A Survey of Data Type Specification Methods

by

SHIOWJY PAN

B.S., Fu-Jen Catholic University (Taiwan, R.O.C.), 1979

A MASTER'S REPORT

submitted in partial fulfillment of the requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

[Signature]
Major Professor
ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor, Dr. David A. Schmidt, for his valuable help, guidance, and suggestions. Thanks are also given to the other members of my committee, Dr. Paul S. Fisher and Dr. Rodney M. Bates.
Table of Contents

1.0 Introduction ... 5

2.0 What is a data type ... 8
 2.1 Approaches to define a type 9
 2.2 Examples of the approaches to data type definition 10
 2.2.1 Syntactic .. 10
 2.2.2 Value space 11
 2.2.3 Behavior .. 13
 2.2.4 Representation 15
 2.2.5 Representation plus behavior 16

3.0 Constructs for defining data types 21
 3.1 Existing methods for defining data types 21
 3.2 Representation approaches to data type definition 23
 3.3 Representation plus behavior forms of data type definition 30
 3.4 Behavior approach to data type definition 49
 3.5 Type recursion 57
 3.6 Constructs for type conversion 59
 3.7 Parameterization (generic procedures) 61
 3.8 Exception handling 62

4.0 Conclusion .. 66
LIST OF FIGURES

1. Two examples for records 25
2. Example of Concurrent Pascal to define a data type 32
3. Example of Simula to define a data type 34
4. MESA's definition and program modules 36
5. Example of Alphard to define a data type 38
6. Example of CLU to define a data type 41
7. Example of Euclid to define a data type 43
8. Example of Model to define a data type 45
9. Example of Scheme to define a data type 48
10. Example of algebraic specification to define a data type 50
11. Example of OBJ to define a data type 52
12. Example of algebraic theory definition 56
13. Example of type conversion 61
14. Example of restriction specification 64
15. Example of error algebras 65
CHAPTER I

INTRODUCTION

Most all programming languages provide constructs for structuring the control flow of algorithms, but few languages provide the capability for the users to define their own data types, which can make the program shorter and easier to understand. In particular, we are concerned with abstract data types, so named since they prevent a user from using the representation information, or something in connection with representation, in a nonintended way.

The key concept in this form of data type specification is abstraction (26). Abstraction provides a mechanism for separating those attributes of an object or event that are relevant in a given context from those that are not. Abstraction serves to reduce the amount of detail that must be comprehended at any one time. One of the most significant aids to abstraction in programming is the self-contained subroutine (27). When one decides to invoke a subroutine, it can be treated as a 'black box', the details of its representation unimportant (and hidden) from its user. It is the same idea that we wish to examine in data type
definition and use.

Since abstract data types are useful to programmers, there are many computer scientists who are trying to extend existing languages or design new languages in which programmers can define their own data types. One view (35) of the basic requirements for abstract data types in programming languages is:

1. access to an abstract data type is allowed only through the operator set for the data type.
2. language constructs in the base language should be extendable to abstract data types.
3. definitions of the abstract data types should allow for formal parameters in their definitions. Invocations through declarations of abstract data types should allow for corresponding actual parameters.
4. the definition of an abstract data type should be implemented by the compiler as a truly new data type.
5. operations on abstract data types should be implemented efficiently.

These ideas are held by many researchers in the area, and we will see these five concepts realized again and again in the examples to follow.
This report is structured in four parts. The first part is this introduction. Chapter 2 contains the five different approaches to data type definitions. Chapter 3 reviews three different methods used for construct data type definitions and gives examples to explain the construction. Type recursion, constructs for type conversion, parameterization, and exception handling are discussed in this chapter too. Some conclusions and future trends are given in chapter 4.
CHAPTER II

WHAT IS A DATA TYPE

Different people have different concepts about data types, so many definitions of data types are distinctive. With two ways, we can specify the semantics of abstract data type. One is operational specification. It begins with some well-understood language or discipline and builds a model for the type in terms of that discipline. The other is definitional, axiomatic, or algebraic specification, which includes two parts. The first part is a syntactic specification, which provides the syntactic information that many programming languages already require: names of operators and the domains and range of the operation associated with them. The second part gives a list of relations which define the meanings of the operations by stating their relationship to one another.

First, we state five different approaches to defining a data type, and then we use the approaches to organize the different definitions.
2.1 Approaches to define a type

Generally, there are five approaches to define a data type (47):

1. Syntactic: A data type is described by the information that one gives about a variable in a declaration, such as VARIABLE X IS ***. The *** represents implementation-oriented attributes, such as number and size of storage cells, methods of allocation and deallocation. Sometimes built-in names associated with specific attribute sets are used.

2. Value space: A type is defined by a set of possible semantic values. For example, the set of integers is a value space and thus a data type. Given some existing types, set-theoretic union, cartesian products, etc., can be used to form new types.

3. Behavior: A type is defined by a value space and a set of operations on elements of the space. This is an extension of 2, and is the widely accepted semantic definition of data type. For example, the value space of integers has the operations addition, subtraction, etc.

4. Representation: A type is determined by the way that it has been represented in terms of more primitive computer-oriented types. Pascal's INTEGER is an
example. Hardware (or compilers) must have implemented these primitive types. In this way, the definition of complex types can be understood in terms of computer implementation.

5. Representation plus behavior: A type is determined by a representation plus the set of operators that define its behavior; these operators are defined in terms of a set of procedures operating on the representation.

2.2 Examples of the approaches to data type definition

The following sections introduce the various research ideas which support the different approaches of data type definition.

2.2.1 Syntactic

PL/I and FORTRAN are standard programming languages which approach the data types as 'syntactic'; type is the definition that one gives about a variable in a declaration. In PL/1, we can define:

```plaintext
DCL SEMESTER DECIMAL FIXED (1) STATIC REAL;
DCL FLDA BINARY FIXED (3,2) EXTERNAL;
```

In the declaration, we (should) give all the information
that machine needs for allocation. Often default attributes are applied when some of this information is omitted.

In Fortran, we can define:

\[\text{INTEGER*2 JACK,BILL} \]
\[\text{REAL*8 B,DSORT} \]

In this declaration, we define storage size in bytes for the variables (*8 means 8 Bytes for allocation) to control actual allocation. These two languages emphasize the use of machine based information. The types defined by them are concrete, not abstract at all.

2.2.2 Value space

Hoare (31) defines data types as a value space, that is a type is defined by a set of possible values. Some axioms of this version of type are:

1. A type determines the class of values which may be assumed by a variable or expression.
2. Every value belongs to one and only one type.
3. The type of a value denoted by any constant, variable, or expression may be deduced from its form or context, without any knowledge of its value as computed at run time.
4. Each operator expects operands of some fixed type, and delivers a result of some fixed type (usually the same).

5. The properties of the values of a type and of the primitive operations defined over them are specified by means of a set of axioms.

