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Summary 11 

 1. This review synthesizes evidence that altered fire frequency drives discontinuous ecosystem 12 

transitions from mesic grasslands to shrublands or woodlands in the Central Great Plains, U.S.A. 13 

2. Long-term fire manipulations reveal that grassland to shrubland transitions are triggered when 14 

fire-free intervals increase from 1-3 years to ≥ 3-8 years and longer fire returns (~10 years or 15 

more) result in transitions to woodlands. Grazing and soil properties alter these fire thresholds. 16 

3. Grassland to shrubland transitions are abrupt and exhibit non-linear relationships between 17 

driver and state variables. Transitions to shrublands and woodlands exhibit hysteresis, where 18 

reintroducing frequent fires does not reverse transitions in management-relevant time-scales 19 

(decades).  20 

4. Non-linear transitions and hysteresis emerge because grasses generate positive feedbacks with 21 

fire that create strong demographic barriers for shrub and tree establishment. Fire-free intervals 22 

allow shrubs and trees to reach a size sufficient to survive fire, reproduce, and disrupt the fire 23 

feedback loop through competition. 24 

5. Synthesis: Mesic grasslands, shrublands, and woodlands constitute self-reinforcing states 25 

(alternative attractors) separated by critical fire frequency thresholds. Even without major shifts 26 

in climate, altered fire frequency can produce dramatic state-changes, highlighting the 27 

importance of fire for predicting future ecosystem states. Local management should focus on 28 

prevention of unwanted transitions rather than post-hoc restoration. 29 
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 33 

Introduction 34 

Woody encroachment—the increasing extent and dominance of woody plants in grass-dominated 35 

systems—is occurring across most North American grassland ecosystems (Archer et al. 1988, 36 

Briggs et al. 2005, Van Auken and McKinley 2008, Barger et al. 2011, Ratajczak, Nippert & 37 

Collins 2012), and in many other grasslands globally (Eldridge et al. 2011).  This recent 38 

widespread increase in shrub and tree cover in grasslands and savannas can lead to states of co-39 

dominance by shrubs and grasses or complete conversions of grasslands to shrublands or tree-40 

dominated woodlands, often referred to as an ecosystem transition.   41 

The ramifications of these ecosystem transitions are multifarious, with impacts on 42 

community composition and vegetation structure (Eldridge et al. 2011, Ratajczak et al. 2012), 43 

ecosystem function (Barger et al. 2011), ecohydrology (Huxman et al. 2005, Brunsell, Nippert & 44 

Buck 2014) and long-term conservation of biodiversity (Gray & Bond 2012). Woody 45 

encroachment into mesic grassland can impact regional economies by reducing forage for large 46 

grazers (Hoch, Briggs &Johnson 2002, Briggs et al. 2005, Limb et al. 2010), hindering 47 

economically-important livestock production (Limb et al. 2011). 48 

Woody encroachment into grasslands has been attributed to a variety of drivers operating 49 

at global (elevated CO2, climate change; Bond & Midgley 2012, Kulmatiski & Bear 2013), 50 

regional (nitrogen deposition, fragmentation; Kochy & Wilson 2001, Briggs et al. 2005) and 51 

local scales (over-grazing, fire; Walker et al. 1981, Roques et al. 2001, Fuhlendorf et al. 2008, 52 
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Van Auken & McKinley 2008).  Within mesic grasslands, including North American tallgrass 53 

prairie, changes in the timing, intensity and frequency of fire have been implicated as important 54 

proximate drivers of transitions from grasslands to shrubland or woodland (Briggs et al. 2005, 55 

Fuhlendorf et al. 2008, Bond 2008, Gibson 2009, Twidwell et al. 2013a).   56 

As with many grasslands and savannas globally (Archibald, Staver & Levin 2012), fire 57 

frequency in the North American Central Great Plains (CGP) is largely controlled by the number 58 

of ignition events, which occur via lightning strikes or by humans (Allen & Palmer 2011, 59 

Stambaugh, Guyette & Marschall 2013, Twidwell et al. 2013b). The best estimates of pre-60 

settlement fire regimes in CGP grasslands suggest that fire-free intervals generally ranged from 61 

3-5 years (Wright & Bailey 1982, Allen & Palmer 2011, Desantis, Hallgren & Stahle 2010, 62 

Strambaugh et al. 2013). Fire frequency now varies across the region (Mohler and Goodin 2012) 63 

from annual or biennial in many grasslands managed primarily for cattle production (Smith & 64 

Owensby 1978), to 3-4 years in areas managed to balance cattle production and biodiversity 65 

(Fuhlendorf et al. 2009, Allred et al. 2011), to long-term fire suppression of 20 years or more 66 

associated with a cessation of ranching and sub-urban development (e.g. Hoch et al. 2002, 67 

Briggs et al. 2005, Mohler & Goodin 2012).  A critical question is if and how this landscape will 68 

respond to changes in fire frequency.  69 

This review synthesizes and expands upon recent research on fire as a driver of woody 70 

encroachment in mesic grasslands (i.e., tallgrass prairies) of the North American CGP.  For this 71 

review, we define the CGP as the ecoregion bounded to the south by the Cross-Timbers region, 72 

to the north by transition from C4 grass dominance to C3 grass dominance, to the west by the 73 

transition to mixed grass prairie, and to the east by deciduous forest (similar to Barger et al. 74 

