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Abstract

Several preconditioners based on multigroup diffusion are developed for
application to multiplying fixed-source transport problems using the discrete
ordinates method. By starting from standard, one-group, diffusion synthetic
acceleration (DSA), a multigroup diffusion preconditioner is constructed that
shares the same fine mesh as the transport problem. As a cheaper but ef-
fective alternative, a two-grid, coarse-mesh, multigroup diffusion precondi-
tioner is examined, for which a variety of homogenization schemes are stud-
ied to generate the coarse mesh operator. Finally, a transport-corrected
diffusion preconditioner based on application of the Newton-Shulz algorithm
is developed. The results of several numerical studies indicate the coarse-
mesh, diffusion preconditioners work very well. In particular, a coarse-mesh,
transport-corrected, diffusion preconditioner reduced the computational time
of multigroup GMRES by up to a factor of 17 and outperformed best-case
Gauss-Seidel results by over an order of magnitude for all problems studied.

Keywords:
preconditioning, neutron transport, Krylov, discrete ordinates

1. Introduction

As predictive modeling becomes an increasingly important goal to the
computational nuclear engineering community, methods that once were too
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expensive to apply to full reactor models are now being applied with some
success on the largest machines available. This includes recent work on both
stochastic [1] and deterministic [2] transport methods.

A major focus of research in deterministic transport methods has been the
development of highly efficient solvers for the eigenvalue problems and linear
systems characteristic of neutron transport in nuclear reactor models. Krylov
solvers have been applied with success to a variety of reactor problems, and
substantial efforts have improved the performance of these solvers by using
application-specific preconditioners [3, 4, 5].

Our goal in this paper is to develop preconditioners for use with Krylov
solvers applied to fixed-source (i.e., inhomogeneous) transport problems rele-
vant to reactor analysis. All of our analysis is based on the discrete ordinates
(SN) method, though much of the analysis applies equally to the method of
characteristics (MOC). Ultimately, this work supports our simultaneous ef-
fort to develop advanced response matrix methods, which aim to solve large
reactor eigenvalue problems by spatially-decomposing a domain into inde-
pendent nodes linked via approximate boundary conditions [6, 7, 8]. The
boundary conditions are defined in terms of fixed source problems for each
node, and because many such transport problems are required, methods to
solve them efficiently are highly desirable.

2. Background

The steady-state, multigroup, neutron transport equation is defined as

Ω̂·∇ψg(~r,Ω) + Σtg(~r)ψg(~r,Ω) =
1

4π

G∑

g′=1

Σsg←g′(~r)φg′(~r)

+
χg(~r)

4πk

G∑

g′=1

νΣfg′(~r)φg′(~r) + qg(~r, Ω̂) , g = 1 . . . G ,

(1)

where

φg(~r) =

∫

4π

dΩψg(~r,Ω) , (2)

and the notation is standard [9]. Isotropic scattering has been assumed for
clarity of presentation, though this is not a general requirement. Fission
is explicitly represented in Eq. (1), which leads to multiplying fixed-source
problems. The parameter k is an eigenvalue for the homogeneous form of
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Eq. (1) (i.e., for qg = 0), but in this paper k is used as a variable parameter.
For clarity in the development to follow, the one speed or “within-group”
transport equation is defined as

Ω̂ · ∇ψ(~r,Ω) + Σt(~r)ψ(~r,Ω) =
1

4π
φ(~r)Σs(~r) + q(~r, Ω̂) , (3)

where the group g is suppressed.

2.1. Operator Notation

In this paper, the SN method is used throughout to discretize Eq. (1) in
angle with the diamond-difference approximation in space [10]. By following
the presentation of Larsen and Morel [11], the scalar flux is defined as

φ(~r) =

∫

4π

dΩψ(~r,Ω) ≈
N∑

n=1

wnψn(~r) . (4)

Let a discrete-to-moment operator D satisfy

φ = Dψ , (5)

where space and angle indices are implicit. In addition, let a moment-to-
discrete operator M satisfy

ψ = Mφ , (6)

where generally D 6= M−1. Finally, by defining the operator

L(·) ≡
(

Ω̂ · ∇+ Σt(~r)
)

(·) , (7)

the one-group, discretized transport equation becomes

Lψ = MSφ+ q , (8)

where S is the scattering operator. For the case of isotropic scattering in one
group, M = 1

4π
while S = Σs(~r).

For the multigroup problem, this notation generalizes to[4]

Lgψg = M
G∑

g′=1

(
Sgg′ +

1

k
XgFg′

)
φg′ + qg , (9)
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where fission is explicitly represented, and X represents the fission spectrum
χ in operator form.

Equations (8) and (9) are defined explicitly in terms of the unknown an-
gular flux ψ. Frequently, and particularly for reactor physics, reaction rates
are of most interest, for which only the scalar flux is needed. Consequently,
the angular flux is rarely stored explicitly in practice, but rather is computed
on-the-fly during a sweep through the space-angle grid. This sweeping op-
eration can be represented explicitly by casting the transport equations in
terms of only the scalar flux (and higher-order flux moments if scattering is
anisotropic).

To illustrate, consider the multiplication of Eq. (8) by the space-angle
transport sweep operator T = DL−1, which leads to

Dψ = DL−1MSφ+ DL−1q (10)

The substitution of φ = Dψ into Eq. (10) yields

(I−TMS)φ = Tq , (11)

or
AWGφ = b , (12)

where
AWG ≡ I−TMS (13)

is the within-group transport operator and

b = Tq (14)

represents the uncollided flux moments. Equation (11) is a linear equation
in standard form for the scalar flux moments φ.

The operator DL−1 has a very specific physical interpretation. The in-
verse L−1 represents the set of space-angle sweeps from one global boundary
to another. The additional factor D implies that along the space-angle sweep,
φ is updated, which eliminates the need to store ψ. This process is exactly
the way in which SN solvers have traditionally been implemented.

The extension of Eq. (11) to the multigroup transport equation leads to
the similar form

(
I−TMGMMG

(
SMG +

1

k
XMGFT

MG

))
φ = TMGqMG , (15)
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where TMG and MMG are block diagonal operators having blocks Tg and M,
respectively, XMG, FMG, and qMG are the column vectors having elements Xg,
Fg, and qg respectively, and the multigroup scattering operator is defined

SMG =




S11 · · · S1G
...

. . .
...

SG1 · · · SGG


 , (16)

where the blocks Sgg′ are the group-to-group scattering operators of Eq. (9).
Similar to the within-group problem, the multigroup transport operator is
defined as

AMG = I−TMGMMG

(
SMG +

1

k
XMGFT

MG

)
. (17)

So far, boundary conditions have been neglected. Some boundary con-
ditions, including reflecting, periodic, and white conditions, lead to an ad-
ditional set of unknowns, namely the incident (or exiting) boundary fluxes.
In theory, the treatment of these conditions is straightforward, but we re-
frain from further discussion for two reasons. First, and most importantly,
response function calculations, the motivating application, use vacuum con-
ditions only, so a treatment of reflecting boundaries is beyond the present
scope. Second, the addition of boundary unknowns complicates somewhat
the presentation of the algorithms to be discussed below. However, a detailed
treatment of boundary conditions with Krylov solvers can be found in the
work of Warsa et al. [3].

