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Abstract 

Global crop production must be doubled by 2050 to feed 9 billion people. Novel crop 

improvement methods and management strategies are the sine qua non for achieving this goal. 

This requires reliable quantitative methods for predicting the behavior of crop cultivars in novel, 

time-varying environments. In the last century, two different mathematical prediction approaches 

emerged (1) quantitative genetics (QG) and (2) ecophysiological crop modeling (ECM). These 

methods are completely disjoint in terms of both their mathematics and their strengths and 

weaknesses. However, in the period from 1996 to 2006 a method for melding them emerged to 

support breeding programs. 

The method involves two steps: (1) exploiting ECM’s to describe the intricate, dynamic 

and environmentally responsive biological mechanisms determining crop growth and development 

on daily/hourly time scales; (2) using QG to link genetic markers to the values of ECM constants 

(called genotype-specific parameters, GSP’s) that encode the responses of different varieties to the 

environment. This can require huge amounts of computation because ECM’s have many GSP’s as 

well as site-specific properties (SSP’s, e.g. soil water holding capacity). Moreover, one cannot 

employ QG methods, unless the GSP’s from hundreds to thousands of lines are known. Thus, the 

overall objective of this study is to identify better ways to reduce the computational burden without 

minimizing ECM predictability. 

The study has three parts: (1) using the extended Fourier Amplitude Sensitivity Test 

(eFAST) to globally identify parameters of the CERES-Sorghum model that require accurate 

estimation under wet and dry environments; (2) developing a novel estimation method 

(Holographic Genetic Algorithm, HGA) applicable to both GSP and SSP estimation and testing it 

with the CROPGRO-Soybean model using 182 soybean lines planted in 352 site-years (7,426 yield 



  

observations); and (3) examining the behavior under estimation of the anthesis data prediction 

component of the CERES-Maize model. The latter study used 5,266 maize Nested Associated 

Mapping lines and a total 49,491 anthesis date observations from 11 plantings. 

Three major problems were discovered that challenge the ability to link QG and ECM’s: 

1) model expressibility, 2) parameter equifinality, and 3) parameter instability. Poor expressibility 

is the structural inability of a model to accurately predict an observation. It can only be solved by 

model changes. Parameter equifinality occurs when multiple parameter values produce equivalent 

model predictions. This can be solved by using eFAST as a guide to reduce the numbers of 

interacting parameters and by collecting additional data types. When parameters are unstable, it is 

impossible to know what values to use in environments other than those used in calibration. All of 

the methods that will have to be applied to solve these problems will expand the amount of data 

used with ECM’s. This will require better optimization methods to estimate model parameters 

efficiently. The HGA developed in this study will be a good foundation to build on. Thus, future 

research should be directed towards solving these issues to enable ECM’s to be used as tools to 

support breeders, farmers, and researchers addressing global food security issues. 
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Abstract 

Global crop production must be doubled by 2050 to feed 9 billion people. Novel crop 

improvement methods and management strategies are the sine qua non for achieving this goal. 

This requires reliable quantitative methods for predicting the behavior of crop cultivars in novel, 

time-varying environments. In the last century, two different mathematical prediction approaches 

emerged (1) quantitative genetics (QG) and (2) ecophysiological crop modeling (ECM). These 

methods are completely disjoint in terms of both their mathematics and their strengths and 

weaknesses. However, in the period from 1996 to 2006 a method for melding them emerged to 

support breeding programs. 

The method involves two steps: (1) exploiting ECM’s to describe the intricate, dynamic 

and environmentally responsive biological mechanisms determining crop growth and development 

on daily/hourly time scales; (2) using QG to link genetic markers to the values of ECM constants 

(called genotype-specific parameters, GSP’s) that encode the responses of different varieties to the 

environment. This can require huge amounts of computation because ECM’s have many GSP’s as 

well as site-specific properties (SSP’s, e.g. soil water holding capacity). Moreover, one cannot 

employ QG methods, unless the GSP’s from hundreds to thousands of lines are known. Thus, the 

overall objective of this study is to identify better ways to reduce the computational burden without 

minimizing ECM predictability. 

The study has three parts: (1) using the extended Fourier Amplitude Sensitivity Test 

(eFAST) to globally identify parameters of the CERES-Sorghum model that require accurate 

estimation under wet and dry environments; (2) developing a novel estimation method 

(Holographic Genetic Algorithm, HGA) applicable to both GSP and SSP estimation and testing it 

with the CROPGRO-Soybean model using 182 soybean lines planted in 352 site-years (7,426 yield 



  

observations); and (3) examining the behavior under estimation of the anthesis data prediction 

component of the CERES-Maize model. The latter study used 5,266 maize Nested Associated 

Mapping lines and a total 49,491 anthesis date observations from 11 plantings. 

Three major problems were discovered that challenge the ability to link QG and ECM’s: 

1) model expressibility, 2) parameter equifinality, and 3) parameter instability. Poor expressibility 

is the structural inability of a model to accurately predict an observation. It can only be solved by 

model changes. Parameter equifinality occurs when multiple parameter values produce equivalent 

model predictions. This can be solved by using eFAST as a guide to reduce the numbers of 

interacting parameters and by collecting additional data types. When parameters are unstable, it is 

impossible to know what values to use in environments other than those used in calibration. All of 

the methods that will have to be applied to solve these problems will expand the amount of data 

used with ECM’s. This will require better optimization methods to estimate model parameters 

efficiently. The HGA developed in this study will be a good foundation to build on. Thus, future 

research should be directed towards solving these issues to enable ECM’s to be used as tools to 

support breeders, farmers, and researchers addressing global food security issues. 

 



viii 

Table of Contents 

List of Figures ................................................................................................................................ xi 

List of Tables ................................................................................................................................ xv 

Acknowledgements ...................................................................................................................... xvi 

Dedication ................................................................................................................................... xvii 

Chapter 1 - INTRODUCTION ....................................................................................................... 1 

1.1 Crop Models ......................................................................................................................... 1 

1.2 Overall Objective .................................................................................................................. 3 

1.3 Sensitivity Analysis .............................................................................................................. 4 

1.4 Parameter Estimation ............................................................................................................ 5 

1.5 Objectives/Outline ................................................................................................................ 7 

1.6 Reference ............................................................................................................................ 10 

Chapter 2 - A Sensitivity Analysis of the CERES-Sorghum Model via Fourier-based Global 

Methods ................................................................................................................................. 14 

2.1 Introduction ......................................................................................................................... 15 

2.2 Background ......................................................................................................................... 18 

2.3 Materials and Methods........................................................................................................ 20 

2.3.1 Site and Experiment Description ................................................................................. 20 

2.3.2 Crop Model Description............................................................................................... 21 

2.3.3 Input parameters and output responses: ....................................................................... 23 

2.3.4 Mathematical Basis of the Extended Fourier Amplitude Sensitivity Test ................... 24 

2.3.5 Main effects.................................................................................................................. 26 

2.3.6 Total effects.................................................................................................................. 26 

2.3.7 Characteristics and Interpretation of the eFAST Sensitivity Indices: .......................... 27 

2.3.8 Statistical Analysis ....................................................................................................... 27 

2.4 Results ................................................................................................................................. 27 

2.5 Discussion ........................................................................................................................... 29 

2.6 Conclusion .......................................................................................................................... 32 

2.7 Acknowledgement .............................................................................................................. 33 

2.8 References ........................................................................................................................... 34 



ix 

Chapter 3 - Efficient crop model parameter estimation and site characterization using large 

breeding trial data sets ........................................................................................................... 45 

3.1 Introduction ....................................................................................................................... 46 

3.2 Methodology and theory ..................................................................................................... 49 

3.2.1 Assembling the minimum data set ............................................................................... 50 

3.2.2 Soil Data ....................................................................................................................... 51 

3.2.3 Agronomic Management and Weather Data ................................................................ 52 

3.2.4 Genotype Specific Parameters ..................................................................................... 52 

3.2.4.1 ICA Approach ....................................................................................................... 53 

3.2.4.2 Separate Factor (SF) approach .............................................................................. 54 

3.2.5 Planting Date ................................................................................................................ 54 

3.2.6 Estimated soil characteristics ....................................................................................... 54 

3.2.7 Model Evaluation ......................................................................................................... 63 

3.3 Results and Discussion ....................................................................................................... 64 

3.3.1 Quality of Fit ................................................................................................................ 64 

3.3.2 Parameter Stability ....................................................................................................... 66 

3.3.3 Estimation effects of location determination method .................................................. 67 

3.3.4 Computational Performance ........................................................................................ 67 

3.3.5 Validation ..................................................................................................................... 68 

3.4 Conclusion .......................................................................................................................... 69 

3.5 Acknowledgments .............................................................................................................. 70 

3.6 References ........................................................................................................................... 71 

Chapter 4 - Problems with Estimating Anthesis Phenology Parameters in Zea mays: 

Consequences for Combining Ecophysiological Models with Genetics ............................... 91 

4.1 Introduction ......................................................................................................................... 91 

4.2 Background ......................................................................................................................... 95 

4.3 Materials and Methods........................................................................................................ 99 

4.3.1 Experimental data ........................................................................................................ 99 

4.3.2 CERES-Maize model ................................................................................................... 99 

4.3.3 Parameter estimation .................................................................................................. 100 

4.3.3.1 Search strategy .................................................................................................... 100 



x 

4.3.3.2 Sampling the model parameter space with sobol sequences .............................. 102 

4.3.3.3 High performance computing ............................................................................. 103 

4.3.4 Assessing estimate properties .................................................................................... 103 

4.3.4.1 Equifinality ......................................................................................................... 103 

4.3.4.2 Interrelationships between parameter estimates ................................................. 104 

4.3.4.3 Model expressivity .............................................................................................. 105 

4.3.4.4 Testing for parameter stability across environments .......................................... 105 

4.4 Results ............................................................................................................................... 110 

4.4.1 Observations vs. Predictions ...................................................................................... 110 

4.4.2 Equifinality................................................................................................................. 110 

4.4.3 Interrelationships between parameter estimates ........................................................ 112 

4.4.4 Model expressivity ..................................................................................................... 112 

4.4.5 P2O gap ...................................................................................................................... 116 

4.4.6 Tests for stability of GSP estimates ........................................................................... 118 

4.5 Discussion ......................................................................................................................... 119 

4.6 Conclusions ....................................................................................................................... 125 

4.7 Acknowledgements ........................................................................................................... 129 

4.8 Reference .......................................................................................................................... 130 

Chapter 5 - CONCLUSION ........................................................................................................ 153 

  



xi 

List of Figures  

Fig. 2.1 Sampling curves generated using eFAST for all 20 parameters used in the study. ........ 40 

Fig. 2.2 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to grain yield. .................................................................................... 41 

Fig. 2.3 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to anthesis days (ADAT). ................................................................. 42 

Fig. 2.4 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to Maturity Days (MDAT). ............................................................... 43 

Fig. 2.5 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameters in response to leaf area index (LAI). .................................................................. 44 

Fig. 3.1 Example of one site based on the latitude, longitude provided in trial data. The provided 

information corresponds to the yellow pin, which is actually located in a residential area; 

however, the trial location can be inferred from the image. Field plot trials have identifying 

features such as many parallel alleys that can be used to identify their location – in this case 

marked with an “X”. Google Earth, 43°53’38.19”N,91°05’50.56”W. 9/28/15. .................. 78 

Fig. 3.2 Soil root growth factor for a variety of maximum suitable depth (X9) values. Note: that 

the horizontal axis is in meters but the parameter values are specified in centimeters. The 

search range is 40 ≤ 𝑋9 ≤ 500 cm. ..................................................................................... 78 

Fig. 3.3 Estimation problem structure. Green circles are varieties, brown circles are sites, and 

blue circles are particular planting dates. The black lines tell which cultivars were planted 

on which dates at which sites. As discussed in the text, each site has only one planting date 

in a given year. ...................................................................................................................... 79 

Fig. 3.4 Population structure used in HGA. Green, blue and brown circles are the optimizer for 

varieties planting date and site characteristics respectively. Stacked horizontal stripes are the 

population used in each optimizers and correspond to individual trial parameter vectors. .. 79 

Fig. 3.5 Approach to separate calibration and validation data sets. Green circles are varieties and 

blue circles are particular location-year. ............................................................................... 80 

Fig. 3.6 Observed yield compared with predicted from ICA and SF optimization approach taken 

from all observation and observations with mean. All yield data are rescaled to a relative, 

[0,1] scale. ............................................................................................................................. 80 



xii 

Fig. 3.7 Cumulative distribution of coefficient of variation of observed yield of each observation.

 ............................................................................................................................................... 81 

Fig. 3.8 Cumulative distribution of RMSE obtained from each 182 cultivars. RMSE value was 

calculated from rescaled data relative to [0,1] scale. ............................................................ 82 

Fig. 3.9 RMSE for each lines. Each dot represents individual lines and size/color of each dots 

represents the number of site-year present in each line. RMSE value was calculated from 

rescaled data relative to [0,1] scale. ...................................................................................... 83 

Fig. 3.10 Genotype specific parameters (GSP’s) value obtained from estimation compared with 

SF and ICA optimization approach. ...................................................................................... 84 

Fig. 3.11 Site parameters (Planting date (a), Soil root growth factor (b), Soil water factor (c) 

value obtained from estimation compared with ICA and SF optimization approach. d. Zoom 

section of planting date. ........................................................................................................ 85 

Fig. 3.12 Cumulative distribution of yield residuals obtained from three different soil location 

types. ..................................................................................................................................... 86 

Fig. 3.13 Convex hull from each observation’s predicted and observed yield for three different 

soil types. .............................................................................................................................. 87 

Fig. 3.14 Soil Water Holding Capacity (SWHC) from each location-year present in three 

different soil location types. .................................................................................................. 88 

Fig. 3.15 Optimization performance throughout each generation from ICA and SF approach. 

Objective function value is the total sum of RMSE estimated from all 888 optimizers....... 89 

Fig. 3.16 Observed and predicted yield compared for calibration and validation data sets for a) 

ICA and b) SF approach. Model was validated using 568 independent observations obtained 

from 17 different cultivars and 271 different site-years and calibrated with 6617 

observations. Values were scaled to 0 to 1. .......................................................................... 90 

Fig. 4.1 Parameter search strategies a. Conventional method b. Database method. L1…N is the 

number of lines.................................................................................................................... 140 

Fig. 4.2 (a) The first 275 quasi-random points from a two-dimensional Sobol sequence. (b) The 

first 275 points produced by the commonly used Mersenne twister pseudo-random number 

generator (Matsumoto and Nishimura, 1998). The Sobol sequence covers the space more 

evenly. The first 20 points are green, the next 80 are blue, and the final 175 are red, thus 

demonstrating Sobol gap filling. ......................................................................................... 141 



xiii 

Fig. 4.3 Predicted and Observed anthesis days of all 5,266 lines from 11 site-year combinations. 

The graph has 49,491 points and an overall RMSE of 2.39 days. ...................................... 142 

Fig. 4.4 Histogram depicting the frequency distribution of number of ties for 2,254 lines, used 

here to characterize equifinality. (a): Histogram of number of ties for 2153 lines with fewer 

than or equal to 40 ties. (b): Continuation of the histogram tail from figure a representing 

frequency of ties for the 101 lines with more than 40 ties. The trace at the top of each panel 

represents the average number of site-year combinations (right axis) used as data for 

parameter estimation. .......................................................................................................... 143 

Fig. 4.5 Phenotype space plots of predicted (a) and observed (b) values of anthesis dates for site-

years NY6 and NY7. The marker sizes and colors respectively express the levels of 

equifinality based on number of ties for P1 (log10 scale) and the relative ranges of its tied 

values. The red line is explained in the text. ....................................................................... 144 

Fig. 4.6 Empirical distribution of selected GSP parameter estimates (main diagonal), pairwise 

scatterplots (upper right triangle) and empirical estimates of Pearson correlation 

coefficients, regression coefficients and p-values (Lower left triangle). Each dot in the 

scatter plots represents a pair of GSP estimates from a single line..................................... 145 

Fig. 4.7 Phenotype space plots for predicted and observed anthesis dates. Each panel corresponds 

to a pair of site-years for which fits were done. Regional color codes are described in the 

text. ...................................................................................................................................... 146 

Fig. 4.8 Superimposed anthesis date results using NY6 and NY7 data illustrating that searches 

via database and DE optimization over a much larger parameter space are equally unable to 

reproduce the observations for lines shown as red dots. ..................................................... 147 

Fig. 4.9 Scatterplot of P1 vs. P2O estimates using data from NY6 and NY7 based on the database 

search (a) and Differential Evolution (b). Yellow and red dots are, respectively, 

observations characterized as expressible and inexpressible by model predictions. .......... 148 

Fig. 4.10 P1 estimates from the database search (black) and the numbers of lines with 

inexpressible observations (red) arranged in a tableau organized as a phenotype space plot 

corresponding to the center portion of Fig. 8. The dark red line is the expressibility frontier 

and the green arrow shows the P1 value (254) from the GSP combination that minimizes the 

RMSE for one illustrative line. Horizontal and vertical yellow strips are the anthesis dates 

for NY6 and NY7 ................................................................................................................ 149 



xiv 

Fig. 4.11 P2O and PHINT scatter plots (top row) and P2O cumulative density functions (bottom 

row) using (a & e) all 11 site-years, ( b & f) longer day site-years, (c & g) shorter day site-

years based on the database approach, and (d & i) shorter day site-years using the DE 

approach. All horizontal axes in both rows have the same scale. ....................................... 150 

Fig. 4.12 Phenotype space plots of observed and predicted values based on the three site-years 

with shorter days. Note the large number of points in the FL6-PR6 and FL6-FL7 plots that 

lie above the dark blue prediction region based on DE. ..................................................... 151 

Fig. 4.13 The differences in parameter estimates from database search vs. DE (vertical axes) 

plotted against the corresponding difference in RMSE for 5240 lines in FL6, FL7, and/or 

PR6. The color encodes the sum of residual (observed minus mean) across site-years for 

each line. ............................................................................................................................. 152 

 

  



xv 

List of Tables 

Table 2.1 Detail description of experimental sites........................................................................ 38 

Table 2.2 CERES-Sorghum input parameters and output responses for sensitivity analysis (SA).

 ............................................................................................................................................... 39 

Table 2.3 P-value from ANOVA test of sensitivity index between dry and wet years. ............... 40 

Table 3.1 CROPGRO-Soybean genotype specific parameters. Linear ICA equations and ranges 

shown for the seven targeted parameters along with the constants used for non-targets. .... 76 

Table 3.2 Problem and cluster statistics used in optimization approach. ..................................... 77 

Table 4.1 Sowing dates, geographical coordinates, total number of lines planted and number of 

lines for which anthesis dates were observed for all site-year combinations used in this 

study. ................................................................................................................................... 137 

Table 4.2 Parameter ranges used in generating Sobol sequence. ............................................... 137 

Table 4.3 Numbers of model expressible and inexpressible observations for selected site-year 

pairs. .................................................................................................................................... 138 

Table 4.4 Extended range of parameter values used for DE search. .......................................... 138 

Table 4.5 Estimated likelihood, fit statistics, summary statistics, and a likelihood ratio test for 

competing statistical models fitted on GSP estimates with and without the random effect of 

site-year subset from all 177,870 data points ...................................................................... 139 

Table 4.6 Estimated fit statistics, summary statistics, for competing statistical models fitted on 

GSP estimates with and without the random effect of site-year subset from all data with 

only ties and without ties. ................................................................................................... 139 

 

  



xvi 

Acknowledgements 

I wish to take this opportunity to thank all the people who continuously helped to 

successfully complete my dissertation from Department of Agronomy, Kansas State University. 

My great moment started when I first met with my advisor, Professor Dr. Stephen M. 

Welch. I would like to express my deepest gratitude to him for his faith and believe in me. It 

wouldn’t be possible for me to be in this stage without his support, and guidance. His sheer 

brilliance, sound technical insights and constant support were highly inspiring. I feel fortunate to 

be a part of his research group.  

I would also like to give my special thanks to my committee members: Drs. Kelly Thorp, 

Sanjoy Das, Jesse Poland, and Vara Prasad. Their insightful comments, feedback, suggestion, and 

encouragement had always broadened my knowledge and skill throughout my study period. I 

would also like to thank Dr. Jeffery White at USDA, Arizona, Drs. Jim Jones and Ken Boote at 

University of Florida and my lab’s post doc. Dr. Wen Fung Leong for their valuable comment and 

suggestion throughout the research period. 

I would also like to acknowledge Dr. David Turner, Department of Computer Science at 

KSU and Dr. John Fonner, Texas Advanced Computing Center (TACC) for their invaluable 

assistance while using Beocat and Stampede computing center. 

Most importantly, my special thanks goes to my parents for believing in me and giving me 

the autonomy to pursue my dreams. Without their numerous sacrifices and support, I would not 

have been able to complete my Ph.D. and enjoy my personal and professional growth. My 

supportive wife, life partner, and soul mate, Ms. Anju Giri, my deepest love and thanks to you for 

always being on my side throughout these years.  



xvii 

Dedication 

 

 

 

 

 

 

 

 

I would like to dedicate this  

to my parents 

(Father: Babu Ram Lamsal and Mother: Shanti 

Devi Lamsal)  

My beautiful wife, Anju Giri  

And my lovely son, Avyn Lamsal 

 

 

  



1 

CHAPTER 1 - INTRODUCTION 

1.1 Crop Models 

It has been predicted that world population will continue to grow and will likely reach 9 

billion by middle of this century (Godfray et al., 2010). It is widely believed that global crop 

production must be doubled by this time to meet the worlds need for food, fiber and fuel resources 

(Ray et al., 2013). Meanwhile, farmers are also experiencing competition for land, water, and 

energy for crop production, and factors like climate change along with declining water resources 

are hindering crop production. To overcome this problem, novel crop improvement and 

management methods are essential to increase breeding rates of gain as well as on-farm yields 

through enhanced management strategies. A central requirement for these tasks is the reliable 

quantitative methods for predicting the behavior of different crop cultivars in novel, time varying 

environments. 

In the 20th century two very different mathematical approaches emerged to address this 

need. Crop simulation models are ecophysiological process-based and have the ability to predict 

phenotypes of different cultivars in response to the environment and management (White, 2009). 

These models use differential equations to represent physiological (photosynthesis, respiration, 

growth and carbohydrate partitioning, development of reproductive structure), chemical and 

physical (soil chemical transformations, energy flows, diffusion of gases in to leaves) and other 

processes (White and Hoogenboom, 2010). They are complex and non-linear (Román-Paoli et al., 

2000) but play an essential role in understanding and predicting the likely behavior of crop systems 

(Xu and Gertner, 2011). 

These models are widely utilized in agriculture as research tools to predict cropping system 

outcomes under different climate, soil and management conditions (Jones et al., 2003). They 
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typically contain large numbers of parameters (i.e., numerical constants) which represent the 

physical and biological characteristics of the crop and its environment. Models simulate crop 

growth and development as a function of these many parameters that describe the climatic, genetic, 

soil, and crop management features. The accuracy of model predictions strongly depend on the 

accuracy of many (but not necessarily all) of these parameters (DeJonge et al., 2012). 

The second approach is quantitative genetics. Geneticists are continuously trying to 

identify the genes and genetic loci involved in plant adaption to different environmental conditions 

to support the efforts of breeders in developing new genotypes that are optimized for challenging 

environmental conditions. Quantitative genetic models are typically based on linear algebra and 

often seek to predict phenotypic endpoints (e.g., yields, flowering dates) rather than the progress 

of crop development through time. Their strength is that, unlike crop simulation models, their 

independent variables are explicitly genetic; i.e., marker states, alleles, etc. 

