AN APPROACH OF PARALLEL COMPUTATION
ON FACTORING PROGRAMS

by

JIEH-SHWU LIN
B.S., Chinese Cultural College (Taiwan, R.O.C), 1978

A MASTER'S REPORT

submitted in partial fulfillment of the
requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

Major Professor
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Paul S. Fisher, for innumerable ways he provided ideas, assistance, patience, and consideration throughout my research project.

Thanks are due also to the committee members, Dr. David Gustafson, and Dr. Rodney Bates. I appreciate the time they took out of their busy schedules to serve on this committee.

A special thank-you is given to Dr. James Case for his interest and enthusiasm in providing many suggestions on this work.

Finally, specially gratitude is given to my mother, father, and my entire family for their love and support to make possible the completion of this report.
TABLE OF CONTENTS

CHAPTER I INTRODUCTION ... 3

CHAPTER II PARALLEL COMPUTATION 5
 2.1 Introduction ... 5
 2.2 Benstein's Scheme for Parallel Computation 6
 2.3 Ramamcorthy & Leungs' Scheme for Parallel Execution 8
 2.4 Detection of Parallel Components Within Arithmetic Expressions .. 12

CHAPTER III FACTORING ON FINITELY INDUCTIVE SEQUENCES 19
 3.1 Introduction ... 19
 3.2 Heuristics and Examples 22
 3.3 Applications .. 31

CHAPTER IV PROGRAM FACTORIZATION 32
 4.1 Introduction ... 32
 4.2 Difficult Programs .. 33

CHAPTER V CONCLUSIONS ... 47

SELECTED BIBLIOGRAPHY ... 49
CHAPTER I

INTRODUCTION

A program is a collection of computations related to each other with the needed of data values that are generated and consumed. Obviously, the execution order of the computations is not simply stated by the program but rather by the data dependencies, i.e., both static and dynamic structures are vital factors which effect the program executions, and are even more important in the parallel computations.

The main reason for today's parallelism is obtained by the following motives(21):

1. Increase the speed of computation beyond the limit imposed by technological limitations.
2. Reduction of turnaround time of jobs.
3. Reduction of memory and time requirements for housekeeping chores.
4. An increase in simultaneous service to many users.
5. Improved performance in a uniprocessor multiprogrammed environment.

Within an individual program, parallelism can exist at several levels, i.e., the independent programs can be processed concurrently which is synonymous with the
conventional meaning of multiprocessing in the multiprogrammed environment. We are considered to intra-program parallelism as opposed to the inter-program parallelism. Intra-program parallelism refers to the type of processing in which a single program can be partitioned into tasks that can be performed in parallel.

On the other hand, natural sequences seem to have a regularity which is neither statistical nor analytic, but combinatorical. In Chapter III, a new kind of combinatorical regularity of natural sequences of symbols, called factoring, presented by Case & Fisher(7), is introduced.

In this paper, we will first introduce some parallel execution algorithms (Chapter II), followed by a factoring technique, and then give some examples to show how the program, after properly been factored, can be executed in parallel.
CHAPTER II

PARALLEL COMPUTATION

2.1 INTRODUCTION

A sequential program has the statements coded serially as if they are to be executed by a single processor one at a time. However, in this section, some schemes for parallel executions of sequential programs will be described.

In a sequential program, statements can be considered as only the following two categories:

(i) Assignment Statements --
An assignment statement has the form of "X <- Expr", where X is a variable defined by the arithmetic or logical expression named Expr.

(ii) Branch Statements --
A branch statement is defined by either "IF Cond THEN Statements" or "GO TO Statements", where Cond is a conditional expression.

Therefore, any loop statements in a dynamic structured program, can be written as simple assignments and branch statements by iteration.
2.2 BENSTEIN'S SCHEME FOR PARALLEL COMPUTATION

There are some schemes for the parallel execution of a sequential program which require a procedure to detect parallelism in a program before its execution. Here, we like to introduce Benstein's Algorithm.

Benstein (6,22) presented a model for FORTRAN language and a set of conditions to determine whether or not two successive portions of a given program can be executed in parallel and still produce the same results. He considers two machine models, one in which every processor communicates directly with a common main memory and one in which each processor has a slave memory to take care of the information coming from or going to main memory. The variables are developed into four categories:

1) The location is only fetched during execution.
2) The location is only stored during execution.
3) The location which is first fetched and then stored.
4) The location which is first stored and then fetched.
(These are denoted as Wi, Xi, Yi, Zi sets respectively.)

If the data on successive three portions of a program can be satisfied by the relations:
(1) \((W1 \cup Y1 \cup Z1) \cap (X2 \cup Y2 \cup Z2) = \phi\)
(2) \((X1 \cup Y1 \cup Z1) \cap (W2 \cup Y2 \cup Z2) = \phi\)
(3) \(X1 \cap X2 \cap (W3 \cup Y3) = \phi\)

then their relationships are independent, so the first two portions can be executed in parallel.

However, these schemes have two restrictions: (i) the parallel executable statements share limited variable space (ii) the processors executing them do not communicate with each other. Ramamoorthy & Leung represented a scheme which relaxes the restrictions.
2.3 RAMAMCORTHY & LEUNG'S SCHEME FOR PARALLEL EXECUTION

They(22) proposed a scheme having monitors which preserve the inherent precedence relation among statements. There are some static information about the use of variable which will be generated before execution to aid the monitoring procedure. Also, the monitoring process requires dynamic information to trace the execution order of statements.

