AN EXERCISE IN DATABASE CUSTOMIZED PROGRAMMING
TO COMPARE THE SMART DATA MANAGER AND dBASEIII/

by

AMY LYNN FITZGERALD

B. S., Kansas State University, 1983

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

[Signature]
Major Professor
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv
LIST OF FIGURES ... v
LIST OF TABLES ... vi

1. INTRODUCTION ... 1
 1.1 DBMS Terminology ... 1
 1.2 Database Models .. 2
 1.2.1 The CODASYL DBTG Model 2
 1.2.2 The Relational Model 3
 1.3 Problem ... 4

2. THE SOFTWARE ... 6
 2.1 The Smart System ... 6
 2.1.1 The Smart Data Manager 6
 2.1 dBaseIII ... 7

3. METHOD .. 8

4. DATABASE DESIGN .. 10
 4.1 Logical Database Design 10
 4.2 Physical Database Design 15

5. LOGICAL DESIGN .. 16

6. PHYSICAL DESIGN ... 24
 6.1 The Smart Data Manager 24
 6.2 dBaseIII .. 25

7. IMPLEMENTATION ... 26
 7.1 The Smart Data Manager 26
 7.2 dBaseIII .. 27
E. SMART APPLICATION PROGRAMS 84
F. dBASEIII APPLICATION PROGRAMS 99
AKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Raj Vaithianathan and Dr. L.E. Grosh for their help. Without their guidance, this paper would not be possible. A special thanks to Raj; without his enthusiasm for education, I would not have been motivated to begin graduate school. But most of all, I would like to thank my family and my future husband, Hürriyet Necdet Aydoğan. Their love, patience, and most of all, support, helped me to achieve this goal.
LIST OF FIGURES

1. PARTS-IN-INVENTORY RELATION 4
2. DATA DICTIONARY SAMPLE 12
3. PROCESS FLOW CHART FOR NEW MEMBER 13
4. SAMPLE PSEUDO CODE FOR DONATION OR PLEDGE 14
5. ADULT MEMBERSHIP CARD 18
6. YOUTH MEMBERSHIP CARD 19
7. PROSPECT CULTIVATION SUMMARY 20
8. VOLUNTEER TIME SHEET 21
LIST OF TABLES

1. APPLICATION PROGRAMS REQUIRED AT THE YWCA 26
2. COMPARISON OF OBJECTIVE CHARACTERISTICS 39
1. INTRODUCTION

Every organization must arrange information for quick and useful retrieval. Without the ability to retrieve the necessary information, the information is of no use to the organization. A database is simply a collection of data. A database management system (DBMS) provides the means to organize and access the database. The DBMS may be thought of as a data librarian. It stores and retrieves data.

1.1 DBMS Terminology

There are many terms used in DBMSs that sound familiar, but have somewhat unique meanings. Most people familiar with computer terminology have heard or used the term file. In DBMS terms, a file is a collection of information about entities with similar attributes. For example, a stock room of a retail auto parts store may have a file of suppliers, a file of parts-in-inventory, and a file of purchase orders. These files contain information on each entity according to the entity's type. If information about air filters is needed, it will be found in the parts-in-inventory file, not in either the suppliers file or the purchase orders file. Information about an individual entity is called a record. All the information about Ace Supplies may be found in the suppliers file in the Ace Supplies record. Individual pieces of data about a
record are kept in fields. The price field in the air filter's record will indicate the air filter's selling price.

A DBMS avoids repeating information as often as possible. So even though a purchase order may contain the supplier's name, it will not contain all the data about the supplier. This data will, of course, be found in the suppliers file. The supplier's name is common to a record in the purchase orders file and a record in the suppliers file. The use of common fields is the method by which DBMSs reduce data duplication. A relationship is established between two records via the common field — the supplier's name. If while using the purchase order file any additional information is needed about the supplier, the supplier's name is used to access the information in the suppliers file.

1.2 Database Models

Not all DBMSs structure and process the data in the same way. There are six common methods, or database models. Only two of these six models are common to microcomputer use. These are the Conference on Data System Languages, Database Task Group (CODASYL DBTG) model and the relational model.

1.2.1 The CODASYL DBTG Model

The CODASYL DBTG data model was developed during the late
1960s and is the oldest data model. Many DBMSs for large computer systems are based on this model. The CODASYL DBTG model is a very physical database model. Physical, in terms of models, means that the model is oriented toward machines and machine specifications. The opposite of a physical database model is a logical database model. A logical database model is oriented toward humans and human understanding. Due to the CODASYL DBTG model's physical nature, this model is not very popular with users.

1.2.2 The Relational Model

The relational model has both logical and physical characteristics. The relational model represents data in a familiar format — a table as shown in Figure 1. The table is called a relation. A relation consists of rows, called tuples, and columns, called attributes. In Figure 1, the tuples are the part numbers and the attributes are price, number in inventory, and the reorder point. The significance of the relation is that the relationships are considered to be implied in the data values by their location in the relation. To demonstrate how the relationships are implied, note the value 200 in Figure 1. From evaluation of the table (or relation) it can be seen that the 200 represents the quantity of part number 1 in inventory. Though it may sound redundant, this is actually looking
at the quantity 200 from the point of view of the inventory, and the point of view of part number 1; thus the relationship is established.

<table>
<thead>
<tr>
<th>PART #</th>
<th>PRICE</th>
<th>QTY ON HAND</th>
<th>REORDER POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>0.90</td>
<td>540</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>3.60</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>12.40</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1.25</td>
<td>980</td>
<td>90</td>
</tr>
</tbody>
</table>

Figure 1. PARTS-IN-INVENTORY RELATION

More research has been done regarding the relational model than any other model, and it has become the most popular model for microcomputer use.

1.3 Problem

The purpose of this master’s report is to evaluate the Smart Data Manager. The means to accomplish this are simple. The Salina, Kansas YWCA (Young Women’s Christian Association) recently decided to computerize some of its operations. Included in the computerization is its membership file system. In order to satisfy the varied needs at the YWCA, Innovative Software’s the Smart System has been purchased. The membership files are to be handled by the Smart Data Manager. This situation provides the means to evaluate the Smart Data Manager;
but in order to judge this software effectively, it should be compared with another DBMS. Ashton-Tate's dBaseIII was chosen to serve this purpose because it is one of the market leaders.
2. THE SOFTWARE

2.1 The Smart System

The Smart System is an integrated software package; where integrated software merely implies that the package contains many types of independent subsystems for specialized functions and also that information may be easily passed between the independent subsystems. The Smart System consists of the Smart Word Processor, the Smart Spreadsheet with Graphics, and the Smart Data Manager. Each segment of the system may be used individually, or as an integrated whole.

2.1.1 The Smart Data Manager

The Smart Data Manager is primarily a menu-driven DBMS based on the relational model. The database management system software was written with the novice in mind. Due to the menu-driven format, the database may be used with very little training. The Data Manager, like the other programs in the Smart System, has confidence levels. The programs can be adjusted to be used by anyone in the range of novice to programmer. Each new level makes more commands and more sophisticated procedures available to the user. Project processing is available through either the remember mode, which records each key stroke, or through programming. Project Processing is what the Smart Data
Manager calls a user's application programming in the Smart System.

2.2 dBaseIII

dBaseIII is Ashton-Tate's new version of its popular dBaseII. This software, like the Smart Data Manager, is based on the relational model. dBaseIII is a more powerful version of dBaseII with fewer restrictions. There are two primary reasons why dBaseIII was chosen against which to compare the Smart Data Manager. First, although dBaseII is still the system with the largest client base, Ashton-Tate has replaced dBaseII with dBaseIII. Second, dBaseII is old-fashioned in comparison to the Smart Data Manager's capabilities. Most of the software that is new on the market have more capabilities and more power. dBaseIII is of approximately the same generation as the Smart Data Manager, so its choice is appropriate.
3. METHOD

The solution methodology consists on the following tasks:

1. Logical design of the system
2. Physical design of the Smart Data Manager software
3. Physically design of the dBaseIII software
4. Software implementation
5. Objective comparisons
6. Subjective comparisons
7. Conclusions

There are two approaches to the logical design. The first, is the ideal approach. In this approach, the software language that best fits the logical design is chosen for implementation after the design is completed. The second and the most common approach is to do the design with prior knowledge of the likely implementation language.

The system should be designed logically without taking the software into consideration. Realistically, this is not possible. The best way to do a design is always affected by the language’s capabilities. In other words, a designer would not set up the logical design in a way that he/she knows is not possible to accomplish in the language to be used.

The physical design, in both languages, requires the adjustment in the logical design to fit the constraints of the software. These adjustments must be made for a variety of reasons, but the most common reason is that the software does not have the capability to do all that is required in the logical design. Once the adjustments have been made, the
design is implemented in the two chosen languages.

The comparisons are made on objective matters first. The objective comparisons include hardware and software characteristics. Such characteristics as the memory requirements, the number of disks required, the maximum number of records per file are compared. Once this is complete, the subjective comparisons are made. The subjective comparisons include those qualities that are judged by the user, and may vary from one user to another. These include such qualities as: ease in development of application programs, ease in learning, and documentation. When both comparisons are complete, conclusions are made.
4. DATABASE DESIGN

Database design is a two-phased process. First, users' requirements are examined and a conceptual database structure (or a model of the organization) is built. This phase of database design is called the logical database design. Once the logical design of the database is complete, the design is translated into the constraints of the particular DBMS. This process of formulating the logical design in terms of the DBMS is called the physical database design.

4.1 Logical Database Design

The logical database design, as stated above, specifies the needs of the user. There are five stages of logical database design. They are as follows:

1. Identify data to be stored
2. Consolidate and clarify data names
3. Develop the logical schema
4. Define processing
5. Review the design

Stages one and two involve the data and the associated data names. The data needed are identified and aliases are eliminated or reduced. Aliases are common in most organizations. For example, what one group may call sales, another group may call future income. Identifying aliases is very much like detective work. It is time consuming and requires keen
investigative work. Aliases and data names need to be identified early, so unnecessary work will not be done in the future. The data dictionary is created in order to summarize and catalog the data names and their definitions. Each entry in the dictionary provides the data name, the data type, the data length, and any information that helps in the definition of the data item. An example of a data dictionary is detailed in Figure 2. The third stage, development of the logical schema, is accomplished by defining records and relationships. Records are defined by determining the data items they will contain. The fourth stage, define processing, is to examine the requirements to determine how the database may be manipulated to produce the required results. This stage is important in helping the designer to identify design flaws. Often process flow charts or psuedo code are completed during this stage in order to clarify the processes needed. Figures 3 and 4 contain examples of flow chart and psuedo code respectively. The fifth stage is not really a stage at all; it is a constant process throughout the logical design. The review of the design takes place from the moment designing begins to long after the design has been implemented. An important aspect of design review is the users’ input. No one knows better what is needed than the one who needs it. The logical database design phase is very important. If it is done well, the physical database design is greatly simplified.
LNAME
 INDIVIDUAL'S LAST NAME
 TYPE: CHARACTER
 LENGTH = 20

FNAME
 INDIVIDUAL'S FIRST NAME
 TYPE: CHARACTER
 LENGTH = 10

SEX
 GENDER OF INDIVIDUAL
 TYPE: CHARACTER
 VALUES: M = MALE
 F = FEMALE
 LENGTH = 1

DATE
 CURRENT DATE
 TYPE: DATE
 FORMAT: MM/DD/YY
 LENGTH = 8

STATUS
 MARRIAGE STATUS
 TYPE: CHARACTER
 VALUES: M = MARRIED
 S = SINGLE
 W = WIDOWED
 D = DIVORCED
 LENGTH = 1

Figure 2. DATA DICTIONARY SAMPLE
Figure 3. PROCESS FLOW CHART FOR NEW MEMBER
PROSPECT FILE: EXISTING DONOR DONATION, PLEDGE OR INSTALLMENT

LOCATE RECORD IN THE PROSPECT FILE
IF MAKING A DONATION
 CREATE RECORD IN THE GIVEN FILE
 ENTER DATA
 IF LETTER AND RECEIPT SENT
 SET LETTER TO "Y"
 SET RECPT TO "Y"
IF MAKING AN INSTALLMENT PAYMENT
 CREATE RECORD IN THE INSTALL FILE
 ENTER DATA
 STORE INSTL VALUE
 LOCATE RECORD IN THE PLEDGE FILE
 CALCULATE OUTSTD
 OUTSTD = AMT - INSTL
 IF OUTSTD <= 0
 SET PLDG IN RECORD IN THE PROSPECT FILE TO "N"
IF MAKING A PLEDGE
 SET PLDG TO "Y" IN RECORD IN THE PROSPECT FILE
 CREATE A RECORD IN THE PLEDGE FILE
 ENTER DATA
 IF FIRST INSTALLMENT PAID
 STORE INSTL VALUE
 CALCULATE OUTSTD:
 OUTSTD = AMT - INSTL
 CREATE INSTALL RECORD
 ENTER DATA
 ELSE
 OUTSTD = AMT

Figure 4. SAMPLE PSEUDOCODE FOR DONATION OR PLEDGE
4.2 The Physical Database Design

The physical database design begins where the logical database design ends. This phase of database design is a phase of transformation. The logical schema is transformed into the data constructs that are available with the DBMS in use. There are two major results of the database design. The first is the physical schema. The physical schema contains such information as the definition of the record contents, the name and the format of the fields of each record, and the values that each field may contain. If the logical schema, particularly the data dictionary, were done completely, the physical schema should require little effort. The second result is the definition of the content of the users' views. A user view is the portion of the database the user needs to see in order to perform the necessary tasks. The completion of the physical database design brings to a completion the design of the database.
5. LOGICAL DESIGN

The logical design, as stated in the database design section, specifies the needs of the user. In order to discover the users' needs, much of the work in this phase involves interviewing users and locating existing documents used by the user. There are many methods to define and document user needs. The traditional method is to interview users individually, and then to document, in ordinary English, the user needs. Recently, new procedures have been developed that allow users to be interviewed in groups with the use of such graphic tools as the data flow diagram. The data flow diagram shows how data and the processes that change data are connected. In this study, the traditional method is used. This is a successful method, in this case, because there are so few users. At the YWCA, there are only approximately two or three employees who will be affected by the installation of the computer.

