a coefficient for the linear model of friction, they use 

that to model an initial condition response. The motor current is set to 0.15 Amps and speed is 

allowed to settle to steady state; then the motor current is set to zero and data on the decay of 

speed is collected. Students compare the linear model for friction they created earlier in the lab 

with the actual response of the system, as shown in Figure 4.3. 



19 

 

Figure 4.3: MotorLab Initial Condition Response 

The response of the system shows the nonlinear effects of friction on the decay of the 

motor speed. A simple exponential decay solution to the linear model is graphed as well, 

showing that simple models can capture a lot of the response characteristics of the real system. 

Students observe that the greatest difference between their linear model and the actual response 

is at low speed, which makes intuitive sense since that is where the higher static friction 

coefficient starts to operate.  

 Eeva: 

The open loop model for speed on Eeva is given in Figure 4.4. Input for this model is the 

voltage command and output is the measured speed. The equations for the speed filter and speed 

response model from Chapter 3 are also provided in this figure for clarity. 
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Figure 4.4: Eeva Open Loop Speed Model 

On Eeva, the voltage input complicates this lab because students must consider the 

effects of back EMF. The constant they end up measuring includes those effects, rather than 

being just a measurement of the friction coefficient. This is seen in the dc gain of the system in 

equation (5), which is given by: 

𝐾𝑑𝑐𝑒 =
𝑘𝑡𝑒

𝑘𝑏𝑒𝑘𝑡𝑒 + 𝑅𝑒𝑏𝑒
 

 

Figure 4.5: Eeva Friction Coefficient Estimate 

Students can still calculate the friction coefficient, but it must be solved for using the dc 

gain equation given above and the values for back EMF, torque constant, and motor resistance as 

well. Once this value is calculated, the students can look at the initial condition response just as 
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done for the MotorLab. An initial voltage is set on the motor, steady state speed is reached, and 

then the motor voltage is set to zero and the speed decay is observed as shown in Figure 4.6.  

 

Figure 4.6: Eeva Initial Condition Response 

As you can see, when the decay starts the simple model does not match the response as 

well as the MotorLab. This is a result of the speed filter used to estimate speed from a low-

resolution encoder. When the speed filter is included in the model there is a good match between 

the experimental data and the model. However, this injects a second order system into the 

originally simple model, complicating the lessons being taught to the students. Although the data 

from the model and actual system, in Figure 4.6, do not match at low speed, this is due to the 

nonlinear friction not a higher order model. The low cutoff frequency for the speed filter on Eeva 

in required because of the low resolution encoder, which can be seen in the unfiltered data. The 

unfiltered, 
∆𝜃

∆𝑡
, signal representing a crude speed measurement appears to match the simple (not 

including the speed filter) model solution as shown in Figure 4.7.  
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Figure 4.7: Eeva Unfiltered Initial Condition Response 

 Results: 

It is possible to develop a model for the speed response on Eeva and use it to estimate the 

friction coefficient. However, the process is complicated by the back EMF effects and the need 

for a low-frequency filter on the speed measurement. These complications are likely to confuse 

the students and obscure the lessons from the lab. This is especially true early in the semester 

when the students are struggling with basic modelling concepts. It is difficult, if not impossible, 

to design a lab as simple as the one used for the MotorLab discussed at the beginning of this 

Chapter.  
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Chapter 5 - Experiment II – Second Order Responses and the 

Impact of Gain on Pole Locations 

This lab was originally designed to use a proportional position controller for the 

MotorLab to demonstrate second order responses and the impact of changing gain. Part of the 

handout for this original lab, showing a position controller, is given in Figure 5.1. Students 

would observe that increasing the proportional gain would speed up the response and increase 

disturbance rejection, but the oscillations would grow. They would then be able to look at the 

closed loop model and observe that changing the proportional gain was increasing the complex 

component of the poles, which predicts the increased oscillations in the systems response. The 

oscillation frequency and decay rate of the oscillations match those predicted from the model 

very well. 

 

Figure 5.1: Original Second Order Lab Model 
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However, when this lab was attempted on Eeva, the static friction made it extremely 

difficult to demonstrate a second order response with the ability to measure oscillation 

frequency. At lower step commands the higher friction on the brushed motors damped any 

oscillations immediately, and at higher step commands the voltage saturated, changing the 

response.  

In order to combat this, another second order system is considered. We went to pure 

integral control on speed to attempt to find something that would show standard second order 

oscillations and enough range on the input to allow several gains to be used without saturation. 

This solution was not perfect, the pure integral control has to build up to overcome static friction, 

leading to a time delay and an amplitude difference between the model and the real system. 

 MotorLab: 

For the MotorLab the system is the same simple model from the first lab, only we are 

now controlling speed with an integral controller. The closed loop model with the transfer 

functions for the integral controller and plant model from equation (1) in chapter 3 is given in 

Figure 5.2.  

 

Figure 5.2: MotorLab Closed Loop Model 

First students look at two different gains in the MotorLab for integral control on speed. 

The response from a lower gain is shown in Figure 5.3 along with the response predicted by the 

model. Even with the integral build up to overcome static friction at start of the response, the 

model still predicts the low gain response very accurately as shown in Figure 5.3. The 
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experimental model also shows easy to measure oscillations that students can relate to the model 

parameters. This response also allows a clear picture of how integral control builds up over time.  

 

Figure 5.3: MotorLab Integral Control Lower Gain Speed Response 

In the higher gain system on the MotorLab the integral build up is less obvious, although 

the phase and amplitude differences appear with increasing intensity as time goes on as shown in 

Figure 5.4. It is also clear that increasing the gain leads to more oscillations, which is predicted 

by the simple model the students work with. Of note also is that in both MotorLab systems, the 

dynamics of the speed filter do not affect the observed response, simplifying the model that the 

students need to work with to learn the concepts of the lab. 
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Figure 5.4: MotorLab Integral Control Higher Gain Speed Response 

 Eeva: 

The closed loop model for speed control on Eeva is given in Figure 5.5.  Pure integral 

control is used and the transfer functions for the plant model and speed filter from chapter 3 

(Equations (5) and (6) respectively) are given again here for clarity. 

 

Figure 5.5: Eeva Closed Loop Speed Model 

When working with Eeva the effects of the inexpensive hardware (noise, encoder 

resolution, etc.) are clear. The oscillations from the gains are evident even through the encoder 

noise. However, it is clear that including the speed filter is necessary to capture full effects we 

are observing. The lower gain in Figure 5.6 has a definite larger static friction than the 

MotorLab, making the relationship between the model and the experimental data harder for 

students to see. 
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Figure 5.6: Eeva Integral Control Lower Gain Speed Response 

For the higher gain response shown in Figure 5.7 the effect of the speed filter is even 

more obvious. The model without the speed filter greatly underestimates the overshoot and 

oscillations. For any reasonable match between experimental and theory the full fourth order 

model must be considered. 
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Figure 5.7: Eeva Integral Control Higher Gain Speed Response 

 Results: 

The speed control lab on Eeva demonstrates the relationship between changing gain and 

system response. Students can also relate the real system performance to the pole locations. 

However, in order to get good agreement between the real system response to the model students 

have to include the speed filter in our model, making the model fourth order instead of second 

order. Integral build up to overcome static friction also causes a delay and amplitude difference 

that further distorts the relationship between the model and real response. 
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Chapter 6 - Experiment III – PI Controller and System Type 

For this lab the goal is to demonstrate the importance of system type and controller 

choice on our system’s response. The motor speed system has no free integrators, meaning it has 

a system type of zero. This means that there should be steady state error in the response to a step 

input. Proportional control can help speed up the response, but it will not increase the system 

type, meaning the steady state error will not go to zero. PI control adds a free integrator, 

increasing the system type to one, which will lead to zero steady state error. As shown in Table 

6.1 we can expand the concept of system type to several other input types, which may more 

closely approximate the expected real world input.  

Table 6.1: Steady State Error 

 System Type = 0 System Type = 1 System Type = 2 

Step Input Finite 0 0 

Ramp Input Infinite Finite 0 

Parabolic Input Infinite Infinite Finite 

 MotorLab: 

The closed loop model for speed control on the MotorLab is given in Figure 6.1. It is the 

same system used in chapter 5, only the controller is now either proportional or proportional-

integral, meaning 𝐺𝑐 = 𝐾𝑝 or 𝐺𝑐 =
𝐾𝑝(𝑠+𝑧)

𝑠
 with 𝑧 = 𝐾𝑖/𝐾𝑝. The transfer functions for the 

MotorLab speed model and speed filter shown in chapter 3 are presented again here for clarity. 

 

Figure 6.1: MotorLab Closed Loop Speed Model 

Students take three sets of data, two pure proportional controllers and one PI controller. 

The gains for this lab are high enough where the speed filter has to be considered in the 
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dynamics of the model to accurately represent the real system behavior. However, at this point in 

the semester the students have progressed significantly compared to their knowledge during the 

previous two labs discussed. Therefore, it is appropriate to introduce the higher order models and 

to begin to consider the effects of the higher frequency dynamics. Both proportional gains have a 

small amount of steady state error, and increasing the gain only increases the oscillations. The 

higher proportional gain plot is given in Figure 6.2. Notice that the speed filter dynamics are 

required to model the system behavior accurately for the MotorLab for this gain. 

 

Figure 6.2: MotorLab Proportional Speed Controller 

For the final step in the lab the students increase the system type by using PI control, 

which adds a free integrator. This improves the steady state tracking without driving the system 

close to instability. With the addition of integral control we also can use a lower proportional 

gain which can decrease the oscillations while still giving a similar settling time. The plot for the 

PI controller in the MotorLab is given in Figure 6.3.  
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Figure 6.3: MotorLab Proportional Integral Speed Controller 

 Eeva: 

The closed loop model for Eeva is given in Figure 6.4. It is the same system described in 

Chapter 5, only now both proportional and proportional-integral speed control are used. The 

transfer functions for the speed model and speed filter from chapter 3 are given here again for 

clarity. 

