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NOMENCLATURE

r,o0,z cylindrical coordinates used to describe the undeformed con-
figuration of the plate :

h thickness of the plate
a outer radius of the circular plate
P mass density of the plate material
t time variable
u,w radial and.transverse displacements of the middle plane,
respectively
€s€g total strains in the directions indicated by subscripts
9.0y stresses in the directions indicated by subscripts
E,v elastic modulus and Poisson's ratio, respectively
Nr’NG membrane forces per unit length
K kinetic energy of the plate
u,U strain energy due to stretching of the middle plane and due to
s'"b bending of the plate, respectively
W work done on the plate by external forces
¥,¢ stress functions
Mr.M9 bending moments per unit length
q(r,t) time-varying loading intensity
V4 biharmonic operator
V2 Laplacian operator, = %-%;—(r %;) 5
D flexural rigidity of the plate, = __lﬂl_ji_
12(1-v"7)
E,T dimensionless space and time variables, respectively
X dimensionless transverse displacement
Q(£) ,Q*(&) dimensionless loading distributions
g(E),£(&) shape funetions of vibration



amplitude parameters
nondimensional nonlinear eigenvalue
nondimensional angular frequency, = (1)1/2.

linear nondimensional angular frequency

indicates a column vector

{6x1l) vector functions
coefficient matrices

(3x1) null vector

al

adjustable data in the related initial-value problem

nth'order Bessel functions of the first and second kinds,
respectively

nonlinear period of vibration, = %1
linear period of vibration, = %—
defection at £ = 0.0
Clamped-immovable
Clamped-movable

Hinged-immovable

Hinged-movable

vi



INTRODUCTION

The study of vibration of plates is the dynamical analogue of load-—
deflection analysis of plates in the static case. In fact static loading is
a special case of the more general dynamical problem of plate vibration.

When the amplitude of vibration, or displacement, is of the order of
the thickness of the plate the deformation of the middle plane of the plate
is no more negligible as in the case of small displacements, and the basic
equations of motion, known as the dynamical von Kdrmdn's equations, are non-
linear and coupled.

These equations, together with the associated boundary conditions at the
center and edge of the plate constitute a two-point boundary-value problem.

The boundary-value problem becomes an eiganvalue problem by separation of
the variables.

No exact solution is known for the nonlinzar boundary-value problem and
hence approximate methods must be used. The essence of such methods is to
approximate the continuous system by a discrete one having a finite number of
degrees of freedom. The discrete representation is usuélly achieved through
an assumed space mode. Substituting this space mode in the differential
equations and requiring that some measure of the error is minimized, results
in the elimination of the assumed space mode. The problem then reduces to
a nonlinear ordinary differential equation with time, t, as the independent
variable. This equation is similar to a one-degree-of-freedom Duffing
equation [13].

As an alternative method of solution for the boundary-value problem,
Sandman [2] and Huang [6], assumed a time-mode function which was then

eliminated by a time averaging method. The problem is reduced to an eigenvalue



problem comprizing two nonlinear ordinary differential equations in the space'
coordinate functions, together with a suitably-reformulated set of boundary
conditions. Newton's method and the-principle of analytical continuation were
used to solve the eigenvalue problem.

Solutions to the boundary-value problem were obtained [17,18,20] by
employing the Berger assumption [16], which simplifies the equations of
motion by neglecting the second strain invariant in the calculation of
the strain energy of the plate. This assumption was first used, in the
static case of deflections, but was later found to give unsatisfactory
results when the edge of the plate was not restrained against radial
displacement [19].

In this work, the solution in [2] of the clamped-immovable circular
plate is extended to three other edge conditions: clamped-movable, hinged-
immovable and hinged-movable, both for free and forced vibration. While all
four cases are strictly theoretical, their practical importance is that they
represent the limiting boundaries between which practical cases fall, depending
on the extent of radial restraint. The experiments referred to in Ref. [2]
are used as an example.

A comparison is made between the present solutions and the solutions in
[17] and [20] which use the Berger assumption. The comparison shows that in
the radially-restrained cases the Berger assumption gives good approximations
to the plate responses at low amplitudes of vibratioms, but the accuracy of
such approximations decreases with the amplitude increasing. Comparing
with the radially movable cases it is evident that the Berger assumption is

entirely unsuitable for such cases.



Even in the radially-restrained cases the Berger assumption produces a
linear pattern of bending stresses, contrary to the nonlinear pattern of

stresses established by the present solution for all the cases counsidered.



CHAPTER I. THE BASIC DIFFERENTIAL EQUATIONS

Consider a thin circular plate of radius a and constant thickness h
located by a cylindrical system of coordinates r, 8, and z, as shown in
Fig. (1). The material of the plate is assumed to be elastic, homogeneous,
and isotropic.

The plate is excited by an external force, and the resulting motion
is studied, on the assumption that the amplitude of the resulting flexural

vibration is of the order of the thickness of the plate.

)[r 6 r _ | h -
[__;u

Fig. (1). The Circular Plate and the Polar Coordinate System.

a. Finite-Amplitude Displacement Theory

In the linear theory of "small displacements" of plates only flexture is
accounted for and the middle plane of the plate is assumed inentensible. In
contrast, membranes are assumed to have no flextural stiffness and only the

"membrane'" effect due to the in-plane extensions is considered.
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"Finite-amplitude displacements" are displacements of the order of
the thicknesg of the plate, In this case, although the displacements are
still small relative to the planar dimensions of the plate, the membrane
effect cannot be neglected.

For "large displacements,”" further modifications to the finite amplitude
theory are necessary.

In mathematical terms, gqualitative definitions of the three categories

of displacements may be drawn from the Green's scrain temsor [1]:

E E 1,4 = 1,2,3 .

1
= u, (*u,  Fu u .
ij z i1,] J.1 kyik,j
Agsuming sxial symmetry of the displacements Uy the following components,

in polar coordinates result:

radial membrane circumferential membranc

strain, Err strain, Eog
small displacements ur %
finite amplitude displ. . + i—ﬂu }2 u
r 2 r r
: 1 2 2 u
" i - = 4 =
large displacements u, + 3 Itwi) fur) ] =

where u and w are, respectively, the radial and transverse displacement components
of th# middle plane, r is the radial coordinate, U and w. are the partial
derivatives of u and w with respect to r.

The finite-amplitude displacements theory may therefore be sumsarized by
making the following assumptions, the first two of which are retained from the

gmall displacements theory:

*In the index notation used here, i, in uw,, iz a suffix; u is the partial

i? i,
derivative of ug WaT.t the j coovrdinate, This is not to be confused with

the notation used elsewhere.



1. Lines normal to the middle plane of the plate in the undeformed state
remain straight and normal to the middle plane in the deformed state.

2, Normal stress, g, is small compared with in-plane stresses and may
be neglected in the stress-strain relations.

s The only non-zero components of the strain tensor are:

1 2
u_ + 5-(wr)

(y]
0

IT

€ =2
(513 r

The radial and circumferential components of the bending strain are obtained

directly from the geometry of the plate.

€ = =2 W
IT IT

Eea = =2z Wr .

Adding the membrane strains as derived before, the total radial and circumfer-

ential strain components are, respectively

£ =

=

1 2
c + TV T2 W (1a)

Eq =

nle

Z
“Ey . (1b)

The stress—-strain relations are derived from Hooke's Law:

E

T 1—v2

(er + vao) (2a)

g, = ok 5 (gg + ve,) (2b)

1-v

where Ur and ¢, are the radial and circumferential stresses, respectively,

]

E is Young's modulus, and v is the Poisson’'s ratio of the material of the

plate.



