Applying ergonomics to dental scalers

dc.contributor.authorAhern, Stacey
dc.date.accessioned2010-12-10T14:14:18Z
dc.date.available2010-12-10T14:14:18Z
dc.date.graduationmonthDecemberen_US
dc.date.issued2010-12-10
dc.date.published2010en_US
dc.description.abstractThe current state of the dental industry shows an increasing number of dentists and dental hygienists who are reducing hours and retiring early due to the injuries sustained while working. These injuries, or cumulative trauma disorders, can be reduced by applying ergonomics in dental tool design. The goal of ergonomics is to reduce current injuries but also prevent future ones. In addition, population demographics have shown an increasing trend in female dentists. With a shift from the male dominated field, design for different anthropometric measurements needs to be investigated. In order to pinpoint sources of pain, a survey was designed and distributed to dentists in Kansas, Missouri, and Texas. Even with a small sample size (n=24), results confirmed past studies in the dental industry of pain originating in the neck, shoulder, lower back, and wrist/hand region. The reasons stemmed from the repetitive motions and forces applied during dental procedures. Responses also found that ergonomic principles need to be applied to the handle and grip portion of dental scaler design. Dental scaling is the procedure to remove deposits on teeth, such as plaque and calculus, most commonly performed by dental hygienists. First, the history of dental tools, angulation, tool weight, and materials currently utilized were researched before looking into specific design factors for modification. Currently, the handle grip area on all dental tools range in size, but a 10 mm grip has been proven to be optimal. The optimal tool weight has yet to be determined as 15 grams is the lowest weight to be tested. Most tools are made of stainless steel and resins, which are not compressible. An experiment was designed to test a new dental scaler (A) made of a titanium rod with added compressibility in the precision grip area. The aim was to help reduce pressure on the fingers and hand muscles and increase comfort during scaling. The experiment utilized a Hu-Friedy sickle scaler (B) and a Practicon Montana Jack scaler (C) as controls to show two design spectrums, weight and material. The subjects (n=23) were taught the basics of scaling and required to scale using a typodont. The change in grip strength (Δ GS), pinch strength (Δ PS), and steadiness of the subjects hand were tested. An absolute and relative rating technique was utilized pinpointing that the new dental scaler was preferred with the eigenvector (A=0.8615, B=0.1279, C=0.0106). Statistical analysis confirmed this tool preference while also finding the interaction of gender and tool and Δ GS Tool A versus Tool B for males to be significant.en_US
dc.description.advisorMalgorzata J. Rysen_US
dc.description.degreeMaster of Scienceen_US
dc.description.departmentDepartment of Industrial & Manufacturing Systems Engineeringen_US
dc.description.levelMastersen_US
dc.identifier.urihttp://hdl.handle.net/2097/6848
dc.language.isoen_USen_US
dc.publisherKansas State Universityen
dc.subjectErgonomicsen_US
dc.subjectTool designen_US
dc.subjectDental scalersen_US
dc.subject.umiEngineering, Industrial (0546)en_US
dc.subject.umiHealth Sciences, Dentistry (0567)en_US
dc.titleApplying ergonomics to dental scalersen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
StaceyAhern2010.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: