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PURPOSE

The purpose of this report is to make a comparative study of

two methods of designing a reinforced concrete structure: (i) ultimate

strength design; (ii) working-stress design; and, to assess the advan-

tage of ultimate strength design over working-stress design from the

points of view of convenience, economy, and time required.

HISTORICAL BACKGROUND OF ULTIMATE STRENGTH DESIGN

A pronounced interest in the ultimate strength of structural

members dates back only one or two decades but its origin may be found

far back in engineering records, farther back, in fact, than the con-

cept of linear elasticity and working-stress (l). The original ulti-

mate strength design formulas were empirical, being based on the failure

loads of typical elements as found by experiments (17).

Around 1900, A. N. Talbot and other early pioneers in this field

pointed out that a curved stress-strain relationship must be used for

an accurate determination of the ultimate strength of reinforced con-

crete members. Several early theories for predicting the strength of

reinforced concrete members such as Thullie*s flexural theory in

1897 (l), and Ritter's introduction of the parabolic distribution of

concrete stresses in 1899 (l), were ultimate load theories. However,

straight line theory was generally accepted because it was mathematically

simple and the resulting safety factors with respect to ultimate load

observed in tests were sufficiently controlled to satisfy the require-

ments of that time (3). Straight line theory was adopted by the Joint



Committee on Standard Specifications for concrete in 1909, with an

allowable concrete compressive stress equal to 0.325 times the ultimate

compressive strength of the concrete; therefore, the safety factor

against compressive failure was nearly three (4).

There are two assumptions which form the basis for the formulas

used in straight line theory. 1. Plane sections before bending remain

plane after bending; this implies that the unit deformation of the

material at any given point is proportional to the distance from the

neutral axis. 2. Stress is proportional to strain, that is, unit

stress at a point is proportional to its distance from the neutral

axis (10).

In 1921, McMillan's study of column test data showed that build-

ing columns under load develop steel stresses due to creep of the con-

crete considerably higher than those predicted by straight line theory.

In 1930, Whitney stated that the average stress in the concrete at

ultimate load is 0.85f * and that at a stress of approximately f */2

stresses and strains are no longer proportional (26). He also suggested

the use of a simplified rectangular stress block and thereby greatly

simplified the ultimate strength design equations (6).

In 1955, for the first time the Joint Committee of ACI-ASCE,

allowed the use of ultimate strength design for simple structures (l).

Mattock, Kriz and Hognestad in their 1961 paper have also

recommended the use of an equivalent stress distribution in the con-

crete (17).



This theory has been widely used in building frames all over the

world. In 1960, a paper was published by Jain on plastic theory applied

to two-hinged arches. The purpose of his paper was to present a method

of calculating the actual ultimate strength of two hinged arches (22).

The theoretical results have been verified by experiment and complete

agreement is found to exist. From this paper it can be seen that in

each case, elastic theory underestimated the ultimate strength by about

40 per cent, while the proposed theory (ultimate) gives results which

agree closely with the test observations.

It is concluded, therefore, that the method of ultimate strength

design permits prediction with sufficient accuracy of the ultimate

strength in bending, in compression, and in combinations of the two,

of all types of structural concrete sections likely to be encountered

in practice (19).

The tables and curves presented in Wang's paper in 1962 are

believed to be adequate for ordinary building frames (21). However,

for more complicated members such as circular columns and irregular

sections these curves are not applicable. Columns with biaxial bending

are solved by adopting simplified and approximate formulas and using

curves for uniaxial bending. The author has adopted the ACI-Code

assumptions (23). With the aid of tables and curves, ultimate design

of concrete structures will be made more appealing to practicing

engineers, as evidenced by the examples shown (21).



ULTIMATE STRENGTH DESIGN THEORY

Ultimate strength design means the design of reinforced concrete

structures by ultimate strength theory to resist shears, moments and

thrusts which have been determined from elastic analysis of the structure.

The assumed design loads are multiplied by specified load-factors to ob-

tain ultimate shears, moments and thrusts. It should be noted that

ultimate theory is a method of proportioning sections based on their

actual strength as confirmed by tests. When combined with the use of

load factors it provides a method of obtaining uniform factors of safety.

The assumptions on which ultimate strength design theory is based

are as follows:

1. Strain in the concrete shall be assumed directly pro-

portional to the distance from the neutral axis (5).

2. The maximum unit strain at the extreme compressive fibre

at ultimate strength shall be assumed equal to 0.003 inch

per inch (18).

3. Plane sections normal to the axis remain plane after

bending (4).

4. Tensile strength in concrete is neglected in sections

subjected to bending (5).

5. Maximum compressive fibre stress in concrete does not exceed

0.85fJ (4).

6. The diagram for compressive stress distribution is assumed

rectangular for all sections (14).



7. Stress in tensile and compressive reinforcement at ultimate

load shall not be assumed greater than the yield point or

75,000 psi, whichever is smaller (23).

Ultimate strength theory considers only the stress distribution

in the member at the ultimate load. This distribution as observed from

standard test cylinders under standard loading and sustained loading

takes the shape shown in Plate I. The stress-strain diagram of an

actual structure more nearly approximates the stress distribution

under a sustained loading which shows more strain for the same stress

when compared with the standard rate of loading (9). This is caused by

plastic flow or creep in the concrete. Ultimate failure of the concrete

occurs under a sustained load at about 85 per cent of the maximum ordi-

nate in the standard loading diagram (15).

General requirements are as follows:

1. "The Building Code Requirements for Reinforced Concrete"

by the ACI apply to the design of members (23).

2. Analysis of indeterminate structures shall be based on

the assumption of elastic behavior.

3. Attention should be given to the deflection of members,

including the effect of creep whenever the net ratio, p,

of reinforcement in any section of a flexural member exceeds

O.lSfyfy (1).

The advantages of this theory are:

1. As ultimate load is approached stress and strain are not

proportional; therefore, the straight line theory does not
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give a reliable prediction of the ultimate strength of

a section. It follows that the actual factor of safety

cannot be determined by straight line theory (1).