Expressions for the radial and circumferential forces per unit length, Nr
and NB’ are obtained by integrating the respective stresses across the thick-

ness of the plate

h/2

N_ = f a_dz = lg%—[ur +-% Wi + v %ﬂ (3a)
~-h/2 h
h/2

NB = J Iy dz = lgg—-[% + vu_ + %-wi] (3b)
-h/2 h

ER>
where D = e is the flexural rigidity of the plate.
12(1-v")

Radial and circumferential moments per unit length, Mr and MB, respectively,

are obtained by integrating across the thickness of the plate the moments of

the forces about the middle plane.

h/2 ¥
Mr = J o zdz = -D[wrr + ;-wr] (4a)
-h/2
h/2 1
M, = I g, zdz = -D[= w_ + vw__] (4b)
0 —h/2 6 r T rr

b. The Energy Method

The extended form of Hamilton's principle, [4], is used to derive the
governing differential equations and the related boundary conditions. It
states that between two insFantS of time, tl and t2, the first variation of
the Action Integral is equal to zero; i.e.:

)
GJ Idt = 0 (5)
B

In the present case, I = K - US - Ub + W



where K = kinetic energy
U = strain energy due to stretching of the middle plane
U, = strain energy due to bending

W = work done by the time-dependent external forces (in the case
of forced vibration).

Rewriting (3),

t t t t

2 2 2 2
GJ Kdt - BJ U dt - 6[ U, dec + Gj wdt = 0 . (6)
s b
t t t t

1 1 : 1 1
The components of (6) are derived as follows:

2T ra a
1. K = J %—ph wi dr = rde = @D f El-1-1: wi dt

0o Jo oD

T
r 2 23211
[ Kdt = wD J J —%— T W, 6wt dr .
‘t t 0

L

Integration by parts yields

D tt t w

2 2 ra h a h
GJ Kdt = ZHDI J [~ B v w6 ldrdt + QNDJ (E— w6 ) dr
t t v g 2 £

(7)
where p is the mass per unit volume of the plate material.

The second integral in (7) vanishes since 8w = 0 at t., and t2.

1
21 ra
2. U = __EE_E_ I J [ei + sg + 2ve e ]dr rdd  (see [5])
2(1-v7) ‘0 0
a
= 7D ;2-[re2 - 2(1-v)re,ldr .
2 1 2
0Oh
where e, = €_ + g, = first strain invariant

1 T 8



e, = € €, = second strain invariant
t2 t2 aq,
and 8 U dt = D = [2re de, - 2(1-v)rbe,]drdt
2 11 2
t t. ‘0 h
1 1
‘2 (a 12
= ZFDJ f 5 {[-(relwr)réw - r(el)rﬁu]
t. ‘0 h
1
- {1-9) [~(aw. ) 8w + = wosulb awat
r'r 2 'r
£ 12
+ 21D = 4[re,w éw + re.du]
2 1'r 1
t h

a
dt (8)

- (1-v) [uw_8w + uﬁu]}
= Q

a
= U, = 'HD[ [w2 + 1 wz + v w w__Jrdr
0 r r2 T r rrr

a
1 2
HDI [r(wrr + = wr) - 2(1—u)wrwrr]dr

2 ra 1 1
Hﬂf ] [2r(w_ +—=—w)(Sw__ + = &w.)
¢ r r r rr r r

2
e
g B 0 £

1 1

- Z(l—v)(wréwrr + wrrGWr)]drdt

"

2 ra 4
ZHDJ J [r¥ w]éw drdt
t

v
+ r(wrr + ;-wr)Gwr] dt (9)
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where V4w =w + g-w -
ITTTr &

211' a S A
4. W= I J q(r,t) wdr rdé
0 ‘0

where q(r,t) is the time-independent external loading intensity,

assumed to be symmetrical with respect to the z-axis.

t By im ()
6] wde = zmj f [-‘1——%— r Swldrdt . (10)
t t 0

Using (7), (8), (9), and (10) in (6), we get:

t s
2 ra
oh 12 12 e L ghy s 4D
J [ { =g & . + 7 (relwr)r 5 (1 \J)(uwr)r r Vw+ ) 18w
ty 0 h h

12 1 2
+ == [r(el)r + E{l—v)wr]du} drdt

h
t a
2 i 1 12 ]
+ J {r(wrrr + ol —E'Wr) - [relwr - (1—v)uwr]f6w dt
tl r h 0
k3 ] a ) _ a
- J r[wrr + ;-wr]ﬁwr dt - J [rel - (1-v)uldu| dt =20
t 0 t 0]
1 1
(11)

For (11) to hold, the integrands in the double and single integrals have
to vanish separately.
The double integral yields the Euler-Lagrange equations:

4 121 ey ph _ q(r,t)
Ve - ;l-z- T [repw) - @-v) () ]+ 5 W, = ﬂ—D—~ (12a)



; 1 2 _
and r(el)r + 3 (1-\J)wr =0

The single integrals yield  the natural boundary conditions

a

] 2 12 u
3;'(7 w) - ;f [e; = (A-v) [lw,

0

where V2 is the Laplacian harmonic operator,

g a
pr Vg Y%l T Ya
0
ul?
and e - (1-v) ;—0 =0 .

In equations (12) the following substitutions are made:

- %=
v rNr ! ar Ne ?

11

(12b)

(13a)

(13b)

(13¢)

where ¢ is a stress function satisfying the equilibrium equation of the

plate,
3
_ 12D _ ke B
N, = —h_,_ [e; = Q=) ol
¢ (from (3))
_ 12D u
and NB = “;E'(Vel + (1-v) r] |

Using these relations, equations (12) and (13) can be rewritten as

follows:
DV4w - d (bw ) .+ ph w = q(r t)
r r'r tt 2
1 1 _ Eh
Wi TE Y r2 L T
3,2 1 =
D'BT(VW)-;IIJWI -—0
0
" a
Ver Vx| =0

(14a)

(14b)

(15a)

(15b)
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Y I <o (15¢)

Equations (3) may also be used to derive an expression for the radial

displacement, u, needed later in the definition of the boundary conditions

- - wu ¥
u Eh (ar v ) . (15d)
Using the substitutions
x = x/a
Eh
b=
1-v
E
q = &2
12(1-v7)
r = af
1/2
and t=[phg] Ts

equations (14) and (15) are converted into the non-dimensional forms:

2
b3 X _ 193y213 03X _
Vx+aT2 lZ(h) £ ot (¢ ag) P(g,T) (16a)
2
% 13 1, 1% oy
b t-Le--5E & (16b)
3L g
1
D 5 .2 Eh . 3x
S (W) -~ =0 (17a)
2 ot AT
3—2§+§%§Il =0 17b)
o 0
1
1[ =0 (17¢)
o
1
(i—vi)l =0 (17d)
1-v2 0
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c. Boundary Conditions

Depending on the type of support of the edge of the plate, the geometric
boundary conditions are supplemented by the natural bouﬂdary conditions in
(17a), (17b), and (17c) to complete the formation of the problem.

An edge is called immovable if it is held rigidly so as to prevent radial
displacement; if radial displacement is allowed the edge is called movable.

The relevant boundary conditions for each type of support at £=R (R
being either 0 or 1 in the case of a solid circular plate) are displayed in

Table (1).



Table 1. General Boundary Conditions

Type of Edge Boundary Conditions at £ = R
Clamped-Immovable x =20 -g% -V §= 0
B e
3t 0
Clamped-Movable x =0 %= 0
X o
ok 0
Hinged-Immovable x =0 -g% -V %2 0
3% v 2
3L £ 93¢
Hinged-Movable x=0 %= 0
2
9_121 + 23X _
2g2 | OE
3% . v 2
Free SXg 2 A g 2 -9
3£2 £ 9E 13




CHAPTER II. APPROXIMATE ANALYSIS

The differential equations of motion together with the associated
boundary conditions constitute a boundary-value problem. The boundary-value
problem becomes an eigenvalue problem when the differential equations of
motion and the boundary conditions are homogeneous and depend on a parameter
~ A, and, moreover, a non-trivial solution is obtained only for certain values
of the parameter A. The transition from the boundary-value problem to the
eigenvalue problem is effected by means of the separation of variables method
[4].' In the case of large amplitude vibration problems, where exact sclutions
are unknown, function space methods are usually used to eliminate the
space coordinate with an assumed mode shape function, thus reducing the
problem to a nonlinear ordinary differential equation with time, t, as the
independent variable. In this work, a time function is assumed, then a
Kantorovich averaging method is used to reduce the nonlinear partial dif-

ferential equations to a set of nonlinear ordinary differential equations.