2.2. Classical Transport Solvers

Consider the fixed source multigroup transport problem represented by

AMGφ = b . (18)

The traditional method for solving the multigroup equations is a nested it-
eration in which a series of within-group equations is solved for each group,
and the scattering (and possibly) fission sources are updated following each
within-group calculation. More modern treatments view the multigroup
equations as a complete set to be solved simultaneously.

The Gauss-Seidel method has long been used to solve the multigroup
equations. For standard problems, the method first solves the fast within-
group equation. The updated fast-group flux can then be used to define
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the in-scatter source for the next group, and so on. Because this algorithm
implies the inversion of each group block (as defined in Eq. (15)), the method
is more accurately described as block Gauss-Seidel in energy.

For problems with no upscatter and no fission, the Gauss-Seidel method is
an essentially exact scheme, assuming the within-group equations are solved
exactly. However, for cases with upscatter or fission, extra “upscatter” iter-
ations are required, and sometimes the convergence of Gauss-Seidel becomes
prohibitively slow.

The standard method for solving the within-group transport equation
has been source iteration. The basic idea is a simple one: given an external
source (including in-scatter and fission), the flux is guessed, the within-group
scattering source is computed, the new flux is computed, and the process is
repeated until converged. Mathematically, source iteration is defined by the
process

φ(n) = TMSφ(n−1) + Tq . (19)

However, recall that Richardson iteration for the system Ax = b is defined
by the process

x(n) = (I−A)x(n−1) + b . (20)

Because I − AWG = TMS, source iteration is equivalent to Richardson
iteration[12].

2.3. Krylov Solvers

Because of the limitations of the Gauss-Seidel and source iteration schemes,
much work has been done to apply modern linear solvers to transport prob-
lems. One of the most successful class of solvers studied consists of Krylov
subspace methods.

Linear (and eigenvalue) solvers can be classified as stationary or nonsta-
tionary methods. Stationary methods produce updated solutions using only
a single previous solution, and the Gauss-Seidel and Richardson methods are
both stationary. Other well-known examples of stationary methods are the
Jacobi and successive over-relaxation (SOR) methods. On the other hand,
nonstationary methods produce a solution based on two or more previous
iterates (or the information used to create those iterates).

Krylov methods are nonstationary methods that rely on the construction
of a Krylov subspace of dimension m, defined for an n× n operator A as

Km(A, x0) ≡ span{x0, Ax0, A2x0, , . . . , ,A
m−1x0} , (21)
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for some initial, possibly random, vector x0 [13]. For brevity, Km(A, x0) is
abbreviated as Km. The main idea of Krylov subspace methods is to find
x ∈ Km that “best” solves the system of interest, be it an eigenproblem or
linear system, usually for m� n.

Although the vectors [x0, Ax0, . . . Am−1x0] form a basis of Km, this basis
is ill-conditioned because the repeated application of A sends x0 into the di-
rection of the dominant eigenvector of A. For numerical computation, a more
suitable approach is to use an orthogonal basis of Km. For nonsymmetric op-
erators, an orthogonal basis can be generated by Arnoldi’s method, which
uses successive application of the modified Gram-Schmidt (or an equivalent)
process to construct the Arnoldi decomposition

AV = VH + feTm , (22)

where V ∈ Rn×m consists of orthonormal columns, H ∈ Rm×m is an upper
Hessenberg matrix, em is the m-vector of all zeros except a one in the mth
location, and f is the residual, which is orthogonal to the columns of V.

A popular Krylov method for nonsymmetric linear systems (such as the
transport equations above) is GMRES [14]. The basic idea of GMRES is
straightforward: the nth step of GMRES produces an m × m Hessenberg
matrix and the corresponding basis V, and the approximate solution xm is
found by minimizing the residual norm ||r||2 = ||Axm− b||2 for xm ∈ Km. In
other words, xm = Vy, where y satisfies

||AVy − b||2 = ||VTAVxn −VTb||
= ||Hy −VTb|| .

(23)

Equation (23) shows that GMRES finds the best solution xm ∈ Km in a
least-squares sense.

Krylov solvers have been used to solve both the within-group [3] and
multigroup [2] transport equations. For the multigroup equations in partic-
ular, the independent nature of the group-wise blocks makes parallelization
in energy much more straightforward than for Gauss-Seidel. For problems
in which there is no fission and upscatter is limited to a subset of thermal
groups, it is possible to solve the downscatter groups via Gauss-Seidel and
to use a Krylov method on the thermal block of Eq. (15), which leads to
improved efficiency for some problems [2]. However, when fission is included,
there is always thermal-to-fast coupling, and solving the full system via a
Krylov method is to be preferred.
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3. Diffusion-Based Preconditioners

Krylov methods are often more robust than classical stationary methods,
but their performance can be improved significantly by preconditioning. A
preconditioner P is an operator whose inverse satisfies P−1 ≈ A−1 in some
sense and is relatively inexpensive to apply. A left-preconditioned linear sys-
tem is

P−1Ax = P−1b , (24)

while a right-preconditioned system is

AP−1y = b (25)

with x = P−1y. The left-preconditioned residual differs from the original
residual but may be a better measure of the error x∗ − x, where x∗ is the
solution, while the right-preconditioned system preserves the original resid-
ual. In practice, the difference between the convergence behaviors of left- and
right-preconditioned GMRES is typically negligible unless the preconditioner
is ill-conditioned[13].

A preconditioner typically leads to a clustering of eigenvalues. As an
extreme example, suppose that P = A. The preconditioned operator is then
AP−1 = I, for which all the eigenvalues are unity. Of course, to apply P−1 in
this case represents solving the original problem. Although preconditioners
cannot in practice be expected to yield a set of eigenvalues equal to unity, any
clustering typically improves convergence, and often just pushing eigenvalues
away from the origin tends to improve convergence [11].

3.1. Diffusion Synthetic Acceleration

Frequently, the most successful preconditioners are based on a priori
knowledge of the physics or structure of the problem. This has long been the
case for accelerating transport problems, for which a low-order approxima-
tion, often based on diffusion, provides an efficient update or correction to an
unconverged transport solution. Here, a brief summary is given of diffusion
synthetic acceleration (DSA), a diffusion-based preconditioner that has long
been used to improve source iteration [10] and was more recently applied to
Krylov solvers for the within-group equations [3]. The development closely
follows the excellent treatment of Larsen and Morel [11].