 

Figure 6.4: Eeva Closed Loop Speed Model 

On Eeva we start the investigation with a pure proportional controller on speed. The 

speed input was set to about 500 rad/s to avoid any saturation issues after trying a few higher 

commands that did saturate. The goal is to see an observable steady state error and fair 

agreement between the model and the experimental data. For this lab it is not a problem for the 

students’ comprehension to include the speed filter because they are learning about the effects of 
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the higher order dynamics. The response with a high proportional gain is shown in Figure 6.5. It 

demonstrates the steady state error we wanted to see as well as fairly good agreement between 

the model and the data. The steady state error is actually much more visible on Eeva than it was 

on the MotorLab, making the benefits of using integral control more obvious to students. 

 

Figure 6.5: Eeva Proportional Speed Controller 

Next is the PI controller where Eeva’s response is shown in Figure 6.6. The steady state 

error clearly goes to zero and there is even better agreement between the model and the 

experimental data than there was with the pure proportional controller. There are also less 

oscillations, although the settling time is about the same. This plot should clearly demonstrate the 

value of increased system type and the effect of PI control on tracking to the students. 
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Figure 6.6: Eeva Proportional Integral Speed Controller 

 Results: 

For the system type lab Eeva seems to demonstrate the desired concepts very comparably 

to the MotorLab. The steady state error on Eeva is greater than it is on the MotorLab, making the 

benefits of using integral control more obvious to the students. While the encoder resolution and 

inexpensive sensors do make more noise, the scale of this lab prevents that from obfuscating the 

desired concepts.  

  

0 0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

500

600

700

Time (sec)

M
o
to

r 
S

p
e
e
d
 (

ra
d
/s

)

Speed Controller Step Response, Kp = 0.008, Ki = 0.24 (V*sec/rad)

 

 

Command

Model without Speed Filter

Model with Speed Filter

Experimental



34 

Chapter 7 - Experiment IV – Frequency Response and System 

Parameter Estimations 

The goal of this lab is to introduce frequency response. A simple dynamic system with 

resonance is useful to introduce students to frequency response. This lab was designed to 

investigate resonance in frequency response as well as the process for using frequency response 

and a model to estimate system parameters. In the introductory control systems course at K-State 

this lab takes place as students are being introduced to frequency response. At this point in the 

semester they know how to calculate magnitude and phase from a transfer function and are 

learning to sketch asymptotic Bode plots. 

 MotorLab: 

For the MotorLab a dynamic system is used where the motor is attached to a spring, as 

shown in Figure 7.1 which is taken from the handout for the laboratory. The transfer function 

given in this figure is the same as equation (4), with minor differences in the symbols used. One 

side of the spring is tied down, meaning the input torque of the motor will balance against the 

torsion spring’s torque in steady state.   
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Figure 7.1: MotorLab Resonance Frequency Lab 

The lab begins by searching for the resonant frequency of the system. Sine waves are 

commanded for the current while the sinusoid response of the motor angle is recorded. To find 

the resonant frequency, the students search for a response where the position lags the current by 

90°. This is calculated using the zero crossing of the command, 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔, and the corresponding 

peak and valley of the response, 𝑡𝑝𝑒𝑎𝑘 and 𝑡𝑣𝑎𝑙𝑙𝑒𝑦 respectively. The commanded frequency and 

magnitude, 𝑓𝑐  & 𝑚𝑎𝑔𝑐, are also known, allowing calculation of the phase lag and magnitude 

ratio as shown in Figure 7.2. First the time lag is calculated from the time data from the cursors: 

𝑡𝑙𝑎𝑔 =
𝑎𝑏𝑠(𝑡𝑝𝑒𝑎𝑘−𝑡𝑣𝑎𝑙𝑙𝑒𝑦)

2
− 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔. 

Then the phase lag can be calculated from the time lag and the input frequency: 

𝑝ℎ𝑎𝑠𝑒 𝑙𝑎𝑔 = 360 ∙ 𝑡𝑙𝑎𝑔 ∙ 𝑓𝑐. 

The magnitude ratio is calculated from amplitude data of the cursors and the input magnitude: 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

2
∙

1

𝑚𝑎𝑔𝑐
. 
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All of these calculations are performed in a MATLAB function called ‘calc_mag_phase’ 

provided for students to use. 

 

Figure 7.2: Finding Resonance Frequency 

When finding the resonance frequency (𝜔𝑛) of the system students are instructed to use a 

small current amplitude to avoid excessive displacements of the spring that could lead to cyclic 

fatigue failure. It is necessary to increase the amplitude of the command at higher frequencies to 

achieve enough displacement to measure accurately and consistently. A table showing a typical 

data set on the MotorLab is given in Table 7.1 while a subset of figures with cursors for that data 

set is provided in Figure 7.3. These are provided to compare the consistency and reliability of 

data collection with a similar process for Eeva given later on in this chapter. 

Table 7.1: MotorLab Resonance Frequency Test Data 

Freq. (Hz) 𝜔𝑛 𝜔𝑛/10 0.75 ∙ 𝜔𝑛 1.25 ∙ 𝜔𝑛 2 ∙ 𝜔𝑛 

Input Amp. (Amp) 0.25 1 1 1 2 

Freq. Value (Hz) 20.98 2.1 15.74 26.23 41.96 

Mag. Ratio (deg/Amp) 317.25 12.29 30.26 27.90 4.95 

Mag. Ratio (dB) 50.03 21.79 29.61 28.91 13.89 

Phase Shift (deg) -93.53 -3.68 -9.53 -174.69 -181.39 

2.68 2.685 2.69 2.695 2.7 2.705 2.71 2.715 2.72 2.725 2.73
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Use mlolplots() to plot the data.

Make three data cursors: one for a zero crossing of

the current command, and two the peak and valley of the

corresponding crossing of the output.  Right click on

one of the cursors and choose “Export Cursor Data to

Workspace.”  Then run, for example,
calc_mag_phase(cursors,26,2).  

Here the cursor data was saved to a variable named

cursors, the input frequency was 26 Hz, and the input 

amplitude was 2 Amp.  Also, in this example the phase

lag was about 180 degrees.
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Figure 7.3: MotorLab Data for A: 𝝎𝒏, B: 𝝎𝒏/𝟏𝟎, C: 𝟎. 𝟕𝟓 ∙ 𝝎𝒏, & D: 𝟏. 𝟐𝟓 ∙ 𝝎𝒏  

Once students have collected the data, they can use that data to improve their parameter 

estimates using the model transfer function given in equation (6) and relating it to the standard 

second order form for transfer functions given below. 

𝑘𝑑𝑐𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

The resonant frequency is 𝜔𝑛, 𝑘𝑑𝑐 is the magnitude ratio at one-tenth of the resonant frequency, 

and 𝜁 is found from dividing the dc gain by one half of the magnitude ratio at the resonant 

frequency. Once these values are known, students can estimate the system parameters using the 
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following relationships between the standard second order form and the transfer function from 

equation (6). 

𝑘𝑠(𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) = 𝐽𝜔𝑛
2 

𝑏(𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) = 2𝜁𝜔𝑛𝐽 

𝑘𝑡(𝑚𝑜𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) = 𝑘𝑑𝑐𝐽𝜔𝑛
2𝑘𝑑𝑟 

 With the new estimates for system parameters, students can investigate how well their 

new model matches the data taken. Not surprisingly, the model fits nicely since the coefficients 

have been calculated to fit the data. The initial model with estimates for the parameters is 

compared to the experimental data and the improved model in Figure 7.4. 

 

Figure 7.4: MotorLab Final Bode Plots 
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 Eeva: 

On Eeva there are no springs, so Eeva is configured as a hanging pendulum to produce a 

simple system with resonance. The model is more complex than the simple one for the 

MotorLab, but it is still second order. This model is shown in Figure 7.5 with the transfer 

functions from chapter 3 given for clarity. 

 

Figure 7.5: Eeva Open Loop Position Model 

 A set of vises is used to secure the wheels of Eeva to allow it to hang and swing freely 

with about 60 degrees of freedom before hitting the desk. In Figure 7.6 there is a picture of the 

setup with Eeva in place.  

 

Figure 7.6: Eeva Inverted Pendulum Setup 
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There are a number of possible complications with this setup that could impact the 

agreement between the real data and the model. First, there is encoder quantization that only 

provides one degree of resolution for the tilt of the robot. Second, if displacements are increased 

to combat the low resolution encoders, the small angle approximation in the model will start to 

give larger errors. Third, the motors are attached to the board with screws on the outside, which 

clamps the motor down against the board. This causes a slight angle relative to the board, so as 

the board rotates the wheels bow in and out, causing some nonlinear resistance to the board 

rotating. Finally, there is the un-modeled nonlinear dynamics of the gearboxes. 

This way of producing a second order underdamped system with resonance needs to 

consistently provide a useful lab to help demonstrate the control systems concepts we are looking 

to show students. Therefore, several sets of data were taken to investigate whether the results 

were consistent. In each case the input magnitudes were varied to see if the observed frequencies 

remained consistent. The average values used are provided in Table 7.2, while magnitude and 

phase plots for all four sets of data and the average are provided in Figure 7.7 and Figure 7.8 

respectively. 