2011). The focus on temperate mesic grassland transitions is timely, given the need for increased 75 
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conservation of this grassland (Hoekstra et al. 2005) and widespread manipulation of fire in 76 

grasslands (Mohler & Goodin 2012, Twidwell et al. 2013b).  We review the mechanistic and 77 

experimental evidence for whether fire frequency creates tipping points that separate grasslands, 78 

shrublands and woodlands as alternative attractors. We build on >30 years of extensive research 79 

manipulating fire frequency and grazing in a North American tallgrass prairie at the Konza 80 

Prairie Biological Station (KPBS), as well as data from other tallgrass prairie sites in the region.  81 

 82 

Conceptual Framework 83 

Woody encroachment of grasslands has been described using many different conceptual 84 

frameworks, including succession (Archer et al. 1988), gradual linear dynamics (Roques et al. 85 

2001), state and transition models (Westoby, Walker & Noy-Meir 1989, Briske et al. 2005, 86 

Briske, Fuhlendorf, & Smeins 2006), alternative attractors (or alternative stable states) (Walker 87 

et al. 1981, Frehlich et al. 1999, Anderies et al. 2002, Folke et al. 2004, Bestelmeyer et al. 2011), 88 

demographic models (Higgins & Schieter 2012), rapid changes in ecosystem drivers 89 

(Bestelmeyer et al. 2013), physiological thresholds (Hoffman et al. 2012, Twidwell et al. 2013a) 90 

and others (Scholes & Archer 1997, Bond 2008, Briggs et al. 2005). Here we focus on 91 

comparing linear and alternative attractor models, because ecosystems with alternative attractors 92 

are susceptible to rapid and difficult to foresee regime shifts (Holling 2001, Folke et al. 2004, 93 

Walker & Salt 2006, Scheffer 2009) and knowledge of potential alternative attractors is also key 94 

for successful ecosystem restoration (see Briske et al. 2008, Suding & Hobbs 2009).   95 

Different fire frequencies could generate non-linear transitions that are difficult to reverse 96 

(i.e. tipping points, critical thresholds). Non-linear responses occur when an ecosystem state is 97 

initially resistant to external forcing, but has a point(s) where gradual forcing precipitates non-98 
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linear changes in state (threshold systems) (Fig 1, Noy-Meir 1975, May 1977, Holling 2001, 99 

Walker 1981, Folke 2006, Briske et al. 2008, Scheffer 2009, Bestelmeyer et al. 2011). In more 100 

extreme cases, threshold transitions also exhibit hysteresis, where eliminating the external 101 

forcing or returning driving variables to their pre-transition levels is insufficient to reverse the 102 

state transition (Noy-Meir 1975, May 1977, Walker et al. 1981). When a system exhibits 103 

threshold transitions and hysteresis, we refer to the two potential states as alternative attractors 104 

(similar to the concept of alternative stable states and critical transitions), “critical thresholds” 105 

refer to non-reversible thresholds, and “regime shifts” refer to transitions from one alternative 106 

attractor to another (Scheffer 2009).  107 

Determining if systems have alternative attractors requires multiple lines of inference, 108 

including but not limited to mechanistic studies and studies relating salient driver variables with 109 

ecosystem state (Scheffer & Carpenter 2004, Schroder et al. 2005, Bestelmeyer et al. 2011, 110 

D’Odorico et al. 2012). Mechanistic studies of ecological thresholds typically focus on 111 

demography and feedback processes (Archer et al. 1988, Roff & Mumby 2012, Higgins & 112 

Scheiter 2013), because ecological thresholds occur primarily in systems with demographic 113 

barriers and/or strong feedback mechanisms (De Roos and Persson 2002, Walker & Salt 2006, 114 

D’Odorico et al. 2012, Boerlijst, Oudman, & Roos 2013, Higgins & Schieter 2013, Huss et al. 115 

2013). Demographic bottlenecks are establishment barriers or low population growth rates for a 116 

life stage, resulting from evolved life history traits and/or ecological constraints (Grime 1979). 117 

Demographic bottlenecks can suppress a potentially dominant functional group through priority 118 

effects and other mechanisms (De Roos & Persson 2002, Higgins & Schieter 2012, Huss et al. 119 

2013). Distinguishing between feedbacks and demographic bottlenecks can be difficult because 120 

feedbacks by one group or species can create demographic bottlenecks for other one or more 121 
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other species. However, feedbacks generally refer to interactions that amplify (positive 122 

feedbacks) or dampen (negative feedbacks) pressures (Walker & Salt 2006, D’Odorico et al. 123 

2012). Experimental and observational approaches can identify thresholds by determining 124 

whether a system exhibits linear or threshold relationships between driver and state (Scheffer & 125 

Carpenter 2004, Bestelmeyer et al. 2011). Reversing the change in drivers that precipitated a 126 

threshold transition can identify hysteresis (Fig. 1). For transitions from grasslands to shrublands 127 

and woodlands, we first review the mechanistic evidence for feedbacks and demographic 128 

barriers, followed by evidence for fire frequency thresholds, abrupt ecological shifts and 129 

hysteresis.  130 

 131 

Grassland to shrubland transitions 132 

Mechanistic Background: Historically, much of the CGP was tallgrass prairie, an herbaceous 133 

plant community dominated by rhizomatous C4 (i.e. warm-season) grasses with a diverse 134 

subdominant community of C3 grasses, forbs, and legumes (Collins & Adams 1983, Gibson & 135 