The Kantorovich Averaging Method

In contrast with the "assumed-space-mode method,'" the Kantorovich
averaging method is used [2] to find an assumed-time-mode solution to
equations (16) that satisfies the b5undary conditions of the types given
in Table (1). The analysis in [2] is closely followed here.

A sinusoidal form is proposed for the loading intensity.

P(E£,1) = Q(E)sinuwt

and the steady state response of the plate is assumed to have the forms

x(E,1) = Ag(E)sinwt (18a)

¢(E,T) = A%£(£)sinur (18b)

15
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where A is an amplitude parameter and g(£) and f(£) are shape functions to
be determined.

Equation (18) cannot satisfy (16) for all 7, but thé "average" work done
over one period of oscillation, Zgb is minimized in order to eliminate the
time variable.

Using this principle and substituting (18) in (16b) converts the

differential equations (16) into the form:

4 ad . ,dg, _Q*

Vg-21g -9 EdE (£ di) = (19a)
LN TN SR ST (19b)
d£2 E dg g2 2E dg

where a = (A %)2 , Q% = (%)Q , and X = mz.

Substituting (18) in Table (1) gives the boundary conditions in the
final form shown in Table (2) for the different edge conditions.

Equations (19) are nonlinear and coupled. Together with a set of boundary
conditions chosen from Table (2) they comprise a nonlinear two-point boundary
value problem which is solved through the solution of the related initial-

value problem.



Table 2. Final Form of the General Boundary Condition

Type of Edge Boundary Conditions at £ = R
Clamped Immovable g=20 .. v i« 0
dg £
de _
dg e
Clamped Movable g=20 g =0
dg _
g =
. df £
H d Imm bl = B e N
inge ovable g=20 e v £ 0
2
a2 B
Hinged Movable g=20 §= 0
2
dg , vdg _,
dE,z £ dg
2
Free d_g. 4 .g.fi ) f_o
de £ dg £
d 2
5 (W7g) =0

17



CHAPTER ITI. NUMERICAL ANALYSIS

Problem of the Initial-Value Method

Solutions to initial-value problems are well developed theoretically
[7] and well adapted for solution on high-speed computers [8,9]. Nonlinear
boundary-value problems and nonlinear eigenvalue problems, however, are more
complicated. Hence solution of these problems by converting them into initial-
value problems has become poPﬁlar [10,11].

In [2], the resulting nonlinear initial-value problem for the case of free
vibration is solved by the shooting method. To do this an associated varia-
tional problem is developed and used in a Newton-Raphson iteration scheme.

By analytical continuation the solution to the original boundary-value
problem is obtained as a one-parameter family of solutions of the initial value
problem.

Again by analytical continuation and a perturbation technique, the
solution to the boundafy value problem for the case of forced vibration is

obtained through discrete incrementation of the loading parameter.

a. Matrix Formulation

In order to solve the problem numerically, equations (19) are written

as a system of six first-order differential equations

KR, Tian0%) , 0<E<1 (20a)

dg
e | [

where Y() = ¢ ros ()'==2= , and:

18
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(Y1) (72
T
Y2 Y3
v’ y
_ 3 4
B=1 171 2 1 1 9 Q* (£)
Yy, - =¥ P T Yy b Xy = [yaye + yay] * ’
4 £ Y4 2737 372 1 £ Y375 276 &
T
Ys M3
2
, 1 1 1-v 2
g L € J

The parameters o and A are additional unknowns and hence to solve six
equations in eight unknowns, an additional restraint is imposed. One component
of Y(0) is normalized, producing a unique solution in terms of a or A.

Normalizing the first component of Y(0), a set of boundary conditions

chosen from Table {2) may be written in the generalized form:

1

MT(0) = g (20b)
0
~ 0

anid NT(1) = {o} (20¢)
0

where M and N are 4x6 and 3x6 coefficient matrices as shown in Table (3) for
the three cases of edge conditions discussed in this work, in addition to

the Clamped Immovable case treated in [2].

b. The Initial-Value Problem

The corresponding initial-value problem may be expressed as

92 . f(E,Z50,1,0%) (21a)



Table 3.

Coefficient Matrices (M) and (N) of Boundary Conditions

20

Type of edge support (™) (N)
1 o 0 0)
1 0 0
0 0 0 0
-1. Clamped-Immovable 0 0 a
0 0 1 0 _
0 -v 1
0 6 0 0)
(1 0 0]
2. Clamped-Movable ditto 0 0 0
0 1 0)
1 0 0]
3. Hinged-Immovable dittro 0 8] 0
‘0 -V lJ
(1 0 0]
4., Hinged-Movable ditto 0 0 0
0 1 0
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P =y (21a)

where z; are identical with Yi in equations (20), i = 1,...,6.

Since only four boundary conditions are known from MZ(0) = 0, we

can write
where N = zg and Ny = 2z, are the missing boundary conditions at £ = 0.

For a continuous function Q*(£) the existence and uniqueness of a solu-

tion Z = Z(&;n,a); n = n,r, ona closed interval [0,1] has been proved in [2].

Now, from (20c),

NZ(1;n,a) = 0 (22)
Assuming Z is continuously differentiable with respect to n and o then,

by a well-known theorem in Matrix Theory, for the system of equations:
NZ(1,n,a) = 0

a necessary and sufficient condition for a unique solution, E = ﬁ(a), is that

the determinant of the Jacobian matrix, J = E:—[Nf(l;ﬁ,a)], is not equal to
an
zero, i.e., det[N g:—E(l;ﬁ,a)} # 0.
on
Hence a locally unique function exists at &=1 such that:

NZ(13n(a),a) = 0

So, ¥Y(£;0) = Z(E;n(a),a)
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forms a one-parameter family of solutions to the boundary value problem (19),
each of which is a solution to the initial-value problem (21).
For a fixed value of o, say ao, the system (22) reduces to the three

transcendental equations:

Nz(1,7,a°) = D (23)
A root ﬁo may be found by Newton's iteration method. Starting with the

initial guess n = n, the sequence:

1
Mt = M + Ank 5 k=1,2,3,...
is generated.

A Taylor series expansion gives the linearized correction An :

K°
NZ(1:m, + An,,a®) = NZ(1;h,,a°%) + [N —— Z(1;7, ,a%)] « AR
k k k - k k
an
k
— 2 —
+ 0(|Ank| ) =20
where | [ is the Euclidean vector norm. Retaining only the term linear in
Ank gives:
an = I8 =2 2a55,,09 170 NZ(sh, 0%
k - k k
on
k
= NG, 17T N2(LsR, ,a) (24)
17k R
where, at the kth step, the 6x%x3 matrix Jl is defined as
a'i 3Zi i=1,...,6
J == = |an. ’ (25)
an’ £=1 j’E=1 j=1,2,3

and represents the change of final values with respect to a change of n.