Consider the nth flux iterate φn from source iteration. Then, one addi-
tional iteration leads to

φ(n+ 1
2

) = TMSφ(n) + Tq , (26)
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where S is assumed to contain both the scatter and fission within-group
terms, and the new iterate is assigned a half index. The subtraction of
Eq. (26) from Eq. (11) leads to

(I−TMS)φ− φ(n+ 1
2

) = −TMSφ(n) , (27)

where φ is the solution. By adding TMSφ(n+ 1
2

) to both sides of Eq. (27) and
rearranging the result, we have

ε =

what is approximated︷ ︸︸ ︷
(I−TMS)−1TM

z︷ ︸︸ ︷
S(φ(n+ 1

2
) − φ(n)) , (28)

where the error ε = φ− φ(n+ 1
2

) satisfies the transport equation

(Ω̂ · ∇+ Σt)ε−
Σs

4π
ε =

z

4π
, (29)

and

ε =

∫

4π

dΩ ε . (30)

The error equation is just as expensive to solve as the original transport
equation. As an alternative, the diffusion approximation is used to define
the approximate error equation

(−∇ ·D∇+ Σt − Σs)ε = z , (31)

or, in operator form,

ε = C−1
WGz = C−1

WGS(φ(n+ 1
2

) − φ(n)) . (32)

This leads to preconditioned source iteration,

φ ≈ φ(n+1) = φ(n+ 1
2

) + C−1
WGS(φ(n+ 1

2
) − φ(n))

= (I + C−1
WGS)φ(n+ 1

2
) −C−1

WGSφ(n)

=
(
I− (I + C−1

WGS)(I−TMS)
)
φ(n) + (I + C−1

WGS)Tq

= (I−P−1
WG-DSAAWG)φ(n) + P−1

WG-DSATq ,

(33)

where
P−1

WG-DSA = (I + C−1
WGS) (34)
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is the within-group diffusion preconditioning process. Although source iter-
ation provides an intuitive way to define PWG-DSA, the effectiveness of DSA
highly depends on discretization of the transport and diffusion operators.
When applied to Krylov solvers, DSA is far less sensitive to discretization
and more effective for realistic problems [3].

It is natural to extend the diffusion preconditioner to multigroup prob-
lems, which leads to the process

P−1
MG-DSA ≡ I + C−1

MG

(
SMG + XMGFT

MG

)
, (35)

where CMG is the multigroup diffusion operator defined block-wise as

CMG,gg′ ≡ δgg′ (−∇ ·Dg(~r)∇+ Σtg(~r))− Σsgg′(~r)− χgνΣfg′(~r) . (36)

An initial review of the literature yielded no application of multigroup dif-
fusion as a preconditioner for multigroup transport problems. Related work
addressed the acceleration of outer Gauss-Seidel upscatter iterations [12] and
fission iterations based on the rank one fission operator (XFT) [15], but each
method used an equivalent one-group formulation. However, the full multi-
group diffusion problem is itself expensive for large problems, which may
explain why it has not been used extensively for acceleration.

3.2. Coarse-Mesh Diffusion Preconditioning

The preconditioning of the multigroup equations with diffusion can lead to
very large diffusion operators, and for many problems, the computational cost
of constructing and applying the preconditioner is prohibitive. As an alter-
native, the use of coarse-mesh diffusion preconditioners is proposed. Coarse-
mesh diffusion operators have long been central to acceleration techniques in
reactor analysis, a chief example being the nonlinear diffusion acceleration
(NDA) scheme developed by Smith [16] for nodal diffusion methods and later
extended to transport methods [17].

Although no results were found in the literature describing the use of
coarse-mesh diffusion as a preconditioner, more general coarse-mesh schemes
in space, angle, and energy have been of substantial recent interest, partic-
ularly for multigrid preconditioning. Multigrid methods, like DSA (itself a
two-grid method in angle), use a coarse-grid solution to improve a fine-grid
solution by way of restriction (essentially averaging) and prolongation (essen-
tially interpolation) operations. The idea is that slowly varying error modes,
which tend to converge slowly for a stationary solver like Jacobi iteration,
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become highly oscillatory, quickly converging modes on the coarse mesh. A
complete description of multigrid methods is outside the present scope, but
the following sections describe implementation of a two-grid diffusion pre-
conditioner. For a more complete overview of multigrid methods, the reader
would be best served by one of the standard reviews available, e.g., Ref. [18].

3.2.1. A Spatial Two-Grid Multigroup Diffusion Preconditioner

In this work, a two-grid spatial scheme is applied to the diffusion pre-
conditioner. Recent work suggests that multigrid methods in the energy
variable can work very well [5, 4]. Nonlinear diffusion acceleration methods
also typically uses a coarse energy mesh to great effect [17]. However, our
initial studies using a coarsened energy variable within a coarse-mesh diffu-
sion preconditioner suggest that the simultaneous restriction of space, angle,
and energy may have inherent difficulties.

The two-grid, coarse-mesh diffusion preconditioner is a natural extension
to Eq. (35) and is defined as

P−1
MG-CMDSA ≡ I + PC−1

H R
(
SMG + XMGFT

MG

)
, (37)

where P (not to be confused with the preconditioner) and R are the pro-
longation and restriction operators, respectively, and CH is the multigroup
diffusion operator defined on the coarse spatial mesh.

3.2.2. Coarse-Mesh Operator Homogenization

To define CH , cross sections must be homogenized over the fine mesh. The
most physically-sound approach for producing averaged cross sections is to
use flux-weighting in a way that preserves reaction rates. Although a variety
of such homogenization techniques exist, a rather conventional scheme is used
that is simple to apply in preconditioning. For the particular case of group
constant generation via an assembly-level lattice physics solver, the results
of the scheme are called assembly homogenized cross sections [19].

Suppose the total cross section Σt is to be averaged over coarse-mesh cell
j. Let the fine-mesh flux in cell i ∈ j be denoted φi. Then the average total
cross section in the jth coarse-mesh cell is defined as

Σt,j =

∑
i∈j ViφiΣt,i∑
i∈j Viφi

, (38)
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where Vi is the fine-mesh cell volume. If the coarse-mesh flux is defined as
the volume average, i.e.,

φj =

∑
i∈j Viφi

Vj
, (39)

where
Vj =

∑

i∈j

Vi , (40)

then the total interaction rate in coarse-mesh cell j is defined as
∑

i∈j

ViΣt,iφi = Σj

∑

i∈j

Viφi = VjφjΣt,j . (41)

Hence, the averaged quantities preserve the integrated reaction rate asso-
ciated with the given fine-mesh flux. All group constants, including the
diffusion coefficient D, can be generated in this way.

The obvious problem with this approach is that the fine-mesh flux φi
is not known. The simplest approximation is to assume a constant flux,
which leads to volume-weighted cross sections. For preconditioning, this is
a suitable approximation because the conservation of reaction rates is not
a prerequisite. Unlike certain nonlinear acceleration techniques (e.g., NDA)
that rely on conservation to provide an integral form of the solution at each
step, preconditioning—a linear process—only seeks to provide an additive
improvement.

However, that flexibility certainly does not preclude the use of more ac-
curate flux shapes to achieve better results. In typical lattice physics ap-
plications, group constants are found by solving the transport equation in a
pincell or assembly subject to reflecting conditions, and using the resulting
spectrum for weighting. For preconditioning, a simple scheme could be used
in which pincells approximating parts of the full problem are solved, and the
resulting fluxes are used to produce homogenized materials in the appropri-
ate cells. The effect of more realistic shape functions on the preconditioner
efficiency was examined, and the numerical results to follow in Section 4.2
show that little improvement is gained by better shapes.

