Identification of a Previously Unobserved Dissociative Ionization Pathway in Time-Resolved Photospectroscopy of the Deuterium Molecule

Date

2015-03-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Description

Citation: Cao, W., Laurent, G., Ben-Itzhak, I., & Cocke, C. L. (2015). Identification of a Previously Unobserved Dissociative Ionization Pathway in Time-Resolved Photospectroscopy of the Deuterium Molecule. Physical Review Letters, 114(11), 5. doi:10.1103/PhysRevLett.114.113001
A femtosecond vacuum ultraviolet (VUV) pulse with high spectral resolution (< 200 meV) is selected from the laser-driven high order harmonics. This ultrafast VUV pulse is synchronized with an infrared (IR) laser pulse to study dissociative ionization in deuterium molecules. At a VUV photon energy of 16.95 eV, a previously unobserved bond-breaking pathway is found in which the dissociation direction does not follow the IR polarization. We interpret it as corresponding to molecules predissociating into two separated atoms, one of which is photoionized by the following IR pulse. A time resolved study allows us to determine the lifetime of the intermediate predissociation process to be about 1 ps. Additionally, the dissociative ionization pathways show high sensitivity to the VUV photon energy. As the VUV photon energy is blueshifted to 17.45 eV, the more familiar bond-softening channel is opened to compete with the newly discovered pathway. The interpretation of different pathways is supported by the energy sharing between the electron and nuclei.

Keywords

Intense Laser Fields, Momentum Spectroscopy, Electron Localization, Recoil-Ion, Dynamics, Bond

Citation