Table 7.2: Eeva Average Resonance Frequency Test Data 

Freq. (Hz) 𝜔𝑛 𝜔𝑛/10 0.75 ∙ 𝜔𝑛 1.25 ∙ 𝜔𝑛 2 ∙ 𝜔𝑛 

Input Amp. (V) 1.288 2.750 1.213 1.288 2.750 

Freq. Value (Hz) 1.688 0.169 1.266 2.109 3.375 

Mag. Ratio (deg/V) 27.723 10.617 29.023 17.133 4.673 

Mag. Ratio (dB) 28.565 20.403 29.055 24.433 13.260 

Phase Shift (deg) -88.285 -31.035 -61.028 -120.003 -150.943 
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Figure 7.7: Eeva Resonance Frequency Magnitude Test Data 

 

Figure 7.8: Eeva Resonance Frequency Phase Test Data 
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The magnitude data for Eeva has some fluctuations, but since the magnitudes were 

widely varied among the tests, some variation was expected. In the phase plot there appears to be 

good consistency among the results. Data collection was performed exactly as it was done on the 

MotorLab, with the same calculations to find the phase lag and magnitude ratio. In Figure 7.9 a 

sample of the plots that provided the values for these calculations are provided. It is worth noting 

that this process was much more difficult and unclear than it was on the MotorLab. 

 

Figure 7.9: Eeva Data for A: 𝝎𝒏, B: 𝝎𝒏/𝟏𝟎, C: 𝟎. 𝟕𝟓 ∙ 𝝎𝒏, & D: 𝟏. 𝟐𝟓 ∙ 𝝎𝒏  
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Eeva has an encoder resolution of 12 counts per motor revolution. With the 30:1 gear 

ratio, that means the robot’s tilt angle in the pendulum setup has a resolution of only one degree. 

This accounts for some of the jagged edges and plateaus observed in the data collected. At one 

tenth of the measured resonant frequency the observed motion of the robot was abrupt and 

staggered, while at higher frequencies it was observed to move in a smoother, more sinusoid 

fashion as expected. While the lab is continued just as with the MotorLab, it is clear that there 

may be issues with the dc gain calculated from one-tenth of the resonant frequency due to the 

jerky motions and unclear data from the graph. 

From comparing the model given in equation (7) to the standard second order form for a 

transfer function the following estimates for system parameters can be made. 

𝐽𝑏𝑜𝑎𝑟𝑑(𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑏𝑜𝑎𝑟𝑑) =
𝑚𝑒𝑔𝑙𝑒

𝜔𝑛
2

 

𝑏𝑏𝑜𝑎𝑟𝑑(𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) = 2𝜁𝜔𝑛𝐽𝑏𝑜𝑎𝑟𝑑 −
2𝑘𝑡𝑒𝑘𝑏𝑒

𝑅𝑒
 

 With these new estimates a comparison between the data and the model can be made. 

This experiment was used to measure the moment of inertia for the board as well as the 

coefficient of friction for the board’s movement. Therefore, no initial estimated model is given 

for comparison with the fitted model’s results in Figure 7.10. 
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Figure 7.10: Eeva Final Bode Plots 

The final bode plot shows good agreement between the model and data, especially given 

the uncertainty concerning the dc gain measured from the rough plot at one-tenth of the resonant 

frequency. 

 Results: 

While a resonant frequency response was successfully generated on Eeva in the 

pendulum setup, the encoder resolution and unexpected jerky behavior at low frequencies clearly 

obfuscate the process for students. The model used, while only second order, has many more 

physical coefficients than the model of the MotorLab, complicating the calculations to 

demonstrate the control systems concepts in this lab.   
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Chapter 8 - Conclusions 

Four labs were investigated on the inexpensive hardware on Eeva and compared with the 

results on the MotorLab used for the past fifteen years as the hardware for the introductory 

control systems course at Kansas State University. Voltage control led to more complicated 

models since back EMF effects had to be included. Additionally, the low resolution encoders 

also complicated the models since the dynamics of the speed filter had to modeled as well when 

doing speed control as shown in Chapters 4 and 5.  

In the system type lab discussed in Chapter 6 the inexpensive hardware on Eeva 

performed extremely well compared to the MotorLab, since the greater friction and losses in the 

system made the benefits of PI control more obvious. The imperfect dynamics on Eeva also 

allow for opportunities to discuss real world effects such as quantization, saturation, and sensor 

noise.  

In the resonant frequency lab discussed in Chapter 7 Eeva’s hardware did not compare 

favorably to the MotorLab. Inconsistencies in data collection and a more complicated model 

served to obfuscate the introduction to frequency response.  

When designing inexpensive hardware to teach a control systems course it is important to 

balance equipment cost with the performance necessary to demonstrate the desired concepts 

clearly and consistently to students. Better hardware also allows higher operating limits, making 

the laboratory design much easier on the instructor. 
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Appendix A - Original MotorLab Assignments 

 Experiment 1: 

In this lab you are to experimentally determine an 

approximation for the viscous friction coefficient for the 

motor of the Motorlab. Then you are to use this 

coefficient to predict the response of the dynamic 

system to an initial condition (initial velocity) and 

compare this to the actual I.C. response. If the spring 

coupling is removed from the Motorlab apparatus, then 

we are left with the dynamic system described by the 

equations and schematic model to the right. This is the 

dynamic system studied in this laboratory. Also in this 

lab you will be continue to learn to use MATLAB. 

 

ONE REPORT is due from each group, but you all are 

responsible for understanding what is in the report and how it was generated. 

 

You are to set the “Controller Mode” in the motorlab GUI to “Open Loop” to acquire 

experimental data for this lab.  This program does not implement closed-loop control of the 

Motorlab mechanical hardware.  It allows you to manipulate the input to the mechanical system, 

the motor current (torque), and acquire data. 

 

You are also to complete the MATLAB m-file that will generate the plots required for this lab.  

You are given most of the m-file code on the following page.  You may copy this code out of 

this document and past it into an m-file to modify it.  You should use the help in MATLAB and 

your instructor to continue to learn the language. 

 

Estimating the Viscous Friction Coefficient 

Looking at the differential equation in the model it can be seen that if a constant torque (current) 

is input then in steady state, where 𝜔̇(𝑡) = 0, 𝑇(𝑡) = 𝑏𝜔(𝑡).  Therefore, we should be able to 

estimate the viscous friction coefficient by obtaining steady state velocity and current data. 

  

Change the motor current command using the jog buttons then save the data to the workspace 

after sufficient time for the buffer to fill.  Use the following two commands in the command 

window to get the average current and speed: 
mean(data(:,8)) 

mean(data(:,5)) 

 

Fill in the table below.  In this lab you will probably discover that friction is often a hard thing to 

model and that the linear, viscous friction, model is not completely accurate in some cases.  We 

are attempting to find an "engineering estimate" that might be used in closed loop control where 

completely accurate models are not necessary. 

T 
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Figure A.1: Lab 1 System 
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Table A.1: Speed vs Current Data 

Current Command (A) -0.14 -0.12 -0.10 -0.08 -0.06 -0.03 0 

Avg. Current (A)        

Avg. Speed (rpm)        

Current Command (A) 0.03 0.06 0.08 0.10 0.12 0.14 -- 

Avg. Current (A)        

Avg. Speed (rpm)        

Using the data from the table above obtain a plot of torque vs. angular velocity.  On this same 

plot, draw the “best fit” line through the data by playing with the slope of the line described by 

𝑇 = 𝑏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝜔.  Generate this plot by completing the top of the m-file provided and running it 

with successive guesses at 𝑏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 

 

Comparing Theoretical and Experimental IC Responses 

Now that you have an estimate of 𝑏 YOU ARE TO USE IT TO SOLVE THE DESCRIBING 

DIFFERENTIAL EQUATION given that 𝑇(𝑡) = 0 and given that the initial condition (IC) is 

𝜔(𝑡 = 0) = 𝜔0.  Do this by hand, paying close attention to units.  You are also to obtain data for 

the IC response from the actual system, and then compare this with the theoretical responses on 

the same plot.  To obtain the response to an IC use a current of 0.15 A to generate an initial 

velocity.  Using a sample frequency of 500 Hz do the following: 

 

1. Jog the current to the desired level, or type it into the command window, and allow the 

velocity to settle, and wait at least four seconds for the data buffer to fill. 

2. Hit the “Turn Off Motor Amp” button to turn off the current – count to 3 seconds – then 

immediately hit the “Save Data Buffer to Workspace” button.  This should give data with 

about one second of initial velocity and 3 seconds of IC response. 

3. In MATLAB and view the data with “mlolplots()”. In figure (2) of MATLAB you should 

see the IC response.  Zoom in and use the cursor to find your actual initial velocity and a 

time at which the torque was set to zero. 

4. Complete the bottom part of the m-file provided so that it generates the experimental 

response and the theoretical response on the same graph. 

 

Things to Turn In 

• You should have two different plots: 1) torque vs. angular velocity, 2) IC response  

• You should have code for the m-file completed. 

• Hand development of the solution to the differential equation with the I.C. 

• Fill in the blanks below.  (This must be turned into your instructor before they leave the 

lab or other arrangements made with them.  Attach another copy, which may be 

different/corrected, to your report). 
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Fill In The Blanks: All answers should have units where appropriate.  This is your chance to 

learn.  So think about your answers, find as many connections as you can, and try to extrapolate.  

You should copy this out of the given word file and fill in the blanks with BOLD face type 

and underlined. 
 

Lab #2 QUESTIONS   Names 

In the first plot we can see the relationship between motor speed and the friction torque.  With a 

constant motor current, the motor ?????? is constant, and the speed settles to a fairly constant 

value where the input torque balances with the ?????? torque.   Our typical model of friction for 

control design is ??????, with the friction torque being proportional to velocity.  However, the 

data points in the plot show that the actual friction has a ?????? component along with the linear 

component, resulting in a zero velocity with small values of constant torque.  Our estimate of the 

viscous (linear) coefficient of friction roughly capturing both of these effects is ??????(units). 