To begin the logical design, the current procedures are evaluated. All forms and documents currently in use are gathered for future evaluation. The primary sources of information at YWCA, are the membership cards, donor information cards, and the volunteer time sheets. The membership cards are a color coded system. Adult members, those over 17 years old, are color coded by sex. Men, the nonvoting members, have
orange cards; and the women have blue cards. The cards are identical, except for the color. A typical adult membership card is shown in Figure 5. The youth memberships, those under 18 years old, are divided into three categories: registrant, both sexes ages three to eleven; teen male, men ages 12 to 17; and teen female, women ages 12 to 17. These cards are all identical except for the color. The registrant card is green, the teen male card is yellow, and the teen female card is white. A typical youth membership card is shown in Figure 6.

The donor information cards, the prospect cultivation summary as they are called, are kept for anyone who gave a donation, or made a pledge to the YWCA. A card is also kept on anyone who may be a potential source for a solicitation of a contribution in the future. An example of a donor information card is shown in Figure 7.

The volunteer time sheets are a record of the volunteer hours given. These sheets are completed by all volunteers, and include the time worked, at which department of the YWCA the volunteer worked, and the volunteer's name. These records allow the YWCA the means by which to recognize those who are donating their time to the organization. A sample volunteer time sheet is shown in Figure 8.

With the gathering of the documents complete, the processes in which these cards are used is evaluated. How the information for the documents is gathered, how the information is
THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE.

THIS IS AS RECEIVED FROM CUSTOMER.
Member - Community YWCA (Voting______/Associate______)

<table>
<thead>
<tr>
<th>Name</th>
<th>(Last)</th>
<th>(First)</th>
<th>(Middle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>(Street & P.O. Box)</td>
<td>(City, State & Zip)</td>
<td>(Zone Code)</td>
</tr>
<tr>
<td>Telephone: Home</td>
<td></td>
<td>Work</td>
<td></td>
</tr>
<tr>
<td>Age (Check) 15-17</td>
<td>18-24</td>
<td>25-29</td>
<td>30-34</td>
</tr>
<tr>
<td>Occupation & Place of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATISTICAL SECTION

Please complete the following because the YWCA seeks to serve persons of all ages, creeds, races and backgrounds. This information is a very helpful tool to monitor this goal.

<table>
<thead>
<tr>
<th>Birthdate</th>
<th>Month / Day / Year</th>
<th>Major Emphasis in Education</th>
<th>Family Status</th>
<th>Names/Ages of Children</th>
<th>Year Moved to Salina</th>
<th>YWCA Involvement: (current & past)</th>
<th>Racial Background: Asian</th>
<th>Amer</th>
<th>Black</th>
<th>White</th>
<th>Native</th>
<th>Amer</th>
<th>Hispanic</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PARTICIPATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YWCA RECORD (Special committees, staff, officers, board members, etc.):

Continue on Back

Figure 5. ADULT MEMBERSHIP CARD
Figure 6. YOUTH MEMBERSHIP CARD
PROSPECT CULTIVATION SUMMARY

Date

Name of Individual or Firm

Address

Phone

Name of Contact Person

Phone

Title

Contact Preferences: Home Work

Informations

AGE RANGE EDUCATION FIELD OF STUDY RELIG AFFILIATION

Prospect

Spouse

Family

Special Interest

Past and Present WACA Participation (Board, Committee, Club, etc.)

Comments

Past and Present Participation and Support of Other Organizations

Known well by

Record of Giving:

DATE AMOUNT PURPOSE CONTACTED BY COMMENTS

Outstanding Pledges:

DATE AMOUNT PURPOSE INSTALLMENTS COMMENTS

Recommended Solicitor

Figure 7. PROSPECT CULTIVATION SUMMARY

20
<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Time In</th>
<th>Time Out</th>
<th>Total Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. VOLUNTEER TIME SHEET
manipulated, and how it is stored is studied. For example, it is important to know that when a new member joins the YWCA, he/she fills out a sheet of paper similar to the membership card. The information on the sheet of paper is later typed onto a permanent membership card and kept in a file. Such processes as the new membership registration are often written in such a way that the database designer can easily recall and duplicate the processes. One popular method of writing processes is pseudo code. Pseudo code is a combination of the English language and computer programming logic. This pseudo code may later be translated into a computer program. The pseudo code for some of the processes is shown in Appendix A. It should be noted that as the design progresses, the logic behind the pseudo code also changes; so, the pseudo code shown is not necessarily the final logic used, nor is it complete.

The most time consuming and seemingly never ending stage of the logical design is the refining of data names. Each data name must be analyzed and recorded. Often information on data items is kept in a data dictionary. The data dictionary is a means of noting a data item and recording its definition, type, length, and any other pertinent information. This document is helpful as a reference for when the designer finds a data item that is unfamiliar to him/her. The data dictionary from this study is found in Appendix B. The data types used are character, numeric, and date. These three are chosen because they are common to almost all database software.
The completion of the gathering of the documents, the defining of the processes, and the refining of the data names concludes the logical database design. The physical database design begins where the logical design ends.
6. PHYSICAL DESIGN

The physical design is a manipulation of the logical design so that it fits into the constraints of the software. The largest portion of the effort expended in the physical design is the definition and naming of the records and the record fields. Most of the background information is acquired from the data dictionary. Since this study involves two DBMSs, the physical design will be developed twice; once for the Smart Data Manager, and once for dBaseIII.

6.1 The Smart Data Manager

The custom fitting of the logical design to the Smart Data Manager is very straightforward. The data items become the fields of the records, and the record structures given in the data dictionary are used almost directly. The only changes necessary are in the data types. When creating the data dictionary, it was assumed that only the data types character, numeric, and date existed. The Smart Data Manager supports these data types, but also has more sophisticated data types. These more sophisticated data types allow easier manipulation of the more specific data types. These types include the inverted name field, counter field, phone field, social security number field, and the time field.
The logical design is changed in only two ways. First, the inverted name field is used. This field allows a name to be entered as it would be said (firstname lastname or firstname middlename lastname). The field is a character field that sorts on the last word in the field. This eliminates the need to have a separate field for the first name, the middle name, and the last name. All of these fields merge to become the field called Name. Second, those fields that are phone numbers are changed from the character field type to the phone field type. The final Smart Data Manager data structures are detailed in Appendix C.

6.2 dBaseIII

The physical database design for the dBaseIII based system is almost as short and simple as is for the Smart Data Manager system. The record structures in the data dictionary are used almost directly. The only changes that occur are with the field types. dBaseIII supports the character, numeric, and the date types; but it also has more sophisticated types. dBaseIII uses logical fields and memo fields. Logical fields represent true/false values. Memo fields are designed to accommodate large blocks of textual information. These blocks are stored in an auxiliary file. These two field types are included in the record structures to give the final dBaseIII structures. These structures are documented in Appendix D.
The software implementation process, which is the process of coding, debugging, and ensuring the functional integrity of the system must be done twice because two different DBMSs are used. This is by far the most time consuming stage of designing customized application programs. Included in this stage is the learning of the programming language, which may or may not be lengthy depending on the designer’s experience.

7.1 The Smart Data Manager

The complete set of programs is documented in Appendix E. Included are the application programs to handle those processes that the YWCA requested. A list if the needed application programs is shown in Table 1.

1. New membership
2. Membership renewal
3. New donor
4. A donation or a pledge
5. A new volunteer
6. Entry of volunteer hours
7. Monthly processes
8. Generation of information for annual report

Table 1. Application programs required at the YWCA
7.2 dBaseIII

The final coding used for dBaseIII may be seen in Appendix F. Included are the application programs to handle the processes shown in Table 1.
8. COMPARISON

This chapter is written in order to present the contrast of the two DBMSs that are being evaluated. This section in no way claims to cover all differences in the two systems, but merely presents the differences encountered when completing this study.

8.1 Differences in Physical Design

The only subject affected in the physical design is the data types or field types. The field types that the Smart Data Manager and the dBaseIII support are shown in Figure 9.

<table>
<thead>
<tr>
<th>Field Type</th>
<th>Smart Data Manager</th>
<th>dBaseIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Numeric</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Date</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Counter</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Inverted Name</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Logical</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Memo</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Phone</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Social Security</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Figure 9. SUPPORTED FIELD TYPES.

The inverted name field available in the Smart Data Manager is very convenient, and reduces the number of fields.
required. Some confusion may result, however, if names are inadvertently entered with the last name first. The phone field, also available in the Smart Data Manager, reduces key strokes when inputting because the format for phone numbers is already presented. However, space is automatically allotted for the area code; so if the user will have phone numbers all in the same area code, the advantages of the phone field are lost.

The logical field and the memo field available in dBaseIII are both beneficial. The logical field makes logical testing simple. The memo field allows for input of textual information. The default length of the memo is 10 characters (or bytes), so if no information is input, the field only requires 10 bytes. If a character field is used for the same purpose, adequate space, say 50 bytes, must be reserved for that field. If no information is input, the field still requires 50 bytes. Therefore, if conservation of valuable disk space is important, the memo field will help effort in utilization of limited disk space.

8.2 Differences During Implementation

This section is a comparison of the Smart Data Manager and dBaseIII implementation. When viewing the application programs, it should be noted that these programs do not
represent the only applications needed at the YWCA. The YWCA only desires to have applications written for frequent processes that would require knowledge of the language in order to execute. Infrequent, or one-of-a-kind, requests may be satisfied by the use of the menu feature in the Smart Data Manager software. Though dBaseIII does not have the menu-driven capabilities of the Smart Data Manager, only those application programs needed for Smart are written in dBaseIII.

8.2.1 Storage of Programs into the DBMS

The storage of programs involves how the programs are entered into the DBMS, so that they may later be executed. dBaseIII provides full screen editing when using the dBase word processor, and programs are input as on a typed page. The Smart Data Manager provides two options. The user may either input a program by editing only, or by using the remember mode to do the typing for him/her. The remember mode is designed to handle frequent tasks. After entering this mode by merely typing "start", the frequent task is completed by the user. When the user is done, the remember mode is exited by typing "finished". While in the remember mode, the DBMS has recorded every key stroke entered and stored it in a file. This file may then be edited to erase any mistakes made, or to add logic statements to provide decision making capabilities.
8.2.2 User Involvement in Execution

The user involvement in execution includes the requirements demanded of the user in order to execute the programs. In the dBaseIII application the user must only type "DO MAIN". The programs will all automatically execute as needed. This is not always true with the Smart Data Manager. Due to Smart's interactive requirements, there are situations in which the user must work directly with the system rather than solely with the application programs. An example of this is the entry of a new record. The application program brings the user to the new record, but once the record is completed, it is up to the user to tell the system that he/she is done. The application program then regains control and continues execution. If the system is not notified that the entry is complete, it will attempt to enter another new record. This is not the case in dBaseIII. The system "knows" when the entry into the record is complete, so it then continues execution.

8.2.3 Communication Between User and Programs

It is often necessary for the application program to question the user about what is needed, or to explain a procedure. dBaseIII allows the entire screen to be used by the programs to display questions or messages. This provides
virtually unlimited space for communication with the user. In the Smart Data Manager, however, the available screen space is restricted. Approximately 80 percent of the Smart screen is reserved for viewing of the databases in what is called the window area. Below the window is either the command list area, if in the interactive mode, or a blank area, if executing an application program. If the program asks a question, or gives an explanation to the user, it must fit in only one line of the blank area. This restriction may sometimes become frustrating to the programmer.

8.2.4 Use of Variables

Variables are constantly used in application programs in order to store information. They are an important aspect of a DBMS's programming. The Smart Data Manager allows the use of two text variables, and two numeric variables. These variables are called TEXT1, TEXT2, VALUE1, VALUE2. Other variables may be introduced, but only after initialization. dBaseIII allows the use of up to 256 variables at one time. If a specific program requires the use of many variables, the initialization needed by Smart may become burdensome.

8.2.5 Use of Database Files

In order to perform any manipulation of data in a
database, the records of the database need to be loaded, or activated. In dBaseIII the user, or programmer, merely tells the system which database to use. However, the Smart Data Manager also requires that a screen design be designated. The screen format is a predefined custom data entry screen. This causes no problem, except when more than one screen design may be needed. In that case the first screen must be unloaded, and the new one must then be loaded.

8.2.6 The Date Field Type

Both dBaseIII and the Smart Data Manager provide the date field type, but neither provide the same abilities to manipulate the date field. The Smart Data Manager supplies many more date functions than dBaseIII. In Smart, for example, the function ADDYEAR allows years to be added to a date. The ADD function is also available for days and months. The MONTHNAME function returns the name of the month. For example, the function MONTHNAME(8/11/85) will yield August. These functions, among others, make the manipulation of date fields much easier in the Smart Data Manager.

8.2.7 Entry of a New Record

Updating of a database is a constant process, so new records are often added. dBaseIII supplies two methods to
accomplish the entry of new records. Either a blank record can be shown, or the user may input answers to questions. These answers are either stored in variables for later entry, or placed directly into the blank record. This provides the programmer flexibility to request information when appropriate. The Smart Data Manager, however, only has the ability to allow entry of a new record by having the user input directly into the blank record.

9.2.8 Key Fields

Key fields are fields by which the database may be sorted. So if NAME is a key field, the records may be put in alphabetical order by name. The Smart Data Manager requires that key fields be designated when the fields are defined. This is not only awkward, but it also is time consuming when entering new records into the database. After the entry of each record, the question, "Update Keys now (Y/N)?", is asked. If the user answers "yes", he/she must wait while the entire index is adjusted for each key field. When the Smart was implemented a separate program was included that will update the keys for all new records. This saves time when entering records, but still requires time at the completion of all the records to do the updating.
8.2.9 File Space Requirements

The required file space for all the files other than the application programs was evaluated. It was found that the Smart Data Manager required 78 files, while dBaseIII required only 28 files. This amounted to an approximate difference of 100,000 bytes. This extremely large difference may be explained by the Smart System’s use of key fields. Each designated key field has a file that is responsible for the location of all the records in the database using that field. Therefore if a database has 15 key fields, there are 15 extra files associated with that particular database. This is the primary reason for the large differences in the number of files.

8.2.10 Debugging

Debugging, or the elimination of programming errors, is sometimes frustrating, but Smart provides a means to reduce the frustration. It is called single step execution. This type of execution of programs requires the programmer to press a key in order for the next command to be executed. Single step execution allows the programmer time to observe each command as it is executed, and to evaluate its results.
9. DIFFERENCES DURING EXECUTION

It is intended that the application programs in both languages be identical. However, this is impossible; the different languages do not permit identical programs to be written. It was attempted to make the two programs as similar as possible, while using the capabilities of each DBMS to its fullest. The differences in the programs make a definitive comparison of execution times debatable. The reader should, therefore keep the appropriateness of the comparison in mind. The programs were executed on an IBM PC equipped with dual diskette drives.