Because the two approaches are so different, the communities that use and advance them 

are essentially disjoint. However, there has been an increasing amount of research on how to meld 

them (Hoogenboom et al., 2004; Messina et al., 2006; Reymond et al., 2003; Yin et al., 2003) for 

use in breeding programs. Hammer et al. (2002) stated that crop simulation models can help in 

interpreting breeding results, enhance breeding strategies, develop superior traits in combinations 

with genetic markers via improved phenotype prediction of prospective genotypes in novel, time–

varying environments, and improve understanding of specific gene alterations affecting plant 

behavior. All of these advances should increase the rate of genetic gain, thus reducing the number 

of breeding cycles needed to reach a given target. Other improvements would accrue from 

enhanced, model-based production management.  
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The basic notion has two parts. The first is to exploit ecophysiological crop models to 

describe the intricate, dynamic, and environmentally responsive biological mechanisms that 

determine crop growth and development on daily/hourly time scale to predict the phenotypes of 

interest within different possible environments and in-field management options. The second part 

is to use quantitative genetic methods (Cooper et al., 2016; Technow et al., 2015) to relate the 

values of the model’s biological parameters (herein after called genotypic specific parameters, 

GSP’s) that encode the responses of different genetic lines to genotypic markers. In this way one 

might predict the behavior of an offspring whose parents have not yet been crossed in an 

environment that might not yet exist. To do so, one would (1) use the offspring’s markers to predict 

the values of its ecophysiological model constants and then (2) use the crop simulation model to 

predict the phenotypes in the environments of interest (Reymond et al., 2003). 

1.2 Overall Objective 

The methodology just described imposes an enormous computational burden. First of all 

the ecophysiological models have many GSP’s. Secondly, it may not be feasible to directly 

measure all of the environmental properties (e.g. depth profiles of soil hydraulic parameters), so 

they may need to be estimated concurrently with the GSP’s. These environmental properties can 

be referred to as site-specific parameters (SSP’s). Thirdly, to employ quantitative genetic methods, 

the GSP’s of hundreds to thousands of lines must be estimated. Therefore, the overall objective of 

this dissertation is to examine ways to reduce this burden. 

Stated briefly, the three chapters that follow describe (1) the use of global sensitivity 

analysis to identify the subset of parameters most requiring estimation, (2) a novel estimation 

procedure applicable when both plant and soil parameters must be estimated, and (3) an estimation 

effort involving an exceptionally large number of lines. The latter reveals and diagnoses some 
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particular issues requiring resolution if the scheme for melding ecophysiological and quantitative 

genetic models is to be truly viable. The remaining sections of this chapter provide (1) background 

on sensitivity analysis and (2) parameter estimation by way of justifying (3) the specific objectives 

and undertakings the statements of which follow. 

1.3 Sensitivity Analysis 

Sensitivity analysis (SA) is a fundamental tool for supporting mathematical model 

development and use (Taranatola and Salteli, 2003). SA studies “how the variation of the output 

of a model can be apportioned to different input variations” (Saltelli et al., 2000). SA eventually 

helps to reduce and simplify models by avoiding redundancies in their structure along with over 

parameterization (Taranatola and Salteli, 2003). Crop models in general are over parameterized 

for reasons that reflect biological reality. (Stated in one way, plant evolution is under no mandate 

to produce mathematically concise systems; the only imperative is successful offspring.) However, 

parameter estimation in high-dimensional parameter spaces is both algorithmically and 

computationally challenging. Dimensionality is reduced by restricting estimation to only those 

parameters found to be influential by SA (Van Griensven et al., 2006). Additionally, because errors 

in unimportant parameters will not greatly affect model outputs, they can be set to nominal values, 

thus reducing over parameterization.  

According to Saltelli et al. (2000), there two major categories of SA methods, local and 

global. Local SA methods calculate sensitivity by varying a single parameter at a time in the 

neighborhood of some nominal set of values while holding all others constant. This method is most 

valid when applied with a linear model but can be quite misleading when applied for nonlinear 

models because model responses can depend strongly on interactions between variables that are 
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separately influenced by individual parameters. Thus, although they are constants, the parameters 

interact (Christopher Frey and Patil, 2002). 

Global SA methods overcome these drawbacks. They calculate the sensitivity by 

examining the model output responses across the parameter space by simultaneous parameter 

perturbations (McRae et al., 1982). This allows examination of model output responsiveness to 

both single and multiple interacting of parameters. This can lead to substantial reductions in 

estimation dimensionality by limiting attention to the select few parameters that most influence 

model outputs. 

However, while global sensitivity analysis can evaluate interactions between parameters in 

particular environments, there has been little work done on applying this type of analysis across 

greatly different environments (DeJonge et al., 2012; Jones et al., 2012). Such comparative study 

can lead to further computational savings when particular types of environments are of interest. 

For example, understanding environment-dependent patterns of sensitivity is particularly 

important in a state like Kansas where the availability of water is changing in the face of aquifer 

dewatering and a shifting climate. Therefore, Chapter 2 compares the results of a global sensitivity 

analysis algorithm applied to simulations conducted at multiple sites under comparatively wet and 

dry scenarios.  

1.4 Parameter Estimation 

Throughout most of the history of crop simulation, it has been impractical to directly 

measure all the GSP’s and SSP’s that models require for more than a few varieties and sites. 

Therefore, researchers have had no choice but to estimate these parameters indirectly from field 

data on phenology, yield and seed size (Alderman et al., 2015; Mavromatis et al., 2002, 2001; 

Pathak et al., 2012; Welch et al., 2002) or reproducing gene effects on crop development and yield 
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(Messina et al., 2006). Parameter estimation is a process of iteratively adjusting model parameter 

values to so that model predictions align closely with observed data sets, where “closeness” is 

evaluated by a goodness-of-fit function. The goal is to maximize the model’s predictive power 

when applied to conditions outside of the training datasets. Successful completion of this step is a 

prerequisite for any application of a model (He et al., 2009). 

Because crop models are often complex and non-linear (Román-Paoli et al., 2000), there is 

little likelihood that the algorithms traditionally used in statistics to optimize model parameter will 

be effective (Klepper and Hendrix, 1994; Klepper and Rouse, 1991). Such methods are much more 

likely to converge to some parameter values that are “optimal” only in relation to those within their 

local neighborhood in the parameter space (Wallach et al., 2011, 2011). Therefore, studies have 

compared different algorithms for parameter estimation in complex models. Surprisingly, a very 

frequent approach is trial and error (Wallach et al., 2001), wherein different parameters values are 

tested manually until an acceptable appearing match between simulated and observed data is 

found. This approach, of course, becomes highly inefficient as the amount of parameter space 

increases. Thus, numerous off-the-shelf automated optimization techniques have also been 

utilized. Examples include use of global optimization techniques such as the genetic algorithm (J. 

P. Pabico et al., 1999; Thorp et al., 2012), simulated annealing (Thorp et al., 2008), sequential 

search software (GENCALC; Hunt et al., 2001), Uniform covering by Probabilistic Region 

(UCPR; Klepper and Hendrix, 1994; Román-Paoli et al., 2000), the simplex method (Royce et al., 

2001; Xinli et al., 1995), iterative grid searches (Mavromatis et al., 2001; Welch et al., 2002), 

particle swarm optimization (PSO; Koduru et al., 2007), and generalized likelihood uncertainty 

estimation (GLUE;He et al., 2010, 2009). 
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Most recently, however, with advancements such as high-throughput phenotyping and 

plantings containing the huge numbers of lines necessitated by quantitative genetics studies, data 

sets are becoming available whose size greatly exceeds what previously passed as “large” (e.g., 

Mavromatis et al., 2002; Welch et al., 2002). This provides a motivation to examine parameter 

estimation in the particular case of “big data” – a context likely to characterize most, if not all crop 

model applications in the future. Chapters 3 and 4 undertake this task using two different data sets 

(one originating in the private sector and one from the public sector) and estimation approaches. 

1.5 Objectives/Outline 

Currently, ecophysiological crop models exist for all major crops, many minor ones, and 

some weed species. The studies in the next three chapters will focus on three particular models, 

CERES-Sorghum, CROPGRO-Soybean, and CERES-Maize, in that order. These models are all 

part of a single software suite, DSSAT (Decision Support System for Agro-technology Transfer). 

DSSAT has been used for well over two decades by researchers all over the world. The full 

package supports simulation of 42 different species including cereal, legume, forage, and oilseed 

crops (Hoogenboom et al., 2015; Jones et al., 2003). 

Chapter 2 presents a global SA of the CERES-Sorghum model using the Extended Fourier 

Amplitude Sensitivity Test (eFAST) algorithm (Saltelli et al., 1999). Kansas is the second largest 

sorghum producing state in the U.S. Both dryland and irrigated sorghum production is common in 

Kansas (Assefa et al., 2013). Although, as discussed above, one would ideally wish to estimate all 

parameters, this is not likely to be computationally feasible in a big-data world. Thus, knowing 

which parameters in which environments most influence outputs (and, therefore, can most inflate 

uncertainties in model predictions) can help greatly in focusing estimation efforts (Staggenborg 

and Vanderlip, 2005; Wang et al., 2013). Therefore, the main objective of this chapter is to 
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determine the most influential CERES-Sorghum input parameters under wet and dry conditions in 

Kansas. 

The objective of Chapter 3 is to develop a novel algorithm that increases the computational 

efficiency of parameter estimation by exploiting the data structure embedded in large-scale field 

performance trials along with other relationships that may exist among the parameters too. The 

algorithm is specifically designed for situations wherein the parameters of a nonlinear model are 

subject to linear constraints. In our situation these were largely bound constraints expressed in 

linear forms. We call our method the “Holographic Genetic Algorithm” (HGA) because, just as all 

small areas in a hologram contain information on all parts of the 3D image, the software analyses 

all of the data to determine many additional constraints imposed by the exact pattern of site-year-

line combinations provided. The data set comprises 7426 site-year-line soybean yield means. 

Applied to the CROPGRO-Soybean model, HGA estimates seven GSP’s for each of 182 lines and 

three SSP’s for each of 353 site-years for a total of 2333 parameters. The ratio of 7426 observations 

to 2333 parameters (i.e., 3.18) would be undesirably low but it was acceptable in this instance 

because of large number of constraints that HGA extracted from the data. 

The test data were posted by Syngenta AG as part of a predictive soybean modeling contest 

conducted in 2015-16 in collaboration with the Institute for Operations Research and the 

Management Sciences (INFORMS). HGA and all required CROPGRO-Soybean model executions 

were performed on the Stampede and Beocat supercomputers located, respectively, at the Texas 

Advanced Computing Center of the University of Texas and Kansas State University. 

With the advances in plant genomics and the falling costs of locating genetic markers, 

efforts are being made to link GSP’s to actual genes and/or QTL’s (quantitative trait loci) ( Boote 

et al., 2003; Messina et al., 2006; Wilczek et al., 2009). The original goal of Chapter 4 was to do 
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this for four CERES-Maize GSP’s that control anthesis date. Even though we observed very good 

estimation result using our new HGA algorithm in Chapter 2, we also saw some possible 

equifinality issues. Thus, in Chapter 4, we used different approach for estimation which allowed 

us to study the parameter response surface and characterize the equifinality. We used the 5266 

lines of the Maize Nested Association Mapping population, subsets of which had been grown at 

11 site-years (49491 total site-year-line combinations). The first novel part of this study used a 

quasi-random multidimensional search wherein the total number of time consuming model runs 

does not depend on the number of lines but only on the number of site-years and desired parameter 

precision. As in Chapter 2, all computer processing was done on Stampede and Beocat. 

The second novel part was to be a comparison of the GSP QTL’s with quantitative trait 

loci that had been previously found by directly mapping anthesis dates in these same lines and 

plantings. However, despite the high predictive quality of the data fits obtained, several very 

mysterious artifacts emerged during estimation which rendered mapping impossible. This 

unexpected and adverse finding has serious negative implications for the methodology that most 

workers currently envision as the route forward for combining ecophysiological and quantitative 

genetic models. Therefore, the second objective of the paper became to analyze these artifacts and 

determine their source. This was achieved and future work can focus on finding remedies.  
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CHAPTER 2 - A SENSITIVITY ANALYSIS OF THE CERES-

SORGHUM MODEL VIA FOURIER-BASED GLOBAL 

METHODS 

Abstract 

Kansas is the second largest sorghum producing state in the U.S. and both dryland and 

irrigated sorghum production is common. It has been proven that cropping system models can be 

used as a research tool in predicting production outcomes under different climate, soil and 

management conditions. Crop model predictive skill depends strongly on the accuracy of many 

input parameters and thus, one would ideally wish to estimate all model parameters. However, it 

is not likely to be computationally feasible in a big data world, because ..... Thus, identifying the 

parameters which has greater influence in output can greatly assist the estimation effort. Therefore, 

the main objective of this study is to determine the most influential model (CERES-Sorghum) 

parameters under wet and dry conditions. A global sensitivity analysis [Extended Fourier 

Amplitude Sensitivity Test (eFAST)] method was used to identify the parameter (cultivar, soil, 

agronomic) that are influential to model output (yield, anthesis days, maturity days, and leaf area 

index). Results showed that cultivar, soil and agronomic parameters can shift their influence 

dominance pattern relative to different output responses. Furthermore, it is revealed that CERES-

Sorghum output responses were highly sensitive to genetic parameters in wet environment and 

highly sensitive to soil parameters in dry environment. Result also demonstrated that eFAST can 

be very useful for detecting both individual and interaction effect of model input parameters. 
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2.1 Introduction 

Sorghum (Sorghum bicolar (L.) Moench) is an important cereal crop grown for food and 

fodder security on semi-arid tropics of African and Asian continents (Reddy et al., 2013). It is a 

genetically diverse crop and is grown in many countries all around the world (Mutava et al., 2011). 

Due to its drought tolerance, resistance to mycotoxins and fungi, and survivability in relatively 

adverse climatic conditions, sorghum production is increasing world-wide. In the United States, 

Sorghum represents the third-largest cereal grain and Kansas is the second highest producer of 

sorghum . In terms of production area, both dryland and irrigated cropping is common, though 

dryland sorghum production is far greater than irrigated sorghum production in Kansas (Assefa et 

al., 2013). It has been proven that cropping system models can be used as a research tool in 

predicting production outcomes under different climate, soil and management conditions (Jones et 

al., 2003; Staggenborg and Vanderlip, 2005), but uncertainty associated with model input 

parameters for different lines and environmental conditions restricts their wide application 

(Staggenborg and Vanderlip, 2005; Wang et al., 2013). 

In general, models play a crucial role in understanding and predicting the potential 

behaviors of many systems ranging from physics and chemistry to biology, the environmental 

sciences, the social sciences and beyond (Xu and Gertner, 2011). Crop modeling is a powerful tool 

to quantify future cropping trends and to identify targets for improvements (Semenov and Shewry, 

2011). White (2009) stated that process-based models are powerful tools for predicting how plant 

performance varies in response to genetic, environmental and agronomic management parameters 

(Hammer et al., 2002; Jones et al., 2012; Lobell and Ortiz-Monasterio, 2007). The Crop Estimation 

through Resource and Environment Synthesis (CERES)-Sorghum model is one of the oldest, crop 

simulation models for Sorghum (Virmani et al., 1989). We used the version incorporated in CSM 
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4.5 Cropping System Model; (Hoogenboom et al., 2015; Jones et al., 2003). CERES-Sorghum is 

a complex, nonlinear, dynamic system which simulates Sorghum growth and development as a 

function of a large number of input variables and parameters describing climatic, genetic, soil, and 

crop management factors (Ritchie and Alagarswamy, 1989a; Virmani et al., 1989)  

Crop model have been extensively used in research aimed at predicting the outcomes of 

different production systems (e.g., irrigated vs. dryland) (Rosenzweig, 1990; Saseendran et al., 

2008; Staggenborg and Vanderlip, 2005; Xie et al., 2001; Ziaei and Sepaskhah, 2003). Crop model 

predictive skill depends strongly on the accuracy of many input parameters that describe the fixed 

properties of varieties and soils and which are commonly based on field experiments (DeJonge et 

al., 2012). However, not all of these parameters are equally influential on model outputs, and 

determining which ones are the most important necessitates a sensitivity analysis (SA). In addition, 

the influence of parameters can vary with environmental conditions; thus, parameters that are 

important to one production system might not have the same impact elsewhere (Confalonieri et 

al., 2010; Wang et al., 2013). Thus, care is warranted when using parameters at one location that 

were estimated at another. This makes it desirable to identify parameter sensitivities at multiple 

sites. 

Sensitivity analysis (SA) is a fundamental tool for supporting mathematical model 

development and use (Taranatola and Salteli, 2003). SA addresses the question of “how the 

variation of the output of a model can be apportioned to different input variation” (Saltelli et al., 

2000). It is the most sensitive parameters that demand the greatest experimental accuracy. Along 

with understanding a model's behavior, SA also helps to reduce and simplify the modeling process 

by avoiding over parameterization and redundant model structure (Taranatola and Salteli, 2003; 
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Van Griensven et al., 2006). Spear and Hornberger (1980) further mentioned that SA helps to 

reduce the number of parameters that require fitting with output data. 

Crop models have many input parameters (indeed, they are over-parameterized), many 

output variables, and may be used in many environments. This can generate many output/input  

environment combinations for which sensitivities might be desired, making SA computationally 

demanding. Therefore, most such analyses have been commonly carried out by focusing only some 

of the general factors known a priori in a general manner to significantly affect the crop growth 

and development such as water, fertilizer and climate. Thus, it remains quite possible that there 

might be other factors which also impact crop growth and development to an unexpected degree 

(Jones et al., 2012). To uncover these, should they exist, requires an SA method that can 

accommodate the large numbers of combinations. 

There are primarily two different kinds of SA methods (Saltelli et al., 2000): local and 

global. Local SA methods calculate sensitivity by varying one parameter at a time in a small 

neighborhood of some nominal set of values, keeping the rest of the parameters constant. The 

result of local SA heavily depends on the base value of the input parameter. The results may not 

adequately inform when applied to non-linear models because of interaction effects and parameter 

sensitivities that can easily change with the value of the parameter (i.e., its location in parameter 

space; Frey and Patil, 2002). Global SA methods overcome this drawback by examining the overall 

response of model outputs to variation across the parameter space (McRae et al., 1982). These 

methods compute the sensitivity of specific output variables to both single parameters and 

multiple, interacting parameters.  

To the best of our knowledge, very little SA literature exists on CERES-Sorghum model. 

The most notable one is White et al. (2005), who studied the sensitivity of only a single variable 
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(temperature) and measured responses to several temperature levels. There do not seem to be any 

papers on the global sensitivity of CERES-Sorghum input parameters although such studies do 

exist for other crops [e.g. CERES-Maize (Jones et al 2012), STICS-wheat (Varella et al., 2010) 

and APSIM-wheat (Zhao et al., 2014)]. In addition, SA results examining overall sensitivity of a 

model cannot be adapted to different treatments (e.g. irrigated vs. dryland) because sensitivity of 

input parameters with respect to different response variables differ across location and climatic 

condition (Staggenborg and Vanderlip, 2005). Thus, the main objective of this study is to 

determine the sensitivity of the CERES-Sorghum output variables to many of its input parameters 

in both dryland and wetland cropping systems. 

2.2 Background 

The literature contains several global sensitivity analysis techniques including: (1) 

commonly used variance-based methods such as Fourier Amplitude Sensitivity Test (FAST; 

Cukier et al., 1973; Saltelli et al., 1999), Extended FAST (eFAST; Saltelli et al., 1999), and Sobol’s 

method (Sobol, 2001) ; (2) the screening or elementary effect method (Morris, 1991; Compolongo 

et al., 2007) (3) regression based methods (Helton et al., 2006; Tondel et al., 2013), (4) Mckay’s 

one-way ANOVA method (McKay, 1997), and (5) the moment independent approach (Borgonovo 

and Tarantola, 2008; Park and Ahn, 1994). 

The Screening method aims at identifying parameters as either having (1) negligible 

influence, (2) linear additive effects, or (3) nonlinear/interaction effects perhaps in concert with 

other parameters. It constructs trajectories of parameter sampling points based on a randomized, 

one-at-a-time selection of parameters for which model runs are then done using a set of 

predetermined levels. The results of each run are compared to a base run and sensitivities are 

calculated by a finite difference approximation to the partial derivative. These values are assumed 
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to be samples from a probability distribution whose sample mean, µ, and standard deviation, σ, 

are the sensitivity measures. The first describes the overall linear additive influence of a parameter 

(which might be negligible) and the second quantifies the extent of non-linear (interaction) effects 

with other parameters (Morris, 1991; Campolongo et al., 2007). The main limitation of this method 

is that it can commit Type II errors and fail to identify parameters with considerable influence on 

the model – the price of its robustness against making a Type I error by declaring a parameter to 

be important when it is not (Campolongo and Saltelli, 1997). 

The regression based method is based on the computation of standard or partial regression 

coefficients. In this approach, the parameters are viewed as regressors and the model outputs as 

response variables. The model is run with multiple combinations of parameter values upon which 

the outputs are regressed. The regression coefficients quantify the sensitivity of each parameter 

(Tondel et al., 2013). This method performs well when the parameter values are statistically 

independent of each other (Peck and Devore, 2011) but lacks robustness when key assumptions of 

regression are not met. In addition, the method is critically dependent on the regression model used 

and the range of variation of the inputs (Christopher Frey and Patil, 2002). The ANOVA method 

is a parametric method that assesses whether there is a statistical association between an output 

and one or more inputs (Krishnaiah, 1981). This method is computationally intensive when applied 

for large number of parameters, lacks robustness when there is significant departure of the response 

variable from normality, and has difficulty quantifying the sensitivities of individual parameters 

when they are correlated. 

Variance-based SA methods, also known as global sensitivity approaches, assess how the 

uncertainty in the outputs are distributed across the inputs. It decomposes the variance of the model 

outputs into fractions which can be attributed to each of the input parameters. Except for the 
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classical FAST method (Cukier et al., 1973), these algorithms all calculate the total and first order 

sensitivity for each parameter (Confalonieri et al., 2012). The Sobol method requires the numerical 

integration techniques such as Monte Carlo, and thus is highly computationally intensive 

(Mokhtari et al., 2005). 

FAST is one of the most popular approaches to compute global sensitivity and was 

introduced by Cukier et al. (1973). The method explores large parts of a multidimensional 

parameter space by drawing input samples along a space-filling periodic curve constructed by 

assigning different frequencies to different parameters. The notion is that if a particular model 

output is sensitive to a given input, then a Fourier spectrum analysis of the outputs will reveal a 

component at that parameter’s corresponding frequency. In this paper we have used the Extended 

(eFAST) version that adds to FAST the capacity to calculate both main and total (interaction) 

sensitivities (Saltelli et al., 1999). Due to the good convergence ability with relative small sample 

size, eFAST is significantly less computationally expensive than other global sensitivity (Sobol 

sensitivity) analysis methods (Saltelli et al., 1999; Zhao et al., 2014). Even though, Screening 

method is often considered as low computation cost, but result is more considered as qualitative 

(by ranking parameters based on sensitivity) then quantitative (Dejonge et al., 2007). The 

mathematical description of this method is explained in methodology section below. 

2.3 Materials and Methods 

2.3.1 Site and Experiment Description 

This study was located in Kansas (central US), where the elevation increases from the 

southeast (207 m) to the northwest (1231 m). Mean annual precipitation varies from east (>114 

cm) to west (<46 cm), and the yearly average temperature gradient ranges from 9oC (north) to 

>14oC (south), thus framing the prevailing challenges affecting agricultural production in Kansas 
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(Tomilnson and Knapp, 2012). In response, Ottawa, Hutchinson, Hays, and Tribune (Table 2.1) 

were selected to represent all precipitation, elevation, and temperature gradients. To select dry and 

wet years, precipitation throughout the sorghum growing season was totaled for each year from 

1950 to 2014. The years with closest to the 90th and 10th percentiles were selected to be the wet 

and dry years, respectively, for each site. The soil information required by CERES-Sorghum was 

obtained from the National Resources Conservation Service (NRCS) Web Soil Survey database 

(http://websoilsurvey.nrcs.usda.gov/). Dryland sorghum performance trial reports for each site-

year combination (obtained from the Kansas State University Research and Extension Service) 

provided all required model agronomic inputs. Table 2.1 gives the detailed description of each site. 

All model runs were performed assuming rainfed conditions and using crop parameters present in 

DSSAT cultivar template file for the RS160 sorghum variety as base values (Hoogenboom et al., 

2015). 