One might recognize that the current flux iterate is freely available for
use in homogenization; however, because the flux and homogenization process
would change from step to step, the entire process would become nonlinear,
and its use with standard Krylov linear solvers would be suspect. Conse-
quently, a study of this approach in solvers allowing variable preconditioners
(e.g., FGMRES [20]) would be valuable future research.
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3.2.3. Restriction

To restrict the fine-mesh input vector for application of the inverse coarse-
mesh diffusion operator, a simple spatial average is used. As an example,
consider a 1-D problem discretized into 6 fine meshes. The coarse mesh-
ing process is based on a level parameter l that defines the number of fine
meshes per coarse mesh. Suppose l = 2, leading to the fine-to-coarse mapping
[0, 0, 1, 1, 2, 2]. The restriction operator is defined

R =




v0 v1 0 0 0 0
0 0 v2 v3 0 0
0 0 0 0 v4 v5


 , (42)

where

vi =
Vi
Vj
, for fine mesh i in coarse mesh j , (43)

and, hence,
∑

i∈j vi = 1.

3.2.4. Prolongation

To prolong the coarse-mesh result back to the fine mesh, the coarse-mesh
value is distributed on the fine grid based on the (approximate) flux φ̃ used
to produce the coarse-mesh diffusion operator. Given a coarse-mesh value
φj, the prolonged flux is

φi∈j = φj
lφ̃i∑
i∈j φ̃i

. (44)

For the example above, suppose each coarse region is assumed to have a fine-
mesh flux shape of φ̃ = [a, b], where a+ b = 1. The prolongation operator is
then defined

P =




2a 0 0
2b 0 0
0 2a 0
0 2b 0
0 0 2a
0 0 2b



. (45)

In the constant-flux approximation (i.e., a = b = 0.5), multiplication of
R ∈ R3×6 by P ∈ R6×3 yields the identity matrix I ∈ R3×3.
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3.2.5. Smoothing

Although the coarse-mesh scheme described so far represents a com-
plete preconditioner, it can be significantly improved by a smoothing op-
eration. The motivation for smoothing is that the coarse-mesh solve damps
low-frequency error modes of the fine-mesh problem but not high-frequency
modes. In more physical terms, a coarse-mesh solve can be expected to get
the gross shape right but not the finer details. A smoothing operator uses a
few iterations of a classical scheme like Richardson, Jacobi, or Gauss-Seidel
with the fine-mesh operator. In many multigrid algorithms, a smoother is
also often used before the coarse-mesh solve to ensure the error is “smooth”
before restriction; however, for the problems studied, pre-smoothing did not
lead to improved performance.

For the coarse-mesh, diffusion preconditioner, smoothing requires the ac-
tion of the fine-mesh diffusion matrix. Although the cost of producing this
matrix may be somewhat large, that cost is much smaller than inverting the
operator in a fine-mesh preconditioner (and much, much smaller than the
application of the transport operator). The smoothing process used is the
weighted Jacobi method, which for the generic problem Ax = b is defined by
the process

x(n+1) = −ωA−1
D (AL + AU)x(n) + (1− ω)A−1

D b , (46)

where AD represents the diagonal of A, AL and AU represent the strictly
lower and strictly upper triangular parts of A, and ω is the weighting param-
eter. In practice, the selection of an appropriate value for ω is dependent on
both the problem and smoothing process[13], but for the problems studied
in this paper, suitable values for ω were always less than one.

A similar two-grid preconditioner with smoothing was developed for ap-
plication to the one-group P1 equations [21]. In that method, a consistently-
discretized, fine-mesh diffusion operator was inverted, and the fine-mesh
transport operator was used with a weighted-Richardson smoother. For the
P1 equations, the application of either the transport operator or the associ-
ated diffusion operator should result in similar computational costs, but for
many-angle SN calculations, the application of the fine-mesh diffusion opera-
tor is significantly less costly than the application of the transport operator.

3.3. Transport-Corrected Diffusion Preconditioners

A final technique developed is to form a preconditioner that contains
information from the transport operator rather than relying solely on the
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diffusion approximation. In theory, the explicit formation of the transport
operator defined by Eq. (17) is possible. With an explicit operator, various
approximate factorizations become natural preconditioner options. However,
the construction of such operators requires the use of matrices with sizes
proportional to the number of angles, at least implicitly. This can quickly
lead to huge memory requirements, a complicated construction process, or
both.

The construction of explicit transport operators has been studied for the
discrete ordinates method [22] and for the method of characteristics [23]. The
former work treated the angular flux directly, and the analysis was limited
to relatively small, multigroup problems in one dimension. The latter work
noted that the cost of constructing the transport operator was exceedingly
large and developed a marginally successful parallel scheme limited to the
within-group equations.

In the present work, the transport operator is always a “matrix free”
operator, which means that the action y ← Ax is performed by functions
and not explicit matrix operations. Hence, the action of A is available, but
A itself is not, so preconditioners based on approximate factorizations are
not directly applicable. Ultimately, any of the preconditioners studied that
use a transport operator are limited to actions of the operator only.

To develop a matrix-free, transport-based preconditioner, suppose that a
matrix inverse P−1

0 is available that represents an initial approximation of
A−1 ∈ Rn×n. For application to transport problems, P0 shall be the diffusion
preconditioner PMG-DSA or a coarse-mesh variant. The present goal is to
improve this preconditioning process by using the (possibly approximate)
action of A−1.

One way to compute an improved (approximate) matrix inverse is to ap-
ply a method attributed by various sources to Shulz or Hotelling and Bodewig
[24, 25], which, in fact, represents the use of Newton’s method to find a ma-
trix inverse. For brevity, the method is called the Newton-Shulz method. A
rigorous analysis of the method can be found elsewhere [25], but we moti-
vate it by considering the simple problem ax = 1 proposed in Ref. [26]. By
viewing this simple equality as the nonlinear problem f(x) = 1/x − a = 0,
for which the Jacobian is defined as f ′(x) = −1/x2, Newton’s method leads

15



to the process

x(n+1) = x(n) +
1

[x(n)]−2

(
1

x(n)
− a
)

= 2x(n) − x(n)ax(n) .

(47)

For the more general case of matrices, this suggests the process

X(n+1) = X(n)(2I−AX(n)) , (48)

where X(n) ≈ A−1 and X(n+1) is an improved approximation.
As is typically the case for Newton’s method, the convergence to the

desired solution requires an initial guess that is sufficiently close to that
solution. By using X = PMG-DSA or a coarse-mesh variant as the initial
guess, convergence has always been achieved in our studies. Hence, a simple,
one-step, transport-corrected diffusion preconditioning process is defined by

P−1
TC-MG-DSA-1 = P−1

MG-DSA(2I−AMGP−1
MG-DSA) . (49)

Although Eq. (49) represents an improved preconditioner, the application
of AMG requires an additional space-angle-energy sweep, the number of which
we are ultimately trying to minimize. As an alternative, we can substitute

AMG ≈ ÃMG (50)

into Eq. (49) in place of AMG, where the tilde indicates some approxima-
tion, e.g., a coarser angular quadrature. While this appears at first to be
a multigrid method, the (approximate) transport operator is not inverted,
but rather it is used to improve the diffusion preconditioning process. In the
terminology of Newton methods, the use of the approximate operator leads
to an approximate Jacobian.