. - - 0
The expression NZ(l;nk,u ) represents the kth error vector.
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If ﬁl were within a sufficiently small neighborhood of the root ﬁo’

Newton's iteration would converge to ﬁo'

c. The Associated Variational Problem

To generate the sequence Aﬁk the matrix (Jl)k has to be evaluated at
each step, k, of the iteration process. To do that an associated variational
problem is introduced:

Formally differentiating (21) with respect to n produces:

=) - —
TR
2 an’ an 3z’ Lon/
—
1&} _ 3y* (26D)
‘an’£=0  9n
d
Writing (26a) explicitly, with ( )' = agr Ve get:
]
[le] ) 822
oy il
1
[322] ) 323
My Ay
1
i [
gt Ay
324 ! 9 Bz4 1 323 1 322 le b 325
| W-gewSgaEadem st be b=y g
any FAmy ARy Oy N 1
oz 9z 9z
6 2
+z.—+z, —+z, =]
5 anl 2 anl 6 anl

—
Lo ¥
|5
9]
——
-
]
a» Qr
= ™
(o))

H



=)}

|

Q2
=
[ 2%

=2

|

Q>
=

325 ) l—u2 . 322
Bn, T & "2 %m
8z, 1 37 92) g4
Uy g~ 04 Ny
2z oz oz
3 6 2
+z,.—+z 4+ 2. 1
5 an 2 3n2 6 an
st ) 1-v2 . 322
anz E "2 an

24
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a 1]
[_aJ 2% 1 P 1 By e s
) £ oA 2 3 A T 23w
9z 326 822
tiasm thwm temita

ax 2

1
326 _ l-azﬁ . l_.835 ) l-vz 822
3 AT £2 oX E “im

d. The Removable Singularity at £=0

It is seen that the systems in (21la) and (26a) have a singular point. at
£=0. Since the displacement functions zy and 25 have finite derivatives and
are continuous on the closed interval [0,1], they may be expanded in Taylor

series about the point £=0 [12].

1 2 1 3
= (zl)0 + (.22)0 £+ 57-(23)0 E” + 31-(24)0 E”+ vas

N
|

zg (25)0 + (26)o Ed waa

Here, ( )0 indicates that the variable inside the brackets is evaluated
at E=0.

Substituting these values in (21a) and requiring by continuity that the
derivatives be bounded in the limit as £+0 leads to the set of modified

equations for the initial-value problem at £=0

(z]), = 0 )
(z3), = (29), = ny

3o = © L (27a)
(20, = grt 2%'“ Uy %

), = (2g), = M,

(zé)0 =0
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Similarly, equations (26a) render the following set for the associated

variational problem at £=0.

rale 3

——iien =0

‘Bll 0

rE.z_zl ‘ = 1

an

140

r323]' .

3y

¢ z !

324 ) ZZ .

ngly 4 g
1

[3251 o

a1

2}
ﬁ“zo-o
°23) " _
3
Sal25 (27b)
3z,)' 97
L3n2‘0 = A = Tll
3251'
N
200
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[.B_iJ‘ = 0
ax 0
=
w ) = B
aA 0
3z '
Ei"]o”’
1
°24)" _ 3
aA 0 8
[f‘_"_S_" "
=,
3 o J

Starting with a guessed value for the vector n and o = ao, (21a) and (26a)
are numerically integrated simultaneocusly on the interval [0,1]. The results
at £=1 give the Jacobian (Jl)l and consequently Aﬁl. Repetition of the
process with the corrected values of the guessed vector establishes the
sequence Ek that converges to ﬁo within a specified error bound usually
related to the accuracy of the integration method used.

Having obtained ﬁo corresponding to uo, the value of the amplitude

parameter o is perturbed so that

al = ao + Aao

If Aa® is small enough for «® to be within the new contraction domain of
Newton's method, iteration will converge to the root ﬁl corresponding to al.
This leads to the creation of the two sequences {ﬁi} and {ai} that form a
discrete family of a-dependent solutions of the original boundary-value

problem for the case of free vibration.
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The range of a is limited by the assumptions made in the finite-amplitude
. theory and by physical considerations, At an assumed maximum value, o = am,
for which n = ﬁm, a small load Q* is introduced. By the nature of the
harmonic response of ;he plate, the steady state response due to free vibra-
tion will be within the contraction domain of that due to forced vibration,
if the load, Q#*, is small enough. Keeping Q* fixed, o is decremented from
a" and a new discrete set of solutions is obtained for the houndary-value
problem of forced wvibration.

Reversing the sign of Q* produces an out-of-phase response as shown by
the response curves.

Using the principle of analytic continuation again, series of response

curves are obtained by repeated incrementation of the loading parameter Q%.



CHAPTER IV. NUMERICAL COMPUTATIONS

A fourth-order Runge-Kutta-Gill method is used to integrate the initial-
value problem and the associated variational problem over the interval [0,1].
For a stepsize of %6 the error norm:

max [NZ(1)| < 0.1 x 107,
where maxl | is the maximum-element norm of the error vector, is in agreement
with the order of the integration method.

In order to start the integration process a reasonable guess for
n= [nl,nz,l]T has to be made.

The linear case is the natural starting point and hence, setting Q* = 0

and o° = 0, equation (19b) reduces to the linear form

th -xg =0 (28)
For the principal mode of vibration, (28) has the general solution [14,15],

g(E) = AJ_(kE) + BY (k) + CI_(kE) + DK (KE) (29)

where k4 = A = wz, Jo and Y0 are Bessel functions of the first and second
kinds, respectively, I0 and Ko are the modified Bessel functions of the
first and second kind, respectively, and A, B, C, and D are constants depend-
ing on the boundary conditions of the plate.

For boundedness of deflections and stresses at the center of the plate,
since YD(O) and KO(O) have infinite values, B and D must be equal to zero,

and

g(£) = AJ_(kE) + CL_(kE) (30)

Moreover, for a supported edge (both clamped and hinged) the boundary

condition g(l) = 0 is always valid. Using this condition, a normalized form

29
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of equation (30) is obtained, compatible with the mormalization condition

introduced in the numerical analysis.

= -a—--— =
88 @) 3,00 - L0 (31)

Differentiating (31) twices gives:

L 1
k() [ Iy (k) + KL, (kE)] + kI (k) [F J; (kE) - k) (KE)]

g''(&) = =
n Jo(k) . Io(k)
(32)
Using the fact that:
1.¢kE) J. (k&)
ln (] = Un [ = 3,
£+0 £+0
and if the value of k is known, a good estimate for Ny is obtained:
= ottt = 1< vt
ny = gy '(0) = lim [g*'(E)] . (33)

E~>0
To determine the value of k, two edge conditions have to be considered:

a. Clamped Edge

' If the boundary conditions

g(0)

and g'(0)

0,

0
are used, equation (30) reduces to the transcendental equation:

Jo(k)Il(k) + Jo(k)Jl(k) =0 . (34)

From Table (2.1) of Ref. [15], ké = (10.2158)2 = A. Using this value in

(32) and (33) we get ny = -4.57 (approximately).

b. Simple-supported (hinged) edge

The boundary conditions
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g(1) =0
and g''" (1) +vg'(l) =0.
together with equation (30), produce the transcendental equation:

Jpk) LK) 5

+ = (34)
J k) I (k) 1-v

For v = 0.3, Table (2.3) of Ref. [15] gives k4 = (A.977)2, and, from
{32) and (33):
n = -2.67 (approximately)
Having solved for g(£), equation (19a) may be solved for f(£) and hence
£'(0) is obtained as an estimate of U
A simpler alternative, however, is to use the stipulations of the small

displacement theory and neglect the membrane effect represented by £(£) and

f'(£). Hence:

The form of the correction vector An, equation (24), depends on the boundary
conditions at the edge of the plate. Four cases are considered, the first

of which is reproduced from Ref. [2] for comparison.

1. Clamped-Immovable Edge

Using the corresponding matrix (N) from Table (3) into equation (24)

gives the correction vector:



r 3
le azl le -1
Bnl 8n2 X
322 322 822
Bnl 3n2 A
iz az oz
3 3 3
An 1 0 0 0 0 0
i 1 anl an A
An = Anz = 0 1 0 0 0 0
Bz4 324 824
AX Q 0 0 0 -v 1 3 3 %
gy 90y
st azs azs
anl 8n2 3
8z6 826 326
thl anz A JE=1
\ J
(1)
z
0 2
23
0 -v z,
%5
z
( A
) oy % 98y 1 .
0 4 L T
1 anl an dA ol
|, 8z2 322 Bzz !
n,p = an.
2f an, o, A 5
> Bnl anl an an A A J£=l\uvzs

(35)




2.