2.3.2 Crop Model Description 

The Cropping System Model (CSM) is one of the oldest, the most advanced, and the most 

widely used crop simulation models (Quiring and Legates, 2008). The sensitivity of several 

CERES-Sorghum (v. 4.5) outputs were measured with respect to a number of agronomic, genetic, 

and soil input parameters. CSM-CERES-Sorghum is based on the CERES-Sorghum model 

described by Singh et al. (1993). The model requires input data such as daily weather (maximum 

and minimum temperatures, solar radiation, relative humidity, and precipitation), soil 

characteristics (soil texture, pH, and soil water related parameter etc.), cultivar parameters (e.g., 

phenological parameter (P1, PHINT), and agronomic management practices (e.g., planting date, 

plant population, fertilizer application date). 

http://websoilsurvey.nrcs.usda.gov/
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CERES-Sorghum simulates crop development, growth, and yield based on environmental 

(meteorological and soil) and cultivar specific parameters for each individual phenological phase 

over time until harvest. Plant phenological development rates are calculated based on temperature 

and photoperiod. The model assumes that from end of juvenile phase to panicle initiation, 

photoperiods longer than the critical short day length slow the development. Similarly, the 

durations of particular crop growth stages are directly related to temperature; specifically, to the 

sums of mean daily air temperature above a base value (cumulative growing degree days). 

The total crop biomass (expressed as dry matter) is calculated as product of average growth 

rate and the growth duration, which is broken up into daily time steps. The biomass increments are 

initially partitioned to leaves, stems, roots and (after transition to the reproductive stage) ear and 

grain growth (Ritchie, 1998). The CERES-Sorghum model computes daily dry matter increments 

based on radiation use efficiency and light interception (Ritchie, 1998) and calculates a deduction 

for respiration that is based on the amount of biomass existing at each time step. Light interception 

is estimated assuming an homogenous canopy and using a canopy-level radiation extinction 

coefficient that is adjusted for row width (White et al., 2005). In the CERES-models, a potential 

leaf expansion value is calculated that depends on the proportion of the daily dry matter increment 

that is allocated to leaves. However, actual leaf growth is determined by scaling this potential to 

reflect the impact of various stressors. Specifically, the potential expansion rate is multiplied by a 

0-to-1 value that depends on temperature extremes, water deficits, and/or nitrogen insufficiency. 

Stress can affect the growth rate of other tissues (e.g. grain) via a similar mechanism. 

 The model also assumes that the ear and panicle of sorghum expand rapidly after the end 

of the leaf growth. Final grain yield is estimated as the product of grain numbers per plant, the 

individual kernel grain weight, and the number of plants per unit area. Reductions in grain yield, 
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if any, result from decreases in dry matter production during grain filling or stress effects that 

impact kernel growth rates (Ritchie, 1998). The ability to capture soil, environment and plant 

interaction across a wide range of environmental condition is the major strength of this model 

(Staggenborg and Vanderlip, 2005). 

2.3.3 Input parameters and output responses: 

Input parameters related to genetic, soil, and management are important for crop growth 

and development. The input parameters chosen for this study and their description are presented 

in Table 2.2 We categorized input parameters in to the following groups: a. genotypic-specific 

parameters (GSP’s), b. soil parameters, and c. agronomic parameters. GSP’s are key traits that 

enable a generic model to mimic the phenotypic outcomes of particular varieties grown in different 

regions and years (Ritchie and Alagarswamy, 1989; Jones et al., 2003). The GSP’s chosen for this 

study are P1, P2, P2O, PHINT, P5, G1, G2, RUE, and TBASE whose definitions are given in 

Table 2.2. These parameters are important in such way that they mimic the phenological and 

reproductive characteristics of crop (Alagarswamy and Ritchie, 1991; Folliard et al., 2004; 

Virmani et al., 1989). Soil parameters such as DLL, DUL, SSAT, SLRO, and SLDR were taken 

as they influence the water content of the soil. In addition, other parameters such as SLOC, SBDM, 

SLPF, and SLU1 were also considered for soil parameter sensitivity. Previous studies have also 

demonstrated that soil water related parameters play a crucial role in simulating crop growth and 

development. Similar parameters were also used by DeJonge et al. (2012) to evaluate sensitivity 

of the CERES-Maize model whose modular structure is quite similar to CERES-Sorghum. PPOP 

was the only parameter taken from the agronomic category to evaluate sensitivity. Upper and lower 

bounds for each parameter (Table 2.2) were selected based on the experience of the authors and 

other CERES-Maize and Sorghum based literature (Alagarswamy and Ritchie, 1991; Bert et al., 
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2007; DeJonge et al., 2012; Folliard et al., 2004; Ritchie and Alagarswamy, 1989a). Major output 

responses (Grain yield (Yield), Anthesis date (ADAT), Maturity date (MDAT), and Leaf area 

index ( LAI)) were selected for this study. 

2.3.4 Mathematical Basis of the Extended Fourier Amplitude Sensitivity Test 

The eFAST algorithm was developed by Saltelli et al. (1999). Consider a crop model output 

 fy  x  where 𝐗 = [𝑥1, …… , 𝑥𝑁] is a vector of the N model parameters of interest. The main idea 

of eFAST is to introduce a frequency signal into y for each parameter by generating periodic 

samples of model parameters. A subsequent Fourier transformation of y will reveal the partial 

variances of y contributed by different model parameters. In order to generate periodic samples for 

specific parameter𝑋𝑖, the eFAST method uses a sinusoidal sampling function  sx  defined by 

making the ith component of x  equal to 

    ,min ,max ,min

1 1
arcsin sin

2
i i i i i ix x s x x 



 
       

 
  

where s is a scalar that varies over the range (- π to + π), i  is a set of different angular 

frequencies each of which is assigned to a parameter, 𝜑 is a random phase shift chosen uniformly 

between [0 to 2𝜋], and ,max ,mini ix x    is the range of xi. This yields a set of straight lines 

oscillating between 0 and 1; i.e. each xi oscillates periodically at the corresponding frequency 𝑤𝑖 . 

Fig. 2.1 shows the parameter oscillations before transforming to their respective ranges. Using the 

properties of Fourier series expansion (Saltelli et al., 1999), 
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where E(y) and Var(y) are, respectively, the expected value and variance of the output y; 

and Aj and Bj are the Fourier coefficients over the domain of integer frequencies 

𝑗𝜖{−∞,… .−1,0,1,… . . +∞}. The Fourier coefficients are calculated as follows:  
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A separate sensitivity analysis is conducted for each ix  in x . The sample size, i.e, the total 

number, lN  of runs done for the ith parameter involves a tradeoff between computational 

capabilities and the number of parameters to be analyzed. In particular, the Nyquist criteria (Saltelli 

et al., 1999) requires that there be at least twice as many samples as the highest frequency to be 

resolved. (Stated another way, there has to be at least one more sample than the number of 

's and 's.)j jA B  Accurate resolving the sensitivity during the analysis of the ith parameter is best 

achieved by both assigning it the highest frequency and also recovering several, say M, even higher 

harmonics of it. Thus, one can solve for max , which is the maximum frequency to be used from 

the equation max2 1lN M  . This frequency is rounded down to the nearest integer and assigned 

to ix . 

Next frequencies must be assigned to the other parameters during the sensitivity analysis 

of ix . We will refer collectively to these other parameters as the complementary set of ix . This set 
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will be denoted by a subscript of “-i”. First, the maximum allowable frequency with the -i set was 

calculated as 

  ,max max1 2i M    

also rounded down to the nearest integer. Then frequencies were assigned to the -i 

parameters in a way that exhaust the range 1 to ,maxi  according to methods detailed in Saltelli et 

al. (1999). 

2.3.5 Main effects  

One measure of sensitivity of y to an individual input ix  is the estimated conditional variance of 

the ith factor. Letting iJ  be the set of frequency indices for parameter i and its M harmonics in the 

SA for ix , then 

   2 2Var 2i j j

j Ji

y A B


   

After dividing by the total unconditional variance Var(y), whose formula was given earlier, 

we obtain the first order sensitivity index 

 
 

Var

Var

i
i

y
S

y
  

2.3.6 Total effects  

The expression    Var Vark
k

y y  is the residual variance not accounted for by any first 

order effects and include the interactions of any order between the parameters. We can define the 

total sensitivity of y to parameter i as  

     
1

VarVar Var
N

i i

k

ST yy y


 
  
 

  

STi takes into account both Si and the interactions between the ith and all other parameters. 

The interaction effects between the ith parameter and all others can therefore be calculated as 
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2.3.7 Characteristics and Interpretation of the eFAST Sensitivity Indices: 

• STi is always greater than or equal to Si. If it is equal then ix  is not involved in any 

interactions with other input variables. Otherwise, the difference between STi and Si tells 

the magnitude of the interactions between ix  and the other input variables. 

• The sum of all Si is always less than 1 (for non-additive models) or equal to 1 if the model 

is perfectly additive (no interactions). This follows from the rules governing the variances 

of the sums of random variables. 

• The sum of all STi is greater than 1 (for non-additive model) or equal to 1 for perfectly 

additive model.  

• Higher values of Si mean that the ith parameter has more influence on the model output y.  

• A very low values of Si signify that parameter i has a negligible influence on y.  

2.3.8 Statistical Analysis 

Analysis of variance (ANOVA) was done to determine the effect of site years (wet and 

dry) on sensitivity index of each parameter. Since the sensitivity indices of all parameter in both 

dry and wet years for Tribune were almost identical, Tribune was excluded in the ANOVA test. 

One-way ANOVA for individual parameters for each response variable was conducted using the 

least significant difference (LSD) procedure at 0.05 probability level. The p-value of each 

parameter was used to test whether the observed indices were significantly different between dry 

and wet years. 

2.4 Results 

The CERES-Sorghum yield output was highly sensitive to the soil parameter DLL in all 

dry site-years. For example, it accounted for 70% of yield variability in the dry year at Tribune. 

G2 and P2O were other parameters to which yield exhibited elevated sensitivity across all dry site-
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years (Fig. 2.2). Similar results were also observed in the wet years for Tribune, due to the limited 

amount of rainfall even in nominally wet years (Table 2.1). However, a notable difference was 

observed in wet years at other sites, where yield was found to be most sensitive to SLRO, 

accounting up to 35% of yield variability. In addition, yield was slightly sensitive to both P2O, 

PHINT, G2, SLPF, and P1 main and interaction effects. P-values indicate that the sensitivity 

indices of parameters P2O, SLRO and DLL were significantly different across dry and wet site-

years (Table 2.3). Furthermore, the SLRO Si for yield was significantly higher in wet years whereas 

sensitivity indices of DLL and P2O were significantly higher in dry site-years. In all dry years, 

yield also showed slight sensitivity to the interaction between P1, P2O, G2, SLPF, SLRO and 

DLL. For other parameters (SSAT, SSKS, SBDM, SLOC, and PPOP), yield was found to be 

insensitive in terms of both first order and total sensitivity for any of the site years.  

Anthesis date (ADAT) was highly sensitive to genetic parameter P2O accounting for about 

80% followed by P1 at 17% variability (Fig. 2.3). There was very minimal interaction effect 

between these parameters. Although the sensitivity to PHINT was small, there was a significant 

difference between its effects in wet vs. dry years. No other parameter, including the highly 

influential P2O and P1, showed this pattern.  

 Maturity date (MDAT) was primarily sensitive to P2O accounting for up to 45% of 

variability in all dry and wet sites except Tribune (Fig. 2.4). In addition, parameters DLL, P5, P1, 

and SLPF are also influential to MDAT in all dry site-years except Tribune. In Tribune, MDAT 

was most sensitive to DLL accounting up to 62% of variability followed by P2O and P1 (20%) for 

both dry and wet years. In contrast, MDAT was primarily sensitive to P2O accounting 50% 

variability followed by P5 and P1 (20%) in Hutchinson and Ottawa wet years. Similar to yield, 

MDAT also indicated notable sensitivity differences between dry and wet years. The most 
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significantly different MDAT sensitivities were observed for P2O and SLPF (Table 2.3). The 

sensitivity indices of SLPF were significantly higher in dry site-years and the sensitivity indices 

of P2O were significantly higher in wet site-years. It was also observed that MDAT had very 

minimal first order sensitivity to PHINT, G1, G2, TBASE, RUE, DUL, SSAT, SSKS, SBDM, 

SLOC, and PPOP, which, in total accounted for <10% of the variation in any site-year. However, 

these parameters showed interaction effect on MDAT. Furthermore, higher interaction effects on 

MDAT were observed for the same parameters (DLL, P2O, P1, and P5) that also have high first 

order sensitivity.  

 LAI was primarily sensitive to DLL for all dry site-years and at Tribune in wet years (Fig. 

2.5). DLL itself account more than 60% to 90% of LAI variation. The Si of DLL is significantly 

higher in dry site-years than wet site-years. Except for Tribune, LAI was also sensitive to SLRO, 

SLPF, and P2O and P1, PHINT for all dry and wet site years. However, sensitivity indices of P1, 

P2O and PHINT, P5, and SLPF are significantly higher in wet site-years than dry ones. In Tribune, 

LAI was most sensitive to DLL accounting 90% of the variation followed by SLPF (5%) in both 

wet and dry years. In comparison to dry sites, wet sites experienced a slightly higher interaction 

effect between P1, P2O, PHINT, G1, and SLPF. Furthermore, LAI was not sensitive to parameters 

such as SSAT, SSKS, SBDM, SLOC, and PPOP for any dry or wet site-years. 

2.5 Discussion 

The comparatively higher yield and LAI Si values for soil-related parameters vs. genetic 

and agronomic inputs across both dry and wet site-years (Fig. 2.2 and 2.5) suggest that primary 

attention should be paid to measure soil related parameters. Additionally, the notable sensitivity 

differences of LAI and yield to DLL and SLRO between dry and wet years document that Si values 

can be highly dependent on the environment. The importance of soil-related parameters during 
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model calibration was also seen in Chapter 2 of this dissertation. The higher sensitivity of yield 

and LAI to DLL in dry site-years likely results because water levels have a greater chance of 

reaching the DLL when water is limited. In contrast, when water is adequate, the exact value of 

DLL is of much less influence because moisture levels always exceed it (Fig. 2.2 bdf). The high 

Si of SLRO for yield in wet site-year’s (Fig. 2.2 bdf) results because that parameter controls the 

proportion of precipitation that infiltrates the soil and becomes available to the crop (Bert et al., 

2007). Dejonge et al. (2012) and Xie et al. (2001) have also reported that the yield and LAI 

predictions from CERES-Maize were highly sensitive to soil water related parameters in drier 

conditions.  

In wet site-years, relatively higher sensitivity of LAI to genetic parameters (P1, P2O, and 

PHINT) suggests that when water is adequate, primary importance has to be given to genetic plant 

characteristics when simulating LAI. As described earlier, CERES-Sorghum calculates leaf 

expansion by multiplying the potential expansion rate (which is only a function of intercepted light 

and RUE) by a fraction varying between 0 to 1 related to temperature extremes, water deficit, 

and/or nitrogen deficit (Ritchie, 1998). The total leaf growth over time is the summed product of 

rate times duration. Thus, when stress is absent, leaf expansion is mainly controlled by 

temperature- and photoperiod-related genetic parameters such as P1, PHINT, and P2O. 

The sensitivity of ADAT to only P1 and P2O in both dry and wet site-years contradicts the 

experimental result reported by Craufurd et al., (1993), who observed flowering delays under soil 

water deficit conditions. However, a similar simulation result was reported by Dejonge et al., 

(2012) for CERES-Maize. This is because in both CERES-Maize and CERES-Sorghum, ADAT 

is not a function of soil water availability. Instead, ADAT is determined based on the thermal time 
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from emergence to juvenile phase (P1), critical photoperiod hour (P2O), rate of delay of growth 

(P2R) as day length increase P2O (Ritchie and Alagarswamy, 1989a, 1989b). 

The large difference between total and first order sensitivities (i.e., the interaction effects 

i i iST S ST   when i refers to MDAT and, to a lesser extent for yield, indicates the existence of 

large non-linear relationships and interactions between many model processes. This strongly 

suggests that purely local sensitivity analysis approaches cannot quantify the response behavior of 

this model to multiple parameter interaction. In contrast, global sensitivity methods like eFAST 

can detect such effects because they (1) fully explore the uncertainty range of the parameters 

analyzed and (2) perturb multiple parameters simultaneously, instead of one at a time changes and 

(3) compute the main and interaction effect among parameters.  In addition, this method is highly 

efficient in terms of computation time. This result further suggests that accurate prediction of a 

variable such as MDAT requires accurate estimates for a very large number of interacting 

parameters.  

The miniscule sensitivity of yield to PPOP (Fig. 2.2) in both dry and wet site-years was 

surprising because CERES Sorghum calculates yield as a product of grain weight and plant 

population. However, this might occur because end yield is mostly driven by light interception and 

RUE and minimal effect of plant population is possible when model simulates reasonably higher 

LAI. Similar results of minimal effect of plant population were observed in both sorghum 

simulation (Baumhardt et al. 2005) and field experiments (Conley et al. 2005).  

For all output responses, very low STi and Si were found for the soil parameters SSAT, 

SSKS, SBDM, and SLOC; the genetic parameters TBASE and RUE; and the agronomic parameter 

PPOP.  This suggests that these can be set to nominal values during calibration. This result will 

help to reduce the total cost of computation during parameter estimation. 
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The results of this study will be especially helpful to researchers who use crop model at 

different locations and have interest in multiple response variables. In particular, ecophysiological 

models have a great many parameters and it is highly impractical to estimate all of them. We have 

categorized the parameters that need to be used in the estimation process based on their influence 

on response variables. 

2.6 Conclusion 

The influence of soil, genetic, and agronomic parameters on simulated yield, ADAT, 

MDAT, and LAI in eight different environmental conditions were presented in this study. The 

eFAST global SA approach was applied to estimate the partial variances contributed by both main 

and interaction effects of model parameters.  

This study determined that cultivar parameters, soil parameters, and agronomic parameter 

can differ and shift their influence dominance patterns relative to simulated yield, ADAT, MDAT, 

and LAI depending on the production situation studied. This study also gave insight to some of 

the parameters that do not have high first order sensitivities, but have major impacts on model 

outputs via interactions involving other parameters. The results demonstrated that depending on 

the target environment and the response variable of interest, cases exist where (1) relatively few 

parameters might require accurate estimates (e.g. ADAT) or (2) alternatively, a great many (e.g. 

MDAT at Hays). Results showed that CERES-Sorghum output responses were mostly sensitive to 

genetic parameters in wet environments but highly sensitive to soil parameters, especially DLL, in 

dry land conditions. This result will reduce the computational cost and time of parameter 

estimation in future. 
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Table 2.1 Detail description of experimental sites.  

 Ottawa Hutchinson Hays Tribune 

Soil type Woodson Silt 

loam 

OST loam Harney Silt 

loam 

Ulysses Silt 

loam 

Lat/long 45.2N,75.69W 38.06N,97.92W 39.87N,99.32W 38.47N,101.75W 

Elevation (m) 205 470 609 1101 

PDATE 5/29 5/7 6/8 6/16 

Fertilizer (N/acre) 135 112 90 100 

Row Spacing (cm) 75 75 75 75 

 Dry Wet Dry Wet Dry Wet Dry Wet 

Year 1988 1993 1994 1993 1994 1993 2002 1997 

Precipitation (mm) 4677 10624 3319 8996 2840 7672 2285 5222 
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Table 2.2 CERES-Sorghum input parameters and output responses for sensitivity analysis (SA).  

SN Variable Definition Unit Lower 

Bound 

Upper 

Bound 

 Genotype-Specific Parameters  

1 P1 Thermal time from emergence to end of 

juvenile phase 

Degree day 150 500 

2 P2 Thermal time from end of juvenile stage to 

tassel initiation 

Degree day 90 110 

3 P2O Critical Photoperiod hour Hour 11 16 

4 P5 Thermal time from flowering to 

physiological maturity 

Degree day 400 700 

5 PHINT Phylochron interval Degree day 30 90 

6 G1 Leaf size Coefficient - 0 30 

7 G2 Panicle Size partitioning coefficient - 4 7 

8 TBASE Base temperature oC 4 9 

9 RUE Radiation use efficiency g MJ-1 3 6 

Soil specific parameter 

10 SLPF Soil fertility factor - 0.7 1.0 

11 SLU1 Evaporation limit cm 5 12 

12 SLDR Drainage rate Day-1 0 1 

13 SLRO Runoff curve number - 60 95 

14 DLL Drained lower limit (wilting point) Mm3mm-3 0.11 0.20 

15 DUL Drained upper limit (field capacity) Mm3mm-3 0.25 0.42 

16 SSAT Saturated water limit Mm3mm-3 0.42 0.51 

17 SSKS Saturated hydraulic conductivity cmh-1 0.3 2.0 

18 SBDM Bulk density g cm-3 1.2 1.5 

19 SLOC Soil organic carbon % 0.5 2.0 

Agronomic management parameter 

20 PPOP Plant population Number m-2 10 20 

Output Variable 

1 Yield Grain yield Kg ha-1   

2 ADAT Anthesis days DAP   

3 MDAT Maturity days DAP   

4 LAI Leaf area index ---   
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Table 2.3 P-value from ANOVA test of sensitivity index between dry and wet years. 

Output 

Var P1 P2 P2O P5 

PHI 

NT G1 G2 

TBA 

SE RUE 

SL 

PF 

SL 

U1 

SL 

DR 

SL 

RO 

SL 

L 

SD 

UL 

SS 

AT 

SS 

KS 

SB 

DM 

SL 

OC 

PP 

OP 

Yield .16 .26 .04 .76 .21 .61 .26 .33 .23 .30 .28 .52 .01 .01 .14 .34 .25 .32 .26 .28 

ADAT .87 .54 .21 .33 .03 .33 .92 .22 .77 .07 .50 .19 .79 .92 .48 .22 .90 .29 .56 .85 

MDAT .24 .60 .03 .07 .35 .40 .67 .39 .25 .03 .58 .38 .62 .05 .18 .32 .75 .77 .79 .95 

LAI .00 .10 .00 .01 .00 .07 .09 .03 .02 .02 .03 .73 .27 .00 .04 .14 .06 .20 .57 .22 

Note: Bold & Italic = 99% significant, Bold: 95% significant 

 

 

 

Fig. 2.1 Sampling curves generated using eFAST for all 20 parameters used in the study. 
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Fig. 2.2 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to grain yield. 
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Fig. 2.3 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to anthesis days (ADAT).  
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Fig. 2.4 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameter in response to Maturity Days (MDAT). 
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Fig. 2.5 First Order Sensitivity (Si) and Total Sensitivity (STi) indices for CERES-Sorghum input 

parameters in response to leaf area index (LAI). 
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CHAPTER 3 - EFFICIENT CROP MODEL PARAMETER 

ESTIMATION AND SITE CHARACTERIZATION USING 

LARGE BREEDING TRIAL DATA SETS 

Abstract 

Global crop production needs to double by 2050 to supply the demand for food, feed, and 

fuel. To reach this goal, novel methods are needed to increase breeding rates of gain as well as on-

farm yields through enhanced management strategies. Both of these tasks require the ability to 

predict plant performance in multiple, dynamic environments based on a knowledge of cultivar 

characteristics (critical short day lengths, maximum leaf photosynthetic rates, pod fill durations, 

etc.) that are ultimately linked to genetics. Because of this linkage, we refer to such traits as 

genotype-specific parameters (GSP’s). Using industry-provided yield and weather data from 353 

site-years, we estimated seven primary CROPGRO-Soybean GSP’s for each of 182 varieties. The 

data set had two shortcomings. First, no planting dates were supplied, rendering unknowable the 

environment actually experienced by the crop. Second, soil data were provided only for the top 20 

cm, which is inadequate to specify the root environment. Therefore, additional soil information 

was acquired. A novel optimization algorithm was developed that simultaneously estimated GSP’s 

and planting dates, while tuning layered soil water holding properties. The optimizer, which we 

have named the holographic genetic algorithm (HGA), used both externally supplied constraints 

and its own analysis of data structure to reduce what would otherwise be a search over 3000+ 

dimensions to a much smaller number of overlapping 1- to 3-D problems. Two types of runs were 

performed. The first was preceded by an independent component analysis (ICA) of published 

GSP’s. The subsequent training sought good component scores rather than the GSP’s themselves. 
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The second allowed all GSP’s to vary separately. This makes the parameters less constrained and 

more evenly distributed than ICA. Results showed that HGA works quite well with the 

CROPGRO-Soybean model to estimate the cultivar and site-specific parameters from breeding 

trial data. The quality of the calibrations and evaluations were similar across both run types with 

RMSE values being ca. 5.2x % of the maximum yields. Moreover, the GSP’s for a variety can be 

used to predict its yield in trials not used in that cultivar’s calibration. Finally, despite high 

dimensionality, GSP’s, planting dates, and soil properties for all lines and sites converged 

concurrently in <58 iterations, demonstrating great utility for use with big data sets. 