9.1. Entry Of New Records

Excluding the time to type the data into the blank record, the input of one record per trial was timed. Ten trials were performed in each language to achieve the average time per trial. The averages are very different; this is due to the key updating as mentioned in section 8.2.9. The average time to input one new record into the Smart Data Manager with keys updated, is two minutes and 23 seconds. This is extremely high when compared to the dBASEIII time of only slightly over one second. It should be noted that no further indexing is needed in Smart, but it is necessary in dBASEIII, so some of the time discrepancy may balance out.
9.2. Renewal of Current Record

The renewal of a current record is very similar to the process involved in the entry of a new member, except that the record must be located. This increases the average time to compute the renewal, but the large difference is still obvious. The Smart Data Manager took approximately two minutes and 38 seconds to execute; while dBASEIII required only 28 seconds. Again, the key updating by Smart is an important reason for the discrepancy.
10. OBJECTIVE COMPARISON

The objective comparisons include those characteristics that are inherent in the software. These characteristics are not capable of being judged, but are considered given. As can be seen in Table 2 on the following page, the two DBMSs, the Smart Data Manager and dBASEIII, are objectively very similar.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>dBASEIII</th>
<th>Smart DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>Ashton-Tate</td>
<td>Innovative Software, Inc.</td>
</tr>
<tr>
<td>Price</td>
<td>$695</td>
<td>$495</td>
</tr>
<tr>
<td>Memory Req (in bytes)</td>
<td>256K</td>
<td>256K</td>
</tr>
<tr>
<td>PC AT Compatible</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Disks Required</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Copy Protected</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Command Driven</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Menu Driven</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provides Help Screens</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provides On-Disk Tutorial</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-User Capability</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Max # of Fields/Record</td>
<td>128</td>
<td>255</td>
</tr>
<tr>
<td>Max Field Size (Characters)</td>
<td>4000</td>
<td>1000</td>
</tr>
<tr>
<td>Max # of Records/File</td>
<td>Unlimited</td>
<td>100,000</td>
</tr>
<tr>
<td>Max Record Size (Characters)</td>
<td>4000</td>
<td>4096</td>
</tr>
<tr>
<td>Allows Full-Screen Editing</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Files/Screen</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Simulates Paper Forms on Screen</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max # of Fields Sorted</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Automatic Indexing</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Add or Change Indexes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Splits and Merges Files</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provides Query Language</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provides Procedural Language</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ASCII</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DIF</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Other</td>
<td>Binary</td>
<td>Sy1k, 1-2-3</td>
</tr>
<tr>
<td>Allows Encryption</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Password Access</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Activity Log</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
11. SUBJECTIVE COMPARISONS

Though the Smart Data Manager and dBASEIII look similar on paper, differences exist. Smart is very user friendly. The novice should feel at ease after one session. If the user makes a mistake when executing a command, the system will tell the user why what he/she did was wrong, and how to do it correctly. When the system is involved with the execution of a lengthy command, it does not print, "wait;" instead it prints, "busy-do not disturb." These touches, plus vivid color and bright screens, make the program enjoyable with which to work. When comparing dBASEIII to Smart's showmanship, it is similar to comparing night and day. dBASEIII does not concern itself with nice looking screen output, or bright colors. dBASEIII has made improvements, however, in user friendliness. The assist command provides menus to help in the completion of common tasks, and the help command can aid in the execution of commands.

The documentation, or manuals, for both of these systems is excellent by comparison to most manuals. They both are easy to follow, and well indexed. Smart is, however, in need of sample application programs. The learning process is greatly hindered when no in-depth examples are available to study.

The ease in learning of the two systems is very difficult
to estimate; the ease or difficulty would depend on past
database experience. The true beginner, with no computer
experience of any kind, would most likely do better with the
Smart Data Manager because there is nothing intimidating about
it. Someone with computer experience, but none with databases
would probably be just as comfortable with either system.
His/her lack of database knowledge would make Smart appealing,
but his/her software development experience could make dBASEIII
more appealing. The real computer programmer would more than
likely prefer dBASEIII. There are no bells or whistles, but it
gets the job done in a straightforward fashion.
12. CONCLUSIONS

The purpose of this master's report was to evaluate the Smart Data Manager. As a basis of comparison, one of the most popular DBMSs, dBaseIII, is chosen. The logical design is completed, and next the physical design of the database is done in both languages. The only significant differences between the Smart Data Manager's physical design and that of dBaseIII are in the field types. dBaseIII offers a logical and memo field in addition to the standard fields of date, character, and numeric. The Smart Data Manager offers a counter, an inverted name, a phone, a time, and a social security field type. The adjustment of the data types concludes the physical design and signals the beginning of implementation. Many differences were found when making a comparison of the languages during implementation of the application programs. Generally, the Smart Data Manager requires more interaction with the user. There are times when the user must assume responsibility for segments of the execution of the application programs. The application program language in Smart is sometimes awkward. For example, Smart only defines four variables. Any others that may be needed must be initialized prior to their use. The Smart system provides a means to debug a program that is not available in dBaseIII; this is called single step execu
tion. This is a valuable tool for examining the application program's logic command-by-command. When evaluating the file space requirements, they are found to be very different. The Smart Data Manager files (excluding the application programs) requires 78 files compared to dBa\textsc{se}\textsc{iii}'s requirement of only 28 files. Most of this discrepancy is possibly due to Smart's use of predefined key fields. Objectively the two systems are very similar, but subjectively there are many differences. The Smart Data Manager may be better suited for the novice computer user, or someone with no database experience. The application programming language in Smart is somewhat cumbersome. dBa\textsc{se}\textsc{iii}, though requiring more programming knowledge, is much more powerful. When deciding which of the two software systems to choose, the following should be considered: the file space requirements of the databases to be used, the execution time needed, and the experience of the users.
BIBLIOGRAPHY

Byers, Robert A. *Everyman’s Database Primer*, Ashton-Tate Publishing Group, Culver City, California, 1984.

Gabel, D. "Organizational Pursuit," *PC Week (Buyers’ Guide)*, (May 7, 1985)

Krajewski, R. "Database Types", *BYTE*, (October 1984), pp.137.

Schwartz, Andrew N. "Get Smart To Fight Chaos," *PC Week*, (December 25, 1984)

APPENDIX A

PSEUDO CODE
MEMBERSHIP FILES: NEW MEMBER

ENTER DATA INTO BLANK RECORD
INvolVEMENT
 NOTE NOINV (NUMBER OF AREAS INVOLVED)
 NEW RECORD IN INVOLVE FILE FOR EACH
 PLACE LNAME, FNAME, MNAME, AND INT INTO
 BLANK INVOLVE RECORD
INTEREST AND SKILLS
 NOTE NOINT (NUMBER OF AREAS INTERESTED)
 NEW RECORD IN INTEREST FILE FOR EACH
 PLACE LNAME, FNAME, MNAME, AND INT INTO
 BLANK INTEREST RECORD
CALCULATE AGE
 COMPARE DATE WITH DOB
 IF MM OF DOB \geq MM OF DATE
 AGE = YY(DATE) - YY(DOB)
 ELSE
 AGE = YY(DATE) - YY(DOB) - 1
 ENDIF
 IF AGE \geq 65
 SET SENIOR TO "Y"
 ENDIF
SET ORIG = DATE
EXPIRE = MM/DD/YY(DATE) (YY=YY+1)
MEMBERSHIP FILES: RENEWAL / NON-EXPIRED

VERIFY EXISTING DATA VIA PRINTOUT OF MEMBERSHIP, INTEREST, INVOLVE
ENTER DATE
EXPIRE = OLD EXPIRE(YY)+1
IF INTERESTS CHANGED
 IF THE CHANGE IS AN INCREASE IN AREAS
 .CREATE RECORD IN INTEREST FILE FOR EACH NEW INTEREST CONTAINING LNAME, FNAME, MNAME, AND INT
 .CHANGE NOINT
 IF THE CHANGE IS A DECREASE IN AREAS
 .LOCATE RECORD IN INTEREST FILE WITH THE LNAME, FNAME, INT TO BE ELIMINATED
 .ERASE THE RECORD IN INTEREST
 .CHANGE NOINT
IF INVOLVEMENT HAS CHANGED
 IF THE CHANGE IS AN INCREASE IN THE AREAS
 .CREATE RECORD IN INVOLVE FOR EACH NEW INVOLVEMENT CONTAINING LNAME, FNAME, MNAME, AND INV
 .CHANGE NOINV
 IF THE CHANGE IS A DECREASE IN AREAS
 .LOCATE RECORD IN INVOLVE WITH THE LNAME, FNAME, MNAME AND INV TO BE ELIMINATED
 .ERASE THE RECORD IN INVOLVE
 .CHANGE NOINV
ENTER NEW ACNOTE AND ACDATE
MEMBERSHIP FILES: RENEWAL / EXPIRED

VERIFY EXISTING DATA VIA
 MEMBERSHIP FILE PRINTOUT
 INTEREST FILE PRINTOUT
 INVOLVEMENT FILE PRINTOUT
ENTER DATE
EXPIRE = DATE(YY)+1
IF INTERESTS CHANGED
 IF THE CHANGE IS AN INCREASE IN AREAS
 .CREATE RECORD IN INTEREST FILE FOR EACH NEW INTEREST
 CONTAINING LNAME, FNAME, MNAME, AND INT
 .CHANGE NOINT
 IF THE CHANGE IS A DECREASE IN AREAS
 .LOCATE RECORD IN INTEREST FILE WITH THE LNAME,
 FNAME, MNAME, MNAME, INT TO BE ELIMINATED
 .ERASE THE RECORD IN INTEREST
 .CHANGE NOINT
IF INVOLVEMENT HAS CHANGED
 IF THE CHANGE IS AN INCREASE IN AREAS
 .CREATE RECORD IN INVOLVE FOR EACH NEW
 INVOLVEMENT CONTAINING LNAME, FNAME, MNAME, AND INV
 .CHANGE NOINV
 IF THE CHANGE IS A DECREASE IN AREAS
 .LOCATE RECORD IN INVOLVE WITH THE LNAME, FNAME, AND
 INV TO BE ELIMINATED
 .ERASE THE RECORD IN INVOLVE
 .CHANGE NOINV
ENTER NEW ACNOTE AND ACDATE
REMOVE FLAG
LIST OF "ABOUT" DUE (DONE ONE MONTH PRIOR)

CLEAR ABOUT FILE
SEARCH MEMBERSHIP FILES FOR RECORDS WITH
 MM(EXPIRE) = NEXT MONTH
 YY(EXPIRE) = THIS YEAR-1
IF FIND RECORD MEETING CRITERIA
 .COPY LNAME, FNAME, MNAME, STREET, CITYST, EXPIRE
 TO ABOUT FILE
NEXT RECORD
ONCE EOF IS REACHED
 .SORT ABOUT IN INCREASING ORDER ON LNAME THEN FNAME
 .THEN PRINT
 FNAME LNAME
 STREET
 CITYST
 EXPIRE
 FOR EACH RECORD
FLAG PAST DUE (MONTHLY)

IF EXPIRE < DATE
 FLAG RECORD FOR DELETION
CONTINUE UNTIL EOF

VOTER (DONE ANNually DURING ELECTIONS)

LOCATE VOTER'S RECORD
ENTER CURRENT YEAR INTO VOTE
PROSPECT FILE: NEW DONOR

ENTER DATA IN PROSPECT
IF MAKING A DONATION
 CREATE A RECORD IN GIVEN
 ENTER DATA IN GIVEN
 IF LETTER AND RECEIPT SENT
 SET LETTER TO "Y" IN GIVEN
 SET RECEIPT TO "Y" IN GIVEN
IF MAKING A PLEDGE
 SET PLDG TO "Y" IN PROSPECT
CREATE A RECORD IN PLEDGE
ENTER DATA GIVEN
CALCULATE OUTSTD: (IF 1ST INSTALLMENT PAID)
 AMT-INSTALLMENT = OUTSTD
 CREATE AN INSTALL RECORD
 ENTER DATA GIVEN
ELSE OUTSTD = AMT
LOCATE RECORD IN PROSPECT FILE
IF MAKING A DONATION
 CREATE A RECORD IN GIVEN
 ENTER DATA
 IF LETTER AND RECEIPT SENT
 SET LETTER TO "Y"
 SET RECEIPT TO "Y"
 IF MAKING AN INSTALLMENT PAYMENT
 CREATE RECORD IN INSTALL
 ENTER DATA
 STORE INSTL VALUE
 LOCATE RECORD IN PLEDGE
 CALCULATE OUTSTD IN PLEDGE
 AMT-INSTL = OUTSTD
 IF OUTSTD <= 0
 SET PLDG IN PROSPECT TO "N"
 IF MAKING A PLEDGE
 SET PLDG TO "Y" IN PROSPECT
 CREATE A RECORD IN PLEDGE
 ENTER DATA GIVEN
 IF 1ST INSTALLMENT PAID
 CALCULATE OUTSTD: AMT-INSTL = OUTSTD
 CREATE INSTALL RECORD
 ENTER DATA
 ELSE
 OUTSTD = AMT
APPENDIX B

DATA DICTIONARY
DATA DICTIONARY

ACDATE
DATE OF ISSUE OF ACTIVITY CARD
TYPE: DATE
FORMAT
LENGTH = 8

ACNOTE
NOTES WHAT TYPE OF ACTIVITY CARD WAS ISSUED
TYPE: CHARACTER
VALUES: FAC = FAMILY ACTIVITY CARD
 AC = INDIVIDUAL ACTIVITY CARD
LENGTH = 3

ADULT
TYPE: DATABASE RECORD STRUCTURE OF ADULT MEMBER

 LNAME
 FNAME
 MNAME
 SEX
 DATE
 STREET
 CITYST
 ZONE
 HTELE
 WTELE
 OCCUP
 PLOFWK
 AGE
 EDUC
 STATUS
 NOCH
 DOB
 YRSAL
 RACE
 SENIOR
 VOTE
 ORIG
 EXPIRE
 ACDATE
 ACNOTE

AGE
AGE OF INDIVIDUAL
TYPE: NUMERIC
VALUES: 0-99
LENGTH = 2
AMT
 DOLLAR AMOUNT GIVEN OR PLEDGED TO YWCA
 TYPE: NUMERIC
 LENGTH = 9