6. Type information is used in a high-level language both to prevent or detect meaningless constructions in a program and to determine the method of representing and manipulating data on a computer.

As mentioned earlier, based on sets of primitive value spaces we can define compound value spaces using the set-theoretic operations of union, discriminated union, powerset construction, cartesian product, and function space.

Some examples are:

Cartesian Products:

```
cartesian = real * real
```

Discriminated Union:

```
exceptions = Parity-faulty | empty | manual
```

Powerset:

```
type primary-color = (red, yellow, blue)
type color = powerset of primary-color
```

By first definition, each value of the type complex is a
structure with exactly two components. The first component is real and second component is also real— in other words, an ordered pair of reals. The second definition states that type exception consists of exactly three values with the names indicated and that every exception variable has one of these three values. In the third example, we can get the different mixed colors from the primary-color,

2.2.3 Behavior

In the behavior approach, a type is defined by a value space and a set of operations on elements of that space. This format is neatly supported by the algebraic specification and algebraic theory specification. These representation forms usually consist of two parts: 'interface specification' and 'behavioral specification'. Interface specification consists of the name of the type, and the names and types of the associated operations. Behavioral specifications use the 'axiomatic specification' and 'abstract model approach'. A convenient way of syntactically describing the semantic properties of a data type algebra is by using an axiomatization (equation specification). The idea is similar to the use of a first order theory in mathematical logic to describe the inherent properties of a model. (15)

Axiomatic specifications define the behavior of an
abstract data type by giving axioms describing the results of applying operations to arguments. A simple example of axiomatic description of stack operations is:

\[
\text{pop}(\text{push}(a,s)) = s \\
\text{empty?}(\text{push}(a,s)) = \text{false} \\
\text{empty?}(\text{nullstack}) = \text{true}
\]

However, a valid criticism of the approach is that only properties of the operations are described the operations themselves are left undefined. In the abstract model approach, the objects of the data type are represented in terms of other data abstractions with known properties established by formal (probably axiomatic) specifications given in advance. These 'other abstractions' form a programming language for data type definition. A good example of this method is using Scott's LAMBDA to define the denotational semantics of a data type (54).

A more powerful method for converting semantic properties is through theory representation (8); a signature together with a set of equations using the operators of the signature and respecting their input and output sorts is used. The signature is a set of sort names (names of semantic data sets) and a set of operator symbols, each with a given sequence of sorts for its arguments and a sequence of sorts
for its results.

In both the axiomatic and theory forms of representation, universal algebra (24) is applied to determine that the model represented by the specification is the initial algebra (23) of the class of algebras satisfying the specification.

2.2.4 Representation

When using the representation format, a type is determined by the way that it has been represented in terms of more primitive types. This approach is supported by Pascal-like languages, such as PASCAL, and ALGOL 68. For example PASCAL (25) has several notable kinds of data types:

1. the scalar data type:
 an ordered set of values, such as
 \[
 \text{scalar} = \{\text{red}, \text{yellow}, \text{blue}, \text{green}\}
 \]

2. the subrange type:
 a subrange of any scalar type such as
 \[
 \text{digits} = 1..9
 \]
 \[
 \text{yg} = \text{yellow..green}
 \]

3. the record type:
 a structure consisting of a fixed number of components, possibly of different types:
complex = record
 rpart: integer
 ipart: integer
end;

2.2.5 Representation plus behavior

A type is determined by a representation plus the set of operators that define its behavior. Most newly developed programming languages support this definition. The idea originally stems from SIMULA (1), and most of the versions follow a similar syntax:

type <identifier> =
 <definition of structures used internally to hold data>
 <subroutine-like definition for operation 1>

 <subroutine-like definition for operation n>
end type

Most of the definitions of this form of data type (8, 10, 26, 27, 28, 30, 40, 42, 53) use a representation-independent specification and a set of values and a set of operators: together they introduce a new type of data object that is deemed useful in the domain of the problem being solved. At the level of use, the programmer is concerned with the behavior of these data objects, what kinds of information
can be stored in them and obtained from them. The programmer is not concerned with how the data objects are represented in storage nor with the algorithms used to store and access information in them. The programming languages, such as CLU, ALPHARD, EUCLID, MODEL, etc., support the approach of defining data type as representation plus behavior. Concurrent Pascal and Simula 67 call this structure a class, but many other names are used as well—those will be explored in the next chapter.

Since this format is so widely used, we have a wide number of opinions about its exact purpose. Flon (17) describes that data type is an arbitrarily complex form which characterizes a certain kind of behavior. Type definition is a representation for objects of the type and the representation is known only to the definition itself. (It is an algorithmic specification, the means by which that behavior is accomplished.)

Parnas (47) describes types as classes of modes. Each mode defines a simple class of variables such that variables with the same type can be substituted for each other in any context and not cause a compile-time error. A language should allow programmers to define types as below:
1. Specification-type (spec-type): a type consisting of modes with identical externally visible behavior. For any mode defined by a representation and a set of permissible operators, one can describe the characteristics of this mode by using the operators provided. When a group of modes all have the same characteristics with respect to these operators, this group constitutes a spec-type. Modes having the same spec-type can share operations originally defined for the specific modes in the spec-type. Algol 68 has this feature:

```plaintext
mode i = integer
var a:i; b:integer;
```

In this example, we can assign the value of b to a. But this feature is not allowed in Pascal.

2. Representation-type (rep-type): a type consisting of a collection of modes with identical machine representations. A user declares a rep-type as a group of modes that have the same representation and to define a set of operations on variables of that type in terms of the representation.

We see in PL/1:
dcl nine bit (9);
dcl nine binary fixed (9,0);

These two variables in the example have the same rep-type.

3. Parameterized type (parm-type): a type consisting of modes that are invocations of parameterized mode description. Based on earlier defined 'mode-builder' descriptions in which key information has been abstracted as parameters, specific 'actual parameter' modes are supplied to form an invocation and produce a parm-type. This type should allow the user to declare as members of the same type, modes that can be generated by assigning values to the parameters of a mode description. For example, programmers can convert INTEGER ARRAY (m:n) to a mode-builder TYP ARRAY(m:n), where TYP is the abstract mode.

4. Variant-types: a type consisting of modes with some common properties. This type allows programmers to exploit the same properties in different modes which do not have identical specification, such as when the programmer wants to extract the same attribute from the different record structures in the data base. This abstract data types should allow the programmers to define the type includes the all needed attributes. This type is also defined by a specification, and the
operators specified to be common to all variables of the mode must be implemented for the new type in accordance with those specifications.
CHAPTER III

CONSTRUCTS FOR DEFINING DATA TYPES

In this chapter we consider the available formats for defining new data types. A large number of examples are provided. Each one has its own format for definition, and among similar methods are different mechanisms.

3.1 Existing methods for defining data types

In general, there are three methods used by computer scientists to define data types (40). One is in extensible languages, in which an existing language contains a construct for extending its features in order to define a new data type. This method is defining representations rather than abstract data types, and it is impossible to define all the operations characterizing an abstract data type. This method uses the representation approach to type definition.

The second approach is Simula-like. Inside the class, there are subroutines to define the operations of this new data type. Every attribute and function in a class is
accessible in the block in which the class definition is embedded. Therefore the actual form of the representation is always known to the user but can not be changed from outside.

The final approach uses standard abstract operations which define a set of abstract operators to create, access, modify and destroy abstract data collections. A data collection is a map from a set of selectors to a set of values, and that operations on data collections are either transformations on the map or use the map to access elements. OBJ and CLEAR are languages which use this method to express and execute algebraic specifications of programs.

Each language (58) has a different emphasis in its constructs for defining data types. Details of the basic notion of type, objects vs. variable model, identification with encapsulation instance, separation of specification and implementation, the role of generics and parameterization, closed vs. open scopes, generic instantiation, concurrency, mapping to/from the underlying representation of a type, etc., form a number of variations. The following sections discuss three methods for defining data types and their supporting languages or theories. The later part of this chapter will discuss type recursion, constructs for type conversion, parameterization and exception handling.
3.2 Representation approaches to data type definition

A Pascal-like language is a standard example using data structures to define a new data type. A language like Pascal normally has a small number of built-in primitive types. These can be scalar types, such as INTEGER and BOOLEAN, or nonscalar, such as REAL. The methods (31) for constructing new data types are:

1. arrays: A mapping from any finite scalar type to any type at all. An example is \texttt{declare A: array[\text{\texttt{n..m}]} of integer}; in Pascal the bounds are both fixed and part of the type, but scalar types are allowed as subscripts as well as integers. For example, \texttt{var A: array[\text{\texttt{color}}] of integer} is legal. If we have:

\begin{verbatim}
suit = (clubs,diamonds,hearts,spades);
card = record s:suit; value=1..13 end;
var c:card
\end{verbatim}

We can use these two notations (25):

(1) \texttt{for <variable> in ordered <ordered set of values> do s}

(2) \texttt{for <variable> in unordered <set of values> do s}

...to manipulate the iteration of \texttt{FOR} loops. From the
above declarations, we can write:

```pascal
for c.value in ordered 1..13 do
  for c.s in ordered suit do
    ....
    ....
  for c in unordered card do s
    (does not care about the order in which
     values from card are used)
```

2. records: A record is a structure consisting of a fixed number of components, called fields. Records are used to group values of potentially differing types:

```pascal
declare r : record (f1:t1,f2:t2,...,fn:tn);
```

Where `f1,f2,...,fn` are variables and `t1,t2,...,tn` are types. The figure 1 contains the example of record in PASCAL and ALGOL 68 to define the variant fields of male and female.
PASCAL:

type person = record
 name: string;
 age: integer;
 case sex: (male,female) of
 male: (height,weight: integer);
 female: (size: array [1..3] of integer);
 end
end;

ALGOL 68:

mode male = struct (int height,weight);
mode female = struct ([1..3] int size);
mode sex = union(male,female);
mode person = struct (string name, int age, sex s);

Figure 1. Two examples for records

3. Enumeration types: A new data type is formed by exhibiting the set of constants which comprise its value. For example:

 type color = (red,yellow,blue,green) end;

In order to define a new enumeration type (16) consistent with the rest of the language, we must specify the set of constants of that type and the associated primitive operators. In PASCAL, we can use pred, succ, etc. in enumeration type. Using above
example, \text{pred(blue)} \text{ is yellow}, \text{ succ(blue)} \text{ is green,}
and \text{pred(blue)} = \text{succ(red)}.

4. Pointers: A reference value is a 'pointer' to an
object, with the restriction (in Pascal) that
reference variables can only reference objects of a
single type:

\begin{verbatim}
declare c: ref integer;
c ← new integer; free c;
\end{verbatim}

New allocates a new cell for integer, and free
deallocates the cell where \text{c} points to.

5. Procedures: When treating procedure as a data type,
one can do some arithmetic operations in the body and
return a value from the function (as in PASCAL).
Programmers can often overload the new data type with
(25):

1) operator overloading: Assume data type complex is
a record containing two reals:

\begin{verbatim}
function + (x,y:complex):complex;
begin
result.rpart := x.rpart + y.rpart;
result.ipart := x.ipart + y.ipart;
end
\end{verbatim}
Now + denotes both real and complex arithmetic operations.

(2) procedure and function overloading: The returned type of a function can be one of a set of parameter types.

\[
\textbf{function} \ \text{sum} \ (a: \text{array of } T, \\
\qquad n: \text{integer}): T; \\
\quad \textbf{var} \ i: \text{integer}; \ s: T; \\
\quad \textbf{begin} \ s := 0; \\
\quad \textbf{for} \ i := 1 \ \textbf{to} \ n \ \textbf{do} \ s := s + a[i]; \\
\quad \text{sum} := s \\
\quad \textbf{end}
\]

Assuming T to be a data type which can change from call to call, we can use function \text{sum} to total arrays of type complex or real.

(3) Defining subtypes: Subroutines can be used to output subtypes of an existing type:

\[
\textbf{function} \ \text{subtype}(x: \text{real}): \text{complex}; \\
\quad \text{subtype} := \text{complex}(x, 0);
\]

We get the type of complex from real.

6. Files: These are understood in the usual COBOL or
Pascal sense.

7. Sets: Sets are unordered compound objects, similar in spirit to their mathematical counterparts. Of course, sets can contain members from ordered types, but the types are usually restricted to be scalars. For example:

```pascal
  type primary = (red,yellow,blue);
  type color = set of primary;
```

8. Subrange: Given a primitive type, it is possible to define a type to be a subrange of the other type. For example:

```pascal
  type digit = 0..9;
  type highfrequencolor = red..yellow;
```

Subranges of non-scalar and compound types are rarely found.

Gries(25) describes two notions that can be used in Pascal-like languages. The first one is array-like. An array object is declared with an index set (subscript values), and the set of legal subscript values is a data type. One should be able to declare variables of that type.
For example:

\[
\begin{align*}
\text{var } a & : \text{array}[1..n] \text{ of integer;} \\
\text{var } i & : \text{domain}(a); \text{ s: integer;} \\
& s := 0; \\
& \text{for } i \text{ in unordered domain}(a) \text{ do } s := s + a[i]
\end{align*}
\]

handles the summing of array \(a \).

If we define:

\[
\begin{align*}
\text{var } \text{suit} & = (\text{club, diamonds, hearts, spades}); \\
\text{var } c & = \text{array}[1..10,1..10,\text{suit}] \text{ of ...}; \\
\text{var } k & : \text{domain}(c); \\
\text{var } l & : 1..10; \\
\text{var } m & : \text{record} \text{ comp1:1..10;comp2:1..10 end}; \\
\text{var } n & : \text{suit};
\end{align*}
\]

then \(c[k, l, \text{spades}], c[m, n] \) are all legal expressions.

The second notion generalizes procedures; the type of a formal parameter of a procedure can depend on a particular call of that procedure. For examples:

1. \textbf{procedure} \(x \) (\textbf{var} \(a: \langle z \rangle \)) ;
2. \textbf{procedure} \(x \) (\textbf{var} \(a: \text{array}^2 \text{ of } \langle z \rangle \));
3. \textbf{procedure} \(x \) (\textbf{var} \(a: \text{array}^2 \text{ of integer} \));
4. \textbf{procedure} \(x \) (\textbf{var} \(m: \text{record} \text{ c1:integer;c2:}\langle z \rangle \text{ end} \));
 \textbf{var} \(n: \langle z \rangle \);
<\> indicates that the type will depend on the actual parameters of call. Z stands for a type and n is an integer. With this feature, we can define one procedure to handle variously-typed arguments. For example:

```pascal
procedure swap (var a, b :<\t>);

var x: t

begin x := a; a := b; b := x end
```

The example above is able to exchange values of two variables, regardless what the type of the formal parameters are.

3.3 Representation plus behavior forms of data type definition

Simula (1) and Concurrent Pascal (7) are the standard examples of representation plus behavior method to define new data types. They use the `class` construct to define new data types. A class contains an internal data structure plus subroutines defining operations on the structure. Programmers can only access a class through the declared procedures, and have no other names of accessing the class internal structure.

Concurrent Pascal (7) is an extension of Pascal, having
features to define new data types and to perform Parallel processing. The classes are used to define new data types. The structure of a class is somewhat similar to a small Pascal program. Operations can only be accessed through the procedure entries and the local variables of the class cannot be accessed by outside. Figure 2 contains the example of Concurrent Pascal to define FIFO as a new data type.
type fifo = class (n:integer);
 var inp, oup, ct: integer;

 function entry empty:boolean;
 begin empty := ct=0 end;

 function entry full:boolean;
 begin full := ct=n end;

 function entry arrival:integer;
 begin
 arrival := inp;
 inp := (inp +1) mod n;
 ct := succ(ct);
 end;

 function entry departure:integer;
 begin
 departure := out;
 out := (out +1) mod n;
 ct := pred(ct)
 end;

 function entry count:integer;
 begin count := ct end;

 procedure initial;
 begin
 inp := 0;
 out := 0;
 ct := 0;
 end;

 begin initial end;

 Figure 2. Example of Concurrent Pascal to define a data type

 The operations of FIFO are function entries, such as empty, full, and departure. These operations defined by function (procedure) entries are accessible by external processes. Local procedures without entry, such as procedure initial, can not be accessed by the outside environment.
Simula (1) is an other language which uses data structures and subroutines to define data types. Simula is based on Algol 60; the basic concepts are extended in Simula by:

1. concatenation: properties of two or more classes may be fused together, minimizing textual description. In general, if C_1, C_2, \ldots, C_n are classes such that C_1 has no prefix and C_k has the prefix C_{k-1} ($k = 2, 3, \ldots, n$) then the suffix k is said to be the prefix level of C_k. C_p is a sub-class of C_q if $p > q$. An object of a class has a main part (the class declared at the highest prefix level) and a prefix part (the remainder of the chain). A statement at prefix level k has direct access to all the attributes declared at the prefix levels equal to or less than k, except those hidden by conflicting definitions. A statement at prefix level k has access to attributes at higher level only through the virtual mechanism.

2. extended binding rule: the binding rules of Algol are extended enabling a semantic redefinition of quantities valid at all levels in concatenated objects by the virtual concept. Connection statements allow the temporary shifting of an environment.

3. block prefixing: classes may be used to prefix program blocks, thus providing an environment in which to
operate. The occurrences of a class name in a prefix makes all the attributes of that class accessible within the prefixed class. When an attribute wants to reference a variable, which is at the higher prefix level. We can use qua mechanism to get the qualification of a reference variable and have the compile time checks it is valid or not.

The example of Simula's class is illustrated in figure 3.

```verbatim
class matrix;
begin class rectangular(a,m,n):....;
  class column(a,m);....;
  class row(a,n);real array a;integer m;

virtual: real procedure norm;
begin real t; integer i
  for i=1 step 1 until m do
    t := t+a(i)↑2;
    norm := sqrt(t)
end of norm;

procedure normalise;
begin real t; integer i;
  t := norm;
  if t ≠ 0 then
    begin t := 1.0/t;
    for i := 1 step 1 until m do
      a[i] = t*a[i]
    end
  end of normalise;

end of row;

end of matrix
```

Figure 3. Example of Simula to define a data type
In this example, class rectangular, column, row are defined local to class matrix. The procedure norm is virtual, so it can be redefined by the sub-class of class row and can have external compilation. This sub-class can have all the variables and procedures of class row plus those procedures and variables declared in this sub-class. We can redefine the body of procedure norm:

```
begin external class matrix;
  matrix begin row class row1;
  begin real procedure norm;
    begin integer i; real t;
      for i := 1 step 1 until m do
        t := t + abs(a[i]);
        norm := t
      end of norm;
    .........
    end of prefixed block
  end
end
```

Row1 is a sub-class of row. After this redefinition of procedure norm, row1 will get a different value of norm from the other rows. This provides a feature for the user to redefine certain segments. Through the class structure, programmers can have more protection in the data processing.

Mesa (21) expands on the class concept; it uses modules to provide a capability for partitioning a large system into manageable units. The modules can be used to encapsulate abstractions and to provide a degree of protection. The language includes definition module and program module
constructs. Definition modules define the interface to an abstraction, and program modules, called implementers, provide the concrete implementation of an abstraction. Figure 4 gives an example of how the two constructs specify and implement a data type.

Abstraction DEFINITIONS =
BEGIN
it:TYPE =; rt:TYPE =;...
P: PROCEDURE ;
P1: PROCEDURE INTEGER
.....
pi = PROCEDURE [it]RETURNS[rt];
.....
END

Implementer: PROGRAM IMPLEMENTING Abstraction =
BEGIN
OPEN Abstraction;
X: INTEGER;...
P: PUBLIC PROCEDURE = <code for p>;
P1: PUBLIC PROCEDURE = <code for p1>;
.....
pi: PUBLIC PROCEDURE[x:it]RETURNS[y:rt] =
<code for pi>;
.....
END

Figure 4. Mesa's definition and program modules

There are two kinds of special variables in Mesa. One is a private variable, visible only in the module in which it is declared and in any module claiming to implement that module. The other is a public variable, which is visible in
any module that includes and opens the module in which it is declared. These specifications of attributes can be used to control intermodular access to identifiers. In figure 4, Abstraction contains definitions of shared types and enumerates the elements of a procedure interface. Implementer uses those type definitions and provides the bodies of the procedures; the compiler will check that an actual procedure with the same name and type is supplied for each public procedure declared in Abstraction. The Mesa modules are also used in ADA (32).

Alphard uses a 'form' to define a new data type. The generator construct is a special form which performs a sequence of bindings to the control variable of a loop in Alphard (52). It gives a convenient mechanism for constructing for loops operating on new types. The basic form to define a new data type is:

 form istack (n:integer)=
 beginform
 specifications.......;
 representations.......;
 implementations.......;
 endform

Inside a form definition, programmers can provide
verification information, such as pre and post logical assertions. The example of form definition is illustrated in figure 5. This example defines the data type 'upto' as an interval [lb..ub] for use in looping.

form upto (lb, ub:integer) extends k:integer=
beginform

specification
requires true;
inherits <allbut->;
let upto = [lb..ub] where lb≤ub < upto =
[lb..k-1][k][k+1..ub];
invariant true;
initially true;
function
&init (u:upto) returns b:boolean
post (b=lb≤ub) ∧ (b=lb=k≤ub);
&next (u:upto) returns b:boolean
pre lb≤k≤ub
post (b=k≤ub) ∧ (b=lb=k+1 ∧ lb≤k≤ub);

representation
rep(k) = if lb≤ub then (lb..k+1)k[k+1..ub] else 0;
invariant true;

implementation
body &init out (b=lb≤ub) ∧ (b=lb=k≤ub) =
(u.k=lb; b=lb≤u.ub);
body &next in (lb≤k≤ub) out (b=k'≤ub)
∧ (b=lb=k+1 ∧ lb≤k≤ub) =
(u.k=lb; b=lb.k=ub);
endform

Figure 5. Example of Alphard to define a data type

(k' denotes the value of k upon entry to &next)
The phrase <all but→> means that all integer functions except ← are applicable to the upto. This abstract specifications describe an 'upto' as an interval [lb..ub]. Function &init gives the initial value and function &next gives the next value of the current counter. Pre and post assertions guarantee the conditions before and after the statements are true. The rep function in representation shows how an interval is represented by its two endpoints and the loop variables. Body &init and body &next perform the actual implementation. In and out must match pre and post assertions, respectively.

Another language widely studied for its structuring ideas is CLU (42). The basic elements in CLU are objects, which have a particular type, and variables, the name used in a program to refer to objects. The two types of objects are:

1. mutable objects: may exhibit time-varying behavior, may be modified by certain operators without changing the identity of the object. A record is an example.
2. immutable objects: do not exhibit time-varying behavior, such as booleans, integers, characters, and strings.

A cluster (36) is used to define a new data type in CLU; it has:
1. object representation of form:

\[
\text{rep} \ \{\{\text{<rep-parameter>}\}\} = \text{<type-definition>}
\]

where \text{rep} is accessible only with the cluster. The
braces \{\} make it possible to delay specifying some
aspects of the \text{<type definition>} until an instance of
the \text{rep} is created.

2. object creation: use 'create' to get the initial state
of cluster.

3. operation: are always specified as part of a cluster.
Operations always have at least one parameter.... of
type \text{rep}.

An example which defines stack as an abstract data type is
illustrated in figure 6.
stack: \texttt{cluster} (element-type:type)
\hspace*{1em} \texttt{is} push, pop, top, erasetop, empty;

\texttt{rep} (type-param:type) = (tp:integer:
\hspace*{2em} e-type:type;
\hspace*{2em} stk:array [1..] of type-param);

\texttt{create}
\hspace*{1em} s:rep(element-type);
\hspace*{1em} s.tp := 0;
\hspace*{1em} s.e-type := element-type;
\hspace*{1em} \texttt{return} s;
\hspace*{0em} \texttt{end}

\texttt{push}: \texttt{operation}(s:rep,v:s.e-type);
\hspace*{1em} s.tp := s.tp+1;
\hspace*{1em} s.stk[s.tp] := v;
\hspace*{1em} \texttt{return};
\hspace*{0em} \texttt{end}

\texttt{pop}: \texttt{operation}(s:rep) \texttt{returns} s.e-type;
\hspace*{1em} \texttt{if} s.tp=0 \texttt{then} \texttt{error};
\hspace*{1em} s.tp := s.tp-1;
\hspace*{1em} \texttt{return} s.stk[s.tp+1];
\hspace*{0em} \texttt{end}

\texttt{top}: \texttt{operation}(s:rep) \texttt{returns} s.e-type;
\hspace*{1em} \texttt{if} s.tp=0 \texttt{then} \texttt{error};
\hspace*{1em} \texttt{return} s.stk[s.tp];
\hspace*{0em} \texttt{end}

\texttt{erasetop}: \texttt{operation}(s:rep);
\hspace*{1em} \texttt{if} s.tp=0 \texttt{then} \texttt{error};
\hspace*{1em} s.tp := s.tp-1;
\hspace*{2em} \texttt{return};
\hspace*{0em} \texttt{end}

\texttt{empty}: \texttt{operation}(s:rep) \texttt{returns} boolean;
\hspace*{1em} \texttt{return} s.tp=0;
\hspace*{0em} \texttt{end}

\texttt{end} stack

\textbf{Figure 6. Example of Clu to define a data type}
Stack is defined by the operations of push, pop, top, etc. Create sets the initial state of stack. Rep specifies the elements of stack. Each operation is specified to operate the items defined by rep. In this example, the value which the stack performs is depended on the type of the actual parameters. The maximum size of this stack has not been defined.

New data types special to EUCLID (3) are defined as 'modules'. A feature special to Euclid is the exports class, which provides communication between module and outside environment. A programmer may use the reserved word parameter to indicate elements which already have been declared. Figure 7 contains the example of Euclid's module to define new data types.
The stack example defines the operations of pop and push. Stk is used to define the elements that this stack has. After stk's definition, we can use the reserved word parameter to indicate the elements of stk. Stackptr is
initiated to be zero in the beginning. This stack can only store values of signed integer. Operation push has internal procedure overflow, and operation pop has internal procedure underflow to handle the error conditions.

A 'space' is the basic form in Model (35) to define data types. In Model, access to the representation of a new data type is restricted to the operations and procedures declared in the form. This can guarantee that the operations defined for the space are not subverted. The example is given in figure 8.
space intset {r} def concrset:

```plaintext
type concrset is record 
  size: sizerng;
  iset: array r, array lband
end record

type sizerng is [0...ubnd r - lband r +1];
type array lband is [1...ubnd r - lband r +1];
type array rchband is [1...ubnd r - lband r +2];

insert is <<
  formal inset {r} a (varies); r i noreresult:
  $ add element i to set a
  if not i in a then
    *a.size := *a.size +1;
    *a.iset[*a.size] := i;
  fi;
>>;

has is <<
  formal r i ; inset {r} a (varies) result boolean:
  $ set membership predicate
  srchband j:
  boolean res;
  res := false; j := 1;
  repeat while j <= *a.size and not res do
    if *a.size[j] = i then res := true fi;
    j := j+1;
  od;
  return res
>>;

in def <<
  formal r i ; intset {r} a result boolean;
  return has (i,a)
>>;

opunion is <<
  formal intset {r} a (copied), b (copied)
  result intset {r}:
  $union
  r k;
  intset {r} res;
  if empty(a) then res := b
  else
    k := select(a);
    res := opunion(a-k,b+k);
  fi
  return res
>>;
```

Figure 8. Example of Model to define a data type
This example is part of definition for showing the structure. 'intset {r}' represents an abstract data type 'set of integers'. The identifier r represents a formal parameter which will take on a data type 'value' where intset is used in a declaration. For a declaration such as

```
intset{ 1...100 } a ;
```
	head parameter r takes on the actual parameter value '1...100'. 'Concreset' is the shorthand notation for the concrete representation of an 'intset'. This representation involves a 'record' of two items, a 'size' representing the number of elements in the set and an 'iset' representing the actual elements of the set as an array of integers. The notation [p...q] indicates the lower-bound is p and the upper-bound is q. The operator '‡' appearing in the expression ‡a.size is termed a 'concretion' operator. The operation followed by 'is', is defined as local to the space definition. The operation followed by 'def', is accessible outside the space as an operation. "Varies" states that the operation will change the content of the formal parameter, but "copies" will not. The operations defined inside the space can reference to each other and can be recursive too.

Scheme (44), a notation and semantics for parameterized implementation mechanisms, is built upon 5 basic notions:

1. extendable data type

2. the ability to refer to the attributes of an object in
an uniform way
3. the ability to override the system-defined meaning of attributes
4. the ability to encapsulate a set of definitions, and
5. the ability to control external access to the attributes of an encapsulate set.

An example using Scheme is shown in Figure 9.
scheme queue (type itemtype) = record
 type head = record var front, rear = node_ref end;
 type node = item : itemtype extended by private var
 next = node_ref end;

procedure init (shared q:head);
{This will be invoked whenever a new head
is created}
 begin q.front := new_node;
 q.rear := q.front
 end;

function empty (q:head) returns boolean;
{Test for the empty queue}
 begin return (q.front = q.rear) end;

procedure add (shared q.head;item:itemtype);
{Add item to q, modifying q as a side effect}
 begin q.rear↑.item := item;
 q.rear↑.next := new_node;
 q.rear := q.rear↑.next
 end;

function remove (shared q:head) returns item:itemtype;
{Remove (and return) the first item from q,
modifying q as a side effect}
 begin
 if empty(q) then error;
 item := q.rear↑.item;
 q.front := q.front↑.next
 end;
end queue

Figure 9. Example of scheme to define a data type

The operations of queue are init, empty, add and remove.
The value stored in queue is depended on the actual
parameter of call. New is used to create a new node.
Functions can return results, but not with procedures. This
queue is implemented by link list of nodes which hold queue elements. If values of the parameters are changed by assignments, then they must be specified by shared. Scheme has not been implemented.

3.4 Behavior approach to data type definition

Algebraic specification (36), is a standard example of using the behavior approach to define new data types. It consists of a set of object declarations and a set of axioms describing the behavior of these objects. Figure 10 is an example of an algebraic specification to define stack.
type stack elementtype: type

syntax
newstack -> stack,
push(stack, elementtype) -> stack,
pop(stack) -> stack,
top(stack) -> elementtype \cup \{UNDEFINED\},
isnew(stack) -> boolean,
replace(stack, elementtype) -> stack,

semantics
declare stk: stack, elm: elementtype;
pop(newstack) = newstack,
pop(push(stk, elm)) = stk,
top(newstack) = UNDEFINED,
top(push(stk, elm)) = elm,
isnew(newstack) = true,
isnew(push(stk, elm)) = false,
replace(stk, elm) = push(pop(stk), elm),

Figure 10. Example of algebraic specification to define a data type.

This stack has newstack, push, pop, isnew, etc., as its operations. The type of the formal parameter is not fixed. **Syntax** defines the syntactic structure of stack and **semantics** defines the meaning of each operation.

One implementation language using algebraic specification is OBJ. OBJ (22) is a language for writing and executing abstract formal specification of programs. It is based on an algebraic model of computation. OBJ can also be seen as a rather inefficient but very high level programming language,
in which the programmer can define and then use abstractions. There are two major syntactic units in OBJ. One is declaration, which enters definition into a data base. The other is execution, which requires expressions, using information from that data base.

The expression in OBJ has a very flexible syntax allowing not only the usual prefix, postfix and infix notations, but also what is called distributed fix notation, which permits an operator to have any desired distribution of key-words and arguments.

\[\text{if } B \text{ then } I \text{ else } J \]

can be an expression. The equations of OBJ provide an abstract semantics, through the initial algebra approach. It uses rewrite rules, which cause a substitution instance of left-hand sides by a corresponding substitution instance of right-hand sides. Given axiom

\[\text{if } T \text{ then } I \text{ else } J = I \]

and expression

\[2^* (\text{if } T \text{ then } (1+1) \text{ else } 3) \]

the latter can be simplified to \(2^*(1+1)\) (\(T\) stands for true). Figure 11 shows an example in OBJ to define a 'data type' of
Greatest Common Divisor.

\textbf{object} \ gcd

\textbf{sorts} \ / \ int

\textbf{ok-ops}
\gcd = int, int\rightarrow int

\textbf{error-ops}
\text{neg-arg: int}

\textbf{vars} \ i,j: \ int

\textbf{ok-egns}
\begin{align*}
(gcd(i,i) &= i) \\
(gcd(i,0) &= i) \\
(gcd(0,i) &= i) \\
(gcd(i,j) &= gcd(i-j,j) \text{ if } i>j) \\
(gcd(i,j) &= gcd(i,j-i) \text{ if } i<j)
\end{align*}

\textbf{error-egns}
\begin{align*}
(gcd(i,j) &= \text{neg-arg if } (i<0 + j<0))
\end{align*}

tcejbo

\textbf{Figure 11. Example of OBJ to define a data type}

'+' is boolean disjunction (or)

\textbf{Sorts} define the type, in this example, is integer, to be manipulated. \textbf{ok-ops} and \textbf{ok-egns} define the normal operations and equations, respectively. \textbf{error-ops} and \textbf{error-egns} define the error operations and error equations.

Another example of behavior approach to data type definition is the use of algebraic theories (\theta), which is
implemented by CLEAR. To build an algebraic theory we need:

1. the ability to write explicit theories; the basic structure is

```
theory sorts.....
  opns........
  eqns........endth
```

Sorts specify the data sets used in the theory. Opns are the representation of operations and eqns list the axioms describing properties of the operations. For example:

```
The theory Nat0
  theory sort nat
    opns 0:→nat
    succ: nat→nat
    eqns           endth

The theory Bool0
  theory sort bool
    opns true:→bool
    false:→bool
    ⊤: bool→bool
    ∧: bool,bool→bool
    eqns    ¬true = false
             ¬false = true
             false ∧ p = false
             true ∧ p = p endth
```

2. operations on theories to combine, enrich, induce, and derive, which enable us to build up theory expressions denoting complex theories. Combine is similar to set
union; it combines two theories to be one. One can combine boolean theory and natural number 0 theory to form a bool+nat0 theory:

```
The theory Bool0+Nat0
sorts bool, nat

opns true: \rightarrow bool
    false: \rightarrow bool
    \neg: bool \rightarrow bool
    \wedge: bool, bool \rightarrow bool
    0: \rightarrow nat
    succ: nat \rightarrow nat

egns \neg true = false
    \neg false = true
    false \wedge p = false
    true \wedge p = p endth
```

Enrich is used to introduce more axioms to a theory:

```
The theory Nat1
enrich Bool0+Nat0 by

opns \leq: nat, nat \rightarrow bool
    eq: nat, nat \rightarrow bool

egns 0 \leq n = true
    succ(m) \leq 0 = false
    succ(m) \leq succ(n) = m \leq n
    eq(m, n) = m \leq n \wedge n \leq m endth
```

Induce performs the transitive closure on the axiom set of a theory. This is useful for developing inductive properties of objects in a theory. For example, Induce Nat1 adds these egns to Nat1, allowing us to explicitly reason about general properties of members of Nat1:
\[
eq(n, n) = \text{true} \\
\eq(m, n) = \eq(n, m) \\
\eq(1, m) \land \eq(m, n) \land \neg\eq(1, n) = \text{false}
\]

Derive can be used to create a subtheory from some existing theory. A subset of the sorts, operators, and axioms are extracted and used to build the new theory. For example

```plaintext
The theory Natequal
  sorts element, bool
  opns equal, true, false

from Nat by
  element is nat
  bool is bool
  equal is eq
  true is true
  false is false endde
```

3. procedures for theory-building:

1) theory **constants** enable us to give a name to a theory. The words with double underlining are constants.

2) theory **procedures** can take other theories as their parameters and producing a theory as a result. Their bodies use the primitive operations already defined and may call other theory procedures. For example:
constant pi = 22/7
procedure f(x: number, b: boolean) =
 if b then pi*x else 0
procedure g(y: number) =
 let z = f(y*y, true) in z*z*z

We call g(2), then we can get g(2) = ((22/7) * (2*2))

(3) local theory definitions, permitted in the bodies
of theory procedures:

 let i = in....

The example of a theory specification is shown in Figure 12.

const triy - theory sorts element endth
proc stack (value: triy) =
 induce enrich value= bool by
 sorts stack

opns nilstack: ->stack
 push: value, stack -> stack
 empty: stack -> bool
 pop: stack -> stack
 top: stack -> value

erroropns underflow: -> stack
 undef: -> value

var v: value, s: stack

eqns empty(nilstack) = true
 empty(push(v, s)) = false
 pop(push(v, s)) = s
 top(push(v, s)) = v

erroreqns pop(empty) = underflow
 top(empty) = undef
 pop(underflow) = underflow
enden

Figure 12. Example of algebraic theory definition
The value handled by stack is sort element defined by
trv with a sorts statement. Stack is induced and enriched
from constants of value and boolean. opns and eqns define
the operations and equations, respectively. erroropns and
erroreqns define the error operations and error equations.

3.5 Type recursion

Hoare (26, 27, 28) describes a recursive data type
definition as the occurrence of a type name inside its own
definition, denoting an occurrence of a (smaller) instance
of a value of that type as a component. A good example of
recursively typed objects is found in Lisp

type list = atom | list*list

Where a list is either an atom (defined elsewhere) or an
ordered pair, whose first and second components are
themselves lists. This recursive data type definition may
be used to present another data type. For example, Pascal
can be extended to allow recursive type definitions (29)
type tree-node = record
 data: t;
 left-subtree: tree-node;
 right-subtree: tree-node
end

in place of the usual pointer-oriented declarations:

type tree-pointer = tree-node;

tree-node = record
 data: t;
 left-subtree: tree-pointer;
 right-subtree: tree-pointer
end

The latter is a special case which standard Pascal allows, but it contains recursion, too. It would be much more convenient to allow general recursion. Then we can abbreviate 'infinite enumerations' like

 type color = set of (red, orange, yellow, green,
 blue, indigo, purple, ...)

to

 type color = red | yellow | blue | color*color
We can get the different colors without listing all the colors in a set. But unfortunately, there is no well-known programming language permits this simple use of recursion in data type definition.

3.6 Constructs for type conversion

Plon (16) describes the term coercion as applied to the general task of converting one type into another, usually in relation to those conversions done implicitly by a language translator when it finds an object of a different type than it expects. Generally the coercions are widening, as in changing integers to reals, and narrowing, as truncating reals into integers. Algol 68 has a large number of built-in type conversions, such as 'voiding':

```
int x; real i; ....x:=i;.....
```

In this example, x gets the integer value of i, but i's value and type will not change. Most commonly used programming languages have a set of conversion rules for the arithmetic and assignment operations. The rules are built-in, and conversion occurs automatically.

In a lower-level view of coercion, Venema (57) states that type converters allow breaches of the type system so that a value of one type can be used as a value of some
other type. To convert an object of one type to another, both objects must have the same implementation word size and be represented in the same internal format (e.g. twos-complement, binary float).

Gries (25) believes that type conversions should allow only explicit conversion from a specific type to another type. This achieves the necessary flexibility without endangering transparency and understanding. Thus we should provide procedures to do type conversion explicitly.

```
type complex = record
  re: integer
  im: integer
end;

function converfrominteger (x: integer) : complex;
begin
  converfrominteger.re := x;
  converfrominteger.im := 0
end;
```

Still another viewpoint is that the language's compiler should handle all type conversions, regardless of the effort. Figure 13 is an example of a type conversion which illustrates what a compiler should do in an implementation if it allows implicit type conversion.
... ...
var a, b: integer; c: real;
procedure p (var x: <type>);
 var y: type; begin ... end;
... ...
p(a); p(c); p(b);
... ...

compiler should translate above code to be

var a, b: integer; c: real;
procedure p'(var x: integer);
 var y: integer; begin ... end;
procedure p (var x: real);
 var y: real; begin ... end;
... ...
p'(a); p(c); p'(b);
... ...

Figure 13. Example of type conversion

3.7 Parameterization (generic procedures)

In most all languages, programmers have to declare a formal parameter with a fixed type in a procedure. It will be very convenient if this restriction could be relaxed. Parameterized types (48), which provide this feature, can eliminate the need for writing repetitive code for similar functions for different data types. Clusters in CLU, forms in ALPHABD, Macro in BLISS have some parameterization in their language designs:
type bag (t::type) =
declare c::clist(t);

etc.

In this case, a programmer can use any data type as the parameter.

The following example illustrates the feature of generic procedures. <> indicates the types are dependent on the actual parameters of the call, and n is an integer.

```
function subtype (x::<type>): array<n> of <type>;
var i:domain(subtype);
begin for i in domain(subtype) do
    subtype(i) := x
end;
```

The point we want to make in this example is the dimension of return type is varied too, which provides a more flexible feature in parameterization.

3.8 Exception handling

When people design a programming language, they often consider the normal conditions and forget the error (or exceptions) conditions. It is assumed that a program should only handle the normal, expected conditions, but error conditions arise nonetheless. The properties of a language (5) should have the facility to handle exceptions.
ADA has a feature to aid in exception handling. In ADA (32), we may define

```plaintext
function fromint (i:integer)
  return intorunderflow is
  begin return(isint=>true, int=>i)
  end;

function fromunderflow (u:underflow)
  return intorunderflow is
  begin return(isint=>false)
  end;
```

to return an integer and boolean pair to handle exceptions. The function `fromint` returns an integer-boolean pair indicating that the argument is type correct and its value is `i`. The second, however, sets the boolean to false to indicate a run-time error.

Gaudel (20) discusses two ways of handling the errors in algebraic specification. One is restriction specification, defined by Guttag. This specification is illustrated in figure 14, which defines a queue of maximum size 100.
type queue, bool, int, item;

operations
 () → queue: empty q;
 (queue, item) → queue: append;
 (queue) → queue: remove;
 (queue) → item: first;
 (queue) → bool: empty?;
 (queue) → int: length;

axioms
 declare q: queue, i: item;
 remove (append (q, i)) = if empty? (q) then empty q
 else append (remove (q, i));
 first (append (q, i)) = if empty? (q) then i
 else first (q);
 empty? (empty q) = true;
 empty? (append (q, i)) = false;
 length (empty q) = 0;
 length (append (q, i)) = length (q) + 1;

restrictions
 pre (remove, q) = ¬ empty? (q);
 pre (first, q) = ¬ empty? (q);
 length (q) ≥ 100 = failure (append (q, i));

end

Figure 14. Example of restriction specification

The other one is error algebras, which is defined by Goguen. In this specification, error-operations and error-axioms are specified. Figure 15 shows the same example of restriction specification with error algebras.
type queue, bool, int, item;

operations
 () → queue: emptyq;
 (queue, item) → queue: append;
 (queue) → item: first;
 (queue) → boolean: emptyq?;
 (queue) → int: length;

error-operations
 () → queue: underflow, overflow;
 () → item: missing;

axioms
 declare q ∈ queue, i ∈ item;
 the same ones as in figure 14

error-axioms
 remove(emptyq) = underflow;
 remove(underflow) = underflow;
 append(overflow, i) = overflow;
 first(emptyq) = missing;

others
 append(q, i) = if length(q) ≥ 100
 then overflow
 else append(q, i);
end.

Figure 15. Example of error algebras

Restriction specification sets the restriction rules to prevent where errors which might happen. But error algebras set the error-axioms which provide the error messages when an error occurs. These two methods are different, but the result is the same.
CHAPTER IV

CONCLUSION

The basic requirements for a programming language are simplicity, ease of understanding, and ease of implementation. These are good requirements for the constructs for building new data types, too. It should be easy for programmers to learn how to build data types and to understand the constructs which already have been built. The programmers should be able to ignore details and work with simplified rules to design their own data types. Some languages or concepts are too complicated for constructing a data type. Space in Model and form in Alphard are difficult for programmers to understand. Other programming languages such as Concurrent Pascal, Clear, Euclid are easier to understand and to use. Controlling overall complexity can aid in designing and implementing. Programmers should not have to spend a lot of time in figuring out how data types can be built, and they should be able to easily learn how these type constructs work. Then they can use them correctly.

Protection of the operations defined in the abstract data
type is another important consideration. Those operations defined for the data type must not be changed by outside environment, or the integrity of the type is lost. Some programming languages have explicit protection, but some do not. Module in Euclid has 'exports' and cluster in CLU have 'is' to specify the operations which can be accessed by outside. In Concurrent Pascal, class has procedure (or function) entries which can be accessed but can not be changed by outside of the class, and have internal procedure (or function) which can not be accessed by outside of the class at all. This is a good mechanism to protect the operations of the abstract data types.

Most abstract data types can handle different sizes (passed from the parameters of each call lower and upper bounds can be varied). Some languages, such as Concurrent Pascal and Euclid have them fixed. Some languages, such as CLEAR, OBJ and CLU have them parameterized, so that the types of formal parameters of a procedure can depend on a particular call of the procedure. In the latter case, the programmer may define one abstract data type which can be used by all the similar calls with different variable types. The program size will be much smaller and the program will easier to understand. After setting up these generic procedures, the compiler must be able to check the type to see whether variables match with the operations which
accompany the type definition.

Type conversion is a very convenient feature for programmers, if it is implicitly defined in the languages. But some restrictions for type conversion must exist. Clearly we should not convert types boolean to integer, especially when there are arithmetic operations on these integers.

For a programmer, to choose a language which is simple and easy to be understood is the first consideration. But how to solve a number of technical problems affecting the efficiency of generics and tasking, and how to develop the technology of program specification and verification into a usable abstract data type model, are the next problems for the language designers. In the future, there will be more programming languages providing abstract data type constructs, and more programmers will get used to this feature, too. So to develop a library of representations and assistance with selection of which ones to use, and to mix representations, and to have automatic conversion of representations in a running system are the future trends for abstract data type developers.
REFERENCES

New York, 1972, pp. 175-220.

22. Goguen J. A. Some Design Principles and Theory for OBJ-0, A Language to Express and Execute Algebraic Specications of Programs, Computer Science Department, UCLA, L.A., Cal.

58. Wulf W. A. Abstract Data Types: A Retrospective And Prospective View, Computer Science Department, Carnegie Mellon University, Pittsburgh, Pa, 1980.

A Survey of Data Type Specification Methods

by

SHIOWJY FAN
B.S., Fu-Jen Catholic University (Taiwan, R.O.C.), 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982
ABSTRACT

Different programming languages provide different features for defining abstract data types. Some use the existing language's structure to extend its features to define a type, some use a data structures plus subroutines package to define a type, and others provide mechanisms using operators and equational axioms to define a new data type.

This paper surveys five basic approaches to data type definition and the programming languages and theories which support these methods.

A large portion of this paper deals with the representations of the methods for data type definition. Examples are given to support these constructions. Relevant topics such as type recursion, constructs for type conversion, paramaterization, and exception handling are discussed as well.

In the last section some conclusions and future trends are given.