The precedence among statements which must be preserved is related to both the execution order and data dependency. They presented a monitoring process which is aided by two pieces of information: (i) the reference table which indicates how a variable is used in the program statements, and (ii) a stack of trace vectors which keeps track of the execution order of statements.

Given an example assignment statement block as following:

\begin{align*}
S1: & \quad A(I, J) = 1.0 \\
S2: & \quad X = X + I \\
S3: & \quad I = I - 1 \\
S4: & \quad J = J - 1 \\
S5: & \quad Y(I) = I + X \\
S6: & \quad Z(I, J) = I \times J
\end{align*}
every element in the table is denoted as $RT(X, Si)$, where X is a variable name and Si is a statement label, such as

$RT(X, Si) = 00$, if X is not referenced in Si.

$RT(X, Si) = 01$, if X is read in Si.

$RT(X, Si) = 10$, if X is updated in Si.

$RT(X, Si) = 11$, if X is read and updated in Si.

the reference table for the above program block then can be shown as:

$$
\begin{array}{ccccccc}
S1 & S2 & S3 & S4 & S5 & S6 \\
\hline
A & 10 & 00 & 00 & 00 & 00 & 00 \\
I & 01 & 01 & 11 & 00 & 01 & 01 \\
J & 01 & 00 & 00 & 11 & 00 & 01 \\
X & 00 & 11 & 00 & 00 & 01 & 00 \\
Y & 00 & 00 & 00 & 00 & 10 & 00 \\
Z & 00 & 00 & 00 & 00 & 00 & 10 \\
\end{array}
$$

Trace vectors convey two messages: (i) They show whether a statement in the execution route has been completed or not. (ii) They reveal the execution order of statements. An element of the trace vector is denoted as $TV(u, Si)$, where Si is a statement label and u indicates a trace interval. A new trace interval is added when a backward branch is in effect. The element $TV(u, Si) = 1$ means that Si is being executed in interval u. $TV(u, Si) = 0$ implies the execution of Si is completed or Si does not appear in the execution route in interval u.
Given an example program graph:

the execution route and the possible sequence of trace vectors will be:

```
trace vector of S1 S2 S3 S4 S5 S6
1 1 1 1 1 1
*result of S2 branches to S5
1 0 0 0 1 1
*result of S6 branches to S3
1 0 0 1 0 1
*execution of S1 in interval 1 completed
trace interval 2
0 0 0 0 0 1
0 0 1 1
*result of S4 branches to S1
0 0 0 0 1 0
0 0 1 1
*execution of S5 in interval 1 completed
trace interval 3
0 0 0 1 1 0
0 0 1 0 0 0
```

The trace vectors will be updated frequently during execution to keep track of the execution order of statements. We consider three cases in updating the trace
vectors.

(1) When a statement \(S_i \) is fetched for execution, the corresponding \(TV(u, S_i) \) will be set to one. There is no change in trace interval.

(2) When a statement \(S_m \) is fetched as a result of forward branching from statement \(S_l \), the statements between \(S_l \) and \(S_m \) are not covered in the execution route. Hence, for all \(S_l < S_i < S_m \), \(TV(u, S_i) \) will be reset to zero and \(TV(u, S_m) = 1 \). There is no change in trace interval.

(3) A backward branch from statement \(S_m \) to \(S_l \) means that some statement \(S_k \), such that \(S_l < S_k < S_m \), may precede \(S_l \) in execution order. To account for this fact, a new trace interval \(u+1 \) will be created when \(S_l \) is fetched for execution.

Statements in different trace intervals then can be executed at the same time.

By using a variable reference table and a stack of trace vectors one can determine the execution order of statements, and obtain the shared variable sets of statements. One then can preserve the direct precedence relations and execute a sequential program correctly.
2.4 DETECTION OF PARALLEL COMPONENTS WITHIN ARITHMETIC EXPRESSIONS

Given an expression A+B+C+D*E+F+G+H, there are three different algorithms that can be used to compute the arithmetic expression in parallel. Those are introduced in this section (15, 21, 23).

(1) Hellerman's algorithm

This algorithm (15) assumes that the input string is written in reverse Polish notation and contains only binary operators. The string is scanned from left to right replacing by temporary results each occurrence of adjacent operands immediately followed by an operator. Those temporary results will be considered as operands during the next passes. Temporary results generated during a given pass are said to be at the same level and therefore can be executed in parallel. The compilation of the given expression listed above is shown as follows:

<table>
<thead>
<tr>
<th>input string after the i-th pass</th>
<th>temporary results during the i-th pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 AB+C+DE*F++G+H+</td>
<td>R1 = A+B; R2 = D*E</td>
</tr>
<tr>
<td>1 R1C+ R2F++G+H+</td>
<td>R3 = R1+C; R4 = R2*F</td>
</tr>
<tr>
<td>2 R3R4+G+H+</td>
<td>R5 = R3+R4</td>
</tr>
<tr>
<td>3 R5G+H+</td>
<td>R6 = R5+G</td>
</tr>
<tr>
<td>4 R6H+</td>
<td>R7 = R6+H</td>
</tr>
<tr>
<td>5 R7</td>
<td></td>
</tr>
</tbody>
</table>
level

\[
\begin{array}{c}
R7 \\
+ \\
H \\
+ \\
G \\
+ \\
C * \\
* \\
R2 \\
+ \\
R1 \\
A \\
B D \\
E \\
\end{array}
\]

(the parallel computation using Hellerman's)

The algorithm seems simple and fast. However, it is difficult to implement for it requires the Polish notation for input string, and it is unable to handle operators which are not commutative.