In the second plot we see the actual initial condition response along with one from the model, 

which was found from the solution of the ?????? equation with an initial condition.  The time 

constant the linear model can be found with the mass moment of inertia and our estimate of the 

friction coefficient.  It has a numerical value of ??????(units).   At one time constant the linear is 

model is at exactly ??????(rpm) (ignoring roundoff), which is 37% of the initial value.  The 

actual data from system is at a value of ??????(rpm) at the time constant.  The major difference 

between the linear model and the actual system is at ?????? speed where the model significantly 

underestimates the friction torque.  It can be seen that as the motor slows down the velocity 

decay is much faster than predicted by the ??????.  
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Starting m-file code: 

% lab 2 starting file 

i=[-0.14 -0.12 -0.10 -0.08 -0.06 -0.03 0 0.03 0.06 0.08 0.10 0.12 0.14]; % YOU SHOULD CHANGE THIS 

                                                                         % TO THE AVERAGE VALUES 

rpm=[????]  %vector of velocity data 

  

kt = ????; 

T=kt*i;          % convert current data to torque data 

w=(????)*rpm      % convert rpm to rad/s 

  

west=(2*pi/60)*[-3500 3500]; 

best = ????;     % play with this to get the straight line to approximate the data 

Test=best*west; 

  

plot(w,T,west,Test); 

ylabel('Friction Torque (????)'); 

xlabel('Angular Velocity (rad/s)'); 

title('Input Torque vs. Angular Velocity with Estimated Straight Line Fit'); 

  

% icresponse part of the file requires "data" to be present in the workspace 

% uncomment the lines below to complete the ic response plot 

  

% dataTime=data(:,1);  %extract the first column of the data matrix 

% dataRPM=data(:,5); 

%  

% to=????;  %time at which torque was shut off in original data 

% dataTime=dataTime-to;  %shift the time vector of the data to zero at IC 

%  

% J=1.29e-5; 

% tau=J/best;  %using your units for J and best is tau in seconds? check it 

% Wo=????;  %Initial velocity (rpm) 

%  

% theoryTime=0:0.01:3;   %WHAT DOES THIS DO? TRY IT IN THE COMMAND WINDOW. ALSO TYPE HELP COLON 

% theoryRPM=Wo*exp(-theoryTime/tau);   

%  

% figure(2); 

% plot(dataTime,????,????,theoryRPM); 

% ylabel('Angular Velocty (????)'); 

% xlabel('Time (sec)'); 

% title('Actual and Theoretical Response to and IC of ????? rpm'); 
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 Experiment 2: 

In this lab you are to 

experiment with the 

position control system of 

the “Motorlab” apparatus.  

Also, you are to use a 

model of the closed-loop 

position control system to 

predict the response.  You 

will compare the theoretical 

step response with the 

actual response obtained 

experimentally from the 

Motorlab.  You will 

compare the responses for 

three different proportional 

controller gains.   You 

should also make 

connections between pole 

locations and characteristics 

of the response such as the 

frequency of oscillation and the decay rate of the oscillations.  

 

Work To Be Done Prior To Lab: 

a) Assuming the transfer function of the closed loop current control system, 𝑇𝑖(𝑠), is one 

obtain a symbolic representation of the CLTF 𝜃(𝑠)/𝜃𝑐(𝑠).   

b) From a) write an equation for the closed-loop poles of the system. 

c) From b) determine an equation for 𝐾𝑝 where the response of the system becomes 

oscillatory (i.e. where the poles become complex rather than real). 

d) Plug in the numbers and determine the value of 𝐾𝑝 for part c).  

e) Plug the numbers and the following three gains into your equation for part b) to find the 

oscillation frequency, and time constant for the decay rate of the oscillations, for each 

gain. 𝐾𝑝 = 0.01, 0.001, 0.0001 (𝑢𝑛𝑖𝑡𝑠? ) 

 

Obtaining Data From The MotorLab: 

In this lab you are using a position control system.  Therefore, you should run the Motorlab 

control program in position control mode.  For this part of the lab you need to collect 

experimental data for the step response of the closed-loop system for the three different 

proportional gains given above.  You will have to change the gains and you will have to play 

with the sample frequency and wave frequency to obtain appropriate data that shows the entire 

step response.  Use the following wave magnitudes for the responses and save the data into the 
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matrix name given.  Hint: you should have at least 3 seconds of data on the positive portion of 

the square wave. 

 

PAY ATTENTION TO THE ORDER! 

 

Table A.2: Lab 2 Data Collection Instructions 

Gain, 

𝐾𝑝 

(units?) 

Magnitude of Square 

Wave (degrees) 

Name MATLAB workspace 

matrix for data. 

0.01 200 data3 

0.001 1000 data2 

0.0001 10000 data1 

Immediately after importing the data to the workspace, plot the data using the 

“mlposplots(datai)” command inside of the MATLAB command window.  Check the 

appropriateness of your sample frequency and wave frequency.  Also, use the data cursors to 

measure the period of oscillation for the table below. 

 

Obtaining the required plots and data 

By completing the given m-file code you should generate the required plots for this lab.  You 

should also fill in the table below.  Some of the data for this table is generated in the m-file.  

Other data can be found with the data cursors available in the plots generated with 

“mlposplots.m”. 

 

Table A.3: Lab 2 Data Collection 

Gain, 

𝐾𝑝 

(units?) 

Theoretical 

CLTF poles, 

−𝜁𝜔𝑛 ± 𝑗𝜔𝑑     

(rad/s) 

Theoretical 

Period of 

Oscillations, 

2𝜋/𝜔𝑑    
(seconds) 

Measured Period 

of Oscillations,  

T            

(seconds) 

Theoretical 

Time Constant 

of Envelope, 

1/𝜁𝜔𝑛 
(seconds) 

Measured Time 

Constant of 

Envelope, 𝜏 

(estimate one for 

all three gains) 

(seconds) 

0.01      

0.001      

0.0001      

Things to turn in: 

• You should have three different plots (with axis labels including units, titles, and 

legends):  1) simulated unit step response for all three gains, 2) experimental normalized 

step responses for all three gains, and 3) simulated and experimental response for 𝐾𝑝 =

0.01. 

• The completed table. 

• Hand development of parts a) thru e). 

• The answers to the fill in the blanks below (bold and underlined). 
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Fill in the blanks (Turn in by end of lab): 

1. In the theoretical model, as the proportional gain is increased beyond the value where the 

closed loop response becomes oscillatory, the damped frequency of oscillation ________ and the 

time constant for the envelope of the oscillations ____________.  This captures the behavior of 

the actual system pretty well, although the envelope does change a little.  This might be 

explained by the nonlinear friction and saturations. 

 

2.  As we increase the proportional controller gain beyond 0.001 some aspects of the 

controller get better while others get much worse.  If we try to turn the shaft with our fingers the 

higher gain system deflects much _________ than the lower gain (try it).  This indicates 

_________ disturbance rejection.  However, the damping of oscillations in the step response 

becomes much ________.  This indicates the system is nearly unstable.  This is one reason we 

often add “dynamics” to the controller rather than just the proportional gain which has no 

integrals or __________. 

 

3. If we keep turning the proportional gain up the system actually becomes ________ (try 

it).   The theoretical model we used doesn’t predict this.  There are always more dynamics out 

there at higher frequency that we haven’t modeled (we’ll look at some in the next lab).  For 

example, by assuming the current controller in the amplifier had a TF of 1, we assumed that it 

responds _________ fast. 

 

4. Using mlposplots to plot the data in the "data1" matrix we see in the fourth plot, which 

compares the  _______ with the  ________ command, that early in the response the current does 

not actually track the commanded current.  As we simulated in the previous lab real systems 

sometimes have saturations that can affect the response.  Looking at the other plots we can see in 

plot number _________ that the _________ seems to saturate during this period, as can be seen 

by it reaching a high value and staying constant at that value for a short period.  We asked our 

instructor (do this ) and they explained that this is actually due to the limited voltage of the 

power supply and the _________ constant of the motor.  The motor actually generates a voltage 

as it spins that is proportional to the _________. 
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Starting m-file code: 

% lab5.m file 
% Requires that the square-wave-response data files 
% have been imported into data1, data2, and data3. 

  
kt = ???;  % N-m/A 
J=???;     % kg-m^2 or N-m-s^2/rad 
b= ???;    % N-m-s/rad 
kdr=???;   % deg/rad 

  
Gm=tf(???); 

  
kp=0.0001; 
Gol=kp*Gm; 
T1=feedback(Gol,1); 
[th1,t1]=step(T1); 
[p1,z1]=pzmap(T1) 

  
kp=0.001; 
Gol=kp*Gm; 
T2=feedback(Gol,1); 
[th2,t2]=step(T2); 
[p2,z2]=pzmap(T2) 

  
kp=0.01; 
Gol=kp*Gm; 
T3=feedback(Gol,1); 
[th3,t3]=step(T3); 
[p3,z3]=pzmap(T3) 

  
dt1=data1(:,1);   %extract the time column of the data matrix 
dth1=data1(:,3);  %extract the first angle column of the data matrix 
dth1=dth1/10000;  %scale the response to a unit step response 

  
dt2=data2(:,1);   %extract the time column of the data matrix 
dth2=data2(:,3);  %extract the first angle column of the data matrix 
dth2=dth2/2000;   %scale the response to a unit step response 

  
dt3=data3(:,1);   %extract the time column of the data matrix 
dth3=data3(:,3);  %extract the first angle column of the data matrix 
dth3=dth3/200;    %scale the response to a unit step response 

  
figure(1);              %Theoretical for all three gains 
plot(???) 

  
figure(2)               %Experimental for all three gains 
plot(???) 

  
figure(3)               %Experimental and Theoretical for Kp=0.01 
plot(???) 
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 Experiment 3: 

In this lab you are to 

experiment with the velocity 

control system of the 

“Motorlab” apparatus.  You 

are to compare proportional 

control to PI control, 

understand the concept of 

“system type”, and relate 

the step responses to the 

poles of the closed loop 

transfer functions. 

