A Kirkwood-Buff force field for aromatic amino acids

Date

2010-05-07T18:56:26Z

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

We are developing a force field (FF) for molecular dynamics (MD) simulations of peptides and small proteins that is grounded in the Kirkwood-Buff theory of solutions. Here we present the Kirkwood-Buff Force Field (KBFF) parameters for the aromatic amino acids, based upon simulations of binary mixtures of small molecules representative of these amino acids over their entire composition ranges (excluding Histidine). Many aromatics are not fully soluble in water, so they have instead been studied in solvents of methanol or toluene. The parameters were developed by studying the following binary solutions: Phenylalanine − benzene + methanol, toluene + methanol, and toluene + benzene; Tyrosine − toluene + phenol and toluene + p-Cresol; Tryptophan − pyrrole + methanol and indole + methanol; Histidine − pyrrole + methanol, pyridine + methanol, pyridine + water, histidine + water (at 0.25 molal), and histidine monohydrochloride + water (at 0.3 molal and 0.6 molal). Our simulations reproduce the Kirkwood-Buff integrals, which guarantees that the KBFF provides an adequate balance of solute-solvent, solute-solute, and solvent-solvent interactions. Additionally, we show that the KBFF does not sacrifice reproduction of other solution properties in order to achieve this improved description of intermolecular interactions. We present these results as validating evidence for the future use of the KBFF in simulations of peptides and small proteins.

Description

Keywords

Molecular Dynamics, Aromatics, Kirkwood-Buff Theory, Force Field, Solution Thermodynamics, Fluctuation Theory of Solutions

Graduation Month

May

Degree

Master of Science

Department

Department of Biochemistry

Major Professor

Paul E. Smith

Date

2010

Type

Thesis

Citation