(2) Squire's algorithm

This algorithm begins with the rightmost symbol of the input string to scan, and proceeds from right to left until an operator is found whose priority is lower than that
of the previously scanned operator (a substring is then formed). Then a left to right scan proceeds the same way to search for the lower priority operator thing in the substring. And the temporary result replaces a pair of operands with one operator and leaves the others. The left to right scans are repeated until no further temporary result can be produced, and at that time, the right to left scan is reinitiated.

The goal of the algorithm is to form quintuples of temporary results of the form:

\[R_i (\text{op}_1, \text{operator}, \text{op}_2, \text{start-level}, \text{end-level}) \]

where \(\text{start-level} = \max(\text{end-level \text{op}_1}; \text{end-level \text{op}_2}) \)

\[\text{end-level} = \text{start-level} + 1 \]

\[\text{op}_1 = \text{operand 1} \]

\[\text{op}_2 = \text{operand 2} \]

The results of the process with input string "A*B*C+D*E*F+G+H" are shown as:

<table>
<thead>
<tr>
<th>Right to Left Scan</th>
<th>Left to Right Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEF+G+H</td>
<td>R1+F+G+H</td>
</tr>
<tr>
<td></td>
<td>R2+G+H</td>
</tr>
<tr>
<td>A+B+C+R2+G+H</td>
<td>R3+C+F2+G+H</td>
</tr>
<tr>
<td></td>
<td>R4+R3+R2+H</td>
</tr>
<tr>
<td></td>
<td>R4+R5+R2</td>
</tr>
<tr>
<td></td>
<td>R6+R2</td>
</tr>
<tr>
<td></td>
<td>R7</td>
</tr>
</tbody>
</table>
(the parallel computation using Squire's algorithm)

All temporary results which have the same start-level therefore can be computed in parallel. This algorithm can also handle subtraction and division with a corresponding increase in complexity. Another feature is that Polish notation plays no part in either the input string or the output quintuples. Because the algorithm requires many scans and comparisons, it becomes more complex as the length of the expression and the diversity of operators within the expression increase.
(3) Ramamoorthy's algorithm

The first step of the algorithm\(^{(21)}\) is to rewrite the expression in reverse Polish form and reverse its order. Starting with the rightmost symbol of the string, assign a value to each member based on the following procedure:

Assign to symbol \(S_i\), the value \(V_i = V(i-1) + R_i\), \(i = 1, 2, \ldots, n\)

where \(R_i = 1 - W_i\), given that

\(W_i = 0\), if \(S_i\) is a variable

\(W_i = 1\), if \(S_i\) is a unary operator

\(W_i = 2\), if \(S_i\) is a binary operator

and \(V_1 = R_1, V_0 = 0\)

Then the procedure follows by (i) Find the first with the highest value of a symbol from rightmost, namely \(V_m\).

(ii) Starts from \(V_m\) to left, find the first symbol which has a value of 1, departs the string into two substrings. (iii) Consider the rightmost substring, form a new substring consisting of the symbols within the value of \(V_i = 1\) to the right and to the left of \(V_m\). Transpose this substring with the substring to the right of it whose leftmost member has a value of \(V_i = 1\). (iv) Repeat the procedure until the initial \(V_m\) occupies the position \(i = 2\) in the substring. And apply
to the leftmost substring with the same procedure. As a result, two branches on either side of the root node can be executed in parallel.

Using this procedure, taking the same example with input string in reverse order of Polish form: "+H+G+*F*ED+C+BA".

the string with value assigned as:

<table>
<thead>
<tr>
<th>Root</th>
<th>V_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>i : 15 14 13 12</td>
<td>11 10 9 8 7 6 5 4 3 2 1</td>
</tr>
<tr>
<td>Si: + H + G</td>
<td>+ * F * E D + C + B A</td>
</tr>
<tr>
<td>Vi: 1 2 1 2</td>
<td>1 2 3 2 3 2 1 2 1 2 1</td>
</tr>
</tbody>
</table>

initial rightmost substring $+ * F * E D + C + B A$

-----<-----
(transpose this part)

final rightmost substring $+ + C + B A * F * E D$

-----<-----
(the transposed part)
(the parallel computation using Ramamoorthy's)

In order to implement the techniques mentioned here for components within arithmetic expressions, several features are desirable. Schemes for detecting parallel processable components are oriented primarily needed. Also, string manipulation ability would be highly desirable, and an associative memory could reduce execution time in the implementation of precedence partitions.
CHAPTER III

FACTORING ON FINITELY INDUCTIVE SEQUENCES

3.1 INTRODUCTION

If a sequence
\[a_0, a_1, a_2, a_3, \ldots \]
of letters from an alphabet \(A \) of \(K \) many letters have the property that for some fixed \(n \geq 1 \), the choice of \(a_i \) for all \(i \geq n \) depends only on the choices of
\[a(i-n), \ldots, a(i-2), a(i-1). \]
such a sequence is called a Finitely Inductive sequence, and the least such \(n \) is called the inductive base of the sequence.