 

“System Type” 

Background (See pdf) 

“System type” for a unity-

feedback closed loop system 

is defined as the number of 

free integrators in the open 

loop transfer function. It can be related to steady state errors for different commands (e.g. steps, 

ramps, parabolas) to the closed loop system.  

 

Velocity Measurement in The Motorlab 

To measure velocity in the Motorlab system a filter is used on the position output from the 

encoder. This filter takes a derivative, and also uses a second order low pass filter to smooth the 

discrete pulses coming from the encoder, which would cause larger spikes in the derivative.  

With a cutoff frequency of 300 rad/s, this filter is the higher frequency dynamics that limit the 

size of the proportional gain. 

 

Obtaining Data: 

You should obtain the step response from the motor lab for three separate controllers:  two 

proportional controllers and one PI controller. 

 

Table A.4: Lab 3 Data Collection Instructions 

Gain, 

𝐾𝑝 

(units?) 

Gain, 

𝐾𝑖 
(units?) 

Magnitude 

of Step 

(rpm) 

Matrix name when saved into 

the MATLAB workspace 

0.0015 0 1000 data1 

0.003 0 1000 data2 

0.0015 0.00405 1000 data3 
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Things to Turn In: 

• A single plot showing the experimental step responses obtained for the three sets of 

controller gains. 

• The completed table below 

• Include the narrative below with the blanks filled in with bold underlined answers. 

 

Table A.5: Lab 3 Data Collection 

Controller Gains Model Experimental 

data 

Gain, 𝐾𝑝 

(units?) 

Gain, 𝐾𝑖 

(units?) 

DC Gain, 

𝐾𝐷𝐶 
rpm/rpm) 

Step 

Response 

SS Speed 

(rpm) 

CLTF poles 

(rad/s) 

CLTF zeros 

(rad/s) 

Step Response 

SS Speed 

(rpm) 

0.0015 0    none  

0.003 0    none  

0.0015       

Narrative: 

In the table and the plots we find that the experimental responses are very, very similar to the 

response from the models.  So we will use the models for detailed discussion. 

 

With a step input of 1000 RPM, the steady state speeds for the two systems with the proportional 

controllers are  ???? RPM and  ????? RPM.  Using the friction coefficient we can calculate that 

the input torques required to balance with the friction torque at these two speeds are ????? N-m 

and ????? N-m, respectively.   Using the torque constant we can calculate that these two torques 

correspond to motor currents of ???? Amps and ???? Amps.  Now, we can look at this from 

another direction.  The output of a proportional controller is the gain multiplied by the error.  We 

find that the steady state outputs of the two controllers should be ????(Amps/RPM)*40 (RPM)  = 

????Amps,  and ????(Amps/RPM)*????( RPM)  = ???? Amps.  Therefore, we see that the 

outputs of the controllers in steady state are balancing with the ???? torques (currents).  And, 

since a steady state torque (current) is required to maintain speed in this system, there must be a 

steady state error if we only use ????? control. 

 

When the integral gain is included, we see that the steady state speed is ???? RPM, because the 

DC gain of the CLTF is ????.  The integral part of the controller continues to grow, by 

integrating the error, until the steady state error ????  ?????  ????.  With only proportional control 

we can only decrease the steady state error by ???? the gain, which we see causes the system to 

become more oscillatory and less ????.  However, we can drive the steady state error to zero with 

the smaller proportional gain when we include the integral control action, and still maintain a 

relatively stable closed loop system. 

 

The behavior discussed above can be abstracted to other systems and to other inputs to a closed 

loop control system.  We can use “system type” in this abstraction. We see that the DC gain of 
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the closed loop system is ???? (i.e. the steady state error for a constant input is ????) if the open 

loop TF has a ????  ????.  In this lab the open loop transfer function has ???? free integrators 

with proportional control, and is therefore type ????.  It has ???? free integrator with the PI 

controller, and is therefore type ????.  However, if we put a ramp command into a closed loop 

system that is type one, it would have a steady state error. A type two system would track a ramp 

command with zero steady state error. In general we can increase the ability of the closed loop 

system to track more quickly changing commands by increasing the system type (i.e. by using 

???? control).   

 

On a different subject, we can relate the transient part (not steady state) of step responses of the 

three systems to closed loop poles and zeros.  The first system is dominated by the real pole at 

???? rad/s, with the underdamped poles causing ???? superimposed on top of the first order 

response.  The real pole gives a time constant of ???? seconds, which can be seen in both the step 

response of the model and the actual system.  The second system has a set of complex poles and 

a real pole, neither of which are ????.  The step response looks like a second order response 

except the first couple of oscillations are not quite symmetric about the steady state value.  The 

first order pole causes them to shade ????.  The third system is very similar to the first except it 

has very near ????-????  ???? at -2.7 rad/s. 

 

Starting m-file code: 
% lab8 m-file 
% Requires that the square-wave-response data files 
% have been imported into data1, data2, and data3. 

  
kt = 0.05;   % N-m/A 
J=1.29e-5;   % kg-m^2 or N-m-s^2/rad 
b= 3e-5;     % N-m-s/rad 
kdr=180/pi;  % deg/rad 
krd=1/6;     % rpm/(deg/s) 

  
Gs=tf(kt*kdr*krd,[J b]);           % mechanical dyn' with speed output 
wn=300; zeta = 0.707/2; 
Gvf=tf(wn^2,[1 2*wn*zeta wn^2]);   % low pass part of the velocity filter 
Gp=Gs*Gvf; 

  
Gc=0.0015; 
T1=feedback(Gc*Gp,1); 
[p1,z1]=pzmap(T1) 
SSspeed = dcgain(T1)*1000 

  
Gc=0.003; 
T2=feedback(Gc*Gp,1); 
[p2,z2]=pzmap(T2) 
SSspeed = dcgain(T2)*1000 

  
Gc = tf(0.0015*[1 2.7],[1 0]); 
T3=feedback(Gc*Gp,1); 
[p3,z3]=pzmap(T3) 
SSspeed = dcgain(T3)*1000 

  
input=data1(:,2); 
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t1=data1(:,1);     
rpm1=data1(:,5);  %extract the first speed column of the data matrix 

  
t2=data2(:,1);     
rpm2=data2(:,5);  %extract the first speed column of the data matrix 

  
t3=data3(:,1);     
rpm3=data3(:,5);  %extract the first speed column of the data matrix 

      

  
figure(1)                       %Experimental for all three gains 
plot(t1,input,t1,rpm1,'b',t2,rpm2,'g',t3,rpm3,'r') 
legend('StepInput','kp=0.0015','kp=0.003','kp=0.0015,ki=0.0041') 
xlabel('Time (s)') 
ylabel('Speed Response (rpm)') 
title('Step Response of Speed Control with Three Sets of Gains') 

  
[vm1,tm1]=step(1000*T1); 
figure(2); plot(t1,rpm1,tm1,vm1) 
title('Step responses from actual system and model for kp=0.0015') 

  
[vm2,tm2]=step(1000*T2); 
figure(3); plot(t2,rpm2,tm2,vm2) 
title('Step responses from actual system and model for kp=0.003') 

  
[vm3,tm3]=step(1000*T3); 
figure(4); plot(t3,rpm3,tm3,vm3) 
title('Step responses from actual system and model for PI control') 
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 Experiment 4: 

In this lab you are to experimentally 

determine five data points for the frequency 

response of the motor-and-spring configuration 

of the Motorlab.  Then you are to estimate all 

parameters of the model except 𝐽 and 𝑘𝑑𝑟. We 

assume we know these two parameters 

accurately. 

You are to use sine waves ("Run Wave 

Autosave ") for the input current on the 

Motorlab, since the input to the TF of interest is 

current.  You should use a magnitude of 0.25 

Amp for sine wave frequencies near the natural 

frequency (~resonance).  This will hopefully 

prevent fatigue failures of the spring.  Be 

careful near the resonance.  It is easy to break 

the spring with the resonance.  For the other 

input frequencies you are given and input 

amplitude to use. 

To begin the lab, you should experiment 

to find the actual natural frequency.  You 

should find natural frequency by finding a 

frequency where the phase lag is very near 

90 degrees.  If you find a phase lag between 

80 and 100 degrees that is sufficient to 

estimate the natural frequency given that 

the phase transition is very sharp for this 

lightly damped system. But try to do your 

best.  Once you have found the natural 

frequency, then you should fill in the data 

table.  Note that the frequencies you use for 

data collection are dependent on the natural 

frequency you find.  You may round these 

other frequencies to the nearest Hz. 

 

Plotting The Responses to Input Sine 

Waves 

You should use the mlolplots(data,Iscale) function.  You may have to include the Iscale 

argument for the current to be visible on the same plot as the position. 

 

Some Related MATLAB Functions 
Helpful MATLAB functions: 

log10() – log base 10 

bode() – generates the bode (freq’ response) plot of a tf – note you can change the freq’ units to 

Hz by right clicking on the figure and choosing ‘properties’ 
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Example Data Point for Freq' Response
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[m,p,w]=bode() – generates the data for a freq’ response plot of a tf – note the mag (m) is a ratio 

not dB 

loglog() – plotting routine for a log-log scale 

semilogx() – plotting routine for a log scale on the x-axis 

 

Taking data for the table and searching for the natural frequency. 

 
Figure A.6: Using calc_mag_phase function 

The sample frequency should be chosen so it small enough that there is sufficient time for the 

response to settle in to steady state oscillations but large enough so that it is at least 10 times 

larger than the input sine wave frequency.  The data should be taken from the steady state 

oscillations. 