Clamped Movable Edge

The correction vector takes the form:

(52 3z 3z, -1
rA‘“l\ 3 : 3 - a;\l 2]
Tll rl2
o b - 322 Bzz 822 |
2 Bnl 3n2 aA 2
i, 825 325 325 ,
g oy Ay A U5l
3. Hinged Tmmovable Edge
(9 3z 3z I
f&ﬂlx zl ] 1
Bnl an =D
R e e e
T]l Tll 712 n
az5 826 825 6 st 326
~Al J -V 3— o+ 5'—"" -V En— + --—an -V ——a;\ + _3
%, T 2 2 Je=1
4. Hinged Movable Edge
( b 9
(an ) ! ‘ i 1 1
3 3h
Bnl n
oz 9z 3z 0z a3z 8z
1821 = |V 3 3 "32 33 "aA2+aA3
Gr!l T]l ﬂ2 T]2
9z ] 825
(AA an A
Je=1

rZ

-V

4

™
—

+ z

z. + =z

(36)

E=1

(37)
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Perturbing the amplitude parameter, o, the process is re-started using
the values of n obtained at the end of the first cycle. The stepsize used
for @« is 0.1 and 41 cycles are carried out, i.e., up to an amplitude of
twice the thickness of the plate. Two or three iterations were needed with
most values of o.

For the case of forced vibration described before, four values of Q%
(the uniformly-distributed loading parameter), were used, namely Q* = +5 and
Q* = +10, in a perturbation pattern similar to that used with the amplitude

parameter,

Stresses
In the following expressions for the nondimensional stresses, derivable

from equations (4) and (3), the meanings of the suffixes are as indicated

below
0 radial stress ob bending stress
ce circumferential stress Um membrane stress
b 2
g a 1/—
r 5 = + Q 5 [gn + g_gl] (39a)
Eh 2(1-v7)
b 2
o.a
. ’Gz [f8' +v gl (39b)
Eh 2(1-v7)
cmaz o £
= =1 (39c)
Eh?  1-vZ ¢
oUa?
5 = 7 [£'] (39d)
Eh 1-v

at the center of the plate the limiting values of (39) are obtained using

L'Hopital's rule:
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b
a g_a
r _ ( ) J - 4 Vo [o"
= g e [N (40a)
[UEhZJE=O Eh2 £=0 2(1-v) £=0
m 2 m 2
ra ! [Uea J & [f'] (40 )
= = — _ b
En?) £=0 gn¥le=0  1-v? g=0

For a value of v = 0.3 the characteristics of the plate vibration are
displayed in the response, shape function, and stress patterns for each of
the four cases of edge support.

For all the cases considered the plate response curves display the jump
phenomena associated with the nonlinear vibration of a hard spring [13].

It is also evident from the curves that the absence of radial restraint at
the edge of the plate causes a fundamental change in the response of the plate,
and the pattern and nature of membrane stresses for both the clamped and
hinged cases. The effect of radial restraint on bending stresses is, however,
negligible.

The maximum change in the shape function with respect to amplitude, is
noticed in the clamped-immovable case. The least amount of change is in the
hinged immovable case, which indicates that the change in the shape function
increases with the amount of edge fixity.

The edge stresses, in all the cases considered, are similar to those of
a hard spring, having an increasing rate of change with respect to the
amplitude. In the center, membrane stresses behave similarly, but bending
stresses are similar to stresses induced in a soft spring, having a decreasing
rate of change with respect to the amplitude.

Comparison of the results obtained for the clamped-immovable case with
those in Ref. [2], where a value v = 1/3 was used; indicates negligible

differences.
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In the Figures (...-2) to (...-9) each of the clamped-immovable and
hinged-immovable cases is followed by its counterpart of the clamped-movable
and hinged-movable cases, respectively. Such pairing is hoped to facilitate
the designer's task of locating his range between the two theoretical

extremes of a radially-restrained and a radially-free edge condition.
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Fig. (CI-3). Shape Function for a Clamped-Immovable Plate.
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CHAPTER V. THE BERGER ASSUMPTION

In his analysis of large sthtic¢ deflections of plates, Berger, [16],
proposed that the strain energy due to the second invariant of the middle-
surface strains may be neglected. This éeduces the differential equation
governing the transverse displacement, w, to a linear form solvable in terms
of Bessel functions. Wah [17] and Nash and Modeer [18], extended Berger's
assumption to the dynamic case of vibration of plates.

In Chapter I, if the Berger assumption is applied the second term in
equation (12b) drops out and we obtain the solution:

e, = a constant (41)

In equation (l2a) the second term in the brackets, -(l-v)(Uwr)r, also

disappears and the equation takes the form

12e
4 1 2 ph _ 9
Vw h2 ) Vw + D Yer =D {r,t) (42)

Expressing the condition of vanishing boundary displacement in terms of
a double integral, Wah solved (41) and (42), using a modified Galerkin method,
in terms of elliptic integrals.

Wah's solution results in linear patterns of bending stresses both at
the center and at the edge of the plate contrary to the obvious nonlinearity
of bending stresses obtained here. His values for bending and membrane
stresses are superimposed on the values obtained in the present work in
Figs. CI-8, CI-9, HI-8, and HI-S.

Srinivasan [20], also used the Berger assumption to obtain steady state
response curves for forced vibration of immovable clamped and hinged circular
plates. Using the Ritz method he reduced the nonlinear partial differential

equations to nonlinear algebraic equations. His results for the special
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case of free vibration are similar to those in Ref. [17]. The response
curves based on Ref. [20] are superimposed on those obtained in this

work in Figs, C-10, H-10, C-11, and H-11. Comparison of the two sets
indicates good agreement only with the immovable edge cases at low
amplitudes. This observation is the dynamical parallel of Nowinski and
Ohnabe's conclusion [19] for the static case of large deflection of plates.

In both cases of free and forced vibration the deviation between the
present solutions for the immovable edge cases, and those of Wah and
Srinivasan increases with amplitude.

Larger deviations are obtained in the hinged case as compared with the
clamped case. This is because the accuracy of the approximate Berger solution
decreases as the order of the differential operators appearing in the boundary
conditions increases. As an example, Fig. C-10 shows that in the clamped
case, with an amplitude/thickness ratio, a = 0.5, the Berger solution deviates
by roughly 2.8% (6.6%) in the immovable case, and 3.4% (16.7%) in the movable
case. With a = 2.0, the deviations become 3.7% (8.7%Z) in the immovable case,
and 34.7% (108.3%) in the movable case. The values in the brackets belong

to the corresponding deviations in the hinged case, Fig. H-10.
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CHAPTER VI, CONCLUSIONS

By elimination of the time variable from the equations of mofion, (16),
an infinite number of degrees of freedom in the space coordinate functions
is achieved. By the nature of the apprﬁximate numerical integration process
the solution of the continuocus system is obtained at a number of discrete
points along the radius of the plate, hence reducing the number of degrees
of freedom to the number of points considered.

In all the cases of edge support considered, a behavior similar to that
of a hard spring is exhibited by the responses of the plate.

As noted in Ref. [2] for the clamped immovable case, the mode shape function,
bending stresses, and membrane stresses are nonlinear functions of the amplitude
of vibration.

Comparison of the solutions obtained here with those based on the Berger
assumption [17,20], clearly indicates that, while good agreement exists for
small amplitudes of vibration in the radially restrained (immovable) cases,
the Berger assumption leads to inaccurate solutioﬁs in the absence of radial
restraint.

Even with radial restraint the Berger assumption results in linear
distributions of bending stresses contrary to the nonlinear patterns
established above.

Finally, the cases of edge conditions analyzed here are really mathemati-
cal idealizations of the cases met in practice. Their importance to the
designer is that they define range envelopes for the variables sought.