APLTOT
 VOLUNTEER HOURS FOR APRIL
 TYPE: NUMERIC
 VALUES: 0-999
 LENGTH = 3

ARTS/CRAFTS
 INDICATES INTEREST OF MEMBER
 TYPE: CHARACTER
 LENGTH = 1

AUGTOT
 VOLUNTEER HOURS FOR AUGUST
 TYPE: NUMERIC
 VALUES: 0-999
 LENGTH = 3

BOARD
 INDICATES INVOLVEMENT AT YWCA
 TYPE: CHARACTER
 LENGTH = 1

CHILDREN
 INDICATES INTEREST OF MEMBER
 TYPE: CHARACTER
 LENGTH = 1

CITYYST
 CITY, ST ZIP
 TYPE: CHARACTER
 LENGTH = 20

CLASS
 INDICATES INVOLVEMENT AT YWCA
 TYPE: CHARACTER
 LENGTH = 1

CLERICAL
 INDICATES INTEREST OF MEMBER
 TYPE: CHARACTER
 LENGTH = 1
CLUB
INDICATES INVOLVEMENT AT YWCA
TYPE: CHARACTER
LENGTH = 1

COMM
COMMENTS
TYPE: CHARACTER
LENGTH = 25

COMMITTEE
INDICATES INVOLVEMENT AT YWCA
TYPE: CHARACTER
LENGTH = 1

CONNAME
NAME OF PERSON TO CONTACT ABOUT DONATION
TYPE: CHARACTER
LENGTH = 20

CONPREF
WHERE CONTACT PERSON PREFERS TO BE CONTACTED
TYPE: CHARACTER
VALUES: H = HOME
W = WORK
LENGTH = 1

CONTACT
PERSON (OTHER THAN PARENTS) FOR EMERGENCIES
TYPE: CHARACTER
LENGTH = 20

CONTEL
TELEPHONE NUMBER FOR CONTACT
TYPE: CHARACTER
LENGTH = 14

COOKING/BAKING
INDICATES INTEREST OF MEMBER
TYPE: CHARACTER
LENGTH = 1

DATE
CURRENT DATE
TYPE: DATE
LENGTH = 8
DECTOT
 VOLUNTEER HOURS FOR DECEMBER
 TYPE: NUMERIC
 LENGTH = 9

DOB
 DATE OF BIRTH
 TYPE: DATE
 LENGTH = 8

DOC
 NAME OF FAMILY DOCTOR
 TYPE: CHARACTER
 LENGTH = 20

DOCTEL
 TELEPHONE NUMBER OF FAMILY DOCTOR
 TYPE: CHARACTER
 LENGTH = 14

DONEBY
 PERSON WHO RECEIVED DONATION FOR YWCA
 TYPE: CHARACTER
 LENGTH = 15

DONOR
 NAME OF INDIVIDUAL OR FIRM MAKING DONATION
 TYPE: CHARACTER
 LENGTH = 20

EDUC
 EDUCATIONAL BACKGROUND
 TYPE: CHARACTER
 VALUES: A = ARTS
 C = CLERICAL
 E = EDUCATIONAL
 L = LEGAL
 M = MEDICAL
 S = SERVICE
 T = TECHNICAL
 O = OTHER
 N = NOT APPLICABLE
 LENGTH = 1

EXPIRE
 DATE THAT MEMBERSHIP EXPIRES
 TYPE: DATE
 LENGTH = 8
FEBTOT
 VOLUNTEER HOURS FOR FEBRUARY
 TYPE: NUMERIC
 VALUES: 0-999
 LENGTH = 3

FNAME
 INDIVIDUAL’S FIRST NAME
 TYPE: CHARACTER
 LENGTH = 10

GIVEN
 TYPE: DATABASE RECORD STRUCTURE FOR DONATION
 DONOR
 DATE
 AMT
 RECPT
 LETTER
 PURPOSE
 DONEBY

GUARD
 FIRST AND LAST NAMES OF PARENTS OR GUARDIANS
 TYPE: CHARACTER
 LENGTH = 35

HTELE
 HOME TELEPHONE NUMBER
 TYPE: CHARACTER
 LENGTH = 14

INTEREST
 TYPE: DATABASE RECORD STRUCTURE FOR MEMBER INTEREST
 LNAME
 FNAME
 MNAME
 ARTS/CRAFTS
 CLERICAL
 CHILDREN
 COOKING/BAKING
 P.E./SWIM/DANCE
 TELEPHONING
 UPKEEP/CLEANING
 VOLUNTR

INVOLVE
 TYPE: DATABASE RECORD STRUCTURE FOR INVOLVEMENT
 LNAME
 FNAME
MNAME
BOARD
COMMITTEE
CLUB
CLASS
RECREATION
VOLUNTR

JANTOT
VOLUNTEER HOURS FOR JANUARY
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

JULTOT
VOLUNTEER HOURS FOR JULY
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

JUNTOT
VOLUNTEER HOURS FOR JUNE
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

KNOWN
WHO KNOWS PROSPECTIVE DONOR WELL
TYPE: CHARACTER
LENGTH = 20

LETTER
DENOTES WHETHER LETTER SENT TO DONOR
TYPE: CHARACTER
LENGTH = 1

LNAME
INDIVIDUAL'S LAST NAME
TYPE: CHARACTER
LENGTH = 20

MARTOT
VOLUNTEER HOURS FOR MARCH
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3
MAYTOT
VOLUNTEER HOURS FOR MAY
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

MINOR
TYPE: DATABASE RECORD STRUCTURE OF MINORS
LNAME
FNAME
MNAME
SEX
DATE
STREET
CITYST
ZONE
HTELE
PLOFWK
AGE
DOB
RACE
GUARD
SCHOOL
DOC
DOCTEL
CONTACT
CONTEL
ORIG
EXPIRE
ACDATE
ACNOTE

MNAME
INDIVIDUAL'S MIDDLE NAME
TYPE: CHARACTER
LENGTH = 10

NOCH
NUMBER OF CHILDREN
TYPE: NUMERIC
LENGTH = 2

NOVTOT
VOLUNTEER HOURS FOR NOVEMBER
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3
OCCUP
OCCUPATION OF INDIVIDUAL
TYPE: CHARACTER
LENGTH = 10

OCTTOT
VOLUNTEER HOURS FOR OCTOBER
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

ORIG
ORIGINAL DATE OF MEMBERSHIP
TYPE: DATE
LENGTH = 8

OTHERS
SUPPORT OF OTHER ORGANIZATIONS
TYPE: CHARACTER
LENGTH = 25

OUSTD
AMOUNT OUTSTANDING ON A DONATION PLEDGE
TYPE: NUMERIC
LENGTH = 9

PAID
AMOUNT OF INSTALLMENT DONATION PAID
TYPE: NUMERIC
LENGTH = 9

PAMT
AMOUNT PLEDGED
TYPE: NUMERIC
LENGTH = 9

P.E./SWIM/DANCE
INDICATES INTEREST OF MEMBER
TYPE: CHARACTER
LENGTH = 1

PLEDGE
TYPE: DATABASE RECORD STRUCTURE FOR PLEDGED DONATION
DONOR
AMT
PURPOSE
DATE
OUTSTD
DONEBY
PAID

POUT
 AMOUNT OF PLEDGE OUTSTANDING
 TYPE: NUMERIC
 LENGTH = 9

PLOFWK
 PLACE OF WORK
 TYPE: CHARACTER
 LENGTH = 15

PROINT
 INTERESTS OF PROSPECTIVE DONOR
 TYPE: CHARACTER
 LENGTH = 20

PROSAGE
 AGE OF PROSPECTIVE DONOR
 TYPE: NUMERIC
 LENGTH = 2

PROSED
 EDUCATION OF PROSPECTIVE DONOR
 TYPE: CHARACTER
 LENGTH = 10

PROSPECT
 TYPE: DATABASE RECORD STRUCTURE OF PROSPECTIVE DONOR
 DONOR
 CONNAME
 TITLE
 CONPREF
 PROSAGE
 PROSED
 PROSTUD
 PROREL
 SPAGE
 SPSTUD
 SPNAME
 NOCH
 PROINT
 COMM
 OTHERS
 KNOWN
 SOLIC
 PAMT
 POUT
PROREL
RELIGION AFFILIATION OF PROSPECTIVE DONOR
TYPE: CHARACTER
LENGTH = 10

PROSTUD
FIELD OF STUDY OF PROSPECTIVE DONOR
TYPE: CHARACTER
LENGTH = 10

PURPOSE
FOR WHAT PURPOSE DONATION TO BE USED
TYPE: CHARACTER
LENGTH = 15

RACE
RACIAL BACKGROUND
TYPE: CHARACTER
VALUES: A = ASIAN AMERICAN
 B = BLACK
 H = HISPANIC
 N = NATIVE AMERICAN
 W = WHITE
 O = OTHER
LENGTH = 1

RECPNT
DENOTES WHETHER RECEIPT SENT FOR DONATION
TYPE: CHARACTER
LENGTH = 1

RECREATION
INDICATES INVOLVEMENT AT YWCA
TYPE: CHARACTER
LENGTH = 1

SCHOOL
SCHOOL ATTENDING
TYPE: CHARACTER
LENGTH = 10

SENIOR
INDICATES WHETHER SENIOR (OVER 65)
TYPE: CHARACTER
LENGTH = 1

SEPTOT
VOLUNTEER HOURS FOR SEPTEMBER
TYPE: NUMERIC
VALUES: 0-999
LENGTH = 3

SEX
GENDER OF INDIVIDUAL
TYPE: CHARACTER
VALUES: M = MALE
F = FEMALE
LENGTH = 1

SOLIC
RECOMMENDED SOLICITOR FOR DONATION
TYPE: CHARACTER
LENGTH = 15

SPED
EDUCATION OF PROSPECTIVE DONOR'S SPOUSE
TYPE: CHARACTER
LENGTH = 10

SPNAME
PROSPECTIVE DONOR'S SPOUSE'S NAME
TYPE: CHARACTER
LENGTH = 10

SPSTUD
FIELD OF STUDY OF PROSPECTIVE DONOR'S SPOUSE
TYPE: CHARACTER
LENGTH = 10

STATUS
MARRIAGE STATUS
TYPE: CHARACTER
VALUES: D = DIVORCED
M = MARRIED
S = SINGLE
W = WIDOWED
LENGTH = 1

STREET
STREET ADDRESS
TYPE: CHARACTER
LENGTH = 20

TELEPHONING
INDICATES MEMBER INTEREST
TYPE: CHARACTER
LENGTH = 1

64
TITLE
TITLE OF CONTACT PERSON FOR DONATION
TYPE: CHARACTER
LENGTH = 10

TOTAL
INDICATES LAST MONTH VOLUNTEER GAVE TIME
TYPE: NUMERIC
LENGTH = 2

UPKEEP/CLEANING
INDICATES MEMBER INTEREST
TYPE: CHARACTER
LENGTH = 1

VOLUNTR
INDICATES MEMBER INTEREST AND/OR INVOLVEMENT
TYPE: CHARACTER
LENGTH = 1

VOLUNTEER
TYPE: DATABASE RECORD STRUCTURE FOR VOLUNTEER
 LNAME
 FNAME
 MNAME
 TOTAL
 JANTOT
 FEBTOT
 MARTOT
 APLTOT
 MAYTOT
 JUNTOT
 JULTOT
 AUGTOT
 SEPTOT
 OCTTOT
 NOVTOT
 DECTOT

VOTE
LAST YEAR MEMBER VOTED
TYPE: CHARACTER
LENGTH = 4

WTELE
WORK TELEPHONE NUMBER
TYPE: CHARACTER
LENGTH = 14
YRSAL
YEAR MOVED TO SALINA
TYPE: CHARACTER
LENGTH = 4

XPIRAD
TYPE: DATABASE RECORD STRUCTURE OF EXPIRED ADULT MEMBER
LNAME
FNAME
MNAME
SEX
DATE
STREET
CITYST
ZONE
HTELE
WTELE
OCCUP
PLOFWK
AGE
EDUC
STATUS
NOCH
DOB
YRSAL
RACE
SENIOR
VOTE
ORIG
EXPIRE
ACDATE
ACNOTE

XPIRMIN
TYPE: DATABASE RECORD STRUCTURE OF EXPIRED MINORS
LNAME
FNAME
MNAME
SEX
DATE
STREET
CITYST
ZONE
HTELE
PLOFWK
AGE
DOB
RACE
GUARD
SCHOOL
DOC
DOCTEL
CONTACT
CONTEL
ORIG
EXPIRE
ACDATE
ACNOTE

ZONE
AREA ZONE OF SALINA
TYPE: CHARACTER
VALUES: 1 - 7
LENGTH = 1
APPENDIX C

SMART DATA STRUCTURES
SMART DATA STRUCTURES

Database Name: ADULT

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>HTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>OCCUP</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>WTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>EDUC</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>STATUS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>DOB</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>YRSAL</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>SENIOR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>VOTE</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 189

Database Name: GIVEN

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>AMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>RECPT</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>LETTER</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PURPOSE</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>DONEBY</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL: 69
Database Name: INTEREST

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>ARTS/CRAFTS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>CLERICAL</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>CHILDREN</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>COOKING/BAKING</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>P.E./SWIM/DANCE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>TELEPHONING</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>UPKEEP/CLEANING</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>VOLUNTR</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 38

Database Name: INVOLVE

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>BOARD</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>COMMITTEE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>CLASS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CLUB</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>RECREATION</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>VOLUNTR</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 36
<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>HTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>DOB</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>GUARD</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>SCHOOL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>DOC</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>DOCTEL</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>CONTACT</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>CONTEL</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 271
Database Name: PLEDGES

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>AMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>PURPOSE</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>DATE</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>PAID</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>OUTSTD</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>DONEBY</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL: 96

Database Name: PROSPECT

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CONNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>TITLE</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>CONPREF</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>PROSAGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PROSED</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>PROSTUD</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>PROREL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>SPNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>SPAGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>SPED</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>SPSTUD</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>PROINT</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>COMM</td>
<td>CHARACTER</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>OTHERS</td>
<td>CHARACTER</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>KNOWN</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>SOLIC</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>PAMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>POUT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
</tbody>
</table>