 
Figure A.7: Transient and Steady State Data 

Table A.6: Lab 4 Data Collection 

Freq’ (Hz) 𝜔𝑛 𝜔𝑛/10 0.75 ∙ 𝜔𝑛 1.25 ∙ 𝜔𝑛 2 ∙ 𝜔𝑛 

Input Amplitude (Amp) 0.25 1 1 1 2 

Freq’ Value (Hz)      

Mag’ Ratio (deg/Amp)      

Mag’ Ratio (dB)      

Phase Shift (deg)      

2.68 2.685 2.69 2.695 2.7 2.705 2.71 2.715 2.72 2.725 2.73
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Improve your theoretical model 

Use data from the table to find all the coefficients for the standard 2nd order form.  The 

magnitude ratio at one tenth of the natural frequency should give you the DC gain.  The damping 

ratio can be found by symbolically calculating the magnitude of the standard 2nd order form at 

the natural frequency and using then using the actual magnitude at the natural frequency from the 

data. 

Then you should equate the two forms of the model to determine the physical parameters 

(𝑘𝑡, 𝑘𝑠, 𝑏) of the model. 

 

Things to Turn In 
 

• The Data Table and  new estimates for  . (a copy turned in to your instructor before you 

leave). 

• Five experimental plots (from mlolplots() like on the previous page ) of the input and 

output showing the data cursors used for the "calc_mag_phase()" function.  

• A final Bode plot showing the initial model, the improved model, and  the magnitude and 

phase data. 

• One set of hand-written calculations that duplicate the work done "calc_mag_phase()."  

This should be for the natural frequency and use the data shown in the data cursors. 

• A hand development of the magnitude of the standard 2nd order form at the natural 

frequency. 

• Your completed lab 10 m-file. 
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% lab10.m file 

  
% initial model 

kt = 0.05;             % N-m/A 
kdr = ???;             % deg/rad 
J=???;                 % kg-m^2 or N-m-s^2/rad 
b=???;                 % N-m-s/rad 
ks = ???;              % N-m/rad 

  
G=tf(????);               % model from initial estimates 
figure(1); bode(G)        % generate initial estimate of bode plot 
[m,p,w] = bode(G);        % get magnitude, phase, and freq data 
m=squeeze(m);             % make m two dimensional 
m=20*log10(m);            % convert to dB 
p=squeeze(p); 

  
fdata=[2 16 21.15 26 42]; 
wdata=fdata*2*pi; 
magdata=[21.9 28.8 48.6 29.1 13.6]; 
phdata=[-5 -8 -90 -176 -187]; 

  
figure(2); 
subplot(2,1,1); semilogx(w,m,wdata,magdata,'*') 
title('Bode Plot'); ylabel('magnitude (dB)'); xlabel('freq (rad/s)') 
subplot(2,1,2); semilogx(w,p,wdata,phdata,'*') 
ylabel('phase (deg)'); xlabel('freq (rad/s)') 

  
%%%%%%%%  system id - come up with improved model 
wn = 21.15*2*pi;    % natural freq from data (rad/s) 
Kdc = 12.5;         % dc gain from data 
Mwn = 267;          % magnitude ratio at wn from data 
zeta = Kdc/Mwn/2;   % calculate damping ratio using Mwn and Kdc 
Gnew = ????; 

  
[mnew,pnew,wnew] = bode(Gnew); % get magnitude, phase, and freq data 
mnew=squeeze(mnew); 
mnew=20*log10(mnew); 
pnew=squeeze(pnew); 

  
%plot two models and data together 
figure(3); 
subplot(2,1,1); 

????? 

  
ksnew = ???     % N-m/rad 
bnew = ???      % N-m-s/rad 
ktnew = ???     % N-m/A 
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% calc_mag_phase function file - should not need modification 
 
function calc_mag_phase(cursors,freq,inputmag) 

  

  ymin = 1e200; ymax = -1e200; crossing=0; 

  for i=1:3 

      xval = cursors(1,i).Position(1); 

      yval = cursors(1,i).Position(2); 

      if ((yval > -0.5)&&(yval < 0.5)) 

          tcrossing = xval; 

          crossing = i; 

      end 

      if (yval > ymax) 

          peak = i; 

          ymax = yval; 

          tpeak = xval; 

      end 

      if (yval < ymin) 

          valley = i; 

          ymin = yval; 

          tvalley = xval; 

      end 

  end 

  dtPeakValley = abs(tpeak-tvalley); 

  outfreq=1/2/dtPeakValley; 

  if ((crossing==0)||(valley==peak)) 

    display('Innacurate cursors or freq!') 

    return 

  end 

  if ((abs(outfreq-freq)/freq > 0.05)||(crossing==valley)||(crossing==peak)) 

      display('Innacurate cursors or freq!') 

      return 

  end 

   

  timelag=mean([tpeak tvalley])-tcrossing; 

  phaselag = 360*timelag*freq 

  magratio=(ymax-ymin)/2/inputmag 

  dB=20*log10(magratio) 

   

end 
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Appendix B - MotorLab Specifications 

 
Figure B.1: MotorLab Components 

System Description  

 Below is a schematic representation of the Motorlab system in a closed-loop position or speed control configuration.  

There are two position sensors on the apparatus, a motor encoder and a load encoder.  The speeds of the two inertias 

are measured by numerically differentiating the position signals in the computer controlling the system 

(microcontroller).  The motor amplifier has a control loop that measures and controls the electric current in the motor 

windings.  This results in what is commonly known as a “torque controlled” motor, since the magnetic torque is 

proportional to the current in the windings.  The microcontroller is interfaced to the motor amplifier through a +/-10V 

analog signal. By varying the magnitude of this voltage the microcontroller can change the current in the motor.  This 

voltage, which is proportional to the controlled current, serves as a current command (desired current) for the current 

control loop in the amplifier.  An additional sensor, not shown below, is the current sensor in the amplifier used to 

implement the current control.  The signal from this sensor is also read by the microcontroller, using an analog to 

digital converter.  Although this signal is not used in the control loops on the microcontroller, it is recorded for data 

analysis.  
  

 
Figure B.2: MotorLab Model 
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 Several different configurations of the system can be utilized in experiments.  Either sensor, the motor or load encoder, 

can be used for the feedback of the control loop.  The selection is made in the software interface.  The motor encoder 

is known as a “collocated” sensor since it is co-located with the input to the mechanical system, the motor torque.  

The load sensor is separated from the input to the system by a spring and is therefore known as a “non-collocated” 

sensor.  In addition to varying which sensor is used, the mechanical system can be changed with the lock down screw 

and the spring coupling.  Also, a choice can be made between velocity control or position control by selecting the 

appropriate control program.  Any of the following mechanical models may be realized using the Motorlab hardware 

and software.  

 
Figure B.3: MotorLab System Configurations 

 

Software  

 The software for the system can be found in the “c:\Motorlab” directory on the laboratory machines.  All the needed 

Matlab functions can be found there.  The software that is on the microcontroller is included in this directory in the 

motorlabRepo.zip file.  This program is burned into the flash memory of the microcontroller and runs on power up.  

The software that runs on the PC is a GUI written in Matlab ("motorlabGUI.m").  There are additional m-files in the 

"Motorlab" directory that can be used to plot data from the system.  
   
User Interface  

 To run the Motorlab GUI you must open Matlab and add the “c:\Motorlab” directory to the Matlab path or set this 

directory as the current directory. Normally you will add it to the path and set the current directory to the location 

where you are storing your files. The microcontroller should be plugged into USB. In the Matlab command window 

type "motorlabGUI."  The opening dialog (below) asks you to select the communication port for the microcontroller.  

If more than one port is listed you should be able to detect which is the Motorlab by unplugging the USB or powering 

it down and then clicking the "Refresh List" button. The GUI should open after selecting the com port.  
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Figure B.4: Connection Dialog 

   

 
Figure B.5: MotorLab GUI 

 
Data Acquisition  

 The microcontroller stores data in a circular buffer that is 2048 data samples in length with 9 variables in each sample.  

After 2048 sample periods the buffer begins to be overwritten with the more recent data. At any time the buffer 

contains the most recent 2048 samples.  Pressing the "Save Data Buffer to Workspace" button will write this data to 

a 2048x9 matrix in the Matlab workspace.  Pressing the "Run Wave AutoSave" button starts the wave type selected 

and then writes the data to the Matlab workspace once the buffer has filled with new data.  The time length of the data 

depends on the sample rate. If for example the sample rate is set to 500 Hz, then the last 4.096 seconds (2048/500) of 

data will be saved in the buffer.  
 The data matrix saved in the Matlab workspace contains 9 variables (columns).  The ninth column is reserved.  The 

other eight are listed below.  Note that the variable in the second column changes.  It depends on the "Controller 

Mode" chosen at the time of the data storage.  
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Table B.1: Data Matrix Columns 

Column  1  2  3  4  5  6  7  8  

Description  Time  Command  Motor 

Encoder  
Load 

Encoder  
Motor 

Speed  
Load 

Speed  
Current  

Command  
Motor 

Current  

Variable  t (sec)  θc (deg),  

ωc (rpm),    

ic (Amp)  

θ1 (deg)  θ2 (deg)  ω1 (rpm)  ω2 (rpm)  ic (Amp)  i (Amp)  

M-files for plotting  

There are m-files provided in the "c:\Motorlab" directory that can be used to plot the data from the Motorlab.  Although 

you will frequently want the access the data with your own m-files, these files are useful for quickly viewing the data 

after acquiring it.  There is one file for each of the "Controller Mode" settings.  
  