Because only a few iterations of Newton’s method are needed to converge
if an appropriate initial guess is available, the use of the approximate operator
ÃMG will lead to its approximate inverse and not that of AMG. However, Ã−1

MG

should be even closer to A−1
MG than the original diffusion preconditioning

process, so the application of the full transport operator can be expected to
yield a much more valuable improvement if used in the final Newton-Shulz
iteration.

Algorithm 1 provides the complete preconditioning process for application
to an input vector based on the recursive application of the Newton-Schulz
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method defined in Algorithm 2. The true operator is applied once in the
last step, but the number of actions of ÃMG grows exponentially with the
number of iterations: one for k = 2, three for k = 3, seven for k = 4, and
so on. Hence, the cost of the preconditioner is likely to become excessive
for more than two or three iterations unless the approximate operator is
significantly less expensive than the true operator. We reiterate that any of
the multigroup diffusion preconditioners can be used with Algorithm 1, and
due to the expense incurred for fine-mesh diffusion operations, the coarse-
mesh DSA variants are most likely to outperform fine-mesh DSA for this
purpose.

Data: transport operator AMG, approximate transport operator ÃMG,
diffusion preconditioner PMG-DSA, number of corrections k,
input vector x

Result: output vector y
y ← Newton-Shulz(ÃMG,PMG-DSA, k − 1, x)
y ← 2x−AMGy

y ← Newton-Shulz(ÃMG,PMG-DSA, k − 1, y)
Algorithm 1: Transport-Corrected Diffusion Preconditioner

Data: operator A, initial preconditioner P0, number of corrections k,
input vector x

Result: output vector y
if k > 1 then

// Apply earlier steps recursively

y ← Newton-Shulz(A,P0, k − 1, x)
y ← 2x−Ay
y ← Newton-Shulz(A,P0, k − 1, y)

else
// Apply the initial preconditioner

y ← P−1
0 x

end
Algorithm 2: Newton-Shulz for an arbitrary operator A and initial pre-
conditioner P0
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4. Numerical Results

In this section, the theoretical development of Sections 2 and 3 is ap-
plied to representative test problems. The goal of these tests is to provide a
thorough comparison of several linear solver options and associated precon-
ditioners, ultimately yielding a recommended approach for the application
of the discrete-ordinates method to advanced response matrix methods. The
test problems range from a relatively small BWR assembly model, ideally
suited for a full analysis of the spectra of preconditioned-operators, to a
larger PWR assembly that provides a suitable benchmark for computational
performance.

Each of the preconditioners studied is based in some way on diffusion,
for which a standard mesh-centered discretization is used. Although the
consistency of the diffusion discretization used for DSA-preconditioning is
not a focus of this paper, we note that the mesh-centered discretization is
not consistent with the diamond-difference spatial discretization used for the
transport equation for which an edge-centered discretization is known to be
consistent [27].

All of the methods assessed have been implemented in Detran, an open-
source, transport code written in C++ that was originally started at MIT
and is now undergoing development at Kansas State University. Detran

uses several external packages, including PETSc [28] for various core linear
algebra functions and Python for a versatile front end.

4.1. Spectral Analysis of Multigroup Preconditioners

As recently noted by Hamilton, comparatively little work has been done to
examine the spectrum (i.e., the set of eigenvalues λ) of discretized transport
operators [5]. Such analysis is largely unuseful for studying the behavior
of classical algorithms, such as the power method for eigenvalue problems
or Gauss-Seidel or source iteration for fixed-source problems because the
convergence of these algorithms is governed primarily by the dominant modes
that are reasonably easy to analyze. Moreover, the detailed spectral analysis
of an operator usually requires the use of dense linear algebra, and for all but
the most trivial problems, the operators in question have been far too large
to manipulate directly.

On modern computers, memory and processors have improved to the
point where one can create an explicit representation of the transport op-
erator and the various preconditioning operators. A full spectral analysis
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can help provide an understanding of why Krylov methods work very well
in many cases but fail in others, and how various preconditioners transform
the spectrum in a way that renders problems easier to solve.

4.1.1. Test Problem Description

As an illustrative example, the 2-D, three-group, 9× 9 pin BWR bundle
described in Appendix A was studied subject to a constant source in all
energy groups and uniformly-distributed throughout the entire domain, and
vacuum boundaries on all sides. A diamond-difference spatial discretization
and 6 × 6 Chebyshev-DPN product quadrature were used. To minimize the
number of unknowns, the pins were discretized coarsely using a 3× 3 mesh.
Although the problem is relatively small, its size represents a lower-bound for
transport problems typical of the response matrix methods that our research
ultimately supports.

Figure 1 shows the sparsity pattern of the full transport operator—and it
is certainly not a sparse operator. The structure of the full operator highlights
the structure of the group-to-group scattering and fission matrices. Distinct
columns arise in the upper right because only the fueled cells contribute to
those blocks, while in the lower left, the columns are due to the fuel having no
3 ← 1 scattering. The total size of the operator is 3267, and the number of
nonzeros is 8382033, about 78% dense. In practice, such high density would
make the use of explicit operators impractical. However, recall that all the
operators used to create A are inherently sparse, even if never constructed.
By going from a ψ-based representation to one for φ, we have essentially
gone from a typically sparse differential representation to a characteristically
dense integral representation.

4.1.2. Results

To obtain a preliminary understanding of the preconditioners developed
in Section 3, the complete spectrum of AMG and AMGP−1 were computed,
where the preconditioner P is the multigroup DSA (DSA), coarse-mesh DSA
(CMDSA), or transport-corrected CMDSA (TC+CMDSA). For CMDSA,
two cases were investigated: one with no smoothing, and one with three
smoothing iterations and ω = 0.7 (denoted by CMDSA+S). A full pincell
was selected as the coarse mesh, and a spatially flat spectrum was used for
homogenization. For TC+CMDSA, three steps of an approximate transport
operator were used based on a 2× 2 product quadrature and CMDSA+S as
the initial preconditioner. Initially, a 1×1 quadrature (one angle per octant)
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Figure 1: Three group transport operator sparsity pattern.

was used, but this led to instability. In all cases, any inversion of a diffusion
operator was performed by LU-factorization.

The spectrum was computed as a function of k, the scaling parameter
in the fission source of Eq. (1). When the homogeneous form of Eq. (1)
is solved, k is an eigenvalue, often denoted by keff, that represents the ra-
tio of production (from fission) to losses (from absorption and leakage at
global boundaries). If all boundaries are subject to vacuum conditions,
then keff ≡ kv ≈ 0.2966 for the BWR bundle, and for reflecting conditions,
keff ≡ k∞ ≈ 1.3. In the limit k → kv, the operator AMG becomes singular,
which corresponds to an exact balance between production and losses, i.e.,
the system becomes “critical.” Therefore, we limit our parametric study to
values of k that satisfy kv < k ≤ k∞ and expect small values of k (and,
hence, nearly-singular operators) to yield more challenging problems.