TOTAL: 190
Database Name: VOLUNTEER

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>TOTAL</td>
<td>NUMERIC</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>MONTH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>JANTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>FEBTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>MARTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>APLTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>MAYTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>JUNTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>JULTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AUGTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>SEPTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>OCTTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>NOVTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>DECTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 74
<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>HTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>OCCUP</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>WTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>EDUC</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>STATUS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>DOB</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>YRSAL</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>SENIOR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>VOTE</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 189
<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAME</td>
<td>INVERTED</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>HTELE</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>DOB</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>GUARD</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>SCHOOL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>DOC</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>DOCTEL</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>CONTACT</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>CONTEL</td>
<td>PHONE</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 271
APPENDIX D

dBASEIII DATA STRUCTURES
dBASEIII DATA STRUCTURES

Database Name: ADULT

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>OCCUP</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>WTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>EDUC</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>STATUS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>DOB</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>YRSAL</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>SENIOR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>VOTE</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 199

Database Name: GIVEN

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>AMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>RECPT</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>LETTER</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PURPOSE</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>DONEBY</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL: 69
Database Name: INTEREST

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>ARTS</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CLERICAL</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>CHILDREN</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>COOKING</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>PE</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>TELE</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>UPKEEP</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>VULUNTR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 48

Database Name: INVOLVE

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>BOARD</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>COMMITTEE</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>CLASS</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>CLUB</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>RECREATION</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>VOLUNTR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 46
Database Name: MINOR

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>DOB</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>GUARD</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>SCHOOL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>DOC</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>DOCTEL</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>CONTACT</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>CONTEL</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 281
Database Name: PLEDGES

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>AMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>PURPOSE</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>DATE</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>PAID</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>OUTSTD</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>DONEBY</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL: 110

Database Name: PROSPECT

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DONOR</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CONNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>TITLE</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>CONPREF</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>PROSGAGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PROGED</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>PROSTUD</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>PROREL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>SPNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>SPAGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>SPED</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>SPSTUD</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>PROINT</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>COMM</td>
<td>MEMO</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>OTHERS</td>
<td>MEMO</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>KNOWN</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>SOLIC</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>PMT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>POUT</td>
<td>NUMERIC</td>
<td>9</td>
</tr>
</tbody>
</table>

TOTAL: 160
<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>TOTAL</td>
<td>NUMERIC</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>JANTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>FEBTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>MARTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>APLTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>MAYTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>JUNTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>JULTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>AUGTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>SEPTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>OCTTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>NOVTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>DECTOT</td>
<td>NUMERIC</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 82
Database Name: XPIRAD

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>OCCUP</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>WTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>EDUC</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>STATUS</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>NOCH</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>DOB</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>YRSAL</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>SENIOR</td>
<td>LOGICAL</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>VOTE</td>
<td>CHARACTER</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>ACDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 199
<table>
<thead>
<tr>
<th>Field Number</th>
<th>Field Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNAME</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>FNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>MNAME</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>STREET</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CITYST</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>ZONE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HTELE</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>PLOFWK</td>
<td>CHARACTER</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>DATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>AGE</td>
<td>NUMERIC</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>SEX</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>DOB</td>
<td>DATE</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>RACE</td>
<td>CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>GUARD</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>SCHOOL</td>
<td>CHARACTER</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>DOC</td>
<td>CHARACTER</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>DOCTEL</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>CONTACT</td>
<td>CHARACTER</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>CONTEL</td>
<td>CHARACTER</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>ORIG</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>EXPIRE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>ACQDATE</td>
<td>DATE</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>ACNOTE</td>
<td>CHARACTER</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 281
APPENDIX E

SMART APPLICATION PROGRAMS
NEW MEMBERSHIP APPLICATION PROGRAM

UNLOAD ALL
LABEL START
INPUT TEXT1 ENTER A FOR ADULT OR M FOR MINOR
IF TEXT1="A" THEN JUMP ADULT
IF TEXT1="M" THEN JUMP MINOR
WAIT 5 NOT A CHOICE! TRY AGAIN
JUMP START
LABEL ADULT
LOAD ADULT SCREEN MINORS
JUMP COMMON
LABEL MINOR
LOAD MINOR SCREEN MINOR
LABEL COMMON
SPLIT VERTICAL 2 45
GOTO WINDOW 2
LOAD INTBACK SCREEN INTBACK2
SPLIT HORIZONTAL 12 47
GOTO WINDOW 3
LOAD INVBACK SCREEN INVBACK
GOTO WINDOW 1
KEY UPDATE
ORDER KEY [1]
GOTO WINDOW 2
KEY UPDATE
ORDER KEY [1]
GOTO WINDOW 3
KEY UPDATE
ORDER KEY [1]
GOTO WINDOW 1
LINK 2 FIELD [1]
ENTER
MEMBERSHIP RENEWAL APPLICATION PROGRAM

UNLOAD ALL
LABEL START2
INPUT TEXT1 ENTER A FOR ADULT OR M FOR MINOR
IF TEXT1="A" THEN JUMP ADULT
IF TEXT1="M" THEN JUMP MINOR
WAIT 5 NOT A CHOICE! TRY AGAIN.
JUMP START2
LABEL ADULT
LOAD ADULT SCREEN MINORS
JUMP COMMON
LABEL MINOR
LOAD MINOR SCREEN MINOR
LABEL COMMON
ORDER KEY [1]
SPLIT VERTICAL 2 39
GOTO WINDOW 2
LOAD INTBACK SCREEN INTBACK2
ORDER KEY [1]
SPLIT HORIZONTAL 12 41
GOTO WINDOW 3
LOAD INVBACK SCREEN INVBACK
ORDER KEY [1]
GOTO WINDOW 1
LINK 2 FIELD [1]
GOTO WINDOW 2
LINK 3 FIELD [1]
GOTO WINDOW 1
EXECUTE UPDATE
EXECUTE MAINFILE
MEMBERSHIP RENEWAL APPLICATION PROGRAM (CONT'D.)

LABEL START
INPUT TEXT1 ARE ALL THE INTERESTS CORRECT (Y/N)?
IF TEXT1 = "Y" THEN JUMP OKAY
IF TEXT1 = "N" THEN JUMP INTER
WAIT 5 THIS IS A YES OR NO QUESTION. TRY AGAIN!
JUMP START
LABEL INTER
GOTO WINDOW 2
UPDATE
LABEL OKAY
INPUT TEXT2 ARE ALL THE INVOLVEMENTS CORRECT (Y/N)?
IF TEXT2 = "Y" THEN JUMP OUT
IF TEXT2 = "N" THEN JUMP INVOLVE
WAIT 5 THIS IS A YES OR NO QUESTION. TRY AGAIN!
JUMP OKAY
LABEL INVOLVE
GOTO WINDOW 3
UPDATE
LABEL OUT
EXECUTE MAINFILE

LABEL START1
GOTO WINDOW 1
INPUT TEXT1 IS ALL THE INFORMATION CURRENT (Y/N)?
IF TEXT1 = "Y" THEN JUMP AUTODEATE
IF TEXT1 = "N" THEN JUMP CURRENT
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP START1
LABEL CURRENT
WAIT 5 MAKE CORRECTIONS ON THE FOLLOWING RECORD
UPDATE
LABEL AUTODEATE
INPUT TEXT2 ENTER THE DATE TO BE USED (MM/DD/YY).
LET [DATE] = TEXT2
LET [ACDATE] = TEXT2
LET [EXPIRE] = ADDY YEARS(TEXT2,1)
WAIT 5 UPDATE COMPLETE
REPAINT

87
QUITING MEMBERSHIP UPDATES APPLICATION PROGRAM

GOTO WINDOW 3
KEY UPDATE
CLOSE
KEY UPDATE
CLOSE
KEY UPDATE
UNLOAD ALL
NEW VOLUNTEER APPLICATION PROGRAM

UNLOAD ALL
LOAD VOLUN SCREEN NEW
ENTER
LABEL START
INPUT TEXT1 WAS ANY TIME GIVEN NOW (Y/N)?
IF TEXT1 = "Y" EXECUTE VOLUN
IF TEXT2 = "N" JUMP OUT
WAIT 5 THIS IS ONLY A YES OR NO QUESTION!
JUMP START
LABEL OUT
LET [TOTAL]=0
LET [MONTH]=0
UNLOAD ALL
LABEL START
LOAD VOLUN SCREEN VOLUN
INPUT TEXT1 ENTER THE NAME OF THE VOLUNTEER
INPUT VALUE1 ENTER THIS MONTH'S NUMERIC EQUIVALENT (I.E. JAN = 1)
QUERY PREDEFINED VOLFIND SCREEN
INPUT VALUE2 ENTER THIS MONTH'S HOURS
LET [TOTAL] = [TOTAL] + VALUE2
LET [MONTH] = VALUE1
IF [MONTH] = 1 THEN JUMP JAN
IF [MONTH] = 2 THEN JUMP FEB
IF [MONTH] = 3 THEN JUMP MARCH
IF [MONTH] = 4 THEN JUMP APRIL
IF [MONTH] = 5 THEN JUMP MAY
IF [MONTH] = 6 THEN JUMP JUNE
IF [MONTH] = 7 THEN JUMP JULY
IF [MONTH] = 8 THEN JUMP AUG
IF [MONTH] = 9 THEN JUMP SEPT
IF [MONTH] = 10 THEN JUMP OCT
IF [MONTH] = 11 THEN JUMP NOV
IF [MONTH] = 12 THEN JUMP DEC
LABEL JAN
LET [JANTOT] = VALUE2
JUMP END
LABEL FEB
LET [FEBTOT] = VALUE2
JUMP END
LABEL MARCH
LET [MARTOT] = VALUE2
JUMP END
LABEL APRIL
LET [APLTOT] = VALUE2
JUMP END
LABEL MAY
LET [MAYTOT] = VALUE2
JUMP END
LABEL JUNE
LET [JUNTOT] = VALUE2
JUMP END
LABEL JULY
LET [JULTOT] = VALUE2
JUMP END
LABEL AUG
LET [AUGTOT] = VALUE2
JUMP END
LABEL SEPT
LET [SEXTOT] = VALUE2
JUMP END
LABEL OCT
LET [OCTTOT] = VALUE2
JUMP END
LABEL NOV
LET [NOVTOT] = VALUE2
JUMP END
LABEL DEC
LET [DECTOT] = VALUE2
JUMP END
LABEL END
REPAINT
NEW DONOR APPLICATION PROGRAM

UNLOAD ALL
LOAD DONORS SCREEN DONOR
ENTER
INPUT TEXT1 WAS A PLEDGE MADE AT THIS TIME (Y/N)?
IF TEXT1 = "Y" EXECUTE PLEDGE
INPUT TEXT2 WAS A DONATION MADE AT THIS TIME (Y/N)?
IF TEXT2 ="Y" EXECUTE DONATE
PLEDGE APPLICATION PROGRAM

UNLOAD ALL
LOAD PLEDGES SCREEN STANDARD
SPLIT VERTICAL 2 42
GOTO WINDOW 2
LOAD DONORS SCREEN DONOR
GOTO WINDOW 1
WAIT 5 PLEASE ENTER DONOR, DATE, PURPOSE, AND DONE BY ON THE FOLLOWING ENTER
LET TEXT2 = [DONOR]
GOTO WINDOW 2
QUERY PREDEFINED PLEDGE SCREEN
GOTO WINDOW 1
LABEL START
INPUT TEXT1 IS THIS THE ORIGINAL PLEDGE (Y/N)?
IF TEXT1 = "Y" THEN JUMP ORIGINAL
IF TEXT1 = "N" THEN JUMP HISTORY
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP START
LABEL ORIGINAL
INPUT VALUE1 ENTER THE AMOUNT OF THE PLEDGE.
LET [AMT] = VALUE1
LABEL TRY
INPUT TEXT2 WAS PART OF THE PLEDGE GIVEN AT THIS TIME (Y/N)?
IF TEXT2 = "Y" THEN JUMP AMOUNT
IF TEXT2 = "N" THEN JUMP FINISHED
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP TRY
LABEL AMOUNT
INPUT VALUE2 ENTER THE AMOUNT GIVEN AT THIS TIME.
LET [OUTSTD] = [AMT] - VALUE2
LET [PAID] = VALUE2
REPAINT
JUMP END
LABEL FINISHED
LET [OUTSTD] = [AMT]
LET [PAID] = 0
JUMP END
LABEL HISTORY
GOTO WINDOW 2
LET VALUE1 = [POUT]
LET VALUE2 = [PAMT]
GOTO WINDOW 1
WAIT 5 ENTER DONOR, DATE, PURPOSE, AND DONE BY IN THE FOLLOWING
ENTER
LET [OUTSTD] = VALUE1
LET [AMT] = VALUE2
INPUT VALUE2 ENTER THE AMOUNT GIVEN AT THIS TIME
LET [OUTSTD] = [OUTSTD] - VALUE2
LET [PAID] = VALUE2
REPAINT
LABEL END
LET VALUE1 = [OUTSTD]
GOTO WINDOW 2
LET [POUT] = VALUE1
REPAINT
DONATION APPLICATION PROGRAM