2. Dead load is a determinate quantity and generally remains

unchanged during the life of the structure but actual

live load is less predictable. Therefore, it is un-

reasonable to apply the same load factors to dead load

and live load. This deficiency is eliminated by this

theory (l).

3. The design of beams under flexure by the method based on

working stresses and assumed straight line variation of

stress in the concrete can give approximately correct re-

sults for highly reinforced members but it grossly under-

estimates the compressive flexural strength of concrete.

The use of ultimate strength theory permits smaller,

tougher beams, more heavily reinforced for tension with

reduction of compressive reinforcement (6).

4. A better evaluation of the critical moment-thrust ratio

for members subject to combined bending and axial load is

obtained by the ultimate strength design procedure. In

structures like arches and multiple-story frames, the thrust

may be due largely to dead load while moment is created by

live load (l).

5. Ultimate strength design permits smaller, tougher sections,

by reducing the size of the members and thus reducing the



rigidity of the structures % The stresses caused by volu-

metric changes are thus minimized (16).

6. The actual ultimate strength of two-hinged arches of uniform

section for various pattern of loading is 50 to 100 per cent

greater than the ultimate strength predicted by elastic

theory (22).

LOAD FACTORS

In reality, the actual strength of a structure can fall below

its calculated value for various reasons: inaccuracies and imperfections

in erection; substandard steel or concrete; assumptions and approxima-

tions made in analysis; and, the actual load may exceed the assumed

design loads. Blast pressure, fire, or other emergencies may cause

unforeseen impact or excess load. To ensure the safety of the structure

from these possibilities, the design strength should exceed the design

load by a sufficient margin to accommodate these variations. This is

achieved by multiplying the design loads by a load factor. The ACI-Code

(23) recommends that members should be proportioned so that: (i) they

will be capable of carrying without failure the critical load combination

given below, thereby insuring an ample factor of safety against an in-

crease in live load beyond that assumed in design; (ii) the strains

under working loads should not be so large as to cause excessive cracking.

These criteria are satisfied by the following formula.

For those structures in which effects of wind and earthquake

loading are neglected,

U = 1.5 B + 1.8 L.



A large margin of safety is applied to live loads because they

are much more uncertain than dead loads which are subject to very little

change during the life of the structure.

U = ultimate strength of section.

B = effect of basic load consisting of dead load plus volume

change due to plastic and elastic actions, shrinkage and

temperature.

L = effect of live load plus impact.

THE DESIGN OF A RIGID FRAME CONCRETE BRIDGE
BY ULTIMATE AND ELASTIC THEORIES

The Design Problem

Rigid frame bridges have been extensively used for intersecting

highways and over numerous streams and in locations where it is necessary

to meet conditions imposed by restricted headroom. This type of bridge

has proved economical for spans of one hundred feet and more (24). This

type of bridge was introduced in the U. S. A. in 1922, by Arthur G.

Hayden, Design Engineer, Westchester County, New York, Park Commission.

The bridge has its abutment and deck cast as a unit. A great

deal of benefit is derived from this continuity. From the theory of

indeterminate structures it can be shown that the moments are small in

the sections near the center of the deck of the rigid frame bridge as

compared with the corresponding moments in a simply supported deck of

the same span, hence the section of the deck can be reduced at the

center as required. Arthur G. Hayden (29) stated that the reinforced
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concrete rigid frame bridge requires only about 60 per cent of the

material which would be required for a constant section frame. The

depth of the deck at the center of the bridge is commonly a fortieth

of the clear span. This fact also provides one more advantage in that

the height of the frame can be reduced.

As stated by Hayden no complex mathematical analysis is necessary

for these structures (24).

A rigid frame bridge may be widened without any major alterations

in existing structures, and even the normal traffic is not interrupted.

Traffic moves under and over these bridges with great safety.

Rigid frame concrete bridges with spans up to 175 feet have been

built in the U. S. A., but it is realized that for heavy highway loading

these are economical only up to a span of about 70 feet.

A common location for such a bridge is at an intersection of a

divided highway and a secondary highway (30). The divided highways

are usually 4 lane with a median of 12 to 20 feet and the secondary

highway normally is 2 lane with sidewalks and curbs. The clearance at

the center generally is taken to be 15 to 20 feet.

A booklet (24) published by the P. C. A. gives some empirical

proportions for a rigid frame bridge. These empirical rules give

approximate sections which should be checked for stresses for a par-

ticular loading in a detailed analysis.

The assumed details for the bridge design are as listed below

and shown in Fig. 1.
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a. The top of the deck is assumed flat.

b. The clear span for the bridge is 100 feet.

c. The depth at the center of the deck can be taken approxi-

mately one fortieth of the span. Hence, select 2 feet for

the depth of this section of the deck.

d. Assume EE 1 and EE M about L/l8 or 5 feet.

e. Soffit curve is taken as a parabola.

f. Select a clearance of 20 feet for level of AD to G*.

g. Assume A'A" is equal to 3 feet.

h. Let A
n
E* be a straight line.

The footing of a rigid frame bridge could be hinged or fixed.

Horizontal thrust and vertical load, both act on the footings. In the

hinged support there is no restraining moment at the base of the column and

thus it is free to rotate. Actually a support is almost always partially

restrained.

These bridges should be designed to withstand the usual loads;

dead load, live load and earth pressure. The dead and live loads are

calculated in the same fashion as for other bridges with the exception

of the earth pressure on the end walls. Earth pressure on abutments

for a simple span bridge is usually active pressure, produced by the

backfill moving towards the abutment. In the rigid frame bridge, it

is possible to develop some passive earth pressure by a movement of the

end wall against the backfill. It has been found experimentally that

there is a little passive pressure on the end wall which may ordinarily

be disregarded.
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Another set of forces is caused by the relative displacement

of foundations and volume changes due to temperature variations and

shrinkage of concrete.

Analysis of the Structure

Calculation of Frame Constants

1. Deck Coefficients (Fig, 2)

5-2 .

r
c
= r

b
= —2— = 3/2 = 1.5

Using Table 20, (28)

S = 17 -° S
bc

= S
cb

= 17 '°

The stiffness of the deck at B, or the moment at B

necessary to give BC a unit rotation at B when C is fixed,

is S x I A, or proportional to 17 x —LJLi = 1.37, say 1.40.
100

y

The carry-over factor, C, equals

'C =0.74
be

2. End Wall Coefficients (Fig. 3)

The end wall element in Fig. 3 is trapezoidal with height

of 19.5* and defined by two straight lines 3* apart at A

and 5* apart at B.