A function \(F \) having the property that:

(A) the domain of \(F \) is a set of \(n \)-tuples of letters from \(A \), and the range of \(F \) is contained in \(A \),

and

(B) for each \(i=n, n+1, n+2, \ldots \), the \(n \)-tuple
\[(a(i-n), \ldots, a(i-2), a(i-1)) \]
is in the domain of \(F \)
and \(F(a(i-n), \ldots, a(i-2), a(i-1)) = a_i \)
This function is defined to be an F.I. function for the sequence, and the minimal such function to be the F.I. function for the sequence.

Consider the following example:

\[A = \{a, b, c, d\} \]
\[n = 2 \]

\(F \) is given by the table: \(ab \rightarrow c \)

(the left hand side: \(bc \rightarrow d \)

called implicant.) \(cd \rightarrow b \)

\(db \rightarrow d \)

\(da \rightarrow c \)

\(ac \rightarrow b \)

starting segment = \(ab \)

resulting sequence: \(abcdhbd \)

The maximum number of symbols within the implicants is called inductive base, and note that the sequence stops. If the sequence becomes infinite, the pair (consisting of the function and the starting segment) will be called a full F.I. pair; otherwise, it will be called a partial F.I. pair.

Case & Fisher (7) introduce a ruling as a finite sequence of F.I. pairs in which only the last may be full, and all use the same alphabet (but the inductive bases may
differ). A factorization of an F.I. sequence (or corresponding full F.I. pair) is a ruling in which the sequence generated by this ruling is the same as the F.I. sequence.

In this section, four heuristics are discussed on factoring an F.I. sequence (Finitely Inductive sequence). Also, four examples are given to explain the heuristics' functions. Finally, the applications on factoring are introduced.
3.2 HEURISTICS AND EXAMPLES

(1) THE FIRST HEURISTIC

The first heuristic says that it is good to delete (if possible) one occurrence of some of common letters between implicants in a function table.

Example 1. Given sequence (the vertical stroke divides the period of the sequence):

\[\text{aababcabdec|aababcabdec} \]

the function table:

\[
\begin{align*}
d & \rightarrow a \\
da & \rightarrow a \\
aa & \rightarrow b \\
aab & \rightarrow a^* \\
ba & \rightarrow b \\
bah & \rightarrow c^* \\
bahc & \rightarrow a^{**} \\
ca & \rightarrow b \\
cab & \rightarrow c^* \\
cabc & \rightarrow d^{**}
\end{align*}
\]

Here, the first occurrence of those having one single star marked implicants, and the second occurrence of "a", "b" were chosen to delete for those having double starred implicants.

the factoring shows:

\[
\begin{align*}
L2 & \text{ a abc cd|a abc cd} \\
L1 & \text{aababcabdec|aababcabdec}
\end{align*}
\]
function table for L2

d --> a
d_a --> a
a_a --> b
b --> c
b_c --> c
c_c --> d

function table for L1

da --> a
aa --> b
b_a_b_c --> a
c_a --> b

(a 2-4 factorization)

So, this heuristic worked quite well at making the top level have minimal base, however, it could cause the lower level to remain with a larger base. In this example, the top level leaves the inductive base equals to 2, but the inductive base in the lower level becomes to 4.

(2) THE SECOND HEURISTIC

In any two level factorization of an F.I. Sequence, the second heuristic simply combines the first heuristic with the function table having minimal implicants for the lowest level of the factorization.

Example 2. Again, given the same F.I. sequence from the example 1.

aababcab|aababcab
the function table:

\[
\begin{align*}
d & \rightarrow a * \\
da & \rightarrow a * \\
aa & \rightarrow b * \\
aab & \rightarrow a \\
ba & \rightarrow b ** \\
ab & \rightarrow c \\
abc & \rightarrow a \\
ca & \rightarrow b * \\
ca & \rightarrow c \\
abc & \rightarrow d
\end{align*}
\]

There are five implications having lengths less than or equal to 2. However, the second "b" in "bab --> c" has already had its reflection removed in implication "aab --> a" by removing the consequent of "aa --> b". Also, the second "b" in "abc --> a" has already had its reflection removed in "cab --> d" by removing the consequent of "ca --> b". Therefore, we only remove the consequents of the implications followed by a single star (7).

the resulting 2-2 factorization:

\[
\begin{align*}
L2 & \quad abca cd | \quad abca cd \\
L1 & \quad ababcabcd | \quad ababcabcd
\end{align*}
\]

function table for L2

<table>
<thead>
<tr>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>da</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>bc</td>
<td>a</td>
</tr>
<tr>
<td>ca</td>
<td>c</td>
</tr>
<tr>
<td>ac</td>
<td>d</td>
</tr>
</tbody>
</table>

function table for L1

<table>
<thead>
<tr>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>da</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>ca</td>
<td>b</td>
</tr>
</tbody>
</table>

(a 2-2 factorization)
Basically, the lower level has the minimal implicants, which is the subset of the function table of the original F.I. sequence's. However, it requires an intuitive method to decide the implicants to be deleted.

(3) THE THIRD HEURISTIC

This procedure starts with a trial factorization of the type n-0-0-0 in which the top level is the given F.I. Sequence, and the function tables in the lower levels are empty. The principal idea of the procedure is to "push down" implicants from the top level as far as possible without violating the bounded base length.