UNLOAD ALL
LOAD DONORS SCREEN DONOR
LABEL START
INPUT TEXT1 DID THIS PROSPECT MAKE A PLEDGE (Y/N)?
IF TEXT1 = "N" THEN JUMP DONATION
IF TEXT1 = "Y" THEN JUMP PLEDGE
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP START
LABEL PLEDGE
SPLIT VERTICAL 2 42
GOTO WINDOW 2
LOAD PLEDGES SCREEN standard
JUMP NORMAL
LABEL DONATION
INPUT TEXT2 DID THIS PROSPECT MAKE A DONATION (Y/N)?
IF TEXT2 = "Y" THEN JUMP DOIT
IF TEXT2 = "N" THEN JUMP NORMAL
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP DONATION
LABEL DOIT
SPLIT VERTICAL 2 42
GOTO WINDOW 2
LOAD GIVEN SCREEN GIVEN
LABEL NORMAL
GOTO WINDOW 1
ENTER
IF TEXT1 = "Y" OR TEXT2 = "Y" THEN JUMP OTHER
JUMP ENDIT
LABEL OTHER
GOTO WINDOW 2
IF TEXT1 = "Y" THEN JUMP OUTSTAND
IF TEXT2 = "Y" THEN JUMP DONATE
LABEL OUTSTAND
WAIT 5 ENTER DONOR, DATE, PURPOSE, AND DONEBY IN THE FOLLOWING
ENTER
INPUT VALUE1 ENTER THE AMOUNT OF THE PLEDGE
LET [AMT] = VALUE1
LABEL TRY
INPUT TEXT1 WAS PART OF THE PLEDGE GIVEN AT THIS TIME (Y/N)?
IF TEXT1 = "Y" THEN JUMP AMOUNT
IF TEXT1 = "N" THEN JUMP FINISHED
WAIT 5 THIS IS A YES OR NO QUESTION! TRY AGAIN.
JUMP TRY
LABEL AMOUNT
INPUT VALUE2 ENTER THE AMOUNT GIVEN AT THIS TIME
LET [OUTSTD] = [AMT] - VALUE2
LET [PAID] = VALUE2
REPAINT
GOTO WINDOW 1
LET [POUT] = VALUE1 - VALUE2
LET [PAMT] = VALUE1
REPAINT
CLOSE
JUMP ENDIT
LABEL FINISHED
LET [OUTSTD] = [AMT]
LET [PAID] = 0
GOTO WINDOW 1
LET [PAMT] = VALUE1
LET [POUT] = VALUE1
REPAINT
CLOSE
JUMP ENDIT
LABEL DONATE
WAIT 5 PLEASE ENTER INFO IN FOLLOWING RECORD
ENTER
LABEL ENDIT
UNLOAD ALL
LOAD ADULT SCREEN MINORS
IF MONTH([DOB])=00 THEN JUMP OUT1
ELSE
IF MONTH([DOB]) >= MONTH(TODAY) THEN JUMP MONTH1
ELSE
LET [AGE] = YEAR(TODAY) - YEAR([DOB])
JUMP OUT1
LABEL MONTH
LET [AGE] = YEAR(TODAY) - YEAR([DOB]) - 1
LABEL OUT1
ORDER KEY 0] COMMENT THIS SORTS BY SEX
QUERY COUNT [10;11;] COMMENT THIS COUNTS THE AGES WITHIN SEX
ORDER SEQUENTIAL
ORDER KEY [17] COMMENT THIS SORTS BY ETHNIC GROUPS
QUERY COUNT [17] COMMENT THIS COUNTS THE ETHNIC GROUPS
ORDER SEQUENTIAL
ORDER COUNT [4] COMMENT THIS SORTS BY ZONE
QUERY COUNT [4] COMMENT THIS COUNTS THE ZONES
ORDER SEQUENTIAL
ORDER KEY [20] COMMENT THIS SORTS BY DATE
QUERY COUNT [20] COMMENT THIS COUNTS THE DIFFERENT DATES
ORDER SEQUENTIAL
UNLOAD ALL
LOAD MINOR SCREEN MINOR
IF MONTH([DOB]) = 00 THEN JUMP OUT2
ELSE
IF MONTH([DOB]) >= MONTH(TODAY) THEN JUMP MONTH1
ELSE
LET [AGE] = YEAR(TODAY) - YEAR([DOB])
JUMP OUT2
LABEL MONTH1
LET [AGE] = YEAR(TODAY) - YEAR([DOB]) - 1
LABEL OUT2
ORDER KEY [9] COMMENT THIS SORTS BY SEX
QUERY COUNT [9;8;] COMMENT THIS COUNTS THE AGES WITHIN SEX
ORDER SEQUENTIAL
ORDER KEY [11] COMMENT ETHNIC GROUPS
QUERY COUNT [11]
ORDER SEQUENTIAL
ORDER KEY [4] COMMENT THIS COUNTS ZONES
QUERY COUNT [4]
ORDER SEQUENTIAL
ORDER KEY [18] COMMENT THIS COUNTS ORIGINAL DATE OF MEMBERSHIP
QUERY COUNT [18]
ORDER SEQUENTIAL
APPENDIX F

dBASEIII APPLICATION PROGRAMS
MAN MAIN MENU PROGRAM

SET TALK OFF
DO WHILE .T.
 CLEAR
 TEXT

--
* *
* MAIN MENU
* ---- ----
* *
* 1. NEW MEMBERSHIP
* 2. MEMBERSHIP RENEWAL
* 3. NEW VOLUNTEER
* 4. VOLUNTEER HOURS
* 5. NEW DONOR
* 6. DONATION OR PLEDGE
* 7. MONTHLY PROCESSES
* 8. MAILING LIST
* 9. ANNUAL REPORT
* 0. EXIT
* *
--
ENDTEXT
ACCEPT "ENTER THE NUMBER OF YOUR SELECTION: " TO SELECT
DISPLAY MEMORY
WAIT TO WHY
CLEAR
 IF SELECT ="1"
 DO NEW
 ENDF
 IF SELECT = '2'
 DO RENEW
 ENDF
 IF SELECT = '3'
 DO NEWVOL
 ENDF
 IF SELECT = '4'
 DO VOLUN
 ENDF
 IF SELECT = '5'
 DO NEWDON
 ENDF
 IF SELECT = '6'
 DO GIVING

100
ENDIF
IF SELECT = '7'
 DO MONTH
ENDIF
IF SELECT = '8'
 DO MAIL
ENDIF
IF SELECT = '9'
 DO ANNUAL
ENDIF
IF SELECT = "0"
 QUIT
ENDIF
ENDDO
NEW MEMBERSHIP APPLICATION PROGRAM

CLEAR
WAIT 'PRESS A FOR ADULT, M FOR MINOR: ' TO TYPE
IF TYPE = 'A'
 USE B:ADULT
 CLEAR
 APPEND BLANK
 ACCEPT 'ENTER LAST NAME:' TO LAST
 ACCEPT 'ENTER FIRST NAME:' TO FIRST
 ACCEPT 'ENTER MIDDLE NAME:' TO MIDDLE
 CLEAR
 @ 2,10 SAY 'SEX:' GET SEX
 @ 2,16 SAY 'AGE:' GET AGE
 @ 3,10 SAY 'STATUS (M,S,W,D):' GET STATUS
 @ 4,10 SAY 'EDUCATION CODE:' GET EDUC
 @ 6,10 SAY 'STREET ADDRESS:' GET STREET
 @ 7,10 SAY 'CITY, ST ZIP:' GET CITYST
 @ 8,10 SAY 'ZONE CODE:' GET ZONE
 @ 9,10 SAY 'HOME PHONE:' GET HTLE
 @ 11,10 SAY 'OCCUPATION:' GET OCCUP
 @ 12,10 SAY 'PLACE OF WORK:' GET PLOFWK
 @ 13,10 SAY 'WORK PHONE:' GET WTELE
 @ 15,10 SAY 'NUMBER OF CHILDREN:' GET NOCH
 @ 16,10 SAY 'DATE OF BIRTH (MM/DD/YY):' GET DOB
 @ 17,10 SAY 'YEAR MOVED TO SALINA:' GET YRSAL
 @ 18,10 SAY 'RACE CODE:' GET RACE
 @ 20,10 SAY 'TYPE OF ACTIVITY CARD (FAC OR AC):' GET ACNOTE
 @ 21,10 SAY 'DATE OF EXPIRATION (MM/DD/YY):' GET EXPIRE
READ
STORE DATE() TO TODAY
REPLACE DATE WITH TODAY, ACDATE WITH TODAY, LNAME WITH LAST
REPLACE FNAME WITH FIRST, MNAME WITH MIDDLE, ORIG WITH TODAY
ENDIF
IF TYPE = 'M'
 USE B:MINOR
 CLEAR
 ACCEPT 'ENTER LAST NAME:' TO LAST
 ACCEPT 'ENTER FIRST NAME:' TO FIRST
 ACCEPT 'ENTER MIDDLE NAME:' TO MIDDLE
 APPEND BLANK
 CLEAR
 @ 2,10 SAY 'SEX:' GET SEX
 @ 2,16 SAY 'AGE:' GET AGE
 @ 3,10 SAY 'STREET ADDRESS:' GET STREET
 @ 4,10 SAY 'CITY, ST ZIP:' GET CITYST
 @ 5,10 SAY 'ZONE CODE:' GET ZONE

102
@ 6,10 SAY 'HOME PHONE:' GET HTELE
@ 8,10 SAY 'PLACE OF WORK:' GET PLOFWK
@ 9,10 SAY 'SCHOOL:' GET SCHOOL
@ 10,10 SAY 'RACE CODE:' GET RACE
@ 11,10 SAY 'DATE OF BIRTH (MM/DD/YY):' GET DOB
@ 12,10 SAY 'PARENT OR GUARDIAN:' GET GUARD
@ 13,10 SAY 'DOCTOR:' GET DOC
@ 14,10 SAY 'DOCTORS PHONE:' GET DOCTEL
@ 15,10 SAY 'CONTACT PERSON OTHER THAN GUARDIAN:' GET CONTACT
@ 16,10 SAY 'CONTACTS PHONE:' GET CONTEL
@ 17,10 SAY 'EXPIRATION DATE (MM/DD/YY):' GET EXPIRE
@ 18,10 SAY 'TYPE OF ACTIVITY CARD (FAC OR AC):' GET ACNOTE
READ
STORE DATE() TO TODAY
REPLACE DATE WITH TODAY, ACDATE WITH TODAY, LNAME WITH LAST
REPLACE FNAME WITH FIRST, MNAME WITH MIDDLE, ORIG WITH TODAY
ENDIF
USE B:INTEREST
APPEND BLANK
CLEAR
@ 2,10 SAY 'PLACE T NEXT TO THE APPROPRIATE INTEREST(S):'
@ 3,10 SAY 'PRESS THE CTRL KEY AND THE END KEY AT THE'
@ 4,15 SAY 'SAME TIME WHEN FINISHED'
@ 5,10 SAY 'ARTS/CRAFTS:' GET ARTS
@ 6,10 SAY 'CLERICAL:' GET CLERICAL
@ 7,10 SAY 'CHILDREN:' GET CHILDREN
@ 8,10 SAY 'COOKING AND BAKING:' GET COOKING
@ 9,10 SAY 'P.E./SWIM/DANCE:' GET PE
@ 10,10 SAY 'TELPHONEING:' GET TELE
@ 11,10 SAY 'UPKEEP/CLEANING:' GET UPKEEP
@ 12,10 SAY 'VOLUNTEER:' GET VOLUNTR
READ
REPLACE LNAME WITH LAST, FNAME WITH FIRST, MNAME WITH MIDDLE
USE B:INVOLVE
CLEAR
APPEND BLANK
@ 2,10 SAY 'PLACE T NEXT TO THE AREA(S) OF INVOLVEMENT'
@ 3,10 SAY 'PRESS THE CTRL KEY AND THE END KEY WHEN DONE'
@ 5,10 SAY 'BOARD:' GET BOARD
@ 6,10 SAY 'COMMITTEE:' GET COMMITTEE
@ 7,10 SAY 'CLASS:' GET CLASS
@ 8,10 SAY 'CLUB:' GET CLUB
@ 9,10 SAY 'RECREATION:' GET RECREATION
@ 10,10 SAY 'VOLUNTEER:' GET VOLUNTR
READ
REPLACE LNAME WITH LAST, FNAME WITH FIRST, MNAME WITH MIDDLE
CLEAR GETS
CLOSE DATABASES
RETURN

103
MEMBERSHIP RENEWAL APPLICATION PROGRAM

CLEAR
WAIT 'PRESS A FOR ADULT, OR M FOR MINOR: ' TO TYPE
IF TYPE = 'A'
 USE B:ADULT INDEX ADNAME
 REINDEX
 ACCEPT 'ENTER LAST NAME: ' TO LAST
 ACCEPT 'ENTER FIRST NAME: ' TO FIRST
 ACCEPT 'ENTER MIDDLE NAME: ' TO MIDDLE
 LOCATE FOR LNAME=LAST .AND. FNAME=FIRST .AND. MNAME=MIDDLE
 TEXT
 THE FOLLOWING IS THE RECORD OF THE RENEWING MEMBER. PLEASE
 MAKE ANY CORRECTIONS NECESSARY (INCLUDING DATES). ONCE
 CORRECTIONS ARE COMPLETE, PRESS THE CTRL KEY AND THE END
 KEY SIMULTANEOUSLY.
ENDTEXT
WAIT 'HIT ANY KEY TO VIEW RECORD' TO DUMMY
EDIT
ENDIF
IF TYPE = 'M'
 CLEAR
 USE B:MINOR INDEX MINNAME
 REINDEX
 ACCEPT 'ENTER LAST NAME: ' TO LAST
 ACCEPT 'ENTER FIRST NAME: ' TO FIRST
 ACCEPT 'ENTER MIDDLE NAME: ' TO MIDDLE
 LOCATE FOR LNAME=LAST .AND. FNAME=FIRST .AND. MNAME=MIDDLE
 TEXT
 THE FOLLOWING IS THE RECORD OF THE RENEWING MEMBER. PLEASE
 MAKE ANY CORRECTIONS (INCLUDING DATES). ONCE CORRECTIONS
 ARE COMPLETE, PRESS THE CTRL KEY AND THE END KEY
 SIMULTANEOUSLY.
ENDTEXT
WAIT 'HIT ANY KEY TO VIEW RECORD' TO DUMMY
EDIT
ENDIF
CLEAR
USE B:INTEREST
LOCATE FOR LNAME=LAST .AND. FNAME=FIRST .AND. MNAME=MIDDLE
TEXT
 THE FOLLOWING IS THE MEMBER'S INTEREST RECORD. PLEASE MAKE
ANY CORRECTIONS NECESSARY. PLACE A T NEXT TO NEW INTERESTS AND ERASE THE T NEXT TO THOSE INTERESTS WHICH ARE NO LONGER APPLICABLE. ONCE CORRECTIONS ARE COMPLETE, PRESS THE CTRL KEY AND THE END KEY SIMULTANEOUSLY.

ENDTEXT
WAIT 'PRESS ANY KEY TO CONTINUE' TO DUMMY
EDIT
CLEAR
USE B:INVOLVE
LOCATE FOR LNAME=LAST .AND. FNAME=FIRST .AND. MNAME=MIDDLE
TEXT

THE FOLLOWING IS THE MEMBER'S INVOLVEMENT RECORD. PLEASE MAKE ANY CORRECTIONS NECESSARY. PLACE A T NEXT TO NEW AREAS OF INVOLVEMENT AND ERASE THE T NEXT TO THOSE AREAS OF INVOLVEMENT WHICH ARE NO LONGER APPLICABLE. ONCE CORRECTIONS ARE COMPLETE, PRESS THE CTRL KEY AND THE END KEY SIMULTANEOUSLY.