File: mlolplots.m   function:  mlolplots(data,Iscale);   Uses data generated by the Motorlab in  open loop control. If 

an "Iscale" argument is supplied then the commanded current values are scaled by the Iscale value in the plots.  
example: mlolplots(data);  Does not scale the current command. example: 

mlolplots(data,Iscale);  Multiplies commanded current values by Iscale.  
  
File: mlposplots.m   function: mlposplots(data);   Uses data generated by the Motorlab position control mode.  
example: mlposplots(data);  
  
File: mlspeedplots.m   function: mlspeedplots(data);   Uses data generated by the Motorlab velocity control mode.  
example: mlvelplots(data);  
  
File: trapprof.m   function: [x,v,t] =trapprof(DX,Vmax,Amax,DT)   Trapezoidal-velocity motion profile generation 

Outputs:  x=position vector, v=trapezoidal velocity vector, t=time vector  
Inputs:  DX=distance to move, Vmax=maximum velocity, Amax=maximum acceleration, DT=time step for outputs 

example: [x,v,t] =trapprof(DX,Vmax,Amax,DT)  
  

Hardware Specifications  

Important Scaling Considerations  

• Motor Amplifier Scaling = 1 Amp/Volt. Therefore, one Volt output from the microcontroller corresponds to 

a one Amp command to the current control loop in the motor amplifier.  The plotting routines provided take this 

scaling into consideration.  
• Position is measured in degrees and velocity is measured in RPM.  The output of the control algorithm in the 

microcontroller is measured in Volts.  Therefore, for example, the units of the proportional and derivate gains in 

the position controller would be Volts/deg and Volts*sec/deg, respectively.  When multiplied by the amplifier 

scaling (1 Amp/Volt) these gains become Amp/deg and Amp*sec/deg.  The units of the proportional gain in the 

velocity controller would be Volts/RPM (or Amp/RPM if amplifier scaling is included).  
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Figure B.6: MotorLab Inertias 

  

  
A Few Other Details  

• Max Data Acquisition Sample Rate = 10 kHz (the control update rate of the microcontroller software)  
• Motor Encoder Resolution = 360 deg/1600 counts = 0.225 deg/count  
• Load Encoder Resolution = 360 deg/2000 counts = 0.18 deg/count 

• Max motor velocity with the 24 Volt power supply is about 4000 rpm  

Speed Measurement  
The two speeds measured by the Motorlab system are found using a discrete time approximation (i.e. computer code) 

of a derivative with a low pass filter.  The continuous time transfer function for this filter is given below.  It uses the 

encoder position measurement for input.  Note the free s in the numerator performs the differentiation and the filter 

with a cutoff frequency of 300 rad/s helps to filter spikes in the speed measurement caused by differentiating the 

discrete steps inherent in an encoder position measurement.  

 
Figure B.7: MotorLab Speed Measurement 
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Specs from Motor Manufacturer’s Data Sheet  

  

Table B.2: Motor Specifications 

LA052-040E Motor Dynamic Specs From Shinano Kenshi  

  UNITS  Value  

RATED POWER W  40  

RATED VOLTAGE VDC  24  

RATED SPEED rpm  3,000  

RATED TORQUE N-cm  12.7  

 kgf-cm  1.3  

RATED CURRENT A  2.5  

TORQUE CONSTANT N-cm/A  5.0  

 kgf-cm/A  0.51  

BACK EMF CONSTANT V/krpm  5.2  

PHASE RESISTANCE Ohm  1.18  

PHASE INDUCTANCE mH  4.4  

INSTANTANEOUS PEAK TORQUE N-cm  38.2  

MAX SPEED rpm  5,000  

ROTOR INERTIA g-cm2 110  

POWER RATE kW/s  1.48  

MECHANICAL TIME CONSTANT ms  5.2  

ELECTRICAL TIME CONSTANT ms  3.7  

MASS kg  0.6  

 

  

Current Control Loop Model  
 The motor amplifier has a current control loop.  As configured in the Motorlab apparatus this loop has a bandwidth 

of approximately 400 Hz.  Using data acquired from step and sinusoidal responses the following two closed loop 

transfer functions have been identified as approximate models for the closed-loop current control dynamics.  

 

Figure B.8: Current Control Loop Model 

Two of the models above contain a time delay while the other does not.  One model with the time delay uses the 

exponential (exact) representation with the delay, while the other uses a second order Pade' approximation of the 

delay.  In the following two figures the responses of these two models are compared with actual data acquired from 

one of the Motorlab systems.  Both the step response and the frequency response models are shown.  
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Figure B.9: Step Response of Current Control Loop 

 

 

 

 

 

 
Figure B.10: Frequency Response of Current Control Loop 
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Appendix C - Eeva Lab Code 

 Experiment 1: 

%% Lab 2 -- IC Response and Experimental determination of a system constant 
% Fall 2016 - Shane Smith 

  
% System Constants 
wheel_radius = 0.03;    % meters 
J = 3.23e-8;            % motor inertia (kg*m^2) 
R = 6.8;                % motor resistance (Ohms) 
kt = 0.0025;            % motor torque constant (N*m/Amp) 
gear_ratio = 29.86; 

  
% Voltages to take speeds at 
V = [-3 -2 -1 -0.5 -0.3 0 0.3 0.5 1 2 3]; 

  
% Measured Left Speed at corresponding voltage (m/s) 
L_speed = [-1.0046 -0.613 -0.2579 0 0 0 0 0 0.2876 0.6394 0.9891]; 

  
% Measured Right Speed at corresponding voltage (m/s) 
R_speed = [-1.0225 -0.6286 -0.2708 -0.0914 0 0 0 0.0969 0.2777 0.6441 

0.9972]; 

  
% Convert speeds to rad/sec at the motor 
L_rad = (L_speed/wheel_radius)*gear_ratio; 
R_rad = (R_speed/wheel_radius)*gear_ratio; 

  
% Estimate best fit line to approximate 
west = [-1100 1100]; 
best = 3.2e-3;      % = (B+kb*kt)/kt, play with this to approximate data 
Vest = best*west;    

  
% Plot Velocity vs. Voltage with best fit line 
figure(1); 
plot(west,Vest,R_rad,V,'*') 
xlabel('Motor Speed (rad/sec)'); ylabel('Motor Voltage (V)') 
title('Voltage vs. Steady State Speed') 
legend('Best Fit Line','Experimental','Location','Southeast') 

  
% Calculate theoretical initial condition response from simple model 
R_init = 2.1;   % m/s at wheel 
R_init = (R_init/wheel_radius)*gear_ratio;   % rad/s at motor 
tau = (R*J)/(best*kt);   % calculating time constant 
th_time = 0:0.01:0.75; 
R_th_RPM = R_init*exp(-th_time/tau); 

  
% speed filter model 
wn = 20*2*pi; 
Gfilt = tf(wn^2,[1 1.414*wn wn^2]); 
Gm = tf(kt,[R*J best*kt]); 
G=Gm*Gfilt; 
time = 0:0.0001:0.2; 
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u=time*0; 
y = lsim(ss(G),u,time,[0 0 2100]/171.3); 

  
% Getting speed measurement without filter 
dxdt = (d(2:2000,7)-d(1:1999,7))/.001;  % Wheel position divided by elapsed 

time 
dxdt(2000)=dxdt(1999);  % making dxdt array same length as data 
dxdt = dxdt/wheel_radius*gear_ratio;    % converting to motor speed in rad/s 

  
% Plot experimental data vs theoretical data 
to = 0.626;     % sec 
data_time = d(:,1); data_time=data_time-to; % Grab data time and adjust it 
data_R = d(:,9);   % Grab left and right wheel speeds in m/s  
data_R = data_R/wheel_radius*gear_ratio;   % convert to motor speed in rad/s 

  
figure(2); 
plot(th_time,R_th_RPM,time,y,data_time,data_R) 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)') 
title('Initial Condition Speed Response');  
legend('Model without Speed Filter','Model with Speed Filter','Experimental') 
axis([-0.01 0.15 -100 2200]) 

  
figure(3); 
plot(th_time,R_th_RPM,data_time,dxdt) 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)') 
title('Initial Condition Speed Response');  
legend('Model without Speed Filter','Experimental \Delta x / \Delta t') 
axis([-0.01 0.15 -100 2200]) 
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 Experiment 2: 

%% Lab 5 -- Change pole locations, simpler models don't predict stability 
% Fall 2016 - Shane Smith 

  
%% System Constants 
wheel_radius = 0.03;   % meters 
J =  3.23e-8;   % kg*m^2 
R = 6.8;        % Ohm 
kt = 0.0025;    % N*m/Amp 
b_kb = 3.2e-3;  % (b+kb*kt)/kt 

  
Gm = tf(kt,[R*J b_kb*kt]); 
wn = 20*2*pi; 
Gfilt = tf(wn^2,[1 1.414*wn wn^2]); 

  
%% Build Theoretical Models 
ki = (100/29.86)*0.03; Gc = tf(ki,[1 0]); 
Gol = Gm*Gc; T1=feedback(Gol,1); 
[th1,t1]=step(100*T1,0.7); [p1,z1] = pzmap(T1); 

  
ki = (100/29.86)*0.03; Gc = tf(ki,[1 0]); 
Gol = Gm*Gc; T1filt=feedback(Gol*Gfilt,1); 
[th1filt,t1filt]=step(100*T1filt,0.7); [p1filt,z1filt] = pzmap(T1filt); 

  
ki = (200/29.86)*0.03; Gc = tf(ki,[1 0]); 
Gol2 = Gm*Gc; T2=feedback(Gol2,1); 
[th2,t2]=step(100*T2,0.7); [p2,z2] = pzmap(T2); 

  
ki = (200/29.86)*0.03; Gc = tf(ki,[1 0]); 
Gol2 = Gm*Gc; T2filt=feedback(Gol2*Gfilt,1); 
[th2filt,t2filt]=step(100*T2filt,0.7); [p2filt,z2filt] = pzmap(T2filt); 