As an example, the normalized results of Experiments A, B, and C in
Ref. [2] are plotted in Fig. (C-12). They all fall within the response

envelope defined by the "clamped immovable" and the "clamped-movable" cases.
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APPENDIX A

Computer Program for Free Vibration
of a Hinged-Immovable Plate
This program is a modified form of the one given in Ref. [2] for
the free vibration of a clamped-immovable plate. The modifications
include: the initial values of the vector n, the error vector, the
Jacobian matrix, and the correction vector. The program is also adapted
"for plotting purposes.
The correspondence between the equations given in the text and thé

symbols appearing in the program is as follows:

Y(I) = zq
2z

V(I + 6) = s—
n

1

BzI I=1,...,6

Y(I‘l“lz)‘—'r—'
n

2

azI

Y(I + 18) = ——
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INITIAL VALUE METHOD - FREE VIBRAYION OF A
SOLID CIRCULAR PLATE.HI{H A HINGED [IMMOVABLE BOUNDARY

V=POISSON'S RATIO

QL=NONDIMENS IONAL TRANSVERSE LOADING
A=AMPLITUDE PARAMETER

DA=INCREMENT IN A

P=NONLINEAR EIGENVALUE

H=STEP SIZE FOR KUMERICAL INTEGRATION

OO0

IMPLICIT REAL*B{A-H,0-2)
ODIMENSION Y{24),Q024),7P({3,3)1,D(6,81)
DIMENSION C{3),LW{3) :MW[3),ER(3)}
DIMENSION YVI{43,443),YV2{43,43),YVY3(43,43),YV4{463,43),YV5{43,43}),
1YV6{43,43),5PVI43),SRAVI43) XVI43) ,YYV1(43),YYVal{43),I1B8UF(4000]}
112 FORMAT{SX, AMP=t 4 D22 .14,3X,"FREQ=",D22.14+5X4'ITER=1",12)
113 FORMAT (9Xy"WY 19X ,'DH* 18X, "'DDH* 417X, 'DDOWY)
114 FORMAT(4D22.14) o
115 FORMATU//9X+'F*319X+"'DF*)
117 FORMAT (1H )
V=0.,3
QL=0- 0
IK=1
A=0,0D-0
DA=0.1D-0
P=4,977%%2
LL=41
DIvsLL~-1
H=1./D1V
C CONSTRUCT INITIAL YALUES
500 ITER=0
D0 9 I=1,24
9 Y{(1)1=0.0D0-0
¥Y{1l)=1.00-0
¥i3)=-4.6D-0
¥Yt6)=0.82D0-0
Y{9)=1.0
¥{18)=1.0
IF(IK.EQ.1) GO TO 600
DO 10 I=1,6
10 Y(I)=D(1,1)
C X=INDEPENDENT VARIABLE
600 X=0.0D-0
DO 23 I=1.24
23 Q{11=0.0D-0
0Q 20 I=1,6
20 DOI,Li=Y(1)
YVI(iK,1)}=D(1,11
YV2(IK.L}=D12,1}
YV3(IK,1)=D(3,1)}
YV4(IK41)=D(4%,1)
YVS(!K111=D(5,11
YV6({IK,1)=D[6,41)
XVi1)=X
C RKG INTEGRATION
00 25 I=2,LL
CALL RKG(X HeYsQePyA,QL,V)
XV(Il=X
DO 30 J=1,6
30 D(J,10=Y(D)



C

c
¢

c

25

26
28

75
76

17

900

901

902

YVLLIK, I)=0D(1,1I)
YV2UIK.1)=D(2,1) ‘ )
YV IK,[)=D13,1)
YV4(IKy1)=D(4,s11}
YVS5(1K41)=D(5,1)
YVO(1K,1)=D(6, I}

CONT INUE
ER(1)=ERROR VECTOR FOR BOUNDARY CONDITIONS AT X=1.0
ER(1)=D{1,LL)
ER{2)=D{24LL}*V +DI(3,LL}
ER{3)=-D(5,LL)*V +D(6,LL)
DO 26 1=1,3
DER=DABS{ER(1]]
IF(DER.GT.0.10-5) GO TO 28
CONT [ HUE

GO 70 900

CONT INUE
TP(I,J) IS THE JACOBIAN OF THE MAPPING OF INITIAL VALUES
TO FINAL VALUES
TP(L,1i=Y1T)
TPL2,11=Y(B)*V +Y(9)
TP(3,1)=Y(12)-Y{11)*V
Teil21=Y(13)
TPI2,2)=Y{14)*V +Y(15)
TPI342)=Y[18)-Y(1T)*V
TP(L+3)=Y(19)
TP{2,3}=Y{20)*Vy +Y{21]
TPI3+3)=Y(24)-Y(23)=*V
DET=0.0

CALL DMINV(TP,3,0ET, LW MW}
C{1)=CORRECTIGN VECTOR

DO 75 1I=1,3

C(1)1=0.0

00 75 J=1,3
C{DN=CCI)-TPII J)*ER(J}

DD 76 [I=1.+6

Y(I)=D{l.1]

Y{3)=Y(3)+Cl 1)
Y(6)=Y(6}+C(2)

P=P+C(3)

ITER=ITER+1

DO 77 1=T7,2%

Y{i1)=0.0

Y(9]1=1.0

Y{18}=1.0

CALL ERRSET(20T+2569=1,11}
GO TO &00

SRA=DSQRT(A)

SP=DSQRTIP)

WRITE(64117)

WRITE(6,112) SRA.SP,ITER
WRITE(6,11T)

WRITELG6,113}

DO 901 J=1,LL
WRITE(64114) (D(lsd)eI=1,4)
HRITE(6,115)

DO 902 J=1,LL

WRITElO64114) [DILyJd)sL=5,6)
WRITE(6,117}

SPVLIKI=5P
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550

13

20
60

26

1o

12

14

16

SRAV{IK)=5RA

A=A+DA

IK=[K+1

IF(IK.GT.41) GO TO 550

G0 TO sS00

WRITE(L5) YVLI,YV2,YV3,YV4y YV, YVE, XVSPV,SRAY
sTop

END

SUBROUT INE RKGIXs+H:Y+QyP,AP,QL,V)
IMPLICIT REAL*8{A-H,0-2] INTEGER{I~-N)
DIMENSION Y(241)1,Q024),0Y(24) ,A12)
All1)=0.2928932188134524175
A{2)=1.70710678B118654752

H2=0.5%H

CALL DERIVI{X HsY DY, P, AP,QL.+V]

D0 13 1I=1,24

R=H2*DY(I1)-Q(I}

Y(E)=Y{1)+R

Q(I)=Q(I1)+3.0%R=-H2*DY(I)

X=X+H2

DO 60 J=1,2

CALL DERIV{ XgH,Y4DY,P,AP,QL,V}

DD 20 1I=1,24%

R=A(J)* (H*DY([)-Q(I)]}

Y(I)=Y{])}+R
QUIY=QlI)+3.0%¥R-A(J)*H*DY{])

CONTINUE

X=X+H2

CALL DERIVIX,HsY DY, Py AP,4QL,V)

DD 26 1I=1,24
R=(H*DY(1)-2.0*Q(1))/6.0

Y{I)=Y(1}+R

QU1)=0Q(I)+3,0%R=-H2%DY{ I)

RETURN

END

SUBROUTINE DERIVIXsHsY+DY:PsAP,QL, V)
IMPLICIT REAL¥B(A-H,0=2) INTEGERI(I-N])
DIMENSION Y(24}),DY(24)

VV=1,.,-Vxx2

DO 10 I=1,3

DY(1)=Y(1+1)

DY(5)=Y(6)

DO 12 I=7.9

DYLId¥=Y({I+1)

DY{1lLl)=Y(12)

DO 14 1[I=13,15

DY(1)=Y(I+1)

DY(17)=Y(18)

DO 16 [=19,21

DY(I)=Y{1+1)

DY(23)=Y(24%)

IF{X.GF.0.10-2) GO TO 50
DY(4)=13.%PeY{1))/B.+{2T7 . xAP*Y (3 )%Y(6))/4.
DY(10)=(3.%PxY( 7)) /8.4 (2T.¥AP=(Y(9)=Y(6)eY(12)kY(3))) /4.
DY (16 )=, xPkyY [13))/8.+(2T*AP®(Y{3)%Y(LB8)+Y(6)%Y(15)]} /4.
DY(22)=(3.%Y(1))/B.#(3.%xPxY(19])) /3.
DY (22 1=DY(22)+12T.*APX(Y{21)2Y(6)+Y([24)%Y[3))) /4.
DY(6)=0.0

DY(12)=0.0

DY(18)=0.0
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f e Em e s - B - % s oa e s oaemee s & o= = - 4 S L .