Example 3. Given the same F.I. sequence as before:

\[\text{aababcabcd} | \text{aababcabcd} \]

the starting situation is

1. L3 \[\text{aababcabcd} | \text{aababcabcd} \]
2. L2 \[\text{aababcabcd} | \text{aababcabcd} \]
3. L1 \[\text{aababcabcd} | \text{aababcabcd} \]
table for L3 table for L2 table for L1

d --> a * empty empty

d a --> a *
a a --> b *
aab --> a
ba --> b **

bab --> c
babc --> a
ca --> b *
cab --> c
cabc --> d

(a 4-0-0 factorization)

For the first step, as in example 2, the implications that are followed by a single star will be pushed down to the closest lower level, then we can get:

L3 abca cd abca cd
L2 aababcabcd|aababcabcd
L1 aababcabcd|aababcabcd

table for L3 table for L2 table for L1

d --> a
da --> b
 b -- > c
 bc --> a
 ca --> c
 ac --> d

(a 2-2-0 factorization)

Since the implicants in L3 are now equal to or less than the inductive base 2, the process is stopped. This procedure is finished by pushing down all the implicants from L2 to L1, and then all of the implicants from L3 to
By repeating push-down process, the implicants can be moved one level lower each time. So, a multi-level factorization can be achieved by this heuristic, however intuition is still needed.

\[(4) \text{ THE FOURTH HEURISTIC} \]

The fourth heuristic is a procedure for factoring a given Finitely Inductive Sequence into a multi-level factorization in which each level has inductive base less than or equal to a given number. That is, the heuristic leads a multi-level factorization by keeping pushing down the implicants having inductive base less than or equal to a given number in each residual function table.

Example 4. Given a binary sequence of base 4 which has only one implicant of length less than 4 but still gets a proper factorization by using the fourth heuristic.
the sequence:

\[(R1) \quad 111100010011010 | 111100010011010\]

the function table:

\[
\begin{array}{c|c}
1010 & 1 \\
0101 & 1 \\
1011 & 1 \\
0111 & 1 \\
1111 & 0 \\
1110 & 0 \\
1100 & 0 \\
000 & 1^* \\
0001 & 0 \\
0010 & 0 \\
0100 & 1 \\
1001 & 1 \\
0011 & 0 \\
0110 & 1 \\
1101 & 0 \\
\end{array}
\]

The first step is to push down the starred implicant which is the only one of length less than 4.

the residual after \((R1)\):

\[(R2) \quad 11110000011010 | 11110000011010\]
the function table:

010 --> 1 *
0101 --> 1
1011 --> 1
0111 --> 1
1111 --> 0
1110 --> 0
100 --> 0 *
1000 --> 0
10000 --> 0
00000 --> 1
001 --> 1 *
0011 --> 0
0110 --> 1
1101 --> 0

the residual after \((R2)\):

\((R3)\) 111000010101 11100001010

the function table:

010 --> 1 *
10101 --> 1
1011 --> 1 *
111 --> 0 *
110 --> 0 *
100 --> 0 *
1000 --> 0
0000 --> 1
001 --> 0 *
00101 --> 0

the residual after \((R3)\):

\((R4)\) 10101 1010
the function table:

0 --> 1
1 --> 0

the result is a 1-3-3-3 factorization:

L4	1	01	0	1	01	0
L3	11100	001	010	11100	001	010
L2	1111000	0011010	1111000	0011010		
L1	111100010011010	111100010011010				

table for L4 table for L3 table for L2 table for L1

0 --> 1 010 --> 1 010 --> 1 000 --> 1
1 --> 0 011 --> 1 100 --> 0
111 --> 0 001 --> 1
110 --> 0
100 --> 0
001 --> 0

The fourth heuristic therefore can not only factor an F.I. sequence into a multi-level factorization, but help the large problems to work better than intuitive methods.
3.3 APPLICATIONS

Case & Fisher(7) gave an example of a piece of music, which is a "Minute in G" by J.S. Bach, to apply the fourth heuristic. They use only letters and numbers to represent the notes and the length of notes separately.

The sequence was started with inductive base of 65. In factoring, the fourth heuristic was used, at each stage, implicants of length less than or equal to 2 were pushed down. The general numerical results were as follows:

<table>
<thead>
<tr>
<th>sequence</th>
<th>base</th>
<th>total implicants</th>
<th>number <= 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>original</td>
<td>65</td>
<td>102</td>
<td>59</td>
</tr>
<tr>
<td>first residual</td>
<td>28</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>second residual</td>
<td>4</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>third residual</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

The result is a 2-1-2-2 factorization.

In the next chapter, we will apply the heuristic to computer programs. By factoring programs into multi-level factorization, one can both save storage space as well as make the time dependencies rather short.
CHAPTER IV

PROGRAM FACTORIZATION

4.1 INTRODUCTION

In Chapter II, we have introduced some algorithms that apply parallel execution of program statements. In this chapter, we apply the factoring technique discussed in Chapter III to programs to achieve a parallel computational environment.