3.1 Introduction 

Scientists currently estimate that global crop production must double by 2050 to meet the 

world’s need for food, fiber, and fuel resources (Ray et al., 2013). To meet this enormous 

challenge, novel crop improvement and management methods are needed. Central to this task are 

reliable quantitative methods for predicting the behavior of differing crop cultivars in novel, time-

varying environments. In the context of this report, time-varying refers to the time series of daily 

weather events, which varies from year to year at any location, within a year at different locations, 

and with either quasi-cyclic or secular trends on the scale of decades or longer. Ecophysiological 

crop growth simulation models provide a means to make such predictions. Crop models use 

differential equation-based descriptions of plant physiological processes (i.e. photosynthesis, 

transpiration, respiration, growth, development, and assimilate partitioning), along with chemical 

and physical processes (e.g. soil chemical transformations, energy flows, gas diffusion in leaves). 

Incorporating biotic and abiotic information helps to explain observed biological processes along 

with relationships between fixed plant properties and predicted response variables. Cropping 

system models have been used to explain processes at the level of genotype, crop, farming system, 
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region, and global environment (Matthews et al., 2002). Because crop models are process-based, 

they are powerful for predicting growth and yield in response to different environment and 

agronomic management practices, which opens the possibility of using models for crop 

improvement (White, 1998). 

Currently, ecophysiological models exist for all major crops, many minor ones, and some 

weed species. CROPGRO-Soybean is an ecophysiological model that has been widely tested since 

its initial release by Wilkerson et al. (1983) and has been shown to predict accurate yield responses 

to weather and management for different maturity groups throughout the USA (Boote et al., 2003, 

1997; Boote and Tollenaar, 1994). It has seen application in precision agriculture (Irmak et al., 

2006, 2002; Paz et al., 2003), yield prediction (Jones et al., 1991; S. Welch et al., 2002), and water 

management (Calmon et al., 1999; Swaney et al., 1983), among other topics. It is one of the models 

in the Decision Support System for Agrotechnology Transfer (DSSAT) software suite (Jones et 

al., 2003). The model considers mechanistic carbon balance with photosynthesis inputs at leaf-

level, with hedgerow canopy assimilation using canopy LAI, canopy height and width for light 

capture (Boote and Pickering, 1994). It was tested and shown by Alagarswamy et al. (2006) to 

accurately predict photosynthesis for soybean. The model has explicit nodule growth and N-

fixation and considers energy costs for synthesis of protein and oil and other compounds in 

vegetative and seed structures (Boote et al., 1998; K. J. Boote et al., 2008). Addition of pods and 

seeds is based on assimilate supply and carrying capacity. The model considers N mobilization 

and canopy self-senescence as features during seed-filling. It has a well-tested phenology 

subroutine that is sensitive to day length and temperature that can mimic developmental maturity 

groups (MG) from 00 to IX (Grimm et al., 1994, 1993; Jones et al., 1991; Mavromatis et al., 2002, 

2001). 
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The model has been tested intensively with time-series growth analyses as well as extensive 

final yield data sets under different environments (Boote et al., 1997; Piper et al., 1998; Sau et al., 

1999) including insect defoliation (Timsina et al., 2007). It has been used in climate change studies 

beginning as early as 1995 (Curry et al., 1995). The model uses a tipping bucket soil water balance 

based on (Ritchie, 1998) and its sensitivity to water stress was reviewed by Boote et al. (1998) and 

Boote et al. (2008). The ability of the soybean model to accurately simulate N-fixation was 

documented by Boote et al. (2008) and Sexton et al. (1998). Use of CROPGRO-Soybean to study 

genetic improvement in soybean yield has been illustrated in several papers (Boote et al., 2003, 

2001; Boote, 2011; Boote and Tollenaar, 1994).  

The model encodes the responses of different genetic lines to the environment, nutritional, 

and management conditions via a set of numeric constants. Called genotype-specific-parameters 

(GSP’s), these constants are organized in a hierarchical fashion wherein some 18 parameters are 

specific to each cultivar and an additional 16 describe different ecotypes. These fixed, innate traits 

specify the sensitivities of soybean crop processes to environmental factors such as temperature, 

solar radiation, carbon dioxide, N, as well as plant initializations and tissue compositions. The 

cultivar traits vary frequently across lines, whereas ecotype traits are more stable and describe 

groups of cultivars with similar behaviors. 

With the advances in plant genomics and the falling costs of locating genetic markers, 

efforts are being made to link the GSP’s to actual genes and/or quantitative trait loci (QTLs), not 

just for soybean (Boote et al., 2003; Messina et al., 2006; Wilczek et al., 2009) but for many other 

crops as well (Cooper et al., 2016; Hammer et al., 2006; Technow et al., 2015). For example, recent 

research in common bean has made progress in developing a gene-based ecophysiological model 

for common bean, based on phenotyping and genotyping of 190 recombinant inbred lines, creating 
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QTL-based modules for rate of leaf appearance, leaf area expansion, and progress toward anthesis 

and maturity (Boote et al., 2016). 

However, obtaining sufficient data to quantify model constants has been an issue from the 

earliest days of crop simulation. Direct measurement of so many traits for more than a few varieties 

has never been practical. Various papers have demonstrated indirect GSP estimation from field 

data on phenology, yield, and seed size (Alderman et al., 2015; Mavromatis et al., 2002, 2001; 

Pathak et al., 2012; Welch et al., 2002) or reproducing gene effects on crop development and yield 

(Messina et al., 2006). When soil data was inadequate, edaphic properties had to be estimated 

simultaneously, a process that can limit predictive skill depending on the amount of data available 

(Welch et al., 2002; Wilkerson et al., 1983). Over time, interest in high throughput phenotyping 

and, perhaps, better soil sensors will accelerate the acquisition of needed data. However, at the 

present time, there are relatively few large data sets that have been used in estimation studies. 

Mavromatis et al. (2002) used 393 location-year-line combinations and Welch et al., (2002) used 

1155 location-year-lines. Here we report results of calibrating and testing the CROPGRO-Soybean 

model employing a new algorithm specially designed for use with large multi-location breeding 

trials. The test data set (7426 location-year-lines) was posted by Syngenta AG as part of a 

predictive soybean modeling contest conducted in 2015-16 in collaboration with the Institute for 

Operations Research and the Management Sciences (INFORMS). 

3.2 Methodology and theory 

Crop models have been used to successfully predict crop yield over many global locations 

and climates but their accuracy is dependent on the quality of their environmental inputs and the 

accuracy and completeness with which the plant material is characterized. The latter is a driving 

force behind efforts at developing high throughput phenotyping and inverse modeling methods of 
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estimating plant physiological traits from the resulting data. Basically, uncertainty and prediction 

error are minimized by improving how individual processes are represented mathematically and 

by accurately estimating the GSP’s embodied in the model equations (White, 2009). Inverse 

modeling is an automated training procedure in which estimates of crop characteristics (GSP’s) 

are iteratively adjusted to bring model behavior into alignment with observed yields and/or other 

measurements. To make accurate parameter estimations, we followed five basic procedures given 

by Welch et al. (2002).  

1.  Minimum data required to run model simulations are crucial. Therefore, because the 

information provided was insufficient to run the model, additional public data were 

collated. These included more extensive soil data and geographically adjusted ranges of 

likely planting dates. 

2. Computer programs were developed to automate the preparation of model input data, thus 

greatly reducing the amount of manual labor entailed along with the potential for human 

error given the large number of cultivars and site-years. 

3. A suitable optimization algorithm was developed that exploited both known biological 

constraints on model parameters and the implicit constraints resulting from the structure of 

the data. As an example of the latter, the maximum potential leaf photosynthetic rate of a 

specific variety is a genetically determined trait, and so the algorithm constrained it to be 

the same at all sites where the variety is grown. (Of course, a variety’s realized 

photosynthetic rates will differ across sites as influenced by local environments in ways 

described mathematically within the model.) 

4. Due to the volume of the data and the large number of model runs required in the estimation 

process large-scale parallel processing was applied. 

5. Finally, the calibration quality was evaluated by comparing predicted and observed yields 

for site-year-line combinations not used in the calibration process. 

3.2.1 Assembling the minimum data set 

The CROPGRO-Soybean model requires information on soil environment, daily weather 

data, agronomic management practices, and genetic information to develop yield prediction. We 
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used the given information augmented along with additional publicly available data to develop a 

minimum data set needed for model runs. 

3.2.2 Soil Data 

DSSAT models the soil as a series of layers, each of which is characterized by parameters 

that govern water holding capacities and suitability for root growth. These include the drained 

upper limit (DUL), the drained lower limit (DLL), saturated water content (SAT), and the soil root 

growth factor (SRGF). DLL and DUL are required to establish how much water the soil will hold 

by capillarity, and how much will drain out to gravity. In addition, surface runoff curve numbers 

(SLRO) control how much of a heavy rain actually infiltrates the soil. Unfortunately, the soil data 

supplied by Syngenta only described the top 20 cm, which is inadequate to specify fully the 

environments of roots that can extend to depths of 2 m or more. 

Given accurate location information, the needed values can be estimated based on publicly 

available data but there was also an impediment in that regard. The provided geographic 

coordinates of field sites were only guaranteed to be within 1 km of the actual field location but 

soils can be quite variable over such distances. Indeed, in some cases (e.g., Fig. 3.1) the geographic 

coordinates did not even map to agricultural sites. Additionally, a site as described in the data was 

not a particular field but, rather, a set of locations in proximity to one another that were used in 

different years. 

Therefore, as a first step, Google Earth was used to improve the accuracy of as many 

locations as possible by exploiting the highly diagnostic appearance of breeding trial plot 

structures. Google Earth does not image all surface points each year but we were able to find the 

exact locations for 57% of the 354 site-years of data provided. There were also some instances 

where exact imagery was not found on particular year but found on next or previous year within 
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the given 1km of radius and similar soil map unit. These locations, which comprised about 16% 

of site-years, were used as proxies for the unobserved fields. The remaining 27% site-years were 

not found. In what follows, the three different location categories are, respectively, called “Exact”, 

“Exact-Conditional” and “Missing”. The supplied geographic coordinates were used for the 

Missing soil location types. Tools provided within Google Earth (e.g. KMZ files) were used to 

automate the handling of location data. 

With better location data in hand, soil information was obtained via IBM's PAIRS 

Technology (Klein et al., 2015) with data from SSURGO (SSURGO, 2015). Soil texture 

(percentage of sand, silt and clay), bulk density, soil organic matter, hydraulic conductivity, pH, 

cation exchange capacity was extracted for each layer. Using these data DUL, SAT, and SLRO 

were estimated via the pedotransfer functions in Cronshey (1986), Saxton and Rawls (2006), and 

Singh et al. (2014). DLL and SGRF values were obtained as part of the estimation process. 

3.2.3  Agronomic Management and Weather Data 

While the data provided by Syngenta was comprehensive, it provided few management 

details. We assumed that all sites were rainfed, and used statewide averages for plant populations 

and row spacing. Planting dates were estimated during the model calibration stage. 

We used the weather data that was provided by Syngenta, which supplied all needed weather 

variables for CROPGRO-Soybean, in particular daily maximum and minimum air temperature, 

precipitation, and solar radiation. 

3.2.4 Genotype Specific Parameters 

As shown in Table 3.1, CROPGRO-Soybean represents the characteristics of individual 

cultivars in terms of 18 genotypic specific parameters (GSPs). It would be quite demanding to try 

to estimate all of these independently for each variety. This is especially true because there are 
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tradeoffs between them such that raising the value of some can be offset by lowering the value of 

others, creating a lack of parameter identifiability. However, biological experience with the 

soybean modeling has resulted a degree of understanding about parameters relationships.. For 

example, not all life-cycle intervals scale uniformly. For example, as the interval from first seed 

to physiological maturity (SDPM) increases, some subintervals (e.g. seed fill duration, SFDUR) 

do as well but others (e.g. the time between first flower and first pod, FLSH) either do not or such 

changes as they might undergo have little effect on yield. In this study, we have chosen 7 important 

parameters for estimation. Among them, CSDL is the day length sensitive traits which account the 

influence of day length on growth of soybean. EMFL, FLSD and SDPM are the important life 

cycle “phase” durations determining traits, LFMAX represents the maximum photosynthetic rate, 

and SFDUR, PODUR represents the reproductive traits of Soybean affecting grain yield. The latter 

might as well be set to constants, and the former can be approximated as linear functions within 

the intervals containing them. 

X-factor approach used in this study was first introduced by Mavromatis et al. (2001) and  

Welch et al. (2002). The idea of this approach is to reduce the parameter search space 

dimensionality by making groups of parameters into a linear function of these X factors. 

The objective of this study was to examine two different approaches to estimate cultivar 

coefficients, which are based on i) independent component analysis (ICA) (Comon, 1992) and ii) 

treating each GSP factor separately (SF) 

3.2.4.1 ICA Approach 

ICA is a computational method that is used to identify and separate independent hidden 

factors that are linearly mixed in variables. ICA is more useful when data are non-Gaussian. It 

separates the multivariate signal to independent separate factors. Thus, ICA was used to search for 
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factors that might underlie CROPGRO-Soybean GSP’s. All the component obtained from ICA are 

statistically independent factors. Total of 82 already published CROPGRO-Soybean GSP’s from 

different parts of the world were collected. ICA was applied to this data set for each model 

parameter and the results are shown in Table 3.1.  

3.2.4.2 Separate Factor (SF) approach 

In this approach, each of the seven target parameters were allowed to vary separately. The 

allowed ranges were the same as in the ICA approach. In order to simplify the notation to be used 

below in describing the optimizer (see below) X-factor designations (X8-X10) were also given to 

the variables driving the search for planting dates and selected soil characteristics. These are 

discussed next. 

3.2.5 Planting Date 

To constrain planting date searches, crop insurance deadlines were used for each state. 

These dates specify the earliest and latest planting dates that farmers must follow to obtain 

insurance coverage. These dates were deemed to be reasonable, realistic constraints because of the 

importance of insurance in crop production and, therefore, the grower incentives to qualify. We 

also examined public sources of planting date information for each location including university 

websites, the USDA Risk Management Agency, and private insurance providers using Google 

searches. This helped to confirm and narrow down the planting date range obtained from crop 

insurance for most of the locations 

3.2.6 Estimated soil characteristics 

The soil root growth factor (SRGF) is a scalar whose variation with depth influences the 

spatial distribution of roots as their simulated development progresses (Singh et al., 2014). In real 

plants the realized root distribution depends on a detailed interaction between soil mechanical, 
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nutrient, and water status and plant allocation of growth resources to different morphological 

components. However, CROPGRO-Soybean summarizes this complexity into a single curve, 

whose shape is defined by a governing mathematical curve and associated parameter. A variety of 

curves have been used to compute SRGF. A common one is: 

 

where Z(L) is the depth midpoint of soil layer L and X9 is a parameter to be estimated from 

data. Typical value of X9 is 5.5 ≤ 𝑋9 ≤ 6.5. A problem with this formula is that it declines 

monotonically with depth, whereas real soybean plants often have relatively constant root densities 

near the surface. Therefore, the function was modified to reflect this behavior in the top 30 cm. 

The exponent above was set to six and the curve was reparametrized to express the soil-specific 

depth (cm) below which it would be highly unlikely to ever find soybean roots; that is, the rooting 

depth (X9). The new expression and a graph for different values of X9 are shown in Fig. 3.2. 
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The second estimated parameter, X10, describes the soil water holding capacity. Soil water 

potential relates to the amount of energy required to extract the next unit of moisture from the soil 

with negative numbers indicating the greater difficulty that arises as soil dries. Atmospheres (i.e., 

bars) is one (of many) units used to quantify soil water potential. Typically, the range of potentials 

within which plants can extract water is between -0.3 and -15 bars. This range can also be delimited 

by the corresponding fractions of soil volume occupied by water. Soil texture (i.e., the percentages 

of sand, silt, and clay) strongly influences these limiting fractions. Thus, in very sandy soil, the 

lower limit (DLL; i.e., the volumetric water fraction at -15 bars) can be as small as 0.04. It will be 

much larger in clay soils that retain water more tenaciously. Note the fact that more water is present 

in clay soils at -15 bars (0.16) does not help the plant, which still has to expend the same (large) 

amount of energy to extract it. By analogy, the drained upper limit (DUL) is the volumetric water 

fraction present at -0.3 bars and the difference between them, DUL-DLL, is the key quantity of 

interest when modeling plant water availability. 

Because CROPGRO-Soybean uses soil layers, the thickness of these layers must also be 

taken into account. This is because, even with the same value of (DUL-DLL), a thicker layer will 

hold more water than a thinner one. That is, the total profile water content is 

 

where,  is the thickness (m) of layer i.  

DUL, DLL, and SAT (the volumetric fraction of the soil occupied by water at saturation, 

a value used elsewhere in the model) can be roughly estimated from the soil texture using the 

pedotransfer functions in Saxton and Rawls (2006). 

 
L

TPWC DUL DLLi i i

i
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Here, S, C, and OM are the percentages by weight of sand, clay, and organic material for 

each layer, respectively. 

However, pedotransfer functions are only approximations and, for refined work, it is 

necessary to tune their outputs, which is what X10 does. An initial estimate of total profile water 

content is 𝑋10 = 𝑇𝑃𝑊𝐶0, where the subscript “0” indicates a value calculated from the summation 

above using the Saxton and Rawls (2006) equations. Reasonable search limits are assumed to be, 

𝛼𝑇𝑃𝑊𝐶0 ≤ 𝑋10 ≤ 𝛽𝑇𝑃𝑊𝐶0 with 𝛼 = 0.2 and 𝛽 = 1.6. 

However, different trial values of X10 need to be converted into specific DUL and DLL 

values for each layer. CROPGRO-Soybean only considers the layer-by-layer (DUL-DLL) 

differences, so there is some freedom as to how to do this. However, the model creates more stress 

for water uptake when the DUL is quite high, for instance with a clay soil, even when (DUL-DLL) 

is the same. Therefore, X10 is mapped into proportionate changes in each layer’s DLL such that 

the overall effect is to change total profile water content as desired.  
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That is, at each iteration, j,  is solved for in the equation 

, and used to calculate the values 

. Naturally,  must be restrained so that , where 0.02  was assumed to 

be the smallest plausible DLL. A minor issue is that these limits must be expressed as constraints 

on X10 rather than . Some algebra reveals that 

   

where the outer limits on X10 only need be calculated only once during preprocessing. 

The current frontier of genotype-to-phenotype modeling is discovering methods to merge 

statistical genetic approaches with those of ecophysiological modeling (Cooper et al., 2016; 

Hammer et al., 2006; Technow et al., 2015). This problem is being worked on from two directions. 

The first, the roots of which trace to Reymond et al. ( 2003 and Yin et al. (1999), is to use 

ecophysiological models in a genomic discovery mode. By fitting what are now referred to as 

GSPs to the individuals in mapping populations one can identify genomic regions that may contain 

genes controlling the traits individual GSPs quantify. The reverse of this, which dates to White 

and Hoogenboom (2010) is to express GSPs as linear functions of genetic states. When (i) the 

genetic states represent the possible results of (possibly only contemplated) crosses and (ii) one 

has weather, soil, and management data from some (possibly hypothetical) set of sites/conditions, 
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one can forecast the performance of novel genotypes in novel environments (Tardieu et al., 2005). 

The linkage between these forward and reverse approaches is that both involve expressing GSPs 

as the dependent variables in linear equations and using them in models. 

There is another form of equality relationship that is crucially important to understand. It 

can be hard for field biologists to believe that there are any plant traits that do not vary with the 

environment. And yet, it must be so. When two individuals of a given variety are planted in 

different environments, they still have the same DNA, and, therefore, at some level of 

reductionism, have attributes that remain equal across environments. It is the modeling assertion 

that GSPs quantify that identity. Indeed, if a putative GSP is shown to vary with the environment 

then it instantly loses its status as a GSP and a new researchable question emerges, namely “What 

is the mechanism that causes it to vary?” Examples include a QTL analysis of specific leaf area 

(SLA) by Yin et al. (1999), which found that QTL of SLA are non stable across the environment 

suggesting estimation of GSP are affected due to G*E. In contrast, Reymond et al. (2003) found 

that estimation of GSP didn’t suffer from G*E. 

It may well be the case that some of the GSPs used herein might someday be demoted. 

Absent such a demonstration, however, the assumption is that their values are independent of the 

combination of environments used to estimate them. 

A second equality assumption concerns planting dates. Breeding trials aim to expose all 

lines to exactly the same environment at each point in their respective life cycles. This is only 

possible when all lines at a site are planted on exactly the same day. In practice this is not always 

possible but the difference between the first and last line planted is seldom more than one or two 

days. It was therefore deemed an acceptable approximation to assume that all of the lines in a trial 

were planted on the same but unknown date. 
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The third assumption is on location. Out of 354 location-year lat-long, it was found that 

there were 344 different lat-long used only once and 10 which were repeated twice and not found 

on google imagery i.e. falls under missing category. Thus, we treated these 10 repeated locations 

as a separate 20 locations. This made all 354 locations –year as separate locations. 

Putting these notions together, the estimation problem can be seen to have the structure of 

what is formally called a tri-partite graph. For any given variety (green circle), the objective is to 

find the set of X1-X7 values that best explain all the yields obtained across all the site-planting 

date combinations at which it was planted. For each blue circle, the goal is to find the planting 

date, X8, within the given year for which the varieties linked to it would have the yields they did. 

Finally, for each brown circle, the aim is to find the soil root growth factor distribution, X9, and 

profile available water capacity, X10, that produced the observed set of yields for the varieties 

planted there. 

An ideal set of solutions will accomplish this simultaneously. Toward this end a novel 

algorithm was developed in which a set of optimizers, one per circle above, operates concurrently 

to achieve the desired result. Each optimizer is responsible for solving one part of the problem – 

for example, the GSPs of a particular variety or the date of a particular planting or the soil 

characteristics of a given site. In addition, each optimizer has access to all the data pertinent to its 

task. Thus, each soil property optimizer is aware of the yields of all the varieties that were planted 

there. Similarly, a GSP optimizer has access to all yield data for its variety no matter where or 

when that line was planted. This distributed pattern seemed somewhat analogous to a holographic 

plate, each small piece of which contains information about the whole scene. Therefore, the 

estimation scheme was named the holographic genetic algorithm (HGA). 
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Each individual optimizer is an implementation of the GENOCOP genetic algorithm (GA) 

(Michalewicz and Janikow, 1996). These authors showed that GA’s offer a powerful approach to 

highly nonlinear problems have linear constraints, as is the case here. Overall, GENOCOP 

algorithm is a rather standard GA grounded in elite tournament selection. Its developers’ watershed 

advance was to employ a set of ingenious random operators with the property that their application 

to feasible trial solution yields another feasible solution. Each of the circles in Fig. 3.3 contains a 

mechanistically exact copy of the GENCOP method. 

HGA incorporates two novel features. The first is how multiple copies of this algorithm 

work together on problems structured as in Fig. 3.3. This is grounded in the manner by which the 

parameter vectors in the populations operated on by each GA are processed into the inputs for 

model runs. Consider one variety/planting_date/location (VPL) combination of present in the data 

– that is, one green-blue-brown sequence of three circles linked by black lines in Fig. 3.3. Any 

combination of parameter vectors from the corresponding three optimizers defines a model run 

that might be done. The number of such combinations is the product of the population sizes and 

would not be feasible for a data set this large. HGA uses a very simple approach to reduce this 

number. The corresponding populations are stacked next to other as shown in Fig. 3.4 where the 

horizontal stripes in each rectangle correspond to individual trial parameter vectors. Each resulting 

extended row constitutes one augmented parameter vector that generates one model run. Thus the 

total number of model runs per generation is only the product of the population size across the set 

of optimizers times the number of unique VPL combinations in the data. 

As the algorithm was initially conceptualized it was recognized that tournament selections 

within each optimizer would make an important contribution to the exploration of the problem’s 

very large parameter space. As the generations progressed a byproduct of tournament selection 
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would be that the vertical position of a surviving solution and its offspring change. The resulting 

horizontal alignments with diverse parameter vectors from the other optimizers increase 

exploration. As each optimizer progresses toward convergence, the vectors in its population will 

become more and more similar as will, therefore, the extended vectors. Thus, the whole ensemble 

of optimizers, it was thought, would converge with each element realizing its part of the overall 

solution. 