Figure 2 shows the spectrum of AMG with each of the preconditioned
spectra for k = 1. All of the preconditioners condense the eigenvalues to a
smaller region, as desired. Specifically, DSA and CMDSA yield spectral shifts
that are quite similar, but CMDSA leaves more of the spectrum below about
0.8 on the real axis. By adding smoothing, CMDSA+S shifts the spectrum
toward unity and provides fairly distinct clustering. At the same time, it
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leads to a comparatively significant complex component, but keep in mind
the Re(λ) and Im(λ) scales are not the same. The addition of transport
correction to CMDSA+S leads to a spectrum that visually appears to be
nearly ideal: all values are tightly clustered away from the origin, in this
case centering fairly close to unity.

To analyze the effect of the preconditioner more quantitatively, each pre-
conditioner was tested for a range of k values. Figure 3 shows the Frobenius
norm of the residual matrix R = I − AMGP−1 and the number of right-
preconditioned GMRES iterations for each preconditioner as a function of k.
The Frobenius norm of the residual matrix measures how close a precondi-
tioning process is to the inverse of the operator of interest. Equivalently, it
measures how close the resulting spectrum is to unity because the eigenval-
ues of the preconditioned operator tend to 1 as ||R||F → 0. The number of
GMRES iterations required is a more direct measure of a preconditioner’s
efficacy as better preconditioners usually lead to fewer iterations. For this
study, GMRES was applied without restarts and converged to a tolerance of
10−8 on the relative norm.

The results indicate that the convergence of GMRES has a small depen-
dence on k that is approximately the same for each preconditioner. For small
values of k − kv, a greater number of iterations is required, but the relative
difference between each preconditioner is nearly constant. The Frobenius
norm of the residual matrix depends more strongly on k, especially for the
coarse-mesh preconditioners, although this dependence does not appear to
indicate poor convergence.

Table 1 summarizes the results for k = 1. In addition, the table includes
the standard deviation of the eigenvalues of each operator, which measures
how well a preconditioner leads to clustered eigenvalues. Usually a precon-
ditioner is successful (at least spectrally) if it reduces all of the parameters
listed in Table 1. In practice, the reduction in iterations given a reduction in
the Frobenius norm of the residual matrix or variance of the spectrum may
be far from a linear relationship. For the cases studied, a preconditioner can
be effective even if it yields a larger Frobenius norm of the residual matrix.

4.2. A Comparison of Spatial Shape Functions

The multigroup coarse-mesh DSA preconditioner (CMDSA) is based on
the homogenization of the fine-mesh problem using an assumed shape func-
tion. As noted previously, a simple approximation is to assume a spatially-
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Figure 2: A comparison of the spectrum of AMG to several preconditioned
spectra for k = 1.0.
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std(λ) ||I−AP−1||F iterations

A 0.1253 17.1369 36
DSA 0.0917 19.7099 20

CMDSA 0.1179 29.0933 28
CMDSA-S 0.1018 20.9580 25

TC-CMDSA 0.0049 0.9037 9

Table 1: Spectrum diagnostic information

constant flux, but more accurate, potentially problem-dependent shape func-
tions are possible and may lead to a better preconditioner.

4.2.1. Test Problem and Shape Function Descriptions

For application to reactor problems with arrays of fuel pins, shape func-
tions can be generated for each unique pin type in isolation (i.e., a single
pin subject to reflective boundary conditions) or for each of several pins in
an array of pins (e.g., an assembly). To test these approaches, a simple 1-D
model of 10 UO2 and 10 MOX pins was developed as shown in Figure 4. The
model was discretized using the diamond-difference approximation in space
and a 16-angle, double Gauss-Legendre (DPN) quadrature. The pins were
represented by 12 spatial meshes. The UO2, MOX(4.3%), and moderator
data from the 7-group, 2-D C5G7 problem were used [29]. The left surface
was subject to an isotropic source in the fast group, and vacuum conditions
were imposed on the right.

In addition to a flat shape function, two problem-specific approaches were
studied. The first approach used distinct spatial shapes for the UO2 and
MOX pincells based on solving the k-eigenvalue problem (i.e., the homo-
geneous form of Eq. (1) in which k is an eigenvalue) for each pincell with
reflective boundaries. The resulting flux spatial distribution in each energy
group was used for homogenization and prolongation. The second approach
used the solution of the full test problem to define shape functions in each
pin, i.e., each of the 20 pincells had unique shape functions.

4.2.2. Results

Right-preconditioned, non-restarted GMRES was used to solve the test
problem with multigroup CMDSA and each shape function approach. No
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Figure 3: A comparison of two spectral parameters as a function of k − kv,
the difference between the parameter k and the k-eigenvalue of the BWR
bundle subject to vacuum boundary conditions.

smoothing was applied, and the coarse meshes were taken to be full pincells.
Table 2 provides the same spectral diagnostics discussed in Section 4.1 for
the preconditioned operators constructed using each shape function. The
results indicate that the use of an accurate spatial shape has little effect on
the preconditioning process and can even reduce the efficacy. An extended
study using multigroup CMDSA with smoothing, various ω values, and dif-
ferent coarse-mesh levels showed that the preconditioner based on the actual
solution yielded at most a savings of one GMRES iteration.

4.3. Assessing Solver and Preconditioner Performance

4.3.1. Test Problem Description

For a preliminary performance assessment of solvers and preconditioners
for fixed source multiplying transport problems, a single UO2 assembly based
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Figure 4: 1-D pin cell lattice schematic. The pin diameter is 1.08 cm, while
the pin pitch is 1.28 cm.

std(λ) ||I−AP−1||F iterations

A 0.1182 7.7968 42
flat 0.0568 5.8662 16
pin 0.0567 6.6568 17

solution 0.0560 5.0343 16

Table 2: Effect of spatial shape function on CMDSA-preconditioned spec-
trum.

on the seven group 2-D C5G7 benchmark [29] was considered. The model
was discretized in angle using an 8 × 8 angle-per-octant Chebyshev-DPN

product quadrature, and in space using the diamond-difference discretization
and a volume-conserving 7 × 7 mesh for each pin. A uniform, isotropic
boundary source on the left side in the fast group was used. For reference,
the k-eigenvalue of the assembly subject to vacuum boundary conditions is
approximately 0.534, while the eigenvalue for the fully-reflected assembly is
approximately 1.3. This model represents an approximate upper bound for
the types of problems characteristic of 2-D response matrix analyses.

Three basic solver combinations were studied: Gauss-Seidel (GS) for the
multigroup equations with source iteration (SI) for the within-group equa-
tions, GS with GMRES(30) for the within-group equations, and GMRES(30)
for the multigroup equations. Recall that GMRES(N) refers to GMRES with
a restart of N . A value of N = 30 was selected because it has worked well
in our experience and, for the problems studied, led to few restarts in most
cases.

For SI, two cases were considered. The first used a maximum of 20 inner
iterations (denoted by SI(20)), while the second used a maximum of just
one iteration (denoted by SI(1)), yielding what has been called the “flat-
tened” transport operator [30]. For GMRES applied to the within-group
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equations, DSA preconditioning was applied to the right using either LU or
ILU-preconditioned GMRES(30) to invert the diffusion operator. The use of
LU represents an “exact” inversion, while the GMRES solver was set with a
tolerance equal to that of the transport solver. In addition, ILU was applied
using two levels of factorization, with all other remaining parameters set to
their PETSc default values.