Given a program, one can take out the operands from every statement and construct to a sequence. If we factor a sequence of a given program into multiple levels as a finitely inductive sequence can be done (mentioned in Chapter III), a program then can be executed in parallel, where each of the levels represent a different machine. The objective of parallel execution will be especially useful to large scale programs in terms of time-saving and space-saving.
4.2 DIFFICULT PROBLEMS

(1) The first stage

To an operand-formed sequence, we only want to regenerate variables as well as constants, which are assuming necessary roles during execution. At first, it seems that the only statements that we need to be concerned with are the assignment statements and some input statements. Taking a static structured program segment as follows:

```
BEGIN
    READ (radius);
    area := 3.14 * radius ** 2;
    circle := 2 * 3.14 * radius;
END
```

the sequence can be given as follows:

```
[radius area 3.14 radius 2 circle 2 3.14 radius]
```

The function table for this sequence is:

```
radius radius --> area *
area --> 3.14 *
3.14 --> radius *
area 3.14 radius --> 2
radius 2 --> circle *
circle --> 2 *
circle 2 --> 3.14 *
2 3.14 radius --> radius
```
Using the fourth heuristic to push down those having
stared implicants given

| L2 | 2 | radius |
| L1 | radius area 3.14 radius 2 circle 2 3.14 radius |

table for L2

| 2 --> radius |
| radius --> 2 |

table for L1

| radius radius --> area |
| area --> 3.14 |
| 3.14 --> radius |
| radius 2 --> circle |
| circle --> 2 |
| circle 2 --> 3.14 |

Therefore, a static structured program without the
conditional statement can be factored properly to be
multi-level, and then be executed in parallel. However,
for a dynamic structured program, there is no way to
handle both conditional statements and iteration
statements by using the same step shown here. We then
consider the next stage.

(2) The second stage

We began by keeping a record for the reference of
variables by marking out the statement's order. That is,
in order to keep track of every variable occurrence in a dynamic structured program, we use the notation "(variable, value, reference)", where the value specifies the variable's value and the reference is the referenced statement number if there is any (otherwise, just omit it). Consider the following example program:

BEGIN

min := a(1);
max := min;
i := 2;
WHILE i < n DO
BEGIN
u := a(i);
v := a(i+1);
IF u > v
THEN BEGIN
IF u > max THEN max := u;
IF v < min THEN min := v;
END
ELSE BEGIN
IF v > max THEN max := v;
IF u < min THEN min := u;
END;
i := i + 2;
END; /* while */
IF i = n THEN
IF a(n) > max THEN max := a(n)
ELSE IF a(n) < min
THEN min := a(n):

END.

We modify those statements into the following form:

<table>
<thead>
<tr>
<th>statement number</th>
<th>expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(min, a(1)) <-- (a(1), a(1))</td>
</tr>
<tr>
<td>2</td>
<td>(max, a(1)) <-- (min, a(1), 1)</td>
</tr>
<tr>
<td>3</td>
<td>(i, 2) <-- (2, 2)</td>
</tr>
<tr>
<td>4</td>
<td>(u, a(i)) <-- (a(i), a(i), 3)</td>
</tr>
<tr>
<td>or 4</td>
<td>(u, a(i)) <-- (a(i), a(i), 10)</td>
</tr>
</tbody>
</table>
Since the variable \(a(i) \) in the statement 4 can be referenced dynamically from either statement 3 or statement 10, a duplicate line is included which provides both references. Also, in statements 11 and 12, we cannot decide the referenced statement either. With this approach, we still can't get a well-factoring program sequence.

(3) The third stage

By utilizing the data structure of a program, we found that a better approach would be to rewrite a program into several program-groups by repeating its iterations. In this stage, we did solve the problem related to the iteration statements.

Given a program segment as follows:

```
BEGIN
    total := 0;
    FOR i := 1 TO n DO
```
total := total + bal(i);
FOR i := 1 TO n DO
BEGIN
READ (dw, amount);
IF dw = 'deposit'
THEN BEGIN
bal(i) := bal(i) + amount;
total := total + amount;
sum := sum + amount;
END
ELSE BEGIN
IF bal(i) > amount
THEN BEGIN
bal(i) := bal(i) - amount;
total := total - amount;
END
ELSE BEGIN
bal(i) := 0;
total := total - bal(i);
END;
sum := sum - amount;
END;
END; (* for *)
IF sum >= 0 THEN result := result + sum
ELSE result := result - sum;
END;

If we duplicate the iteration statements, then the new program would be rewritten as follows:

BEGIN
total := 0; (* P1 *)
total := total + bal(1); (* P21 *)
total := total + bal(2); (* P22 *)
:
:
total := total + bal(n); (* P2n *)
READ (dw, amount); (* P31 *)
IF dw = 'deposit'
THEN BEGIN
bal(1) := bal(1) + amount;
total := total + amount;
sum := sum + amount;
END
ELSE BEGIN
IF bal(1) > amount
THEN BEGIN
 bal(1) := bal(1) - amount;
 total := total - amount;
END
ELSE BEGIN
 bal(1) := 0;
 total := total - bal(1);
END;
 sum := sum - amount;
END;

READ (dw, amount); (* P32 *)
IF dw = 'deposit'
THEN BEGIN
 bal(2) := bal(2) + amount;
 total := total + amount;
 sum := sum + amount;
END
ELSE BEGIN
 IF bal(2) > amount
THEN BEGIN
 bal(2) := bal(2) - amount;
 total := total - amount;
END
ELSE BEGIN
 bal(2) := 0;
 total := total - bal(2);
END;
 sum := sum - amount;
END;

READ (dw, amount); (* P33 *)
:
:
:

READ (dw, amount); (* P3n *)
IF dw = 'deposit'
THEN BEGIN
 bal(n) := bal(n) + amount;
 total := total + amount;
 sum := sum + amount;
END
ELSE BEGIN
 IF bal(n) > amount
THEN BEGIN
 bal(n) := bal(n) - amount;
 total := total - amount;
END
ELSE BEGIN
 bal(n) := 0;
 total := total - bal(n);
END;
sum := sum - amount;
END;

IF sum >= 0 (* P4 *)
THEN result := result + sum
ELSE result := result - sum;
END;

If we split the program segment into several groups (distinguished by Px, where x is the group number), then the data structure turns to be a sequential flow: from P1, P21, P22, ..., P2n, P31, P32, ..., P3n, to P4. Obviously, this sequential data flow can then be treated normally using the factoring technique. Each program group can be treated as multiple levels in the structure to permit the required parallelism. However, after factoring this example program, we found that within the P3 groups, the problem of deciding the conditional branch and its factoring level still exist. We then moved to the fourth stage of consideration.