Using Table 26, (28)

rb
=

5 " 3 = -§- = 0.67 r
a
= ab

= 1 a
a
=

S^ 10.5
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S = 4.95
ab

CA = CKS, = 3.90
a, a u b.b
b b a a

The stiffness at B when A is fixed, is given by

S i/L = 10.5(3) /19. 5 = 14.5
D
a

C
ab

= 0.78

C
ba

= °' 35

3. Distribution Factors

1.37AtB ' D
BC

=
1.39+14.5

= 0.09

°BA
= 14.1

1.37 + 14.1
= 0.91

0.91

0.37

0.09

0.78

r

*- 0.74

0.09

"*5

c 100.0

0.91 -91.0

-0.41

-9.0

+ .45

-0.04

-6.60

+ .60 +6.0

1.37 -6.0

r,

+6.0

r

-91.4

777~ nr

-33.8 kft

Carry-over and distribution
factors

(a)

Final distributed,
moments

(b)

Fixed supports

Fig. 4
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4. Hinged Support Condition

The stiffness at B, when A is fixed, is

S, i/L = 10.5 x .1 r = 14.5
ba 19.5

When A is hinged, it is given by

VcA (1 - C
a
C
ba

) = 10.5(1 - C^) ;

cab= °' 78

0^ = 0.35

" 10'^1 " 10.5 x 5 )

= 7.5 I /L
o'

= 7 - 5 x tSt 10 - 4

The relative stiffness in per cent at B is then

1.37

BA * 1.37 + 10.4
= 11.5 per cent or 0.115

DDr = -

—

„
' •-

,

• \w \ - 88.5 per cent or 0.885
o^ 1.37 + 10.4

In the fixed support condition the moment at the support

is quite high. Moreover, there is not much difference at the

haunch moment between fixed and hinged support conditions.
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0.115

100.0

0.885 -88.5-11.5

- .67

-89.17

A

+ .75
- .08

+89.17

A

-8.6

1.0

-7.6
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-A-

Carry-over and distribution
factors

(a)

Final distributed
moments

(b)

Hinged supports

Fig. 5

5. Dead Load

The frame carries its own dead load in addition to which a

concrete thickness of 1/2M will be allowed for an integral roadway

wearing surface.

The weight of the end walls is carried directly down to the

footings and creates no moments. Effect of eccentricity is neglected.

The longitudinal section through the deck is divided into an

area 100 ft. long with a constant depth of 2
8 - 1/2M weighing 290 psf.

The remaining area is divided as shown in Fig. 6.

Fixed-end moments per foot of width:

Uniform load = 290 x 100
2

x 0.106 = -307,500 ft. lbs.

GT^J
Compression in bottom fibre.
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2'-0'

Half portion of deck

Fig. 6

Equivalent concentrated load:

(1) = 3900 x 100 x 0.05 =

(2) = 3024 x 100 x 0.13 =

(3) = 2160 x 100 x 0.19 =

(4) = 1300 x 100 x 0.22 =

(5) = 430 x 100 x 0.20 =

(6) = 430 x 100 x 0.14 =

(7) = 1300 x 100 x 0.085

(8) - 2160 x 100 x 0.040

(9) = 3020 x 100 x 0.012

(10) = 3900 x 100 x 0.002

: 19500.0 ft. lbs.

; 39312.0 ft. lbs.

: 41000.0 ft. lbs,

: 28600.0 ft. lbs,

8,600 ft. lbs.

6,000 ft. lbs.

= 11,000 ft. lbs,

= 8,640 ft. lbs.

= 3,620 ft. lbs.

= 780 ft. lbs.

Total = 479,550 ft. lbs.

Say *480,0 left

Using the values 89.17 and 7.6 per cent determined in Fig. 5a, the

numerical values of the corner moments at B are

480(0.8917 + 0.076) = 470.0 kft

Reduction for curvature correction is about 2 per cent (24).

Compression in top fibre.
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Therefore, final moment at B = 460.0 kft

The total positive moment assuming a simply supported deck is,

U.D. = 290 x 100
2

x 0.125 = +362,000 ft. lbs.

(1) = 3900 x 0.05 x 100 = +19,500 ft. lbs.

(2) = 3024 x 0.15 x 100 = +44,300 ft. lbs.

(3) = 2160 x 0.25 x 100 = +54,000 ft. lbs.

(4) = 1300 x 0.35 x 100 = +45,500 ft. lbs.

(5) = 430 x 0.45 x 100 = +20,350 ft. lbs.

Total = +536,800 ft. lbs.

Say +537.0 kft

Reduction for curvature is about 2 per cent (24)

= 526.0 kft

The difference between this moment and negative corner moment

=+66.0 kft at crown

6. Live Load

Standard Specifications for Highway Bridges adopted by the

American Association of State Highway Officials provide that a

truck-train loading, or an equivalent lane loading consisting of a

uniform load and a single concentrated load, be used for the design

of bridges.

This bridge is designed for the heaviest loading, i.e.,

H20-S16 as shown in Fig. 7.

Compression in top fibre.
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Concentrated
load

18,000 lbs. for moments
26,000 lbs. for shears

i—c i 1 I i til i 1

K20 - S16 loadings

Uniform load
640 lbs/rft of
load lane

Fig. 7

Load per foot of width for moments:

concentrated load = 18000/10 = 1800 lbs.

distributed load = 640/10 = 64 lbs.

Including a 20 per cent impact allowance, the frame carries a

concentrated live load of 2200 lbs. and a uniform live load of 80 psf

per foot of width.

Influence lines for live load:

To find the influence lines for moments and shears at various

points, matrix formulation of the slope deflection method is used.

Sign conventions:

Counterclockwise moments at the ends of member are considered

positive; clockwise loads and rotations at joints are considered posi-

tive.