DY(24)=0.0
GO 10 70

50 DY(4)==2.%(Y(4)/X)+Y (3 )/ (X*%2)=Y[2)/(X**x2)+P*Y (1)
DY{4)=DY(4)+9. *xAP=(Y(3)%Y{5)+Y(2)%xY{6))/X
OY(6)=-Y(6)/X+Y(O) /U Xex2)-(VVE{Y(2)2%2))/(2.%X)
DY(LO)==2.*(Y(10)/XI+Y(9)/ (X =2) =Y (B)/ {X*x3)+P%Y(T)

L49 ¥APX(Y(S)2Y (9 +Y(3)=YILL)+Y(2)2Y[12)+¢Y(6)%Y(8)) /X
DYUL2)==-Y(12)/X+Y (1L )/ X&*2-(VYVRY(2)%¥(8B))/X
DY(16)==2.%(Y(L6)/X)+Y[15) /X*%2=-Y(14)/Xe¥3+PxY (13}

L9 ¥APE(Y(3) =Y (LT +Y(S)*Y{ 15)+Y( 2V =Y(18)+Y(6)®Y([14))/X
DY (18)=-Y(18)/X+Y(LT)/X*x#2-{VvV=Y(2)*Y{14)])/X
DY(22)==2.%(Y{ 22}/ X)+Y(2]1) /Xx42-Y{20) /X**3¢PxY(1F}+Y(L)

L49.%APE(Y(3) .Y {23) Y (S)eY(21)+Y(2)*Y(24)+Y(6)*Y(20))}/X
DY(24)==Y(24) / X+ Y123 )/ X*x¥2-{VVXY (2 )*Y({20))/X

70 RETURN
END



APPENDIX B

Computer Plotting Program for Free
Vibration of a Hinged-Immovable Plate
This program uses the KSU CalComp model 663 digital incremental
drum plotter facility.
The 9-track tape created by the prograﬁ in Appendix A is read by
the present program. The explanation of the symbols particular to this
‘program is as follows:
CRM = Radial membrane stress at the center of the plate
CRB = Radial bending stress at the center of the plate
ERM = Radial membrane stress at the edge of the plate
ERB = Radial bending stress at the edge of the plate

TMO45/RMO45 = Circumferential/radial/membrane stress for o = 0.2

TM1/RM1 = Circumferential/radial/membrane stress for a = 1.0
TM2/RM2 = Circumferential/radial/membrane stress for o = 4.0
TB045/RBO45 = Circumferential/radial/bending stress for a = 0.2
TB1/RBl = Circumferential/radial/bending stress for a = 1.0
TB2/RB2 = Circumferential/radial/bending stress for o = 4.0



84

C FINITE-AMPLITUNE VIBRATION OF CLAMPED AND HINGED
C CIRCULAR PLATES
C THE CASE OF A HINGED-IMMOVABLE EDGE
IMPLICIT PREAL*8(A-H,0-2)
DIMENSION YV1(43+43) ,YV2(43,543)+YV3(434+43),YVa(43,43),YV5(43,43),
LYVE(43,43),SPVI43)4SRAVI43) 4 XVI43) oYYV L(43),YYVall43),[BUF(4000)
DIMENSION SPYEC(43).CRMI43),CRBI43)+ERM{43),ERB(43)
DIMENSION RM245(43),RM1(43) ,RM2(43) ,RBO45(43),RBL(431,RB2(43}
DIMENSION TMO45(43),THML{43),THM2(43),TB045(43),TB1(43),TB2(43)
READ(15) YVL e YVZ2aYV34YVaGeYVDYVH, XV4SPV,SRAY
C
V=0.3
VV=1l,=-V&%x2
D)1 I=1,41
SPVEC(I)=SPvIil)/SPV(I)
CRM{1)=0DABS(SRAVIL)I*=SRAV(I})*YVH{I,1)/VV)
CRBII)=DABS{SRAVII)I*YV3{I,11/(2.-2.%V])}
ERM{I) =DABS(SRAV(I}=SRAV(I)®YVS(I,41)/VV]
ERBI{I) =DABSISRAVII)*IYV3([41}+VEYV2{I,41l))/(2.%VV}]
1 CONTINUE ’
C
DO 2 1I=1,41
YYvitol=yvi(i, I}
YYV41(I)=YVL{4l,I)
TMO45(1) = SRAV{ 3)%SRAV( 3)#=YV6El 3,1)/VV
TMLI(I) = SRAVILL)*SRAVI1I1)=YV6E(11l,TI0/VV
TV2(1) = SRAVI(4 1) #*SRAVI(41):YVE(4l,1)/VV
IF(1.NE.1) GO TO 3
RMO45(1) = SRAV( 3)*SRAVI 3)*YVel 3,1)/VY
RM1(1) = SRAVI11)®SRAVIILI=YVE(11l,1}/VYV
RM2{1) = SRAVI{4 1) *SRAV(4L)xYVE( 4L, [)/VV
RBO45{1I}) = SRAV( 3)%YV3( 3,[)/(2.-2.%V)
RB1(1) = SRAVILIL)*YV3(11,1)/(2.-2.%V)
RB21{1I) = SRAVIGL)*YV3(41,1)/{2.-2.%V])
TBO45(1) = SRAVL 3)¥YV3I([ 3,[)/(2.-2.%V)
TBl(1) = SRAVILL)®=YV3L1ll,1)/(2.-2.%V]
T821(1I) = SRAV{41)2YV3 (4l [}/ (24=2a%V])
GO TO 2
3 RMO4S5(I) = SRAV( 3)*SRAVI( 3)%xYVS5( 3, 1) /(VvVv=XVv(I])]
RMILI = SRAV(LL)}*®=SRAV(LL)=YV5(L1l,0)/(VvWwxXVv(Il}
RM2L1) = SRAV{41)%=SRAV(41)*YVS(4L1l,0)/LvVvEXVIIH)
RBOGSI(I) = SRAVI 3)%{YV3( 3,0)+VsYV2( 3,1)/XVII))/02.%VV)
RB1(I) = SRAVIILI®{YV3(L1l1)#VeYV2(11l 1)/ XVILI))/(2.%VV])
RBZ2(1I) = SRAVIZ41)#{YV3I{41l,0)+VeyW2{4l,01)/XVII})/12.%VV)
TBO4S5(I) = SRAVLE 23)&{YV3( 3,1)%veYv2l 3,1)/XVII)I/(2.%VV]
TB1lI) = SRAVILLI)®={YV3L 11,105 V+YV2I1L,1)/XVII))/(2.%VV)
TB2(1} = SRAVIG4L)R[YV3(41l,I)xVeYV2{4l, 1)/ XVIL))/(2.%VV)
2 CONTINUE
C

CALL LIMITS(1504¢11.0¢25464+3)
CALL PLDTS{IBUF,4000)
CALL PLOTI[0.y-114423)

c FIG.(HI-2) HARMONIC RESPUNSE OF FREE VIBRATION
CALL PLOT(2.¢3.4231}
SPVI(42)=4.
SpPv(43)=1.
CALL DAX[S(O.'O.'Q.'O.’I.'+1’
CALL SAXIS(4e91.093¢+Ly=1,'SP",0)
SRAV{42)=0.
SRAVI43)=0.4%



c

c

c

CALL
CALL
CALL
CALL
CALL
CALL

DAxIS‘O.,o- ,5- 'qcolln 0"1’
SAXIS(0.940e49¢3:3,1,'SRA*,0)
PLOT(O04954¢3)