(4) The fourth stage

We consider attaching a boolean symbol to each conditional statement. In other words, we rewrite the conditional statements in order to signal a proper branch in each level after proper factoring. We attached to
each conditional statement a boolean, by using the notation "Bi (IF expression) THEN BiT (statements) ELSE BiF (statements)" to rewrite the IF-THEN-ELSE conditional statements, where i is the order of the booleans.

Consider again the same program segment as in the previous stage, and set the value n to be the decimal number two. After attaching the true-false booleans, we have the program as follows:

```
BEGIN
    total := 0; (* P1 *)
    total := total + bal(1); (* P21 *)
    total := total + bal(2); (* P22 *)

    READ (dw, amount); (* P31 *)
    B1 IF dw = 'deposit'
        THEN BEGIN
            B1T bal(1) := bal(1) + amount;
            B1T total := total + amount;
            B1T sum := sum + amount;
        END
    ELSE BEGIN
        B2 IF bal(1) > amount
            THEN BEGIN
                B1F B2T bal(1) := bal(1) - amount;
                B1F B2T total := total - amount;
            END
        ELSE BEGIN
            B1F B2F bal(1) := 0;
            B1F B2F total := total - bal(1);
        END;
        B1F sum := sum - amount;
    END;

    READ (dw, amount); (* P32 *)
    B1 IF dw = 'deposit'
        THEN BEGIN
            B1T bal(2) := bal(2) + amount;
            B1T total := total + amount;
            B1T sum := sum + amount;
        END
    ELSE BEGIN
```
B2 IF bal(2) > amount
 THEN BEGIN
 B1F B2T bal(2) := bal(2) - amount;
 B1F B2T total := total - amount;
 END;
ELSE BEGIN
 B1F B2F bal(2) := 0;
 B1F B2F total := total - bal(2);
END;
B1F sum := sum - amount;
END;

READ (dw, amount); (* P33 *)
 :
 :
 :

B3 IF sum >= 0 (* P4 *)
 THEN B3T result := result + sum
 ELSE B3F result := result - sum;
END;

With this example the new sequence becomes:

|total 0 total total bal(1) total total bal(2) dw amount B1 dw='deposit' B1T bal(1) bal(1) amount B1T total total amount B1T sum sum amount B2 bal(1)>amount B1F B2T bal(1) bal(1) amount B1F B2T total total amount B1F B2F bal(1) 0 B1F B2F total total bal(1) B1F sum sum amount dw amount B1 dw='deposit' B1T bal(2) bal(2) amount B1T total total amount B1T sum sum amount B2 bal(2)>amount B1F B2T bal(2) bal(2) amount B1F B2T total total amount B1F B2F bal(2) 0 B1F B2F total total bal(2) B1F sum sum amount B3 sum>=0 B3T result result result sum|

Using the fourth heuristic of the factoring technique to push down those boolean branches, we then get the multilevel sequence where each level is continued in next block:
L4 |
L3 |
L2 |
L1 | total 0 total total bal(1) total total bal(2) \ dw

L4:
L3:
L2: B1T bal(1) bal(1) amount
L1: amount B1 \ dw='deposit' B1T bal(1) bal(1) amount

L4:
L3: B1T total total amount B1T sum sum amount
L2: B1T total total amount B1T sum sum amount
L1: B1T total total amount B1T sum sum amount B2

L4:
L3: B1F
L2: B1F B2T bal(1) bal(1) amount B1F
L1: bal(1)>amount B1F B2T bal(1) bal(1) amount B1F

L4:
L3: B1F
L2: B2T total total amount B1F B2F bal(1) 0 B1F B2F
L1: B2T total total amount B1F B2F bal(1) 0 B1F B2F

L4: total total bal(1)
L3: total total bal(1)
L2: total total bal(1) B1F sum sum amount
L1: total total bal(1) B1F sum sum amount \ dw amount

L4:
L3: B1T
L2: B1T bal(2) bal(2) amount B1T
L1: B1 \ dw='deposit' B1T bal(2) bal(2) amount B1T

L4:
L3: B1T sum sum amount
L2: B1T sum sum amount
L1: B1T sum sum amount B2

L4:
L3: B1F
L2: B1F B2T bal(2) bal(2) amount B1F
L1: bal(2)>amount B1F B2T bal(2) bal(2) amount B1F
I4: total total bal(2) B1F B2F
L3: total total bal(2) B1F B2F
L2: total total bal(2) B1F sum sum amount B1F B2F
L1: total total bal(2) B1F sum sum amount B3 sum>=0

I4: |
L3: |
L2: B3T result result sum B3F result result sum |
L1: B3T result result sum B3F result result sum |

It seems that we can run this multi-level program in parallel with conditional branches, except that we don't need to regenerate the booleans in the sequence. So, it might be another thought to attach the booleans above certain variables to achieve the parallelism of the factorization.

(5) The fifth stage

In order to achieve a well factored multi-level program for execution, we recognize there are two conditions:

(i) the levels should be about equal in the number of implicants.
(ii) the implicants in each level should represent non-sequential operations.