Writing the matrix formulation of slope deflection equations

Son = /k_7 von force-displacement equations

VQnF /a 8

_7
I

r
|

displacement transformation equations
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V ]= [a«] (r)

V
01

1/19.5

V10
-1 1/19.5

V
12

-1

V
21

-1

V
23

-1 1/19.5

V
32

1/19.5

Load matrix l

l

Load 10* from left support = 9.34

Load 20* from left support =15.5

Load 30* from left support =21.1

Load 40* from left support =19.3

Load at crown =17.4

-0.5

-3.2

-6.0

-12.0

-17.4

10'

R =
1

R
2
=

R3
=

20' 30* 40 s 50 s

" 9.34
"

" 15.5" '21.1' "19.30" "
17.

4~

-0.50 -3.2 -6.0 -12.0 -17.4

7. Earth Pressure

The frame is subjected to active earth pressure on the end

walls due to the backfill. Moreover, the wall is also subjected to

active earth pressure due to the live load as it moves across the

backfill approaching the structures.

Coulomb's graphical construction is used to determine the

active pressure as shown in Fig. 13. From Fig. 13, it can be seen
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Tho final end moments on the following moment diagrams were

calculated by an.. IBM 1620 computer.

6.42
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2.84
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6.30

15.8
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9.70

16.1
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12.0

16.30

Deck Moment Diagrams for Unit Load at
Each Load Point

Fig. 9
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4.2

.91
.82

6.3
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1.6

7.0
3.75

1.5
2.5
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T.8

0.3

40' from left support

1.20

8.7

2.25
5.5

crown

Influence Lines for Moment in the Deck Section

Fig. 10
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that when the concentrated load is near the wall, it exerts maximum

pressure on the wall.

The assumed properties of the backfill are shown in Fig. 13. This

is a medium sand. The natural water table is assumed to be well below

the ground line. Therefore, water will not accumulate behind the wall,

so constant water pressure is not taken as one of the loads on the end

wall. As sand is a free-draining soil, rain water will be drained with-

out exerting any significant transient water pressure on the wall.

The total earth pressure, PA , is 11.85 . (From Fig. 13)

AP
A
= 1.0

P.cosS = l/2 p.H S = 15

Therefore p = 1.0 H = 21'

To calculate the fixed-end moments, the triangular load is split

up into several concentrated loads as shown in Fig. 12.

B

o
1

CM

PA
= 1.0

0.625

2.9

3.125

4.4

Fig. 12. Earth Pressure Diagram
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Frame Constants:

r, = 0.67, a = 1, r = 0, a =

19

Fixed-end moment coefficients:

Distance

Load

2.5' 7.5* 12.

5

4 17.5*

0.625
k

2.9
k

3.125k 4.4
k

MAB 0.077 0.105 0.065 0.004

MBA 0.016 0.144 0.184 0.09

MFAB
= (°'°77 x °* 625 + 2 ' 9 x °* 105 + 3 * 12 x °« 065 + 4 » 4 x 0.004)

21.5 = 0.55 x 21.5 = 12.0kft

MFBA
= (°'° 16 x 0.625 + 2.9 x 0.144 + 3.12 x 0.184 + 4.4 x

0.09)21.5 = 1.4 x 21.5 = 30.0
kft

Distribution
Factors

Carry-over

Fixed-End
Moments

Distribution

Carry-over

Distribution

Carry-over

Final moments

A I

BA
5

BC
C

CB CD
D

0.885 0.115 0.115
0.74

0.885

0.77 0. 77

+11.8
-11.8

-30.0
-9.1

+30.0
+ 9.1

-11.8
+11.8

-39.1
+34.6 4.5

-3.8

-4.5

3.8

+39.1
-34.6

+3.4 +.4
-0.3

-0.4
+0.3

-3.4

0.27 +0.03 -0.03 -0.27

-0.83 +0.83

. ..

-0.83 0.83
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8. Live Load Moments

Calculation of live load moments at the points of interest

through the use of the influence lines in Fig. 10:

Haunch moments:

Negative moment:

= 2.5 x 16.40 + (2/3 x 16.40 x 50 + l/2 x 16.40 x 50) x 0.08

= 41 + 76 = -117.0 k ft.

At 0.1L or 10* from left support:

Negative moment:

= 2.5 x 11.30 + (l/2 x 11.30*x 50 + 35 x 3/4 x 11.30) x 0.08

= 28.2 + 46.2 = (-74.4) k ft.

Positive moment:

= 3 x 2.5*+(l/2 x 15 x 3Jx 0.08

= 7.5 + 1.8 = 9.30 k ft.

At 0.2L or 20* from left support:

Negative moment:

** *
= 6.30 x 2.50 + (1/2 x 20 x 6.30 + 2/3 x 6.30 x 50)0.08

= 15.8 + 22 = -37.8 k ft.

Positive moment:

- 2.5 x 5.7 + (1/2 x 5.70 x 20 + 1/3 x 5.7 x 10)0.08

= 14.2 + 6 = +20.2 k ft.

At 0.3L or 30* from left support:

Negative moment:

-X-X- "X-

= 2.5 x 25 + (2/3 x 54 x 2.5)0.08

= 6.25 + 7.2 = -13.4 k ft.

* = due to distributed load; ** = due to concentrated load
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Positive moment:

= 7 x 2.5 + (1/2 x 46 x*7) x 0.08

= 17.5 + 13 = +30.5 k ft.

At 0.4L or 40' from left support:

Positive moment:

= 9.5 x 2.5 + (1/3 x 9.5 x 70)0.08

= 23.8 + 18 = 41.8 k ft.

Negative moment:

= 2.5 x .3 + (2.3 x 30 x 3 x) 0.08

= .75 + .48 = 1.25 k ft.

At crown

:

Positive moment:

= 8.70 x 2.5 + (l/2 x 8.70 x 100)x 0.08

= 22.8 + 34.8 = +57.6 k ft.

Shears:

Dead load shear at sections of interest:

haunch = 22.0 k

0.1L or 10 8 = 15.2 k

0.2L or 20* = 9.3 k

0.3L or 30* = 4.3 k

0.4L or 40 s = 0.1 k

at crown =

9. Live Load Shears

Live load shears calculated at sections of interest through

the use of the influence lines in Fig. 11.