ENDTEXT
WAIT 'PRESS ANY KEY TO CONTINUE' TO DUMMY
EDIT
CLOSE DATABASES
RETURN
NEW VOLUNTEER APPLICATION PROGRAM

CLEAR
USE B:VOLUNTEER
APPEND BLANK
@ 7,10 SAY 'ENTER LAST NAME: ' GET LNAME
@ 9,10 SAY 'ENTER FIRST NAME: ' GET FNAME
READ
STORE 0 TO AMOUNT
REPLACE TOTAL WITH AMOUNT
REPLACE MONTH WITH 0
ACCEPT 'DID THIS VOLUNTEER DONATE TIME THIS MONTH (Y/N)? ' TO TIME
IF TIME = 'Y'
 DO B:VOLUN
ENDIF
CLOSE DATABASES
RETURN
VOLUNTEER HOURS INPUT APPLICATION PROGRAM

CLEAR
USE B: VOLUNTEER
ACCEPT 'ENTER LAST NAME: ' TO LAST
ACCEPT 'ENTER FIRST NAME: ' TO FIRST
LOCATE FOR LNAME = LAST AND FNAME = FIRST
INPUT 'ENTER THIS MONTHS TOTAL HOURS: ' TO HOURS
REPLACE TOTAL WITH TOTAL + HOURS
IF MONTH(DATE()) = 1
 REPLACE JANTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 2
 REPLACE FEBTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 3
 REPLACE MARTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 4
 REPLACE APLTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 5
 REPLACE MAYTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 6
 REPLACE JUNTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 7
 REPLACE JULTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 8
 REPLACE AUGTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 9
 REPLACE SEPTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 10
 REPLACE OCTTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 11
 REPLACE NOVTOT WITH HOURS
ENDIF
IF MONTH(DATE()) = 12
 REPLACE DECTOT WITH HOURS
ENDIF
IF MONTH > 0
 IF MONTH(DATE()) < MONTH
STORE MONTH(DATE()) +12 TO DATE
ELSE
STORE MONTH(DATE()) TO DATE
ENDIF
STORE DATE - MONTH -1 TO N
DO WHILE N>0
Q=M NTH +N
IF Q>12
STORE Q +12 TO Q
ENDIF
IF Q =1
REPLACE JANTOT WITH 0
ENDIF
IF Q =2
REPLACE FEBTOT WITH 0
ENDIF
IF Q = 3
REPLACE MArTOT WITH 0
ENDIF
IF Q = 4
REPLACE APpTOT WITH 0
ENDIF
IF Q = 5
REPLACE MAYTOT WITH 0
ENDIF
IF Q = 6
REPLACE JUnTOT WITH 0
ENDIF
IF Q = 7
REPLACE JULTOT WITH 0
ENDIF
IF Q = 8
REPLACE AUGTOT WITH 0
ENDIF
IF Q = 9
REPLACE SEpTOT WITH 0
ENDIF
IF Q = 10
REPLACE OCTTOT WITH 0
ENDIF
IF Q = 11
REPLACE NOVTOT WITH 0
ENDIF
IF Q = 12
REPLACE DECTOT WITH 0
ENDIF
N = N-1
ENDDO
ENDIF
REPLACE MONTH WITH MONTH(DATE())
CLOSE DATABASES
RETURN
NEW DONOR APPLICATION PROGRAM

CLEAR
USE B:PROSPECT
APPEND BLANK
@ 5,10 SAY 'ENTER DONORS NAME:' GET DONOR
@ 6,10 SAY 'ENTER CONTACT PERSONS NAME:' GET CONNAME
@ 7,10 SAY 'CONTACT OR DONORS TITLE:' GET TITLE
@ 8,10 SAY 'STREET ADDRESS:' GET STREET
@ 9,10 SAY 'CITY, ST ZIP:' GET CITYST
@ 10,10 SAY 'WHERE PREFERENCES TO BE CONTACTED (H OR W):' GET CONPREF
@ 11,10 SAY 'PROSPECTS AGE (APPROXIMATELY):' GET PROSAGE
@ 12,10 SAY 'PROSPECTS EDUCATION:' GET PROSED
@ 13,10 SAY 'PROSPECTS FIELD OF STUDY:' GET PROSTUD
@ 14,10 SAY 'PROSPECTS RELIGIOUS AFFILIATION:' GET PROREL
@ 15,10 SAY 'SPOUSES NAME:' GET SPNAME
@ 16,10 SAY 'SPOUSES AGE (APPROXIMATELY):' GET SPAGE
@ 17,10 SAY 'SPOUSES EDUCATION:' GET SPED
@ 18,10 SAY 'SPOUSES FIELD OF STUDY:' GET SPSTUD
@ 19,10 SAY 'NUMBER OF CHILDREN:' GET NOCH
@ 20,10 SAY 'PROSPECTS INTERESTS:' GET PROINT
@ 21,10 SAY 'COMMENTS:' GET COMM
@ 22,10 SAY 'INVOLVEMENT WITH OTHER ORGANIZATIONS:' GET OTHERS
@ 23,10 SAY 'KNOWN WELL BY:' GET KNOWN
@ 24,10 SAY 'SOLICITOR:' GET SOLIC
READ
CLEAR GETS
ACCEPT 'WAS A DONATION OR A PLEDGE GIVEN (Y/N)?' TO GIVER
IF GIVER = 'Y'
 DO B:GIVING
ENDIF
CLOSE DATABASES
RETURN
DONATION OR PLEDGE APPLICATION PROGRAM

CLEAR
ACCEPT 'ENTER DONORS NAME:' TO NAME
ACCEPT 'ENTER P FOR A PLEDGE, OR D FOR DONATION:' TO TYPE
IF TYPE = 'P'
 DO B:PROMISE
ENDIF
IF TYPE = 'D'
 DO B:DONATE
ENDIF
CLOSE DATABASE
RETURN
PLEDGE APPLICATION PROGRAM

CLEAR
ACCEPT 'ENTER THE PURPOSE:' TO USE
ACCEPT 'ENTER WHO HANDLED THE DONATION:' TO WHO
ACCEPT 'ENTER THE DATE (MM/DD/YY):' TO WHEN
ACCEPT 'IS THIS THE ORIGINAL PLEDGE (Y/N)?:' TO ORIGIN
IF ORIGIN = 'N'
 USE B:PROSPECT
 LOCATE FOR DONOR = NAME
 STORE PAMT TO AMOUNT
 STORE POUT TO OLDOUT
 INPUT 'ENTER THE AMOUNT GIVEN NOW:' TO PLYED
 STORE OLDOUT-PLYED TO OUT
 REPLACE POUT WITH OUT
ENDIF
IF ORIGIN = 'Y'
 INPUT 'ENTER THE AMOUNT PLEDGED:' TO AMOUNT
 ACCEPT 'WAS ANY OF THE PLEDGE GIVEN AT THIS TIME (Y/N)?:' TO NOW
 IF NOW = 'Y'
 INPUT 'HOW MUCH WAS GIVEN?:' TO PLYED
 STORE AMOUNT-PLYED TO OUT
 ENDIF
 IF NOW = 'N'
 STORE 0 TO PLYED
 STORE AMOUNT TO OUT
 ENDIF
CLEAR
USE B:PLEDGES
APPEND BLANK
REPLACE DONOR WITH NAME, AMT WITH AMOUNT
REPLACE OUTSTD WITH OUT, PAID WITH PLYED
ENDIF
CLOSE DATABASES
RETURN

112
DONATION APPLICATION PROGRAM

CLEAR
USE B:GIVEN
APPEND BLANK
REPLACE DONOR WITH NAME
ACCEPT 'ENTER THE DATE (MM/DD/YY):' TO WHEN
INPUT 'ENTER AMOUNT GIVEN:' TO AMOUNT
ACCEPT 'ENTER THE PURPOSE:' TO USE
ACCEPT 'WHO HANDLED THE DONATION?:' TO WHO
ACCEPT 'WAS A RECEIPT GIVEN (Y/N)?:' TO CARBON
ACCEPT 'WAS A LETTER SENT (Y/N)?:' TO PAPER
REPLACE DATE WITH CTOD(WHEN), AMT WITH AMOUNT
REPLACE PURPOSE WITH USE, DONEBY WITH WHO
IF CARBON = 'Y'
 REPLACE RECPT WITH .T.
ENDIF
IF PAPER = 'Y'
 REPLACE LETTER WITH .T.
ENDIF
CLOSE DATABASES
RETURN
MONTHLY PROCESSES APPLICATION PROGRAM

USE A:ADULT
GO TOP
STORE MONTH(DATE())+1 TO MNEXT
STORE YEAR(DATE()) TO YRNOW
LABEL FORM ADEXPIRE TO PRINT FOR MNEXT=MONTH(EXPIRE);
 .AND. YRNOW=YEAR(EXPIRE)
 EJECT
USE B:MINOR
LABEL FORM MINEXPIRE TO PRINT FOR MNEXT=MONTH(EXPIRE);
 .AND. YRNOW=YEAR(EXPIRE)
USE A:ADULT
IF MONTH(DATE())=1
 STORE 13 TO NOW
ENDIF
IF MONTH(DATE())>1
 STORE MONTH(DATE()) TO NOW
ENDIF
GO TOP
DO WHILE .NOT. EOF()
 IF NOW>MONTH(EXPIRE).AND. YEAR(DATE())>=YEAR(EXPIRE)
 STORE LNAME TO LAST
 STORE FName TO FIRST
 STORE MNAME TO MIDDLE
 STORE STREET TO ADD
 STORE CITYST TO TOWN
 STORE ZONE TO NUMB
 STORE HTLE TO HOME
 STORE OCCUP TO JOB
 STORE PLOFWRK TO WHERE
 STORE WTELE TO WORK
 STORE DATE TO DAY
 STORE SEX TO GENDER
 STORE AGE TO OLDNESS
 STORE EDUC TO DEGREE
 STORE STATUS TO TYPE
 STORE NOCH TO TOOMANY
 STORE DOB TO HOWOLD
 STORE YRSAL TO WHEN
 STORE RACE TO ETHNIC
 STORE SENIOR TO OVER65
 STORE VOTE TO YEAR
 STORE EXPIRE TO THEEND
 STORE ACDATE TO GIVEN
 STORE ACNOTE TO KIND
 STORE ORIG TO ORIGIN
 ENDIF
114
DELETE
USE B:XPIRAD
APPEND BLANK
 REPLACE LNAME WITH LAST, FNAME WITH FIRST, MNAME WITH MIDDLE
 REPLACE STREET WITH ADD, CITYST WITH TOWN, ZONE WITH NUMB
 REPLACE HTELE WITH HOME, OCCUP WITH JOB, PLOFWK WITH WHERE
 REPLACE WTELE WITH WORK, DATE WITH DAY, SEX WITH GENDER
 REPLACE AGE WITH OLDNESS, EDUC WITH DEGREE, STATUS WITH TYPE
 REPLACE NOCH WITH TOO MANY, DOB WITH HOW OLD, YRSAL WITH WHEN
 REPLACE RACE WITH ETHNIC, SENIOR WITH OVER 65, VOTE WITH YEAR
 REPLACE EXPIRE WITH THE END, AC DATE WITH GIVEN
 REPLACE ACNOTE WITH KIND, ORIG WITH ORIGIN
ENDIF
USE B:ADULT
SKIP
ENDIF
USE B:MINOR
IF MONTH(DATE())=1
 STORE 13 TO NOW
ENDIF
 STORE MONTH(DATE()) TO NOW
ENDIF
GOTO
DO WHILE .NOT. EOF()
 IF NOW > MONTH(EXPIRE).AND. YEAR(DATE())>=YEAR(EXPIRE)
 STORE LNAME TO LAST
 STORE FNAME TO FIRST
 STORE MNAME TO MIDDLE
 STORE STREET TO ADD
 STORE CITYST TO TOWN
 STORE ZONE TO NUMB
 STORE HTELE TO HOME
 STORE PLOFWK TO JOB
 STORE DATE TO DAY
 STORE AGE TO OLDNESS
 STORE SEX TO GENDER
 STORE DOB TO HOW OLD
 STORE RACE TO ETHNIC
 STORE GUARD TO PROTECT
 STORE SCHOOL TO BUILD
 STORE DOC TO DOCTOR
 STORE DOCTEL TO DTELE
 STORE CONTACT TO OTHER
 STORE CONTEL TO CTELE
 STORE ORIG TO ORIGIN
 STORE EXPIRE TO THE END
 STORE AC DATE TO GIVEN
 STORE ACNOTE TO KIND
 DELETE
 ENDW
USE B: XPIRMIN
APPEND BLANK
REPLACE LNAME WITH LAST, FNAME WITH FIRST, MNAME WITH MIDDLE
REPLACE STREET WITH ADD, CITYST WITH TOWN, ZONE WITH NUMB
REPLACE HTELE WITH HOME, PLOFWK WITH JOB, DATE WITH DAY
REPLACE AGE WITH OLDNESS, SEX WITH GENDER, DOB WITH HOWOLD
REPLACE RACE WITH ETHNIC, GUARD WITH PROTECT, SCHOOL WITH
BUILD
REPLACE DOC WITH DOCTOR, DOCTEL WITH DTELE, CONTACT WITH
OTHER
REPLACE NONTEL WITH CTELE, ORIG WITH ORIGIN, EXPIRE WITH
THEEND
REPLACE ACDATE WITH GIVEN, ACNOTE WITH KIND
ENDIF
USE B:MINOR
SKIP
ENDDO
USE B:VOLUNTEER
CLEAR
STORE MONTH(DATE()) TO WHICH
GO TOP
DO WHILE NOT. EOF()
IF WHICH = 1
DISPLAY OFF LNAME, FNAME, TOTAL, JANTOT TO PRINT
ENDIF
IF WHICH = 2
DISPLAY OFF LNAME, FNAME, TOTAL, FEBTOT TO PRINT
ENDIF
IF WHICH = 3
DISPLAY OFF LNAME, FNAME, TOTAL, MARTOT TO PRINT
ENDIF
IF WHICH = 4
DISPLAY OFF LNAME, FNAME, TOTAL, APRTOT TO PRINT
ENDIF
IF WHICH = 5
DISPLAY OFF LNAME, FNAME, TOTAL, MAYTOT TO PRINT
ENDIF
IF WHICH = 6
DISPLAY OFF LNAME, FNAME, TOTAL, JUNTOT TO PRINT
ENDIF
IF WHICH = 7
DISPLAY OFF LNAME, FNAME, TOTAL, JULTOT TO PRINT
ENDIF
IF WHICH = 8
DISPLAY OFF LNAME, FNAME, TOTAL, AUGTOT TO PRINT
ENDIF
IF WHICH = 9
DISPLAY OFF LNAME, FNAME, TOTAL, SEPTOT TO PRINT
ENDIF