Within the context of any individual problem, an ideal optimizer will properly balance 

parameter space exploration with exploitation, i.e., the ability to narrow the search focus when 

indications of a potentially promising subregion are found. Unfortunately, the initial version of the 

algorithm failed in this regard. The problem was that the exploration mechanism just described 

was too strong. Portions of potentially good augmented parameter vectors would be overwritten 

and destroyed by individual optimizers. In response, two elements were introduced. First, no 

matter what else happened, a certain number of the best augmented vectors found would be 

preserved from one generation to the next. This is called elitist selection. Second, a conceptual 

element was borrowed from simulated annealing. Each generation produced new sets of 

augmented vectors. However, the augmented vectors (and their objective function values) were 

retained elsewhere in memory. If the new augmented vector produced a better objective function 

value, it was carried forward into selection. However, if the new augmented vector scored worse 

than the previous solution in the same vertical position, it was retained only with a probability that 

declined rapidly with the degree of its inferiority. 

The search strategy was an iterative process that was repeated until all estimated yield value 

were successfully fitted with observed. Root Mean square error was computed using the following 

equation and used as evaluation criteria. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑝 − 𝑌𝑜

𝑛

𝑖=1

)2 

where, 

N= Number of observation 

Yp= Predicted yield 

Yo=Observed yield 

There were 34,212 individual yield observations from 182 cultivars planted in 354 

location-years. One location-year had only 30 cm of soil profile data and so was excluded, reducing 

the total number of observations to 34,052. Averaging the observations for each variety within 

each planting produced 7,426 yield means; i.e., the number of VPL combinations. The GSP 

optimizers each have to solve a 7D problem so, somewhat arbitrarily, their population sizes were 

set to 72. For simplicity, the same size was used for all optimizers. Table 3.2 documents the 

resulting scale of the estimation problem, which is the same for both the SF and ICA approach. 

3.2.7 Model Evaluation 

Ideally, one would calibrate soil parameters and GSP’s using data from one set of years 

and then validate with data from other years. However, this was not possible with this data set 

because no location was ever used more than once. Instead, a procedure grounded in graph theory 

was adopted. As a first step, all cultivars grown in less than five plantings and all site-years with 

less than five cultivars were excluded. Then the tripartite graph in Fig. 3.3 was divided into two 

parts as illustrated by the dotted line in Fig. 3.5. All segments that cross the line are colored red 

and the remainder blue. The VPL’s linked by blue edges comprise the calibration set while those 

defined by red segments (termed a cutset in graph theory) form the validation set. It is clear by 
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inspection that no yield data used in calibration are also used in validation. The downside, of 

course, is that the same cannot be said for weather data – an unavoidable consequence of the no-

location-reuse property of the data. 

An automated process was used to examine different cutsets seeking one that comprised a 

ca. 10% sample of the data. In the end a set of 568 observations was used for validation and 6617 

for calibration. The model was evaluated using observed and simulated yield data. To evaluate the 

model performance, coefficient of correlation (r), and root mean squared error (RMSE) (Willmott 

et al., 1985) were used. RMSE is one of the best statistics that summarizes the mean difference in 

the units of simulated and observed value. Coefficient of correlation measure the strength and 

direction of the relationship between observed and predicted value. 

3.3 Results and Discussion 

Because of their proprietary nature, Syngenta required data be destroyed at the conclusion 

of the contest. Therefore, all yield information presented here is rescaled to a [0,1] interval and 

derived statistics (e.g. RMSE values) are adjusted proportionately. 

3.3.1  Quality of Fit 

Fig. 3.6 shows the simulated and observed yield of 34052 total observations and 7426 

(mean observations) from 182 cultivars and 353 site-years using two different optimization 

approaches. The overall RMSE of ca. 5% of total yield for both approaches suggests that both 

(ICA and SF) methods are equally good and can be used for estimation process. This goodness of 

fit value is consistent with the results of Irmak et al. (2000), Mavromatis et al.(2001), and Welch 

et al. (2002). Regressing observed on predicted mean values yields a slope close to 1.00 and R2 of 

.80, which are indicative of a good fit. Slightly lower RMSE and R2 values (~7%, 0.65, 

respectively) were observed when all 34,052 observations were used in the fit. This resulted 
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because of the high levels of variation in those lines that were planted more than once in each trial. 

Fig. 3.7 shows that about 40% of observations have coefficients of variation in the range of 10% 

to 28%. This is likely due to within-planting variation between replications. (However, it should 

be noted that no orderly pattern of replication numbers was detected.). 

The results showed that out of 182 cultivars, about 10% of cultivars (18) had RMSE of < 

2% of maximum yield, and about 12% (21) with RMSE >8% of maximum. However, remaining 

about 78 % (143) were in between (Fig. 3.8). The lower RMSE’s occurred when the samples were 

quite small (<15) and probably represent overfitting. Over fitted result mostly occurs when 

optimizer tries to estimate too many parameters from a sample that are too small. The result of 

overfitting in our case was because of few number of observations (Fig. 3.9). Overfitting makes 

any individual too optimistic about the performance of the model which in fact not trustworthy 

result. Thorp et al. (2008) also suggested that if users select too many parameters to optimize, they 

may get very good fit in optimization process but get a poor fit for validation due to overfitting. 

Result also showed that about 12% of lines were poorly fitted or under fitted (Fig. 3.9). 

Under fitting generally occurs when an estimator is not flexible enough to capture the underlying 

variation in the observed data. Our result showed that poorly fitted lines were due to the fewer 

number of observation along with high yield variability across the locations. High variability 

across the locations for same line suggest that variability has to be determined only from site 

characteristic since the estimated GSP’s would be the same for all observations. But, at the same 

time, it was also observed that there are also other many lines that were planted in that same 

locations, and their yield value is largely different than the poor fitted lines. Thus, the optimizer in 

general estimated the site characteristics for other large number of lines to minimize the overall 
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objective function and miss to accurately simulate yield for the poor fitted lines and increase 

RMSE. 

3.3.2 Parameter Stability 

Fig. 3.10 and 3.11 shows the stability of estimated parameters (GSP and site parameters, 

respectively) obtained from different optimization approach used in this study. Each point 

represents the values of one parameter as estimated by the ICA (vertical axis) vs. the Separate 

factor (horizontal axis) approaches. The range limits of each plot equal as the imposed optimization 

constraints. The excellent goodness-of-fit values obtained from both optimization methods created 

an expectation of parameter stability but that was clearly not observed. It appears that the point 

scatter in Fig. 3.10 might be more constrained in the horizontal (ICA) direction as compared to the 

vertical (SF). This might be due to the fact that, unlike ICA approach, the SF method didn’t have 

any linear constraints allowing the estimates to be more widespread. In Fig. 3.11, planting date 

estimates appear stable (upper left panel) but this impression disappears when one zooms into a 

single year (bottom right). Some stability is apparent in the calculated DLL values (lower left) but 

not in the SRGF parameter (upper right). Similar instability of parameter across sites were also 

observed by Thorp et al., (2015). 

This degree of parameter instability demonstrates a significant degree of model 

equifinality, or, as termed in engineering and statistical fields, a lack of parameter identifiability. 

These terms describe the condition wherein different parameter values produce the same model 

predictions, rendering alternative estimates indistinguishable (Franks et al., 1997; Medlyn et al., 

2005). Equifinality arises in any situation where changes in model outputs that result from altering 

one parameter can be exactly offset by adjusting some other one. Although its presence 

complicates model use, equifinality is not, per se, evidence of model misspecification. 
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3.3.3 Estimation effects of location determination method 

Fig. 3.12 shows the cumulative distribution of the observation’s residuals obtained from 

each of the Exact, Exact-Conditional, and Missing location assignment methods. A Kolmogorov-

Smirnov test indicated that the Exact and Exact-Conditional distributions differ significantly 

(p=0.02). However, the test was found non-significant for other combinations. Comparatively 

higher residuals from the Exact category of site-years is not because of any biological reason but 

an artifact of having a larger number of observations (Fig. 3.13) with wide range of yield value. In 

addition, it was also revealed that extreme high and low yield observations were also linked to the 

higher and lower soil water holding capacity of each soil type. This result is demonstrated in Fig. 

3.13 and 3.14.  

Fig. 3.13 shows the convex hull of a scatter plot of predicted and observed yield which has 

residuals (>3 and <12 bu/ac) and (<-3 and >-10 bu/ac) from Exact, Exact-Conditional and Missing 

location types. Within these three types, site-years of the Exact category has 1580 observations, 

608 and 1068 from Exact-Conditional and Missing soil types. Fig. 3.14 shows the soil water 

holding capacity (DUL-DLL) of each site-years from three different soil location types. Black and 

Magenta color dot in each figure are the same observations that were seen in Fig. 3.13 with the 

same color.  

3.3.4 Computational Performance 

The HGA runs were executed on two Linux clusters: BEOCAT at Kansas State University 

(https://www.cis.ksu.edu/beocat); and Stampede at the Texas Advance Computing Center (TACC) 

(https://www.tacc.utexas.edu ). Run lengths were 100 generations. In each generation, there were 

total 534672 number of model runs to be executed. Each model run takes about 0.14 seconds to 

finish so, total model run time for one generation would take about 20.8 CPU-hours in local 

https://www.cis.ksu.edu/beocat)
https://www.tacc.utexas.edu/
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machine. Thus, total number of model simulation were evenly distributed across 136 different 

Linux clusters. Therefore, the whole wall-clock time to complete all 100 generations is about 1000 

min (~16 hr.) or total of ~2176 CPU hrs. Fig. 3.15 shows that the convergence curves for the SF 

and ICA methods are essential identical. The objective function improves rapidly in the first 10 

generations and plateaus after 60. It is worth noting that although 534,672 model runs per 

generation yielded by the stacking method is 620 times less that the 3.31106 runs per generation 

that would be needed if all parameter vector combinations were run. Considering the high problem 

dimensionality (Table 3.2) this is impressive performance. Furthermore, our optimization 

algorithm almost reached the minimum before a maximum number of generation is reached for 

both the optimization methods used. This suggests that even with a different route that different 

optimization methods took through different parameter space and terminates at different places, it 

is clear that neither routing entailed any barriers that HGA was less able to handle. 

3.3.5 Validation 

The model was calibrated using 6617 grain yield observations and evaluated for 568 

independent data sets for both ICA and SF methods. Fig. 3.16 shows the predicted and observed 

yields from the calibration and validation processes. The validation RMSE of about 9.00% from 

both (SF and ICA) methods shows that the model can predict yields quite well in situations with 

the degree of independence permitted by the structure of this data set (i.e., no location used more 

than once). 

A common test for simulation model evaluation is by looking at the linear regression line 

of observed and predicted values, and a perfect model is assumed to have unit slope and zero 

intercept. Looking at the validation regression line (Fig. 3.16b and 3.16d), it seems that the 

regression line deviated from 1:1 line. This kind of fitting regression line has very checkered 
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history in validation. This is because of type II error and is mostly escalated with amount data 

taken so that it can reject a good model. There is a statistical identity that relates the slope of 

regression line to the correlation coefficient and standard error of predicted and observed. Thus, a 

much better number to focus on in these figure is RMSE and which is about 9% and is really good. 

Because of the existing structure of data (no location used repeatedly), validation didn’t 

incorporate the variation due to weather. Thus, in future, breeding trial data for use in modeling 

should be structured such that locations are at least periodically reused to enable the incorporation 

of weather variation in model evaluation. 

Mavromatis et al. (2001) and Welch et al. (2002) showed that good characterization of soil 

information is essential for better model performance. Now, there are many progressive farmers 

who are using precision agriculture methods such as getting yield monitor data and keeping track 

of their crop performance, but they are not using these data for management decisions. This result 

suggests that those farmers can utilize those records using this model to characterize their site and 

come to this level of predictability. 

3.4 Conclusion 

Our results showed that a large number of breeding trial yield data obtained from a wide 

range of environments can be successfully used to estimate the cultivar parameters for the 

CROPGRO-Soybean model. Furthermore, model yield predictions for independent situations (no 

yield data used in calibration used in validation) were as good as in estimation. However, because 

of the structure of the existing data (no location were repeated), weather information used in 

calibration might also be used in validation. 
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The optimization algorithm developed for this study (HGA) showed its potential on 

estimating three different type of parameters (cultivar, management, and site) at once in very few 

generations. 

It was also concluded that soil information was very critical for model simulations. The 

number of observations used in the estimation process is always critical because of which 

estimation might end up with an over or under fitted result. 

Lack of stability on estimated parameters from different approaches was due to the 

equifinality problem which increases the model uncertainty. Although equifinality doesn’t affect 

model prediction, it creates problems when anyone tries to link parameter value in to its genetics. 
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Table 3.1 CROPGRO-Soybean genotype specific parameters. Linear ICA equations and ranges 

shown for the seven targeted parameters along with the constants used for non-targets. 

GSP Unit Value/Equation Range 

CSDL hr 

12.904-0.49X1-.132X2+.3318X3-.411X4+.13X5+.10X6 

Critical short day length below which the development rate is not 

affected by day length 

[13.04 to 

13.84] 

EMFL days 
X7 

Time between plant emergence and first flowering 
[14.5 to 21.5] 

SDPM days 
34.117+.72X1-2.27X2-.41X3+.03X4+1.681X5-1.455X6 

Time between first seed and physiological maturity 
[32 to 28] 

FLSD days 
12.991-.98X1+1.3X2+1.45X3-1.031X4-.88X5-1.435X6 

Time between first seed and physiological maturity 
[11.5 to 16.5] 

SFDUR days 
26.709+.801X1+1.043X2-3.06X3-2.73X4+1.3X5-2.94X6  

Seed filling duration for pod cohort in standard growth conditions 
[22.0 to 25.4] 

LFMA

X 
- 

1.044-.043X1-.006X2-.003X3+.005X4+.013X5+.007X6 

Maximum leaf photosynthesis rate at 30oC 
[1.0 to 1.2] 

PODU

R 
days 

12.02-0.773X1-0.196X2-1.30`X3-3.43X4-.463X5-2.97X6 

Time required for cultivar to reach final pod load under optimal 

conditions 

[8.0 to 12] 

FLSH days Time between first flower and first pod  6.0 

FLLF days Time between first flower and end of leaf expansion 26.0 

SLAVR cm2/g Specific leaf area of cultivar under standard growth conditions 370.0 

SIZLF cm2 Maximum size of full trifoliate leaf  180.0 

XFRT  
Maximum fraction of daily growth that is apportioned to seed and 

shell 
1.0 

WTPS

D 
gm Maximum weight per seed 0.165 

SDPDV #pod Average seed per pod under standard growing conditions  2.20 

THRSH % Threshing percentage.  78 

SDPRO g / g Fraction protein in seeds 0.405 

SDLIP g /g Fraction oil in seed 0.205 

PPSEN 1/hr 
Slope of the relative response of development to photoperiod with 

time 
0.129 
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Table 3.2 Problem and cluster statistics used in optimization approach. 

Definition ICA SF 

Number of parameter vectors to be estimated (equals the number of 

optimizers: 182 varieties + 353 planting dates + 353 soils) 

888 888 

Problem Dimensionality (equals the total number of all X-factors; 182 

varieties  7 GSP’s + 353 site-years  (1 planting date + 2 soil parameters) 

2,333 2,333 

Total number of CROPGRO-Soybean runs per HGA generation (equals 

the number of VPS combinations times the optimizer population size: 7426 

 72)  

534,672 534672 

Total HGA population size (equals the number of optimizers times the 

population size: 888  72) 

63,936 63936 
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Fig. 3.1 Example of one site based on the latitude, longitude provided in trial data. The provided 

information corresponds to the yellow pin, which is actually located in a residential area; 

however, the trial location can be inferred from the image. Field plot trials have identifying 

features such as many parallel alleys that can be used to identify their location – in this case 

marked with an “X”. Google Earth, 43°53’38.19”N,91°05’50.56”W. 9/28/15. 

 

Fig. 3.2 Soil root growth factor for a variety of maximum suitable depth (X9) values. Note: that 

the horizontal axis is in meters but the parameter values are specified in centimeters. The search 

range is 40 ≤ 𝑋9 ≤ 500 cm. 
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Fig. 3.3 Estimation problem structure. Green circles are varieties, brown circles are sites, and 

blue circles are particular planting dates. The black lines tell which cultivars were planted on 

which dates at which sites. As discussed in the text, each site has only one planting date in a 

given year.  

 

Fig. 3.4 Population structure used in HGA. Green, blue and brown circles are the optimizer for 

varieties, planting date, and site characteristics respectively. Stacked horizontal stripes are the 

population used in each optimizers and correspond to individual trial parameter vectors.  
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Fig. 3.5 Approach to separate calibration and validation data sets. Green circles are varieties and 

blue circles are particular location-year. 

 

 

Fig. 3.6 Observed yield compared with predicted from ICA and SF optimization approach taken 

from all observation and observations with mean. All yield data are rescaled to a relative, [0,1] 

scale. 
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Fig. 3.7 Cumulative distribution of coefficient of variation of observed yield of each observation. 
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Fig. 3.8 Cumulative distribution of RMSE obtained from each 182 cultivars. RMSE value was 

calculated from rescaled data relative to [0,1] scale. 
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Fig. 3.9 RMSE for each lines. Each dot represents individual lines and size/color of each dots 

represents the number of site-year present in each line. RMSE value was calculated from 

rescaled data relative to [0,1] scale. 
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Fig. 3.10 Genotype specific parameters (GSP’s) value obtained from estimation compared with 

SF and ICA optimization approach. 
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Fig. 3.11 Site parameters (Planting date (a), Soil root growth factor (b), Soil water factor (c) 

value obtained from estimation compared with ICA and SF optimization approach. d. Zoom 

section of planting date. 
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Fig. 3.12 Cumulative distribution of yield residuals obtained from three different soil location 

types. 
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Fig. 3.13 Convex hull from each observation’s predicted and observed yield for three different 

soil types. 
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Fig. 3.14 Soil Water Holding Capacity (SWHC) from each location-year present in three 

different soil location types. 
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Fig. 3.15 Optimization performance throughout each generation from ICA and SF approach. 

Objective function value is the total sum of RMSE estimated from all 888 optimizers. 
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Fig. 3.16 Observed and predicted yield compared for calibration and validation data sets for a) 

ICA and b) SF approach. Model was validated using 568 independent observations obtained 

from 17 different cultivars and 271 different site-years and calibrated with 6617 observations. 

Values were scaled to 0 to 1. 
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CHAPTER 4 - PROBLEMS WITH ESTIMATING ANTHESIS 

PHENOLOGY PARAMETERS IN ZEA MAYS: 

CONSEQUENCES FOR COMBINING ECOPHYSIOLOGICAL 

MODELS WITH GENETICS 

Abstract 

Ecophysiological crop models encode intra-species behaviors using constant parameters 

that are presumed to summarize genotypic properties. The accurate estimation of these parameters 

is crucial because much recent work has sought to link them to genotypes. The original goal of 

this study was to fit the anthesis date component of the CERES-Maize model to 5266 genetic lines 

grown at 11 site-years and then genetically map the resulting parameter estimates. However, 

despite the high predictive quality of the values obtained, numerous artifacts emerged during 

estimations. The constraining issues fall into two categories. The first arose in situations where the 

model was unable to express the observed data for many lines, which ended up sharing the same 

parameter value. In the second (2254 lines), the model reproduced the data but there were often 

many parameter sets that did so equally well (equifinality). These artifacts made our original goal 

of genetic mapping completely unachievable.  

4.1 Introduction 

In the opening sentences of the 1968 book, The Population Bomb, Paul Ehrlich (and his 

wife Anne, uncredited at publisher behest) wrote, “The battle to feed all of humanity is over. In 

the 1970s hundreds of millions of people will starve to death in spite of any crash programs 

embarked upon now” and, in a subsequent chapter, “I don't see how India could possibly feed two 

hundred million more people by 1980." Fortunately, research started in India by Norman Borlaug 
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before 1968 created high yielding dwarf wheat varieties that, worldwide, are credited with averting 

one billion deaths from famine. India also introduced IR8, the so-called “miracle rice” developed 

at the International Rice Research Institute in the Philippines and the predicted human catastrophe 

was averted. 

Now nearly 50 years later, the specter of global disruption is again upon us. This time the 

challenges are not only increasing human population (which has doubled since 1970) but also new 

phenomena like climate change and declining water resources. The confluence of these manifold 

trends makes finding ways to feed nine billion people by 2050 one of the most pressing issues of 

our time (Stone, 2011). However, the annual percentage increase rates for crop yields are only half 

those required to meet that goal (Godfray et al., 2010). 

Beginning some 20 years ago, a paradigm has emerged offering the promise of 

dramatically accelerating breeding programs via improved phenotype prediction of prospective 

crop genotypes in novel, time-varying environments subject to sophisticated management 

practices (Cooper et al., 2016; Hammer et al., 2006, 2002; Technow et al., 2015; Welch et al., 

2005a; White and Hoogenboom, 1996; Yin et al., 2003, 1999). The basic notion has two parts. The 

first is to exploit ecophysiological crop models (ECM’s) to describe the intricate, dynamic, and 

environmentally responsive biological mechanisms that determine crop growth and development 

on daily or even hourly time scales. The aim is to use highly detailed, nonlinear crop simulation 

models to predict the phenotypes of interest within a subsample of possible environments and in-

field management options. ECM’s, whose origin is often credited to Wit. (1965), encode intra-

species behavioral differences in terms of constant parameters that are presumed to summarize 

genotypic properties. On the strength of that presumption, the constants are termed genotype-

specific parameters (GSP’s). 
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The second part of the paradigm is to use quantitative genetic methods such as genomic 

prediction (Meuwissen et al., 2001) to relate the GSP’s to genotypic markers (Cooper et al., 2016; 

Technow et al., 2015). Next, the outcomes of crosses are estimated by (1) calculating the GSP 

values that would arise from possible offspring genotypes. These values are then (2) used in 

ecophysiological model runs to predict the phenotypes in the target population of environments 

(for which detailed descriptive data must be available). In simplified instances, this approach has 

seen remarkable success (e.g., Reymond et al., 2003). 

Composed of large coupled sets of continuous-time differential equations, 

ecophysiological models simulate many interacting processes (Jones et al., 2003; White and 

Hoogenboom, 2010) operating in the soil-plant-atmosphere continuum. These processes include 

physiology (e.g., photosynthesis, respiration, resource partitioning to various plant parts, and 

growth), phenology (leaf emergent timing, the date of vegetative-to-reproductive development, 

etc.), as well as chemistry and physics (soil water flows, chemical transformations, energy fluxes, 

gas exchange, etc.). During simulation runs, model formulas compute instantaneous process rates 

based on plant status and environmental conditions at each time point. These rates are integrated 

(sensu calculus) to output time series of dozens of plant variables. The models typically have 10 

to 20 GSP’s whose estimates are read from input files at the start of model execution. Numerous 

other inputs (e.g. soil water holding capacities by layer; measured daily solar radiation, rainfall, 

maximum and minimum temperatures; etc.) further quantify the physical environment.  

The lynchpin of the entire two-step paradigm is the accurate estimation of the GSP’s so 

that they can be related to allelic states in the genotype. Unfortunately, the direct measurement of 

GSP’s is so time- and resource-demanding as to be infeasible for large numbers of lines. Indirect 

GSP estimation via model inversion is also challenging because easily-measured plant phenotypes 
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exhibit strong interactions with the environment (Chenu et al., 2009) thus increasing data 

requirements by necessitating trait measurement in multiple settings (Hammer et al., 1987). Even 

so, ecophysiological crop models enjoy extensive global use in areas ranging from global climate 

change, policy analysis, crop management, etc. Indeed, a Google search on the abbreviations of 

just two major model systems [namely “DSSAT” (Hoogenboom et al., 2015) and “APSIM” 

(Keating et al., 2003)] returned 134,000 hits. Not surprisingly, there is an extensive literature 

(reviewed briefly below) on ecophysiological model parameter estimation. 