For GMRES applied to the multigroup equations, several preconditioners
were investigated. A fine-mesh, multigroup DSA was studied, using the same
LU and GMRES(30)+ILU settings as the within-group DSA preconditioner.
In addition, CMDSA was tested with and without smoothing. The smoothed
version used three iterations and ω = 0.7. Homogenization was performed
over the pincell with a flat spectrum. Smoothed CMDSA (CMDSA+S) was
used as the initial preconditioner for the transport corrected preconditioner
(TC-CMDSA), for which two cases were considered. In the first case (TC1),
three updates with the coarse operator were used followed by one update
using the full transport operator. In the second case (TC2), just one update
were performed with the coarse operator, and the full transport operator was
not applied.

Because a preconditioner based on the use of GMRES(30)+ILU is not
exactly inverted, its action is generally not the same at each iteration, and,
hence, the convergence of GMRES is not guaranteed. Although no numerical
difficulties were encountered for the problems studied, convergence would
only be guaranteed if a flexible variant of GMRES (i.e., FGMRES) were
used [20].

4.3.2. Measuring Performance and Convergence

In this study, the number of space-angle sweeps and the total wall time
were used as metrics for performance. A space-angle transport sweep, de-
noted by the operator T = DL−1 in Section 2, usually is the single most
computationally-intensive part of the iterative schemes analyzed. The appli-
cation of T is especially costly when the number of angles is large, rendering
the essentially space- and energy-dependent expenses related to source con-
struction insignificant. However, as the overhead of Krylov solvers or their
preconditioners grows, the sweeps alone fail to tell the whole story, and the
computational time becomes the deciding factor.

In addition to a meaningful performance metric, a consistent criterion
for convergence is needed to ensure each method leads to the same result
within some tolerance. The typical convergence criteria employed for SI and
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GS (i.e., the difference between successive flux iterates) differ from that of
GMRES (i.e., a residual norm). By using a tightly converged solution xref as
a reference, the tolerance of each method was set to produce an approximate
solution x that satisfies

||x− xref||2/||xref||2 < τ, (51)

where x is a vector that contains the full multigroup flux, and τ is the desired
tolerance on the error.

Each of the methods was tested using the tolerance defined by Eq. (51)
for values of τ = 10−4, 10−6, and 10−8. A tolerance on the multigroup
flux directly, though easy to implement, is not necessarily easy to interpret
physically. In reality, the analyst cares about reaction rates, and for the
given example, pin powers are a relevant metric. Here, pin power errors are
measured by the maximum relative error in the pin fission rate, defined by

εpin = max
p∈pins

∣∣∣∣
dp − dp,ref

dp,ref

∣∣∣∣ , (52)

where dp represents the total fission rate in any pin. To help correlate flux
errors to pin fission rate errors, Figure 5a provides both errors as a function
of the successive flux tolerance as used in GS+SI(20), while Figure 5b shows
the ratio of the norms as a function of GS+SI(20) tolerance. Figure 5a shows
that the flux norm is numerically less conservative than the pin-based norm,
i.e., given an actual error in the flux, the actual error in the pin fission rates
is larger. Figure 5b shows that the ratio of the norms is not monotonic,
but in the limit of tight convergence, the ratio of the flux and pin power
error norms approaches an asymptotic value just under two. This behavior
is likely problem-specific but serves to illustrate that error norms for one
quantity may not be entirely applicable to another quantity. Similarly, the
norm of the successive flux difference, used as the GS convergence criterion,
is even less conservative by an additional order of magnitude. This fact
is sometimes overlooked, and tolerances that seem appropriately tight are
known to yield premature convergence [31]. Hence, the use of a consistent
metric for comparison is crucial.

4.3.3. Results

Tables 3-5 provide the number of sweeps, execution time, residual norm
tolerance, and final relative error for each solver for k = 1.0. In addition,
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Figure 5: Flux and pin fission rate errors (5a) and their ratio (5b) as functions
of successive flux difference norm.

Figures 6 and 7 show the number of sweeps (divided by the number of groups)
and the computational time for several, representative methods as a function
of k − kv for τ = 10−4.

The results provided by Tables 3–5 support our general observation that
converging the inner, within-group iterations leads to wasted effort in the
classical GS+SI scheme, with the flattened scheme becoming more effec-
tive with a tighter tolerance. The results also show that (unpreconditioned)
GS+GMRES led to a small improvement over GS+SI(20) with respect to
both sweeps and time, but diminishingly so for tighter tolerances. Only at
loose tolerances did GS+GMRES outperform GS+SI(1). This trend is es-
sentially the same as observed for GS+SI(20) and GS+SI(1); sweeps used to
converge the inner iterations are not as valuable as additional outer itera-
tions. However, because the sweeps applied by GS+GMRES for the within-
group problem are comparatively more effective than GS+SI(20) sweeps, the
performance degradation is not as great.

The application of DSA(LU) preconditioning to GS+GMRES for the
within-group problem further reduced the computational time to just over
half the time of GS+SI(20), with a similar decrease in sweep count. The ILU-
based implementation outperformed GS+SI(1) and GS+SI(20) in all cases
but was more expensive than the LU-based implementation, which means
that the small, one-group diffusion problem representing the DSA process is
easily solved directly by LU elimination. This observation would likely not
be true for large, 3-D problems.

The use of GMRES for the full multigroup equations led to a reduction
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Table 3: Sweeps, timings, residual norm tolerance, and actual relative error
for a C5G7 assembly with τ = 1.0× 10−4

sweeps sweeps
groups

time (s) residual error

GS, SI(20) 1684 240 68.4 1.1× 10−5 9.8× 10−5

GS, SI(1) 1589 227 67.9 1.8× 10−5 9.8× 10−5

GS, GMRES 1266 180 51.6 1.3× 10−5 8.0× 10−5

GS, DSA(LU) 858 122 36.8 1.5× 10−5

GS, DSA(ILU) 858 122 43.8 1.5× 10−5

GMRES 168 24 7.0 3.8× 10−5 6.1× 10−5

DSA(LU) 42 6 10.9 1.4× 10−5

DSA(ILU) 42 6 6.6 1.3× 10−5

CMDSA 63 9 2.8 3.3× 10−5

CMDSA+S 56 8 2.5 2.9× 10−5

TC1-CMDSA+S 49 7 3.9 9.1× 10−6

TC2-CMDSA+S 42 6 2.1 3.0× 10−5

in sweeps and computational time by roughly an order of magnitude com-
pared to GS+SI(20), with slight improvement for tighter convergence. All of
the multigroup preconditioners successfully reduced the number of sweeps.
However, the computational time of MG-DSA(LU) was more expensive than
unpreconditioned GMRES for all tolerances and k = 1, and MG-DSA(ILU)
was less expensive than unpreconditioned GMRES only for τ = 10−4.