Hulbert 1987, Collins & Calabrese 2012). In this region, the balance of precipitation and 136 

evapotranspiration can support woody vegetation (Borchert 1950, Hayden 1998) and yet, woody 137 

plant cover was historically low, except along riparian corridors and certain other landscape 138 

features (e.g., outcrops, seeps, etc.) (Weaver 1954, Wells 1970, Axelrod 1985, Abrams 1985). 139 

The dominant grasses of this region are well-adapted to fire and drought, but poorly adapted to 140 

light limitation (Knapp 1993, Scholes and Archer 1997, Bond 2008, Nippert et al. 2011, Schieter 141 

& Higgins 2012) and they generate self-reinforcing feedbacks that promote these conditions and 142 

demographic barriers that inhibit other plant growth forms by: 1) leaving little open space for 143 

colonization by other species, even in post-fire windows (Weaver 1954, Briggs & Knapp 2001, 144 
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Benson & Hartnett 2006); 2) producing large concentrations of fibrous roots in the upper 30 cm 145 

(Jackson et al. 1996, Nippert & Knapp 2007, Nippert et al. 2012) that can rapidly utilize water 146 

and nutrients at this soil depth (Knapp 1993, Epstein et al. 1997, Knapp et al. 2001, 147 

Bredenkamp, Spada, & Kazmierczak 2002, Ocheltree et al. 2013, 2014); and 3) generating large 148 

amounts of herbaceous biomass that facilitates frequent and intense fires, resulting in direct 149 

mortality of unprotected meristems (Gibson, Hartnett, & Merrell 1990, sensu Van Wilgen et al. 150 

2002, Bond 2008, Scheiter & Higgins 2012). As a result, the establishment of shrub seedlings in 151 

frequently burned grasslands is rare (Benson & Hartnett 2006, Ratajczak et al. 2011).  152 

 However, once shrubs establish in grasslands, the competitive dynamics between grasses 153 

and shrubs change dramatically. Initially, shrub seedlings recruit as single-stemmed ramets that 154 

are highly susceptible to top-kill by fire. Given sufficient time and resource availability 155 

encroaching shrub species in CGP tallgrass prairie, such as Cornus drummundii and Rhus 156 

glabra, form clonal multi-stem clusters in the grassland matrix (“shrub islands”) that increase in 157 

both height and radial extent over time (Petranka & McPherson 1979, Collins & Adams 1983, 158 

Anderson et al. 2000, Harrell et al. 2001, McCarron & Knapp 2003, Brudvig et al. 2007, 159 

Ratajczak, Nippert & Ocheltree in press). Increasing shrub cover leads to light limitation for 160 

grasses, along with concomitant decreases in grass cover, grass biomass, and the fine fuels that 161 

carry fire (Heisler et al. 2004, Lett & Knapp 2005). While the reductions in grass biomass are 162 

greatest at the center of shrub clusters, even the edges have significantly lower fine fuels, 163 

allowing new clonal recruits to benefit from shrub-mediated fire suppression (Ratajczak et al. 164 

2011). If fire kills the above-ground portion of large shrubs, they typically resprout and reach 165 

their former height in as little as one or two years (Heisler et al. 2004, Hajny, Hartnett & Wilson 166 

2011). In the even rarer instances where fire kills shrubs completely, the potential for C4 grasses 167 
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to recover their pre-transition productivity in short time frames (2 years or less) has usually 168 

eroded (Lett & Knapp 2005), leaving windows of opportunity for shrub seedlings to establish in 169 

a low-competition environment. Thus, while frequent prescribed fires might inhibit shrub 170 

establishment, they may no longer be a viable filter for prohibiting shrub expansion once shrub 171 

establishment is initiated.  172 

The effects of resource competition and availability also change as shrubs reach larger 173 

size-classes. Mature clonal shrubs are deep-rooted and obtain a larger percentage of their water 174 

from deeper soils (> 50 cm depth), reducing competition for water with the dominant grasses, 175 

which rely primarily on shallow soil water (McCarron & Knapp 2001, Ratajczak et al. 2011). 176 

Use of deeper water sources by shrubs mitigates susceptibility to summer drought and climate 177 

variability (Nippert et al. 2013). Crucially, deep-rooted parent stems can also transfer water to 178 

developing clonal stems in the grassland matrix, allowing them to avoid competition with grasses 179 

and increase in size until they can access deep soil moisture, suppress grass growth via shading, 180 

and begin developing their own clonal recruits (Ratajczak et al. 2011, Killian 2012). The clonal 181 

growth form and rooting properties of these shrubs, combined with their effects on fire 182 

suppression, creates a positive feedback loop with low fire intensity and alters the demographic 183 

bottleneck related to shrub recruitment, both of which facilitate shrub cluster survival and 184 

expansion (Petranka & McPherson 1979, Yao et al. 1999, Ratajczak et al. 2011, similar to De 185 

Roos & Persson 2002, D’Odorico et al. 2012, Huss et al. 2013), but only if shrubs are allowed to 186 

increase in size by fire-free intervals. 187 

Experimental and observational evidence for fire thresholds: 188 

 The mechanistic evidence presented thus far indicates that decreasing fire frequency 189 

should facilitate a transition to shrublands. The presence of feedback mechanisms and 190 
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demographic potential associated with clonal life history traits in both grasses and shrubs, 191 

suggests that this transition may be non-linear and capable of hysteresis (Walker & Salt 2006).  192 

A synthesis of fire frequency studies (Fig 4-5) shows that fire return intervals ≤ 2 years prevent 193 

shrub expansion in CGP grasslands (Bragg & Hulbert 1976, Briggs & Gibson 1992, Kettle et al. 194 