Further, we recognize that the dynamic structure of the program is the representation which we must use since it represents the actual sequence instances of the static program structure.

For each statement in program there is an area in the machine memory which represents or contains an equivalent representation of the statement. The actual sequence represents a transition through these areas. However, the factoring must consider all possible sequences which might exist. The method of factoring the program structure is one which now involves describing an alphabet for each of the possible local memory areas. The primitives of the alphabet for factoring programs would look like the follows:

(1) Individuals: letters representing variables, constants, and perhaps letters representing indices in arrays.

(2) Instructions: letters representing instructions -- unary, binary, goto's, and branches are all considered.

(3) Relative Addresses: integers.

The relationship is shown in the following figure:
Each instance is as follows:

\[(A, B, C, D; I; \alpha, \beta)\]

where A, B, C, and D are individuals, which are either used or operated upon; I is the instruction; \(\alpha\) and \(\beta\) are relative addresses of the next instruction to be executed:

Type (i) -- if the instruction is neither a "branch" nor a "goto" then \(\alpha = \beta = 1\).

Type (ii) -- if it is a "goto" then \(\alpha = \beta = \) the relative address of the next line (relative to the present line).

Type (iii) -- is in the case of a branch \(\alpha = 1\) and \(\beta\) is the relative address of the next
line (a branch).

An implicant would append as

\[(A_1, B_1, C_1, D_1; I; \alpha_1, \beta_1), (A_2, B_2, C_2, D_2; I_2; \alpha_2, \beta_2), \ldots, (A_n, B_n, C_n, D_n; I_n; \alpha_n, \beta_n) \longrightarrow (A, B, C, D; I; \alpha, \beta)\]

It should be noted that in the original program these may not be in order due to "goto's" and "branches". Here the line \((A, B, C, D; I; \alpha, \beta)\) from the original ordering is the line having relative addresses \(\alpha_n\) or \(\beta_n\) relative to line \((A_n, B_n, C_n, D_n; I; \alpha_n, \beta_n)\). We trace back for enough to where \(A, B, C,\) and \(D\) were last changed.

Pushing down an implicant requires changing the relative addresses in the residual, which "includes" or "skips over" the "letter" being pushed down. So when we are consolidating we are consolidating a family of sequences not just one.

There are an infinite number of implicants corresponding to any program with loops. This is not as serious as it may sound. In the factoring method \((7)\), they achieved a "push down" by eliminating a particular occurrence of a single letter. Here suppose one delete a particular occurrence of a "letter", this amounts to pushing down an infinite set of implicants. Pushing down a whole loops then would be practical.
CHAPTER V

CONCLUSION

For parallel execution\(^{(10)}\), to determine the appropriate order of execution, the information can be obtained from two sources: (i) explicitly defined by the user via machine instructions, and (ii) directly determined by the computer using a hardware instruction lookahead scheme. We have reviewed several algorithms to detect the parallel components within arithmetic expressions. Also, Benstein\(^{(6)}\) has devised a set of conditions which must be satisfied before two computations can be executed in parallel. Based on those conditions, Gonzalez and Ramamoorthy\(^{(12,21)}\) have developed a Fortran parallel paths.

However, consider to the factoring technique, Case & Fisher\(^{(7)}\) introduced some heuristics to Finitely Inductive Sequences. And we have mentioned it in Chapter III.

This paper then deals with the exploitation of parallelism in a proper-factored program. The focus is on the development of a multi-level program by using the factoring technique, which helps users to speed up the execution of a program in parallel. In other words, the
approach, factoring programs, is derived from the heuristic of F.I. sequences to achieve parallel computation.

The key to speed up the execution of a program is to process as many sequence-levels as possible in parallel. It remains an open question to determine whether there exists algorithms for the speedup ratios with respect to the number of processors available. However, our approach is certainly valuable for an interim period due to the magnitude of factoring technique. It will also give a clear insight into the problems encountered when designing software for the multiprocessor system. To prove its actual worth is much harder to obtain. That program factoring on parallel execution will play one of the vital roles in the future of information processing cannot be denied.
SELECTED BIBLIOGRAPHY

3. Allam, S.J., and Oldehoeft, A.E. "Loop Decomposition In The Translation Of Sequential Languages To Data Flow Languages", 1980 Parallel Processing, pp. 139-140.

Algorithms For The Connected Component Problem", Proceeding of the 1981 International Conf. on Parallel Processing, pp. 170-175.

20. Reghbati, E., and Corneil, D.G., "Parallel Computation In Graph Theory", SIMA J. Computing,

AN APPROACH OF PARALLEL COMPUTATION
ON FACTORING PROGRAMS

by

JIEH-SHwu LIN

B.S., Chinese Cultural College(Taiwan, R.O.C), 1978

AN ABSTRACT OF MASTER'S REPORT

submitted in partial fulfillment of the
requirements of the degree

MAster of science

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982
ABSTRACT

Whereas the goal of parallel computation is to obtain the higher and possible performance. The factorization of a given sequence would regenerate the same sequence as a result.

This paper first describes several parallel computation algorithms and a technique on factorization of Finitely Inductive Sequences.

Then followed by an approach, which is based on the factoring technique, to factor programs into multiple levels is been introduced. Examples are given to support this approach to fulfill parallel computations on saving storage space as well as reducing time dependencies.

In the very last, some conclusions and future trends are given.