* - due to distributed load; ** = due to concentrated load
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Haunch = 6.4 k

10* from support = 5.9 k

20* from support = 4.85 k

30* from support = 3.8 k

40' from support = 3.7 k

Crown = 2.6 k

Top of footings:

Dead load shear (thrust) = 23k

Live load shear (thrust) = 6k

Earth pressure = 6.2k

= 35.2k

Reaction at footings:
©

Weight of leg itself = 10.2k

Dead load reaction = 22.0

Live load reaction = 6.4

= 38.6k

- weight of leg itself 10.2k



TABLE 1. -ULTIMATE MOMENTS, SHEARS, AND THRUSTS

33

Distance O.IL 0.2L 0.3L 0.4L Crown Haunch

Moments kft<

Dead Load -361.5 -139.5 +15.6

Live Load -113.4 - 68.0 -24.0

+ 16.7 + 36.4 +55.0

Earth Pressure - 1.25 - 1.25 - 1.25

Thrusts kips
-

Dead Load 34.2 34.2 34.2

Live Load 10.8 10.8 10.8

Earth Pressure 5.2 5.2 5.2

Shears kips

Dear Load 22.8 14.0 6.45

Live Load 10.8 8.72 6.84

Earth Pressure _ _ —

+87.0 +96.0

+76.5 +84.6

- 1.25 - 1.25

34 . 2 34 .

2

10.8 10.8

5.2 5.2

0.15

5.70 4.70

-690.0

-222.0

- 1.25

34.2

10.8

5.2

33.0

10.5

Negative moments compression bottom fibre.

Positive moments compression top fibre.
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Ultimate Strength Design

Cross-sections in rigid frame bridges are subjected to shear,

bending and axial thrust, and all deck sections have tensile reinforce-

ment. Compressive reinforcement in the deck is practically eliminated

in ultimate strength design.

Design equations for beams reinforced in tension:

From equilibrium of internal and external forces as shown in Fig. 14:

0.85 f ' ba - A f = P (l)
c s y u

From equilibrium of internal and external moments about the tensile

reinforcement:

M
u
= P e* = 0.85 f

e ab(d - a/2) (2)

These equations are modified by capacity reduction factors,

P
u
= ^(0.85f

c

, ba - A
s
f
y

) (la)

M
u
= P

u
e * = tf(0.85f

c
'ba(d ~ a/2 )) ( 2a >

From equation (la)

pu/# + Vy
a -

0.85f
c

8 b

Some design conditions are specified in ACI-Code (23);

1. The reinforcement ratio, p, shall not exceed 0.75 of the

ratio, pb , where pb
is given by ( 0. 85k^VO (87000/87000

y.
2. Deflection Control:

Deflection shall always be checked whenever the required

net reinforcement ratio p in any section of a flexural member

exceeds 0.18f'/f .
c y
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-d

L_0.85f

1
f

V\ C = 0.85f f ab

i

N

i

-d

T = A
s
fy

Simplified Rectangular Stress Block Assumed by Whitney

Fig. 14
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3. Check for Shear:

Ultimate shear stress vu
- V /bd should be less than

v
c
= 3 - 5 (/*7

4. Check for Bond:

Ultimate bond stress uu
= V /Vsiojd should be less than

u_ where u~ - 4.2/ f '
, for bars in tension,

a a / c

Section at Haunch

Design for :,-; • .nt and thrust .

M
u
= 1.5B + 1.8L

kft
= 1.5 x 460 + 1.8 x 124.0 = 910.0

P
u

= 22.0 x 1.5 + 6.4 x 1.8 = 50.
k

d = 44", Equation (la) gives

A = 5.0 sq in

P./gf + A f 50/0.9 + 5 x 50
a = u s V = —l = 7.8"

0.85f c
'b 0.85 x 4 x 12

M
u
= P e' = j^(0.85f

c
'ba(d - a/2))

=0.9(0.85 x 4 x 12 x 7.5 x 40/l2)

= 924
kft > 910

P
u

= ^(0.85f
c
'ba - A

s
f
y

)

= 0.9(0.85 x 4 x 12 x 7.8 - 5 x 50)

= 50.
k

Check for Deflection.

p = A
s
/bd = 5/l2 x 44 = 0.0095

pd
= 0.18 f

c
'/f

y
= 0.014

P < Pd
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Check for Shear.

/ 43.5 x 1000
v
u Vbd =

"12T-44— =82 -° P"

v
o = 3 - 5 (/ic I

= 3.5 x 0.85 x /A

= 188 psi

v,, < v
u C

Check for Bond.

V
u _43.5 x 1000 _

U
u

*"

^ojd 0.85 x 4 x 5 x 0.87 x 44 °
pS1

u
a
= 4-2 / f

c
g =4.2/ 4000 = 266 psi

The perimeter of the bars is sufficient so that the calculated

bond stress at ultimate load is less than the allowable.

Section at 10* from Support

Design for Moment and Thrust .

M = 1.5 B + 1.8 L
u

= 15 x 241 + 1.8 x 74.5 = 475.
KI

P
u
= 50.0

d = 30"

A
£
= 3.5 sq. in.

Equation (la) gives

a = P
u/# + A

£
f 67 + 175 = 6-0 „

M

0.85 f
8

b 0.85 x 4 x 12
c

„ = Pn e
1 = ^((0.85-x 4 x 12 x 6.0 x 27/12)) = 495 > 475



37

Check for Deflection.

p = A c/bd = 3.5/12 x 30 = 0.0097
s

pd
= 0.18 f

cVfy
= 0.014

P<P
d

Check for Shear.

. 33.6 x 1000
v
u
= V

u
/bd = 12 x 30 = 14° P si

v
c
= 3.5 $ /f * = 3.5 x 0.85 x / 40U0 - 188 psi

Check for Bond.

V
u

33.6 x 1000
Uu :

T^ojd
=

0.85 x 3.5 x 4 x 0.87 x 30 " 110 pS1

U
a
= 4 ' 2y* c ' ~ A'V 4000 = 266 psi

u, < u„
u a

The perimeter of the bars is sufficient so that the calculated

bond stress at ultimate load is less than the allowable.

