Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams

Abstract

On the basis of recently developed Fourier continuation (FC) methods and associated efficient parallelization techniques, this text introduces numerical algorithms that, due to very low dispersive errors, can accurately and efficiently solve the types of nonlinear partial differential equation (PDE) models of nonlinear acoustics in hundred-wavelength domains as arise in the simulation of focused medical ultrasound. As demonstrated in the examples presented in this text, the FC approach can be used to produce solutions to nonlinear acoustics PDEs models with significantly reduced discretization requirements over those associated with finite-difference, finite-element and finite-volume methods, especially in cases involving waves that travel distances that are orders of magnitude longer than their respective wavelengths. In these examples, the FC methodology is shown to lead to improvements in computing times by factors of hundreds and even thousands over those required by the standard approaches. A variety of one-and two-dimensional examples presented in this text demonstrate the power and capabilities of the proposed methodology, including an example containing a number of scattering centers and nonlinear multiple-scattering events.

Description

Keywords

Fourier continuation methods, Nonlinear acoustic beams, Medical ultrasound, Nonlinear partial differential equation models

Citation