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Abstract 

The best mode of communication for a team of mobile robots deployed to cooperatively 

perform a particular task is through exchange of messages. To facilitate such exchange, a 

communication network is required. When successful execution of the task hinges on 

communication, the network needs to be robust - sufficiently reliable and secure. The absence of 

a fixed network infrastructure defeats the use of traditional wire-based communication strategies 

or an 802.11-based wireless network that would require an access point. In such a case, only an 

ad hoc wireless network is practical. 

This thesis presents a robust wireless communication solution for mobile robots using 

motes. Motes, sometimes referred to as smart dust, are small, low-cost, low-power computing 

devices equipped with wireless communication capability that uses Radio Frequency (RF). 

Motes have been applied widely in wireless sensing networks and are typically connected to 

sensors and used to gather information about their environment. Communication in a mote 

network is inherently unreliable due to message loss, exposed to attacks, and supports very low 

bandwidth. Additional mechanisms are therefore required in order to achieve robust 

communication. 

Multi-hop routing must be used to overcome short signal transmission range. The ability 

of a mobile robot to determine its present location can be exploited in building an appropriate 

routing protocol. When present, information about a mobile robot’s future location can aid 

further the routing process. To guarantee message delivery, a transport protocol is necessary. 

Optimal packet sizes should be chosen for best network throughput. To protect the wireless 

network from attacks, an efficient security protocol can be used. 

 This thesis describes the hardware setup, software configuration, and a network protocol 

for a team of mobile robots that use motes for robust wireless communication. The thesis also 

presents results of experiments performed. 
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CHAPTER 1 - Introduction 

1.1 Interaction in a robot team 
For a team of robots to successfully execute a particular task in a cooperative fashion, the robots 

must be able to interact [or communicate]. 

  

One way to achieve this is through sensors and actuators on the robot. For example, a robot with 

vision capabilities may be programmed to visually identify when it has been assigned a task. The 

presence of a bright red object in the view of the robot could signify that the robot should turn in 

a particular direction and move a specified distance to wait for further instruction. To provide 

feedback, for example about completion of task, a robot could perform a predefined action or 

sequence of actions. To correctly interpret this feedback, a receiver would need to be 

appropriately equipped with sensors and be available to sense the feedback in time. Such 

communication techniques that require the robots to have appropriate actuators and sensors could 

limit the range of “messages” that the robot can send or receive. Furthermore, communication in 

this case may not be precise or even reliable due to factors that could distort the actuating or 

sensing processes. 

 

A better way to interact is through exchange of messages – actual bytes. For example, a robot, 

designated as the team leader, could send a message (single byte or a stream of bytes) to another 

robot instructing the receiving robot to turn in a particular direction and move a specified 

distance to wait for further instruction. To provide feedback about completion of the task, the 

instructed robot could send a message back to the lead robot. Since these messages are 

predefined and their meaning known to both communicating parties, they can be interpreted 

precisely and correctly. A wider range of messages can be defined in this case compared to when 

relying purely on sensing and actuating that does not involve exchange of actual bytes. 

 

Therefore, communication through exchange of messages remains the best way to facilitate 

interaction in a team of mobile robots deployed to cooperatively perform a particular task.  
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1.2 The Problem 
A team of mobile robots is employed to cooperatively perform a particular task. The task 

involves the robots moving to designated areas as they gather information about their 

environment, and communicating feedback to a lead robot [or control center]. The lead robot 

assigns each robot an area to patrol and responds to feedback it receives from the robots. Each 

robot maintains status information about all other robots in the team. Status information includes 

the robot’s last known location. A robot, therefore, needs to be aware of at least the location of 

other robots in the team. 

 

A robot first advertises its existence by sending out a message seeking to know the identity of the 

lead robot. A non-lead robot in the team simply ignores this message. The only lead robot, if 

present, responds back with a registration confirmation message. Once registered at the lead 

robot, a robot is eligible for task assignment. The robot control structure in this case is primarily 

centralized, but could be restructured to allow decentralized behavior. Task assignment is 

achieved using an algorithm executed by the lead robot. In some cases, it is necessary for a team 

to learn about the existence of a new robot. Additionally, the lead robot needs to know when a 

robot is no longer part of the team so that it can re-distribute tasks among the remaining robots. 

 

Each robot can send or receive an arbitrary number of messages. There is no restriction on the 

size of a message exchanged between robots. The robots follow a communication protocol when 

exchanging command or feedback information while cooperatively performing a task. Each 

message is crucial to the successful completion of the task since it can impact the behavior or 

action of a robot. 

 

Clearly, such a team of mobile robots which must cooperate to perform the task of patrolling 

designated areas require a communication network to facilitate exchange of messages. Since the 

messages can impact the behavior or action of a robot, and therefore the successful completion of 

or execution of a set of actions for, a task, the communication network must be robust – 

sufficiently reliable and secure. 
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1.3 The Communication Network 
A robust communication network is required for successful interaction through exchange of 

messages by a team of mobile robots deployed to cooperatively perform a particular task. The 

absence of a fixed network infrastructure defeats the use of traditional wire-based 

communication strategies as well as an 802.11-based wireless network that relies on the 

existence of an access point. An ad hoc wireless network is therefore most practical for this 

purpose. 

 

A wireless communication network that utilizes the ad hoc mode of the 802.11 standard could 

suffice for such a team of mobile robots. Robots operating on batteries, however, would run out 

of power sooner as they send and receive messages through their 802.11-based wireless 

interfaces. A communication device, such as a mote, that requires less energy could be used. 

This could offer the advantage of increasing the operating duration of a robot 

 

This thesis presents a robust wireless communication solution for mobile robots using motes. 

Motes, sometimes referred to as smart dust, are small, low-cost, low-power computing devices 

equipped with wireless communication capability that uses Radio Frequency (RF). Motes have 

been applied widely in wireless sensing networks and are typically connected to sensors and used 

to gather information about their environment. Communication in a mote network is inherently 

unreliable due to message loss, exposed to attacks, and supports very low bandwidth. Additional 

mechanisms are therefore required in order to achieve robust communication. 

 

Multi-hop routing must be used to overcome short signal transmission range. The ability of a 

mobile robot to determine its present location can be exploited in building an appropriate routing 

protocol. When present, information about a mobile robot’s future location can aid further the 

routing process. To guarantee message delivery, a transport protocol is necessary. Optimal 

packet sizes should be chosen for best network throughput. To protect the wireless network from 

attacks, an efficient security protocol can be used. 



1.4 Communication in a Mote Network 
Motes can be used to provide an ad hoc communication network for exchange of mission critical 

messages by a team of mobile robots deployed to cooperative perform a task. A mote network is 

however inherently unreliable due to the possibility of packet loss. Motes communicate using 

Radio Frequency (RF) which is a broadcast medium. This exposes the network to attacks, some 

of which could disrupt communication. Additional mechanisms are therefore necessary to ensure 

packet delivery, mote authenticity, and confidentiality in a mote network. 

1.4.1 Causes of packet loss in a mote network 

In a mote network, packet loss is inevitable. A packet sent by one mote to another may not arrive 

due to link-layer contention, signal attenuation, channel errors, or congestion. 

1.4.1.1 Link-layer Contention 

Neighboring motes contend for the shared wireless channel before transmitting. Key problems 

that arise due to channel contention include: hidden terminal problem, exposed terminal problem, 

and unfairness [1].  

Hidden Terminal problem 

 
Figure 1.1  A hidden terminal problem is within the interfering range of the 

intended receiver, but outside the sensing range of the transmitter. 

A hidden terminal C is within the interfering range of the intended receiver B, but outside the 

sensing range of the transmitter A. Collision from the hidden terminal C may hinder correct 

receipt of the packet by the receiver B. 
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Exposed Terminal problem 

 
Figure 1.2 An exposed terminal is one that is within the sensing range of the transmitter, 

but outside the interfering range of the receiver.  

 

In this case, terminal B is waiting to transmit to mote A. So terminal B listens to the 

shared channel and senses another terminal C, the exposed terminal, also listening to the 

channel. Even though the transmission of terminal C may not interfere with reception at 

terminal A, terminal B cannot start transmitting because it senses a busy medium. 

Unfairness 

Unfairness may occur depending on the Medium Access Control (MAC) protocol in use.  

A MAC protocol attempts to prevent collisions, which can occur when multiple motes 

within each other transmission range transmit at the same time, by allowing a mote to 

first listen to the channel for a clear signal before transmitting. If the channel is not clear, 

the listening mote will back-off from transmitting. For example, a MAC protocol that 

utilizes the binary exponential back-off scheme will always favor the latest successful 

transmitter. 

1.4.1.2 Signal attenuation 

The strength of a signal from a mote reduces as the signal travels. The longer the distance 

a signal travels, the weaker it gets. This leads to corruption, and eventual loss, of a 

packet. 

5 
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1.4.1.6 Channel error 

Channel errors in a mote network can be generated by transmission channel noise due to 

existence of other networks or devices in the environment. For example, packet error 

rates in a mote network increase under 802.11b interference [27]. 

1.4.1.7 Congestion 

Congestion occurs when a link or node is carrying so much data that its quality 

deteriorates. In a mote network that has limited bandwidth, sending large messages can 

lead to network overload. Even though sufficiently large buffers can accommodate 

enormous amount of data, when this data has to be transmitted, it could lead to collisions 

or even denial of service - a security threat discussed in the section that follows. 

1.4.2 Security threats 

Motes are vulnerable to attacks due to the fact that they use RF which is a broadcast medium. 

Some of the threats that a mote network is exposed to include: snooping, unauthorized 

modification, service delay, and denial of service. 

1.4.2.1 Snooping 

Unauthorized interception of information, commonly known as snooping, can occur if a 

mote is present within range of other motes. It is not possible to prevent snooping 

because motes communicate via radio frequency. Any mote within range of a radio signal 

from a mote, and listening on the same frequency of the robot mote is capable of 

eavesdropping on the communication between robot motes.  

 

Reasoning messages between robots can reveal detailed information about the workings 

of the robot teams. Part of this information includes: assignments to particular robots to 

search designated areas, re-assignments to an area where there is evidence of suspicious 

devices, other robot re-organization information. A listening mote can gain, through 

spoofing, detailed knowledge about the workings of the robot teams and team mission 

goals. This, however, does not necessarily prevent the intended destination robot motes 

from receiving the reasoning messages. 



7 

 

1.4.2.2 Unauthorized modification 

A more potentially damaging threat is unauthorized change of information going across 

the network. As we have realized, it is possible for a listening mote to receive the same 

information intended for a robot mote in the network. In the case where a receiving robot 

mote is within communication range of a sending robot mote, the receiver is able to 

receive information directly from the sender.  

However, in the likely case that the receiver is not within direct communication range, 

such that information from the sender has to be routed to the receiver by an intermediate 

mote, the receiver relies on the routing mote to deliver the information. Since we are 

dealing with a purely broadcast medium, a listening mote within direct range of the 

receiver and the sender could potentially pose as a router. If this mote is able to provide a 

shortest path or least cost route to the receiver, routed information from the mote could 

get to the receiver quicker than information could leave a legitimate mote providing 

routing service for the sender.  

 

The listening mote could potentially modify the information it receives from the sender 

and further route it to the intended destination revealing no information about itself. This 

information could be such that the receiver relies on it to determine what action to take. 

The receiver could also be relying on the correctness of the information which may need 

to be released to another robot. Threats such as interruption or prevention of correct 

operation of the robot or unauthorized control of part of the robot system could arise. 

 

A listening mote can impersonate a mote existing in the network, or a non-existent robot 

mote. By sending a message with information indicating that the message originates from 

a known mote, a mote could receive an assignment to perform some operation. It now 

becomes part of the team of robots trusted to perform certain tasks and to produce and 

possibly communicate results. This can hurt team performance. The listening mote can 

easily mislead the rest of the team especially by posing as the leader of the team, capable 

of making assignments and even disabling other robot motes. 
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1.4.2.3 Service delay 

It is possible for an attacking mote to temporarily inhibit services within the network by 

delaying message delivery or performance of some other task. Due to routing 

requirements in the network, for example, a robot mote can be selected to provide a route 

to another robot mote not within range of a sender of information. If a listening mote can 

masquerade as part of the team and position itself conveniently such that it is a router 

candidate, the mote can be chosen to propagate signals to the intended final receiver of 

the message. The listening mote, on receiving the information, and knowing its 

responsibility to route the information to an robot mote, can hold on to the message 

longer than it should with the sole purpose of delaying message delivery. This could 

further result in delayed execution of some tasks. 

1.4.2.4 Denial of service 

Other than a temporary delay in service delivery, a long-term service delay popularly 

referred to as "denial of service" can also occur. A listening mote can prevent the leading 

robot from sending out information regarding team assignments. The listening mote can 

achieve this by, for example, sending too many messages to the lead robot to overload it 

in such a way as to prevent it from being able to perform other tasks. This can be even 

more damaging in a network environment where the robot motes give a high priority to 

message processing which could be very critical in the assignment of tasks and 

achievement of team goals. 

1.4.3 Examples of specific attacks 

1.4.3.1 Physical node capture 

The mobile robots in this application are designed to be deployed into open areas that 

may or may not be monitored for physical safety. The robots are semi-autonomous, and 

not tele-operated even though they do have the capability to allow for total human 

control. One of the likely areas for deployment includes battle zones. A node can be 

destroyed or picked up and taken away by an enemy. Another possible deployment 

location is a disaster area where all sorts of rescue operations are being carried out. It 
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could be due to, for example, fire, earthquake, or some other phenomena. A node can be 

destroyed in the process of contributing to rescue efforts. 

1.4.3.2 Flooding attack 

Network flooding is a well know problem [14], and could easily occur in this robot 

network. It can be achieved through exploits, some of which are available at Metasploit 

(www.metasploit.com). An attacking node could transmit too many messages and 

consequently overload the network which already has limited bandwidth.  This is a form 

of Denial of service attack [13]. 

1.4.3.3 Network protocol invasion 

This kind of attack requires some knowledge about the workings of the network 

communication protocol. In the current implementation, which uses sliding window 

protocol with selective repeats, a receiving node sends a block acknowledgement to a 

sending node [16]. The acknowledgement contains a bitmap which provides information 

about which packets have already been received and which ones have not yet been 

received. Also included in the acknowledgement is the sequence number of the first 

expected packet. An attacking node can fake this acknowledgement, for example, by 

providing a sequence number that is within the window and a bitmap which would cause 

the sender to retransmit all of the packets previously sent. If an attacking node can send 

several of these in a short period of time, it can introduce congestion or cause collisions 

to occur, and thereby disrupting the operation of the protocol. 

 

The workings of the network protocol could be disrupted also if the attacking node sends 

packets which a receiver of the packet would use to determine what action to take. A 

reset packet, which I defined as one to send to a node to request it resets the information 

it is keeping about another node, is an example. If a false reset packet is received by a 

node, it will reset state information about other nodes and this can cause other nodes to 

get confused about information they receive from the compromised node. For example, 

resetting the sequence number information could cause a node’s data packets to be 

rejected because they might no longer fall within the window expected by a receiver. 

http://www.metasploit.com/
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1.4.3.4 Denial of service using high-energy signals 

A special form of denial of service attack in this robot network can be achieved if an 

adversary broadcasts high-energy signal [13]. A powerful enough transmission could jam 

the entire mote network. Such an attack can also occur at the medium access control 

(MAC) layer. By continuously requesting channel access with a request-to-send signal, 

an attacking node can prohibit other nodes within its immediate range from transmitting, 

leading to denial of service. 

1.4.3.5 Electronic node capture 

Unlike physical node capture, in electronic node capture, an adversary does not need to 

take away a mote [or robot]. The adversary can instead gain control of the mote by 

injecting code into it. The motes we decided to use for this robot network allow for in-

network programming. It is possible to reprogram, thus overwriting the program via 

radio. Malicious code can be ported onto the mote in this manner. Regardless of what the 

code has been written to accomplish, it is very likely that it will disrupt the 

communication capability of the robot. The communication capability happens to be the 

most important capability for the robots, especially when a robot is within 

communication range of at least one other robot. 

1.4.3.6 Information theft 

A mote is primarily a broadcast medium. It transmits signals at a particular frequency. 

Any mote within communication range of a transmitting mote and listening on the same 

frequency as the transmitting mote can receive and process the signal. I will note though 

that for a listening mote to form good packets out of the signals it picks up, it has to have 

detailed knowledge about the packet format. The current implementation uses a format 

whose specification is publicly available. Therefore, it is possible for an adversary to 

introduce a mote in the robot network that will be able to decipher the signals and reform 

the messages transmitted over the network. 
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1.5 Related Work 

Significant research has been done in the area of reliable communication in Mobile Ad Hoc 

Networks (MANETs) [1,3,9]. Chonggang W. et. al [8] surveys transport control protocol for 

wireless sensor networks (WSNs). Energy-conservation, congestion control reliable data 

dissemination, security, and management of WSNs are problems to be overcome in WSNs. 

Attention has however turned to transport control protocols, which are important for data 

dissemination and energy-conservation for WSNs. Ahmad Al Hanbali et. al [9] discusses the 

challenges of implementing TCP over MANETs. The performance of TCP degrades in MANETs 

environment because TCP has been optimized for running over wired networks. Christian L. et. 

al, [3] surveys the key problem of congestion control in mobile ad-hoc networks. A summary of 

common design patterns in congestion control mechanisms for MANETs is available at the end 

of the survey. Many of the papers have pointed out that TCP performance in MANETs is not 

optimal.  

Still, design, implementation, and testing of TCP over MANETs have focused mainly on 

Wireless Sensor Networks which has unique characteristics in terms of communication patterns. 

Techniques developed as a result of this research therefore may not suit a wireless network of a 

team of mobile robots with high-reliability communication requirements. 

 

Security in Wireless Sensor Networks has also been studied [13,14]. Many of the techniques 

used in securing wired networks are not feasible for WSNs primarily due to the fact that devices 

used in WSNs suffer from lack of processing, memory, and battery power.  

TinySec [11] has however emerged as a promising approach to securing wireless networks of 

resource constrained devices like motes. TinySec is the first fully-implemented link layer 

security architecture for wireless sensor networks. It guarantees message authenticity, integrity, 

and confidentiality. TinySec uses Message Authentication Codes (MACs) and supports 

authenticated encryption and authentication only security options. Unfortunately, 

implementations of TinySec are available only for Mica, Mica2, and Mica2Dot platforms. There 

is no known implementation of TinySec for MicaZ platform. 



 

CHAPTER 2 - The Network Protocol 

The wireless network protocol for use by the team of mobile robots is distributed between the 

robot and the mote. Part of the protocol runs on the robot and the other part on the mote. Its 

architecture follows a layered model similar to OSI, but not exactly.  

 

On the mote, only three layers are present. The mote does not keep state information about 

logical links to other motes in its transmission range. Thus, it does not need a part - Logical Link 

Control (LLC) - of the Data Link layer. Furthermore, the application on the mote interacts 

directly with the Medium Access Control (MAC) layer when sending packets over radio and 

does not offer network, transport, session, or presentation services as in OSI. 

 

 
Figure 2.1 Open Systems Interconnectivity Model 
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Figure 2.2 Network Protocol Architecture showing Layer 1 and Layer 2 

 

The protocol portion on the robot uses a cross-layered architecture. Here, three layers (transport, 

network, and data link - LLC) are bundled into one. Information between the layers is shared. 

There is no clear separation of these layers. The robot does not perform any Medium Access 

Control because it is connected to a mote by a non-shared dedicated physical medium. An 

application, like the one described in chapter 1, can be written on the robot to use the protocol. 
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2.1 The Hardware 
The hardware comprises of robots, USB cables, motes, and programming boards.  

 

 
Figure 2.3 Hardware setup: A MicaZ mote, attached to a MIB520 programming board is 

connected to each P3-AT robot using a USB cable. 

 

2.1.1 The robots 

Each robot is a Pioneer P3-AT robot. The Pioneer P3-AT (or just P3-AT) robot is a high 

performance, highly versatile, all-terrain robot used for research and a variety of prototyping 

applications [23]. It is equipped with an on-board computer and runs on three batteries. The 

robot can run on fully charged batteries for 3-6 hours. However, experimental results indicate the 

battery voltage depleting after 30-45 minutes of continuous operation with fully mobility. The 

robot provides both serial and USB interfaces. On flat ground, it can move up to speeds of 

700cm per second. The particular robots used in experiments associated with this thesis contain: 

1.6Ghz processor, 512MB RAM, two USB interfaces, and other hardware components. The 

Application Programming Interface (API) used is the Advanced Robotics Interface for 

Applications (ARIA) 2.5.1 running on Windows XP Professional operating system. 
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2.1.2 The motes 

Each mote is a MicaZ [19]. The MicaZ mote provides radio frequency (RF) communication 

through transceivers. It connects to a MIB520 board through a UART connector. The MIB520 

board comes with a USB interface through which it can be connected to another device; in this 

case, a P3-AT robot. When attached to a MIB520 programming board, the mote should not be 

set to use its batteries. The board, which is powered by the device it is connected to, 

automatically powers the mote. Setting the mote [using an on/off switch on the opposite side 

from the antenna] in this case can damage the mote. 

 

 
Figure 2.4 MicaZ mote
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Figure 2.5 The MicaZ specification (August 2008)  
Processor/Radio Board MPR2400CA Remarks 

Processor Performance   

Program Flash Memory 128K bytes  

Measurement (Serial) flash 512K bytes > 100,000 Measurements 

Configuration EEPROM 4K bytes  

Serial Communications UART 0-3V transmission levels 

Analog to Digital Converter 10 bit ADC 8 channel, 0-3V input 

Other Interfaces Digital I/O, 12C, SPI  

Current Draw 8 mA Active mode 

 < 15 µA Sleep mode 

RF Transceiver   

Frequency band 2400 MHz to 2483.5 MHz ISM band, programmable in 1MHz steps 

Transmit (TX) data rate 250 kbs  

RF power -24 dBm to 0 dBm  

Receive Sensitivity -90 dBm (min), -94 dBm (typ)  

Adjacent channel rejection 47 dB +5 MHz channel spacing 

 38 dB -5 MHz channel spacing 

Outdoor range 75m to 100m ½ wave dipole antenna, LOS 

Indoor Range 20m to 30m ½ wave dipole antenna 

Current Draw 19.7 mA Receive mode 

 11 mA TX, -10 dBm 

 14 mA TX, -5 dBm 

 17.4 mA TX, 0 dBm 

 20 µA Idle mode, voltage regulator on 

 1 µA Sleep mode, voltage regulator off 

Electromechanical   

Battery 2X AA batteries Attached pack 

External Power 2.7V – 3.3 V Molex connector provided 

User interface 3 LEDs Red, green and yellow 

Size (in) 2.25 x 1.25 x 0.25 Excluding battery pack 

         (mm)  58 x 32 x 7 Excluding battery pack 

Weight (oz , grams) 0.7 , 18 Excluding batteries 

Expansion Connector 51-pin All major I/O signals 

 



2.2 The Software 

2.2.1 Layer 1 (on the mote) 

A micaz mote comes installed with the TinyOS operating system. On it runs the entire layer 1 

protocol stack. For the motes to be able to communication with each other via radio, they are 

programmed to use share a channel. 

 

 
Figure 2.6 Layer 1 of the Network Protocol on the mote 

 

2.2.1.1 Physical layer 

The entire physical layer is implemented in the mote hardware. It controls modulation 

(TX) and demodulation (RX) of signal when sending and receiving packets respectively. 
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Figure 2.7 TinyOS and IEEE 802.15.4 

 

2.2.1.2 MAC layer 

Part of the Medium Access Control (MAC) layer is implemented in hardware. The 

software portion of this layer is open source and can be modified as desired, compiled 

and ported onto the mote. The Medium Access Control (MAC) layer works with the 

CC2420 radio stack [24] and is based on IEEE 802.15.4 standard.  

 

CC2420 offers 16 channels based on IEEE 802.15.4, even though, in this case, all motes 

share the same channel. It uses O-QPSK(offset quadraturephase shift keying) with half 

sine pulse shaping. MicaZ mote uses the Back-off MAC (B-MAC) protocol [10] at this 

layer to control access to the shared RF channel. 

  

When sending a packet, the MAC layer performs a clear channel assessment with an 

initial random back-off of 1-15 jiffys (66686 ticks per jiffy). If the channel is busy, a 

back-off is triggered. Otherwise, the packet is transmitted. Optionally, the MAC layer can 

wait for an acknowledgement when the packet is received. A “send done” signal is issued 

to the mote application. 
18 

 



 
Figure 2.8 TinyOS Radio Message Packet 

 

 
Figure 2.9 TinyOS Message Structure 

 

When a MAC header is detected, a radio interrupt is issued to signal an incoming packet. 

Packets are demodulated (RX) on a first in first out (FIFO) fashion. The mote application 

is then signaled with the packet. 
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Figure 2.10 MicaZ Radio Stack on TinyOS 

2.2.1.3 Application layer (on mote) 

The nesC application at this layer performs two functions: processes application-level 

command packets and forwards all other packets over radio. 

 

A framed packet from the robot is sent to the MIB520 programming board through an 

RS-232 serial interface. This may be a serial cable connected to a serial port or a USB 

cable on a USB port which the operating system [on the robot] associates with a virtual 

serial port. In both cases, the framed packet is a sequence of bytes serialized to the 

programming board. The mote receives a packet from the board through a universal 

asynchronous receiver/transmitter (UART) connector. The packet header is checked for 

corruption and a corrupt free packet is pushed up the protocol stack to an application on 

the mote. 

 

Packets exchanged through the serial interface are framed according to the RFC 1662 

standard where a SYNC byte is used at the beginning and end of the frame. 
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Packets received over radio are also checked for corruption before being passed up to the 

application. 

 

Commands are not broadcasted over the radio. Depending on the command, a packet may 

be sent back through the UART to the robot. All other packets are immediately queued 

for [broadcast] transmission over radio. All incoming packets from radio are forwarded to 

the UART for transmission to the robot. 



 

Code structure for the AgentBase application on the mote

 

 
Figure 2.11 Code structure of protocol on mote 

2.2.2 Layer 2 (on robot) 

The protocol portion on the robot uses a cross-layered architecture. Here, three layers (transport, 

network, and data link - LLC) are bundled into one - TND. Information between the layers is 

shared. There is no clear separation of these layers. The robot does not perform any Medium 

Access Control because it is connected to a mote by a non-shared dedicated physical medium. 
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Figure 2.12 Wireless Network Protocol Architecture 

Traditional-wired networks commonly apply the well known OSI layer model. In this model, the 

protocol is divided into layers.  

 

In OSI, the transport layer is provides end-to-end reliability and therefore guarantees message 

delivery. The network layer, just below the transport layer, provides network functions including 

routing of individual network packets. The data link layer, right below the network layer, 

performs functions similar to the transport layer. It provides point-to-point reliability of packets. 

The physical layer sits below the data link layer; it is responsible for actual transmission or 

reception of packets over the network physical cable medium.  

 

On the robot, a modified version of this model seems more appropriate. The layers remain 

unchanged and in the same order.  

2.2.2.1 Physical layer 

The robot interacts with the mote’s MIB520 programming board through a serial 

interface based on RS-232. At this layer bytes of information are streamed over the 

physical medium. Even though the robot interfaces with the MIB520 board using a USB 

cable, the operating system creates and communications with the board through virtual 

serial ports. 
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2.2.2.2 Transport, Network, Data link (TND) layer 

This forms the heart of the protocol portion on the robot. It provides the following 

services: out-going message fragmentation into data packets, incoming data packet re-

assembly into messages, end-to-end message reliability, message re-ordering, packet 

routing, and packet error-checking. 

 

Message fragmentation and re-assembly 

All data sent over the mote network is encapsulated in a TinyOS message packet. The 

TinyOS packet by default supports a maximum payload of 29, an arbitrary value, which 

seemed sufficient for the kind of applications that utilize motes, set by the developers of 

the low-level TinyOS programs. It contains a header of 5 bytes plus a 16-bit CRC value. 

The maximum packet size supported is 127bytes.  

 

However, experiments with a packet size of 100 bytes suffered too much corruption to be 

detected using the 16-bit CRC value. Using the maximum packet size would therefore not 

yield good results. The implementation used for this thesis assumes a maximum TinyOS 

packet size of 57 bytes, with 50 bytes for the payload. The TinyOS packet header 

contains an 8-bit value representing the actual size of the payload. Only this portion of 

the payload is transmitted and therefore providing a variable-size packet behavior. 

 

To support messages of larger sizes, the TND layer performs message fragmentation. 

Out-going messages are fragmented into small enough data packets. The data packets are 

50 bytes in size – 20-byte header and 30-byte payload. Effectively, an application-level 

message is fragmented into 30-byte packets. The CRC is computed over the entire 

TinyOS 50-byte payload. 

 

Incoming data packets, from the mote, are re-assembled back into messages. The order in 

which the packets are received from the mote is arbitrary. The packets are re-ordered 

when necessary to ensure correct re-assembly back into an application-level message. 
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Since there is no limit on the size of an application message, there is also no limit on the 

number of out-going or incoming data packets. 

Packet routing 

The TND layer handles routing of packets. According to specification, the MicaZ mote 

has a maximum transmission range of 100m. Outdoor experiments have shown the 

effective range to be 6.3-40m (about 19-122ft) depending on the elevation of the mote 

from the ground (0-3ft). Interference from other signals also contributes to this reduced 

range. For the robots to be able to communicate over a wider (more than the effective 

transmission range) area, the robots must act as relaying stations for packets. Routing is 

required. The TND layer uses a geographical routing algorithm based on shortest path. 

The layer contains location information of each robot in the network. When a packet 

needs to be routed towards its destination, a neighboring robot, closest to the destination 

is chosen as the next hop for the packet. Neighboring robots are ones within the effective 

transmission range of the sending robot. This routing continues until the packet arrives at 

its destination. When a robot sending packets moves out of range of all other robots, the 

packets cannot be sent. The current implementation retries indefinitely. This 

implementation can be improved by incorporating a timeout. 

End-to-end message reliability 

Packet loss in a mote network is inevitable. The TND layer provides a mechanism, based 

on TCP’s sliding window protocol with selective repeats [16], to guarantee packet 

delivery. There is both a sender and receiver timer which fire at fixed intervals of 3 

seconds. This interval can be modified. The window has a size of 40, allowing up to 40 

packets to be sent out before it waits for an acknowledgment. The acknowledgement 

contains a bitmap which provides information about which packets have already been 

received and which ones have not yet been received. Also included in the 

acknowledgement is the sequence number of the first expected packet.  

 



 
Figure 2.13 Code structure of protocol on robot 

2.2.2.3 Application layer 

The application layer represents the origin and final destination of all application-level 

messages. It receives corrupt-free messages from a single source in the order in which 

they were sent. If multiple sources send a message to a single mote, the order in which 

these messages are received is arbitrary. 

2.3 Security – attack prevention, detection, and recovery mechanisms 
The threats and attacks described in Chapter 1 all attempt to violate at least one of the three 

requirements or aspects of security: Confidentiality, Availability, and Integrity. Node capture, 

both electronic and physical, and network protocol invasion could lead to violation of all three 
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aspects. Denial of service as well as flooding, on the other hand, affects most, the availability of 

the system. Information theft violates confidentiality. 

 

Rather than looking at specific remedies for each of these example attacks, I will discuss general 

mechanisms for achieving security and mention the specific aspect of security that the 

mechanism applies. 

2.3.1 Configuration Management 

In this system of multi-robots, configuration management could include ensuring that the motes 

are all running the same version of software. The motes are typically loaded with a runtime 

version of TinyOS operating system. In addition to the operating system, one needs to install the 

program that would run on the mote as soon as it is supplied with power. Ensuring that all motes 

are running up to date programs minimize the chance of a node capture incase of knowledge by 

the adversary of prior versions of the mote software. This can contribute towards availability of 

the mote for communication tasks. 

 

Several tools, such as Moteworks, are available to assist a developer of such programs to port the 

software on to the motes. Version control software, like CVS or Subversion, can help ensure a 

development team has access to most recent versions of programs. 

2.3.2 Encryption 

In a robot network using motes as the communication medium, encryption can provide a means 

to conceal information from unauthorized receivers. This can be useful especially because the 

mote network is a broadcast medium, which as we understand, means that any mote within range 

of another transmitting mote can effortlessly receive transmitted data, as long as the two motes 

are operating in the same radio frequency. In a network that is physically exposed, it is easy for 

an adversary to introduce motes to listen to the network traffic. Encryption will ensure that only 

authorized motes can decipher the packets being transmitted over the network. This ensures 

confidentiality. 
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The strength of encryption, however, is limited due to the limited computing resources [19] 

available on the mote. A little encryption is obviously better than no encryption. Other factors 

could influence the need for more robust mechanisms to ensure data confidentiality. 

Using cryptography entails a performance cost for extra computation that more often than not 

increases packet size [13]. How much more space is required to accommodate this could pose a 

restriction on the use of cryptographic techniques. 

2.3.3 Authentication 

Authentication, in this application, can be viewed as a mechanism designed to provide integrity. 

More specifically, we would like to be able to determine the trustworthiness of data or resources. 

As we have seen, it is possible for an adversary to masquerade as an authentic mote. It is also 

possible for an adversary to receive information in an unauthorized manner, modify it, and 

further retransmit it. When this information is received, and thought to be from a trusted source, 

it can cause damage if carefully designed to do so. Like the case of an acknowledgment that 

triggers resend of data packets which later hog the network by causing congestion and collisions 

which lead to packet loss and potentially further release of old data packets into the network. 

2.3.4  Kerberos 

Kerberos has been widely applied as a means of providing authentication services in a computer 

network [20]. Details of how it works have also been provided [20]. Even though it works well 

for computer networks, Kerberos may not be suitable for a mote network primarily due to the 

limited computing resources of such a network. There is also need to establish trust among the 

motes in the network for Kerberos to be option. 

2.3.5  Public-key cryptography 

Public-key cryptography is also not the most appropriate mechanism again due to limited 

computing resources. The bandwidth on a mote network is restricted at 250kbs [19]. RAM on the 

micaz mote is only 4K. This would not be sufficient to produce or check digital signature based 

on public and private keys. 
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2.3.6  One-time pass code 

One-time pass codes [20] may suffice for initial transmissions. To provide authentication with 

every data packet or a block of data packets, a mote would have to generate multiple pass codes 

per communication session.   

2.3.7  Location-Based Authentication 

In the robot networks, the robots have capability to determine their geographical locations. As 

the move around, their locations change. However, from the teams’ assignments, robots can 

know the approximate whereabouts of other robots. Therefore, any robot transmitting data could 

include their geographical information. Using robot knowledge about the work the sending robot 

was assigned and the area where this work was to be carried out, the receiving robot could 

approximate the expected geographical location. Heuristics can be applied to determine how far 

off this estimate is from the actual location values. Thresholds can then be used to determine if to 

accept or reject received information. It is important that the geographical information being 

transmitted be encrypted to ensure confidentiality. The possibility of replay attacks would 

necessitate the location-based authentication even in the case where the motes already use 

encryption/decryption keys for communication. This form of authentication relies on the 

assumption that the robots possess knowledge about robot teams’ formation and assignments. 

2.3.8 Secure software development 

Routing implementation can be run through special checkers that try to analyze the security of 

software. One can use well known techniques for verifying correctness of software. Interfaces 

can be checked to determine if information within the router is flowing as specified [21].  

 

One can use a programming language like Spark [22], which allows for annotations that help 

specify variable access and updates. Using this, an implementation of a routing protocol can be 

checked for security loop-holes. 

 

Checking the routing protocol for correctness can ensure that even in the event of corrupt 

information, for example, invalid acknowledgment sequence numbers, that the routing device 

will not initiate an operation that disrupts communication over the mote network.  
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2.3.9 Battery-based intrusion detection 

Monitoring the power levels in the motes can help indicate the possibility of an ongoing network 

attack [14]. By correlating attack activities with the mote power consumption patterns, we can 

tell whether the motes are using way more power than they should or whether they are using far 

less power than they should. Typically, the most power consuming operation for a mote is 

sending a message. Receiving a message does not consume as much power. Computations on the 

mote also require use power. A drained mote could indicate that the mote is transmitting too 

many messages, or possibly receiving and processing more messages than it typically is required 

to. This could be a sign of flooding, for example, or denial of service attack, or, equally possible, 

node capture. 

2.3.10 Congestion control/detection 

Congestion in the network can be a sign of too many packets in transit [16]. If the 

communication system is designed to monitor congestion in the network, thresholds could be 

used to determine the possibility of an ongoing attack. Most likely, if the congestion is due to an 

attack, it will be a flooding attack or denial of service. 

2.3.11 Secure group management 

Secure group management has been suggested as promising approach to decentralized intrusion-

detection [13]. Network activities can be performed by a group of robots. The outcome of these 

activities can then be transmitted to the lead robot. This would require secure protocols for group 

management. 

 

The low-speed, low bandwidth, ad-hoc, mobile network that is currently used as the primary 

communication medium for a team of semi-autonomous robots faces security challenges. Most 

of the attacks that can be launched on other traditional networks and even modern sensor 

networks can also be launched on this mote network. The network is susceptible to more specific 

attacks depending on how the communication protocol has been designed and implemented.  
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Due to limited computing resources, applying common techniques to ensuring confidentiality, 

availability, and integrity in the network may not be practical. Still, we can achieve some level of 

security using these techniques. How much Security is required depends on the threat model. 



CHAPTER 3 - Experiments and Results 

3.1 Experiment 1 – Packet Loss Rate 

3.1.1 Description 

 

Two robots (Robot1 and Robot2) are placed 46ft apart. Robot1 sends a burst of packets to 

Robot2. Robot2 takes note of how many packets, in one burst, are lost. Packet size is 30 bytes. 

 
Figure 3.1 Experiment 1 - Setup 

3.1.2 Results 
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Figure 3.2 Experiment 1 – Graphed results 
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Since only one mote is sending packets, there is no link-layer contention. The distance is right at 

the circumference of the transmission range. The low loss-rate percentage could suggest channel 

error due to interference from the nearby 802.11 network or something else in the environment. 

3.2 Experiment 2 

3.2.1 Description  
Two robots (Robot1 and Robot2), representing two network nodes are positioned outdoors 46ft 

(about 15.3m) apart and within communication range. The ad hoc wireless communication 

network using motes and the protocol described in chapter 2 is first initialized on both robots. 

Robot1 takes note of the current time (start time) then immediately sends a message of size 40 

bytes to Robot2. On receiving the message, Robot2 sends that exact message back to Robot1. 

Robot1, again, takes note of the current time (end time) when it receives back the message it 

sent. The difference between the two times is computed (“end time” – “start time”) and recorded. 

 

Robot1 repeats the process adding 40 bytes each time. This continues until an arbitrary message 

size of 1,160 bytes. Packet size is 30 bytes. 

 

 
Figure 3.3 Experiment 2 - Setup 

 

A 40-byte message takes a round-trip time of 1second. A message of size 400 bytes (ten times as 

big) takes about 2 seconds. Another message of size 800 bytes takes about 4-4.5 seconds. It takes 

10 seconds to for a message of size 1160 bytes to be received back by robot 1. 
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3.2.2 Results 

 
Figure 3.4 Experiment 2 – Graphed results (bytes) 
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Figure 3.5 Experiment 2 – Graphed results (no. of packets) 

3.2.3 Analysis 

There is a linear relationship between the message size and the time overhead of fragmenting and 

re-assembling message packets. As the message size increases, this time overhead increases. 

Furthermore, packet loss-rate tends to increase with the number of packets sent by the mote. By 

increasing the message size gradually from 3 packets to 15 packets, the increase in round-trip 

latency is within a second. The additional time of sending 13 more packets is only 1 second. This 

implies a significant [time] overhead in sending additional packets. However, to send/ receive an 

additional 15 packets, from 13, it takes 2 seconds. Therefore, average round-trip latency per 

packet increases. 

 

This trend implies that larger message sizes not only require more processing (fragmentation, re-

assembly) time, but they also suffer higher packet loss rates. 
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3.3 Experiment 3 

3.3.1 Description  
Two robots (Robot1 and Robot3), representing two network nodes are positioned outdoors 92ft 

(about 30.6m) apart, and outside each other’s communication range. Another robot (Robot2) is 

placed mid-way between Robot1 and Robot3 and within the communication range of both 

robots. The ad hoc wireless communication network using motes and the protocol described in 

chapter 2 is first initialized on all three robots. Robot1 takes note of the current time (start time) 

then immediately sends a message of size 40 bytes destined for Robot3. On receiving the 

message, Robot2 routes the message towards Robot3. Robot3, as soon as it receives the message, 

sends it back to Robot1. The message is routed by Robot2 on its way back. Robot1, again, takes 

note of the current time (end time) when it receives back the message it sent. The difference 

between the two times is computed (“end time” – “start time”) and recorded. 

This process repeats up to an arbitrary message size of 1,160 bytes. Packet size is 30 bytes. 

 

 

 
Figure 3.6 Experiment 3 - Setup 

 

 

A 40-byte message takes a round-trip time of 1second. A message of size 400 bytes (ten times as 

big) takes about 2 seconds. Another message of size 800 bytes takes about 6-6.5 seconds. It takes 

16 seconds to for a message of size 1160 bytes to be received back by robot 1. 
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3.3.2 Results 

 

 
Figure 3.7 Experiment 3 – Graphed results (bytes vs packets) 

3.3.3 Analysis 

A similar trend, as in experiment 2 (one-hop, no routing), is seen here. Again, increased message 

size adds to the [time] overhead of message fragmentation and re-assembly. The latency is 

increased due to two-hop transmission, and a time overhead is introduced due to packet routing. 
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There is a higher chance of packet loss due to collisions at the routing node since packets are sent 

out immediately as others a received at the same node. Packet loss increases message latency. 



 

3.4 Comparison of results from experiments 2 and 3 
 

 
Figure 3.8 Comparison of results of experiments 2 and 3 

3.4.1 Analysis 

It takes longer for the message to be echoed back when packet routing is introduced. However, 

the rate of increase is also higher. There seems to be a linear relationship between message size 

and packet transmission with routing. Since there is a higher loss-rate with increased message 

size, there is higher number of packets re-transmissions. The retransmitted packets too incur 

routing overhead as well as increased latency due to the two-hop travel. 
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3.5 Experiment 4 

3.5.1 Description  
Two robots (Robot1 and Robot2), representing two network nodes are positioned outdoors 

starting at 4ft (about 1.3m) apart and within communication range. The ad hoc wireless 

communication network using motes and the protocol described in chapter 2 is first initialized on 

both robots. Robot1 takes note of the current time (start time) then immediately sends a message 

of size 800 bytes to Robot2. On receiving the message, Robot2 sends that exact message back to 

Robot1. Robot1, again, takes note of the current time (end time) when it receives back the 

message it sent. The difference between the two times is computed (“end time” – “start time”) 

and recorded. 

 

Robot2 then moves a foot further forward. Robot1 then sends another message of the same [800 

bytes] size. When it receives it back, it again records the message round-trip latency. This is 

repeated until the robots are outside each other’s communication range. 

 

 
Figure 3.9 Experiment 4 - Setup 
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3.5.2 Results 

 
Figure 3.10 Experiment 4 – Graphed results 

3.5.3 Analysis 

The round-trip latency for a fixed-size message increases as the distance between the two 

communicating nodes increases. Increased distance can impact signal strength; the signal 

weakens as it travels. Therefore, increased distance can increase packet loss rates due to signal 

attenuation and consequently increasing packet re-transmission. This increases the time it takes 

for the entire message to be received at its origin. Higher throughput is therefore expected at 

shorter distances. 
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