  
%% Grab values from experimental data 
time = d(:,1); time = time-0.251; 
left_speed = d(:,8); % left wheel speed (m/s) 
right_speed = d(:,9);% right wheel speed (m/s) 
left_motor_speed = (left_speed/0.03)*29.86; % convert to motor speed in rad/s 
right_motor_speed = (right_speed/0.03)*29.86; % “” 

  
%% Plot Results 
figure(1); 
plot(t1,th1,t1filt,th1filt,time,left_motor_speed) 
legend('Model without Speed Filter','Model with Speed Filter','Experimental') 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)'); axis([-0.025 0.7 -5 

170]) 
title('Speed Controller Step Response, Ki = 0.1 (V*sec/rad)') 

  
figure(2); 
plot(t2,th2,t2filt,th2filt,time,right_motor_speed) 
legend('Model without Speed Filter','Model with Speed Filter','Experimental') 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)'); axis([-0.025 0.7 -5 

210]) 
title('Speed Controller Step Response, Ki = 0.2 (V*sec/rad)')   
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 Experiment 3: 

%% Lab 8 -- PI controller improves tracking, system type 
% Fall 2016 - Shane Smith 

  
%% System Constants 
wheel_radius = 0.03;   % meters 
J = 3.2328e-08; % kg*m^2 
R = 6.8;        % Ohm 
kt = 0.0025;    % N*m/Amp 
kt = 0.0025;    % N*m/Amp 
b_kb = 3.2e-3;  % (b+kb*kt)/kt 

  
Gm = tf(kt,[R*J b_kb*kt]); 

  
wn = 20*2*pi; 
Gfilt = tf(wn^2,[1 1.414*wn wn^2]); 

  
%% Build Theoretical models 
kp1 = (8/29.86)*0.03; 
kp2 = (20/29.86)*0.03; 
ki1 = (240/29.86)*0.03; 
wc = 497.7; % rad/s 

  
% First Proportional Controller w/out speed filter 
Gol1 = kp1*Gm; T1 = feedback(Gol1,1); 
[w1, t1] = step(wc*T1, 0.5); 

  
% First Proportional Controller with speed filter 
Gol1filt = kp1*Gm*Gfilt; T1filt = feedback(Gol1filt,1); 
[w1filt, t1filt] = step(wc*T1filt, 0.5); 

  
% Second Proportional Controller w/out speed filter 
Gol2 = kp2*Gm; T2 = feedback(Gol2,1); 
[w2, t2] = step(wc*T2, 0.5); 

  
% Second Proportional Controller with speed filter 
Gol2filt = kp2*Gm*Gfilt; T2filt = feedback(Gol2filt,1); 
[w2filt, t2filt] = step(wc*T2filt, 0.5); 

  
% PI controller w/out speed filter 
z = ki1/kp1; 
Gc = tf(kp1*[1 z],[1 0]); Gol3 = Gc*Gm; T3 = feedback(Gol3,1); 
[w3, t3] = step(wc*T3, 0.5); 

  
% PI controller with speed filter 
z = ki1/kp1; 
Gol3filt = Gc*Gm*Gfilt; T3filt = feedback(Gol3filt,1); 
[w3filt, t3filt] = step(wc*T3filt, 0.5); 

  
%% Grab values from experimental data 
time = d(:,1); time = time-0.124; 
wave = d(:,3);    % commanded value (m/s) 
left_speed = d(:,8); % left wheel speed (m/s) 
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right_speed = d(:,9);% right wheel speed (m/s) 
left_motor_speed = (left_speed/0.03)*29.86; % convert to motor speed in rad/s 
right_motor_speed = (right_speed/0.03)*29.86; % “” 
wave_rad = (wave/0.03)*29.86; 

  
%% Plot Results 
figure(1); 
plot(time,wave_rad,':',t2,w2,'--',t2filt,w2filt,time,left_motor_speed) 
legend('Command','Model without Speed Filter','Model with Speed 

Filter','Experimental') 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)'); axis([-0.025 0.5 -5 

800]) 
title('Speed Controller Step Response, Kp = 0.02 (V*sec/rad)') 

  
figure(2); 
plot(time,wave_rad,':',t3,w3,'--',t3filt,w3filt,time,right_motor_speed) 
legend('Command','Model without Speed Filter','Model with Speed 

Filter','Experimental') 
xlabel('Time (sec)'); ylabel('Motor Speed (rad/s)'); axis([-0.025 0.3 -5 

700]) 
title('Speed Controller Step Response, Kp = 0.008, Ki = 0.24 (V*sec/rad)') 
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 Experiment 4: 

%% Lab 10 -- Finding resonance frequency 
% This lab looks at frequency response and resonance behavior 

  
%% Initial Guess at Values 
kt = 0.0025;    % N-m/A 
kb = 0.0025;    % V-s/rad 
R = 6.8;        % Ohms 
b = 2.6e-7;     % (board friction) N-m-s 
J = 3.3e-8;     % (board inertia, not motor) kg-m^2 
len = 0.0315;   % m, length in meters from motor shaft to c.g. 
mass = 0.137;   % kg, mass of robot (w/o wheels) 
gr = 29.86;     % gear ratio 
g = 9.81;       % m/s^2 

  
%% Initial Theoretical Model 
Gp = tf([2*kt/gr],[J (2*kt*kb/R + b) mass*g*len]); 
figure(1); bode(Gp) 
[m,p,w]=bode(Gp);   % get magnitude, phase, and freq data 
m = squeeze(m);     % make m two dimensional 
m = 20*log10(m);    % Convert to dB 
p = squeeze(p); 
%% Experimental Model 
fdata = [0.18 1.35 1.8 2.25 3.6]; 
wdata = fdata*2*pi; 
magdata = [21.06 28.83 24.65 21.25 10.92]; 
phdata = [-34.34 -63.87 -87.29 -114.95 -146.31]; 

  
figure(2); 
subplot(2,1,1); semilogx(wdata,magdata,'*') 
title('Bode Plot'); ylabel('magnitude (dB)'); xlabel('freq (rad/s)') 
legend('Model','Experimental') 
subplot(2,1,2); semilogx(wdata,phdata,'*') 
ylabel('phase (deg)'); xlabel('freq (rad/s)') 

  
%% System ID - Come up with improved Model 
wn = 1.8*2*pi; 
Kdc = 11.3; 
Mwn = 17.08; 
zeta = Kdc/Mwn/2; 

  
Gnew = tf([Kdc*wn^2],[1 2*zeta*wn wn^2]); 
[mnew, pnew, wnew] = bode(Gnew); 
mnew = squeeze(mnew); 
mnew = 20*log10(mnew); 
pnew = squeeze(pnew); 

  
% Plot two models and data together 
figure(3); 
subplot(2,1,1); semilogx(wnew,mnew,wdata,magdata,'*') 
title('Bode Plot'); ylabel('magnitude (dB)'); xlabel('freq (rad/s)') 
legend('Improved Model','Experimental') 
subplot(2,1,2); semilogx(wnew,pnew,wdata,phdata,'*') 
ylabel('phase (deg)'); xlabel('freq (rad/s)') 
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Jnew = (mass*g*len)/(wn^2) 
ktnew = R*Jnew*Kdc*(wn^2)*0.5 
bnew = (2*zeta*wn*Jnew)-(2*kt*kb)/R 

 

% Eeva Resonance Consistency Test 
f1data = [0.18 1.35 1.8 2.25 3.6]; 
w1data = f1data*2*pi; 
mag1data = [21.06 28.83 24.65 21.25 10.92]; 
ph1data = [-34.34 -63.87 -87.29 -114.95 -146.31]; 

  
f2data = [0.17 1.275 1.7 2.125 3.4]; 
w2data = f2data*2*pi; 
mag2data = [13.23 38.51 30.14 19.09 4.52]; 
ph2data = [-39.17 -59.44 -92.57 -127.84 -151.28]; 

  
f3data = [0.16 1.2 1.6 2 3.2]; 
w3data = f3data*2*pi; 
mag3data = [8.89 28.94 34.96 22.1 5.63]; 
ph3data = [-21.6 -54.18 -84.71 -124.32 -151.3]; 

  
f4data = [0.165 1.2375 1.65 2.0625 3.3]; 
w4data = f4data*2*pi; 
mag4data = [9.04 21.01 28.71 15.79 5.02]; 
ph4data = [-29.03 -66.62 -88.57 -112.9 -154.88]; 

  
favgdata = [0.16875 1.265625 1.6875 2.109375 3.375]; 
wavgdata = favgdata*2*pi; 
magavgdata = [10.61718 29.0225 27.7225 17.1325 4.6725]; 
phavgdata = [-31.035 -61.0275 -88.285 -120.003 -150.943]; 

  
figure(1); 
semilogx(w1data,mag1data,'*',w2data,mag2data,'*',w3data,mag3data,'*',w4data,m

ag4data,'*',wavgdata,magavgdata,'k--') 
title('Bode Magnitude Plot'); ylabel('magnitude (dB)'); xlabel('freq 

(rad/s)') 
legend('1st Experiment','2nd Experiment','3rd Experiment','4th 

Experiment','Average Values') 

  
figure(2); 
semilogx(w1data,ph1data,'*',w2data,ph2data,'*',w3data,ph3data,'*',w4data,ph4d

ata,'*',wavgdata,phavgdata,'k--') 
title('Bode Phase Plot'); ylabel('phase (deg)'); xlabel('freq (rad/s)') 
legend('1st Experiment','2nd Experiment','3rd Experiment','4th 

Experiment','Average Values') 
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