2001, Bowles & Jones 2013, Ratajczak et al. in press; Fig. 2), 3 year fire returns sometimes 195 

maintain grasslands, but can also allow transitions to shrublands, and fire returns >3 years 196 

consistently result in rapid shrub expansion (Brudvig et al. 2007, Bowles et al. 2013, Ratajczak 197 

et al. in press). This non-linear relationship between fire and shrubland formation is consistent 198 

with alternative attractor theory. Moreover, the transition from grassland to shrubland has the 199 

hallmarks of a threshold transition (e.g. Scheffer & Carpenter 2004, Bestelmeyer et al. 2011): 200 

abrupt shifts in shrub cover over time, spatiotemporal bi-modality of system state, and non-linear 201 

correlations between state and drivers variables (Fig. 2; Ratajczak et al. in press). The transition 202 

to shrub-grass co-dominance typically takes 20 years, with gradual increases in shrub cover at 203 

first, and rapid rates of clonal expansion later in the process, as illustrated by long-term 204 

measurements at KPBS (Fig 2B; Collins & Adams 1983, Ratajczak et al. in press). Analysis of 205 

28 years of plant composition at KPBS indicates that abrupt shifts in shrub cover are not related 206 

to abrupt shifts in climate or fire (i.e. pulses), but instead are correlated with gradual changes in 207 

grass cover (a proxy for fire intensity and the effects of grasses on resource availability; 208 

Ratajczak et al. in press). This suggests that the abrupt transition from grassland to shrubland 209 

represents the crossing of a threshold, rather than a response to abrupt changes in salient driver 210 

variables (Bestelmeyer et al. 2011). Demographic rates, in particular the high survival and rapid 211 

rate of clonal expansion, might also contribute to the abruptness of grassland to shrubland 212 

transitions. The importance of demographic bottlenecks (e.g. Huss et al. 2013) is further 213 
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evidenced by the 8-fold faster expansion rates by clonal shrubs, compared to non-clonal wood 214 

plants (Fig 2A-C).  215 

For grasslands and shrublands to be alternative attractors they must also show hysteresis 216 

with respect to fire frequency and grass dominance (Fig 1C). The clonal shrub Rhus glabra has 217 

the capacity to withstand annual fires once established (Hajny et al. 2011) and although exposing 218 

clonal oak shrublands to biennial fires initially lowers cover, it returns to previous levels within 2 219 

years and  shrubs that survive increase in size, reducing long-term fire susceptibility (Harrell et 220 

al. 2001, Boyd & Bidwell 2002). Data from KPBS also show hysteresis. Directly after a 221 

transition to shrubland, ungrazed grasslands were burned twice in 4 years, but failed to return a 222 

grassland state (Ratajczak et al. in press). We attribute these examples of hysteresis to the ability 223 

of shrubs to both suppress grasses and resist fire, and to resprout when top-killed. 224 

Similar to other alternative attractors (Staver et al. 2011, Roff & Mumby 2012), critical 225 

thresholds in CGP grasslands appear to be context-specific. Fire intensity and frequency play an 226 

interactive role, whereby less frequent but more intense fires can exclude woody plants 227 

(Fuhlendorf et al. 2008, Twidwell et al. 2013a) and vise versa  (Ratajczak et al. in press). 228 

Resource availability and other disturbance processes are also important. For instance, most 229 

establishment and expansion of shrub species at KPBS and elsewhere occurs in areas with deeper 230 

soils, while uplands with thin soils are rarely colonized by shrubs, despite long-term fire 231 

suppression (Fig 2D, Bragg & Hulbert 1976, Ratajczak et al. 2011, Bowles & Jones 2013). This 232 

is surprising, because upland fires are less intense (Gibson et al. 1990). The inability of shrubs to 233 

reach a fire resistant size in uplands is most likely due to greater run-off, coarser soils, and 234 

shallower soil depth, which collectively results in lower available soil moisture (Nippert et al. 235 
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2011) and forces shrubs to compete directly with grasses in upper soil layers (Nippert & Knapp 236 

2007, Ratajczak et al. 2011). 237 

Herbivory alters grass-shrub competition in many systems (Holdo et al. 2013). Browsing 238 

in CGP grasslands does not appear to play a major role in shrubland transitions, considering that 239 

the species most preferred by browsers have increased the most in cover (Van Der Hoek et al. 240 

2002 vs. Heisler, Briggs & Knapp, 2003, Ratajczak et al. 2011). However, introducing more 241 

diverse or larger browsers could potentially have an effect, as seen in similar systems on other 242 

continents (Staver et al. 2012).  In many grasslands globally, grazing has shifted grassland-243 

shrubland thresholds in favor of shrubs by reducing grass dominance (Walker et al. 1981, 244 

Scholes &Archer 1997, Fuhlendorf et al. 2008). Recent research in the CGP does not support 245 

this paradigm. If anything, grazing appears to suppress dominant shrub establishment (Kettle et 246 

al. 2000, Brudvig et al. 2007, Ratajczak et al. in press), perhaps because native grazers 247 

physically damage woody species (Coppedge & Shaw 1997) and create more bare ground which 248 

increases sensible heat and reduces surface soil moisture (Walker et al. 1981, Nippert et al. 249 