Initially, the authors’ intent was to apply the two-step method to anthesis date using data 

from a very large panel of maize nested association mapping (NAM; McMullen et al., 2009) lines 

developed specifically to enable high-resolution studies of trait genetic architectures. Not only is 

anthesis date a phenotype of major biological significance, but it was also studied in this same 

panel using conventional statistical genetic methods (Buckler et al., 2009; Hung et al., 2012). Our 

hypothesis was that applying the proposed 2-step paradigm would demonstrate its merit in the 

specific context of the large data sets increasingly used in crop breeding programs to interrelate 

genotypes and phenotypes. We believed that contrasting the results of the standard and 

ecophysiological approaches would be interesting and informative. Granted, the model fitting 

methods to be used were not novel, but we expected that a further demonstration of their value 

with data sets much larger than ever used before would have utility. 

However, something quite different happened. We discovered modeling issues and 

estimation artifacts that are of sufficient severity and generality that, if not addressed, are likely to 

imperil the breeding acceleration paradigm. Therefore, the objectives of this paper were 1) to 

describe these problems and the methods that revealed them (which can be applied as detection 
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tools in studies of other traits) and 2) to discuss research directions that might ameliorate the 

problems. 

4.2 Background 

Numerous optimization methods have been used to estimate parameters for ECM’s. Oddly 

enough, a frequently used approach seems to have been that of trial and error (Wallach et al., 

2001), wherein different parameters values are manually tested until an acceptable match between 

simulated and observed data is found. This approach, of course, becomes highly inefficient as the 

number of model parameter increases. Thus, numerous off-the-shelf, automated optimization 

techniques have been used. Examples include the simplex method (Grimm et al., 1993), simulated 

annealing (Mavromatis et al., 2002; Thorp et al., 2008), sequential search software (GENCALC) 

(Hunt et al., 2001), Uniform Covering by Probabilistic Region (UCPR) (Klepper and Hendrix, 

1994; Román-Paoli et al., 2000), particle swarm optimization (PSO) (Koduru et al., 2007), and 

generalized likelihood uncertainty estimation (GLUE) He et al., 2010, 2009). While these 

traditional optimization techniques have advantages, they can be inefficient in terms of runtime 

and are highly dependent on optimization settings when thousands of combinations of line  

planting site-years are involved – a situation that is becoming common in the era of massive genetic 

mapping populations. The fundamental issue is that, as the number of lines and environments 

increases, estimating GSP’s for each line independently can require highly redundant simulation. 

To this end, we adapted an algorithm pioneered by Welch et al. (2000) and Irmak et al. (2000), as 

described in methods section. The approach exhibits particular efficiencies when individual 

plantings incorporate large numbers of lines and, serendipitously, supports a close examination of 

the estimation process itself. 
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The vast majority of prior ECM parameter estimation studies have been conducted in non-

genetic contexts. Against these backgrounds, the sole merit criterion has been the predictive skill 

demonstrated by the GSP estimates obtained. However, the current setting is markedly different – 

GSP’s are not just inputs to ecophysiological crop models; GSP’s simultaneously function as the 

outputs (i.e. dependent) variables of genetic prediction models. As such, GSP’s are at least as 

closely related to tangible biochemical processes at the molecular level as they are summative of 

physiological properties (e.g. maximum photosynthetic rates) in higher organizational realms. 

Therefore, a deeper inspection of their estimation is warranted and two concepts are helpful in 

achieving the enhanced discernment now required. 

This report uses the word “expressivity” (and the adjective “expressive”) to describe a 

model’s innate ability to reproduce a set of observations independent of particular parameter 

values. An expressive model may fail to replicate data because an unskilled optimizer cannot find 

a meritorious combination of parameter values. In contrast, a model with low expressivity will not 

fully mimic actual data irrespective of what (biologically or physically reasonable) values are 

assigned to its parameters. In cases where the latter behavior is detected, remedies will be 

vigorously sought. However, as shown below, however, systematic gaps in expressivity can 

coexist even within an overall framework of predictively skilled model performance. 

Another model property that has received sparse attention in prior estimation studies is 

equifinality. Equifinality describes a situation in which multiple sets of parameter values generate 

exactly the same model predictions. In statistics, a synonym for “equifinality” is “parameter non-

identifiability” (Franks et al., 1997; Medlyn et al., 2005). When the only concern is prediction 

quality and that seems “good enough”, it is easy to consider equifinality a non-problem. However, 

when parameters are intermediaries rather than just inputs and equifinality exists, it begs the 
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question as to what relationship, if any, putative GSP estimates might bear to allelic states across 

the genotype? A moment’s reflection shows that equifinality and expressivity are different model 

properties. The former relates to how many different estimates yield identical predictions; the latter 

refers to the possible existence of systematic failures of those predictions to mimic observed data. 

In this paper, we explore these issues in modeling and estimation using the anthesis 

phenology component of the CERES-Maize ECM (Jones et al., 1986; Kiniry and Bonhomme, 

1991; Major and Kiniry, 1991) and observed dates from multiple plantings of three maize genetics 

panels totaling nearly 5300 lines. Anthesis initiates the period of grain development and is 

therefore a critical milestone toward grain yield. As such, it mediates the adaptation of the crop to 

its environment by customizing vegetative and reproductive growth phases and is a key target of 

breeding programs (Buckler et al., 2009). (Although at the apical meristem, floral initiation 

precedes the visible morphological change of anthesis, the linkage between the two is tight enough 

that we follow common modeling practice and consider them as effectively synonymous.) The 

genetics of flowering time has been intensively studied in the model plant Arabidopsis thaliana 

where well over 100 influential genes are now known (Andrés and Coupland, 2012; Bratzel and 

Turck, 2015). Indeed, gene expression models of flowering time of A. thaliana based on 

differential equations have been developed (Valentim et al., 2015), and genetically-informed 

approaches have established the relationships between network-level function and common 

ecophysiological time formulations (Wilczek et al., 2009). In maize, our understanding of the 

genetic control on flowering time is more limited but has been advancing in recent years. More 

than 30 genes have been described and conservation of key features from A. thaliana seems 

apparent (Table 1 in Dong et al., 2012). A quantitative gene network model based on a number of 

these loci has been published (Dong et al., 2012). 
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The general desire within applied quantitative genetics to probe genetic architectures has 

led to the construction of ever-larger and/or special purpose mapping populations (Buckler et al., 

2009). The maize NAM panel (McMullen et al., 2009) was constructed by making bi-parental 

crosses between one common parent, B73, and each of a set of 25 other inbreds that collectively 

encompassed a wide range of maize diversity. Approximately 200 offspring from each of these 25 

crosses were then inbred for a number of generations to ensure, to the greatest degree feasible, that 

the influence of each locus on any trait of interest reflected the contribution of one parent only. 

Individual plant genotypes produced in this fashion are called “recombinant inbred lines” (RIL’s). 

Buckler et al. (2009) reported a seminal study of maize anthesis dates using this NAM panel. 

Demonstrating the power of these lines to finely dissect genetic contributions to traits of interest, 

they identified 36-39 QTL, where the exact number depended on the analysis method used. Most 

of the QTL had small effects but, collectively, explained 89% of total anthesis date variation. 

For the reasons outlined above, accurate prediction of anthesis date is a major target for 

ecophysiological crop models (Román-Paoli et al., 2000). However, few studies exist in the 

literature that have used large data sets for ECM calibration. Mavromatis et al. (2002) reported 

5,109 site-year-line-parameter combinations and Welch et al. (2002) estimated 4,620 site-year-

line-parameters. In contrast, the effort presented herein, which required supercomputing 

capabilities, encompassed 197,964 site-year-line-parameter combinations – to our knowledge, the 

largest such study ever reported. As the following sections document, it was the sheer scale of this 

data set and the resulting scatterplots depicting thousands of lines that brought to light worrisome 

issues of equifinality and expressivity failures (described in detail next), that might well have been 

overlooked in studies of smaller scale. 
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4.3 Materials and Methods 

4.3.1 Experimental data 

Observations collected on anthesis date for a total of 5266 maize lines were obtained from 

the Panzea data repository (http://www.panzea.org ) The lines used were members of three genetic 

panels. In particular, 4785 lines were from the 25 RIL panels comprising the maize NAM set 

described above. Also included were an additional 200 RIL lines commonly referred to as the IBM 

panel because they originated by Intermating B73  Mo17 (Lee et al., 2002). Finally, a maize 

diversity panel (Flint-Garcia et al., 2005) contributed data on 281 additional lines. Various 

combinations of these lines were grown at six US sites: New York (NY), North Carolina (NC), 

Illinois (IL), Missouri (MO), Florida (FL) and Puerto Rico (PR), during 2006 and 2007 for a total 

of eleven site-years. In what follows “NY6” denotes the 2006 planting in New York, respectively 

by state abbreviation and year for other site-years. Table 4.1 gives the exact locations of the 

experimental sites, and the respective sowing dates. The “Total Lines” row of the table gives the 

number of lines from the three panels that were present in each study. The “Lines with data” row 

lists the number of lines with available observations on anthesis date. Data on daily maximum and 

minimum temperatures for each site were provided by the maize NAM collaborators (H. Hung, 

personal communication, 2010) and did not include metadata on position of the weather stations 

to the field plots, types and calibration of sensors or types of radiation shields used. 

4.3.2 CERES-Maize model 

The Crop Estimation through Resource and Environment Synthesis (CERES)-Maize 

model is one of the oldest, most widely used ecophysiological crop models for maize (Quiring and 

Legates, 2008). We used the CERES-Maize version incorporated in CSM 4.5 (Cropping System 

Model; (Hoogenboom et al., 2015; Jones et al., 2003). The CERES-Maize simulation of 

http://www.panzea.org/
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development toward anthesis is controlled by a set of GSP’s and environmental inputs (Kiniry and 

Bonhomme, 1991; Major and Kiniry, 1991). Specifically, the GSP’s studied herein were thermal 

time from emergence to juvenile phase (P1), critical photoperiod (P2O), sensitivity to photoperiods 

longer than P2O (P2), and the phyllochron interval (PHINT) as measured in thermal time. The 

duration of Stage 1, the interval from emergence through the end of the juvenile phase, is calculated 

by accumulating daily thermal time until P1 is reached. Stage 2 follows immediately and lasts until 

tassel initiation. Stage 2 lasts a minimum of four days when the photoperiod (including civil 

twilight) is less than P2O. P2 specifies the number of extra days required for every hour by which 

the photoperiod exceeds P2O. The model continues to accumulate thermal time through Stage 2. 

The model assumes that (1) there are five embryonic leaves; (2) two new leaves initiate during 

each phyllochron interval; and (3) that anthesis date, which terminates Stage 3, occurs when all 

leaves present at the end of Stage 2 (i.e., total leaf number, TOLN) are fully expanded. The date 

on which this happens is when the ongoing thermal time accumulation reaches TOLN  PHINT. 

Thermal time is calculated from inputs of daily maximum and minimum temperatures. 

Sowing dates (Table 4.1) determined the time series of weather data that control simulated plant 

growth and development. The model calculated daily photoperiods from geographic position. 

Other required model inputs did not affect predicted anthesis dates and thus were not required here. 

For example, the soil water and nutrient balance components of the model do not affect simulated 

anthesis date in the CERES-Maize model and therefore were not used in this study. The model 

also requires row spacing and planting depth, which were set to 0.5 m and 2.5 cm, respectively. 

No tillage, pest, or disease effects were simulated. 

4.3.3 Parameter estimation 

4.3.3.1 Search strategy 
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In the conventional approach to parameter estimation (Fig. 4.1a), an optimizer iterates 

through a series of trial solutions for which model predictions are generated in each environment. 

The entire process is repeated for each line. This approach becomes inefficient when many lines 

are planted together in large experiments and are therefore exposed to identical environments. This 

is because estimates approaching optimal goodness-of-fit will only emerge in the latter stages of 

an iterative optimization run. Therefore, the majority of early iterations for each line entail the 

repeated evaluation of estimates with mediocre predictive ability in the same environment. 

To overcome this problem, we adapted an approach described by Irmak et al. (2000) and 

Welch et al. (2002, 2000). In their scheme (Fig. 4.1b), model simulations were conducted for each 

planting across a multidimensional grid of parameter value combinations. The resulting 

predictions were stored in a database. As a second step, for each line the root mean square error 

objective function (RMSE; Gill et al., 1981) between observed and predicted anthesis day of year 

was evaluated with respect to all combinations of parameter values across all site-years. That is, 

for line l, 

 𝑅𝑀𝑆𝐸𝑙 = √
1

𝑛
∑ (𝑌𝑝 − 𝑌𝑜
𝑛
𝑖=1 )2 (1) 

where, n is the number of observations for that line (consisting of one observation per site-

year combination), and Yp (Yo) is the predicted (observed) anthesis date. The optimizer goal was 

to minimize the RMSE for each line. If a unique minimum existed, it defined the combination of 

GSP values that best fit each line. Total computational time was reduced because time-consuming 

model simulations for each combination of GSP parameter values were only performed once, but 

their outputs were used many times in the much faster RMSE calculations. Another benefit is that 

a combination of GSP values that yielded poor predictability for one variety might perform better 

for a different line. Additionally, this process ensures that identical parameter combinations are 
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tested for each line, which can aid in comparing the results achieved. Finally, simply by 

retabulating the database, any number of different optimizations can be performed using different 

observations, alternative subsets of site-years, plantings or combinations of parameter values. The 

use of alternative objective functions is also possible without requiring additional simulations. 

Because of the central role played by the database of simulation outputs, we will refer to this 

scheme as the database method.  

4.3.3.2 Sampling the model parameter space with sobol sequences 

Unlike Irmak et al. (2000) and Welch et al. (2002, 2000) who sampled the parameter space 

with a rectilinear grid, we employed Sobol sequences so as to avoid the combinatorial explosion 

in computational requirements that accompany increasing dimensionality. Sobol sequences belong 

to a family of quasi-random processes designed to generate samples of multiple parameters 

dispersed as uniformly as possible over the multi-dimensional parameter space (Press et al., 1992; 

Sobol, 1998). Sobol sequences are specifically designed to generate samples with low discrepancy 

– that is, a minimal deviation from equal spacing. Unlike random numbers, quasi-random 

algorithms can effectively identify the position of previously sampled points and fill the gaps 

between them (Saltelli et al., 2010), thus avoiding the formation of clusters. Further, Sobol 

sequences offer reduced spatial variation compared to other sampling methods (e.g., random, 

stratified, Latin hypercube; see Fig. 4.2a vs. 4.2b), make this method more robust (Burhenne et al., 

2011). We used a Python-based algorithm to generate a Sobol sequence of quasi-random numbers 

for calculating 32,400,070 sets of the four CERES-Maize GSP’s, leading to a uniformly-sampled 

four-dimensional parameter space for P1, P2, P2O, and PHINT. To construct the database, 

CERES-Maize calculated anthesis date for each GSP combination in each of the 11 site-years – a 
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total of 356,400,770 model runs. Table 4.2 describes the upper and lower bounds and the number 

of distinct values obtained for each parameter. 

4.3.3.3 High performance computing 

The large number of model runs could not be performed by lab-scale computing facilities. 

Instead, we used the “Stampede” supercomputer at the Texas Advanced Computing Center 

(TACC; Burhenne et al., 2011)). In toto, the CERES-Maize runs required 63,372 CPU-hours, 

which equates to ca. 176 simulations per second distributed across 112 processors. The predicted 

anthesis dates were collated and transferred to the “BeoCat” computing cluster at Kansas State 

University (https://support.beocat.ksu.edu/BeocatDocs/index.php/Compute_Nodes). There, 

RMSE values were tabulated for each line  parameter value combination across all site-years in 

which anthesis date was observed. As combinations of GSP values were found that had 

progressively lower RMSE values, they were recorded by the computer. This process required ca. 

15 minutes of wall clock time per line so the total estimation process was completed in ca. 7 hrs 

on 200 Xeon E5-2690 cores.  

4.3.4 Assessing estimate properties 

4.3.4.1 Equifinality 

Equifinality occurs when multiple combinations of parameter estimates generate the same 

minimal RMSE value, often because they generate identical model predictions (Beven, 2006; Luo 

et al., 2009), in this case identical integer DOY values for anthesis dates. In what follows, we 

concisely quantify "equifinality” in any specific context by defining “number of ties” as the 

number of Sobol sets of parameter combinations that produced the same optimal RMSE values, 

minus one. No equifinality is present in a line if there is only one combination of parameter values 

that minimizes the RMSE. That is, there are zero ties among its estimates. To illustrate the 

https://www.tacc.utexas.edu/stampede/
https://support.beocat.ksu.edu/BeocatDocs/index.php/Compute_Nodes)
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magnitude of the problem and our subsequent desire to study it more closely, we note that 2254 

(43%) of the 5266 lines available in the data exhibited equifinality. The worst case was represented 

by a line that had 1,043,933 distinct combinations of GSP values that produced identical anthesis 

date predictions, and thus the same RMSE, thereby yielding 1,043,932 ties. 

During the database tabulation phase, the values of the “best combination of parameter 

estimates seen so far” were updated only if its RMSE value was strictly better than all previously 

evaluated ones. So, when equifinality was present, the final GSP estimate was the first combination 

of parameter values encountered that had a minimal RMSE value. As a result, some of the analyses 

described below are sensitive to equifinality, illustrating the fact that subtle optimizer algorithm 

idiosyncrasies can have marked impacts on the overall results. Such cases are noted explicitly 

along with the procedures used to mitigate the effects. 

4.3.4.2 Interrelationships between parameter estimates 

Correlations and other relationships between parameter estimates are highly important to 

breeding programs and related simulation studies. When correlations between parameter estimates 

are known to be present, opportunities exist to select on one plant trait by selecting on a related 

phenotype instead. Additionally, there have been a number of in silico studies where CERES 

models were used to design crop ideotypes (Laurila et al., 2012; Semenov and Stratonovitch, 

2013). Such efforts find combinations of model parameter values that predict phenotypes well 

suited to the target population of environments. Once identified, lines with those values become 

breeding targets. However, a potential pitfall arises if realizing the desired genotype involves 

changing parameter values in directions contrary to the correlations that exist between them. 

For this reason, we explored the pairwise correlation structure of the GSP parameter 

estimates and generated pairwise scatter plots of their line-specific values. However, the latter 
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revealed a bizarre pattern, the diagnosis of which ultimately led us to the second problem alluded 

to in the introduction – the inability of the model to reproduce certain observational combinations 

– and to the methods presented next. 

4.3.4.3 Model expressivity 

A common graphical method to assess the quality of model fit is to plot the predicted vs. 

observed values (e.g., Fig. 4.3). Such scatterplots can be informative in detecting areas of 

mismatch between observed and predicted values, thus providing specific characterization of the 

model’s lack of fit. By definition, each point in the scatterplot corresponds to a prediction that a 

model is able to make given an optimized set of parameter values. However, an entirely different 

question is whether there are observations that a given model cannot reproduce using any 

reasonable combination of parameter values? That is, one might seek to assess whether a given 

model has the requisite expressivity to reproduce the data. 

The database approach allows such a question to be addressed using what we term 

phenotype space scatter plots. In such plots, each axis corresponds to a different site-year. The 

coordinates along the axes represent the observed or predicted anthesis dates for each site-year. 

Model expressivity is then assessed by comparing the scatter of predicted anthesis date generated 

from a wide range of GSP value combinations to the scatter of observed values in large data sets. 

Because equifinality does not affect predictions, this method of evaluating model expressivity is 

independent of the order in which an optimizer locates points that minimize RMSE values (see the 

second paragraph in section 4.3.4.1). 

4.3.4.4 Testing for parameter stability across environments 

In order for the two-step paradigm outlined in the Introduction to work, the estimates of 

GSP’s should not vary across the set of environments used to estimate them, a property called 
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“stability” (Hammer et al., 2006). If GSP estimates did vary across environments, there would be 

no way to tell what GSP values to input to the ecophysiological model to predict traits whenever 

daily weather time series or soils differed from those used in the paradigm’s first step. This might 

seem an insuperable barrier to readers for whom GE interactions are virtually ubiquitous among 

quantitative plant phenotypes, but it is not. This is because the raison d’etre of models like CERES-

Maize is to explain crop variety  environment interactions mechanistically based on physiological 

(often first) principles. 

Many GSP’s, including all the ones in this study, explicitly relate plant behaviors (e.g., 

development toward anthesis) to environmental variables (e.g., temperature and photoperiod in the 

current case). Modelers assert that GSP’s are properties of the individual lines (i.e., stable) and, 

therefore, by implication, have a genetic basis because genotypes do not change with the 

environment. Over time, it is thus expected that research will mechanistically link at least some 

GSP’s to molecular genetic processes. For example, it is known that both short (P2O) and long 

day critical photoperiods are determined by the dynamics of the CONSTANS protein in a range 

of plants including Arabidopsis (Andrés and Coupland, 2012) and a number of grasses (Colasanti 

and Coneva, 2009; Hammer et al., 2006), albeit not maize (Coles et al., 2010; Mascheretti et al., 

2015). In rice (Oryza sativa), critical short day length has even been successfully predicted from a 

differential equation model of the diurnal expression patterns of the CONSTANS ortholog (Welch 

et al., 2005b).  

Because stability is both important and reasonable to expect given the goals of 

ecophysiological modeling, it has been argued (Welch et al., 2005a) that finding a putative GSP 

to be unstable is prima facia evidence of some problem. Possible causes of instability include: (1) 

the model incompletely or incorrectly disentangles G  E; (2) a stable answer exists but the 
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optimizer is insufficiently skilled to find it; (3) undiscovered equifinality is present, and the 

solutions found depend on low-level algorithmic idiosyncrasies of the optimizer (e.g. section 

4.3.4.1); and (4) unique best GSP estimates exist that the optimizer can find, but because the model 

is over parameterized, the values obtained reflect noise signals that differ between environments. 

All sources of instability, whether these or others, are detrimental to the two-step 

ecophysiological genetic approach to phenotype prediction. Thus, it is critical to know when 

parameter instability is present, so herein we developed a statistical approach to detect and test for 

it. The specific question asked was "Do the GSP estimates depend on the particular set of 

environments used to construct them?" A conceptually simple way to answer this might be to (1) 

obtain a combination of parameter estimates from one subset of site-years, (2) repeat the estimation 

with a different subset, and (3) test whether the two sets of parameter estimates differ according to 

an appropriate statistical test. 

A more general and robust approach, however, might be to obtain parameter estimates from 

many site-year subsets chosen according to a principled method. Preliminary tabulations of the 

Sobol database revealed that equifinality increased dramatically when fewer than seven site-years 

were used for estimation (see Results). Therefore, the subset size was set to seven site-years. One 

method for selection of site-year subsets might be to resample site-years with replacement. 

However, as shown by analogy in the Fig. 4.2b, randomization adds a source of variability to the 

results that could be of concern given that sampling by replacement would have 11
7P 39,916,800

possible site-year subsets. Therefore, analogous to the Fig. 4.2a, we used a combinatorics-based 

sampling pattern leading to more uniformly-distributed site-year subsets by taking all 

combinations of 11 site-years 7 at a time, of which there are 11
7C 330 possibilities. To maximize 
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the amount of data available for each line in any subset, we focused on the 539 lines for which 

observation were available in all 11 site-years. 

We then conducted 177,870 (= 539  330) four-dimensional optimizations to obtain 

estimates for the four GSP parameters for each line  site-year set combination. These 

optimizations involved only Sobol database retabulations rather than new model runs, again 

illustrating the computational utility of this approach. When forced to generate a single estimate, 

the database search returned the combination of GSP estimates yielding a minimal RMSE that it 

happened to encounter first. To focus on the subset that lacked this element of optimizer 

arbitrariness we first dropped the 114,314 line  site-year combinations that had ties. Because our 

primary interest was in the variability that different site-year combinations might contribute to 

GSP estimates, we restricted our attention to the 297 site-year subsets that had at least 100 lines 

remaining after ties were removed. Each of the 539 lines was present in at least 28 site-year subsets, 

which was deemed adequate for GSP estimation. These actions left a total of 60,834 estimates for 

each of the four GSP’s in the study. This became our base group for analysis. However, dropping 

estimates that have a common property (i.e., ties) is a systematic procedure that might, itself, 

influence the results. So we also examined the set of (1) all estimates and (2) those for which ties 

existed. In both cases we used the optimizer-selected values 

We then specified a statistical model to test for stability in parameter estimates across 

environmental subsets, as follows: 

 , ,l e l e l e          (2) 

where ,l e  represents an estimate of the GSP   (i.e. either P1, P2, P2O, or PHINT) for 

the lth line (l = 1,2,… 539) obtained from the eth site-year set (e = 1,2,… 297),  is the intercept 

parameter, acting as an overall mean of GSP   across all lines and site-year subsets; 
l

 is the 
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differential random effect of line l, assumed to be distributed  2~ 0,l lN  ; 
e
 is the differential 

random effect of the eth set of site-years, assumed to be distributed  2~ 0,e eN   ; and 
,l e  is the 

left-over residual unique to the th,l e  observed GSP estimate and assumed . 