Section at 20* from Support

Design for Moment and Thrust .

M = 207.5kft
u

P
u
= 50.0

k

d = 18"

A
s
= 2.5 sq. in.
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Equation (la) gives

Pu/^ + A.fv 67 + 125
a = _J^

,

s y = 7i
= 4 - 70

0.85f c
J b 41

M
u
= P

u
e 8 = ^(0.85 f

c
'ba(d - a/2)

= 0.9(0.85 x 4 x 12 x 4.70 x 15.65/12)

k-ft
= 225 > 207.5

Check for Deflection.

P = A /bd = 2.5/12 x 18 = 0.0114
5

p . =0.18 f
s /f = 0.014

*d c ' y

P<Pd

Check for Shear .

22.7 x 1000- w /u_. - ^' l X 1UUU _ . ^j, nV
u - V bd T2TT8 105 '° psl

v = 3.5 $/ f * = 3.5 x 0.85 x / 4000 = 188 psi
c J/ c >s/

V < vu v v
c

Check for Bond.

u = _!" = 22.1 x 1000 „ 17Q psl
^^lojd 0.85 x 2.5 x 4 x 0.87 xl8

u
a
= 4.2/ f *c = 4.2 / 4000 = 266 psi

u, < u
u a

The perimeter of the bars is sufficient so that the calculated

bond stress at ultimate load is less than the allowable.
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Section at Crown ; Same section is provided for 30' and 40 1 distance

from, support.

Design for Moment and Thrust *

M = 180.6
kft

u

Pu
= 50.0

k

d = 18«

A = 2.0 sq. in.
s

M

Equation (la) gives

P /0 + A f
u s y

a = 0.85f c
8 b = 167/41 = 4.06"

M
u
= P

u
e ' = ^((°« 85 fc * ba ( d - a/2))

= 0.9(0.85 x 4 x 12 x 4.06 x 16/l2)

= 200.0

_
20Q

kft
> 180#6

kft

Check for Deflection .

P = A /bd = 2/l2 x 18 = 0.0093
s

pd
= 0.18 f c

'/f
y

= 0.014

P < Pd

Check for Shear.

„ - u /ua 4.7 x 1000 _ 00 nv
u
- V

u
/bd

12x 18
22.0 psi
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v
c
= 3.5 / f

c
* = 3.5 x 0.85/ 4000 = 190 psi

Check for Bond .

V 4.7 x 1000
uu " -7-= ~ 0.85 x 2 x 4 x 0.87 x 18 = 44 psi

51 ojd

u = 4.2 / f*
c
= 4.2 / 4000 = 266 psi

u < u
u a

The perimeter of the bars is sufficient so that the calculated

bond stress at ultimate load is less than the allowable.

Reinforcement for shrinkage and temperature stress normal to the

principal reinforcement shall be provided in structural members where

the principal reinforcement extends in one direction only. The ratio

of reinforcement to concrete area shall be 0.0020.
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TABLE 2.- MOMENTS, SHEARS, AND THRUSTS FOR WORKING-STRESS METHOD

Distance : 0.1L : 0.2L : 0.3L : 0.4L : Crown : Haunch

Moments kft

Dead Load -241.0 -93.0 +10.4 +58.0 +64.0 -460.0

Live Load - 74.5 -37.8 -13.4 - 1.25 - -123.4

+ 9.30 +20.2 +30.5 +42.50 +47.0

Earth Pressure .83 - .83 - .83 - .83 - .83 .83

Thrusts kips

Dead Load 22.8 22.8 22.8 22.8 22.8 22.8

Live Load 6.0 6.0 6.0 6.0 6.0 • 6.0

Earth Pressure 3.5 3.5 3.5 3.5 3.5 3.5

Shears kips

Dead Load 15.2 9.3 4.3 0.1 22.0

Live Load 5.9 4.85 3.8 3.17 2.6 6.4

Earth Pressure

Negative moments compression bottom fibre.

Positive moments compression top fibre.
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Working-Stress Design

Cross sections in rigid frame bridges are subjected to shear,

bending, and axial thrust. Most sections have both tensile and com-

pressive reinforcement.

Method of Transformed Section:

In a homogeneous beam the neutral axis passes through the center

of gravity of the cross section. A reinforced concrete beam can be

treated as a homogeneous beam, if the steel is considered to be re-

placed by contrete. For beams of unusual stress distribution and

reinforcement, this method is quite convenient as it allows the appli-

cation of the simple familiar formulas for the design of homogeneous

beams.

Estimate the depth, z, of the neutral axis of an equivalent

section of a homogeneous beam; then proceed as follows (Fig. 15): com-

pute the section constants with respect to the extreme concrete com-

pressive fibre.

Area A = bz + (n-l)A' + n x A
^ s

Q = l/2 bz + (n-1) A'
s

c + n x A
s

x d

Then the depth of the center of gravity of the transformed area,

3
g =

"~a
* Moment of inertia about the center of gravity I = l/3 bg +

(n-l)A'
s

(g-c) + n A
s
(d-g)

2
.

Also determine E, the eccentricity with respect to the extreme concrete

fibre, e = E + g.

Check ;or stresses:

f = P x e x z
c

I

g
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"•fg/a

Working- Stress Design

Fig. 15
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f =

Finally compute

P x e x (d-z)
I
9

*l
+ f'

s
/n

Section at Haunch:

Moments Thrusts

Dead Load 460.0 22.8

Live Load 123.4 6.0

Earth Pressure 0.83 3.5

584.2 32.3

COO A

Eccentricity with respect to center line = ' = 18.0' = 216"

If the axial thrust is disregarded, the following steel area is required

in tension:

- 7.0 sq. in.
533.4

As ~ f„jd'S x
s J< 20 x 0.87 x 57

The depth of the neutral-axis in the concrete section equals

/ 2 pn + (pn) -[pn^

= 57 (0.446 - 0.1) = 0.35 x 57 = 20"

Estimated section coefficients:

2
A = 12 x 20 + 10 x 7 = 310.0 in

Q = l/2 x 12 x 20
2
+ 10 x 7 x 57 = 6380.0

= _g_ = 6380 = „
9

A 310
20 * 5

I = l/3 x 12 x 20.