PLD‘-‘QI IS- !2)

PLOT (944049 2)

LINEISPY sSRAV ,414+2,0,01

FIG.(HI-3) SHAPE FUNCTION

CALL

PLOT(14.404s—=3)

Xv(421=0.
XV143)=0.2

CALL
CALL

DAXIS(D.'O- 15.'0. ’llli'l}
SAXIS(O-|D.2|3|+1|'1!'X'|0)

YYVi{421=0.
YYV1(431=0.2
YYV4l(42)=0.
YYV41{43)=0,2

CALL
CALL
CALL
CALL
CALL
CALL
CALL

DAXIS{O.’O- '5. g90-11- "'1)
SAXIS[0.90e29s343,1,'Y(1)*,0)
PLOT{0.35%4¢3)

PLOT(5.45492)

PLOTtS- |0-I2)

LINE{XV +YYV] ,41,2,0,0)
LINE( XV 2 YYVA4Ll 44142,0,0])

FIG. (HI-4) RADIAL MEMBRANE STRESS

CALL
CALL
CALL

PLOT{10.y0e+-3}
DAXIS{D.'O.'S.’D"I.'+1,
SAXIS{0.40e243 4+l 4=147X%X1,0)

RMO45(421=0.
RM0O45(43)=1.
RM1(42)=0.
RH1l43)=1.
RM2(421=0.
RM2(43)=1.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DAXIS{D-!O.'S.190-1 1.["'1]

SAXIS(De9le0¢3¢3414"RADIAL MEMB. STRESS', 0}

PLOT( 04593}
PLOT{5.55e+2)
PLOT{S,.30.02)
LINEIXV+RM0454+41,2,0,0)
LINE(XV,RM1 241+24,0,0)
LINE(XV,RM2 14192+ 0:,0)

FIG.(HI-5) RADIAL BENDING STRESS

CALL
CALL
CALL

PLOT(IO-IO-!'BI
DAXIS(0.93e15e10aplay+l)
SAXIS(O-'002|3|+1|-ll'X'10l

RBO45(42)=-12.
RBD45{43)=4.
RBLI{42)=-12.
RB1(43)=4.
RB2(42)=~12.
RB2(43}=4.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DAX]S[D.,O-.E.,QO..1-.-1)
SAXIS(-124+%4+3+34+1+"RADIAL BEND,
PLOT{ O0e+6.193)

PLOT{5.,6.42)

PLOT(94¢0..:2)

PLOT(D.,0.,2)
LINEIXV4RBO4Ss4142,0,01)
LINE(XV,RB1 141:240,0)
LINE[XV,RBZ |41'2l0'0’

STRES5',0)
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C FIGs{HI-6) CIRCUMFERENTIAL MEMBRANE STRESS
CALL PLOT(10.40.4-3)
CALL DAXIS(0s9¢0es5eay0ayglay+l)
CALL SAXIS(0e90a2439¢1,4-1:"X",0)
TM0451(42)=0.
TMO45(43)=1.
TM1(42)=0.
TM1(43)=1.
TM2{42)=0.
TH2(43)=1.
CALL DAXIS(0e40e15e9y90 ey lar-1}
CALL SAXIS(0.41.033434L,°CIRCUM MEMB. STRESS',0)
CALL PLGT(O-'S-'B)
CALL PLOT(S5445442)
CALL PLITI(5.+0.,2)
CALL LINE(XV,TM045441,240,01}
CALL LINE(XV,TM1 141+¢2+10,0)
CALL LINE(XV,TM2 441,2,0,01
C FIG. [HI-7) CIRCUMFERENT IAL BENDING STRESS
CALL PLOT(10e40De9+=3)
CALL DAXIS(O0es3a15er0eplar+l]
CALL SAXIS(Oe10e233 4+l e=1y'X*,01!
TBO045(42)=-12.
TB045(43)=4.
TBl{42)=-12.
TBl{43)=4,
- T82(42)=-12.
TB2(43)=4.
CALL DAXIS‘D.|0.|6¢I90-11-""1]
CALL SAXIS(-12¢7%4s+3+3+1,"CIRCUM BEND. STRESS*,:0)
CALL PLOT(O.s6.43)
CALL PLOT(5.164,2])
CALL PLOT(5.+¢0.+2)
CALL PLJT[O-'D-’Z}
CALL LINE(XV,TBO45+41+240+0)
CALL LINE(XV,TBI1 141224+40,0)
CALL LINE(XV,TB2 1%41,2:0,0)
C FI1G.(HI-8) RADIAL STRESSES AT THE CENTER OF THE PLATE
CALL PLOT{10.40.4-3)
CALL DAXIS5{0e10e15e30arl.y+1)
"CALL SAKIS(O-|004'3|+1'-1"SRA'|0)
CRM(42)=0.
CRM(43)=2.
CRB{42)=0.
CRBI{43)=2.
CALL DAXIS{0e3Dey649390aslay=1)
CALL SAXIS(0.42.04343,1y'CENTER STRESSES®,0)
CALL PLOT(D.+64+3)
CALL PLOT(546442)
CALL PLIT(5.404,+2)
CALL LINE(SRAV,CRM 4414240,0)
CALL LINE(SRAV,CRB +41+4240,40)
c FIG.(HI-9) RADIAL MEMBRANE STRESS AT THE EDGE DF THE PLATE
CALL PLOT(10.40.,-3)
CALL DAXIS(O0e90e15e90eslegtl)
CALL SAXIS(O..0-4I3|+10“1|'SRA',O'
ERM(42)=0.
ERM{43)=2,
ERB(42)=0.
ERB{43}=2.



C

CALL
catLL
CALL

DAX]S[O-.O..b.. 90-[1-"‘1’
SAX1Sl0432.0434341,'EDGE STRESSES',0)
PLOT(Oer6er3) ' '

CALL PLOTI(544544+2)

CALL
CALL

FIG. (H-

CALL

PLOTI(54¢04,42)

LINEISRAVY, ERM ,41,2,0,0)

11} NONLINEAR PERIOD OF FREE VIBRATION
PLUT(10-10.|'3]

CALL DAXIS‘D-!O-IB.ID.'I.! +l.l

CALL

SAXIS(DasDe4s3,+#14-1,"5RAY,0)

SPVEC(42)=0.4
SPVEC(43)=0.1

CALL
CALL
CALL
CALL
CALL
CALL

CALL
stop
END

DAXIS'O.[Ol '6. !90.|10 i"l)
SAXIS{0.4,0.193+3+1,"RELATIVE FREQUENCY',0)
PLOTI(O. 154 43)

PLOT( 5« 36442}

PLOT(5.40.¢2)

LINE(SRAV,SPVEC41,+240,0)

PLOT(0.+04,999)
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ABSTRACT

The problem of finite;amplitude, axisymmetric free and forced vibration
of a clamped radially-immovable circular plate is extended to other edge
conditions. The cases of clamped-movablé, hinged-immovable, and hinged-
movable are solved by the Method of Huang and Sandman. A Kantorovich averaging
technique is applied to convert the nonlinear boundary-value problem into the
corresponding eigenvalue problem by elimination of the time variable. Then
by a Newton-Raphson iteration scheme, and the concept of analytical continua-
tion, the solution to the nonlinear eigenvalue problem for free vibration
is obtained in the form of a discrete one-parameter family of solutions to
the related initial-value problem. Also by analytical continuation, the
solution is extended to the case of forced vibration.

The hard-spring behavior and the nonlinearity of bending and membrane
stresses of the clamped-immovable plate, are also exhibited in the other three
cases, It is seen that removal of radial restraint causes drastic changes in
the plate responses and the patterns of membrane stresses.

Comparison with solutions which use the Berger assumption reveals the
unsuitability of the assumption when the plate is not radially restrained.
Even for the radially-restrained cases the accuracy of such solutions diminish
as the amplitude of vibration increaées. The 1ineér bending stress patterns
produced by these solutions are in ohvious contradiction with the nonlinear

distributions obtained here.