Compared to multigroup DSA, multigroup CMDSA led to approximately
1.5–2 times as many sweeps as MG-DSA(ILU) but with execution times
just under that of MG-DSA(ILU). Because the CMDSA process used ho-
mogenization over 7×7 cells, the inversion of the corresponding coarse mesh
diffusion operator was small, even by LU factorization. By adding smoothing
(denoted CMDSA+S), the cost of applying the fine mesh diffusion operator
(not its inverse) was incurred, but the reduction in sweeps led to a slight yet
increasing reduction in execution time with tighter tolerance.

Finally, the addition of transport correction to CMDSA+S further re-
duced the number of sweeps but at the cost of applying the low-order trans-
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Table 4: Sweeps, timings, residual norm tolerance, and actual relative error
for a C5G7 assembly with τ = 1.0× 10−6

sweeps sweeps
groups

time (s) residual error

GS, SI(20) 2960 422 121.6 1.1× 10−7 9.9× 10−7

GS, SI(1) 2569 367 108.0 9.1× 10−8 5.0× 10−7

GS, GMRES 2435 347 102.2 1.8× 10−7 8.0× 10−7

GS, DSA(LU) 1517 216 65.2 1.8× 10−7

GS, DSA(ILU) 1517 216 84.3 1.8× 10−7

GMRES 217 31 9.1 2.7× 10−7 4.4× 10−7

DSA(LU) 56 8 12.0 1.4× 10−7

DSA(ILU) 56 8 12.8 2.3× 10−7

CMDSA 98 14 4.3 9.6× 10−8

CMDSA+S 84 12 3.8 1.2× 10−7

TC1-CMDSA+S 63 9 5.2 9.2× 10−8

TC2-CMDSA+S 63 9 3.2 6.9× 10−8

port operator and, possibly, the full transport operator. Because the low-
order operator used 4 angles per octant, and the high-order operator used 64
per octant, one high-order space-angle sweep should be equivalent to 16 low-
order space-angle sweeps. This is not entirely true in practice because the
construction of the scattering source is independent of the quadrature. Even
so, for τ = 10−8, TC1-CMDSA+S required 588 low order sweeps, equivalent
to 36 high-order sweeps. Hence, a more representative sweep count is 127
rather than 91. However, its cost at 7.6 s is higher than the cost of CMDSA
at about the same sweep count, and this apparent discrepancy can be at-
tributed to the angle-independent costs of the low order operator in addition
to the cost of the single application of the high-order operator. On the other
hand, the omission of the high-order operator and the reduction from three
to just one application of the low-order operator led to a slight reduction in
the number of sweeps and a reduction in the time by nearly half.

Figures 6 and 7 provide further evidence that the coarse-mesh, multi-
group preconditioners were effective—even when the underlying multigroup
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Table 5: Sweeps, timings, residual norm tolerance, and actual relative error
for a C5G7 assembly with τ = 1.0× 10−8

sweeps sweeps
groups

time (s) residual error

GS, SI(20) 4345 620 178.0 1.0× 10−9 9.4× 10−9

GS, SI(1) 3297 471 135.0 1.8× 10−9 9.9× 10−9

GS, GMRES 3681 525 151.4 3.7× 10−9 9.8× 10−9

GS, DSA(LU) 2214 316 95.6 3.8× 10−9

GS, DSA(ILU) 2214 316 132.5 3.8× 10−9

GMRES 280 40 11.9 3.0× 10−9 9.7× 10−9

DSA(LU) 70 10 12.9 1.6× 10−9

DSA(ILU) 70 10 20.5 2.2× 10−9

CMDSA 126 18 5.5 1.7× 10−9

CMDSA+S 105 15 4.7 2.7× 10−9

TC1-CMDSA+S 91 13 7.6 3.5× 10−11

TC2-CMDSA+S 77 11 3.9 1.8× 10−9

GMRES solver was challenged. For k ≈ kv, the spectral radius of the trans-
port operator approaches unity, which renders GS prohibitively expensive for
k − kv < 0.1 regardless of the within-group solver. Even unpreconditioned
GMRES was significantly challenged, requiring nearly 2000 sweeps to con-
verge in the worst case. A restart value larger than 30 would likely yield
some improvement in the unpreconditioned case but not the others because
all of the multigroup preconditioners reduced the number of iterations to less
than 20 (the number of sweeps divided by the number of groups is equal to
one plus the number of GMRES iterations). Each of the coarse-mesh, multi-
group preconditioners significantly reduced the computational time and the
number of sweeps compared to unpreconditioned GMRES, and all of the
preconditioners effectively reduced the number of sweeps. The coarse-mesh,
multigroup preconditioners were especially effective for small values of k−kv,
for which the reduction in the computational time was over an order of mag-
nitude compared to unpreconditioned GMRES. Although the performance
of each multigroup preconditioner with respect to sweeps and computational
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Figure 6: The number of sweeps (divided by the number of groups) as a func-
tion of k − kv, the difference between the parameter k and the k-eigenvalue
of the PWR assembly subject to vacuum boundary conditions.

time degraded somewhat for smaller k − kv (relative to the performance of
the same preconditioner at, e.g., k = 1), the relative increases in the num-
ber of sweeps and computational time was small (approximately a factor of
2–3) compared to the increases observed for unpreconditioned GMRES (ap-
proximately a factor of 10). Based on the results of Figures 6 and 7 and
Tables 3–5, TC2-CMDSA-S led to the best overall performance.

5. Conclusion

Several transport preconditioners based on the diffusion approximation
have been developed and applied to representative fixed-source, multiplying
problems. In particular, it was found that the two-grid, coarse-mesh diffusion
preconditioner performs quite well, especially when used with a fine-mesh
diffusion smoother and transport-correction. Although several combinations
were considered, it is recognized that many possible parameter permutations
were omitted. Some of these were eliminated based on past experience, and
others were simply deemed outside the intended scope. Of the latter, a more
careful study of the coarse-mesh parameters (meshing, spectra, and smooth-
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Figure 7: The computational time (divided by the number of groups) as
a function of k − kv, the difference between the parameter k and the k-
eigenvalue of the PWR assembly subject to vacuum boundary conditions.

ing, etc.) and preconditioners for the fine-mesh diffusion solver would be of
value. Our efforts have largely been in support of related work on response
matrix methods, but the methods developed and results obtained should be
of interest to the broader transport and reactor physics communities.

Future efforts should explore at least two areas not addressed by this
work. First, the energy variable should be incorporated as an additional
variable subject to homogenization. Although our scoping studies proved
unsuccessful, recent work on energy-based multigrid methods shows signifi-
cant promise [4]. Second, the application of the methods developed has been
limited to the relatively small problems of importance to response matrix
analyses. More work should examine the utility of diffusion-based precondi-
tioners for large-scale, parallel computation in all areas of radiation transport
for which multigroup Krylov methods have yielded so much success.
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Appendix A. Three Group BWR Bundle

To provide a relatively small transport problem for examining the trans-
port operator in detail, a small BWR bundle was modeled, illustrated in
Figure A.8. The model contains just two materials, a smeared fuel-clad mix-
ture and a moderator, and consists of 1.15 cm square pins with a 1.4 cm
pitch and an exaggerated water gap. The cross-section data are provided in
Tables A.6 and A.7.
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Figure A.8: Simplified BWR bundle. Zero indexes fueled regions while one
indexes moderator regions.
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