The differential line effects 
l

 are considered to be random as is common in field studies of plant 

population biology. Further, the differential effects of site-year sets, 
e

, were treated as random 

because the corresponding environmental sets are combinations of 7 out of 11 plantings considered 

to be a representative, if not random, sample of the population of possible site-years to which we 

are interested in inferring. 

If the estimation of any GSP parameter   were stable across the site-year subsets, one 

would expect the variance of 
e
, namely 2

e , to be zero; alternatively, if estimation is unstable, 

one would expect 2 0e  . To test this hypothesis set, we fit two competing versions of the 

statistical model in equation (1), one with and one without the random effect of site-year subsets 

e
 for each of the GSP’s   P1, P2, P2O, and PHINT  . For each GSP, we then compared the 

two competing models using a likelihood ratio test statistic against a central chi-square distribution 

with half a degree of freedom to account for the fact that the test is being conducted on the 

boundary of the parameter space. Statistical models were fitted using the liner mixed-effects model 

package lmer in R (Bates et al., 2014) with optimization based on the log-likelihood option. The 

lmer package also calculated the Akaike and Bayesian Information Criteria [AIC (Akaike, 1973) 

and BIC (Schwarz, 1978), respectively], which allow for an additional assessment of fit for 

statistical models that include or exclude the random effects of site-year subsets. 

 2
, ~ 0,l e NIID  
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4.4 Results 

4.4.1 Observations vs. Predictions 

Fig. 4.3 shows a color-coded scatterplot of observed vs. predicted days to anthesis for 

49,491 line  site-year combinations; the cloud of points is concentrated along the identity line, 

therefore suggesting accurate prediction; the overall estimated RMSE is 2.39 days. Also, there 

seem to be considerable differences between sites on anthesis days, whereby Florida and Puerto-

Rico show very short vegetative durations (ca. 50 d), which are more than doubled in New York 

(120 d). Empirical correlation coefficients ( r̂ ) were high across site-years and ranged from 0.86 to 

0.95, thus indicating an overall responsiveness across lines to the range of site-year conditions on 

anthesis dates. The standard deviations of the predicted values and their corresponding 

observations are 10.336 and 10.639, respectively, which, with the overall empirical correlation 

coefficient of 0.974, account for a close to 1-to-1 estimated regression slope of observations vs. 

predictions [i.e. 1.002 = (10.639 /10.336) *0.974], as per the established statistical identity between 

these four sample quantities (Harrison and Tamaschke, 1984). 

4.4.2 Equifinality 

A more complex picture emerges when the prevalence of equifinality is considered. As 

noted in 4.3.4.1, for the 2,254 lines exhibiting equifinality, the number of ties can exceed 1M. The 

histogram in Fig. 4.4a tabulates the frequency of ties across lines. There are 2,153 lines with fewer 

than or equal to 40 ties. The line trace along the upper portion of the top and bottom panels shows 

the average number of site-years in each bin. 

From Fig. 4.4a, it is apparent that the empirical distribution of ties is right skewed, thereby 

indicating that a relatively large number of maize lines have few ties and thus low levels of 

equifinality. This is particularly true when parameter estimates were computed using data from 7 



111 

– 11 site-years (right axis of Fig. 4.4b). Further, the distribution of ties appears to have a very long 

tail to the right, whereby the number of lines with increasing amounts of equifinality declines very 

slowly while the number of site-year combinations used for estimation seems to plateau (Fig. 4.4a). 

This pattern continues into Fig. 4.4b, which shows the 101 lines with more than 40 ties. Note that 

no bars are shown in Fig. 4.4b due to scale of the y-axis, as each bin generally contains one to 

three lines. Interestingly, the number of ties, and thus equifinality, seems to increase precipitously 

for the 56 out of 5,266 lines that have fewer than seven site-years of data (Fig. 4.4b). 

As the number of ties increases, one can expect that the range of indistinguishable estimates 

for any GSP will widen. To illustrate this phenomenon, a set of GSP estimates were obtained using 

just two illustrative site-years (NY6 and NY7) so as to artificially inflate equifinality. Fig. 4.5 

shows scatterplots of coordinate pairs of either predicted (a) or observed (b) values for anthesis 

days from NY6 (horizontal axes) and NY7 (vertical axes). Points in each scatterplot are color-

coded to represent the number (on a log10 scale) of tied GSP combinations. Each tied GSP 

combination, when simulated using the weather data for NY6 and NY7, predicts the same anthesis 

dates that form the point’s coordinates. Dark red indicates 235,976 ties and blue indicates 1 tie. It 

is reasonable to expect that as the number of ties increases, the range (max minus min) of the 

equifinal estimates will increase. The size of each circle indicates the range of tied P1 estimates 

expressed as a percentage of the mean. These percentages extend from 0.36% to 65.68%. The 

association of redder colors with larger circles indicates that estimate ranges do, indeed, increase 

with the level of equifinality. 

This is an example of a phenotype space plot that can be used to show how properties of 

interest (e.g. number of ties and estimate ranges in this case) are distributed across the range of 

predictions made by the model given the weather in a pair of site-years. Notice that (1) the cloud 



112 

of observed points (Fig. 4.5b) is more dispersed than that of the predicted points (Fig. 4.5a) 

suggesting that model responses to the environment are less plastic than those of real plants and 

(2), as made clear by the red lines, the lowest numbers of ties in Fig. 4.5b (blue points) appear to 

fall in empty regions of Fig. 4.5a where predictions are lacking. This pattern has important 

consequences to be explained later in section 4.4.4. 

4.4.3 Interrelationships between parameter estimates 

Fig. 4.6 presents a combined plot depicting histograms of GSP parameter estimates based 

on all 5,266 lines along the main diagonal and corresponding pairwise GSP scatterplots in the 

upper right panels. The GSP estimates were obtained using all site-years. The lower left panels in 

Fig. 6 show the estimated Pearson correlation coefficients ( r̂ ), estimated regression slopes (b̂), and 

corresponding p-values for each mirrored scatterplot. Two immediately apparent features on the 

scatterplots are to be noted, which might readily escape notice in data sets with fewer lines. The 

first is the pronounced banding pattern appearing in all plots except, perhaps, P2O vs. PHINT. 

Most bands seem to be linear except for those on the scatterplot of P2O and P2 plot, which exhibits 

curvilinearity. The second is the pronounced vertical gap in all P2O scatterplots. In an attempt to 

understand the reasons for such patterns, the authors explored multiple seemingly plausible 

hypotheses, ranging from genetics to input file coding quirks (e.g., unintended rounding of 

parameter values) and many more, all of which were tested and discarded. Ultimately, the results 

presented in the following sections provided the explanations. 

4.4.4 Model expressivity 

The first clue to the cause of the banding pattern emerges from the phenotype space plots 

in Fig. 4.7. Each plot corresponds to an independent fit to just one particular pair of site years. The 

blue regions in each panel of Fig. 4.7 outline predicted anthesis date pairs for two consecutive 
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years in a given site, where model predictions are constrained by the bounds imposed on the range 

of values allowed for each of the four GSP’s (Table 4.2). Also, for each panel in Fig. 4.7, a dot 

depicts an observed anthesis date pair for a line present in a given site in both 2006 and 2007. 

Yellow (red) dots represent observed anthesis date pairs that the model was able (unable) to 

reproduce. We characterize each observation corresponding to a yellow (red) dot as “expressible” 

(“inexpressible”). Except for the two North Carolina site-years, there were many lines (Table 4.3) 

for which observations on anthesis date could not be predicted despite (1) the seeming breadth of 

GSP values allowed by Table 4.2 and (2) the fact that the model was only being asked to match 

two data points, which would seem to greatly relax the constraints on GSP estimates. 

This begs the question as to what would happen to model expressivity if an even broader 

range of GSP values were allowed. In an attempt to investigate in a computationally efficient way 

how the outputs of a more conventional optimizer might appear when viewed in phenotype space, 

the CERES-Maize anthesis date routine was ported to Python and fit to NY6/NY7 via Differential 

Evolution (DE; Das and Suganthan, 2011). DE is a well-established (63K Google Scholar hits on 

“Differential Evolution” as of October 21, 2016) and highly effective evolutionary algorithm that 

embodies mechanisms reminiscent of techniques ranging from the Nelder-Mead Simplex (Nelder 

and Mead, 1965) method to Particle Swarm Optimization (Kennedy, 2011; Koduru et al., 2007). 

Among the algorithm’s initiating inputs is the range of parameter values within which to search, 

which were set as shown in Table 4.4. These ranges are greatly broadened from that used in the 

database search (Table 4.2); in fact, the values in Table 4.4 are intentionally broader than biological 

experience would suggest as reasonable. 

Fig. 4.8 shows overlapping predictions based on the database search under the range of 

parameters in Table 4.2 and on the DE search under the extended range of parameter values (Table 
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4.4). Specifically, the light blue area represents the anthesis date region that was reachable through 

predictions based on the database search. In contrast, the dark blue area is the predicted anthesis 

date region within which the DE algorithm converged. Note the almost perfect overlap of the lower 

edges of the light blue (i.e. database search) and dark blue (i.e. DE search) areas, indicating that, 

despite its much larger starting parameter search space, DE did not extend model predictions. This 

suggests limitations in model expressivity that go beyond the method of parameter estimation or 

the initial parameter space used for the search. 

As a corollary, it is worth noting that more site-years of data of similar quality are unlikely 

to improve model expressivity, as illustrated by the following thought experiment. Suppose a 

community has developed the univariate deterministic model  arctany  , where   is a 

parameter, with 0 10   by solid prior knowledge and y is some dependent variable of interest. 

Assume that this is viewed as a very complex model requiring simulation to solve. The community 

understands that no model is perfect but no specific flaws of this one are known. Extant data for y 

ranges from 1.31 to 1.61 and yields the point estimate ˆ 5.79   (RMSE = 0.12). Due to its 

complexity, no one has noticed that the model cannot reproduce any  arctan 10 1.47y    or, for 

any  , a 2 1.57y   . Now suppose that: a very large set of new y data is collected. Depending 

on the distribution of the new data either: (1) a new ˆ 10   will be found or (2) ̂  will rise 

significantly above 10, leading to a rejection of the model. However, what will not happen is that 

the increase in data will enable observations >1.57 to be reproduced. The model simply lacks the 

expressivity to do so. Analogously, increasing the amount of anthesis date data may narrow GSP 

estimate confidence limits, but the reachable region of predicted phenotype space is unlikely to 
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extend beyond the edges of the light blue regions. Therefore, any improvement in the ability to 

predict the large numbers of red points in Fig. 4.7 and 4.8 is unlikely. 

Given these issues, a sensible follow-up question might be about what specific GSP 

estimates were reported for the red points? Here we report answers only for P1. 

Fig. 4.9 shows scatterplots of P1 and P2O estimates generated using data from NY6 and 

NY7 via the database search and DE. The color coding is consistent with that in Fig. 4.7a. The 

pronounced bands at ca. P1=250 in both panels are immediately striking – although the scale is 

small, a corresponding band is quite evident at the same position in Fig. 4.6. A tabulation reveals 

that, of all 4,731 lines represented in the Fig. 4.9a, 3,227 (68.2%) have estimates of P1 ranging 

from 245 to 260. Of these, 1,493 are expressible (yellow) and 1,734 (red) are not expressible. Out 

of the total 4,731 points in the graph 2,189 (46.2%) are expressible and 2542 (53.8%) not. The Fig. 

4.9b has similar proportions of expressible and inexpressible points (2327, 49.1%; and 2404, 

50.9%; respectively), reinforcing the similarity of results for parameter estimates from DE and 

database searches. The differences are likely due to the ability of DE to explore the parameter 

space continuously whereas the database search is restricted to the predefined discrete Sobol 

points. Still, one may wonder why so many P1 estimates are near the 250 degree-days? Fig. 4.10 

reveals the answer. The numbers in black are the “first-best-found” P1 estimated values that 

generate the corresponding row  column anthesis date combinations. A comparison with the 

corresponding dot colors and sizes in Fig. 4.5b indicates that, on the frontier (red borders Fig. 

4.5a,b and 4.10) between expressible and inexpressible observations, there was essentially no 

equifinality and, concomitantly, narrow ranges of P1 values. Fig. 4.10 shows that of the P1 values 

along the frontier were all quite close to 250. For lines with observations falling outside the 

frontier, the RMSE was minimized by assigning GSP values associated with the closest achievable 
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dates, i.e. those directly on the frontier. Therefore, all the lines counted by the red numbers were 

assigned P1 values that are very close to 250 and have essentially no equifinality. The green arrow 

in Fig. 4.10 illustrates this phenomenon for one line. The nearest P1 estimate is 254 and the length 

of the arrow (ca. 5.8 days) is proportional to that line’s RMSE. Specifically, in this case the length 

is 1 2  times the RMSE because there are 2n   site-years. 

Recall that the upper limit placed on P1 was 450 (and 600 in the DE search), therefore this 

outcome is likely not an artifact of constraints in the GSP search space but, rather, a result of poor 

model expressivity, that is the model inability to predict anthesis date pairs beyond those on the 

frontier. This mechanism accounts for the P1 band at 250 in Fig. 4.9a. Furthermore, as previously 

presented, more data cannot improve the prediction of inexpressible lines, the banding in Fig. 4.6 

is not surprising. 

4.4.5 P2O gap  

We now investigate the vertical gap in scatterplots involving P2O estimates (Fig. 4.6), 

which documents the intricacy of the interactions that can occur between model mechanisms, 

parameter ranges searched, optimization algorithms used, and environments included. Exploratory 

re-tabulations of the Sobol-based parameter database revealed that the P2O gap was clearly present 

in the three site-years having shorter day lengths (FL6, FL7, and PR6) but absent in fits obtained 

by only including the remaining eight site-years with longer days (Fig. 4.11). Fig. 4.12 shows that 

a substantial number of observations for short-day site-years are outside the predicted phenotype 

ranges expressible by the model under either database or DE optimization. As described in section 

4.3.2, the model operated by calculating the number of leaves initiated by the end of Stage 2 and 

predicts anthesis only after leaves are fully emerged. For any line, leaf number was a constant 

across all site-years, namely P1/(2PHINT)+5. The variation of anthesis dates across plantings 
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was such that there were few, if any, combinations of P1 and PHINT that were compatible with 

the data from all site-years. Therefore, the optimizer relied more heavily on the P2 and P2O 

parameters. 

Specifically, the optimizer settled on very small P2O estimates, much smaller than the short 

southern photoperiods. Instead, the optimizer relied on P2 estimates to generate anthesis date 

predictions that were delayed to the greatest extent possible by lengthening Stage 2. Recall that 

P2O values above the day length make Stage 2 only four days long, which is not enough time for 

temperature differences to accumulate the needed variation. The abundance of low P2O estimates 

thus created the gap observed in scatterplots of P2O with other GSPs (Fig. 4.11a). In contrast, the 

photoperiods in the remaining longer-day site-years exceeded the maximum allowed P2O values 

in the P2O database search during (and long after) the juvenile period. Therefore, there was no 

empty band in the scatter plot (Fig. 4.11b) because the optimizer was able to exploit delays for any 

value of P2O. 

With the broader range of parameter values available to the DE runs and the increased 

flexibility available between P1 and PHINT, other options became available. In particular, in many 

cases DE found GSP combinations wherein P2O exceeded the southern day lengths so photoperiod 

had no influence on anthesis date and no gap artifact was generated (Fig. 4.11d,i). P1 and PHINT 

thus became the major explanatory parameters. This is shown in Fig. 4.13, whereby for each line, 

the parameter differences are plotted against the RMSE differences that result from changing the 

estimation methods from database to DE optimization. The DE estimate of P2O were larger in 

4,507 out of 5,240 lines (87%; Fig. 4.13d), almost always by enough to put it above the local day 

lengths. In tandem, P1 values fell in 3,559 lines (Fig. 4.13a), whereas PHINT rose in 4,102 lines 

(Fig. 4.13c). 
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Note, however, that for any (P1, PHINT) combination, any P2O that exceeds the local day 

length will give the same RMSE – a clear source of equifinality. Thus, the changes in P2O will 

not, in all likelihood, lead to values that can be more closely related to genetics. Moreover, because 

of the limits on model expressivity, none of the DE solutions gave significantly better fits than the 

database estimates. This is why virtually all points in Fig. 4.13 had DE RMSE’s within 0.5 days 

(horizontal axes) of the database-based parameter estimates. This, too, is an illustration of 

equifinality because the two optimizers were finding different GSP estimates although the RMSE 

were of similar magnitude. 

4.4.6 Tests for stability of GSP estimates 

Table 4.5 shows the effect of including or excluding the effect of different subsets of site-

years on the modeling of estimates (Eq. 1) for each GSP when all 177,870 parameter estimates are 

used (ties+ no ties). For all GSP parameters, AIC and BIC values were considerably smaller for 

models that included the random effect of site-year subsets, e , therefore suggesting non-

negligible variability across site-year subsets on the GSP estimates. The table provides indicators 

to illustrate the size of the effects. For scaling purposes, the grand mean column contains the 

average parameter value across all lines and site-year subsets. The Index of Variability (expressed 

as a percent) is the standard deviation of the e  effect normalized by the grand mean. The 

percentage of the total GSP variance attributable to site-year subsets is also shown. Both of these 

numbers are substantial with variability indexes ranging from 5.9% for P2O to 33.6% for P2 and 

variance fractions all in excess of 20%. 

The Chi square values from the likelihood ratio test and the associated p-values are in the 

last two columns of Table 4.5. For each GSP, the estimated values differed depending on the subset 

of site-years used to estimate them and, therefore, are not, in fact, genotype specific despite the 
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goodness-of-fit displayed in Figure 4.3. This result is completely understandable given the range 

of artifacts due to equifinality and model expressivity issues identified above. 

Table 4.6 shows the results when estimates having (lacking) ties are tested separately. 

These two groups correspond to the parameter subsets that, respectively, fall inside (outside) the 

expressivity frontier. It is clear, however, that the grand means, index of variability, and 

percentages of GSP variance are highly similar between all three groupings in Table 4.5&4.6. 

Also, all p-values are extremely significant and increase with the amount of data used (from right 

to left in 4.6 and from 4.6 to 4.5). 

4.5 Discussion 

Since their inception, ecophysiological models have been evaluated in terms of predictive 

ability, which are superb in many circumstances (Batchelor et al., 2002). The parameters that drove 

the models were considered to be inputs whose genesis was of secondary importance as long as 

the model outputs proved useful. However, as often happens in science, perceived needs, 

desiderata, and requirements escalate as technologies evolves. In particular, we are now 

demanding that the model inputs themselves be the accurate outputs of processes at the genetic 

level that can be modeled by genomic prediction. It is not surprising, therefore, that modeling 

technologies (ranging from data collection to estimation) that were adequate for past applications 

now require improvement. 

From a fundamental but traditional perspective, there are several issues of perennial 

concern in crop modeling. The first is model functional structure including both its degree of 

expressivity and its behavior under optimization. For example, estimation procedures like DE, that 

primarily yield point estimates, are limited in their ability to assess equifinality. At best, one can 

query the flatness of the goodness-of-fit function in the neighborhood of the estimate, but this does 
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not tell anything about the ubiquity of equifinality across the parameter space. Nor do these 

procedures allow one to detect observations that fall outside of the model’s scope of expressivity 

unless the discrepancies are quite large. Doing so requires methods like the Sobol database scheme 

used here that can make broader assessments in both parameter and phenotype space. It may well 

be that the rarity with which database methods have been used has led to an underappreciation as 

to the prevalence of these adverse situations. 

When expressivity issues are identified, results like those above are not likely to be solved 

merely by acquiring more data of the same type. In such situations, better models will often be 

needed and modern genetic studies can help. A great many plant component subsystems are 

currently under study at the molecular level. Indeed, some of these (e.g., Chew et al., 2014) are 

even being combined into multi-scale organ and whole plant models. Even without modeling 

directly at the genetic level one can use the derived insights to make informed choices between 

alternative representations of individual ecophysiological processes. Tardieu (2003) refers to such 

representations as “meta-mechanisms”. It would seem plausible that building models from 

component parts of increased biological realism should increase the ability to reproduce field 

variation – at the very least, it is hard to see how it can hurt. As a concrete example, the B73 parent 

is photoperiod insensitive. In CERES-Maize, however, the only way to express this is by setting 

P2O in excess of the observed photoperiods, with the consequences we have seen. 

This is not to say, however, that both more and better data are not needed. Indeed, data 

quality issues can impact both expressivity and GSP stability. For example, while the date seed 

that are physically sown in a field is usually known and not subject to error, researchers often 

report a subjective notion of “effective sowing date” based on their interpretation of whether low 

soil moisture delayed germination. If errors in sowing date push an anthesis observation across the 
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expressivity frontier erroneous GSP estimates will result. Such errors can also arise if different 

personnel are involved across locations or growing seasons, especially for visually evaluated 

phenotypes like most phenological traits. Providing the emergence date can provide a partial check 

for these problems and also for errors in simulating time from sowing to emergence. Unfortunately, 

emergence dates were not reported for the maize NAM dataset. 

Another traditional modeling concern has always been the relationship between the 

observed environmental data and the immediate environmental conditions actually experienced by 

individual plants. Weather data can suffer from multiple sources of bias and error (Fall et al., 

2011). For example, stations that are not located within or directly adjacent to experiments may 

have bias due to local variation in weather conditions. Additionally, although of limited concern 

for anthesis dates, the quality of soil and management data. In this study any systematic differences 

in protocols for collection of weather data between the sites as aggravated by small sample effects, 

might have contributed to some degree to the significance levels in Table 4.5. It would certainly 

be desirable to have a method by which this potential effect might be quantitatively assessed. Such 

a method could be instrumental in designing experimental procedures for reducing the problem. 

One potential example might be to eschew external measurements of some environmental 

variables (e.g., air temperature) and use sensors onboard UAV’s or other automated vehicles to 

measure plant temperatures or other critical features directly at high temporal and spatial 

frequencies.  

More involved data types and structures are also needed to resolve issues of equifinality 

when they arise. Equifinality is fundamentally a problem of discernment. In simple terms, given 

an equation c a b  , if one only has data on c, then estimates of a and b are doomed to be 

equifinal. If one desires otherwise, one must find a way to measure either a or b. Current 
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technological efforts to develop high throughput phenotyping approaches might be quite helpful 

in this regard. For example, assuming that TOLN=P1/(PHINT2)+5 is the correct way to model 

the number of leaves at anthesis, data on total leaf number would help constrain the parameter 

estimates. This leads toward a range of constrained and/or multiobjective estimation procedures 

on which there has been significant amounts of research (Rabotyagov et al., 2012; Tatsumi, 2016). 

Maximum entropy methods offer another opportunity wherein one identifies a probability 

distribution of values that is constrained but mathematically no more informed than is justified by 

a set of potentially diverse data types (Hess et al., 2002). Another alternative might be Bayesian 

methods with multivariate likelihood functions that combine several observational variables 

(Franks et al., 1999). 

Another approach to resolving equifinality might be to use simpler models. The fewer the 

number of processes and GSP’s in a model, the smaller the opportunity for hard-to-spot tradeoffs 

to exist wherein adjustments to one parameter can be offset by tweaking another one. Of course, 

the tradeoff can be less expressivity leading to other problems, as we have seen. However, Welch 

et al. (2005) presented 12 dichotomies comparing gene network modeling and quantitative genetics 

approaches, where aspects of the former might also apply to ecophysiological modeling. They 

opined that an optimal modeling approach should entail a synthesis of both. The key features to be 

contributed from the network (i.e., ecophysiological) side would be (1) the ability to handle time-

varying dynamics, (2) a far more parsimonious approach to expressing biological and biology  

environmental interactions, and (3) a more mechanistic explanation of how traits originate. It is at 

least conceivable that some way station of moderate complexity exists between statistical genetics 

and full crop models that can achieve this. 
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At whatever level of complexity proves appropriate, one cannot accurately estimate the 

parameters controlling model components without collecting data on settings wherein the relevant 

processes operate differentially. This is clear from the P2O gap phenomenon, which was apparent 

when only short day data was used and absent under long days. Both settings distorted the results, 

in one case compressing estimates into a restricted range, leaving a gap, and, in the other, allowing 

them to spread out. Furthermore, this interacted with the range of values allowed, which caused 

shifts between (P1, PHINT) and (P2, P2O) as to which parameters appeared to be “explanatory”. 