2013). More research is needed on how grazing affects grass-shrub interactions, considering the 250 

predominance of grazing in the CGP and mesic grasslands globally.  251 

 252 

Transitions to woodlands 253 

Mechanistic Background: The final state of woody plant expansion that we consider is 254 

conversion to woodlands. We focus primarily on Juniperus virginiana (eastern red cedar) 255 

woodlands (subsequently referred to as Juniper woodlands) rather than deciduous woodlands, 256 

because Juniper woodlands exhibit the greatest expansion in the CGP (Twidwell et al. 2013b).  257 
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 As with shrubs, the pyrogenic traits of C4 grasslands impose limits on Juniper trees. In 258 

fact, Juniper woodland expansion should be acutely constrained by fire because unlike grasses 259 

and shrubs, J. virginiana does not resprout when top-killed and J. virginiana develops bark 260 

slowly, leaving it poorly insulated against fires until older ages (Vanderweide & Hartnett 2011). 261 

As a result, smaller J. virginiana (<2 m tall) suffer high mortality rates during fires (Hoch, et al. 262 

2002, Fuhlendorf et al. 2008, Vanderweide & Hartnett 2011). For these reasons, greater fire 263 

suppression should be needed for Juniper woodland formation, compared to shrublands.  264 

Once J. virginiana reaches a larger size its response to fire may exhibit hysteresis. J. 265 

virginiana suppresses grass growth with dense canopies that intercept the majority of sunlight 266 

(Hoch et al. 2002, McKinley et al. 2008, Myster 2009, Limb et al. 2010, Van Els et al. 2010). 267 

With time, this disruption of fuel continuity decreases fire transmission (Abades et al. this issue), 268 

creating a positive feedback between J. virginiana and fire suppression. With long-term fire 269 

suppression J. virginiana can also over-top and replace shrubs, as shown in long-term vegetation 270 

surveys and the inability of shrubs seedlings to regenerate under older J. virginiana canopies 271 

(Myster 2009, Van Els et al. 2010). Thus, while the fires typical of grasslands and shrublands 272 

might prohibit tree establishment, exposing mature woodland trees to fires should have little 273 

effect.  274 

Unlike transitions to shrubland, low water availability and thin soils are less important 275 

constraints for J. virginiana expansion (Volder et al. 2010, 2013).  Evergreen trees are at least, if 276 

not more, drought resistant than grasses under most drought scenarios (Awada et al. 2012). As a 277 

result, J. virginiana seedlings in fire-free locations have high survivorship in both high-diversity 278 

and grass-dominated patches (Ganguli et al. 2008), shallow soils, and through droughts (Yao et 279 
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al. 1999, Eggemeyer et al. 2006, Engle et al. 2006, Volder et al. 2010, 2013)—conditions that 280 

typically exclude trees and most invasive species (Bond 2008, Seabloom et al. 2013).   281 

 282 

Theoretical Description & Empirical Support 283 

Statistical indications of regime shifts (e.g. abrupt shifts, state bi-modality) require experiments 284 

and observational data-sets with frequent sampling events and replicates that are scaled with the 285 

life span and spatial footprint of organisms involved (van Nes & Scheffer 2005, Bestelmeyer et 286 

al. 2011). Given the long generation time of J. virginiana, observing a threshold transition to 287 

woodland would require an experiment that increases fire returns slowly, allowing tree species to 288 

equilibrate with their changing carrying capacity until a potential threshold is crossed. Instead, 289 

most observations of woodland transitions have large gaps between samples (~a decade, Fig. 4, 290 

5- references therein), which are not suitable for tests of abrupt shifts between states. Moreover, 291 

most examples of woodland transitions take place when fire frequency is altered from frequent 292 

fires (1-3 yrs) to complete fire suppression. This effectively pushes the driver variable (fire) far 293 

past any potential thresholds. The ecological response to this change in driver variables should 294 

be loss of grasses and a pattern of logistic growth by trees and shrubs as they reach their new 295 

carrying capacity (May 1977, Hughes et al. 2012); this result is evident over 30 to 50 year 296 

observations in areas with fire suppression (Fig. 2, 3) (Anderson et al. 2000, Hoch et al. 2002, 297 

Peterson, Reich & Wrage 2007, Limb et al. 2010, Van Els et al. 2010, Twidwell et al. 2013, 298 

Ratajczak et al. in press).  299 

 While we lack the data to identify “abrupt shifts” during woodland transitions we can 300 

identify management thresholds by asking: is there a fire frequency threshold that prohibits 301 

transitions from shrubland to woodland? And if so, does increasing fire frequency in woodlands 302 
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reverse the transition or does the ecosystem show hysteresis? Detailed mapping of tree 303 

establishment and analyses of shrub cover at KPBS shows that 30 years of prescribed fire at 3-4 304 

year frequencies allows establishment of shrubs, but not trees (Fig. 2). The lack of tree 305 

establishment over a 30-year period with 3-4 year fire intervals and the prevalence of clonal 306 

shrublands throughout the region (Petranka & McPherson 1979, Collins & Adams 1983, 307 

Anderson et al. 2000, Harrell et al. 2001, Brudvig et al. 2007, Ratajczak et al. 2011), suggests 308 

that shrublands are a separate alternative attractor from woodlands and that longer fire-free 309 

intervals are needed to precipitate a transition to woodland. Less frequent burning (~ 20 year fire 310 

returns) or complete fire suppression allows tree establishment (Fig 3) and eventual formation of 311 

closed-canopy woodland (Bragg & Hulbert 1976, Kettle et al. 2000, Norris et al. 2001, Hoch et 312 

al. 2002, Engle et al. 2006, Twidwell et al. 2013a).   313 

A process-based approach suggests that woodland transitions may be possible at lower 314 

fire frequencies than the 20-year fire experiment presented here (Fig 4). To resist typical 315 

grassland fires, J. virginiana must reach a height of ~2.5 m and diameter of 17.5 cm at breast 316 

height (1.4 m) (Owensby, Eaton, & Russ 1973, Hoch et al. 2002, Vanderweide & Hartnett 2012). 317 