6

3 +70x 36.

4

2

in

= 35000 + 92500 = 1,29500

E = 216 - 0.5 x 57 = 187.5

e = E + g = 187.5 + 20.6 = 208.0

in
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Check for stresses:

f
c
= Px ex z = 32 .3 x 208 x 20 = . 105Q

I 1,27500

f = P x ex(d-z)
x n = 32.3 x 208 x 37

x 1Q = 18aQ

Check for z

fT+TTn-

1,27500

1050

1050 + 1810

= 18100 psi

= 20"

10' from Support:

Moments Thrusts

Dead load 241.0 22.8

Liv£ load 74.5 6.0

Earth Pressure .8 3.5

316.3 32.3

Eccentricity with respect to center line =
. - 117"
32.3

If the axial thrust is disregarded, the following area is required in

tension:

A - ^1—1 x 12 = 4.8 sq. in.
s 20 x 0.87 x 44

M

Depth of neutral-axis

I 2
z - d 2 pn + (pn) - pn)

= 44 x 0.34 = 15"

Estimated section coefficients:

A = 12 x 15 + 4.8 x 10 = 228

Q = 11 x 15
2

+ 68 x 46 = 3454
2

= -2- = 3454 -
A 228

15.2
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I = l/3 x 12 x 15.2 + 48 x 28.8
g

= 14000 + 39800 = 5,3800.0

Check for stresses:

f = p x e x 2 =: 32.3 x 108.4 x 15 = .970 = 970 psi
c I 513300

t - P x ex(d-2) _ 32.3 x 108.4 x 29 ._ _ 1Q _
f
s
" £—> <— x n -

^33o5 x 10 - 18.8

g
'

= 18800 psi

Check for shear:

v= V = 21.1
bd 12 x

x 1000 _ 40#0
44

psi

v
c

= 1 - 7V f
'c

= 1.75/3000 = 1.75 x 56.7 =

v < v
c

Check for bond:

_ V 21.1 x 1000
4 x 5 x 0.87

3.4 x 56.7
1

— = 27.6 psi
x 44 ^u . . —

21 03d

u
a

= 3.4 /f' c - - 193.0 psi

D
u < u

a

20' from Support

Dead Load

Live Load

Earth Pressure

Moments Thrusts

93.0 22.8

37.8 6.0

.8 3.5

131.6 32.3

Eccentricity with respect to center line = -I^IjP = 48.6"
32.3

If the axial thrust is disregarded, the following steel area is required

,
131 x 12

*r 20 x 0.87 x 26
JO Sq

'
in *
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However, compressive steel must be provided for axial thrust

as it is a significant portion of the total load. Therefore the

steel area is divided as follows:

A = 2.4 sq. in.
s M

A'
s
= 1.2 sq. in

The depth of neutral axis

z = d /2n(p + ^J=) + n
2
(p + 2p')

2
- n(p + 2p»)

= 26 0.205 - (0.15)

= 26 x 0.30 = 7.8"

Estimated section coefficients:

A = 12 x 7.8 + 9 x 1.2 + 10 x 2.4 = 128.5

Q = l/2 x 12 x 7.8 + 10.8 x 6.3 + 24 x 18.2 = 868.0

_ Q _ 868 _ A on
9 - r- 1283

~ 6,8

E = 48.6 - 13 = 35.6"

e = E + g = 35.6 + 6.8 = 42.4"

^2 _
I = l/2 x 12 x 6.8 + 10.8 x 5.3 + 24 x 19.2 = 11474.0
9

Check for stresses:

= P x e x z = 32.3 x 42.4 x 7.8 = Q 91 = 91Q ^
c I 11474

y

f = P x ex(d-z) v n _ 32.3 x 42.4 x 18.2 x 10 = 20#80SI X n
11674

g
= 20800 psi
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f
i = P x ex(z - c) _ 32.3 x 42.4 x 6.3 x 1 = 7 b
s

"
I
g

11474

= 7500.0 psi

Check for shear:

v =
Td = ITT26 x 100°

= 45 -° P si

v^ = 1.75 / f'
c

= 1.75/3000 = 96.0 psi

v < v
c

Check for bond:

_ V _ 21.1 x 1000 _ ,- nU -Z^3d" 4 x 3.6 x 0.87 x 26 " 65 '° pS1

u
a

= 3 ' 4 S7^ = 3 ' 4 * 56 ' 7 = 193.0 psi
D l

u < u.

Section at Crown

Dead Load

Live Load

Earth Pressure

Moments Thrusts

64.0 22.8

47.0 6.0

0.80 3.5

111.6 32.3

111 ^

Eccentricity with respect to center line =
c,

'

*
,

o
= 41"

oz_* o

The area of steel, if the axial thrust is disregarded

111.6 x 12
AT ~ 20 x 0.87 x 22

3 * 5 sq * in *

However, compressive steel must be provided for axial thrust as

it is a considerable portion of the total load. Therefore, the steel

area is divided as follows:



A
s
= 2 * 4

A'
s
= 1.2

The depth of neutral axis

z = d
v
/2n(p + 5^£ + n

2
(p + 2p

8

) - n(p + 2p')
V d

22 V07205 - (0.15) = 22 x 0.30 = 6.8

Estimated section coefficients:

A = 12 x 6.8 + 9 x 1.2 + 10 x 2.4 = 114.3

Q ~ — x 6 '
q2 + 10 * 8 x 5 * 3 + 24 x 15.2 = 681.2

_0_ = 681.2 _
9

A 114.3
5 "

49

I = l/3 x 12 x 5.8
3 + 10.8 x 4.5

2
+ 24 x 16.