The debilitating influence of such behavior on linking parameter values to genes is terribly 

obvious. 

However, it also should not escape notice that the gap was evident even in a mixture of 

environments, suggesting that good experimental design entails more than just making sure that a 

suitable range of environments is included. There is some notion of balance that needs to be 

established and applied globally to data selection. In this context, it is worth noting that despite the 

fact that thousands of lines were planted in each location, there were only 539 lines where data 

were reported from all 11 trials. However, given the expense of such large-scale trials and the 

multiple purposes each one will serve, “balance” cannot mean “orthogonality” where all lines are 

planted at all sites. Of course, an established benefit of ecophysiological models is to serve as 

guides to help prioritize experimentation over time. It seems likely that as their integration with 

statistical genetic models expands, they might also be able to assist in the rational planning and 

resource allocation for large, multi-site trials. 

Another approach entirely would be to seek to move beyond a two-step “estimate and then 

map” paradigm. Conventional mapping methods essentially isolate genetic markers whose pattern 

of assignment to lines mirrors the pattern of phenotype values of interest. A general linear model 
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is assumed to mediate between marker states and realized phenotypes. There is no conceptual 

reason why that general linear model might not be replaceable by a crop model. In effect, one 

could conceive a hierarchical model in which a first-level model is specified on the data and higher 

order submodels are specified on the parameters that characterize the behavior of observed data, 

much like proposed by Bello et al. (2010). 

One could conceptually implement this hierarchy in the context of crops by to fitting 

phenotypes with an ECM whose GSP’s are then specified as functions of genetic markers at 

another level of the hierarchical model. Indeed, this is what the current paradigm attempts, except 

that the two-step estimation process curtails smooth borrowing of information across hierarchical 

levels of the model that could potentially help resolve the equifinality problem. 

We acknowledge that one-step hierarchical model approach might not solve the sort of 

expressivity problems described in the thought experiment and documented in our results (both in 

4.4). Yet, it would enable the genetic structure of the population to inform the GSP estimation 

process. The potential utility of this hierarchical modeling approach is currently under study in one 

of our labs. The approach would also enable more efficient use of data. Currently, the two-step 

approach requires data from multiple environments (Welch et al., 2002) for each line in order to 

estimate the GSP’s before mapping can proceed. However, consider a line that was culled very 

early in the selection process, perhaps even after a single round. Because the parameters estimated 

in putative one-step hierarchical modeling schemes would include marker effects, even just one 

planting becomes a usable observation if the line is genotyped. This is a sufficiently inexpensive 

operation now that some programs (e.g. CIMMYT; Battenfield et al., 2016; Gaynor, 2015) are 

doing so routinely for the offspring of all crosses. 
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A one-step hierarchical modeling approach might also make it possible to utilize data taken 

on lines after they enter the market place. Analogously to high throughput phenotyping in breeding 

programs, precision agricultural management is also investing in sensor- and model-based 

approaches to improve productivity (Mohanty, 2013; Thompson et al., 2015; Thorp et al., 2015a; 

Thorp et al., 2015b) while collecting a wealth of multivariate data. Usually, of course, hybrids are 

released into areas where they show low GE interactions. For example, a line with a particular 

P2O is not likely to be released across a sufficient range of latitudes to have great differences in 

day length. This would make it difficult to directly estimate P2O for the line using the methods 

described in this paper. 

However, in a one-step hierarchical model approach, one would only be looking for 

markers that influenced P2O. In this case, data from many lines and geographical areas could be 

used together. This would also make such data usable for the sorts of hypothesis testing about 

genes discovered by other means, thus facilitating genetically-informed ecophysiological 

modeling. For such approaches to be workable, however, there are many policy issues to be 

resolved including information property rights and fair economic returns to data, not to mention 

the need to greatly harden cybersecurity protections (FBI, 2016). However, if this can be done then 

issues of environmental coverage would likely be ameliorated due to the extent of the data that 

would become available. 

4.6 Conclusions 

The original and seemingly simple goal of this study was to first fit the anthesis date 

component of the CERES-Maize model to data from over 5000 genotyped lines and then 

genetically map the resulting GSP values. However, we were unexpectedly detoured when we 

found that despite the high predictive quality of the values obtained, there were numerous artifacts 
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that emerged in the estimation process, thereby making our immediate goal unachievable. We find 

it interesting that the problems we encountered would likely be invisible, though present, in smaller 

data sets and, unless addressed by suitable research, these problems bode ill for understanding any 

genetic underpinnings of ecophysiological models. This is worrisome given the recent escalating 

attention that has been given to this method of melding ecophysiological and statistical genetic 

models as a way of accelerating the crop improvement process so as to help meet global food and 

fiber needs by 2050. 

The constraining issues fall into two categories. The first arises in situations where the 

model is unable to express the observed data for some line even by a relatively few days. In this 

circumstance, the line is assigned the GSP associated with the nearest point on model’s expression 

frontier – values which can, however, change only slowly along that boundary. The result is that 

many and in some cases a large majority of lines are assigned the same GSP values independent 

of their actual genetics. 

The second symptom arises when the model can reproduce the data. In these instances, 

there can be many combinations of GSP values that predict equally well. When such equifinality 

exists, there is no principled way to assign the line a genetically relevant value. In short, when the 

model can express the data there is no unique combination of GSP values and, when unique 

combinations do exist they are often values being given to many lines because of a deficiency in 

model expressivity. 

This finding is rather remarkable because in both breeding efforts and, indeed, genetic 

studies as a whole, anthesis date is considered, if not a simple trait, at least one that has proved 

much easier to elucidate than many others. In addition, it is generally, much more readily predicted 

by classical phenology models for reasons that, themselves, have become generally understood 
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(Wilczek et al., 2009). This cannot but make one wonder, what pitfalls might lie in wait for efforts 

to probe other, more involved traits. 

Therefore, the next question to be asked by follow-on research is how prevalent are these 

phenomena. The best way to do that would seem to be to use Sobol database search methods. This 

is because, unlike optimizers that find single “best estimates”, the database approach will reveal 

the both the extent of the expressible phenotype regions as well as a direct measure of the extent 

of any equifinality. 

However, despite the ability to reuse results databases for many searches, undertaking such 

a program in any broadly based fashion will be highly demanding computationally. For this reason, 

strong consideration should be given to disaggregating comprehensive models into separate 

modules that can be studied independently at much lower computational cost. (This is what we did 

for the limited DE run, although Python certainly is not a high performance language.) A better 

long-term strategy would be to program future models in a manner that supports single-module 

testing at the source code level. Doing so will facilitate the whole-model verifications needed to 

ensure that fragmentation into modules for testing and improvement by different labs does not 

compromise integration at the level of the scientific community. 

As module testing and innovation progress, it will be of strategic value to ground 

improvements in advancing genetic understanding at the molecular level. While this might seem 

daunting to those versed in purely physiological approaches, it need not be so. One of the most 

venerable concepts in all of the life sciences is that of the biological hierarchy that is, a series of 

many functional levels extending from molecules to the biosphere. One of the perspectives 

emerging from molecular science is that that hierarchy might, be operationally much flatter than 

commonly believed. That is, simple changes at lower levels can easily create tangible responses 
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multiple levels higher. To the extent that this is true, it greatly reduces the complexity of bridging 

across those levels. This is the philosophy behind the meta-mechanism approach mentioned earlier 

(Tardieu, 2003; Tardieu and Tuberosa, 2010). 

That approach has a proven ability to account for environmental interactions with sufficient 

skill to eliminate observed GE interactions from GSP’s in the data sets used (Reymond et al., 

2003). However, as shown by the p-values in Table 5, the very large data set used herein conveyed 

an extraordinary power to detect site-year dependencies in GSP estimation. Indeed, so powerful 

as to make one wonder if an insignificant result is scientifically achievable by any even remotely 

feasible research effort? A better number to use for practical evaluations might be the index of 

variability in Table 4.5. This would give a clear index of the size of the effect as a percentage of 

the parameter values. Also, means exist for comparing such indices to see if reductions in their 

values (i.e. by an improved model with lowered site-year set dependency) are statistically 

significant (Vangel, 1996). 

A final message from our research is that one cannot fix problems that one does not know 

exist. Community interest in the fitting-and-mapping paradigm has been high as is shown by the 

heavy citation rates for the seminal papers in this area. For example, as of September, 2016, the 

Hammer et al. (2006) paper had been cited 257 times and those publications, themselves, had been 

cited by 6,370 others (Source: Google Scholar). There is also no doubt as to the importance of the 

ability to predict the behaviors of novel genotypes in novel environments while crosses are still in 

the planning stage. Indeed, this is precisely the genotype-to-phenotype problem, which has been 

declared by the National Research Council to be a top-priority goal for applied biology (NRC, 

2008). So these impediments need to be overcome. However, with methods now in hand to detect 

adverse model behaviors under estimation, research that is probing ever more deeply into the 
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control mechanisms of plant growth and development, and concrete tests to document model 

improvements, there is no reason to believe that we cannot do so. 
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Table 4.1 Sowing dates, geographical coordinates, total number of lines planted and number of 

lines for which anthesis dates were observed for all site-year combinations used in this study.  

 NY6 NY7 NC6 NC7 MO6 MO7 IL6 IL7 FL6 FL7 PR6 

Sowing Date 

(DOY) 
128 135 122 120 137 138 128 137 265 280 314 

Latitude (deg) 42.73 42.73 35.67 35.67 38.89 38.89 40.08 40.08 25.51 25.51 18.00 

Longitude (deg) -76.66 -76.66 -78.49 -78.49 -92.23 -92.23 -88.2 -88.2 -80.49 -80.49 -66.51 

Number of total 

lines sown 
5478 5478 5478 5478 5478 5478 5478 5478 5026 3753 5131 

Number of lines 

with data 
4743 5236 5236 5160 3261 2555 5036 5178 4943 3742 4401 

 

Table 4.2 Parameter ranges used in generating Sobol sequence. 

Parameter Definition Unit Min Max No. of unique 

values 

P1 Thermal time from seedling emergence 

to end of juvenile phase 

GDD (oC) 150 450 30,001 

P2O Critical photoperiod hour hrs. 10 14 401 

P2 Days of anthesis date delay for each 

hour by which the day length exceeds 

P2O 

rate 0 2 20,001 

PHINT Phylochron interval (Interval between 

successive leaf tip appearances) 

GDD (oC) 25 70 45001 
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Table 4.3 Numbers of model expressible and inexpressible observations for selected site-year 

pairs. 

Lines that area NY6/NY7 NC6/NC7 IL6/IL7 MO6/MO7 FL6/FL7 

Expressible 2189 4964 2024 146 193 

Inexpressible 2542 168 2946 637 3339 

aThese numbers refer to lines with data in both years of each pair and therefore do not precisely align with Table 4.1. 

 

Table 4.4 Extended range of parameter values used for DE search. 

 

Parameter Definition Unit Min Max Percent of 

Sobol Range 

P1 Thermal time from seedling emergence to 

end of juvenile phase 

GDD 

(oC) 

75 600 175% 

P2O Critical photoperiod hour hrs. 6 21 300% 

P2 Days of anthesis date delay for each hour 

by which the day length exceeds P2O 

rate 0 6 375% 

PHINT Phylochron interval (Interval between 

successive leaf tip appearances) 

GDD 

(oC) 

20 110 200% 
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Table 4.5 Estimated likelihood, fit statistics, summary statistics, and a likelihood ratio test for 

competing statistical models fitted on GSP estimates with and without the random effect of site-

year subset from all 177,870 data points 

GSP 

Log 
likelihood 
w/o (top) 

and w/ (bot) 
a site-year 
set effecta 

AIC w/o 
(top) and w/ 
(bot) a site-

year set 
effectb 

BIC w/o 
(top) and w/ 
(bot) a site-

year set 
effectb 

GSP 
Grand 
Mean 
   

Index of 
Variablilityc 

e    

Variance 
contribute
d by site-
year setsc 

2
e tot    

Chi-
square 

test 
statisti

c 

Chi-
square 

p-valued 
(df =0.5) 

P1 
-952735 
-912485 

1905475 
1824979 

1905506 
1825019 

270 11.48 29.94 80499 10-34955 

P2 
-123924 
-63454 

247855 
126917 

247885 
126957 

0.9593 35.5 33.8 120940 10-52518 

P2O 
-291181 
-268373 

58236 
536754 

582398 
536794 

12.42 4.88 21.27 45616 10-19806 

PHINT 
-730099 
-702761 

1460204 
1405530 

1460234 
1405570 

43.94 17.3 24.35 54676 10-23740 

aLarger is better;  bSmaller is better;  c e  is the site-year-set std; values are percents;  dChernoff upper bound on Chi-squared 

cum. dist. 

 

Table 4.6 Estimated fit statistics, summary statistics, for competing statistical models fitted on 

GSP estimates with and without the random effect of site-year subset from all data with only ties 

and without ties.  

GSP 

GSP 
Grand 
Mean 
   

Index of 
Variablilityc 

e    

Variance 
contributed 
by site-year 

setsc 

2
e tot    

Chi-
square 

p-
valued 

(df 

=0.5) 

GSP 
Grand 
Mean 
   

Index of 
Variablilityc 

e    

Variance 
contributed 
by site-year 

setsc 

2
e tot    

Chi-
square 

p-
valued 

(df 

=0.5) 

 With Ties Without Ties 

P1 273.5 11.37 29.77 10-23283 264.625 12.30 34.38 10-13334 

P2 0.9137 36.33 35.23 10-34723 1.037 33.55 33.92 10-18163 

P2O 12.49 4.43 19.70 10-11883 12.2440 5.88 27.83 10-8635 

PHINT 43.57 18.65 26.31 10-17348 44.167 15.44 22.62 10-6919 

c
e  is the site-year-set std; values are percents;  dChernoff upper bound on Chi-squared cum. dist. 
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Fig. 4.1 Parameter search strategies a. Conventional method b. Database method. L1…N is the number of lines. 
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Fig. 4.2 (a) The first 275 quasi-random points from a two-dimensional Sobol sequence. (b) The first 275 points 

produced by the commonly used Mersenne twister pseudo-random number generator (Matsumoto and Nishimura, 

1998). The Sobol sequence covers the space more evenly. The first 20 points are green, the next 80 are blue, and the 

final 175 are red, thus demonstrating Sobol gap filling.  

 

 

  

a b
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Fig. 4.3 Predicted and Observed anthesis days of all 5,266 lines from 11 site-year combinations. The graph has 

49,491 points and an overall RMSE of 2.39 days. 
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Fig. 4.4 Histogram depicting the frequency distribution of number of ties for 2,254 lines, used here to characterize 

equifinality. (a): Histogram of number of ties for 2153 lines with fewer than or equal to 40 ties. (b): Continuation of 

the histogram tail from figure a representing frequency of ties for the 101 lines with more than 40 ties. The trace at 

the top of each panel represents the average number of site-year combinations (right axis) used as data for parameter 

estimation. 
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Fig. 4.5 Phenotype space plots of predicted (a) and observed (b) values of anthesis dates for site-years NY6 and 

NY7. The marker sizes and colors respectively express the levels of equifinality based on number of ties for P1 

(log10 scale) and the relative ranges of its tied values. The red line is explained in the text. 

 

a b
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Fig. 4.6 Empirical distribution of selected GSP parameter estimates (main diagonal), pairwise scatterplots (upper 

right triangle) and empirical estimates of Pearson correlation coefficients, regression coefficients and p-values 

(Lower left triangle). Each dot in the scatter plots represents a pair of GSP estimates from a single line. 

  



146 

 

Fig. 4.7 Phenotype space plots for predicted and observed anthesis dates. Each panel corresponds 

to a pair of site-years for which fits were done. Regional color codes are described in the text. 
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Fig. 4.8 Superimposed anthesis date results using NY6 and NY7 data illustrating that searches via database and DE 

optimization over a much larger parameter space are equally unable to reproduce the observations for lines shown as 

red dots. 
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Fig. 4.9 Scatterplot of P1 vs. P2O estimates using data from NY6 and NY7 based on the database search (a) and 

Differential Evolution (b). Yellow and red dots are, respectively, observations characterized as expressible and 

inexpressible by model predictions. 

a b
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Fig. 4.10 P1 estimates from the database search (black) and the numbers of lines with inexpressible observations (red) arranged in a tableau organized as a 

phenotype space plot corresponding to the center portion of Fig. 8. The dark red line is the expressibility frontier and the green arrow shows the P1 value (254) 

from the GSP combination that minimizes the RMSE for one illustrative line. Horizontal and vertical yellow strips are the anthesis dates for NY6 and NY7 
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Fig. 4.11 P2O and PHINT scatter plots (top row) and P2O cumulative density functions (bottom row) using (a & 

e) all 11 site-years, ( b & f) longer day site-years, (c & g) shorter day site-years based on the database approach, and 

(d & i) shorter day site-years using the DE approach. All horizontal axes in both rows have the same scale. 
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Fig. 4.12 Phenotype space plots of observed and predicted values based on the three site-years with shorter days. 

Note the large number of points in the FL6-PR6 and FL6-FL7 plots that lie above the dark blue prediction region 

based on DE.  
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Fig. 4.13 The differences in parameter estimates from database search vs. DE (vertical axes) plotted against the 

corresponding difference in RMSE for 5240 lines in FL6, FL7, and/or PR6. The color encodes the sum of residual 

(observed minus mean) across site-years for each line. 
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CHAPTER 5 - CONCLUSION 

Ecophysiological models have been used in agriculture for more than half a century. Since 

their inception, such models have been evaluated in terms of their predictive ability. As long as 

this proved to be useful, researcher were less concerned as to the biological accuracy of the 

parameters despite the fact that they were the pro forma drivers of the models. However, this 

priority is shifting with the advance of science and the need for these parameters to be correctly 

predicted from processes at the genetic level via statistical genetics models. 

Having said that, due to use of very low amount of data, types of methods used to estimate 

the model parameters, and model evaluation in terms of overall prediction, the problems that we 

have outlined in previous chapters haven’t been revealed before. It is, therefore, the modeling 

technologies (ranging from data collection to estimation) that were adequate for past applications 

that now require improvement. 

The major problems encountered during this study can be categorized as 1) model 

expressibility, 2) parameter equifinality and 3) parameter instability across environment. These 

defects could not have been detected had we not used the database approach for estimation 

(Chapter 4) and global sensitivity analysis (Chapter 2). 

Based on the results presented in this study, lack of expressibility is both a novel discovery 

and the most important issue as it entails an absolute inability of the model to closely predict the 

observations. A model with poor expressibility cannot be fixed only by acquiring large amount of 

data but only by developing a new model or changing the structure of the old one. Better models 

can be developed with the help of molecular gene studies and high throughput phenotyping. The 

former are beginning to look at connecting multiple gene systems together that control alternative 
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physiological systems. While not yet including the range of processes contained in full ECM’s, it 

could be quite useful to evaluate the expressivity of such models using the techniques presented 

here. 

Parameter equifinality is the second most important problem. Equifinality was not a big 

issue in the past, especially for researchers who just wished to use crop models for prediction 

purposes. However, current applications seek to link crop models to genetics to begin designing 

ideotypes and to guide the selection process in crop breeding programs, both of which will help to 

accelerate annual rates of gain. This cannot be achieved as long as crop models remain afflicted 

with issues of expressibility, equifinality, and GSP instability. 

There are two approaches to equifinality that attack the problem from different angles. The 

first way is to try change the model structure to make it simpler – specifically, to have fewer 

parameters. In this way, the interactions between parameters that allow equifinality to occur can 

be eliminated. Additionally, parameters that have very limited impact on model outputs can be set 

to nominal values, thus excluding them from the estimation process. Global sensitivity analysis 

proved to be a possible approach to both of these ideas – identifying interacting parameters and/or 

ones of limited influence. The second way to address equifinality would be to collect data sets 

involving both large amounts and many types of data. There are many developmental trajectories, 

each with its own set of parameter values, that can result in the same anthesis date. However, the 

more measures one has of other ancillary traits, the greater one’s ability to winnow through and 

discard those trajectories until just one remains. For example, total number of leaves is needed to 

simulate anthesis days in CERES-Maize. When not measured, leaf number is estimated as 

[P1/(PHINT*2) +5]. If, however, leaf number is available, fewer parameter combinations can 

agree with all the data. Recent advances in high throughput phenotyping approaches can be very 
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helpful in both widening the range of data types that can be obtained along with enlarging the total 

amounts.  

Parameter instability is another issue that limits the use of crop model in multiple 

environments. Instability was detected in all three studies included in this dissertation. Parameter 

instability is important because if the estimates vary depending on the environments used to 

estimate them, it is impossible to know what values to use in an ECM under soils and weather 

different from those present in the original field studies. For example, the cultivar parameters (e.g. 

P1, P2, PHINT, P2O), explicitly relate to plant behaviors (e.g., development toward anthesis) to 

environmental variables (e.g., temperature and photoperiod in the current case). From the time the 

models were first created, it has been assumed that such parameters are properties of the individual 

lines (i.e., stable). The corollary to this assumption is that, by implication, the parameters have a 

genetic basis because genotypes do not change with the environment. Thus, the expectation is that 

research will be able to mechanistically link at least some GSP’s to molecular genetic processes. 

But this cannot be done for unstable parameters. 

It may be that part of the instability arises because of discrepancies in measurement errors 

between different plantings. Usually weather data are measured at single points either within; 

adjacent to; or, sometimes, at some distance from the experimental sites. Soil variables, to which 

plants are highly sensitive (chapter 2) may be quantified at multiple points within a field but seldom 

at a high level of horizontal or vertical resolution. Thus, there will always be a distribution of errors 

between the measured environments and those actually present at the plants. Furthermore, these 

distributions will vary from one planting to the next and those differences will be modulated by 

the highly nonlinear nature of the models into GSP estimates lacking in stability. Given the amount 

of data in used in chapter 4 the p-values in Tables 5 are, perhaps, not surprising. However, the 
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sizes of the Variability Indices and variance percentages severely compromise the abilities to link 

these GSP’s to genetics. 

The two remedies mentioned above, better models and more data, might also be, to a 

greater degree or less, helpful with parameter instability. However, a second strategy might also 

contribute – moving away from point estimates of environmental factors to ones that are taken 

directly on an area basis. One example might be using leaf temperature as a direct external input 

to the model in place of air temperature. This would overcome the considerable field-to-field 

divergence in weather station placement. Using leaf temperature in this way would have been 

impractical to the point of inconceivable in the early days of crop modeling but sensing capabilities 

have greatly advanced since then. In particular, high throughput phenotyping automated ground or 

airborne vehicles with thermal cameras make such measurements quite straight forward today. 

Perhaps, models are in need of revision not only to catch up with biological knowledge but to 

better align with modern instrument technology as well. 

Whatever the steps will be taken in the future, it is obvious that the amounts of available 

data are going to explode. Thus, model simulations can be expected to generate a high 

computational demand. Using supercomputers (e.g. Stampede at TACC) will be a virtual necessity 

to accomplish the large number of simulations that some tasks such as parameter estimation will 

require. Even so, part of the solution will have to be better optimization methods to estimate model 

parameters in feasible times despite the large amounts of data. The Holographic Genetic Algorithm 

that we developed in chapter 3 is a good foundation on which to build. It was highly efficient at 

estimating large number of parameter using large number of cultivar-site-years data. 

Finally, one cannot fix the problems that one does not know exist. Over the last 20 years, 

crop models have been considered as important tools that can help accelerate breeding programs 
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via improved phenotype prediction of prospective crop genotypes in novel, time-varying 

environments and sophisticated new management practices. However, based on the results 

presented here, it is very uncertain that crop models having current architectures and driven by 

current sensor systems can achieve this goal. Thus, future research should be directed towards 

solving these issues. Indeed, it is imperative these problems be fixed so that crop models can be 

used as tools to help breeders, farmers, and researchers address global food security issues. The 

tools, statistical tests to detect problems and monitor progress, and the algorithms developed herein 

are a foundation on which to build. 
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