Connecting these thresholds to reported J. virginiana growth rates (Owensby et al. 1973, Engle 318 

& Kulbeth 1992, Schmidt & Wardle 2002), we estimate that fire free intervals of 15-20 years 319 

would allow consistent tree establishment, although this interval may be as short as 6-10 years 320 

for locations with abundant tree seed sources and heavy grazing (Owensby et al. 1973, Hoch et 321 

al. 2002, Fuhlendorf et al. 2008). These estimates closely match modeling by Fuhlendorf and 322 

colleagues (2008), as well as historical observations that J. virginiana is more common in 323 

pyrrhic woodlands with a fire frequency >5 years (Batek et al. 1999, Stambaugh et al. 2013). 324 

Similarly, a fire following 15 years of fire suppression at KPBS killed ~3/4 of Juniper trees, but 325 
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did not stop the transition to woodland when it was followed by further fire suppression (Fig 326 

2C). This indicates that transitions to Juniper woodland are possible at 15 year fire return 327 

intervals. However, the rate of transition will be significantly suppressed with more frequent 328 

fires (Fig 2C).  329 

 Expansion of J. virginiana can decrease fire intensity, which could create hysteresis in 330 

response to fire. In mixed deciduous/Juniper woodlands, re-introduction of 3-year fire returns 331 

and aerial chemical controls allows J. virginiana to maintain ~20% cover (Engle et al. 2006).  In 332 

both the southern and northern CGP, reintroducing fire returns of ~2-3 years for a duration of 20 333 

to 30 years had only marginal effects on tree cover and increased grass cover to only 10-20% 334 

(Peterson et al. 2007, Burton, Hallgren & Palmer 2010, Burton et al. 2011). In historical records 335 

(dendrochronology) Juniper woodlands persisted in areas with fire returns ranging from 2 to 6 336 

years (Batek et al. 1999, Desantais et al. 2010, Strambaugh et al. 2013). However, studies by 337 

Burton et al. (2010, 2011) and Peterson et al. (2007) were performed in primarily deciduous 338 

woodlands, and results may not apply to Juniper woodlands.  339 

A more rapid reversion of woodlands to grasslands typically requires physical or 340 

chemical removal of J. virginiana trees, combined with frequent burning to foster grass 341 

dominance and fire promoting feedbacks (Engle et al. 2006, Pierce & Reich 2010, Alford et al. 342 

2012). To achieve this, tree removal and reintroduction of fire should coincide, or the legacy 343 

effects of woodland dominance can facilitate a rapid return to the woodland state (Kettle et al. 344 

2000). It also may be possible to achieve faster reversals to grasslands using novel burning 345 

techniques that stimulate high-intensity (Twidwell et al. 2013a). 346 

 Woodland fire thresholds are context specific in ways that differ from thresholds 347 

differentiating grasslands and shrublands. A unique attribute of woodland trees, relative to 348 
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shrubs, is their ability to establish in more xeric and thin soils with sufficient fire suppression 349 

(Fig 4B: Engle et al. 2006, Eggemeyer et al. 2006, Knapp et al. 2008, McKinley et al. 2008). 350 

Conventional cattle grazing generally favors greater tree establishment by reducing fuel loads, 351 

and thereby, fire intensity (Hoch et al. 2002, Fuhlendorf et al. 2008, Twidwell et al.2013a). 352 

Grazing can also create microsite conditions that facilitate woodland seedling establishment 353 

(Owensby et al. 1973). In contrast, native grazers such as bison (Bos bison) can significantly 354 

restrict woodland development. At moderate densities at KPBS, bison physically damage J. 355 

virginiana trees (personal observations) and these behavioral traits have been observed in Bos 356 

bison from other North American grasslands (Bork et al. 2013, but see Coppedge & Shaw 1997). 357 

At KPBS, this effect is so strong that J. virginiana is asbent from Bos bison grazed areas, and 358 

instead other trees are more prevalent, such as the thorned tree Gleditsia triacanthos 359 

(Unpublished data, Z. Ratajczak). These observations indicate the importance of considering 360 

grazer impacts as a whole in grassland to woodland transitions, and not just their indirect effects 361 

on trees via grass abundance and soil characteristics.  362 

 363 

Synthesis and Opportunities 364 

Based on the data presented here and our synthesis of results from other fire frequency studies 365 

(Fig 4), we propose a conceptual framework of tri-stability for the CGP that treats grasslands, 366 

shrublands and woodlands as alternative attractors moderated by critical fire frequency 367 

thresholds. Based on experimental and observational studies of fire and ecosystem state we have 368 

constructed complementary catastrophe fold (Fig 4) and state and transition models that illustrate 369 

the positions of critical thresholds and the system’s capacity for hysteresis (Fig. 5). In areas with 370 

lower water holding capacity or thin soils that restrict access to deep soil moisture, shrubs cannot 371 
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establish and grasslands and woodlands are the only viable alternative attractors. Starting with 372 

grasslands as the baseline state, fire return intervals of 3-8 years result in transitions to 373 

shrublands, and fire frequencies of 8-10 years lead to transitions to woodlands (Fig 5). Once a 374 

shrubland or woodland state is established, self-reinforcing feedback mechanisms and altered 375 

demographic sensitivity to fire result in hysteresis, such that decreasing the fire return interval to 376 

pre-transition levels does not readily return the ecosystem to a grassland state. 377 