116
IF WHICH = 10
 DISPLAY OFF LNAME, FNAME, TOTAL, OCTTOT TO PRINT
ENDIF
IF WHICH = 11
 DISPLAY OFF LNAME, FNAME, TOTAL, NOVTOT TO PRINT
ENDIF
IF WHICH = 12
 DISPLAY OFF LNAME, FNAME, TOTAL, DECTOT TO PRINT
ENDIF
SKIP
ENDDO
CLOSE DATABASES
RETURN
MAILING LIST APPLICATION PROGRAM

USE B:ADULT
GO TOP
LABEL FORM MAIL TO PRINT
EJECT
USE B:MINOR
LABEL FORM MAIL2 TO PRINT
EJECT
CLOSE DATABASES
RETURN
ANNUAL REPORT APPLICATION PROGRAM

CLEAR
USE B:ADULT
GO TOP
DO WHILE .NOT. EOF()
 IF MONTH(DOB) > MONTH(DATE()) .AND. MONTH(DOB) <> 0
 REPLACE AGE WITH YEAR(DATE()) - YEAR(DOB)
 ENDIF
 IF MONTH(DOB) < MONTH(DATE()) .AND. MONTH(DOB) <> 0
 REPLACE AGE WITH YEAR(DATE()) - YEAR(DOB) - 1
 ENDIF
SKIP
ENDDO
COUNT FOR SEX = 'F' .AND. AGE > 18 .AND. AGE <= 34 TO F1834
COUNT FOR SEX = 'M' .AND. AGE > 18 .AND. AGE <= 34 TO M1834
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) = YEAR(DATE()) .AND.;
 AGE > 18 .AND. AGE <= 34 TO FN1834
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) = YEAR(DATE()) .AND.;
 AGE > 18 .AND. AGE <= 34 TO MN1834
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) < YEAR(DATE()) .AND.;
 AGE > 18 .AND. AGE <= 34 TO FO1834
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) < YEAR(DATE()) .AND.;
 AGE > 18 .AND. AGE <= 34 TO MO1834
COUNT FOR SEX = 'F' .AND. AGE > 34 .AND. AGE <= 59 TO F3559
COUNT FOR SEX = 'M' .AND. AGE > 34 .AND. AGE <= 59 TO M3559
COUNT FOR SEX = 'F' .AND. AGE >= 60 TO F60
COUNT FOR SEX = 'M' .AND. AGE >= 60 TO M60
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) = YEAR(DATE()) .AND.;
 AGE >= 34 .AND. AGE <= 59 TO FN3559
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) = YEAR(DATE()) .AND.;
 AGE >= 34 .AND. AGE <= 59 TO MN3559
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) < YEAR(DATE()) .AND.;
 AGE >= 34 .AND. AGE <= 59 TO FO3559
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) < YEAR(DATE()) .AND.;
 AGE >= 34 .AND. AGE <= 59 TO MO3559
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) = YEAR(DATE()) .AND. AGE >= 60 TO F060
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) = YEAR(DATE()) .AND. AGE >= 60 TO M060
COUNT FOR SEX = 'F' .AND. YEAR(ORIG) < YEAR(DATE()) .AND. AGE >= 60 TO FN60
COUNT FOR SEX = 'M' .AND. YEAR(ORIG) < YEAR(DATE()) .AND. AGE >= 60 TO;
 MN60
COUNT FOR RACE = 'W' TO WHITE
COUNT FOR RACE = 'A' TO ASIAN
COUNT FOR RACE = 'N' TO NATIVE
COUNT FOR RACE='B' TO BLACK
COUNT FOR RACE='H' TO HISPAN
COUNT FOR RACE='O' TO OTHER
COUNT FOR ZONE='1' TO ZONE1
COUNT FOR ZONE='2' TO ZONE2
COUNT FOR ZONE='3' TO ZONE3
COUNT FOR ZONE='4' TO ZONE4
COUNT FOR ZONE='5' TO ZONE5
COUNT FOR ZONE='6' TO ZONE6
COUNT FOR ZONE='7' TO ZONE7
USE B:MINOR
DO WHILE .NOT. EOF()
 IF MONTH(DOB)>MONTH(DATE()) .AND. MONTH(DOB)<>0
 REPLACE AGE WITH YEAR(DATE())-YEAR(DOB)
 ENDF
 IF MONTH(DOB)<MONTH(DATE()) .AND. MONTH(DOB)<>0
 REPLACE AGE WITH YEAR(DATE())-YEAR(DOB)-1
 ENDF
 SKIP
COUNT FOR SEX='F' .AND. AGE<6 TO F6
COUNT FOR SEX='M' .AND. AGE<6 TO M6
COUNT FOR SEX='F' .AND. YEAR(ORIG)=YEAR(DATE()) .AND. AGE<6 TO FN6
COUNT FOR SEX='M' .AND. YEAR(ORIG)=YEAR(DATE()) .AND. AGE<6 TO MN6
COUNT FOR SEX='F' .AND. YEAR(ORIG)<YEAR(DATE()) .AND. AGE<6 TO FO6
COUNT FOR SEX='M' .AND. YEAR(ORIG)<YEAR(DATE()) .AND. AGE<6 TO MO6
COUNT FOR SEX='F' .AND. AGE>=6 .AND. AGE<=11 TO F611
COUNT FOR SEX='M' .AND. AGE>=6 .AND. AGE<=11 TO M611
COUNT FOR SEX='F' .AND. AGE>=6 .AND. AGE<=11 .AND.;
 YEAR(ORIG)=YEAR(DATE()) TO FN611
COUNT FOR SEX='M' .AND. AGE>=6 .AND. AGE<=11 .AND.;
 YEAR(ORIG)=YEAR(DATE()) TO MN611
COUNT FOR SEX='F' .AND. AGE>=6 .AND. AGE<=11 .AND.;
 YEAR(ORIG)<YEAR(DATE()) TO FO611
COUNT FOR SEX='M' .AND. AGE>=6 .AND. AGE<=11 .AND.;
 YEAR(ORIG)<YEAR(DATE()) TO MO611
COUNT FOR SEX='F' .AND. AGE>=12 .AND. AGE<=14 TO F1214
COUNT FOR SEX='M' .AND. AGE>=12 .AND. AGE<=14 TO M1214
COUNT FOR SEX='F' .AND. AGE>=12 .AND. AGE<=14 .AND.;
 YEAR(ORIG)=YEAR(DATE()) TO FN1214
COUNT FOR SEX='M' .AND. AGE>=12 .AND. AGE<=14 .AND.;
 YEAR(ORIG)=YEAR(DATE()) TO MN1214
COUNT FOR SEX='F' .AND. AGE>=12 .AND. AGE<=14 .AND.;
 YEAR(ORIG)<YEAR(DATE()) TO FO1214
COUNT FOR SEX='M' .AND. AGE>=12 .AND. AGE<=14 .AND.;
 YEAR(ORIG)<YEAR(DATE()) TO MO1214
COUNT FOR SEX='F' .AND. AGE>=15 .AND. AGE<=17 TO F1517
COUNT FOR SEX='M' .AND. AGE>=15 .AND. AGE<=17 TO M1517
COUNT FOR SEX='F' .AND. AGE>=15 .AND. AGE<=17 .AND. ;
YEAR(ORIG)=YEAR(DATE()) TO FN1517
COUNT FOR SEX='M' .AND. AGE>=15 .AND. AGE<=17 .AND. ;
YEAR(ORIG)=YEAR(DATE()) TO MN1517
COUNT FOR SEX='F' .AND. AGE>=15 .AND. AGE<=17 .AND. ;
YEAR(ORIG)<YEAR(DATE()) TO FO1517
COUNT FOR SEX='M' .AND. AGE>=15 .AND. AGE<=17 .AND. ;
YEAR(ORIG)<YEAR(DATE()) TO MO1517
COUNT FOR RACE='W' TO MWHITE
COUNT FOR RACE='A' TO MASIAN
COUNT FOR RACE='N' TO MNATIVE
COUNT FOR RACE='B' TO MBLACK
COUNT FOR RACE='H' TO MHISPAN
COUNT FOR RACE='O' TO MOTHER
COUNT FOR ZONE='1' TO MZONE1
COUNT FOR ZONE='2' TO MZONE2
COUNT FOR ZONE='3' TO MZONE3
COUNT FOR ZONE='4' TO MZONE4
COUNT FOR ZONE='5' TO MZONE5
COUNT FOR ZONE='6' TO MZONE6
COUNT FOR ZONE='7' TO MZONE7
DO B=ANMIN
RETURN

121
OUTPUT OF ANNUAL REPORT APPLICATION PROGRAM

```
SET MARGIN TO 10
STORE YEAR (DATE()) TO PERIOD
SET PRINT ON

ANNUAL SUMMARY

'SALINA KANSAS YWCA', PERIOD

'MEMBERS (WOMEN)    18-34   35-59   60+'

'NUMBER ON REGISTER   ',STR(F1834,3)+'   +STR(F3559,3)+'   +STR(F60,3)
'NUMBER OF NEW MEMBERS',STR(FN1834,3)+'   +STR(FN3559,3)+'   +STR(FN60,3)
'NUMBER OF RENEWALS   ',STR(F01834,3)+'   +STR(F03559,3)+'   +STR(F060,3)

'MEMBERS (TEENS)     12-14   15-17'

'NUMBER ON REGISTER   ',STR(F1214,3)+'   +STR(F1517,3)
'NUMBER OF NEW MEMBERS',STR(FN1214,3)+'   +STR(FN1517,3)
'NUMBER OF RENEWALS   ',STR(F01214,3)+'   +STR(F01517,3)
```

122
<table>
<thead>
<tr>
<th>Category</th>
<th>Age Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMBERS (GIRLS)</td>
<td></td>
</tr>
<tr>
<td>Under 6</td>
<td>6-11</td>
</tr>
<tr>
<td>Number on Register</td>
<td>(\text{STR(F6,3)}) + (\text{STR(F611,3)})</td>
</tr>
<tr>
<td>Number of New Members</td>
<td>(\text{STR(FN6,3)}) + (\text{STR(FN611,3)})</td>
</tr>
<tr>
<td>Number of Renewals</td>
<td>(\text{STR(F06,3)}) + (\text{STR(F0611,3)})</td>
</tr>
<tr>
<td>NONMEMBERS (MEN)</td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>35-59</td>
</tr>
<tr>
<td>60+</td>
<td></td>
</tr>
<tr>
<td>Number on Register</td>
<td>(\text{STR(M1834,3)}) + (\text{STR(M3559,3)}) + (\text{STR(M60,3)})</td>
</tr>
<tr>
<td>Number of New Members</td>
<td>(\text{STR(MN1834,3)}) + (\text{STR(MN3559,3)}) + (\text{STR(MN60,3)})</td>
</tr>
<tr>
<td>Number of Renewals</td>
<td>(\text{STR(M01834,3)}) + (\text{STR(M03559,3)}) + (\text{STR(M060,3)})</td>
</tr>
<tr>
<td>NONMEMBERS (TEENS)</td>
<td></td>
</tr>
<tr>
<td>12-14</td>
<td>15-17</td>
</tr>
<tr>
<td>Number on Register</td>
<td>(\text{STR(M1214,3)}) + (\text{STR(M1517,3)})</td>
</tr>
<tr>
<td>Number of New Members</td>
<td>(\text{STR(MN1214,3)}) + (\text{STR(MN1517,3)})</td>
</tr>
<tr>
<td>Number of Renewals</td>
<td>(\text{STR(M01214,3)}) + (\text{STR(M01517,3)})</td>
</tr>
<tr>
<td>NONMEMBERS (BOYS)</td>
<td></td>
</tr>
<tr>
<td>Under 6</td>
<td>6-11</td>
</tr>
<tr>
<td>Number on Register</td>
<td>(\text{STR(M6)}) + (\text{STR(M611)})</td>
</tr>
</tbody>
</table>

123
? 'NUMBER OF NEW MEMBERS' , STR(MN6) + ' + STR(MN611)
? 'NUMBER OF RENEWALS' , STR(MO6) + ' + STR(MO611)

EJECT

? 'RACIAL/ETHNIC GROUP' TOTAL'
? '---'
? 'ASIAN AMERICAN' , STR(ASIAN+MASIAN,3)
? 'NATIVE AMERICAN' , STR(NATIVE+MNATIVE,3)
? 'BLACK' , STR(BLACK+MBLACK,3)
? 'HISPANIC' , STR(HISPAN+MHISPAN,3)
? 'WHITE' , STR(WHITE+MWHITE,4)
? 'OTHER' , STR(OTHER+MOTHER,3)

? 'ZONES' TOTAL'
? '--------------------------------------'
? 'ZONE 1' , STR(ZONE1+MZONE1,3)
? 'ZONE 2' , STR(ZONE2+MZONE2,3)
? 'ZONE 3' , STR(ZONE3+MZONE3,3)
? 'ZONE 4' , STR(ZONE4+MZONE4,3)
? 'ZONE 5' , STR(ZONE5+MZONE5,3)
? 'ZONE 6' , STR(ZONE6+MZONE6,3)
? 'ZONE 7' , STR(ZONE7+MZONE7,3)

EJECT
SET PRINT OFF
CLOSE DATABASES
RETURN TO MASTER
AN EXERCISE IN DATABASE CUSTOMIZED PROGRAMMING
TO COMPARE THE SMART DATA MANAGER AND dBASEIII

by

AMY LYNN FITZGERALD

B. S., Kansas State University, 1983

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985
ABSTRACT

Every organization must arrange information so that it may be retrieved when necessary. Database technology is one method to handle this task. The purpose of this master's report is to evaluate the database management system known as the Smart Data Manager. As a means for comparison, dBaseIII is chosen as the market standard of microcomputer database software. The methodology used involves the logical design, its adjustment to meet the constraints of the software, implementation of the design, and comparisons. The logical design includes specification of data items needed and processes to manipulate the data in order to achieve the needed results. The adjustment of the logical design to meet the constraints of the system is known as the physical design. Once adjustments have been made, each language is implemented via coding. The comparisons, both objective and subjective, are completed next, and then conclusions are made. When making comparisons, it is found that the Smart Data Manager and dBaseIII are objectively similar. However, subjective differences exist. The Smart Data Manager executes slightly slower than dBaseIII; but its ease in use, due to the fact that it is menu-driven, may prove to be more important to the infrequent or novice user.