Different sources of resistance in soybean against soybean aphid biotypes

K-REx Repository

Show simple item record

dc.contributor.author Chandran, Predeesh
dc.date.accessioned 2010-12-23T14:20:32Z
dc.date.available 2010-12-23T14:20:32Z
dc.date.issued 2010-12-23
dc.identifier.uri http://hdl.handle.net/2097/7061
dc.description.abstract The soybean aphid, Aphis glycines Matsumura, arrived first to North America during the midst of 2000. It is a very fast spreading insect and causes a high yield loss of above 50% in most of the soybean growing tracts of United States. Another important economic threat is it’s ability to transmit some viruses to soybean. Studies to control this exotic pest started early during the year of its arrival. But a complete integrated pest management (IPM) approach that includes a combination of different control measures has yet to be completely developed. Host plant resistance is one component of integrated pest management and is more sustainable than any other control methods against this insect. In the first study, more than 80 genotypes were screened with two given aphid biotypes, biotype 1 and biotype 2. It was found that the genotypes that were earlier resistant to biotype 1 (K1639, K1642, K1613 K1621, Dowling and Jackson) were susceptible to the new biotype 2 with large populations developing on these genotypes. But we found three new Kansas genotypes that showed resistance only against biotype 1, but not against biotype 2. However, the two of the Michigan genotypes (E06902 and E07906-2) showed resistance to both biotype 1and biotype 2. In second study, the feeding behavior analyses of aphid biotypes were done using the EPG, Electrical penetration graph, technique for a recorded 9 hrs probing time. The resistant and susceptible genotypes show significant differences in their EPG parameters, especially for the sieve element duration in both biotypes. Most of the aphids reached sieve element phase (> 90%) in susceptible genotypes, but only few (<30%) were reached in resistant genotypes. But, no differences were found in any other probing phases between resistant and susceptible genotypes, except the number of potential drops (PDs) in biotype 2. Thus, it is concluded that resistance is largely associated with phloem tissues and there could be some biochemical, physical or morphological factors that affect the stylet penetration in aphids. en_US
dc.language.iso en_US en_US
dc.publisher Kansas State University en
dc.subject Soybean aphid en_US
dc.subject Biotype en_US
dc.subject Electrical Penetration Graph en_US
dc.title Different sources of resistance in soybean against soybean aphid biotypes en_US
dc.type Thesis en_US
dc.description.degree Master of Science en_US
dc.description.level Masters en_US
dc.description.department Department of Entomology en_US
dc.description.advisor John C. Reese en_US
dc.subject.umi Agriculture, General (0473) en_US
dc.subject.umi Agriculture, Plant Culture (0479) en_US
dc.date.published 2011 en_US
dc.date.graduationmonth May en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

118 Hale Library

Manhattan KS 66506


(785) 532-7444

cads@k-state.edu