The tri-stability framework presented here is novel on two fronts. First, evidence for 378 

alternative attractors with descriptive mechanisms and non-linear transitions and hysteresis in 379 

response to changes in driver variables are rare in terrestrial ecosystems (Schroder et al. 2005). 380 

Identifying ecosystem thresholds, hysteresis, and the mechanisms behind these processes are 381 

major challenges in adaptive management and governance (Walker & Salt 2006) and ecosystem 382 

and community ecology (Sutherland et al. 2013). Second, in a single region (CGP) and climate 383 

zone, we provide evidence for three distinct ecosystem states depending on human management 384 

of fire, soil type, and to some extent, grazer identity and abundance. In light of the growing 385 

control of fire by humans, we argue that predictions of future vegetation shifts cannot rely solely 386 

on climate, and should incorporate fire frequency and social factors that determine fire 387 

management plans.    388 

Our conceptual framework provides testable hypotheses that can be applied to other sites 389 

and in experimental settings. Spatial analyses of tree cover would provide evidence for whether 390 

transitions to woodland constitute a regime shift (using methods described in Hirota et al. 2011, 391 

Staver et al. 2011). Other avenues for future research include testing competition models 392 

(Chesson 2000), theoretically derived “generic leading indicators” of impending thresholds 393 

(Scheffer et al. 2012), and demographic models that have advanced prediction in several 394 
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ecological systems (De Roos & Perssons 2002, Huss et al. 2013). Such research might also help 395 

identify opportunities for reversing transitions (Fig. 5; Holmgren & Scheffer 2001, Twidwell et 396 

al. 2013b).  397 

In the CGP and similar systems the tri-stability framework may serve as a valuable 398 

management tool, allowing landowners to employ fire frequency to avoid unwanted state 399 

changes. Given the economic and conservation priorities in the CGP (Hoekstra et al. 2005), the 400 

tri-stability framework suggests that preventing transitions to shrublands and woodlands is more 401 

cost effective than post-encroachment restoration, because returning fire will not necessarily 402 

facilitate the transition back to a grassland state on management-relevant time scales. Therefore, 403 

reversing unwanted transitions will likely require costly inputs, such as physical and chemical 404 

removal.  405 

Combining theoretical predications and application, we agree with others who have 406 

cautioned that critical thresholds can vary over time (Bestelemeyer & Briske 2012). Conditions 407 

that facilitate grass growth, greater fire intensity, or reduce tree/shrub growth will favor the 408 

grassland state, requiring longer fire-free intervals to facilitate a transition to a shrubland or 409 

woodland (Fig. 4C, sensu Staver et al. 2011, Bond & Midgley 2012, Hoffmann et al. 2012, Roff 410 

& Mumby 2012). Initial evidence suggests that fire thresholds have already changed in the CGP; 411 

prior to European arrival, the estimated fire return interval for the CGP was ~4 years (Wright & 412 

Bailey 1982, Allen & Palmer 2011) and that much of the region was devoid of shrublands and 413 

woodlands (Weaver 1954, Wells 1970, Axelrod 1985, Abrams 1986). Now, 3 to 4 year fire 414 

frequencies are often insufficient to prevent the transition to shrublands (Fig 2). These 415 

observations suggest that fire thresholds have responded to global and/or regional pressures, such 416 

as elevated CO2 (Bond & Midgley 2012), loss of larger browsers and native grazers, and exurban 417 
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expansions that have increased woody plant cover and enhanced woody plant seed sources 418 

(Briggs et al. 2005). Given this potential flexibility, continued monitoring of grasslands and 419 

adaptive management are critical (for examples, see Fuhlendorf et al. 2008, Bestelmeyer & 420 

Briske 2012, Twidwell et al. 2013b). 421 

The CGP grasslands share many drivers, feedbacks, and demographic traits for woody 422 

encroachment with other grasslands and savannas (Scholes & Archer 1997, Wu & Archer 2005, 423 

Bond 2008, Staver et al. 2011, D’Odorico et al. 2012, Higgins & Schieter 2013, Holdo et al. 424 

2013), contributing fertile ground for cross-site syntheses and development of more sustainable 425 

grassland management. One major research opportunity is elucidating the role of grazers and 426 

browsers on woody encroachment in the CGP. Identifying system-specific roles of grazers and 427 

browsers on ecosystems transitions will improve our ability to identify patterns and generalize 428 

across ecosystems, resulting in better a priori detection of ecosystem thresholds and enhanced 429 

opportunities to avoid critical thresholds.  430 
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Fig. 1: A depiction of potential internal ecosystem dynamics in response to fire. For all panels, 789 

solid lines denote stable equilibria, and in C) dotted lines delineate unstable repellors. A) shows 790 

the null hypothesis where fire does not result in ecosystems transitions (grey line) and a scenario 791 

where CGP ecosystems respond gradually to fire (black). B) shows a threshold system where 792 

small changes in fire can lead to disproportionate, but reversible change in system state. In 793 

systems with alternative attractors (C), shifts between states show threshold behavior as in (B). 794 

However, returning drivers to their pre-transition values does not reverse the transition. This 795 

figure is based on works by Noy-Meir (1975), Walker et al. (1981), Holling (2001), Folke et al. 796 

(2004), Scheffer (2009), and Bestelmeyer et al. (2011).  797 
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Fig 2. Measurements of shrub and tree dynamics in treatments of Konza Prairie exposed to 800 

different prescribed frequencies starting in the late 1970’s. ”Clonal shrubs” refer to Cornus 801 

drummondii, Rhus glabra, and Prunus americana cover and “non-clonal shrubs” include all 802 

other shrub species with a canopy that exists above the grass layer. (A) and (B) depict changes in 803 

shrub cover within lowland topographies for non-clonal (A) and clonal (B) functional groups. 804 

Fire free intervals vary from 1 year (black fill), 4 years (white fill) and 20 years (grey fill). (C) 805 

depicts the factorial cross of fire frequency and topography (uplands and lowlands) with respect 806 

to shrub cover, for non-clonal (white) and clonal shrubs (black) after 30 years of fire frequency 807 

manipulation (i.e. the level of shrub cover circa 2012). All shrub cover estimates are averaged 808 

across grazed and ungrazed treatments (n = 40, 10 m
2
 plots per combination of fire and 809 

topography, derived equally from grazed and ungrazed areas). (D) Shows changes in J. 810 

virginiana tree density for ungrazed areas with a fire free interval of 4 years (white fill) and 20 811 

years (grey fill). These data come from detailed mapping of catchment basins (see figure 3). The 812 

arrow in (D) indicates the timing of a wildfire that affected the 20-year fire treatment. 813 
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Fig. 3: Changes in woody species occurrence on an ungrazed catchment basin at Konza Prairie in 816 

A) 1981 and B) 2012, with only one fire since 1983. In both 1981 and 2012, coordinates of all 817 

tree stems and shrubs above the grass canopy were recorded. Trees were mapped as points and 818 

shrubs as polygons (see Briggs et al. 2002 for more details). For symbols, Juniperus virginiana = 819 

red dots, Gleditsia triacanthos = blue dots, Ulmus americana = yellow dots, all other tree species 820 

= black dots, and shrub cover = green polygon. Note that the watershed boundaries changed 821 

between 1981 and 2012, therefore, the original mapping boundaries are delimited with a black 822 

line.  823 
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Fig. 4: The CGP tri-stability framework for alternative attractors of grasslands, shrublands, and 827 

woodlands in (A) deep and (B) thin soils. Horizontal black lines denote alternative attractors and 828 

dotted lines denote unstable states. Circles with roman numerals represent contrasting ecosystem 829 

states identified by experimental or observational studies showing CGP ecosystem has existed at 830 

the respective state and fire frequencies indicated on the x- and y-axes. Following thresholds 831 

from Ratajczak et al. in press, grasslands were those ecosystems with <10% shrub cover and C4 832 

grasses present, shrublands were 10-60% shrub cover, with minimal trees present, and 833 

woodlands were those ecosystems with many trees above the 2.6 m tall, 17 cm diameter at breast 834 

height fire-mortality thresholds (Owensby 1973, Hoch et al. 2002, Vanderweide & Hartnett 835 

2011). C) depicts how thresholds may change (grey lines) relative to current thresholds (black 836 

lines), if shrub growth rate is increased more than grass growth rate (e.g. more grazing, elevated 837 

CO2). Factors that favor grass dominance would move the curve in the opposite direction. Note 838 

that shifts from grassland to shrubland were discrete (occurring in 2-5 years), whereas transitions 839 

are more gradual between grassland and woodland, and shrubland and woodland. Supporting 840 

citations: Bowles and Jones 2013: A) i, ii, iii, v, B) i, ii, iii, iv, v; Boyd and Bidwell 2002: A) iv; 841 

Bragg and Hulbert 1976: A) ii, ix; Briggs and Gibson 1992, Briggs et al. 2002, Fig 2 & 3 (this 842 

review): A) i, ii, v, xi; B) i, iii, viii; Fuhlendorf et al. 2008: A) viii; Fuhlendorf et al. 2009: A) iii; 843 

Harrell et al 2001: A) ii; Kettle et al. 2000: A) ii, xi; Hoch et al. 2002: A) ix B) viii; Owensby et 844 

al. 1973: A) i, ii; Peterson et al 2007: A) vii, viii, ix; Process-based estimates (described in text): 845 

A) viii; Ratajczak et al. 2011, Ratajczak et al. in press, Fig 3: A) i, iv, v, vi; B) i, iv, viii; Engle et 846 

al 2006: B) vii, viii; Burton et al. 2010, 2011: B) vi, viii. 847 
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Fig 5. State and transition model of grassland, shrubland, and woodland states. Following Westoby et al 851 

(1989) and Briske et al. (2005), squares represent states and arrows represent processes that may or may 852 

not elicit a transition to another state. Dashed arrows represent state trajectories that are only possible in 853 

lowland and mesic soils. Hysteresis is accounted for by the “selfing” arrows for shrubland and woodland 854 

states, where conditions that used to maintain grasslands do not reverse shrubland and woodland 855 

transitions once they have occurred. There are few opportunities to reverse transitions to shrublands and 856 

woodlands with fire alone, but we have left an arrow labeled “unknown opportunities” in anticipation that 857 

new techniques and adaptive management schemes will emerge to return CGP ecosystems to grasslands 858 

(e.g. Twidwell et al. 2013). Photo Credits: (Grassland: Eva Horne, Shrubland: Zak Ratajczak, Woodland: 859 

John Blair).  860 
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