2

2 = 7810 in

E = 41 - 12 = 29 e = e + g = 34.8"

Check for stresses:

_ P x e x z „ „ _ 32.3 x —fl- x 6.8 x 10 = 975 psi
fc= I

x n 7310

- P x e x (d-z) _ 32.3 x 34.8 x 15.2
-x n -

7810
x 10 = 21600 psi

rl P x e x ( z-c)
t - _ x n - 32.3 x 34.8 x 5.3

7810
x 10 = 7600 psi

Check for shear:

v = V-= M
bd 12 x 22

x 1000 = 9.8 psi

= 1.75 yT*~ = 96.0 psi
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Check for bond:

2.6 x 1000
U

Zojd ~ 4 x 3.5 x 0.87 xT2
=: 9 * 7 psi

u = 3.4 /f' = 34 x 56.7 = 193.0
a v/ c

u < u_
a

TABLE 3. -COMPARISON OF REQUIRED CROSS SECTION FOR
"ULTIMATE STRENGTH" AND "WORKING-STRESS"
DESIGN PROCEDURES AT SELECTED LOCATIONS

Design : Section :

Properties :

Section Location
Method : Haunch 10' 20 8 30* 40' Crown

Ultimate d - in. 44 32 18 18 18 18

Strength
Design A - sq. in.

s M 5.0 3.5 2.5 2.0 2.0 2.0

Working- d - in. 57 44 26.0 22 22 22
Stress
Design A

s
- sq. in. 7.0 4.8 2.5 2.5 2.5 2.5

A*
s

- sq. in. - - 1.0 1.0 1.0 1.0
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CONCLUSIONS

In this study the influence lines were calculated using matrix

formulation of the slope deflection equations. This method shows many-

advantages over many other methods of calculating influence lines pro-

viding an electronic computer is readily available.

As has been shown on pages 32 to 50 and Table 3, the procedures

for the design of reinforced concrete structures by ultimate strength

design are not difficult and in most cases substantially simpler in

ideas and arithmetic than working-stress design.

The adoption of ultimate strength design methods for the design

of a reinforced concrete member provides a saving in time spent on

design, in the amount of material used in the construction, and in

total cost, and still maintains an adequate factor of safety.

From Table 3, it can be calculated that the total reduction

in materials for the ultimate strength design as opposed to the working-

stress design is approximately 40 per cent.
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NOTATION

A ' = area of compressive reinforcement

A
g

= area of tensile reinforcement

A
T

= total area of steel

a = depth of rectangular stress block

[a'J = coefficients relating beam rotations to joint rotations

b = width of rectangular beam

c = distance from centroid of the compressive reinforcement

to the extreme compressive fibre

C = carry-over factor

d = depth of deck at crown

d' = depth of deck at support

d = distance from the centroid of the tensile steel to

the extreme compressive fibre

E = eccentricity of the load from the extreme compressive fibre

e = eccentricity of the load from the center of gravity of the

transformed area

e' = eccentricity of the load from the center of tensile reinforcement

g = depth of the center of gravity of the transformed area from the

extreme compressive fibre

I = moment of inertia of the transformed section
9

I = moment of inertia at center of deck

I = moment of inertia

f ' = 28-day cylinder strength of concrete under standard loading
c

condition



54

f = design strength of concrete

f = design strength of steel by an elastic theory

f = yield strength of steel

[k] = stiffness coefficients for force-displacement equations

ku
~ = ratio of the depth of the compressive stress block to d

k, = depth of neutral axis

k-,
= a fraction and shall be taken as 0.85 for strength

up to 4000 psi

Mp = fixed- end moments

M = moment at section

P = ultimate load at section
u

P» = active earth pressure

A.p^ = active earth pressure due to live load

p. = intensity of earth pressure

Pk
= balanced steel ration 0.45f

c
'/f

P A Q/bd

p, - 0.18f
c
'/fy deflection control

p
8 = A

s
'/bd

Q - static moment of inertia

£ Q
= sum of perimeter of the bars

r = ratio of increase in depth of the deck at the support to

the depth at the crown

[r] = rotations at the joints for matrix formulation of slope

deflection equations; they are positive when clockwise at the

joints
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^on
= ^01 » ^02 = internal moments at the ends of members

^on
= ^01> ^02 = rotations of the ends of members

S = stiffness of members

R = load at joints, considered positive when clockwise

V = shear at section

V = ultimate shear at section
u

v = ultimate shear stress

v
c

= shear stress carried by concrete

u = ultimate bond stress

u_ = allowable bond stress
a

z = depth to neutral axis

tf = unit weight of soil

° = angle of wall friction

$ = angle of internal friction

$ - capacity reduction factor
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It has long been recognized that the stress-strain relationship

of concrete does not follow a straight-line under many conditions of

loading. In the early stages of reinforced concrete design in this

country, the straight-line relationship was adopted because of the

apparent ease of manipulation of the formulas. After about twenty

years of use, engineers found that this practice did not give results

comparable to those found in tests; therefore, they proposed changes

in the specifications. After ten years of changing specifications

there was a completely inconsistent approach to the design of rein-

forced concrete structures.

Ultimate strength design is a method of proportioning reinforced

concrete members based on calculations of their ultimate strength.

Whitney has stated that the average ultimate stress equal to the

thickness of the simplified rectangular stress block, is 0.85f
c
', the

width of the block is equal to the width of the member, and the depth

of the block, defined as a, is calculated from statics. Assuming the

ultimate strength of the member to be controlled by the steel in

tension, the internal resisting moment is taken about the tensile

steel and set equal to the external moment.

It was the purpose of this report to use ultimate strength

design in a practical problem and to compare it with working-stress

design. Rigid frame bridges have been used extensively for intersecting

highways and in locations where it is necessary to meet conditions im-

posed by restricted headroom. This type bridge has the abutment and

the deck cast as a unit, hence there is a continuity at their junction.



In this study the influence lines were calculated using matrix

formulation of the slope deflection equations. This method shows

many advantages over other methods of calculating influence lines

providing an electronic computer is readily available.

The calculations in this report demonstrate that the procedures

for the design of reinforced concrete structures by ultimate strength

design are not difficult and in most cases substantially simpler in

ideas and arithmetic than working-stress design.

The adoption of ultimate strength design for the design of a

reinforced concrete member provides a saving in time spent on design,

in the amount of material used in the construction, and in total cost,

and still maintains an adequate factor of safety.

It was demonstrated in this report that the total reduction in

materials for the ultimate strength design as opposed to the working-

stress design of this structure is approximately kO per cent.


