Evaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilization

dc.contributor.authorTavakol, Masoumeh
dc.date.accessioned2019-03-15T19:42:25Z
dc.date.available2019-03-15T19:42:25Z
dc.date.graduationmonthMayen_US
dc.date.issued2019-05-01
dc.date.published2019en_US
dc.description.abstractRecycled concrete aggregate (RCA) is the byproduct of the demolition of concrete structures and pavements. An estimated 140 million tons of concrete waste is produced annually in the United States, most of which ends up in landfills. The use of RCA to replace quarried aggregates in paving projects is one way to utilize these materials and alleviate concerns regarding this increasing waste stream. RCA usage prevents waste concrete disposal into landfills, resulting in more sustainable use of mineral aggregate sources, and may further reduce costs associated with paving projects. However, the inferior physical properties of RCA, such as the presence of recycled mortar, complicate the incorporation of RCA into new concrete mixtures. State highway agencies such as the Kansas Department of Transportation are facing further issues with RCA from D-cracked pavements, raising the question if D-cracked aggregates should be used in paving operations. No known work has evaluated the effect of RCA from D-cracked pavements in subgrade soil stabilization. This study stabilized a low-plasticity clay in Kansas using RCA and three stabilizing materials (lime, Class C fly ash, and a combination of Portland cement and fly ash). Candidate mixtures with varying proportions of chemical stabilizers and D-cracked aggregates were evaluated using the standard Proctor, unconfined compressive strength, linear shrinkage, and California Bearing Ratio tests. Microstructure characteristics of selected mixtures were explored using scanning electron microscopy (SEM) and energy dispersive X-ray tests. Laboratory test results indicated that RCA, in conjunction with all cementitious materials except lime, improved clay strength, stiffness, and shrinkage properties. SEM results indicated that RCA caused a low void space and a dense arrangement of soil particles. RCA effectively improved evaluated mixture properties when an adequate soil-RCA bond was reached using chemical agents. The long-term performance of full-depth flexible pavements with stabilized mixtures as subgrade was assessed in the AASHTOWare Pavement ME Design (commonly known as MEPDG) software. The life-cycle cost of flexible pavements with stabilized mixtures was estimated for a 40-year design period. Economic analysis results indicated that RCA was cost effective only if it was used with a combination of fly ash and Portland cement.en_US
dc.description.advisorMustaque A. Hossainen_US
dc.description.advisorStacey Kuleszaen_US
dc.description.degreeDoctor of Philosophyen_US
dc.description.departmentDepartment of Civil Engineeringen_US
dc.description.levelDoctoralen_US
dc.description.sponsorshipKansas Department of Transportationen_US
dc.identifier.urihttp://hdl.handle.net/2097/39452
dc.language.isoen_USen_US
dc.subjectRecycled concrete aggregateen_US
dc.subjectSoil stabilization
dc.subjectUnconfined compressive strength
dc.subjectShrinkage
dc.subjectMechanistic-Empirical Pavement Design Guide
dc.subjectLife cycle cost analysis
dc.titleEvaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilizationen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MasoumehTavakol2019.pdf
Size:
5.87 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: