A MODEL FOR THE SIMULATION OF KANSAS TEMPERATURE DATA

by

KENNETH IVAN LAWS

B.A., Southwestern College, 1972

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1974

Approved by:

A. M. Feyerherm
Major Professor
ACKNOWLEDGMENT

This report was made possible by support from the Kansas
Agricultural Experiment Station and from the Kansas State University
Department of Statistics. In particular I would like to thank Dr. A. M.
Feyerherm and Dr. L. Dean Bark for their assistance and insight. The
suggestions of Dr. Kenneth E. Kemp have also been helpful.
THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE.

THIS IS AS RECEIVED FROM CUSTOMER.
THIS BOOK CONTAINS NUMEROUS PAGES WITH THE ORIGINAL PRINTING BEING SKEWED DIFFERENTLY FROM THE TOP OF THE PAGE TO THE BOTTOM.

THIS IS AS RECEIVED FROM THE CUSTOMER.
ABSTRACT

Models for weather data were explored using records for Manhattan, Kansas, from 1900 through 1970. Precipitation was found to be independent of antecedent conditions, but a covariance model for minimum and maximum daily temperatures proved satisfactory. Daily extreme temperatures were regressed on the occurrence of precipitation during the preceding day and the day of interest and on the deviations from normal of the preceding two temperatures. Interaction terms were found to be insignificant.

Parameter estimates are listed for nine Kansas stations. Harmonic analysis has been used to smooth the estimates. The Fourier coefficients are tabulated and mapped.

Simulation of Manhattan weather was attempted using randomly generated precipitation. The distribution of wet and dry days was found to be correct, but precipitation amounts were too uniform. This did not degrade the temperature simulation.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>11</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>111</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>8</td>
</tr>
<tr>
<td>PREVIOUS RESEARCH</td>
<td>9</td>
</tr>
<tr>
<td>THE TEMPERATURE MODEL</td>
<td></td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>11</td>
</tr>
<tr>
<td>THE REGRESSION PROGRAM</td>
<td>12</td>
</tr>
<tr>
<td>PRELIMINARY INVESTIGATION</td>
<td>15</td>
</tr>
<tr>
<td>THE FINAL MODEL</td>
<td>18</td>
</tr>
<tr>
<td>ESTIMATION OF PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>LEAST SQUARES ESTIMATES</td>
<td>20</td>
</tr>
<tr>
<td>HARMONIC ANALYSIS</td>
<td>20</td>
</tr>
<tr>
<td>STATEWIDE PATTERNS</td>
<td>31</td>
</tr>
<tr>
<td>SIMULATION</td>
<td></td>
</tr>
<tr>
<td>THE SIMULATION MODEL</td>
<td>47</td>
</tr>
<tr>
<td>TESTING THE MODEL</td>
<td>49</td>
</tr>
<tr>
<td>SUGGESTED RESEARCH</td>
<td>52</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>A. THE LINMOD PROGRAM</td>
<td>84</td>
</tr>
<tr>
<td>B. THE SIMREC PROGRAM</td>
<td>123</td>
</tr>
<tr>
<td>C. WEATHER DATA LIBRARY SUBROUTINES</td>
<td>143</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>169</td>
</tr>
</tbody>
</table>
TABLES

1. Manhattan Regression Parameter Estimates ... 21
2. Manhattan Smoothed Parameter Estimates ... 54
3. Colby Smoothed Parameter Estimates ... 56
4. Columbus Smoothed Parameter Estimates .. 58
5. Elkhart Smoothed Parameter Estimates .. 60
6. Garden City Smoothed Parameter Estimates .. 62
7. Hays Smoothed Parameter Estimates .. 64
8. Horton Smoothed Parameter Estimates ... 66
9. McPherson Smoothed Parameter Estimates .. 68
10. Winfield Smoothed Parameter Estimates ... 70
11. Kansas Smoothed Parameter Estimates .. 72
12. Manhattan Fourier Coefficients .. 74
13. Colby Fourier Coefficients ... 75
14. Columbus Fourier Coefficients ... 76
15. Elkhart Fourier Coefficients ... 77
16. Garden City Fourier Coefficients .. 78
17. Hays Fourier Coefficients ... 79
18. Horton Fourier Coefficients ... 80
19. McPherson Fourier Coefficients .. 81
20. Winfield Fourier Coefficients ... 82
21. Kansas Fourier Coefficients ... 83
FIGURES

1. Locations of Kansas Stations ... 3
2. Observation Times of Daily Precipitation and Temperature Data .. 4
3. Manhattan Annual Precipitation Totals 7
4. Manhattan Average Daily Temperature Extremes (\bar{L}_t and \bar{H}_t) 23
5. Manhattan Regression Constant Coefficients (C_L and C_H) 24
6. Manhattan Day t-1 Precipitation Coefficients ($C_{L,t-1}$ and $C_{H,t-1}$) 25
7. Manhattan Day t Precipitation Coefficients ($C_{L,t}$ and $C_{H,t}$) 26
8. Manhattan Coefficients for 24-hour Carryover (C_{LL} and C_{HH}) 27
9. Manhattan Coefficients for 12-hour Carryover (C_{HL} and C_{LH}) 28
10. Manhattan Standard Deviations for Error (s_L and s_H) 29
11. Kansas Average Daily Extreme Temperatures (\bar{L}_t and \bar{H}_t) 33
12. Kansas Regression Constant Coefficients (C_L and C_H) 34
13. Kansas Day t-1 Precipitation Coefficients ($C_{L,t-1}$ and $C_{H,t-1}$) 35
14. Kansas Day t Precipitation Coefficients ($C_{L,t}$ and $C_{H,t}$) 36
15. Kansas Coefficients for 24-hour Carryover (C_{LL} and C_{HH}) 37
16. Kansas Coefficients for 12-hour Carryover (C_{HL} and C_{LH}) 38
17. Kansas Standard Deviations for Error (s_L and s_H) 39
18. Fourier Coefficients for the Average Temperatures (\bar{L}_t and \bar{H}_t) 40
19. Fourier Coefficients for the Constant Coefficient (C_L and C_H) 41
20. Fourier Coefficients for Day t-1 Precipitation ($C_{L,t-1}$ \& $C_{H,t-1}$) 42
21. Fourier Coefficients for Day t Precipitation ($C_{L,t}$ and $C_{H,t}$) .. 43
22. Fourier Coefficients for 24-hour Carryover (C_{LL} and C_{HH}) 44
23. Fourier Coefficients for 12-hour Carryover (C_{HL} and C_{LH}) 45
24. Fourier Coefficients for Standard Deviations (s_L and s_H) 46
INTRODUCTION

Weather is a momentary state of the atmosphere, measured primarily by atmospheric temperature, moisture content, wind speed, and air pressure. Meteorology is the study of weather and its prediction. Climate is the composite of day-to-day weather over a period of time for a particular region. It varies with location but not from moment to moment. Climate is ordinarily expressed by the distributions of precipitation and temperatures. Climatology is the study of climate and its effects.

Weather patterns affect everyone. Today's weather is of interest to the housewife hanging out her wash and to the pilot taking off for Kansas City. Next week's weather is important to the shopkeeper planning a sale and to the farmer planning to harvest his wheat. Next winter's weather is of vital concern to the university buying heating fuel and to the farm owner deciding what to plant. Man has been trying to control or predict the weather since before recorded history.

Prediction implies understanding, and understanding requires that weather data be recorded and analyzed. Early Man had to rely on visual observations and the lore which had been passed down by his ancestors. With the invention of the thermometer and barometer in the seventeenth century it became apparent that certain instrument readings, such as a rapidly falling barometer, were good predictors of coming weather. The development of accurate instruments, rapid communications, and high-speed computers have provided great improvements in forecasting, but there is
much about weather that is not understood.

The Kansas Agricultural Experiment Station Weather Data Library is involved in a continuing effort to maintain and analyze Kansas weather data. The present data network consists of 240 cooperative stations, although records have been taken at 432 locations at one time or another \[17\]. Records from Leavenworth began in 1836, and Manhattan records are continuous back to 1858. The Weather Data Library maintains over one and a half million daily records on punched cards, representing 105 stations. Records for 24 stations with 70 years of punched data and 30 stations with 30 years of punched data are stored on magnetic tape. Information needed for the use of this data is listed in the User's Manual; an updated edition is being prepared. The Weather Data Library also makes available tabulations and summaries of data from all over Kansas.

The records on magnetic tape consist primarily of the three variables most important to agriculture: daily precipitation and minimum and maximum temperatures. For a few stations it is possible to obtain records of humidity, wind speed, barometric pressure, evaporation, insolation, and even hourly data, but they were not used in this study.

The nine stations (see Fig. 1) in this study all measure daily precipitation in the morning, at 7 or 8 a.m. (see Fig. 2). This means that the amount recorded on a daily weather record may have fallen at any time during the 24 hours or may have been spread throughout. Most precipitation occurs at night, however.
Figure 2. Observation Times of Daily Precipitation and Temperature Data
Three of the stations (Colby, Garden City, and Hays) record minimum and maximum temperatures in the morning; the remaining 6 record them in the evening (see Fig. 2). It is not known what effect this has on the results of the study; it has not even been verified that these same measurement times have been used throughout the 70-year period. If an effect is present it is partially confounded with both location and elevation.

Daily mean temperature is not recorded directly, but may be calculated easily as the mean of the minimum and maximum temperatures. Heating, cooling, and growing degree-days may be calculated from the mean temperature. Evapotranspiration and the Palmer Drought Index I may be estimated using all three of the weather variables.

Kansas is an excellent laboratory for the study of variation in precipitation and temperatures; the interactions of major weather systems over the state provide complex patterns of variation. The range of annual precipitation totals is from 16 inches in the southwest to 41 inches in the southeast. The coldest temperature ever recorded in Kansas was 40 degrees (Fahrenheit) below zero on February 13, 1905, at Lebanon. The hottest was 121 degrees at Fredonia, July 18, 1936, and at Alton, July 24, 1936. Monthly temperature averages range from 13.4 degrees at Oberlin in January to 95.4 degrees at Medicine Lodge in July. The annual progression of temperatures at Manhattan is shown in Figure 4.

While a single extreme temperature or heavy precipitation can be damaging, a long series of them can be disastrous. California's "Great
Freeze" of January 19, 1922, resulted in a total citrus loss of about $50,000,000. Kansas is subject to blizzards, such as the great blizzard of 1886, but is more famous for its droughts, periods of little precipitation (see Fig. 3) and high temperatures which destroy crops, kill livestock, and erode the soil. The Dust Bowl days of the 1930's is a well known example, although the drought of the 1860's may have been equally severe. Kansas is also troubled with floods, which destroy crops and take lives.

These extreme weather patterns occur so seldom that tabulations and summaries over a limited number of years may not reveal such events. Proper modeling and simulation, however, allow inferences about rare occurrences to be made. Simulation is the generation of pseudo-random weather records using a model and parameter estimates derived from climatological data. These records imitate the patterns of true weather although they in no sense predict it.

Experimentation with different models and parameter values provides insight into the mechanisms of the real weather. With luck a "fundamental" model can be developed: one with a minimum of parameters, each easily explained in terms of the real world. This report is one step toward that goal; it provides a workable model for simulation of Kansas weather data.
OBJECTIVES

The ultimate goal of modeling and simulation of weather data is the development of predictive equations for weather phenomena. This study is concerned with the more immediate goals listed below.

Statistical summaries and least square procedures provide estimates of the parameter values at stations throughout Kansas. Regression theory is used to explore and compare models. Hopefully these parameter estimates and the corresponding models can be used in place of vast stores of weather data to describe the climates at the evaluated stations.

Harmonic smoothing is used to clarify the patterns of variation in parameter values throughout the year. The Fourier coefficients may be thought of as new parameters; together with the appropriate model they provide an even more concise description of a particular climate.

Mapping of Fourier coefficients across the state may allow patterns among stations to emerge, in which case it would seem reasonable that weather data may be simulated at locations not in the original analyses. Averaging of the coefficients across the state permits "Kansas weather" to be described and simulated, although the results might not represent the climate for any particular location.

Finally, computer simulation and subsequent statistical analysis can be used to test a model for accuracy and for weaknesses. Simulation permits the generation of thousands of years of data, providing counts of droughts and other rare occurrences which could not easily be predicted from available data over a shorter span of years.
PREVIOUS RESEARCH

Researchers with the aid of the Weather Data Library have been investigating models for precipitation distributions for many years. An early example is provided by the work of Feyerherm and Bark \[3\]. Probabilities for transitions from dry days to wet ones, and from wet to dry, at ten Kansas stations were estimated for each week of the year. If a first-order Markov model \[4\] is assumed to hold, the probability of a dry spell of exactly \(n\) days is

\[
P(wet) \cdot P(dry|wet) \cdot P(dry|dry)^{n-1} \cdot P(wet|dry)
\]

Markov models for precipitation patterns have been investigated by many researchers; references are given by Feyerherm and Bark \[5\] and by Ison \[6,7\]. First and second-order Markov models were investigated by Feyerherm and Bark \[5,8\] for weather data from the North Central region of the United States. The first-order model was found to form an excellent approximation to the distribution of wet and dry days in Kansas.

Feyerherm and Bark used the method of Hartley \[9\] to determine the number of terms in a Fourier series which are needed to adequately represent the annual cycles of the probability estimates. It was found that terms beyond the fourth (i.e., the fourth harmonic) were generally not significant.

During wet periods the total amount of precipitation is an important variable. Ison \[6,7\] obtained good results by fitting parameters to a gamma distribution: a shape parameter which varies
linearly with the length of wet spell and a scale parameter independent of the length. The iterative procedure of estimation is due to Choi and Wette \(10\).

Lundgren \(11\) investigated regression models for the minimum and maximum temperatures when the precipitation sequence is known. He concluded that data more than one day prior to the modeled day were of little value in predicting the new temperatures; thus his model may be described as being of first order.

For each week of the year and for each precipitation history (DRY, DRY; DRY, WET; WET, DRY; and WET, WET on days \(t-1\) and \(t\)) Lundgren used the equations

\[
H_{t-1} = \bar{H}_{t-1} + C_{HH} \cdot (H_{t-2} - \bar{H}_{t-2}) + C_{LH} \cdot (L_{t-1} - \bar{L}_{t-1}) + \varepsilon_H
\]

\[
L_{t} = \bar{L}_{t} + C_{LL} \cdot (L_{t-1} - \bar{L}_{t-1}) + C_{HL} \cdot (H_{t-1} - \bar{H}_{t-1}) + \varepsilon_L
\]

where \(t-2\), \(t-1\), and \(t\) \((t = 1, 2, ..., 364)\) are consecutive days with day \(t\) being within the week of analysis; \(L\) and \(H\) are the minimum and maximum temperatures on the subscript day; \(\bar{L}\) and \(\bar{H}\) are the mean temperatures for the subscript day and the given precipitation history; \(C_{HH}', C_{LH}', C_{LL}'\), and \(C_{HL}'\) are partial regression coefficients considered constant for the analysis period; and \(\varepsilon_L\) and \(\varepsilon_H\) are the residual errors, assumed to be normally distributed with means zero and estimated variances \(s^2_L\) and \(s^2_H\), respectively.

Lundgren's model involves 52 periods and four precipitation histories, each having four coefficients, four average temperature extremes, and two error variances, a total of 2080 parameters per station. Fourier
analysis of the parameter estimates enables each to be expressed as a partial Fourier sum involving nine coefficients (i.e., four harmonics) instead of 52; if \(\overline{H}_{t-2} \) and \(\overline{L}_t \) are omitted since they can be derived, the number of parameters is reduced to 288 per station.

THE TEMPERATURE MODEL

BACKGROUND

Lundgren's investigations were limited to data from Manhattan, Kansas. This work began with an attempt to apply the same model to data from other Kansas stations, notably Colby and Garden City. Two changes were made to Lundgren's model: the dependent maximum temperature was changed from day \(t-1 \) to day \(t \), and two-week periods were used instead of one-week periods.

The change in the dependent variable simplifies notation, particularly with regard to precipitation history. The new equations for each period and precipitation history are

\[
L_t = \overline{L}_t + C_{LH}(L_{t-1} - \overline{L}_{t-1}) + C_{HL}(H_{t-1} - \overline{H}_{t-1}) + e_L
\]

\[
H_t = \overline{H}_t + C_{HH}(H_{t-1} - \overline{H}_{t-1}) + C_{LH}(L_t - \overline{L}_t) + e_H
\]

Lundgren has indicated that the variance of \(e_H \) might be increased slightly by this modification (without regard to the change in period lengths).

The change to two-week periods was dictated by two considerations. First, the programs then in use would have generated an unmanageable amount of output for the 52 weeks at a cost of about $500 per station.
Second, analysis of western stations (e.g., Colby) during winter would involve some weeks for which there had been no WET, WET data; there were no two-week periods with this problem.

The programming system then in use involved sorting 70 years of data into 102 files, one for each two-week period and precipitation history. These files were used as input to STEPDEL, a sophisticated computer program for multiple linear regression which was made available by the Statistical Laboratory of Kansas State University. It was necessary to make 204 passes through the program since only one dependent variable for one data set could be analyzed in one pass.

This system was awkward and expensive, and it generated an enormous physical volume of output with only a few useful numbers per page; the numbers were not readily available as punched output. These factors spurred the development of a new program, LINMOD, which was specifically designed to evaluate regression models for weather records.

THE REGRESSION PROGRAM

The FORTRAN IV program LINMOD (Appendix A) takes its name from the field of linear statistical models - the use of matrix algebra to estimate the parameters of statistical models. A good discussion of linear models may be found in Searle [12]. The program uses Moore-Penrose generalized inverses, which are discussed by Graybill [13].

LINMOD can perform multiple linear regressions, analyses of variance, and analyses of covariance. Up to nine models may be specified in each
run, with up to seven independent variables per model. Computations are carried out in single precision (i.e., seven significant digits). It would have been better to use double precision, although computational errors are probably small compared to the standard deviations of the parameter estimates.

The weather tapes used for input are in chronological order, one station per tape. The data is read from the tape using the COBOL subroutine RDREC (see Appendix C) and is stored on a disk pack as a direct access data set. This data set may be saved to avoid the cost of reconstructing it on subsequent runs ($30 for 70 years of data).

For each two-week period (or shorter period, if specified) data are gathered from each year to form a new file. The first period begins with March 1, the start of the climatological year; this avoids complications with February 29. The records in the new file are composed of six variables: the precipitation and minimum and maximum temperatures for day t-1 and the same information for day t. The symbols for these variables are W_{t-1}, L_{t-1}, H_{t-1}, W_t, L_t, and H_t. LINMOD prints a statistical summary of these variables including means, variances, standard deviations, standard errors of the means, coefficients of variation, cross-products, covariances, and correlations.

Each model may specify a regression of one of the variables on a subset of the others. Two types of transformation are also available: deviates and incidence variables. A deviate is simply an original variable from which has been subtracted the average observed value for
the period (LINMOD is unable to form deviates around any value other than the average); an example of the notation for a deviate is \((L_t - \bar{L}_t)\). An incidence variable is one which is set to 0.0 if the original variable is less than or equal to 0.0 and is set to 1.0 if the original variable is positive. The incidence variables used in this study, \(I_{t-1}\) and \(I_t\), correspond to \(W_{t-1}\) and \(W_t\) and represent the occurrence of 0.01 inch or more of precipitation.

The product of any pair of independent variables (or transformed variables) in the model may also be formed, providing the models with interaction terms which measure the joint effect of a pair of variables beyond the sum of their main effects. Interaction terms may not be specified for variables omitted from the model.

LINMOD prints a statistical summary of the model variables which is identical in form to that for the original six variables. An analysis of variance table for the regression is printed, including \(R^2\) (the coefficient of determination), the parameter estimates, their standard deviations, 95% confidence intervals, standardized values, sums of squares, t-test (for the tests of whether the parameters are significantly different from zero), the two-tailed probabilities of greater t-values, the \(R^2\) values which would result from deleting each variable from the model, and the variances and covariances of the estimates. Unfortunately the correlations of the estimates are omitted, although they may be computed from the matrix of covariances.

Punched output includes the means and covariances of the original
six variables, the means and covariances of the model variables, and the
parameter estimates and their covariances; this amounts to just over
1000 cards. For the purposes of this study it would have been adequate
to punch only the parameter estimates and the residual mean squares, s^2_L
and s^2_H.

If desired a LINMOD run may be restricted to a subset of the
available records, such as those having precipitation on both day t-1
and day t. (Such selection may also be done for a single model within
a run, but this is less efficient and does not provide the numbers
around which deviates have been formed.) Selection may only be made by
precipitation history, but may specify conditions on either or both days.
This feature was used to check the program's functioning by recomputing
values produced by the previous programming system.

PRELIMINARY INVESTIGATION

The LINMOD program is flexible enough to permit many models to be
tried. One measure of the success of a model is R^2, the coefficient of
determination. It is the ratio of the sum of squares due to regression
to the total sum of squares, and represents the proportion of the variance
of the dependent variable explained by the model. The square root of R^2
is the simple correlation between the predicted and actual temperatures.

Evaluation of the model

$$ H_t = \bar{H}_t + C_{HH} \cdot (H_{t-1} - \bar{H}_{t-1}) + C_{LH} \cdot (L_t - \bar{L}_t) + e_H $$
or the similar form
\[H_t = C_H + C_{HH} \cdot H_{t-1} + C_{LH} \cdot L_t + e_H \]

for the first two periods of March (and for 70 years of Manhattan data) gives an average \(R^2 \) value of 0.551. Thus 55% of the variance of \(H_t \) can be "explained" without the use of precipitation history or interaction terms.

Lundgren's model involves separate parameter estimates for each of the four precipitation histories. Evaluation of the above equations for WET, WET records gives an average \(R^2 \) of 0.610 for the two periods. For many purposes the increased power of the model may not be worth the increased complexity.

The number of parameters may be reduced by combining Lundgren's four regression equations for \(H_t \) into a single equation. In the terminology of covariance models (described in Snedecor and Cochran [14] and in Searle [12]) the precipitation history forms a two-way classification and the deviates of the previous two temperatures are covariates. The equation is

\[H_t = C_H + C_{H,t-1} \cdot I_{t-1} + C_{H,t} \cdot I_t + C_{HH} \cdot (H_{t-1} - \overline{H}_{t-1}) + C_{LH} \cdot (L_t - \overline{L}_t) + e_H \]

The terms of this model are described fully in the next section. Note that the constant term of Lundgren's model, \(\overline{H}_t \), has been broken into three terms with the sum depending on the precipitation history.

Essentially what has been done is to use a separate constant term for each precipitation history, but to keep the remaining parameters constant. The value of \(R^2 \) for unrestricted records is 0.606, negligibly less than the value for WET, WET records with Lundgren's model.
The same model was also tried with the actual amounts of precipitation, \(W_{t-1} \) and \(W_t \), used in place of the incidence variables. \(R^2 \) was 0.577, nearly the same as the model without any term for precipitation history. When both the incidence variables and the original precipitation variables were included, \(R^2 \) was 0.605, no better than with the incidence variables alone.

Interactions were then added to the model. The \(I_{t-1}I_t \) term was added to each model containing incidence variables; the estimate of the coefficient was never significantly different from zero. A \(W_{t-1}W_t \) term was added to models containing precipitation variables; it also had no effect. Interactions of an incidence variable with a precipitation variable (e.g., \(I_tW_t \)) have no meaning since they are identical to the precipitation variable alone.

The interaction between temperature deviates, \((H_{t-1} - \bar{H}_{t-1})(L_t - \bar{L}_t)\), was also investigated, with and without the precipitation interactions mentioned above. In no case was the interaction significant.

One type of interaction was found to be significant at the 0.05 level: the interaction between incidence of precipitation and the independent temperature variables in the regression equation for the dependent minimum temperature (no test was made of the interaction between precipitation amount and temperature deviates). The term \(I_{t-1}(L_{t-1} - \bar{L}_{t-1}) \) increased \(R^2 \) by 0.005, and the term \(I_t(H_{t-1} - \bar{H}_{t-1}) \) increased \(R^2 \) by 0.010 for the first four periods of the climatological year. It is doubtful that the gain in accuracy from using these terms
is worth the trouble of including them; they are not used in this report.

There are many transformations which were not investigated, chiefly because LINMOD is not set up to handle them. Squares, cubes or logarithms of the original variables could have been tried either alone or as interactions. Interactions of more than two variables were ignored.

An attempt was made to predict daily precipitation, \(W_t \), from the preceding day's observations \((W_{t-1} \text{ and } I_{t-1}, L_{t-1}, \text{ and } H_{t-1}) \). The \(R^2 \) value for these regressions was close to 0.03, indicating that only three per cent of the precipitation variance could be "explained" by main effects and interactions of the preceding day's observations.

Prediction of the occurrence of precipitation, \(I_t \), was not much more successful; \(R^2 \) was 0.06. Furthermore, estimation of the amount of precipitation, \(W_t \), on days known to be wet gave an \(R^2 \) of 0.06. It was decided to omit the regression model for precipitation from further work.

THE FINAL MODEL

The model for daily temperature extremes ultimately selected was

\[
L_t = C_L + C_{L, t-1} I_{t-1} + C_{L, t} I_t + C_{LL} (L_{t-1} - \bar{L}_{t-1}) + C_{HL} (H_{t-1} - \bar{H}_{t-1}) + e_L
\]

\[
H_t = C_H + C_{H, t-1} I_{t-1} + C_{H, t} I_t + C_{HH} (H_{t-1} - \bar{H}_{t-1}) + C_{LH} (L_t - \bar{L}_t) + e_H
\]

where

\(L_t \) and \(H_t \) are the minimum and maximum temperatures on day \(t \),

\[t = 1, 2, \ldots, 364 \] in groups of 14 days beginning with March 1 of each year (with \(t-1 \) equal to 365 when \(t \) is equal to 1),

\(I_{t-1} \) and \(I_t \) are incidence variables set to 0.0 for no precipitation
and to 1.0 for measurable precipitation on days t-1 and t,

\((L_{t-1} - \bar{L}_{t-1})\) and \((H_{t-1} - \bar{H}_{t-1})\) are the deviations of the minimum
and maximum temperatures on day t-1 from their averages for
the period (the averages are parameters which must be computed),

\((L_t - \bar{L}_t)\) is the deviation of the observed minimum on day t from its
average for the period,

\(C_L\) and \(C_H\) are constants representing the average daily extreme
(minimum and maximum) temperatures on day t for DRY, DRY records,

\(C_{L,t-1}\) and \(C_{H,t-1}\) are the effects on the constant terms of
measurable precipitation on day t-1,

\(C_{L,t}\) and \(C_{H,t}\) are the effects of precipitation on day t,

\(C_{LL}\) and \(C_{HH}\) are the coefficients for carryover of deviations in the
same extreme of temperature measured 24 hours earlier,

\(C_{HL}\) and \(C_{LH}\) are the coefficients for carryover of deviations in the
opposite extreme of temperature, usually 12 hours earlier,

\(e_L\) and \(e_H\) are error (or lack-of-fit) terms assumed to have means of
zero and variances estimated by \(s^2_L\) and \(s^2_H\), the error mean squares.

In simple language each temperature is assumed to be composed of three
parts: a constant corrected for precipitation history, a carryover from
the two previous temperatures (where the minimum is assumed to precede
the maximum), and a random error term.
ESTIMATION OF PARAMETERS

LEAST SQUARES ESTIMATES

Nine stations (see Fig. 1) were analyzed in this study; 70 years of data were available on magnetic tape for each station, providing 980 observations during each two-week period. Program LINMOD was used to estimate the values of the parameters; the results for Manhattan are shown in Table 1. The average value of \(R^2 \) was 0.4796 for the regression of the minimum temperature, \(L_t \), and 0.5859 for the maximum temperature, \(H_t \); thus about 50% of the observed temperature variances can be accounted for by this model.

HARMONIC ANALYSIS

The nature of harmonic smoothing may be understood most easily by examining Figures 4 - 10. These show the original parameter estimates for Manhattan (0 for the minimum and + for the maximum) and the smoothed parameter estimates (solid lines). Six harmonics were used to generate the lines, which would be much smoother if only two harmonics had been used.

A harmonic is one term in the partial Fourier sum

\[
\sum_{i=0}^{n} \sqrt{A_i \cos\left(\frac{2\pi ip}{26}\right) + B_i \sin\left(\frac{2\pi ip}{26}\right)}
\]

where \(p \) is the period number, \(p = 1, 2, \ldots, 26 \); \(n \) is the maximum number of harmonics used, not to exceed 26; and \(A_i \) and \(B_i \) are the Fourier coefficients. Since the value of \(B_0 \) is arbitrary, it is customarily defined as 0.0.

A Fourier sum is able to fit the observed points as closely as
<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{I}_{t-1}</th>
<th>\bar{H}_{t-1}</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.18</td>
<td>50.88</td>
<td>27.59</td>
<td>-0.03</td>
<td>1.99</td>
<td>0.23</td>
<td>0.39</td>
<td>7.66</td>
</tr>
<tr>
<td>2</td>
<td>32.92</td>
<td>58.35</td>
<td>33.02</td>
<td>-0.43</td>
<td>1.10</td>
<td>0.21</td>
<td>0.44</td>
<td>7.73</td>
</tr>
<tr>
<td>3</td>
<td>37.93</td>
<td>63.54</td>
<td>37.72</td>
<td>0.43</td>
<td>2.49</td>
<td>0.15</td>
<td>0.47</td>
<td>7.53</td>
</tr>
<tr>
<td>4</td>
<td>43.33</td>
<td>69.29</td>
<td>43.13</td>
<td>0.18</td>
<td>2.08</td>
<td>0.21</td>
<td>0.49</td>
<td>7.54</td>
</tr>
<tr>
<td>5</td>
<td>47.94</td>
<td>72.10</td>
<td>47.74</td>
<td>-0.84</td>
<td>1.93</td>
<td>0.25</td>
<td>0.47</td>
<td>6.79</td>
</tr>
<tr>
<td>6</td>
<td>52.15</td>
<td>76.57</td>
<td>52.21</td>
<td>-0.45</td>
<td>1.66</td>
<td>0.32</td>
<td>0.45</td>
<td>6.52</td>
</tr>
<tr>
<td>7</td>
<td>57.72</td>
<td>80.98</td>
<td>57.83</td>
<td>-0.30</td>
<td>0.98</td>
<td>0.34</td>
<td>0.40</td>
<td>5.89</td>
</tr>
<tr>
<td>8</td>
<td>61.96</td>
<td>85.58</td>
<td>62.26</td>
<td>0.06</td>
<td>-0.23</td>
<td>0.41</td>
<td>0.29</td>
<td>5.42</td>
</tr>
<tr>
<td>9</td>
<td>65.25</td>
<td>89.71</td>
<td>65.77</td>
<td>0.02</td>
<td>-1.17</td>
<td>0.34</td>
<td>0.38</td>
<td>5.29</td>
</tr>
<tr>
<td>10</td>
<td>66.97</td>
<td>92.25</td>
<td>67.01</td>
<td>0.00</td>
<td>0.13</td>
<td>0.37</td>
<td>0.33</td>
<td>5.01</td>
</tr>
<tr>
<td>11</td>
<td>67.74</td>
<td>92.98</td>
<td>67.57</td>
<td>0.11</td>
<td>0.31</td>
<td>0.38</td>
<td>0.33</td>
<td>4.78</td>
</tr>
<tr>
<td>12</td>
<td>66.87</td>
<td>92.38</td>
<td>66.79</td>
<td>0.25</td>
<td>0.04</td>
<td>0.41</td>
<td>0.34</td>
<td>4.97</td>
</tr>
<tr>
<td>13</td>
<td>64.96</td>
<td>90.31</td>
<td>64.80</td>
<td>-0.35</td>
<td>0.16</td>
<td>0.39</td>
<td>0.35</td>
<td>5.24</td>
</tr>
<tr>
<td>14</td>
<td>61.96</td>
<td>87.44</td>
<td>61.09</td>
<td>0.53</td>
<td>1.03</td>
<td>0.37</td>
<td>0.41</td>
<td>6.22</td>
</tr>
<tr>
<td>15</td>
<td>56.27</td>
<td>81.73</td>
<td>55.49</td>
<td>0.16</td>
<td>0.95</td>
<td>0.42</td>
<td>0.39</td>
<td>7.24</td>
</tr>
<tr>
<td>16</td>
<td>50.07</td>
<td>76.77</td>
<td>48.72</td>
<td>0.59</td>
<td>3.67</td>
<td>0.35</td>
<td>0.39</td>
<td>7.73</td>
</tr>
<tr>
<td>17</td>
<td>45.11</td>
<td>71.86</td>
<td>44.19</td>
<td>-0.71</td>
<td>3.40</td>
<td>0.41</td>
<td>0.40</td>
<td>7.20</td>
</tr>
<tr>
<td>18</td>
<td>37.99</td>
<td>63.97</td>
<td>37.06</td>
<td>-0.15</td>
<td>3.19</td>
<td>0.33</td>
<td>0.37</td>
<td>7.47</td>
</tr>
<tr>
<td>19</td>
<td>32.47</td>
<td>56.76</td>
<td>31.76</td>
<td>-1.06</td>
<td>3.14</td>
<td>0.27</td>
<td>0.37</td>
<td>7.56</td>
</tr>
<tr>
<td>20</td>
<td>27.77</td>
<td>50.61</td>
<td>26.82</td>
<td>-0.35</td>
<td>4.56</td>
<td>0.29</td>
<td>0.34</td>
<td>7.11</td>
</tr>
<tr>
<td>21</td>
<td>21.73</td>
<td>42.64</td>
<td>21.36</td>
<td>-1.95</td>
<td>2.44</td>
<td>0.39</td>
<td>0.37</td>
<td>7.56</td>
</tr>
<tr>
<td>22</td>
<td>20.06</td>
<td>41.14</td>
<td>20.49</td>
<td>-4.22</td>
<td>0.21</td>
<td>0.39</td>
<td>0.31</td>
<td>7.77</td>
</tr>
<tr>
<td>23</td>
<td>18.03</td>
<td>39.52</td>
<td>17.89</td>
<td>-1.91</td>
<td>2.23</td>
<td>0.27</td>
<td>0.44</td>
<td>8.19</td>
</tr>
<tr>
<td>24</td>
<td>17.94</td>
<td>39.59</td>
<td>18.35</td>
<td>-3.24</td>
<td>0.37</td>
<td>0.37</td>
<td>0.36</td>
<td>8.16</td>
</tr>
<tr>
<td>25</td>
<td>19.80</td>
<td>42.85</td>
<td>20.39</td>
<td>-2.00</td>
<td>0.19</td>
<td>0.34</td>
<td>0.36</td>
<td>8.43</td>
</tr>
<tr>
<td>26</td>
<td>22.68</td>
<td>45.66</td>
<td>22.66</td>
<td>-1.63</td>
<td>2.45</td>
<td>0.29</td>
<td>0.36</td>
<td>7.89</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{I}_t</td>
<td>\bar{H}_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>s_H</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>27.58</td>
<td>51.34</td>
<td>53.37</td>
<td>-2.44</td>
<td>-7.44</td>
<td>0.40</td>
<td>0.49</td>
<td>8.92</td>
</tr>
<tr>
<td>2</td>
<td>33.16</td>
<td>58.86</td>
<td>60.92</td>
<td>-2.48</td>
<td>-7.74</td>
<td>0.33</td>
<td>0.55</td>
<td>8.82</td>
</tr>
<tr>
<td>3</td>
<td>38.49</td>
<td>63.85</td>
<td>66.42</td>
<td>-2.28</td>
<td>-7.63</td>
<td>0.36</td>
<td>0.46</td>
<td>8.35</td>
</tr>
<tr>
<td>4</td>
<td>43.76</td>
<td>69.57</td>
<td>71.71</td>
<td>-1.68</td>
<td>-6.00</td>
<td>0.31</td>
<td>0.42</td>
<td>7.60</td>
</tr>
<tr>
<td>5</td>
<td>48.11</td>
<td>72.48</td>
<td>74.56</td>
<td>-0.39</td>
<td>-5.87</td>
<td>0.42</td>
<td>0.38</td>
<td>6.91</td>
</tr>
<tr>
<td>6</td>
<td>52.60</td>
<td>76.87</td>
<td>79.12</td>
<td>-1.87</td>
<td>-5.21</td>
<td>0.37</td>
<td>0.35</td>
<td>6.26</td>
</tr>
<tr>
<td>7</td>
<td>58.06</td>
<td>81.32</td>
<td>83.27</td>
<td>-1.32</td>
<td>-4.30</td>
<td>0.40</td>
<td>0.38</td>
<td>5.48</td>
</tr>
<tr>
<td>8</td>
<td>62.21</td>
<td>85.87</td>
<td>87.42</td>
<td>-0.79</td>
<td>-3.91</td>
<td>0.48</td>
<td>0.35</td>
<td>5.20</td>
</tr>
<tr>
<td>9</td>
<td>65.47</td>
<td>89.99</td>
<td>90.80</td>
<td>-0.33</td>
<td>-2.67</td>
<td>0.52</td>
<td>0.31</td>
<td>4.81</td>
</tr>
<tr>
<td>10</td>
<td>67.05</td>
<td>92.33</td>
<td>93.47</td>
<td>-0.49</td>
<td>-3.61</td>
<td>0.56</td>
<td>0.26</td>
<td>4.77</td>
</tr>
<tr>
<td>11</td>
<td>67.68</td>
<td>93.03</td>
<td>94.07</td>
<td>-0.45</td>
<td>-3.92</td>
<td>0.52</td>
<td>0.31</td>
<td>4.90</td>
</tr>
<tr>
<td>12</td>
<td>66.87</td>
<td>92.29</td>
<td>93.21</td>
<td>0.46</td>
<td>-3.86</td>
<td>0.53</td>
<td>0.29</td>
<td>5.34</td>
</tr>
<tr>
<td>13</td>
<td>64.75</td>
<td>90.11</td>
<td>91.39</td>
<td>-0.95</td>
<td>-4.08</td>
<td>0.52</td>
<td>0.28</td>
<td>5.49</td>
</tr>
<tr>
<td>14</td>
<td>61.51</td>
<td>87.03</td>
<td>88.57</td>
<td>-0.89</td>
<td>-5.00</td>
<td>0.44</td>
<td>0.34</td>
<td>5.73</td>
</tr>
<tr>
<td>15</td>
<td>55.76</td>
<td>81.27</td>
<td>82.81</td>
<td>-0.42</td>
<td>-6.03</td>
<td>0.38</td>
<td>0.34</td>
<td>6.61</td>
</tr>
<tr>
<td>16</td>
<td>49.74</td>
<td>76.57</td>
<td>78.49</td>
<td>-1.33</td>
<td>-6.76</td>
<td>0.37</td>
<td>0.36</td>
<td>6.99</td>
</tr>
<tr>
<td>17</td>
<td>44.69</td>
<td>71.43</td>
<td>73.05</td>
<td>-1.80</td>
<td>-7.13</td>
<td>0.47</td>
<td>0.29</td>
<td>7.14</td>
</tr>
<tr>
<td>18</td>
<td>37.66</td>
<td>63.37</td>
<td>64.98</td>
<td>-0.99</td>
<td>-7.28</td>
<td>0.54</td>
<td>0.27</td>
<td>7.85</td>
</tr>
<tr>
<td>19</td>
<td>32.10</td>
<td>56.29</td>
<td>57.77</td>
<td>-2.04</td>
<td>-7.15</td>
<td>0.42</td>
<td>0.46</td>
<td>7.91</td>
</tr>
<tr>
<td>20</td>
<td>27.46</td>
<td>50.21</td>
<td>51.28</td>
<td>-1.49</td>
<td>-5.80</td>
<td>0.44</td>
<td>0.36</td>
<td>7.66</td>
</tr>
<tr>
<td>21</td>
<td>21.42</td>
<td>42.19</td>
<td>43.61</td>
<td>-3.15</td>
<td>-6.47</td>
<td>0.36</td>
<td>0.50</td>
<td>7.44</td>
</tr>
<tr>
<td>22</td>
<td>19.89</td>
<td>40.98</td>
<td>42.47</td>
<td>-3.00</td>
<td>-6.81</td>
<td>0.39</td>
<td>0.48</td>
<td>7.56</td>
</tr>
<tr>
<td>23</td>
<td>17.93</td>
<td>39.54</td>
<td>40.90</td>
<td>-1.94</td>
<td>-7.49</td>
<td>0.29</td>
<td>0.62</td>
<td>7.57</td>
</tr>
<tr>
<td>24</td>
<td>17.93</td>
<td>39.51</td>
<td>40.72</td>
<td>-1.52</td>
<td>-6.77</td>
<td>0.23</td>
<td>0.64</td>
<td>8.60</td>
</tr>
<tr>
<td>25</td>
<td>20.10</td>
<td>43.23</td>
<td>45.04</td>
<td>-3.39</td>
<td>-7.48</td>
<td>0.31</td>
<td>0.58</td>
<td>8.33</td>
</tr>
<tr>
<td>26</td>
<td>22.81</td>
<td>45.91</td>
<td>47.85</td>
<td>-3.00</td>
<td>-7.16</td>
<td>0.42</td>
<td>0.47</td>
<td>8.48</td>
</tr>
</tbody>
</table>
desired. The term of order $0, A_0$, is the annual average. The first harmonic is the annual cycle, the second is a semi-annual cycle, etc. Some harmonics may have physical meaning (e.g., the 13th may represent the effect of lunar cycles), but in general the number of harmonics required for a good fit reflects nothing more than the deviation of the observed cycle from a simple sine wave (i.e., the first harmonic).

HARFIT, a program of the Kansas Agricultural Experiment Station Weather Data Library, was used to fit Fourier coefficients to the parameter estimates. It also plotted and listed the smoothed data points. HARFIT is built around the subroutine FORIT, from the IBM scientific Subroutine Package \(\int_{15} \), which has been modified to accept an even number of periods in the annual cycle (the modification consists of replacing the expression \(2\times N+1 \) by \(N \)).

The smoothed parameters for the nine Kansas stations and for the average across Kansas are given in Tables 2 - 11. Six harmonics are used to generate each column, although comparisons between stations indicate that more smoothing is justified. Four harmonics should be adequate for most purposes, and two harmonics may even be sufficient; the remaining terms in the summation are ignored. The Fourier coefficients for each station and for the average are listed in Tables 12 - 21 and the coefficients for the constants and first harmonic are mapped in Figures 18 - 24.

Since \overline{L}_{t-1} and \overline{L}_t are identical except for a one-day shift, they are henceforth represented by \overline{L}_t alone. Slight, but cumulative, errors will
result if the one-day shift is not reconstructed before use in simulation models.

There are 10 regression coefficients, two average temperature extremes, and two standard deviations for error. If four harmonics are used, the number of parameters is 126, as opposed to 288 for Lundgren's model.

STATEWIDE PATTERNS

The average minimum and maximum temperatures, \bar{L}_t and \bar{H}_t, and the regression coefficients C_L and C_H all follow the same annual pattern (see Figures 11 and 12); the annual cycle may be approximated very well by a first-order harmonic, although even two harmonics fail to fit the bulge in April and the peak in July. The values of \bar{L}_t and C_L tend to be higher in southeastern Kansas than in the northwest, particularly during winter. \bar{H}_t and C_H tend to be higher in the southwest than in the northeast. Detailed maps with isotherms for the monthly average minimum and maximum temperatures are available at the Weather Data Library; the patterns are not simple ones.

The effect of precipitation on day $t-1$ is to reduce the extreme temperatures by about two degrees, although the minimum is actually increased slightly at some stations during summer. The greatest cooling occurs in October and November for the minimum and in December and January for the maximum (see Fig. 13); this shift of two months causes minimum temperatures to be cooled more than maximum temperatures during winter. Values of $C_{L,t-1}$ are fairly constant across the state, but those for
$C_{H,t-1}$ are highest in the southeast except during winter.

The occurrence of precipitation on day t has a large effect on the temperatures for day t, as would be expected. During summer the minimum is reduced by one degree and the maximum is reduced by three degrees; these values are constant across the state. During the rest of the year $C_{L,t}$ and $C_{H,t}$ tend to be more negative than the state average (see Fig. 14) in the west and less negative in the east.

The estimates of C_{LL} and C_{HH}, representing 24-hour carryover of temperature deviations, vary irregularly throughout the year (see Fig. 15). During summer both tend to be greatest in the southeast; in winter C_{LL} is greatest in the northwest and C_{HH} is greatest in the west.

The estimates of C_{HL} and C_{LH}, representing 12-hour carryover of temperature deviations, also vary irregularly, although they tend to be more parallel (see Fig. 16), with C_{HL} greatest in the east, while C_{LH} is greatest in the northwest except during winter.

The standard deviations, s_L and s_H, of the residual errors indicate lack of fit of the model. They are needed as parameters in the simulation model. The average curves (see Fig. 17) are at a minimum in summer: this reflects the low variance of summer temperatures. The estimates of s_L are greatest in the north during summer and in the east during winter; s_H is always greatest in the northwest.
Figure 12. Kansas Regression Constant Coefficients (C_L and C_H)
Figure 14: Kansas Deyt Precipitation Coefficients (C_{t,t} and C_{t,t+1})

Temperature (Degrees Fahrenheit)
Figure 15. Kansas Coefficients for 24-hour Carryover (C_{LL} and C_{HH})
Figure 19. Fourier Coefficients for the Constant Coefficient (C_L and C_H)
Figure 20. Fourier Coefficients for Day t-1 Precipitation ($C_L,t-1$ and $C_H,t-1$)
Figure 21. Fourier Coefficients for Day \(t \) Precipitation (\(C_{L,t} \) and \(C_{H,t} \))
Figure 22. Fourier Coefficients for 24-hour Carryover (C_{LL} and C_{HH})
Figure 23. Fourier Coefficients for 12-hour Carryover (C_{HL} and C_{LH})
Figure 24. Fourier Coefficients for Standard Deviations (s_L and s_H)
SIMULATION

THE SIMULATION MODEL.

Although this study is concerned primarily with a model for daily extreme temperatures, simulation of daily weather records requires that some model be used for precipitation. Preliminary investigation established that no suitable regression or covariance model could predict either the occurrence or the amount of precipitation, much less its distribution. It was therefore decided to use the Markov model of Feyerherm and Bark [3,5,8] for determination of wet sequences and to use Ison's model [6,7] for the amount of precipitation in a wet spell. No model was available for the distribution of precipitation within a wet spell.

The equations used for simulating temperatures,

\[L_t = C_L + C_{L,t-1}I_{t-1} + C_{LL}(L_{t-1} - \bar{L}_{t-1}) + C_{HL}(H_{t-1} - \bar{H}_{t-1}) + s_LD_1 \]
\[H_t = C_H + C_{H,t-1}I_{t-1} + C_{HH}(H_{t-1} - \bar{H}_{t-1}) + C_{LH}(L_t - \bar{L}_t) + s_HD_2 \]

differ from the regression equations only by the final terms. \(D_1 \) and \(D_2 \) are pseudo-random normal deviates generated by the method of Box and Mueller [16]; they are multiplied by the estimated standard deviations of the error terms. It is this feature that makes the simulation of temperature realistic; without a random term year after year of "average" weather would be generated.
THE SIMULATION PROGRAM

The FORTRAN IV program used to generate simulated weather records is named SIMREC (Appendix B). It is neither as general nor as complicated as the regression program; most changes must be made in the coding rather than the parameter cards.

More than half of the main program, SIMREC, is devoted to reading the parameter estimates, expanding them, and printing the results. The printouts could be eliminated, if they are not desired, and the expanded parameter tables could be saved on disk for repeated use.

The Markov transition probabilities are expanded by linear interpolation from 52 points per parameter to 365 points; this eliminated repeated interpolation during the simulation phase of the program. It may be, however, that the 52 values were sufficiently accurate without interpolation, or that the increased accuracy of harmonic interpolation is needed. The transition probabilities might also be entered in the form of Fourier coefficients. During the simulation phase pseudo-random numbers distributed uniformly between 0.0 and 0.9999999 are compared to the transition probabilities to determine whether a day is to be wet or dry.

Ison's gamma parameters $\left[6, 7\right]$ are expanded into 13 sets of six cumulative distribution functions each. During the simulation phase pseudo-random numbers generated by the congruence method of the IBM subroutine RANDU $\left[15\right]$ are searched for in the appropriate cumulative distribution function. A linear search is used although binary search would probably be faster. When the proper interval is found, the
corresponding amount of precipitation is divided equally among the days of the wet spell. When the wet spell exceeds one day, there is no guarantee that the simulated amount of precipitation per day will be greater than 0.01 inch (the cutoff between dry and wet).

SIMREC calls for these precipitations one at a time; it is "unaware" that succeeding precipitations may already have been determined by the subroutines. The precipitation values (or rather their incidences) are introduced into the equations for temperature extremes, along with the temperature deviates from the previous simulated day and the pseudo-random normal deviates. The regression coefficients have also been linearly expanded to 365 points to save time during the simulation phase.

TESTING THE MODEL

Program SIMREC was used to simulate 70 years of Manhattan data. Since the results were to be compared to the past 70 years of actual data, the original parameter estimates (see Table 1) were used rather than the smoothed ones. The cost of simulation was $5.00 plus about 20 cents per year of data.

The simulated data was summarized using a program of the Weather Data Library. A similar summary for the actual Manhattan data was available. The summary tabulates the means and standard deviations of the temperature extremes by annual, monthly, weekly, and daily periods. Even more extensive statistics are available for the distributions of dry spells, wet spells, and precipitation amounts. Covariances could be
investigated with the LINMOD program, but it has not been done.

The average monthly and annual simulated temperatures were very close to averages of the actual temperatures: the annual average was only 0.07 degree too high for the minimum temperature and 0.09 degree too high for the maximum temperature. These values are well within the range of normal stochastic variation.

The standard deviations of the daily temperatures were slightly low, 0.49 degree for the annual average minimum temperature and 0.64 for the annual average maximum. This could be due to any of the following factors. The temperature model assumes normality of the error terms and assuming normality of parameter estimates from a skew distribution may be reducing the variances. The problem might also be related to the use of only one error coefficient for four precipitation histories. Perhaps the most likely explanation may be that the variances of the original temperature observations were underestimated by program LINMOD, which used only single precision in calculations. This effect was estimated using WET,WET Manhattan records in March (the effect would be greater if all the records were used): the mean squares for error were too low by only 0.035, or 0.05%. Means and variances of the model variables were accurate to at least the fifth significant digit. The summary program also uses single precision, but the effect should be the same for both simulated and observed data.

The simulated precipitations were too low both in amount and in variation. The shortage amounted to 1.57 inches per year, although
simulation of an additional 30 years lowered this to 1.08 inches per year; neither of these values is significant at the 0.05 or even the 0.20 level. The standard deviation of the annual simulated precipitation total is 5.90 versus 7.97 for the actual data. A breakdown of the precipitation distribution shows that two few small (0.01 to 0.10 inch) and very large (over 1.00 inch) precipitations are being generated. This was to be expected since the Ison model for wet spell precipitations divides the total amount equally among the days of the wet spell.

Amount of precipitation does not enter into the temperature model. Periods of wet and dry days, which do affect temperatures, seem to be adequately simulated. The average number of wet days per year, for instance, is only 0.27 too low. Lundgren found in his work that long wet and dry periods were inadequately simulated. This was established using Palmer Drought Index \[\sum 2 \Delta \], which has not been applied in the present case. A summary of wet and dry spells showed close conformity to actual distributions.

The Smirnov test could be applied to the distributions of weather variables over the 70 years of observations within one period. This was done for precipitation amounts by Ison \[\sum 6,7 \Delta \]; no significant differences were found. There seems to be no reason to believe that temperatures do not conform to the normal distribution which is the basis of the simulation model (aside from the underestimation of the error variance).

It is difficult to test annual patterns statistically. There is no reason to doubt that monthly temperature averages have been well simulated,
but the pattern of average monthly precipitation totals looks suspiciously high in August and low in September. The Smirnov test may not be used because discrete categories (i.e., months) are involved. The Chi-square test is inappropriate because the values are not count data and are correlated. The proper test is a multivariate profile analysis, which has not been used.

Suggested Research

The most needed change in the temperature models is elimination of C_L and C_H. These constants could be set equal to \bar{L}_t and \bar{H}_t, respectively, with very little distortion of the model. The model could be further simplified by removing the \bar{L}_t and \bar{H}_t terms entirely: using original variables instead of deviates and omitting the constant terms. This would reduce the number of parameters of 90 instead of 126, but would make the model less "fundamental".

There are high negative correlations (close to -0.7) between the parameters C_{LL} and C_{LH} and also between C_{HH} and C_{LH}. Perhaps two of these could be eliminated.

It is evident that further work is needed with the precipitation model. The pattern of rainfall within a wet spell affects runoff and erosion, and may affect crop growth. Hourly precipitation patterns may also be important.

Some mechanism is needed whereby temperatures are introduced into the precipitation model. If the simulation were for several stations
simultaneously, frontal systems could be modeled; interstation parameters would allow proper movement of precipitation. A language such as GFSS might facilitate such an investigation.

More variables, such as humidity, should be added. Even if hypothetical parameters must be used, this could lead to a more "fundamental" model. Once the basic model is developed, a method should be found to estimate the parameters from available summaries instead of from original data. Finally, multiple regression on latitude, longitude, and altitude should be used to reduce all parameter estimates to these three values. Equivalently, isoline maps may be drawn: these are more graphic but are difficult to insert into computer programs.
<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\overline{L}_t</th>
<th>\overline{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.55</td>
<td>51.68</td>
<td>27.53</td>
<td>-1.66</td>
<td>1.80</td>
<td>0.24</td>
<td>0.40</td>
<td>7.72</td>
</tr>
<tr>
<td>2</td>
<td>33.09</td>
<td>58.24</td>
<td>32.74</td>
<td>-0.46</td>
<td>1.95</td>
<td>0.17</td>
<td>0.44</td>
<td>7.68</td>
</tr>
<tr>
<td>3</td>
<td>38.65</td>
<td>64.40</td>
<td>38.05</td>
<td>0.37</td>
<td>1.98</td>
<td>0.17</td>
<td>0.47</td>
<td>7.62</td>
</tr>
<tr>
<td>4</td>
<td>43.60</td>
<td>69.15</td>
<td>43.00</td>
<td>0.08</td>
<td>2.01</td>
<td>0.21</td>
<td>0.49</td>
<td>7.38</td>
</tr>
<tr>
<td>5</td>
<td>48.11</td>
<td>72.83</td>
<td>47.63</td>
<td>-0.60</td>
<td>2.07</td>
<td>0.25</td>
<td>0.48</td>
<td>6.96</td>
</tr>
<tr>
<td>6</td>
<td>52.81</td>
<td>76.66</td>
<td>52.44</td>
<td>-0.66</td>
<td>1.78</td>
<td>0.31</td>
<td>0.44</td>
<td>6.43</td>
</tr>
<tr>
<td>7</td>
<td>57.80</td>
<td>81.27</td>
<td>57.61</td>
<td>-0.21</td>
<td>0.82</td>
<td>0.36</td>
<td>0.38</td>
<td>5.88</td>
</tr>
<tr>
<td>8</td>
<td>62.33</td>
<td>86.06</td>
<td>62.39</td>
<td>-0.05</td>
<td>-0.35</td>
<td>0.38</td>
<td>0.34</td>
<td>5.46</td>
</tr>
<tr>
<td>9</td>
<td>65.48</td>
<td>89.92</td>
<td>65.68</td>
<td>-0.00</td>
<td>-0.77</td>
<td>0.37</td>
<td>0.33</td>
<td>5.22</td>
</tr>
<tr>
<td>10</td>
<td>67.09</td>
<td>92.23</td>
<td>67.14</td>
<td>0.03</td>
<td>-0.23</td>
<td>0.36</td>
<td>0.34</td>
<td>5.05</td>
</tr>
<tr>
<td>11</td>
<td>67.53</td>
<td>93.04</td>
<td>67.41</td>
<td>0.15</td>
<td>0.37</td>
<td>0.38</td>
<td>0.33</td>
<td>4.84</td>
</tr>
<tr>
<td>12</td>
<td>66.95</td>
<td>92.40</td>
<td>66.85</td>
<td>0.07</td>
<td>0.28</td>
<td>0.41</td>
<td>0.33</td>
<td>4.82</td>
</tr>
<tr>
<td>13</td>
<td>64.94</td>
<td>90.20</td>
<td>64.91</td>
<td>-0.05</td>
<td>0.03</td>
<td>0.40</td>
<td>0.36</td>
<td>5.32</td>
</tr>
<tr>
<td>14</td>
<td>61.15</td>
<td>86.52</td>
<td>60.95</td>
<td>0.18</td>
<td>0.58</td>
<td>0.37</td>
<td>0.40</td>
<td>6.28</td>
</tr>
<tr>
<td>15</td>
<td>55.92</td>
<td>81.83</td>
<td>55.35</td>
<td>0.50</td>
<td>1.89</td>
<td>0.38</td>
<td>0.41</td>
<td>7.19</td>
</tr>
<tr>
<td>16</td>
<td>50.04</td>
<td>76.59</td>
<td>49.28</td>
<td>0.27</td>
<td>2.99</td>
<td>0.41</td>
<td>0.39</td>
<td>7.57</td>
</tr>
<tr>
<td>17</td>
<td>44.07</td>
<td>70.75</td>
<td>43.43</td>
<td>-0.36</td>
<td>3.34</td>
<td>0.38</td>
<td>0.38</td>
<td>7.49</td>
</tr>
<tr>
<td>18</td>
<td>38.12</td>
<td>64.00</td>
<td>37.62</td>
<td>-0.63</td>
<td>3.42</td>
<td>0.32</td>
<td>0.38</td>
<td>7.36</td>
</tr>
<tr>
<td>19</td>
<td>32.22</td>
<td>56.47</td>
<td>31.72</td>
<td>-0.45</td>
<td>3.63</td>
<td>0.28</td>
<td>0.37</td>
<td>7.35</td>
</tr>
<tr>
<td>20</td>
<td>26.75</td>
<td>49.16</td>
<td>26.32</td>
<td>-0.81</td>
<td>3.55</td>
<td>0.32</td>
<td>0.34</td>
<td>7.39</td>
</tr>
<tr>
<td>21</td>
<td>22.29</td>
<td>43.46</td>
<td>22.21</td>
<td>-2.10</td>
<td>2.68</td>
<td>0.37</td>
<td>0.34</td>
<td>7.47</td>
</tr>
<tr>
<td>22</td>
<td>19.33</td>
<td>40.25</td>
<td>19.63</td>
<td>-3.27</td>
<td>1.42</td>
<td>0.37</td>
<td>0.37</td>
<td>7.73</td>
</tr>
<tr>
<td>23</td>
<td>17.99</td>
<td>39.41</td>
<td>18.38</td>
<td>-3.21</td>
<td>0.66</td>
<td>0.33</td>
<td>0.39</td>
<td>8.13</td>
</tr>
<tr>
<td>24</td>
<td>18.18</td>
<td>40.27</td>
<td>18.41</td>
<td>-2.39</td>
<td>0.71</td>
<td>0.32</td>
<td>0.38</td>
<td>8.37</td>
</tr>
<tr>
<td>25</td>
<td>19.82</td>
<td>42.45</td>
<td>19.94</td>
<td>-2.01</td>
<td>1.15</td>
<td>0.34</td>
<td>0.36</td>
<td>8.24</td>
</tr>
<tr>
<td>26</td>
<td>22.96</td>
<td>46.18</td>
<td>23.08</td>
<td>-2.11</td>
<td>1.55</td>
<td>0.31</td>
<td>0.36</td>
<td>7.92</td>
</tr>
</tbody>
</table>
Table 2b. Manhattan Smoothed Parameter Estimates for the Maximum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>(\bar{L}_t)</th>
<th>(\bar{H}_t)</th>
<th>(C_H)</th>
<th>(C_{H,t-1})</th>
<th>(C_{H,t})</th>
<th>(C_{HH})</th>
<th>(C_{LH})</th>
<th>(s_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.55</td>
<td>51.68</td>
<td>53.79</td>
<td>-2.89</td>
<td>-7.65</td>
<td>0.41</td>
<td>0.49</td>
<td>8.78</td>
</tr>
<tr>
<td>2</td>
<td>33.09</td>
<td>58.24</td>
<td>60.47</td>
<td>-2.39</td>
<td>-7.82</td>
<td>0.35</td>
<td>0.53</td>
<td>8.83</td>
</tr>
<tr>
<td>3</td>
<td>38.65</td>
<td>64.40</td>
<td>66.66</td>
<td>-1.93</td>
<td>-7.24</td>
<td>0.32</td>
<td>0.50</td>
<td>8.41</td>
</tr>
<tr>
<td>4</td>
<td>43.60</td>
<td>69.15</td>
<td>71.38</td>
<td>-1.56</td>
<td>-6.35</td>
<td>0.36</td>
<td>0.41</td>
<td>7.62</td>
</tr>
<tr>
<td>5</td>
<td>48.11</td>
<td>72.83</td>
<td>75.05</td>
<td>-1.25</td>
<td>-5.73</td>
<td>0.39</td>
<td>0.36</td>
<td>6.84</td>
</tr>
<tr>
<td>6</td>
<td>52.81</td>
<td>76.66</td>
<td>78.81</td>
<td>-1.15</td>
<td>-5.23</td>
<td>0.38</td>
<td>0.37</td>
<td>6.23</td>
</tr>
<tr>
<td>7</td>
<td>57.80</td>
<td>81.27</td>
<td>83.17</td>
<td>-1.23</td>
<td>-4.43</td>
<td>0.40</td>
<td>0.38</td>
<td>5.65</td>
</tr>
<tr>
<td>8</td>
<td>62.33</td>
<td>86.06</td>
<td>87.54</td>
<td>-1.09</td>
<td>-3.52</td>
<td>0.47</td>
<td>0.34</td>
<td>5.09</td>
</tr>
<tr>
<td>9</td>
<td>65.48</td>
<td>89.92</td>
<td>91.00</td>
<td>-0.57</td>
<td>-3.14</td>
<td>0.54</td>
<td>0.30</td>
<td>4.77</td>
</tr>
<tr>
<td>10</td>
<td>67.09</td>
<td>92.23</td>
<td>93.15</td>
<td>-0.10</td>
<td>-3.42</td>
<td>0.54</td>
<td>0.29</td>
<td>4.81</td>
</tr>
<tr>
<td>11</td>
<td>67.53</td>
<td>93.04</td>
<td>94.02</td>
<td>-0.12</td>
<td>-3.80</td>
<td>0.52</td>
<td>0.30</td>
<td>5.01</td>
</tr>
<tr>
<td>12</td>
<td>66.95</td>
<td>92.40</td>
<td>93.51</td>
<td>-0.41</td>
<td>-3.95</td>
<td>0.53</td>
<td>0.28</td>
<td>5.19</td>
</tr>
<tr>
<td>13</td>
<td>64.94</td>
<td>90.20</td>
<td>91.44</td>
<td>-0.52</td>
<td>-4.19</td>
<td>0.52</td>
<td>0.29</td>
<td>5.46</td>
</tr>
<tr>
<td>14</td>
<td>61.15</td>
<td>86.52</td>
<td>87.93</td>
<td>-0.54</td>
<td>-4.91</td>
<td>0.45</td>
<td>0.33</td>
<td>5.93</td>
</tr>
<tr>
<td>15</td>
<td>55.92</td>
<td>81.83</td>
<td>83.49</td>
<td>-0.85</td>
<td>-5.94</td>
<td>0.36</td>
<td>0.36</td>
<td>6.47</td>
</tr>
<tr>
<td>16</td>
<td>50.04</td>
<td>76.59</td>
<td>78.41</td>
<td>-1.36</td>
<td>-6.82</td>
<td>0.38</td>
<td>0.34</td>
<td>6.92</td>
</tr>
<tr>
<td>17</td>
<td>44.07</td>
<td>70.75</td>
<td>72.51</td>
<td>-1.51</td>
<td>-7.26</td>
<td>0.47</td>
<td>0.29</td>
<td>7.33</td>
</tr>
<tr>
<td>18</td>
<td>38.12</td>
<td>64.00</td>
<td>65.53</td>
<td>-1.32</td>
<td>-7.23</td>
<td>0.51</td>
<td>0.31</td>
<td>7.72</td>
</tr>
<tr>
<td>19</td>
<td>32.22</td>
<td>56.47</td>
<td>57.81</td>
<td>-1.48</td>
<td>-6.81</td>
<td>0.46</td>
<td>0.39</td>
<td>7.91</td>
</tr>
<tr>
<td>20</td>
<td>26.75</td>
<td>49.16</td>
<td>50.47</td>
<td>-2.22</td>
<td>-6.31</td>
<td>0.40</td>
<td>0.43</td>
<td>7.72</td>
</tr>
<tr>
<td>21</td>
<td>22.29</td>
<td>43.46</td>
<td>44.81</td>
<td>-2.85</td>
<td>-6.25</td>
<td>0.39</td>
<td>0.45</td>
<td>7.41</td>
</tr>
<tr>
<td>22</td>
<td>19.33</td>
<td>40.25</td>
<td>41.62</td>
<td>-2.68</td>
<td>-6.77</td>
<td>0.37</td>
<td>0.51</td>
<td>7.44</td>
</tr>
<tr>
<td>23</td>
<td>17.99</td>
<td>39.41</td>
<td>40.78</td>
<td>-2.13</td>
<td>-7.30</td>
<td>0.29</td>
<td>0.60</td>
<td>7.85</td>
</tr>
<tr>
<td>24</td>
<td>18.18</td>
<td>40.27</td>
<td>41.70</td>
<td>-2.07</td>
<td>-7.31</td>
<td>0.24</td>
<td>0.64</td>
<td>8.28</td>
</tr>
<tr>
<td>25</td>
<td>19.82</td>
<td>42.45</td>
<td>44.07</td>
<td>-2.63</td>
<td>-7.04</td>
<td>0.31</td>
<td>0.57</td>
<td>8.47</td>
</tr>
<tr>
<td>26</td>
<td>22.96</td>
<td>46.18</td>
<td>48.07</td>
<td>-3.06</td>
<td>-7.14</td>
<td>0.40</td>
<td>0.49</td>
<td>8.58</td>
</tr>
<tr>
<td>PERIOD</td>
<td>(\overline{L}_t)</td>
<td>(\overline{H}_t)</td>
<td>(C_L)</td>
<td>(C_{L,t-1})</td>
<td>(C_{L,t})</td>
<td>(C_{LL})</td>
<td>(C_{HL})</td>
<td>(s_L)</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>22.27</td>
<td>50.41</td>
<td>23.06</td>
<td>-2.41</td>
<td>-1.76</td>
<td>0.40</td>
<td>0.22</td>
<td>6.97</td>
</tr>
<tr>
<td>2</td>
<td>26.70</td>
<td>56.00</td>
<td>27.39</td>
<td>-2.19</td>
<td>-1.47</td>
<td>0.34</td>
<td>0.24</td>
<td>6.97</td>
</tr>
<tr>
<td>3</td>
<td>31.96</td>
<td>61.98</td>
<td>32.29</td>
<td>-1.35</td>
<td>-0.44</td>
<td>0.32</td>
<td>0.24</td>
<td>6.65</td>
</tr>
<tr>
<td>4</td>
<td>37.06</td>
<td>66.68</td>
<td>36.98</td>
<td>-0.55</td>
<td>0.80</td>
<td>0.34</td>
<td>0.25</td>
<td>6.17</td>
</tr>
<tr>
<td>5</td>
<td>41.58</td>
<td>70.09</td>
<td>41.36</td>
<td>-0.44</td>
<td>1.36</td>
<td>0.35</td>
<td>0.25</td>
<td>5.91</td>
</tr>
<tr>
<td>6</td>
<td>46.07</td>
<td>73.74</td>
<td>46.03</td>
<td>-0.75</td>
<td>0.90</td>
<td>0.36</td>
<td>0.23</td>
<td>5.83</td>
</tr>
<tr>
<td>7</td>
<td>51.05</td>
<td>78.71</td>
<td>51.32</td>
<td>-0.80</td>
<td>-0.12</td>
<td>0.37</td>
<td>0.19</td>
<td>5.59</td>
</tr>
<tr>
<td>8</td>
<td>55.99</td>
<td>84.37</td>
<td>56.43</td>
<td>-0.52</td>
<td>-0.94</td>
<td>0.38</td>
<td>0.19</td>
<td>5.10</td>
</tr>
<tr>
<td>9</td>
<td>59.76</td>
<td>89.12</td>
<td>60.16</td>
<td>-0.36</td>
<td>-1.09</td>
<td>0.37</td>
<td>0.21</td>
<td>4.62</td>
</tr>
<tr>
<td>10</td>
<td>61.82</td>
<td>91.91</td>
<td>62.08</td>
<td>-0.45</td>
<td>-0.72</td>
<td>0.36</td>
<td>0.20</td>
<td>4.29</td>
</tr>
<tr>
<td>11</td>
<td>62.39</td>
<td>92.63</td>
<td>62.57</td>
<td>-0.43</td>
<td>-0.38</td>
<td>0.38</td>
<td>0.18</td>
<td>4.04</td>
</tr>
<tr>
<td>12</td>
<td>61.69</td>
<td>91.64</td>
<td>61.84</td>
<td>-0.15</td>
<td>-0.43</td>
<td>0.41</td>
<td>0.17</td>
<td>4.02</td>
</tr>
<tr>
<td>13</td>
<td>59.44</td>
<td>89.20</td>
<td>59.53</td>
<td>0.15</td>
<td>-0.50</td>
<td>0.41</td>
<td>0.20</td>
<td>4.57</td>
</tr>
<tr>
<td>14</td>
<td>55.42</td>
<td>85.55</td>
<td>55.34</td>
<td>0.28</td>
<td>0.11</td>
<td>0.39</td>
<td>0.24</td>
<td>5.61</td>
</tr>
<tr>
<td>15</td>
<td>49.98</td>
<td>80.86</td>
<td>49.69</td>
<td>0.29</td>
<td>1.30</td>
<td>0.40</td>
<td>0.24</td>
<td>6.45</td>
</tr>
<tr>
<td>16</td>
<td>43.79</td>
<td>75.29</td>
<td>43.44</td>
<td>0.10</td>
<td>2.09</td>
<td>0.41</td>
<td>0.21</td>
<td>6.54</td>
</tr>
<tr>
<td>17</td>
<td>37.45</td>
<td>68.98</td>
<td>37.27</td>
<td>-0.56</td>
<td>1.78</td>
<td>0.39</td>
<td>0.20</td>
<td>6.18</td>
</tr>
<tr>
<td>18</td>
<td>31.39</td>
<td>62.21</td>
<td>31.46</td>
<td>-1.56</td>
<td>0.91</td>
<td>0.35</td>
<td>0.22</td>
<td>6.01</td>
</tr>
<tr>
<td>19</td>
<td>25.99</td>
<td>55.38</td>
<td>26.20</td>
<td>-2.33</td>
<td>0.56</td>
<td>0.34</td>
<td>0.24</td>
<td>6.22</td>
</tr>
<tr>
<td>20</td>
<td>21.48</td>
<td>49.08</td>
<td>21.69</td>
<td>-2.63</td>
<td>0.79</td>
<td>0.40</td>
<td>0.23</td>
<td>6.49</td>
</tr>
<tr>
<td>21</td>
<td>17.94</td>
<td>44.18</td>
<td>18.19</td>
<td>-2.91</td>
<td>0.61</td>
<td>0.46</td>
<td>0.24</td>
<td>6.67</td>
</tr>
<tr>
<td>22</td>
<td>15.53</td>
<td>41.58</td>
<td>15.94</td>
<td>-3.52</td>
<td>-0.52</td>
<td>0.48</td>
<td>0.25</td>
<td>6.94</td>
</tr>
<tr>
<td>23</td>
<td>14.58</td>
<td>41.41</td>
<td>15.16</td>
<td>-3.97</td>
<td>-1.81</td>
<td>0.47</td>
<td>0.25</td>
<td>7.29</td>
</tr>
<tr>
<td>24</td>
<td>15.14</td>
<td>42.70</td>
<td>15.77</td>
<td>-3.66</td>
<td>-2.28</td>
<td>0.49</td>
<td>0.22</td>
<td>7.41</td>
</tr>
<tr>
<td>25</td>
<td>16.76</td>
<td>44.40</td>
<td>17.39</td>
<td>-2.85</td>
<td>-1.99</td>
<td>0.51</td>
<td>0.20</td>
<td>7.18</td>
</tr>
<tr>
<td>26</td>
<td>19.07</td>
<td>46.62</td>
<td>19.76</td>
<td>-2.39</td>
<td>-1.74</td>
<td>0.48</td>
<td>0.20</td>
<td>6.95</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{L}_t</td>
<td>\bar{H}_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>s_H</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>22.27</td>
<td>50.41</td>
<td>52.70</td>
<td>-1.83</td>
<td>-10.53</td>
<td>0.38</td>
<td>0.55</td>
<td>9.07</td>
</tr>
<tr>
<td>2</td>
<td>26.70</td>
<td>56.00</td>
<td>58.51</td>
<td>-2.72</td>
<td>-10.40</td>
<td>0.37</td>
<td>0.55</td>
<td>8.86</td>
</tr>
<tr>
<td>3</td>
<td>31.96</td>
<td>61.98</td>
<td>64.58</td>
<td>-3.13</td>
<td>-9.76</td>
<td>0.33</td>
<td>0.56</td>
<td>8.68</td>
</tr>
<tr>
<td>4</td>
<td>37.06</td>
<td>66.68</td>
<td>69.34</td>
<td>-2.82</td>
<td>-8.81</td>
<td>0.32</td>
<td>0.55</td>
<td>8.42</td>
</tr>
<tr>
<td>5</td>
<td>41.58</td>
<td>70.09</td>
<td>72.89</td>
<td>-2.29</td>
<td>-7.99</td>
<td>0.34</td>
<td>0.53</td>
<td>7.97</td>
</tr>
<tr>
<td>6</td>
<td>46.07</td>
<td>73.74</td>
<td>76.62</td>
<td>-1.99</td>
<td>-7.08</td>
<td>0.37</td>
<td>0.51</td>
<td>7.40</td>
</tr>
<tr>
<td>7</td>
<td>51.05</td>
<td>78.71</td>
<td>81.33</td>
<td>-1.91</td>
<td>-5.70</td>
<td>0.39</td>
<td>0.52</td>
<td>6.81</td>
</tr>
<tr>
<td>8</td>
<td>55.99</td>
<td>84.37</td>
<td>86.41</td>
<td>-1.94</td>
<td>-4.24</td>
<td>0.40</td>
<td>0.54</td>
<td>6.29</td>
</tr>
<tr>
<td>9</td>
<td>59.76</td>
<td>89.12</td>
<td>90.64</td>
<td>-2.06</td>
<td>-3.57</td>
<td>0.41</td>
<td>0.52</td>
<td>5.89</td>
</tr>
<tr>
<td>10</td>
<td>61.82</td>
<td>91.91</td>
<td>93.27</td>
<td>-2.19</td>
<td>-3.66</td>
<td>0.43</td>
<td>0.44</td>
<td>5.68</td>
</tr>
<tr>
<td>11</td>
<td>62.39</td>
<td>92.63</td>
<td>94.13</td>
<td>-2.30</td>
<td>-3.75</td>
<td>0.43</td>
<td>0.38</td>
<td>5.70</td>
</tr>
<tr>
<td>12</td>
<td>61.69</td>
<td>91.64</td>
<td>93.27</td>
<td>-2.46</td>
<td>-3.71</td>
<td>0.42</td>
<td>0.39</td>
<td>5.93</td>
</tr>
<tr>
<td>13</td>
<td>59.44</td>
<td>89.20</td>
<td>90.87</td>
<td>-2.64</td>
<td>-4.45</td>
<td>0.39</td>
<td>0.44</td>
<td>6.33</td>
</tr>
<tr>
<td>14</td>
<td>55.42</td>
<td>85.55</td>
<td>87.24</td>
<td>-2.61</td>
<td>-6.33</td>
<td>0.36</td>
<td>0.47</td>
<td>6.87</td>
</tr>
<tr>
<td>15</td>
<td>49.98</td>
<td>80.86</td>
<td>82.62</td>
<td>-2.30</td>
<td>-8.30</td>
<td>0.35</td>
<td>0.45</td>
<td>7.50</td>
</tr>
<tr>
<td>16</td>
<td>43.79</td>
<td>75.29</td>
<td>77.11</td>
<td>-2.25</td>
<td>-9.28</td>
<td>0.36</td>
<td>0.43</td>
<td>8.10</td>
</tr>
<tr>
<td>17</td>
<td>37.45</td>
<td>68.98</td>
<td>70.84</td>
<td>-2.97</td>
<td>-9.58</td>
<td>0.40</td>
<td>0.43</td>
<td>8.51</td>
</tr>
<tr>
<td>18</td>
<td>31.39</td>
<td>62.21</td>
<td>64.06</td>
<td>-3.98</td>
<td>-10.05</td>
<td>0.43</td>
<td>0.46</td>
<td>8.68</td>
</tr>
<tr>
<td>19</td>
<td>25.99</td>
<td>55.38</td>
<td>57.14</td>
<td>-4.11</td>
<td>-10.51</td>
<td>0.40</td>
<td>0.48</td>
<td>8.69</td>
</tr>
<tr>
<td>20</td>
<td>21.48</td>
<td>49.08</td>
<td>50.56</td>
<td>-3.02</td>
<td>-10.09</td>
<td>0.36</td>
<td>0.49</td>
<td>8.64</td>
</tr>
<tr>
<td>21</td>
<td>17.94</td>
<td>44.18</td>
<td>45.32</td>
<td>-1.85</td>
<td>-8.95</td>
<td>0.35</td>
<td>0.51</td>
<td>8.58</td>
</tr>
<tr>
<td>22</td>
<td>15.53</td>
<td>41.58</td>
<td>42.56</td>
<td>-1.76</td>
<td>-8.40</td>
<td>0.37</td>
<td>0.54</td>
<td>8.57</td>
</tr>
<tr>
<td>23</td>
<td>14.58</td>
<td>41.41</td>
<td>42.52</td>
<td>-2.43</td>
<td>-9.07</td>
<td>0.37</td>
<td>0.55</td>
<td>8.70</td>
</tr>
<tr>
<td>24</td>
<td>15.14</td>
<td>42.70</td>
<td>44.13</td>
<td>-2.60</td>
<td>-10.13</td>
<td>0.35</td>
<td>0.56</td>
<td>8.97</td>
</tr>
<tr>
<td>25</td>
<td>16.76</td>
<td>44.40</td>
<td>46.13</td>
<td>-1.94</td>
<td>-10.59</td>
<td>0.34</td>
<td>0.56</td>
<td>9.20</td>
</tr>
<tr>
<td>26</td>
<td>19.07</td>
<td>46.62</td>
<td>48.63</td>
<td>-1.42</td>
<td>-10.56</td>
<td>0.36</td>
<td>0.56</td>
<td>9.23</td>
</tr>
</tbody>
</table>
Table 4a. Columbus Smoothed Parameter Estimates for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.36</td>
<td>54.96</td>
<td>32.20</td>
<td>-1.69</td>
<td>2.27</td>
<td>0.15</td>
<td>0.46</td>
<td>7.32</td>
</tr>
<tr>
<td>2</td>
<td>37.31</td>
<td>60.71</td>
<td>37.13</td>
<td>-1.43</td>
<td>2.02</td>
<td>0.18</td>
<td>0.47</td>
<td>7.28</td>
</tr>
<tr>
<td>3</td>
<td>42.29</td>
<td>65.93</td>
<td>42.10</td>
<td>-1.35</td>
<td>1.97</td>
<td>0.25</td>
<td>0.48</td>
<td>6.99</td>
</tr>
<tr>
<td>4</td>
<td>46.74</td>
<td>69.99</td>
<td>46.45</td>
<td>-1.07</td>
<td>1.98</td>
<td>0.26</td>
<td>0.51</td>
<td>6.38</td>
</tr>
<tr>
<td>5</td>
<td>50.80</td>
<td>73.46</td>
<td>50.40</td>
<td>-0.72</td>
<td>1.84</td>
<td>0.26</td>
<td>0.53</td>
<td>5.70</td>
</tr>
<tr>
<td>6</td>
<td>55.00</td>
<td>77.19</td>
<td>54.62</td>
<td>-0.49</td>
<td>1.46</td>
<td>0.32</td>
<td>0.47</td>
<td>5.13</td>
</tr>
<tr>
<td>7</td>
<td>59.48</td>
<td>81.36</td>
<td>59.25</td>
<td>-0.26</td>
<td>0.83</td>
<td>0.42</td>
<td>0.37</td>
<td>4.61</td>
</tr>
<tr>
<td>8</td>
<td>63.56</td>
<td>85.37</td>
<td>63.53</td>
<td>0.03</td>
<td>0.05</td>
<td>0.49</td>
<td>0.29</td>
<td>4.17</td>
</tr>
<tr>
<td>9</td>
<td>66.35</td>
<td>88.59</td>
<td>66.44</td>
<td>0.17</td>
<td>-0.47</td>
<td>0.49</td>
<td>0.26</td>
<td>3.90</td>
</tr>
<tr>
<td>10</td>
<td>67.64</td>
<td>90.79</td>
<td>67.72</td>
<td>0.06</td>
<td>-0.37</td>
<td>0.50</td>
<td>0.23</td>
<td>3.78</td>
</tr>
<tr>
<td>11</td>
<td>67.88</td>
<td>91.94</td>
<td>67.85</td>
<td>-0.08</td>
<td>0.13</td>
<td>0.53</td>
<td>0.20</td>
<td>3.68</td>
</tr>
<tr>
<td>12</td>
<td>67.37</td>
<td>91.83</td>
<td>67.27</td>
<td>-0.11</td>
<td>0.43</td>
<td>0.55</td>
<td>0.21</td>
<td>3.73</td>
</tr>
<tr>
<td>13</td>
<td>65.73</td>
<td>90.15</td>
<td>65.68</td>
<td>-0.29</td>
<td>0.45</td>
<td>0.53</td>
<td>0.24</td>
<td>4.21</td>
</tr>
<tr>
<td>14</td>
<td>62.47</td>
<td>86.91</td>
<td>62.47</td>
<td>-0.80</td>
<td>0.73</td>
<td>0.52</td>
<td>0.26</td>
<td>5.05</td>
</tr>
<tr>
<td>15</td>
<td>57.78</td>
<td>82.56</td>
<td>57.70</td>
<td>-1.33</td>
<td>1.61</td>
<td>0.53</td>
<td>0.27</td>
<td>5.79</td>
</tr>
<tr>
<td>16</td>
<td>52.43</td>
<td>77.59</td>
<td>52.14</td>
<td>-1.41</td>
<td>2.60</td>
<td>0.51</td>
<td>0.30</td>
<td>6.20</td>
</tr>
<tr>
<td>17</td>
<td>47.04</td>
<td>72.15</td>
<td>46.59</td>
<td>-1.22</td>
<td>3.08</td>
<td>0.42</td>
<td>0.37</td>
<td>6.52</td>
</tr>
<tr>
<td>18</td>
<td>41.66</td>
<td>66.02</td>
<td>41.22</td>
<td>-1.25</td>
<td>3.11</td>
<td>0.33</td>
<td>0.40</td>
<td>7.01</td>
</tr>
<tr>
<td>19</td>
<td>36.28</td>
<td>59.23</td>
<td>35.93</td>
<td>-1.62</td>
<td>3.16</td>
<td>0.31</td>
<td>0.38</td>
<td>7.41</td>
</tr>
<tr>
<td>20</td>
<td>31.31</td>
<td>52.59</td>
<td>31.06</td>
<td>-1.99</td>
<td>3.23</td>
<td>0.35</td>
<td>0.33</td>
<td>7.43</td>
</tr>
<tr>
<td>21</td>
<td>27.45</td>
<td>47.43</td>
<td>27.35</td>
<td>-2.30</td>
<td>2.82</td>
<td>0.39</td>
<td>0.31</td>
<td>7.32</td>
</tr>
<tr>
<td>22</td>
<td>25.09</td>
<td>44.65</td>
<td>25.29</td>
<td>-2.91</td>
<td>1.94</td>
<td>0.40</td>
<td>0.31</td>
<td>7.59</td>
</tr>
<tr>
<td>23</td>
<td>24.12</td>
<td>44.04</td>
<td>24.64</td>
<td>-3.82</td>
<td>1.33</td>
<td>0.42</td>
<td>0.30</td>
<td>8.17</td>
</tr>
<tr>
<td>24</td>
<td>24.29</td>
<td>44.84</td>
<td>24.89</td>
<td>-4.29</td>
<td>1.53</td>
<td>0.43</td>
<td>0.28</td>
<td>8.45</td>
</tr>
<tr>
<td>25</td>
<td>25.61</td>
<td>46.71</td>
<td>25.97</td>
<td>-3.73</td>
<td>2.16</td>
<td>0.37</td>
<td>0.32</td>
<td>8.10</td>
</tr>
<tr>
<td>26</td>
<td>28.29</td>
<td>50.03</td>
<td>28.31</td>
<td>-2.55</td>
<td>2.45</td>
<td>0.24</td>
<td>0.41</td>
<td>7.56</td>
</tr>
</tbody>
</table>
Table 4b. Columbus Smoothed Parameter Estimates for the Maximum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{LH}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.36</td>
<td>54.96</td>
<td>57.27</td>
<td>-2.90</td>
<td>-6.12</td>
<td>0.32</td>
<td>0.63</td>
<td>7.54</td>
</tr>
<tr>
<td>2</td>
<td>37.31</td>
<td>60.71</td>
<td>63.08</td>
<td>-2.60</td>
<td>-6.10</td>
<td>0.26</td>
<td>0.51</td>
<td>7.60</td>
</tr>
<tr>
<td>3</td>
<td>42.29</td>
<td>65.93</td>
<td>68.26</td>
<td>-1.93</td>
<td>-6.05</td>
<td>0.24</td>
<td>0.59</td>
<td>7.16</td>
</tr>
<tr>
<td>4</td>
<td>46.74</td>
<td>69.99</td>
<td>72.28</td>
<td>-1.54</td>
<td>-5.60</td>
<td>0.27</td>
<td>0.44</td>
<td>6.36</td>
</tr>
<tr>
<td>5</td>
<td>50.80</td>
<td>73.46</td>
<td>75.65</td>
<td>-1.58</td>
<td>-4.73</td>
<td>0.30</td>
<td>0.43</td>
<td>5.63</td>
</tr>
<tr>
<td>6</td>
<td>55.00</td>
<td>77.19</td>
<td>79.15</td>
<td>-1.55</td>
<td>-3.76</td>
<td>0.32</td>
<td>0.38</td>
<td>5.14</td>
</tr>
<tr>
<td>7</td>
<td>59.48</td>
<td>81.36</td>
<td>82.92</td>
<td>-1.09</td>
<td>-3.12</td>
<td>0.38</td>
<td>0.41</td>
<td>4.76</td>
</tr>
<tr>
<td>8</td>
<td>63.56</td>
<td>85.37</td>
<td>86.52</td>
<td>-0.50</td>
<td>-2.91</td>
<td>0.49</td>
<td>0.34</td>
<td>4.37</td>
</tr>
<tr>
<td>9</td>
<td>66.35</td>
<td>88.59</td>
<td>89.51</td>
<td>-0.20</td>
<td>-2.97</td>
<td>0.59</td>
<td>0.26</td>
<td>4.12</td>
</tr>
<tr>
<td>10</td>
<td>67.64</td>
<td>90.79</td>
<td>91.67</td>
<td>-0.18</td>
<td>-3.23</td>
<td>0.61</td>
<td>0.25</td>
<td>4.09</td>
</tr>
<tr>
<td>11</td>
<td>67.88</td>
<td>91.94</td>
<td>92.88</td>
<td>-0.18</td>
<td>-3.60</td>
<td>0.59</td>
<td>0.27</td>
<td>4.21</td>
</tr>
<tr>
<td>12</td>
<td>67.37</td>
<td>91.83</td>
<td>92.85</td>
<td>-0.21</td>
<td>-3.91</td>
<td>0.59</td>
<td>0.27</td>
<td>4.41</td>
</tr>
<tr>
<td>13</td>
<td>65.73</td>
<td>90.15</td>
<td>91.35</td>
<td>-0.55</td>
<td>-4.07</td>
<td>0.58</td>
<td>0.27</td>
<td>4.67</td>
</tr>
<tr>
<td>14</td>
<td>62.47</td>
<td>86.91</td>
<td>88.41</td>
<td>-1.17</td>
<td>-4.34</td>
<td>0.52</td>
<td>0.30</td>
<td>4.98</td>
</tr>
<tr>
<td>15</td>
<td>57.78</td>
<td>82.56</td>
<td>84.35</td>
<td>-1.72</td>
<td>-4.94</td>
<td>0.44</td>
<td>0.34</td>
<td>5.29</td>
</tr>
<tr>
<td>16</td>
<td>52.43</td>
<td>77.59</td>
<td>79.52</td>
<td>-2.02</td>
<td>-5.60</td>
<td>0.42</td>
<td>0.38</td>
<td>5.64</td>
</tr>
<tr>
<td>17</td>
<td>47.04</td>
<td>72.15</td>
<td>74.04</td>
<td>-2.22</td>
<td>-5.80</td>
<td>0.45</td>
<td>0.38</td>
<td>6.16</td>
</tr>
<tr>
<td>18</td>
<td>41.66</td>
<td>66.02</td>
<td>67.81</td>
<td>-2.50</td>
<td>-5.50</td>
<td>0.45</td>
<td>0.41</td>
<td>6.72</td>
</tr>
<tr>
<td>19</td>
<td>36.28</td>
<td>59.23</td>
<td>60.98</td>
<td>-2.79</td>
<td>-5.20</td>
<td>0.39</td>
<td>0.48</td>
<td>6.98</td>
</tr>
<tr>
<td>20</td>
<td>31.31</td>
<td>52.59</td>
<td>54.37</td>
<td>-3.01</td>
<td>-5.25</td>
<td>0.33</td>
<td>0.56</td>
<td>6.80</td>
</tr>
<tr>
<td>21</td>
<td>27.45</td>
<td>47.43</td>
<td>49.22</td>
<td>-3.13</td>
<td>-5.37</td>
<td>0.32</td>
<td>0.60</td>
<td>6.52</td>
</tr>
<tr>
<td>22</td>
<td>25.09</td>
<td>44.65</td>
<td>46.37</td>
<td>-3.08</td>
<td>-5.22</td>
<td>0.33</td>
<td>0.61</td>
<td>6.61</td>
</tr>
<tr>
<td>23</td>
<td>24.12</td>
<td>44.04</td>
<td>45.67</td>
<td>-2.77</td>
<td>-4.95</td>
<td>0.31</td>
<td>0.63</td>
<td>6.99</td>
</tr>
<tr>
<td>24</td>
<td>24.29</td>
<td>44.84</td>
<td>46.47</td>
<td>-2.36</td>
<td>-5.02</td>
<td>0.29</td>
<td>0.64</td>
<td>7.26</td>
</tr>
<tr>
<td>25</td>
<td>25.61</td>
<td>46.71</td>
<td>48.51</td>
<td>-2.27</td>
<td>-5.48</td>
<td>0.31</td>
<td>0.63</td>
<td>7.28</td>
</tr>
<tr>
<td>26</td>
<td>28.29</td>
<td>50.03</td>
<td>52.11</td>
<td>-2.62</td>
<td>-5.93</td>
<td>0.34</td>
<td>0.62</td>
<td>7.32</td>
</tr>
</tbody>
</table>
Table 5a: Elkhart Smoothed Parameter Estimates for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.00</td>
<td>56.62</td>
<td>25.25</td>
<td>-1.12</td>
<td>-1.04</td>
<td>0.33</td>
<td>0.27</td>
<td>7.20</td>
</tr>
<tr>
<td>2</td>
<td>29.98</td>
<td>61.55</td>
<td>30.16</td>
<td>-1.09</td>
<td>-0.79</td>
<td>0.29</td>
<td>0.29</td>
<td>7.02</td>
</tr>
<tr>
<td>3</td>
<td>35.08</td>
<td>67.04</td>
<td>35.07</td>
<td>-0.04</td>
<td>-0.14</td>
<td>0.28</td>
<td>0.31</td>
<td>6.56</td>
</tr>
<tr>
<td>4</td>
<td>40.34</td>
<td>71.55</td>
<td>40.24</td>
<td>0.72</td>
<td>0.07</td>
<td>0.31</td>
<td>0.29</td>
<td>6.06</td>
</tr>
<tr>
<td>5</td>
<td>44.94</td>
<td>74.81</td>
<td>44.92</td>
<td>0.43</td>
<td>-0.30</td>
<td>0.35</td>
<td>0.25</td>
<td>5.72</td>
</tr>
<tr>
<td>6</td>
<td>49.15</td>
<td>78.16</td>
<td>49.27</td>
<td>-0.12</td>
<td>-0.63</td>
<td>0.39</td>
<td>0.21</td>
<td>5.42</td>
</tr>
<tr>
<td>7</td>
<td>53.69</td>
<td>82.68</td>
<td>53.90</td>
<td>-0.09</td>
<td>-0.78</td>
<td>0.39</td>
<td>0.20</td>
<td>4.99</td>
</tr>
<tr>
<td>8</td>
<td>58.35</td>
<td>87.73</td>
<td>58.60</td>
<td>0.16</td>
<td>-1.10</td>
<td>0.39</td>
<td>0.21</td>
<td>4.54</td>
</tr>
<tr>
<td>9</td>
<td>62.01</td>
<td>91.60</td>
<td>62.28</td>
<td>0.11</td>
<td>-1.53</td>
<td>0.40</td>
<td>0.21</td>
<td>4.24</td>
</tr>
<tr>
<td>10</td>
<td>63.97</td>
<td>93.37</td>
<td>64.20</td>
<td>0.05</td>
<td>-1.50</td>
<td>0.41</td>
<td>0.20</td>
<td>4.01</td>
</tr>
<tr>
<td>11</td>
<td>64.43</td>
<td>93.52</td>
<td>64.62</td>
<td>0.31</td>
<td>-1.12</td>
<td>0.41</td>
<td>0.18</td>
<td>3.69</td>
</tr>
<tr>
<td>12</td>
<td>63.79</td>
<td>92.74</td>
<td>63.98</td>
<td>0.43</td>
<td>-1.06</td>
<td>0.42</td>
<td>0.18</td>
<td>3.54</td>
</tr>
<tr>
<td>13</td>
<td>61.87</td>
<td>91.04</td>
<td>62.06</td>
<td>0.08</td>
<td>-1.21</td>
<td>0.43</td>
<td>0.19</td>
<td>3.99</td>
</tr>
<tr>
<td>14</td>
<td>58.33</td>
<td>88.05</td>
<td>58.39</td>
<td>-0.10</td>
<td>-0.55</td>
<td>0.44</td>
<td>0.21</td>
<td>5.00</td>
</tr>
<tr>
<td>15</td>
<td>53.36</td>
<td>83.71</td>
<td>53.16</td>
<td>0.45</td>
<td>1.06</td>
<td>0.43</td>
<td>0.22</td>
<td>5.96</td>
</tr>
<tr>
<td>16</td>
<td>47.48</td>
<td>78.40</td>
<td>47.12</td>
<td>1.00</td>
<td>2.17</td>
<td>0.40</td>
<td>0.22</td>
<td>6.33</td>
</tr>
<tr>
<td>17</td>
<td>41.14</td>
<td>72.54</td>
<td>40.90</td>
<td>0.47</td>
<td>1.63</td>
<td>0.38</td>
<td>0.23</td>
<td>6.27</td>
</tr>
<tr>
<td>18</td>
<td>34.80</td>
<td>66.39</td>
<td>34.80</td>
<td>-0.70</td>
<td>0.37</td>
<td>0.36</td>
<td>0.24</td>
<td>6.26</td>
</tr>
<tr>
<td>19</td>
<td>29.14</td>
<td>60.23</td>
<td>29.24</td>
<td>-1.23</td>
<td>0.00</td>
<td>0.34</td>
<td>0.25</td>
<td>6.45</td>
</tr>
<tr>
<td>20</td>
<td>24.70</td>
<td>54.57</td>
<td>24.76</td>
<td>-1.18</td>
<td>0.34</td>
<td>0.35</td>
<td>0.25</td>
<td>6.67</td>
</tr>
<tr>
<td>21</td>
<td>21.48</td>
<td>50.14</td>
<td>21.62</td>
<td>-1.85</td>
<td>-0.13</td>
<td>0.37</td>
<td>0.26</td>
<td>6.83</td>
</tr>
<tr>
<td>22</td>
<td>19.34</td>
<td>47.72</td>
<td>19.68</td>
<td>-3.41</td>
<td>-1.65</td>
<td>0.40</td>
<td>0.28</td>
<td>6.99</td>
</tr>
<tr>
<td>23</td>
<td>18.45</td>
<td>47.55</td>
<td>18.88</td>
<td>-4.12</td>
<td>-2.66</td>
<td>0.41</td>
<td>0.29</td>
<td>7.16</td>
</tr>
<tr>
<td>24</td>
<td>19.04</td>
<td>48.95</td>
<td>19.34</td>
<td>-2.88</td>
<td>-2.16</td>
<td>0.40</td>
<td>0.30</td>
<td>7.22</td>
</tr>
<tr>
<td>25</td>
<td>20.80</td>
<td>50.92</td>
<td>20.95</td>
<td>-1.05</td>
<td>-1.13</td>
<td>0.37</td>
<td>0.28</td>
<td>7.18</td>
</tr>
<tr>
<td>26</td>
<td>23.13</td>
<td>53.23</td>
<td>23.29</td>
<td>-0.54</td>
<td>-0.84</td>
<td>0.35</td>
<td>0.27</td>
<td>7.18</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\overline{L}_t</td>
<td>\overline{H}_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>s_H</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>26.00</td>
<td>56.62</td>
<td>57.94</td>
<td>-2.43</td>
<td>-9.35</td>
<td>0.41</td>
<td>0.50</td>
<td>9.07</td>
</tr>
<tr>
<td>2</td>
<td>29.98</td>
<td>61.55</td>
<td>63.11</td>
<td>-3.38</td>
<td>-9.96</td>
<td>0.33</td>
<td>0.56</td>
<td>8.74</td>
</tr>
<tr>
<td>3</td>
<td>35.08</td>
<td>67.04</td>
<td>68.73</td>
<td>-3.09</td>
<td>-9.94</td>
<td>0.28</td>
<td>0.59</td>
<td>8.10</td>
</tr>
<tr>
<td>4</td>
<td>40.34</td>
<td>71.55</td>
<td>73.26</td>
<td>-1.83</td>
<td>-8.80</td>
<td>0.30</td>
<td>0.56</td>
<td>7.53</td>
</tr>
<tr>
<td>5</td>
<td>44.94</td>
<td>74.81</td>
<td>76.55</td>
<td>-0.91</td>
<td>-7.35</td>
<td>0.35</td>
<td>0.50</td>
<td>7.20</td>
</tr>
<tr>
<td>6</td>
<td>49.15</td>
<td>78.16</td>
<td>79.88</td>
<td>-0.81</td>
<td>-6.27</td>
<td>0.40</td>
<td>0.46</td>
<td>6.84</td>
</tr>
<tr>
<td>7</td>
<td>53.69</td>
<td>82.68</td>
<td>84.15</td>
<td>-0.84</td>
<td>-5.22</td>
<td>0.43</td>
<td>0.46</td>
<td>6.27</td>
</tr>
<tr>
<td>8</td>
<td>58.35</td>
<td>87.73</td>
<td>88.77</td>
<td>-0.62</td>
<td>-3.94</td>
<td>0.45</td>
<td>0.46</td>
<td>5.66</td>
</tr>
<tr>
<td>9</td>
<td>62.01</td>
<td>91.60</td>
<td>92.40</td>
<td>-0.69</td>
<td>-3.12</td>
<td>0.44</td>
<td>0.43</td>
<td>5.22</td>
</tr>
<tr>
<td>10</td>
<td>63.97</td>
<td>93.37</td>
<td>94.32</td>
<td>-1.29</td>
<td>-3.31</td>
<td>0.41</td>
<td>0.39</td>
<td>4.89</td>
</tr>
<tr>
<td>11</td>
<td>64.43</td>
<td>93.52</td>
<td>94.69</td>
<td>-1.65</td>
<td>-3.92</td>
<td>0.43</td>
<td>0.36</td>
<td>4.56</td>
</tr>
<tr>
<td>12</td>
<td>63.79</td>
<td>92.74</td>
<td>93.87</td>
<td>-1.27</td>
<td>-4.20</td>
<td>0.48</td>
<td>0.35</td>
<td>4.45</td>
</tr>
<tr>
<td>13</td>
<td>61.87</td>
<td>91.04</td>
<td>92.00</td>
<td>-0.86</td>
<td>-4.47</td>
<td>0.48</td>
<td>0.36</td>
<td>4.83</td>
</tr>
<tr>
<td>14</td>
<td>58.33</td>
<td>88.05</td>
<td>89.04</td>
<td>-1.22</td>
<td>-5.55</td>
<td>0.40</td>
<td>0.40</td>
<td>5.58</td>
</tr>
<tr>
<td>15</td>
<td>53.36</td>
<td>83.71</td>
<td>84.95</td>
<td>-1.90</td>
<td>-7.27</td>
<td>0.32</td>
<td>0.44</td>
<td>6.31</td>
</tr>
<tr>
<td>16</td>
<td>47.48</td>
<td>78.40</td>
<td>79.77</td>
<td>-2.04</td>
<td>-8.72</td>
<td>0.33</td>
<td>0.45</td>
<td>6.89</td>
</tr>
<tr>
<td>17</td>
<td>41.14</td>
<td>72.54</td>
<td>73.79</td>
<td>-1.87</td>
<td>-9.63</td>
<td>0.40</td>
<td>0.43</td>
<td>7.47</td>
</tr>
<tr>
<td>18</td>
<td>34.80</td>
<td>66.39</td>
<td>67.49</td>
<td>-2.34</td>
<td>-10.43</td>
<td>0.42</td>
<td>0.43</td>
<td>8.11</td>
</tr>
<tr>
<td>19</td>
<td>29.14</td>
<td>60.23</td>
<td>61.35</td>
<td>-3.34</td>
<td>-10.98</td>
<td>0.38</td>
<td>0.45</td>
<td>8.56</td>
</tr>
<tr>
<td>20</td>
<td>24.70</td>
<td>54.57</td>
<td>55.70</td>
<td>-3.73</td>
<td>-10.55</td>
<td>0.34</td>
<td>0.49</td>
<td>8.66</td>
</tr>
<tr>
<td>21</td>
<td>21.48</td>
<td>50.14</td>
<td>51.09</td>
<td>-3.05</td>
<td>-9.32</td>
<td>0.35</td>
<td>0.52</td>
<td>8.61</td>
</tr>
<tr>
<td>22</td>
<td>19.34</td>
<td>47.72</td>
<td>48.43</td>
<td>-2.17</td>
<td>-8.68</td>
<td>0.36</td>
<td>0.57</td>
<td>8.65</td>
</tr>
<tr>
<td>23</td>
<td>18.45</td>
<td>47.55</td>
<td>48.21</td>
<td>-1.81</td>
<td>-9.33</td>
<td>0.33</td>
<td>0.62</td>
<td>8.74</td>
</tr>
<tr>
<td>24</td>
<td>19.04</td>
<td>48.95</td>
<td>49.75</td>
<td>-1.63</td>
<td>-10.20</td>
<td>0.32</td>
<td>0.62</td>
<td>8.78</td>
</tr>
<tr>
<td>25</td>
<td>20.80</td>
<td>50.92</td>
<td>51.88</td>
<td>-1.31</td>
<td>-10.07</td>
<td>0.38</td>
<td>0.56</td>
<td>8.84</td>
</tr>
<tr>
<td>26</td>
<td>23.13</td>
<td>53.23</td>
<td>54.33</td>
<td>-1.44</td>
<td>-9.37</td>
<td>0.43</td>
<td>0.50</td>
<td>9.01</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{L}_t</td>
<td>\overline{H}_t</td>
<td>C_L</td>
<td>$C_{L,t-1}$</td>
<td>$C_{L,t}$</td>
<td>C_{LL}</td>
<td>C_{HL}</td>
<td>s_L</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>24.66</td>
<td>54.15</td>
<td>25.12</td>
<td>-2.02</td>
<td>-1.18</td>
<td>0.44</td>
<td>0.20</td>
<td>6.99</td>
</tr>
<tr>
<td>2</td>
<td>29.33</td>
<td>59.73</td>
<td>29.74</td>
<td>-1.64</td>
<td>-1.32</td>
<td>0.37</td>
<td>0.22</td>
<td>6.92</td>
</tr>
<tr>
<td>3</td>
<td>34.73</td>
<td>65.43</td>
<td>34.93</td>
<td>-0.83</td>
<td>-0.65</td>
<td>0.33</td>
<td>0.24</td>
<td>6.62</td>
</tr>
<tr>
<td>4</td>
<td>39.95</td>
<td>69.82</td>
<td>39.97</td>
<td>-0.22</td>
<td>0.11</td>
<td>0.37</td>
<td>0.23</td>
<td>6.27</td>
</tr>
<tr>
<td>5</td>
<td>44.59</td>
<td>73.18</td>
<td>44.65</td>
<td>-0.33</td>
<td>0.20</td>
<td>0.44</td>
<td>0.20</td>
<td>6.01</td>
</tr>
<tr>
<td>6</td>
<td>49.20</td>
<td>76.97</td>
<td>49.42</td>
<td>-0.70</td>
<td>-0.25</td>
<td>0.46</td>
<td>0.16</td>
<td>5.70</td>
</tr>
<tr>
<td>7</td>
<td>54.24</td>
<td>81.93</td>
<td>54.59</td>
<td>-0.66</td>
<td>-0.78</td>
<td>0.43</td>
<td>0.17</td>
<td>5.25</td>
</tr>
<tr>
<td>8</td>
<td>59.12</td>
<td>87.17</td>
<td>59.53</td>
<td>-0.31</td>
<td>-1.28</td>
<td>0.39</td>
<td>0.20</td>
<td>4.79</td>
</tr>
<tr>
<td>9</td>
<td>62.70</td>
<td>91.21</td>
<td>63.14</td>
<td>-0.21</td>
<td>-1.65</td>
<td>0.38</td>
<td>0.20</td>
<td>4.49</td>
</tr>
<tr>
<td>10</td>
<td>64.54</td>
<td>93.39</td>
<td>64.97</td>
<td>-0.42</td>
<td>-1.61</td>
<td>0.39</td>
<td>0.17</td>
<td>4.22</td>
</tr>
<tr>
<td>11</td>
<td>65.02</td>
<td>93.88</td>
<td>65.37</td>
<td>-0.49</td>
<td>-1.14</td>
<td>0.41</td>
<td>0.13</td>
<td>3.88</td>
</tr>
<tr>
<td>12</td>
<td>64.42</td>
<td>92.97</td>
<td>64.66</td>
<td>-0.28</td>
<td>-0.76</td>
<td>0.42</td>
<td>0.14</td>
<td>3.78</td>
</tr>
<tr>
<td>13</td>
<td>62.41</td>
<td>90.72</td>
<td>62.57</td>
<td>-0.09</td>
<td>-0.70</td>
<td>0.45</td>
<td>0.17</td>
<td>4.34</td>
</tr>
<tr>
<td>14</td>
<td>58.61</td>
<td>87.23</td>
<td>58.67</td>
<td>0.00</td>
<td>-0.36</td>
<td>0.47</td>
<td>0.19</td>
<td>5.42</td>
</tr>
<tr>
<td>15</td>
<td>53.20</td>
<td>82.68</td>
<td>53.08</td>
<td>0.26</td>
<td>0.71</td>
<td>0.48</td>
<td>0.19</td>
<td>6.33</td>
</tr>
<tr>
<td>16</td>
<td>46.78</td>
<td>77.26</td>
<td>46.50</td>
<td>0.54</td>
<td>1.84</td>
<td>0.46</td>
<td>0.19</td>
<td>6.60</td>
</tr>
<tr>
<td>17</td>
<td>39.95</td>
<td>71.14</td>
<td>39.68</td>
<td>0.31</td>
<td>2.00</td>
<td>0.43</td>
<td>0.20</td>
<td>6.43</td>
</tr>
<tr>
<td>18</td>
<td>33.29</td>
<td>64.60</td>
<td>33.19</td>
<td>-0.53</td>
<td>1.30</td>
<td>0.42</td>
<td>0.20</td>
<td>6.27</td>
</tr>
<tr>
<td>19</td>
<td>27.42</td>
<td>58.01</td>
<td>27.47</td>
<td>-1.35</td>
<td>0.78</td>
<td>0.42</td>
<td>0.19</td>
<td>6.29</td>
</tr>
<tr>
<td>20</td>
<td>22.74</td>
<td>51.89</td>
<td>22.84</td>
<td>-1.81</td>
<td>0.69</td>
<td>0.43</td>
<td>0.19</td>
<td>6.36</td>
</tr>
<tr>
<td>21</td>
<td>19.26</td>
<td>47.06</td>
<td>19.44</td>
<td>-2.32</td>
<td>0.20</td>
<td>0.45</td>
<td>0.21</td>
<td>6.46</td>
</tr>
<tr>
<td>22</td>
<td>16.97</td>
<td>44.43</td>
<td>17.32</td>
<td>-3.26</td>
<td>-1.06</td>
<td>0.48</td>
<td>0.22</td>
<td>6.66</td>
</tr>
<tr>
<td>23</td>
<td>16.07</td>
<td>44.22</td>
<td>16.55</td>
<td>-4.06</td>
<td>-2.07</td>
<td>0.49</td>
<td>0.22</td>
<td>6.87</td>
</tr>
<tr>
<td>24</td>
<td>16.68</td>
<td>45.59</td>
<td>17.13</td>
<td>-3.91</td>
<td>-1.85</td>
<td>0.50</td>
<td>0.20</td>
<td>6.93</td>
</tr>
<tr>
<td>25</td>
<td>18.49</td>
<td>47.54</td>
<td>18.84</td>
<td>-3.00</td>
<td>-0.97</td>
<td>0.51</td>
<td>0.19</td>
<td>6.88</td>
</tr>
<tr>
<td>26</td>
<td>21.12</td>
<td>50.10</td>
<td>21.50</td>
<td>-2.27</td>
<td>-0.72</td>
<td>0.50</td>
<td>0.19</td>
<td>6.90</td>
</tr>
</tbody>
</table>
Table 6b. Garden City Smoothed Parameter Estimates
for the Maximum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{LH}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.66</td>
<td>54.15</td>
<td>56.22</td>
<td>-2.83</td>
<td>-11.99</td>
<td>0.38</td>
<td>0.54</td>
<td>9.56</td>
</tr>
<tr>
<td>2</td>
<td>29.33</td>
<td>59.73</td>
<td>62.00</td>
<td>-3.36</td>
<td>-11.88</td>
<td>0.34</td>
<td>0.60</td>
<td>9.29</td>
</tr>
<tr>
<td>3</td>
<td>34.73</td>
<td>65.43</td>
<td>67.78</td>
<td>-3.81</td>
<td>-10.66</td>
<td>0.29</td>
<td>0.62</td>
<td>8.90</td>
</tr>
<tr>
<td>4</td>
<td>39.95</td>
<td>69.82</td>
<td>72.16</td>
<td>-3.44</td>
<td>-9.01</td>
<td>0.28</td>
<td>0.58</td>
<td>8.50</td>
</tr>
<tr>
<td>5</td>
<td>44.59</td>
<td>73.18</td>
<td>75.40</td>
<td>-2.49</td>
<td>-7.57</td>
<td>0.32</td>
<td>0.53</td>
<td>8.12</td>
</tr>
<tr>
<td>6</td>
<td>49.20</td>
<td>76.97</td>
<td>78.97</td>
<td>-1.88</td>
<td>-6.20</td>
<td>0.36</td>
<td>0.51</td>
<td>7.64</td>
</tr>
<tr>
<td>7</td>
<td>54.24</td>
<td>81.93</td>
<td>83.68</td>
<td>-2.02</td>
<td>-4.66</td>
<td>0.38</td>
<td>0.53</td>
<td>6.96</td>
</tr>
<tr>
<td>8</td>
<td>59.12</td>
<td>87.17</td>
<td>88.65</td>
<td>-2.41</td>
<td>-3.36</td>
<td>0.38</td>
<td>0.56</td>
<td>6.21</td>
</tr>
<tr>
<td>9</td>
<td>62.70</td>
<td>91.21</td>
<td>92.47</td>
<td>-2.46</td>
<td>-2.85</td>
<td>0.37</td>
<td>0.54</td>
<td>5.65</td>
</tr>
<tr>
<td>10</td>
<td>64.54</td>
<td>93.39</td>
<td>94.54</td>
<td>-2.27</td>
<td>-3.00</td>
<td>0.38</td>
<td>0.46</td>
<td>5.39</td>
</tr>
<tr>
<td>11</td>
<td>65.02</td>
<td>93.88</td>
<td>95.12</td>
<td>-2.34</td>
<td>-3.26</td>
<td>0.42</td>
<td>0.39</td>
<td>5.35</td>
</tr>
<tr>
<td>12</td>
<td>64.42</td>
<td>92.97</td>
<td>96.41</td>
<td>-2.81</td>
<td>-3.58</td>
<td>0.43</td>
<td>0.40</td>
<td>5.45</td>
</tr>
<tr>
<td>13</td>
<td>62.41</td>
<td>90.72</td>
<td>92.30</td>
<td>-3.23</td>
<td>-4.42</td>
<td>0.40</td>
<td>0.47</td>
<td>5.77</td>
</tr>
<tr>
<td>14</td>
<td>58.61</td>
<td>87.23</td>
<td>88.74</td>
<td>-3.14</td>
<td>-5.93</td>
<td>0.35</td>
<td>0.50</td>
<td>6.41</td>
</tr>
<tr>
<td>15</td>
<td>53.20</td>
<td>82.68</td>
<td>84.05</td>
<td>-2.74</td>
<td>-7.68</td>
<td>0.32</td>
<td>0.45</td>
<td>7.19</td>
</tr>
<tr>
<td>16</td>
<td>46.78</td>
<td>77.26</td>
<td>78.66</td>
<td>-2.69</td>
<td>-9.19</td>
<td>0.35</td>
<td>0.39</td>
<td>7.84</td>
</tr>
<tr>
<td>17</td>
<td>39.95</td>
<td>71.14</td>
<td>72.76</td>
<td>-3.40</td>
<td>-10.27</td>
<td>0.39</td>
<td>0.40</td>
<td>8.23</td>
</tr>
<tr>
<td>18</td>
<td>33.29</td>
<td>64.60</td>
<td>66.39</td>
<td>-4.44</td>
<td>-10.75</td>
<td>0.42</td>
<td>0.46</td>
<td>8.44</td>
</tr>
<tr>
<td>19</td>
<td>27.42</td>
<td>58.01</td>
<td>59.69</td>
<td>-4.91</td>
<td>-10.52</td>
<td>0.42</td>
<td>0.48</td>
<td>8.57</td>
</tr>
<tr>
<td>20</td>
<td>22.74</td>
<td>51.89</td>
<td>53.27</td>
<td>-4.37</td>
<td>-9.97</td>
<td>0.40</td>
<td>0.46</td>
<td>8.61</td>
</tr>
<tr>
<td>21</td>
<td>19.26</td>
<td>47.06</td>
<td>48.18</td>
<td>-3.38</td>
<td>-9.85</td>
<td>0.39</td>
<td>0.46</td>
<td>8.59</td>
</tr>
<tr>
<td>22</td>
<td>16.97</td>
<td>44.43</td>
<td>45.48</td>
<td>-2.95</td>
<td>-10.40</td>
<td>0.36</td>
<td>0.54</td>
<td>8.65</td>
</tr>
<tr>
<td>23</td>
<td>16.07</td>
<td>44.22</td>
<td>45.35</td>
<td>-3.34</td>
<td>-10.98</td>
<td>0.32</td>
<td>0.63</td>
<td>8.88</td>
</tr>
<tr>
<td>24</td>
<td>16.68</td>
<td>45.59</td>
<td>46.87</td>
<td>-3.81</td>
<td>-11.04</td>
<td>0.32</td>
<td>0.65</td>
<td>9.21</td>
</tr>
<tr>
<td>25</td>
<td>18.49</td>
<td>47.54</td>
<td>49.03</td>
<td>-3.62</td>
<td>-10.95</td>
<td>0.35</td>
<td>0.58</td>
<td>9.51</td>
</tr>
<tr>
<td>26</td>
<td>21.12</td>
<td>50.10</td>
<td>51.89</td>
<td>-3.00</td>
<td>-11.36</td>
<td>0.39</td>
<td>0.52</td>
<td>9.64</td>
</tr>
</tbody>
</table>
Table 7a. Hays Smoothed Parameter Estimates

for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>L_t</th>
<th>H_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>a_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.01</td>
<td>51.89</td>
<td>24.43</td>
<td>3.13</td>
<td>0.44</td>
<td>0.41</td>
<td>0.20</td>
<td>7.51</td>
</tr>
<tr>
<td>2</td>
<td>28.93</td>
<td>58.05</td>
<td>29.17</td>
<td>-2.08</td>
<td>0.43</td>
<td>0.35</td>
<td>0.22</td>
<td>7.59</td>
</tr>
<tr>
<td>3</td>
<td>34.45</td>
<td>63.83</td>
<td>34.48</td>
<td>-1.07</td>
<td>0.78</td>
<td>0.36</td>
<td>0.23</td>
<td>7.42</td>
</tr>
<tr>
<td>4</td>
<td>39.87</td>
<td>68.06</td>
<td>39.81</td>
<td>-0.94</td>
<td>1.24</td>
<td>0.40</td>
<td>0.22</td>
<td>7.14</td>
</tr>
<tr>
<td>5</td>
<td>44.72</td>
<td>71.30</td>
<td>44.75</td>
<td>-1.45</td>
<td>1.35</td>
<td>0.41</td>
<td>0.20</td>
<td>6.89</td>
</tr>
<tr>
<td>6</td>
<td>49.40</td>
<td>75.05</td>
<td>49.60</td>
<td>-1.66</td>
<td>0.93</td>
<td>0.41</td>
<td>0.18</td>
<td>6.51</td>
</tr>
<tr>
<td>7</td>
<td>54.43</td>
<td>80.03</td>
<td>54.82</td>
<td>-1.26</td>
<td>0.08</td>
<td>0.42</td>
<td>0.16</td>
<td>5.96</td>
</tr>
<tr>
<td>8</td>
<td>59.41</td>
<td>85.47</td>
<td>59.96</td>
<td>-0.78</td>
<td>-0.91</td>
<td>0.44</td>
<td>0.16</td>
<td>5.47</td>
</tr>
<tr>
<td>9</td>
<td>63.18</td>
<td>89.97</td>
<td>63.75</td>
<td>-0.63</td>
<td>-1.48</td>
<td>0.42</td>
<td>0.18</td>
<td>5.22</td>
</tr>
<tr>
<td>10</td>
<td>65.11</td>
<td>92.67</td>
<td>65.53</td>
<td>-0.65</td>
<td>-1.21</td>
<td>0.38</td>
<td>0.19</td>
<td>4.96</td>
</tr>
<tr>
<td>11</td>
<td>65.56</td>
<td>93.47</td>
<td>65.84</td>
<td>-0.72</td>
<td>-0.48</td>
<td>0.37</td>
<td>0.18</td>
<td>4.55</td>
</tr>
<tr>
<td>12</td>
<td>64.95</td>
<td>92.63</td>
<td>65.27</td>
<td>-1.00</td>
<td>-0.14</td>
<td>0.41</td>
<td>0.16</td>
<td>4.41</td>
</tr>
<tr>
<td>13</td>
<td>62.92</td>
<td>90.35</td>
<td>63.34</td>
<td>-1.37</td>
<td>-0.39</td>
<td>0.48</td>
<td>0.16</td>
<td>5.08</td>
</tr>
<tr>
<td>14</td>
<td>58.93</td>
<td>86.80</td>
<td>59.24</td>
<td>-1.30</td>
<td>-0.33</td>
<td>0.51</td>
<td>0.16</td>
<td>6.32</td>
</tr>
<tr>
<td>15</td>
<td>53.24</td>
<td>82.13</td>
<td>53.20</td>
<td>-0.64</td>
<td>0.73</td>
<td>0.47</td>
<td>0.17</td>
<td>7.22</td>
</tr>
<tr>
<td>16</td>
<td>46.81</td>
<td>76.57</td>
<td>46.48</td>
<td>-0.09</td>
<td>2.19</td>
<td>0.42</td>
<td>0.20</td>
<td>7.30</td>
</tr>
<tr>
<td>17</td>
<td>40.36</td>
<td>70.32</td>
<td>40.01</td>
<td>-0.35</td>
<td>2.91</td>
<td>0.38</td>
<td>0.23</td>
<td>6.97</td>
</tr>
<tr>
<td>18</td>
<td>34.02</td>
<td>63.55</td>
<td>33.81</td>
<td>-1.16</td>
<td>2.79</td>
<td>0.38</td>
<td>0.23</td>
<td>6.82</td>
</tr>
<tr>
<td>19</td>
<td>27.98</td>
<td>56.49</td>
<td>27.87</td>
<td>-1.87</td>
<td>2.67</td>
<td>0.40</td>
<td>0.20</td>
<td>6.89</td>
</tr>
<tr>
<td>20</td>
<td>22.77</td>
<td>49.81</td>
<td>22.71</td>
<td>-2.36</td>
<td>2.83</td>
<td>0.44</td>
<td>0.18</td>
<td>6.94</td>
</tr>
<tr>
<td>21</td>
<td>18.85</td>
<td>44.59</td>
<td>18.90</td>
<td>-2.98</td>
<td>2.52</td>
<td>0.46</td>
<td>0.20</td>
<td>7.00</td>
</tr>
<tr>
<td>22</td>
<td>16.29</td>
<td>41.74</td>
<td>16.51</td>
<td>-3.63</td>
<td>1.30</td>
<td>0.46</td>
<td>0.24</td>
<td>7.26</td>
</tr>
<tr>
<td>23</td>
<td>15.08</td>
<td>41.23</td>
<td>15.40</td>
<td>-3.83</td>
<td>-0.05</td>
<td>0.46</td>
<td>0.25</td>
<td>7.57</td>
</tr>
<tr>
<td>24</td>
<td>15.33</td>
<td>42.17</td>
<td>15.65</td>
<td>-3.58</td>
<td>-0.46</td>
<td>0.49</td>
<td>0.21</td>
<td>7.62</td>
</tr>
<tr>
<td>25</td>
<td>17.06</td>
<td>43.97</td>
<td>17.41</td>
<td>-3.41</td>
<td>-0.00</td>
<td>0.52</td>
<td>0.17</td>
<td>7.43</td>
</tr>
<tr>
<td>26</td>
<td>20.03</td>
<td>47.02</td>
<td>20.46</td>
<td>-3.47</td>
<td>0.44</td>
<td>0.49</td>
<td>0.17</td>
<td>7.36</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{L}_t</td>
<td>\bar{H}_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>s_H</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>24.01</td>
<td>51.89</td>
<td>53.93</td>
<td>-3.96</td>
<td>-9.83</td>
<td>0.40</td>
<td>0.58</td>
<td>9.68</td>
</tr>
<tr>
<td>2</td>
<td>28.93</td>
<td>58.05</td>
<td>60.25</td>
<td>-3.72</td>
<td>-9.90</td>
<td>0.35</td>
<td>0.61</td>
<td>9.55</td>
</tr>
<tr>
<td>3</td>
<td>34.45</td>
<td>63.83</td>
<td>66.22</td>
<td>-3.93</td>
<td>-8.91</td>
<td>0.30</td>
<td>0.61</td>
<td>9.00</td>
</tr>
<tr>
<td>4</td>
<td>39.87</td>
<td>68.06</td>
<td>70.50</td>
<td>-3.91</td>
<td>-7.17</td>
<td>0.31</td>
<td>0.56</td>
<td>8.19</td>
</tr>
<tr>
<td>5</td>
<td>44.72</td>
<td>71.30</td>
<td>73.62</td>
<td>-3.15</td>
<td>-5.66</td>
<td>0.36</td>
<td>0.51</td>
<td>7.47</td>
</tr>
<tr>
<td>6</td>
<td>49.40</td>
<td>75.05</td>
<td>77.30</td>
<td>-2.19</td>
<td>-4.97</td>
<td>0.40</td>
<td>0.50</td>
<td>6.98</td>
</tr>
<tr>
<td>7</td>
<td>54.43</td>
<td>80.03</td>
<td>82.26</td>
<td>-1.89</td>
<td>-4.67</td>
<td>0.40</td>
<td>0.52</td>
<td>6.54</td>
</tr>
<tr>
<td>8</td>
<td>59.41</td>
<td>85.47</td>
<td>87.49</td>
<td>-2.33</td>
<td>-4.08</td>
<td>0.41</td>
<td>0.52</td>
<td>6.08</td>
</tr>
<tr>
<td>9</td>
<td>63.18</td>
<td>89.97</td>
<td>91.55</td>
<td>-2.79</td>
<td>-3.15</td>
<td>0.43</td>
<td>0.49</td>
<td>5.71</td>
</tr>
<tr>
<td>10</td>
<td>65.11</td>
<td>92.67</td>
<td>93.95</td>
<td>-2.88</td>
<td>-2.54</td>
<td>0.45</td>
<td>0.47</td>
<td>5.53</td>
</tr>
<tr>
<td>11</td>
<td>65.56</td>
<td>93.47</td>
<td>94.87</td>
<td>-2.90</td>
<td>-2.67</td>
<td>0.46</td>
<td>0.46</td>
<td>5.50</td>
</tr>
<tr>
<td>12</td>
<td>64.95</td>
<td>92.63</td>
<td>94.34</td>
<td>-3.23</td>
<td>-3.31</td>
<td>0.46</td>
<td>0.48</td>
<td>5.56</td>
</tr>
<tr>
<td>13</td>
<td>62.92</td>
<td>90.35</td>
<td>92.17</td>
<td>-3.58</td>
<td>-4.07</td>
<td>0.42</td>
<td>0.50</td>
<td>5.89</td>
</tr>
<tr>
<td>14</td>
<td>58.93</td>
<td>86.80</td>
<td>88.49</td>
<td>-3.49</td>
<td>-4.97</td>
<td>0.36</td>
<td>0.51</td>
<td>6.61</td>
</tr>
<tr>
<td>15</td>
<td>53.24</td>
<td>82.13</td>
<td>83.79</td>
<td>-3.14</td>
<td>-6.28</td>
<td>0.32</td>
<td>0.50</td>
<td>7.47</td>
</tr>
<tr>
<td>16</td>
<td>46.81</td>
<td>76.57</td>
<td>78.38</td>
<td>-3.28</td>
<td>-7.83</td>
<td>0.33</td>
<td>0.48</td>
<td>8.10</td>
</tr>
<tr>
<td>17</td>
<td>40.36</td>
<td>70.32</td>
<td>72.20</td>
<td>-4.21</td>
<td>-8.92</td>
<td>0.38</td>
<td>0.47</td>
<td>8.38</td>
</tr>
<tr>
<td>18</td>
<td>34.02</td>
<td>63.55</td>
<td>65.29</td>
<td>-5.36</td>
<td>-9.01</td>
<td>0.41</td>
<td>0.49</td>
<td>8.49</td>
</tr>
<tr>
<td>19</td>
<td>27.98</td>
<td>56.49</td>
<td>58.05</td>
<td>-5.75</td>
<td>-8.43</td>
<td>0.40</td>
<td>0.50</td>
<td>8.57</td>
</tr>
<tr>
<td>20</td>
<td>22.77</td>
<td>49.81</td>
<td>51.26</td>
<td>-4.97</td>
<td>-8.10</td>
<td>0.38</td>
<td>0.50</td>
<td>8.62</td>
</tr>
<tr>
<td>21</td>
<td>18.85</td>
<td>44.59</td>
<td>45.88</td>
<td>-3.53</td>
<td>-8.56</td>
<td>0.38</td>
<td>0.51</td>
<td>8.67</td>
</tr>
<tr>
<td>22</td>
<td>16.29</td>
<td>41.74</td>
<td>42.78</td>
<td>-2.50</td>
<td>-9.49</td>
<td>0.38</td>
<td>0.56</td>
<td>8.82</td>
</tr>
<tr>
<td>23</td>
<td>15.08</td>
<td>41.23</td>
<td>42.15</td>
<td>-2.60</td>
<td>-10.04</td>
<td>0.34</td>
<td>0.64</td>
<td>9.09</td>
</tr>
<tr>
<td>24</td>
<td>15.33</td>
<td>42.17</td>
<td>43.33</td>
<td>-3.59</td>
<td>-9.84</td>
<td>0.32</td>
<td>0.68</td>
<td>9.34</td>
</tr>
<tr>
<td>25</td>
<td>17.06</td>
<td>43.97</td>
<td>45.56</td>
<td>-4.45</td>
<td>-9.39</td>
<td>0.34</td>
<td>0.65</td>
<td>9.48</td>
</tr>
<tr>
<td>26</td>
<td>20.03</td>
<td>47.02</td>
<td>48.91</td>
<td>-4.47</td>
<td>-9.39</td>
<td>0.40</td>
<td>0.59</td>
<td>9.59</td>
</tr>
</tbody>
</table>
Table 8a. Horton Smoothed Parameter Estimates for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.04</td>
<td>49.05</td>
<td>26.33</td>
<td>-2.88</td>
<td>1.45</td>
<td>0.31</td>
<td>0.34</td>
<td>7.62</td>
</tr>
<tr>
<td>2</td>
<td>31.60</td>
<td>55.88</td>
<td>31.63</td>
<td>-1.47</td>
<td>1.17</td>
<td>0.25</td>
<td>0.36</td>
<td>7.63</td>
</tr>
<tr>
<td>3</td>
<td>37.06</td>
<td>62.13</td>
<td>36.78</td>
<td>-0.51</td>
<td>1.57</td>
<td>0.23</td>
<td>0.39</td>
<td>7.50</td>
</tr>
<tr>
<td>4</td>
<td>42.04</td>
<td>66.98</td>
<td>41.76</td>
<td>-0.89</td>
<td>2.00</td>
<td>0.27</td>
<td>0.40</td>
<td>7.20</td>
</tr>
<tr>
<td>5</td>
<td>46.72</td>
<td>70.88</td>
<td>46.70</td>
<td>-1.67</td>
<td>1.74</td>
<td>0.33</td>
<td>0.37</td>
<td>6.79</td>
</tr>
<tr>
<td>6</td>
<td>51.52</td>
<td>74.78</td>
<td>51.67</td>
<td>-1.55</td>
<td>0.97</td>
<td>0.37</td>
<td>0.33</td>
<td>6.26</td>
</tr>
<tr>
<td>7</td>
<td>56.46</td>
<td>79.13</td>
<td>56.59</td>
<td>-0.69</td>
<td>0.29</td>
<td>0.40</td>
<td>0.30</td>
<td>5.62</td>
</tr>
<tr>
<td>8</td>
<td>60.92</td>
<td>83.55</td>
<td>61.03</td>
<td>-0.18</td>
<td>-0.11</td>
<td>0.42</td>
<td>0.29</td>
<td>5.02</td>
</tr>
<tr>
<td>9</td>
<td>64.08</td>
<td>87.18</td>
<td>64.26</td>
<td>-0.33</td>
<td>-0.31</td>
<td>0.43</td>
<td>0.28</td>
<td>4.62</td>
</tr>
<tr>
<td>10</td>
<td>65.69</td>
<td>89.44</td>
<td>65.90</td>
<td>-0.51</td>
<td>-0.26</td>
<td>0.44</td>
<td>0.26</td>
<td>4.38</td>
</tr>
<tr>
<td>11</td>
<td>66.10</td>
<td>90.18</td>
<td>66.18</td>
<td>-0.40</td>
<td>0.06</td>
<td>0.43</td>
<td>0.26</td>
<td>4.19</td>
</tr>
<tr>
<td>12</td>
<td>65.44</td>
<td>89.44</td>
<td>65.45</td>
<td>-0.39</td>
<td>0.31</td>
<td>0.43</td>
<td>0.29</td>
<td>4.23</td>
</tr>
<tr>
<td>13</td>
<td>63.36</td>
<td>87.23</td>
<td>63.44</td>
<td>-0.64</td>
<td>0.25</td>
<td>0.44</td>
<td>0.30</td>
<td>4.80</td>
</tr>
<tr>
<td>14</td>
<td>59.56</td>
<td>83.63</td>
<td>59.67</td>
<td>-0.83</td>
<td>0.37</td>
<td>0.47</td>
<td>0.28</td>
<td>5.78</td>
</tr>
<tr>
<td>15</td>
<td>54.46</td>
<td>79.05</td>
<td>54.40</td>
<td>-0.84</td>
<td>1.23</td>
<td>0.49</td>
<td>0.26</td>
<td>6.62</td>
</tr>
<tr>
<td>16</td>
<td>48.92</td>
<td>73.96</td>
<td>48.62</td>
<td>-1.05</td>
<td>2.50</td>
<td>0.46</td>
<td>0.28</td>
<td>6.94</td>
</tr>
<tr>
<td>17</td>
<td>43.32</td>
<td>68.36</td>
<td>42.97</td>
<td>-1.49</td>
<td>3.20</td>
<td>0.39</td>
<td>0.34</td>
<td>6.90</td>
</tr>
<tr>
<td>18</td>
<td>37.46</td>
<td>61.82</td>
<td>37.22</td>
<td>-1.73</td>
<td>3.13</td>
<td>0.34</td>
<td>0.35</td>
<td>6.87</td>
</tr>
<tr>
<td>19</td>
<td>31.31</td>
<td>54.28</td>
<td>31.12</td>
<td>-1.71</td>
<td>3.02</td>
<td>0.33</td>
<td>0.33</td>
<td>6.94</td>
</tr>
<tr>
<td>20</td>
<td>25.51</td>
<td>46.82</td>
<td>25.31</td>
<td>-2.08</td>
<td>3.27</td>
<td>0.36</td>
<td>0.31</td>
<td>6.98</td>
</tr>
<tr>
<td>21</td>
<td>20.88</td>
<td>41.06</td>
<td>20.83</td>
<td>-3.07</td>
<td>3.30</td>
<td>0.39</td>
<td>0.33</td>
<td>7.07</td>
</tr>
<tr>
<td>22</td>
<td>17.81</td>
<td>37.91</td>
<td>18.00</td>
<td>-3.84</td>
<td>2.57</td>
<td>0.38</td>
<td>0.37</td>
<td>7.37</td>
</tr>
<tr>
<td>23</td>
<td>16.23</td>
<td>37.00</td>
<td>16.52</td>
<td>-3.61</td>
<td>1.68</td>
<td>0.38</td>
<td>0.38</td>
<td>7.80</td>
</tr>
<tr>
<td>24</td>
<td>16.13</td>
<td>37.51</td>
<td>16.32</td>
<td>-2.98</td>
<td>1.54</td>
<td>0.38</td>
<td>0.36</td>
<td>8.02</td>
</tr>
<tr>
<td>25</td>
<td>17.74</td>
<td>39.38</td>
<td>17.88</td>
<td>-2.98</td>
<td>1.95</td>
<td>0.40</td>
<td>0.34</td>
<td>7.90</td>
</tr>
<tr>
<td>26</td>
<td>21.16</td>
<td>43.19</td>
<td>21.42</td>
<td>-3.35</td>
<td>1.98</td>
<td>0.37</td>
<td>0.33</td>
<td>7.69</td>
</tr>
</tbody>
</table>
Table 6b. Horton Smoothed Parameter Estimates for the Maximum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>(\bar{L}_t)</th>
<th>(\bar{H}_t)</th>
<th>(C_H)</th>
<th>(C_{H,t-1})</th>
<th>(C_{H,t})</th>
<th>(C_{HH})</th>
<th>(C_{LH})</th>
<th>(s_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.04</td>
<td>49.05</td>
<td>50.87</td>
<td>-2.11</td>
<td>-7.51</td>
<td>0.43</td>
<td>0.52</td>
<td>8.39</td>
</tr>
<tr>
<td>2</td>
<td>31.60</td>
<td>55.88</td>
<td>57.79</td>
<td>-2.01</td>
<td>-7.23</td>
<td>0.38</td>
<td>0.59</td>
<td>8.26</td>
</tr>
<tr>
<td>3</td>
<td>37.06</td>
<td>62.13</td>
<td>64.10</td>
<td>-1.83</td>
<td>-6.61</td>
<td>0.32</td>
<td>0.62</td>
<td>7.79</td>
</tr>
<tr>
<td>4</td>
<td>42.04</td>
<td>66.98</td>
<td>69.06</td>
<td>-1.81</td>
<td>-5.93</td>
<td>0.33</td>
<td>0.54</td>
<td>7.13</td>
</tr>
<tr>
<td>5</td>
<td>46.72</td>
<td>70.88</td>
<td>73.00</td>
<td>-1.87</td>
<td>-5.18</td>
<td>0.38</td>
<td>0.45</td>
<td>6.58</td>
</tr>
<tr>
<td>6</td>
<td>51.52</td>
<td>74.78</td>
<td>76.80</td>
<td>-1.78</td>
<td>-4.37</td>
<td>0.41</td>
<td>0.44</td>
<td>6.16</td>
</tr>
<tr>
<td>7</td>
<td>56.46</td>
<td>79.13</td>
<td>80.91</td>
<td>-1.48</td>
<td>-3.70</td>
<td>0.40</td>
<td>0.47</td>
<td>5.67</td>
</tr>
<tr>
<td>8</td>
<td>60.92</td>
<td>83.55</td>
<td>85.00</td>
<td>-1.12</td>
<td>-3.22</td>
<td>0.43</td>
<td>0.45</td>
<td>5.07</td>
</tr>
<tr>
<td>9</td>
<td>64.08</td>
<td>87.18</td>
<td>88.31</td>
<td>-0.84</td>
<td>-2.90</td>
<td>0.49</td>
<td>0.40</td>
<td>4.65</td>
</tr>
<tr>
<td>10</td>
<td>65.69</td>
<td>89.44</td>
<td>90.35</td>
<td>-0.67</td>
<td>-2.79</td>
<td>0.51</td>
<td>0.38</td>
<td>4.59</td>
</tr>
<tr>
<td>11</td>
<td>66.10</td>
<td>90.18</td>
<td>91.07</td>
<td>-0.70</td>
<td>-2.97</td>
<td>0.48</td>
<td>0.43</td>
<td>4.72</td>
</tr>
<tr>
<td>12</td>
<td>65.44</td>
<td>89.44</td>
<td>90.51</td>
<td>-1.00</td>
<td>-3.25</td>
<td>0.44</td>
<td>0.47</td>
<td>4.85</td>
</tr>
<tr>
<td>13</td>
<td>63.36</td>
<td>87.23</td>
<td>88.55</td>
<td>-1.45</td>
<td>-3.47</td>
<td>0.43</td>
<td>0.46</td>
<td>5.06</td>
</tr>
<tr>
<td>14</td>
<td>59.56</td>
<td>83.63</td>
<td>85.16</td>
<td>-1.79</td>
<td>-3.85</td>
<td>0.40</td>
<td>0.44</td>
<td>5.52</td>
</tr>
<tr>
<td>15</td>
<td>54.46</td>
<td>79.05</td>
<td>80.71</td>
<td>-1.98</td>
<td>-4.77</td>
<td>0.37</td>
<td>0.42</td>
<td>6.08</td>
</tr>
<tr>
<td>16</td>
<td>48.92</td>
<td>73.96</td>
<td>75.67</td>
<td>-2.24</td>
<td>-5.89</td>
<td>0.38</td>
<td>0.41</td>
<td>6.47</td>
</tr>
<tr>
<td>17</td>
<td>43.32</td>
<td>68.36</td>
<td>70.01</td>
<td>-2.71</td>
<td>-6.32</td>
<td>0.44</td>
<td>0.39</td>
<td>6.68</td>
</tr>
<tr>
<td>18</td>
<td>37.46</td>
<td>61.82</td>
<td>63.29</td>
<td>-3.19</td>
<td>-5.70</td>
<td>0.48</td>
<td>0.40</td>
<td>6.93</td>
</tr>
<tr>
<td>19</td>
<td>31.31</td>
<td>54.28</td>
<td>55.58</td>
<td>-3.35</td>
<td>-4.88</td>
<td>0.45</td>
<td>0.44</td>
<td>7.21</td>
</tr>
<tr>
<td>20</td>
<td>25.51</td>
<td>46.82</td>
<td>48.03</td>
<td>-3.12</td>
<td>-4.86</td>
<td>0.40</td>
<td>0.49</td>
<td>7.31</td>
</tr>
<tr>
<td>21</td>
<td>20.88</td>
<td>41.06</td>
<td>42.22</td>
<td>-2.68</td>
<td>-5.46</td>
<td>0.39</td>
<td>0.50</td>
<td>7.16</td>
</tr>
<tr>
<td>22</td>
<td>17.81</td>
<td>37.91</td>
<td>38.96</td>
<td>-2.20</td>
<td>-5.75</td>
<td>0.38</td>
<td>0.51</td>
<td>7.08</td>
</tr>
<tr>
<td>23</td>
<td>16.23</td>
<td>37.00</td>
<td>37.90</td>
<td>-1.75</td>
<td>-5.47</td>
<td>0.34</td>
<td>0.56</td>
<td>7.30</td>
</tr>
<tr>
<td>24</td>
<td>16.13</td>
<td>37.51</td>
<td>38.43</td>
<td>-1.49</td>
<td>-5.38</td>
<td>0.29</td>
<td>0.61</td>
<td>7.71</td>
</tr>
<tr>
<td>25</td>
<td>17.74</td>
<td>39.38</td>
<td>40.58</td>
<td>-1.59</td>
<td>-6.07</td>
<td>0.31</td>
<td>0.58</td>
<td>8.06</td>
</tr>
<tr>
<td>26</td>
<td>21.16</td>
<td>43.19</td>
<td>44.77</td>
<td>-1.91</td>
<td>-7.06</td>
<td>0.39</td>
<td>0.52</td>
<td>8.28</td>
</tr>
</tbody>
</table>
Table 9a. McPherson Smoothed Parameter Estimates

for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.48</td>
<td>52.96</td>
<td>28.95</td>
<td>-2.68</td>
<td>0.19</td>
<td>0.29</td>
<td>0.32</td>
<td>7.58</td>
</tr>
<tr>
<td>2</td>
<td>33.66</td>
<td>59.32</td>
<td>34.02</td>
<td>-1.90</td>
<td>-0.01</td>
<td>0.28</td>
<td>0.33</td>
<td>7.43</td>
</tr>
<tr>
<td>3</td>
<td>39.17</td>
<td>65.10</td>
<td>39.31</td>
<td>-1.19</td>
<td>0.39</td>
<td>0.31</td>
<td>0.32</td>
<td>7.19</td>
</tr>
<tr>
<td>4</td>
<td>44.08</td>
<td>69.23</td>
<td>44.17</td>
<td>-1.01</td>
<td>0.66</td>
<td>0.35</td>
<td>0.31</td>
<td>6.78</td>
</tr>
<tr>
<td>5</td>
<td>48.33</td>
<td>72.44</td>
<td>48.60</td>
<td>-1.21</td>
<td>0.28</td>
<td>0.38</td>
<td>0.27</td>
<td>6.31</td>
</tr>
<tr>
<td>6</td>
<td>52.71</td>
<td>76.32</td>
<td>53.24</td>
<td>-1.34</td>
<td>-0.36</td>
<td>0.41</td>
<td>0.22</td>
<td>5.83</td>
</tr>
<tr>
<td>7</td>
<td>57.71</td>
<td>81.42</td>
<td>58.40</td>
<td>-1.17</td>
<td>-0.92</td>
<td>0.43</td>
<td>0.21</td>
<td>5.31</td>
</tr>
<tr>
<td>8</td>
<td>62.55</td>
<td>86.69</td>
<td>63.31</td>
<td>-0.80</td>
<td>-1.57</td>
<td>0.44</td>
<td>0.21</td>
<td>4.84</td>
</tr>
<tr>
<td>9</td>
<td>66.04</td>
<td>90.78</td>
<td>66.76</td>
<td>-0.44</td>
<td>-2.20</td>
<td>0.43</td>
<td>0.22</td>
<td>4.52</td>
</tr>
<tr>
<td>10</td>
<td>67.83</td>
<td>93.25</td>
<td>68.40</td>
<td>-0.28</td>
<td>-2.18</td>
<td>0.42</td>
<td>0.21</td>
<td>4.30</td>
</tr>
<tr>
<td>11</td>
<td>68.43</td>
<td>94.31</td>
<td>68.87</td>
<td>-0.41</td>
<td>-1.53</td>
<td>0.43</td>
<td>0.20</td>
<td>4.09</td>
</tr>
<tr>
<td>12</td>
<td>68.05</td>
<td>93.85</td>
<td>68.51</td>
<td>-0.59</td>
<td>-1.32</td>
<td>0.47</td>
<td>0.19</td>
<td>4.04</td>
</tr>
<tr>
<td>13</td>
<td>66.15</td>
<td>91.59</td>
<td>66.70</td>
<td>-0.51</td>
<td>-1.89</td>
<td>0.51</td>
<td>0.18</td>
<td>4.51</td>
</tr>
<tr>
<td>14</td>
<td>62.35</td>
<td>87.60</td>
<td>62.86</td>
<td>-0.25</td>
<td>-2.02</td>
<td>0.53</td>
<td>0.16</td>
<td>5.47</td>
</tr>
<tr>
<td>15</td>
<td>57.19</td>
<td>82.53</td>
<td>57.42</td>
<td>-0.31</td>
<td>-0.63</td>
<td>0.51</td>
<td>0.18</td>
<td>6.41</td>
</tr>
<tr>
<td>16</td>
<td>51.57</td>
<td>76.88</td>
<td>51.51</td>
<td>-0.82</td>
<td>1.27</td>
<td>0.46</td>
<td>0.24</td>
<td>6.84</td>
</tr>
<tr>
<td>17</td>
<td>45.80</td>
<td>70.68</td>
<td>45.67</td>
<td>-1.26</td>
<td>1.92</td>
<td>0.39</td>
<td>0.32</td>
<td>6.85</td>
</tr>
<tr>
<td>18</td>
<td>39.74</td>
<td>63.80</td>
<td>39.66</td>
<td>-1.23</td>
<td>1.48</td>
<td>0.34</td>
<td>0.34</td>
<td>6.85</td>
</tr>
<tr>
<td>19</td>
<td>33.55</td>
<td>56.46</td>
<td>33.48</td>
<td>-1.15</td>
<td>1.59</td>
<td>0.34</td>
<td>0.31</td>
<td>7.07</td>
</tr>
<tr>
<td>20</td>
<td>27.96</td>
<td>49.45</td>
<td>27.86</td>
<td>-1.81</td>
<td>2.54</td>
<td>0.37</td>
<td>0.28</td>
<td>7.36</td>
</tr>
<tr>
<td>21</td>
<td>23.63</td>
<td>43.90</td>
<td>23.70</td>
<td>-3.10</td>
<td>2.65</td>
<td>0.41</td>
<td>0.28</td>
<td>7.66</td>
</tr>
<tr>
<td>22</td>
<td>20.85</td>
<td>40.72</td>
<td>21.26</td>
<td>-3.99</td>
<td>1.00</td>
<td>0.42</td>
<td>0.29</td>
<td>8.05</td>
</tr>
<tr>
<td>23</td>
<td>19.62</td>
<td>40.08</td>
<td>20.26</td>
<td>-3.87</td>
<td>-0.88</td>
<td>0.43</td>
<td>0.29</td>
<td>8.45</td>
</tr>
<tr>
<td>24</td>
<td>19.89</td>
<td>41.33</td>
<td>20.47</td>
<td>-3.25</td>
<td>-1.12</td>
<td>0.42</td>
<td>0.27</td>
<td>8.58</td>
</tr>
<tr>
<td>25</td>
<td>21.50</td>
<td>43.82</td>
<td>21.95</td>
<td>-2.96</td>
<td>-0.09</td>
<td>0.39</td>
<td>0.28</td>
<td>8.30</td>
</tr>
<tr>
<td>26</td>
<td>24.36</td>
<td>47.59</td>
<td>24.80</td>
<td>-2.98</td>
<td>0.50</td>
<td>0.34</td>
<td>0.30</td>
<td>7.87</td>
</tr>
<tr>
<td>PERIOD</td>
<td>L_t</td>
<td>H_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>s_H</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>28.48</td>
<td>52.96</td>
<td>54.97</td>
<td>-2.90</td>
<td>-8.08</td>
<td>0.41</td>
<td>0.54</td>
<td>8.27</td>
</tr>
<tr>
<td>2</td>
<td>33.66</td>
<td>59.32</td>
<td>61.37</td>
<td>-2.74</td>
<td>-7.81</td>
<td>0.33</td>
<td>0.60</td>
<td>8.41</td>
</tr>
<tr>
<td>3</td>
<td>39.17</td>
<td>65.10</td>
<td>67.07</td>
<td>-2.11</td>
<td>-7.01</td>
<td>0.28</td>
<td>0.61</td>
<td>8.04</td>
</tr>
<tr>
<td>4</td>
<td>44.08</td>
<td>69.23</td>
<td>71.17</td>
<td>-1.63</td>
<td>-5.92</td>
<td>0.31</td>
<td>0.54</td>
<td>7.31</td>
</tr>
<tr>
<td>5</td>
<td>48.33</td>
<td>72.44</td>
<td>74.38</td>
<td>-1.63</td>
<td>-4.90</td>
<td>0.37</td>
<td>0.47</td>
<td>6.61</td>
</tr>
<tr>
<td>6</td>
<td>52.71</td>
<td>76.32</td>
<td>78.17</td>
<td>-1.76</td>
<td>-4.04</td>
<td>0.39</td>
<td>0.47</td>
<td>6.03</td>
</tr>
<tr>
<td>7</td>
<td>57.71</td>
<td>81.42</td>
<td>83.02</td>
<td>-1.65</td>
<td>-3.20</td>
<td>0.41</td>
<td>0.49</td>
<td>5.41</td>
</tr>
<tr>
<td>8</td>
<td>62.55</td>
<td>86.69</td>
<td>87.95</td>
<td>-1.44</td>
<td>-2.43</td>
<td>0.46</td>
<td>0.47</td>
<td>4.79</td>
</tr>
<tr>
<td>9</td>
<td>66.04</td>
<td>90.78</td>
<td>91.77</td>
<td>-1.45</td>
<td>-2.06</td>
<td>0.51</td>
<td>0.43</td>
<td>4.45</td>
</tr>
<tr>
<td>10</td>
<td>67.83</td>
<td>93.25</td>
<td>94.13</td>
<td>-1.53</td>
<td>-2.26</td>
<td>0.50</td>
<td>0.43</td>
<td>4.40</td>
</tr>
<tr>
<td>11</td>
<td>68.43</td>
<td>94.31</td>
<td>95.22</td>
<td>-1.38</td>
<td>-2.84</td>
<td>0.48</td>
<td>0.47</td>
<td>4.41</td>
</tr>
<tr>
<td>12</td>
<td>68.05</td>
<td>93.85</td>
<td>94.93</td>
<td>-1.22</td>
<td>-3.42</td>
<td>0.48</td>
<td>0.48</td>
<td>4.45</td>
</tr>
<tr>
<td>13</td>
<td>66.15</td>
<td>91.59</td>
<td>92.89</td>
<td>-1.47</td>
<td>-3.89</td>
<td>0.47</td>
<td>0.47</td>
<td>4.80</td>
</tr>
<tr>
<td>14</td>
<td>62.35</td>
<td>87.60</td>
<td>89.14</td>
<td>-2.05</td>
<td>-4.43</td>
<td>0.41</td>
<td>0.47</td>
<td>5.51</td>
</tr>
<tr>
<td>15</td>
<td>57.19</td>
<td>82.53</td>
<td>84.20</td>
<td>-2.36</td>
<td>-5.22</td>
<td>0.36</td>
<td>0.47</td>
<td>6.23</td>
</tr>
<tr>
<td>16</td>
<td>51.57</td>
<td>76.88</td>
<td>78.56</td>
<td>-2.21</td>
<td>-6.14</td>
<td>0.38</td>
<td>0.43</td>
<td>6.67</td>
</tr>
<tr>
<td>17</td>
<td>45.80</td>
<td>70.68</td>
<td>72.29</td>
<td>-2.11</td>
<td>-6.82</td>
<td>0.46</td>
<td>0.39</td>
<td>6.99</td>
</tr>
<tr>
<td>18</td>
<td>39.74</td>
<td>63.80</td>
<td>65.27</td>
<td>-2.49</td>
<td>-6.92</td>
<td>0.47</td>
<td>0.40</td>
<td>7.36</td>
</tr>
<tr>
<td>19</td>
<td>33.55</td>
<td>56.46</td>
<td>57.77</td>
<td>-3.00</td>
<td>-6.44</td>
<td>0.42</td>
<td>0.47</td>
<td>7.57</td>
</tr>
<tr>
<td>20</td>
<td>27.96</td>
<td>49.45</td>
<td>50.62</td>
<td>-3.09</td>
<td>-5.83</td>
<td>0.38</td>
<td>0.51</td>
<td>7.35</td>
</tr>
<tr>
<td>21</td>
<td>23.63</td>
<td>43.90</td>
<td>45.00</td>
<td>-2.73</td>
<td>-5.68</td>
<td>0.40</td>
<td>0.52</td>
<td>6.98</td>
</tr>
<tr>
<td>22</td>
<td>20.85</td>
<td>40.72</td>
<td>41.83</td>
<td>-2.29</td>
<td>-6.17</td>
<td>0.40</td>
<td>0.54</td>
<td>6.99</td>
</tr>
<tr>
<td>23</td>
<td>19.62</td>
<td>40.08</td>
<td>41.25</td>
<td>-2.03</td>
<td>-6.94</td>
<td>0.33</td>
<td>0.62</td>
<td>7.43</td>
</tr>
<tr>
<td>24</td>
<td>19.89</td>
<td>41.33</td>
<td>42.63</td>
<td>-1.93</td>
<td>-7.51</td>
<td>0.28</td>
<td>0.68</td>
<td>7.82</td>
</tr>
<tr>
<td>25</td>
<td>21.50</td>
<td>43.82</td>
<td>45.35</td>
<td>-2.07</td>
<td>-7.80</td>
<td>0.32</td>
<td>0.63</td>
<td>7.91</td>
</tr>
<tr>
<td>26</td>
<td>24.36</td>
<td>47.59</td>
<td>49.40</td>
<td>-2.52</td>
<td>-7.98</td>
<td>0.41</td>
<td>0.55</td>
<td>7.99</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{L}_t</td>
<td>\bar{H}_t</td>
<td>C_L</td>
<td>$C_{L,t-1}$</td>
<td>$C_{L,t}$</td>
<td>C_{LL}</td>
<td>C_{HL}</td>
<td>S_L</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>31.19</td>
<td>56.24</td>
<td>31.22</td>
<td>-1.57</td>
<td>1.33</td>
<td>0.25</td>
<td>0.37</td>
<td>7.88</td>
</tr>
<tr>
<td>2</td>
<td>36.55</td>
<td>62.26</td>
<td>36.65</td>
<td>-1.38</td>
<td>0.75</td>
<td>0.27</td>
<td>0.38</td>
<td>7.83</td>
</tr>
<tr>
<td>3</td>
<td>42.09</td>
<td>67.78</td>
<td>42.11</td>
<td>-0.92</td>
<td>0.81</td>
<td>0.31</td>
<td>0.38</td>
<td>7.56</td>
</tr>
<tr>
<td>4</td>
<td>46.79</td>
<td>71.67</td>
<td>46.66</td>
<td>-0.57</td>
<td>1.17</td>
<td>0.32</td>
<td>0.39</td>
<td>7.05</td>
</tr>
<tr>
<td>5</td>
<td>50.79</td>
<td>74.57</td>
<td>50.61</td>
<td>-0.67</td>
<td>1.34</td>
<td>0.34</td>
<td>0.37</td>
<td>6.47</td>
</tr>
<tr>
<td>6</td>
<td>55.07</td>
<td>78.01</td>
<td>54.98</td>
<td>-0.80</td>
<td>1.06</td>
<td>0.39</td>
<td>0.32</td>
<td>5.90</td>
</tr>
<tr>
<td>7</td>
<td>59.91</td>
<td>82.55</td>
<td>60.00</td>
<td>-0.53</td>
<td>0.24</td>
<td>0.44</td>
<td>0.27</td>
<td>5.30</td>
</tr>
<tr>
<td>8</td>
<td>64.33</td>
<td>87.19</td>
<td>64.59</td>
<td>-0.09</td>
<td>-0.79</td>
<td>0.45</td>
<td>0.26</td>
<td>4.63</td>
</tr>
<tr>
<td>9</td>
<td>67.27</td>
<td>90.72</td>
<td>67.60</td>
<td>0.02</td>
<td>-1.35</td>
<td>0.43</td>
<td>0.26</td>
<td>4.17</td>
</tr>
<tr>
<td>10</td>
<td>68.73</td>
<td>92.87</td>
<td>68.97</td>
<td>-0.10</td>
<td>-1.07</td>
<td>0.43</td>
<td>0.25</td>
<td>3.86</td>
</tr>
<tr>
<td>11</td>
<td>69.29</td>
<td>93.88</td>
<td>69.41</td>
<td>-0.11</td>
<td>-0.52</td>
<td>0.45</td>
<td>0.24</td>
<td>3.75</td>
</tr>
<tr>
<td>12</td>
<td>68.98</td>
<td>93.64</td>
<td>69.10</td>
<td>-0.14</td>
<td>-0.45</td>
<td>0.48</td>
<td>0.24</td>
<td>3.93</td>
</tr>
<tr>
<td>13</td>
<td>67.20</td>
<td>91.74</td>
<td>67.43</td>
<td>-0.52</td>
<td>-0.63</td>
<td>0.49</td>
<td>0.24</td>
<td>4.53</td>
</tr>
<tr>
<td>14</td>
<td>63.67</td>
<td>88.13</td>
<td>63.90</td>
<td>-0.99</td>
<td>-0.21</td>
<td>0.51</td>
<td>0.23</td>
<td>5.43</td>
</tr>
<tr>
<td>15</td>
<td>58.84</td>
<td>83.37</td>
<td>58.87</td>
<td>-0.94</td>
<td>0.86</td>
<td>0.53</td>
<td>0.21</td>
<td>6.28</td>
</tr>
<tr>
<td>16</td>
<td>53.34</td>
<td>78.04</td>
<td>53.14</td>
<td>-0.53</td>
<td>1.72</td>
<td>0.51</td>
<td>0.24</td>
<td>6.81</td>
</tr>
<tr>
<td>17</td>
<td>47.48</td>
<td>72.28</td>
<td>47.21</td>
<td>-0.53</td>
<td>2.07</td>
<td>0.44</td>
<td>0.30</td>
<td>7.09</td>
</tr>
<tr>
<td>18</td>
<td>41.41</td>
<td>65.98</td>
<td>41.16</td>
<td>-1.06</td>
<td>2.74</td>
<td>0.38</td>
<td>0.34</td>
<td>7.27</td>
</tr>
<tr>
<td>19</td>
<td>35.50</td>
<td>59.26</td>
<td>35.16</td>
<td>-1.33</td>
<td>4.18</td>
<td>0.35</td>
<td>0.32</td>
<td>7.34</td>
</tr>
<tr>
<td>20</td>
<td>30.24</td>
<td>52.69</td>
<td>29.75</td>
<td>-0.92</td>
<td>5.22</td>
<td>0.36</td>
<td>0.30</td>
<td>7.25</td>
</tr>
<tr>
<td>21</td>
<td>26.08</td>
<td>47.36</td>
<td>25.63</td>
<td>-0.62</td>
<td>4.49</td>
<td>0.37</td>
<td>0.31</td>
<td>7.19</td>
</tr>
<tr>
<td>22</td>
<td>23.40</td>
<td>44.32</td>
<td>23.26</td>
<td>-1.28</td>
<td>2.46</td>
<td>0.38</td>
<td>0.32</td>
<td>7.44</td>
</tr>
<tr>
<td>23</td>
<td>22.37</td>
<td>43.87</td>
<td>22.52</td>
<td>-2.41</td>
<td>1.07</td>
<td>0.42</td>
<td>0.31</td>
<td>7.92</td>
</tr>
<tr>
<td>24</td>
<td>22.81</td>
<td>45.29</td>
<td>22.99</td>
<td>-2.84</td>
<td>1.27</td>
<td>0.43</td>
<td>0.28</td>
<td>8.23</td>
</tr>
<tr>
<td>25</td>
<td>24.38</td>
<td>47.75</td>
<td>24.40</td>
<td>-2.35</td>
<td>2.06</td>
<td>0.38</td>
<td>0.29</td>
<td>8.17</td>
</tr>
<tr>
<td>26</td>
<td>27.07</td>
<td>51.25</td>
<td>27.02</td>
<td>-1.76</td>
<td>2.08</td>
<td>0.29</td>
<td>0.33</td>
<td>7.97</td>
</tr>
<tr>
<td>PERIOD</td>
<td>\bar{L}_t</td>
<td>\bar{H}_t</td>
<td>C_H</td>
<td>$C_{H,t-1}$</td>
<td>$C_{H,t}$</td>
<td>C_{HH}</td>
<td>C_{LH}</td>
<td>S_H</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>31.19</td>
<td>56.24</td>
<td>57.74</td>
<td>-3.37</td>
<td>-6.20</td>
<td>0.41</td>
<td>0.54</td>
<td>8.19</td>
</tr>
<tr>
<td>2</td>
<td>36.55</td>
<td>62.26</td>
<td>63.85</td>
<td>-3.45</td>
<td>-5.87</td>
<td>0.36</td>
<td>0.52</td>
<td>8.06</td>
</tr>
<tr>
<td>3</td>
<td>42.09</td>
<td>67.78</td>
<td>69.29</td>
<td>-2.46</td>
<td>-5.65</td>
<td>0.35</td>
<td>0.48</td>
<td>7.50</td>
</tr>
<tr>
<td>4</td>
<td>46.79</td>
<td>71.67</td>
<td>73.15</td>
<td>-1.40</td>
<td>-5.38</td>
<td>0.36</td>
<td>0.43</td>
<td>6.75</td>
</tr>
<tr>
<td>5</td>
<td>50.79</td>
<td>74.57</td>
<td>76.10</td>
<td>-1.27</td>
<td>-4.78</td>
<td>0.37</td>
<td>0.41</td>
<td>6.18</td>
</tr>
<tr>
<td>6</td>
<td>55.07</td>
<td>78.01</td>
<td>79.57</td>
<td>-1.63</td>
<td>-3.96</td>
<td>0.38</td>
<td>0.40</td>
<td>5.78</td>
</tr>
<tr>
<td>7</td>
<td>59.91</td>
<td>82.55</td>
<td>83.97</td>
<td>-1.51</td>
<td>-3.37</td>
<td>0.42</td>
<td>0.39</td>
<td>5.27</td>
</tr>
<tr>
<td>8</td>
<td>64.33</td>
<td>87.19</td>
<td>88.38</td>
<td>-0.92</td>
<td>-3.21</td>
<td>0.49</td>
<td>0.36</td>
<td>4.63</td>
</tr>
<tr>
<td>9</td>
<td>67.27</td>
<td>90.72</td>
<td>91.70</td>
<td>-0.61</td>
<td>-3.24</td>
<td>0.54</td>
<td>0.34</td>
<td>4.14</td>
</tr>
<tr>
<td>10</td>
<td>68.73</td>
<td>92.87</td>
<td>93.72</td>
<td>-0.76</td>
<td>-3.28</td>
<td>0.55</td>
<td>0.34</td>
<td>4.05</td>
</tr>
<tr>
<td>11</td>
<td>69.29</td>
<td>93.88</td>
<td>94.69</td>
<td>-0.92</td>
<td>-3.35</td>
<td>0.54</td>
<td>0.34</td>
<td>4.23</td>
</tr>
<tr>
<td>12</td>
<td>68.98</td>
<td>93.64</td>
<td>94.52</td>
<td>-1.01</td>
<td>-3.50</td>
<td>0.54</td>
<td>0.34</td>
<td>4.45</td>
</tr>
<tr>
<td>13</td>
<td>67.20</td>
<td>91.74</td>
<td>92.78</td>
<td>-1.36</td>
<td>-3.69</td>
<td>0.53</td>
<td>0.35</td>
<td>4.70</td>
</tr>
<tr>
<td>14</td>
<td>63.67</td>
<td>88.13</td>
<td>89.34</td>
<td>-1.89</td>
<td>-4.01</td>
<td>0.50</td>
<td>0.36</td>
<td>5.07</td>
</tr>
<tr>
<td>15</td>
<td>58.84</td>
<td>83.37</td>
<td>84.70</td>
<td>-2.08</td>
<td>-4.71</td>
<td>0.47</td>
<td>0.34</td>
<td>5.53</td>
</tr>
<tr>
<td>16</td>
<td>53.34</td>
<td>78.04</td>
<td>79.41</td>
<td>-1.96</td>
<td>-5.63</td>
<td>0.48</td>
<td>0.32</td>
<td>5.98</td>
</tr>
<tr>
<td>17</td>
<td>47.48</td>
<td>72.28</td>
<td>73.63</td>
<td>-2.11</td>
<td>-6.13</td>
<td>0.50</td>
<td>0.33</td>
<td>6.43</td>
</tr>
<tr>
<td>18</td>
<td>41.41</td>
<td>65.98</td>
<td>67.22</td>
<td>-2.58</td>
<td>-5.84</td>
<td>0.49</td>
<td>0.36</td>
<td>6.86</td>
</tr>
<tr>
<td>19</td>
<td>35.50</td>
<td>59.26</td>
<td>60.26</td>
<td>-2.64</td>
<td>-5.26</td>
<td>0.46</td>
<td>0.40</td>
<td>7.14</td>
</tr>
<tr>
<td>20</td>
<td>30.24</td>
<td>52.69</td>
<td>53.50</td>
<td>-2.09</td>
<td>-5.15</td>
<td>0.45</td>
<td>0.42</td>
<td>7.14</td>
</tr>
<tr>
<td>21</td>
<td>26.08</td>
<td>47.36</td>
<td>48.21</td>
<td>-1.86</td>
<td>-5.59</td>
<td>0.44</td>
<td>0.47</td>
<td>7.02</td>
</tr>
<tr>
<td>22</td>
<td>23.40</td>
<td>44.32</td>
<td>45.37</td>
<td>-2.60</td>
<td>-6.03</td>
<td>0.40</td>
<td>0.53</td>
<td>7.06</td>
</tr>
<tr>
<td>23</td>
<td>22.37</td>
<td>43.87</td>
<td>45.03</td>
<td>-3.52</td>
<td>-6.12</td>
<td>0.35</td>
<td>0.59</td>
<td>7.36</td>
</tr>
<tr>
<td>24</td>
<td>22.81</td>
<td>45.29</td>
<td>46.40</td>
<td>-3.49</td>
<td>-6.13</td>
<td>0.35</td>
<td>0.59</td>
<td>7.68</td>
</tr>
<tr>
<td>25</td>
<td>24.38</td>
<td>47.75</td>
<td>48.84</td>
<td>-2.84</td>
<td>-6.29</td>
<td>0.40</td>
<td>0.56</td>
<td>7.89</td>
</tr>
<tr>
<td>26</td>
<td>27.07</td>
<td>51.25</td>
<td>52.51</td>
<td>-2.77</td>
<td>-6.39</td>
<td>0.43</td>
<td>0.54</td>
<td>8.06</td>
</tr>
</tbody>
</table>
Table 11a. Kansas Smoothed Parameter Estimates
for the Minimum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.78</td>
<td>52.90</td>
<td>27.07</td>
<td>-2.14</td>
<td>0.40</td>
<td>0.32</td>
<td>0.31</td>
<td>7.42</td>
</tr>
<tr>
<td>2</td>
<td>31.51</td>
<td>58.63</td>
<td>31.69</td>
<td>-1.57</td>
<td>0.29</td>
<td>0.28</td>
<td>0.33</td>
<td>7.38</td>
</tr>
<tr>
<td>3</td>
<td>36.69</td>
<td>64.26</td>
<td>36.67</td>
<td>-0.83</td>
<td>0.64</td>
<td>0.28</td>
<td>0.34</td>
<td>7.16</td>
</tr>
<tr>
<td>4</td>
<td>41.57</td>
<td>68.68</td>
<td>41.42</td>
<td>-0.49</td>
<td>1.07</td>
<td>0.31</td>
<td>0.34</td>
<td>6.78</td>
</tr>
<tr>
<td>5</td>
<td>45.92</td>
<td>72.01</td>
<td>45.80</td>
<td>-0.68</td>
<td>1.14</td>
<td>0.34</td>
<td>0.33</td>
<td>6.38</td>
</tr>
<tr>
<td>6</td>
<td>50.18</td>
<td>75.41</td>
<td>50.19</td>
<td>-0.90</td>
<td>0.78</td>
<td>0.37</td>
<td>0.29</td>
<td>5.99</td>
</tr>
<tr>
<td>7</td>
<td>54.80</td>
<td>79.72</td>
<td>54.96</td>
<td>-0.73</td>
<td>0.15</td>
<td>0.40</td>
<td>0.26</td>
<td>5.53</td>
</tr>
<tr>
<td>8</td>
<td>59.44</td>
<td>84.54</td>
<td>59.72</td>
<td>-0.36</td>
<td>-0.57</td>
<td>0.42</td>
<td>0.24</td>
<td>5.03</td>
</tr>
<tr>
<td>9</td>
<td>63.16</td>
<td>88.75</td>
<td>63.51</td>
<td>-0.18</td>
<td>-1.13</td>
<td>0.42</td>
<td>0.24</td>
<td>4.65</td>
</tr>
<tr>
<td>10</td>
<td>65.36</td>
<td>91.55</td>
<td>65.68</td>
<td>-0.23</td>
<td>-1.15</td>
<td>0.41</td>
<td>0.23</td>
<td>4.40</td>
</tr>
<tr>
<td>11</td>
<td>66.22</td>
<td>92.84</td>
<td>66.43</td>
<td>-0.26</td>
<td>-0.71</td>
<td>0.41</td>
<td>0.22</td>
<td>4.17</td>
</tr>
<tr>
<td>12</td>
<td>66.12</td>
<td>92.80</td>
<td>66.26</td>
<td>-0.23</td>
<td>-0.36</td>
<td>0.43</td>
<td>0.21</td>
<td>4.01</td>
</tr>
<tr>
<td>13</td>
<td>64.93</td>
<td>91.45</td>
<td>65.10</td>
<td>-0.29</td>
<td>-0.43</td>
<td>0.45</td>
<td>0.22</td>
<td>4.26</td>
</tr>
<tr>
<td>14</td>
<td>62.20</td>
<td>88.71</td>
<td>62.38</td>
<td>-0.41</td>
<td>-0.46</td>
<td>0.47</td>
<td>0.23</td>
<td>5.05</td>
</tr>
<tr>
<td>15</td>
<td>57.89</td>
<td>84.76</td>
<td>57.91</td>
<td>-0.38</td>
<td>0.25</td>
<td>0.47</td>
<td>0.24</td>
<td>6.04</td>
</tr>
<tr>
<td>16</td>
<td>52.54</td>
<td>79.97</td>
<td>52.32</td>
<td>-0.22</td>
<td>1.52</td>
<td>0.46</td>
<td>0.24</td>
<td>6.67</td>
</tr>
<tr>
<td>17</td>
<td>46.78</td>
<td>74.60</td>
<td>46.43</td>
<td>-0.30</td>
<td>2.38</td>
<td>0.43</td>
<td>0.27</td>
<td>6.79</td>
</tr>
<tr>
<td>18</td>
<td>40.92</td>
<td>68.69</td>
<td>40.64</td>
<td>-0.73</td>
<td>2.35</td>
<td>0.38</td>
<td>0.29</td>
<td>6.73</td>
</tr>
<tr>
<td>19</td>
<td>35.10</td>
<td>62.22</td>
<td>34.94</td>
<td>-1.23</td>
<td>2.09</td>
<td>0.35</td>
<td>0.30</td>
<td>6.78</td>
</tr>
<tr>
<td>20</td>
<td>29.63</td>
<td>55.52</td>
<td>29.50</td>
<td>-1.51</td>
<td>2.27</td>
<td>0.35</td>
<td>0.28</td>
<td>6.92</td>
</tr>
<tr>
<td>21</td>
<td>24.95</td>
<td>49.35</td>
<td>24.84</td>
<td>-1.83</td>
<td>2.50</td>
<td>0.38</td>
<td>0.27</td>
<td>7.00</td>
</tr>
<tr>
<td>22</td>
<td>21.40</td>
<td>44.74</td>
<td>21.44</td>
<td>-2.52</td>
<td>1.94</td>
<td>0.41</td>
<td>0.28</td>
<td>7.11</td>
</tr>
<tr>
<td>23</td>
<td>19.14</td>
<td>42.38</td>
<td>19.43</td>
<td>-3.34</td>
<td>0.62</td>
<td>0.42</td>
<td>0.30</td>
<td>7.39</td>
</tr>
<tr>
<td>24</td>
<td>18.25</td>
<td>42.15</td>
<td>18.67</td>
<td>-3.65</td>
<td>-0.36</td>
<td>0.42</td>
<td>0.30</td>
<td>7.74</td>
</tr>
<tr>
<td>25</td>
<td>18.69</td>
<td>43.31</td>
<td>19.07</td>
<td>-3.26</td>
<td>-0.27</td>
<td>0.43</td>
<td>0.28</td>
<td>7.87</td>
</tr>
<tr>
<td>26</td>
<td>20.32</td>
<td>45.31</td>
<td>20.61</td>
<td>-2.69</td>
<td>0.37</td>
<td>0.42</td>
<td>0.27</td>
<td>7.70</td>
</tr>
</tbody>
</table>
Table 11b. Kansas Smoothed Parameter Estimates for the Maximum Temperature

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{LH}</th>
<th>σ_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.78</td>
<td>52.99</td>
<td>54.84</td>
<td>-2.79</td>
<td>-8.58</td>
<td>0.40</td>
<td>0.54</td>
<td>8.73</td>
</tr>
<tr>
<td>2</td>
<td>31.51</td>
<td>58.63</td>
<td>60.70</td>
<td>-2.93</td>
<td>-8.58</td>
<td>0.34</td>
<td>0.58</td>
<td>8.64</td>
</tr>
<tr>
<td>3</td>
<td>36.69</td>
<td>64.26</td>
<td>66.38</td>
<td>-2.74</td>
<td>-8.07</td>
<td>0.30</td>
<td>0.58</td>
<td>8.24</td>
</tr>
<tr>
<td>4</td>
<td>41.57</td>
<td>68.68</td>
<td>70.80</td>
<td>-2.29</td>
<td>-7.15</td>
<td>0.31</td>
<td>0.53</td>
<td>7.63</td>
</tr>
<tr>
<td>5</td>
<td>45.92</td>
<td>72.01</td>
<td>74.13</td>
<td>-1.88</td>
<td>-6.16</td>
<td>0.35</td>
<td>0.47</td>
<td>7.05</td>
</tr>
<tr>
<td>6</td>
<td>50.18</td>
<td>75.41</td>
<td>77.48</td>
<td>-1.67</td>
<td>-5.29</td>
<td>0.37</td>
<td>0.45</td>
<td>6.57</td>
</tr>
<tr>
<td>7</td>
<td>54.80</td>
<td>79.72</td>
<td>81.51</td>
<td>-1.55</td>
<td>-4.46</td>
<td>0.39</td>
<td>0.46</td>
<td>6.07</td>
</tr>
<tr>
<td>8</td>
<td>59.44</td>
<td>84.54</td>
<td>86.11</td>
<td>-1.41</td>
<td>-3.65</td>
<td>0.43</td>
<td>0.46</td>
<td>5.51</td>
</tr>
<tr>
<td>9</td>
<td>63.16</td>
<td>88.75</td>
<td>89.98</td>
<td>-1.31</td>
<td>-3.09</td>
<td>0.47</td>
<td>0.42</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>65.36</td>
<td>91.55</td>
<td>92.59</td>
<td>-1.30</td>
<td>-2.99</td>
<td>0.49</td>
<td>0.39</td>
<td>4.85</td>
</tr>
<tr>
<td>11</td>
<td>66.22</td>
<td>92.84</td>
<td>93.89</td>
<td>-1.36</td>
<td>-3.22</td>
<td>0.49</td>
<td>0.38</td>
<td>4.83</td>
</tr>
<tr>
<td>12</td>
<td>66.12</td>
<td>92.80</td>
<td>93.98</td>
<td>-1.45</td>
<td>-3.52</td>
<td>0.49</td>
<td>0.38</td>
<td>4.90</td>
</tr>
<tr>
<td>13</td>
<td>64.93</td>
<td>91.45</td>
<td>92.74</td>
<td>-1.62</td>
<td>-3.84</td>
<td>0.48</td>
<td>0.39</td>
<td>5.10</td>
</tr>
<tr>
<td>14</td>
<td>62.20</td>
<td>88.71</td>
<td>90.11</td>
<td>-1.87</td>
<td>-4.43</td>
<td>0.45</td>
<td>0.41</td>
<td>5.52</td>
</tr>
<tr>
<td>15</td>
<td>57.89</td>
<td>84.76</td>
<td>86.27</td>
<td>-2.06</td>
<td>-5.44</td>
<td>0.39</td>
<td>0.42</td>
<td>6.11</td>
</tr>
<tr>
<td>16</td>
<td>52.54</td>
<td>79.97</td>
<td>81.59</td>
<td>-2.15</td>
<td>-6.62</td>
<td>0.36</td>
<td>0.42</td>
<td>6.68</td>
</tr>
<tr>
<td>17</td>
<td>46.78</td>
<td>74.60</td>
<td>76.27</td>
<td>-2.32</td>
<td>-7.53</td>
<td>0.40</td>
<td>0.40</td>
<td>7.11</td>
</tr>
<tr>
<td>18</td>
<td>40.92</td>
<td>68.69</td>
<td>70.32</td>
<td>-2.75</td>
<td>-7.94</td>
<td>0.45</td>
<td>0.39</td>
<td>7.48</td>
</tr>
<tr>
<td>19</td>
<td>35.10</td>
<td>62.22</td>
<td>63.74</td>
<td>-3.28</td>
<td>-7.88</td>
<td>0.45</td>
<td>0.42</td>
<td>7.79</td>
</tr>
<tr>
<td>20</td>
<td>29.63</td>
<td>55.52</td>
<td>56.91</td>
<td>-3.49</td>
<td>-7.58</td>
<td>0.41</td>
<td>0.46</td>
<td>7.92</td>
</tr>
<tr>
<td>21</td>
<td>24.95</td>
<td>49.35</td>
<td>50.63</td>
<td>-3.19</td>
<td>-7.29</td>
<td>0.38</td>
<td>0.49</td>
<td>7.84</td>
</tr>
<tr>
<td>22</td>
<td>21.40</td>
<td>44.74</td>
<td>45.92</td>
<td>-2.70</td>
<td>-7.24</td>
<td>0.38</td>
<td>0.51</td>
<td>7.71</td>
</tr>
<tr>
<td>23</td>
<td>19.14</td>
<td>42.38</td>
<td>43.49</td>
<td>-2.46</td>
<td>-7.48</td>
<td>0.37</td>
<td>0.55</td>
<td>7.79</td>
</tr>
<tr>
<td>24</td>
<td>18.25</td>
<td>42.15</td>
<td>43.27</td>
<td>-2.50</td>
<td>-7.84</td>
<td>0.33</td>
<td>0.61</td>
<td>8.07</td>
</tr>
<tr>
<td>25</td>
<td>18.69</td>
<td>43.31</td>
<td>44.55</td>
<td>-2.55</td>
<td>-8.08</td>
<td>0.31</td>
<td>0.63</td>
<td>8.36</td>
</tr>
<tr>
<td>26</td>
<td>20.32</td>
<td>45.31</td>
<td>46.76</td>
<td>-2.52</td>
<td>-8.19</td>
<td>0.34</td>
<td>0.59</td>
<td>8.52</td>
</tr>
</tbody>
</table>
Table 12a. Manhattan Fourier Coefficients
for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\overline{L}_t</th>
<th>\overline{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>43.260</td>
<td>67.515</td>
<td>43.065</td>
<td>-0.742</td>
<td>1.511</td>
<td>0.327</td>
<td>0.385</td>
<td>6.880</td>
</tr>
<tr>
<td>A1</td>
<td>-20.611</td>
<td>-21.936</td>
<td>-20.501</td>
<td>-1.061</td>
<td>0.386</td>
<td>-0.066</td>
<td>0.024</td>
<td>1.171</td>
</tr>
<tr>
<td>B1</td>
<td>13.554</td>
<td>14.129</td>
<td>13.576</td>
<td>0.653</td>
<td>-0.990</td>
<td>-0.027</td>
<td>0.020</td>
<td>-0.824</td>
</tr>
<tr>
<td>A2</td>
<td>0.752</td>
<td>1.175</td>
<td>0.890</td>
<td>-0.073</td>
<td>-0.698</td>
<td>0.007</td>
<td>-0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>B2</td>
<td>0.850</td>
<td>2.385</td>
<td>0.460</td>
<td>0.706</td>
<td>1.075</td>
<td>-0.045</td>
<td>0.046</td>
<td>0.509</td>
</tr>
<tr>
<td>A3</td>
<td>-0.089</td>
<td>0.320</td>
<td>-0.071</td>
<td>0.098</td>
<td>0.044</td>
<td>0.009</td>
<td>-0.021</td>
<td>0.076</td>
</tr>
<tr>
<td>B3</td>
<td>0.440</td>
<td>0.857</td>
<td>0.383</td>
<td>0.307</td>
<td>0.297</td>
<td>-0.035</td>
<td>-0.010</td>
<td>-0.312</td>
</tr>
<tr>
<td>A4</td>
<td>-0.111</td>
<td>-0.526</td>
<td>-0.091</td>
<td>-0.037</td>
<td>0.144</td>
<td>0.008</td>
<td>-0.014</td>
<td>-0.190</td>
</tr>
<tr>
<td>B4</td>
<td>0.140</td>
<td>-0.281</td>
<td>0.190</td>
<td>0.050</td>
<td>-0.178</td>
<td>0.003</td>
<td>-0.008</td>
<td>-0.007</td>
</tr>
<tr>
<td>A5</td>
<td>-0.289</td>
<td>-0.392</td>
<td>-0.346</td>
<td>-0.072</td>
<td>0.329</td>
<td>0.012</td>
<td>-0.003</td>
<td>0.056</td>
</tr>
<tr>
<td>B5</td>
<td>-0.163</td>
<td>-0.185</td>
<td>-0.140</td>
<td>-0.318</td>
<td>0.138</td>
<td>0.015</td>
<td>-0.004</td>
<td>-0.098</td>
</tr>
<tr>
<td>A6</td>
<td>0.048</td>
<td>0.027</td>
<td>0.131</td>
<td>-0.228</td>
<td>-0.171</td>
<td>0.014</td>
<td>-0.005</td>
<td>-0.072</td>
</tr>
<tr>
<td>B6</td>
<td>-0.028</td>
<td>-0.040</td>
<td>0.054</td>
<td>-0.257</td>
<td>-0.119</td>
<td>-0.017</td>
<td>0.011</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 12b. Manhattan Fourier Coefficients
for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\overline{L}_t</th>
<th>\overline{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>43.260</td>
<td>67.515</td>
<td>69.123</td>
<td>-1.537</td>
<td>-5.906</td>
<td>0.415</td>
<td>0.405</td>
<td>6.950</td>
</tr>
<tr>
<td>A1</td>
<td>-20.611</td>
<td>-21.936</td>
<td>-21.625</td>
<td>-1.072</td>
<td>-1.432</td>
<td>-0.085</td>
<td>0.130</td>
<td>1.513</td>
</tr>
<tr>
<td>B1</td>
<td>13.554</td>
<td>14.129</td>
<td>14.314</td>
<td>0.448</td>
<td>1.097</td>
<td>0.017</td>
<td>-0.032</td>
<td>-0.788</td>
</tr>
<tr>
<td>A2</td>
<td>0.752</td>
<td>1.175</td>
<td>1.120</td>
<td>0.004</td>
<td>0.140</td>
<td>-0.007</td>
<td>0.026</td>
<td>0.169</td>
</tr>
<tr>
<td>B2</td>
<td>0.850</td>
<td>2.385</td>
<td>2.806</td>
<td>0.063</td>
<td>0.931</td>
<td>-0.016</td>
<td>-0.023</td>
<td>0.684</td>
</tr>
<tr>
<td>A3</td>
<td>-0.089</td>
<td>0.320</td>
<td>0.309</td>
<td>-0.083</td>
<td>-0.129</td>
<td>0.025</td>
<td>-0.011</td>
<td>0.116</td>
</tr>
<tr>
<td>B3</td>
<td>0.440</td>
<td>0.857</td>
<td>0.747</td>
<td>-0.006</td>
<td>0.046</td>
<td>0.050</td>
<td>-0.025</td>
<td>0.151</td>
</tr>
<tr>
<td>A4</td>
<td>-0.111</td>
<td>-0.526</td>
<td>-0.513</td>
<td>-0.109</td>
<td>0.221</td>
<td>0.019</td>
<td>-0.012</td>
<td>0.009</td>
</tr>
<tr>
<td>B4</td>
<td>0.140</td>
<td>-0.281</td>
<td>-0.251</td>
<td>-0.262</td>
<td>0.128</td>
<td>-0.005</td>
<td>0.009</td>
<td>-0.064</td>
</tr>
<tr>
<td>A5</td>
<td>-0.289</td>
<td>-0.392</td>
<td>-0.371</td>
<td>0.117</td>
<td>0.087</td>
<td>0.001</td>
<td>-0.018</td>
<td>-0.074</td>
</tr>
<tr>
<td>B5</td>
<td>-0.163</td>
<td>-0.185</td>
<td>-0.103</td>
<td>-0.148</td>
<td>0.222</td>
<td>0.012</td>
<td>-0.009</td>
<td>-0.019</td>
</tr>
<tr>
<td>A6</td>
<td>0.048</td>
<td>0.027</td>
<td>0.020</td>
<td>-0.144</td>
<td>0.161</td>
<td>0.036</td>
<td>-0.033</td>
<td>-0.108</td>
</tr>
<tr>
<td>B6</td>
<td>-0.028</td>
<td>-0.040</td>
<td>-0.064</td>
<td>0.149</td>
<td>-0.064</td>
<td>0.017</td>
<td>-0.007</td>
<td>-0.004</td>
</tr>
</tbody>
</table>
Table 13a. Colby Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>37.780</td>
<td>66.719</td>
<td>38.014</td>
<td>-1.383</td>
<td>-0.192</td>
<td>0.399</td>
<td>0.220</td>
<td>6.025</td>
</tr>
<tr>
<td>A1</td>
<td>-19.940</td>
<td>-21.360</td>
<td>-19.649</td>
<td>-1.449</td>
<td>-0.830</td>
<td>0.025</td>
<td>0.014</td>
<td>1.112</td>
</tr>
<tr>
<td>B1</td>
<td>12.916</td>
<td>13.003</td>
<td>12.945</td>
<td>0.846</td>
<td>-0.332</td>
<td>-0.034</td>
<td>-0.009</td>
<td>-0.649</td>
</tr>
<tr>
<td>A2</td>
<td>1.480</td>
<td>1.904</td>
<td>1.607</td>
<td>0.099</td>
<td>-0.878</td>
<td>0.028</td>
<td>-0.009</td>
<td>0.003</td>
</tr>
<tr>
<td>B2</td>
<td>-0.244</td>
<td>0.967</td>
<td>-0.463</td>
<td>0.691</td>
<td>0.953</td>
<td>-0.037</td>
<td>0.009</td>
<td>0.361</td>
</tr>
<tr>
<td>A3</td>
<td>-0.184</td>
<td>0.308</td>
<td>-0.057</td>
<td>-0.013</td>
<td>-0.317</td>
<td>0.001</td>
<td>-0.015</td>
<td>0.057</td>
</tr>
<tr>
<td>B3</td>
<td>0.185</td>
<td>0.548</td>
<td>0.287</td>
<td>-0.123</td>
<td>-0.120</td>
<td>-0.031</td>
<td>-0.002</td>
<td>-0.384</td>
</tr>
<tr>
<td>A4</td>
<td>-0.123</td>
<td>-0.721</td>
<td>-0.075</td>
<td>-0.016</td>
<td>-0.100</td>
<td>0.006</td>
<td>-0.007</td>
<td>-0.117</td>
</tr>
<tr>
<td>B4</td>
<td>0.009</td>
<td>-0.409</td>
<td>0.089</td>
<td>0.007</td>
<td>-0.135</td>
<td>0.000</td>
<td>0.007</td>
<td>0.206</td>
</tr>
<tr>
<td>A5</td>
<td>-0.061</td>
<td>-0.240</td>
<td>-0.176</td>
<td>0.190</td>
<td>0.528</td>
<td>0.014</td>
<td>0.000</td>
<td>0.025</td>
</tr>
<tr>
<td>B5</td>
<td>-0.290</td>
<td>-0.482</td>
<td>-0.264</td>
<td>-0.126</td>
<td>0.088</td>
<td>0.005</td>
<td>-0.007</td>
<td>-0.043</td>
</tr>
<tr>
<td>A6</td>
<td>0.116</td>
<td>0.008</td>
<td>0.100</td>
<td>0.180</td>
<td>0.053</td>
<td>0.012</td>
<td>-0.001</td>
<td>-0.152</td>
</tr>
<tr>
<td>B6</td>
<td>-0.084</td>
<td>-0.135</td>
<td>-0.065</td>
<td>-0.112</td>
<td>-0.140</td>
<td>-0.014</td>
<td>0.014</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Table 13b. Colby Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>37.780</td>
<td>66.719</td>
<td>68.593</td>
<td>-2.443</td>
<td>-7.903</td>
<td>0.377</td>
<td>0.499</td>
<td>7.818</td>
</tr>
<tr>
<td>A1</td>
<td>-19.940</td>
<td>-21.360</td>
<td>-21.193</td>
<td>0.154</td>
<td>-2.473</td>
<td>-0.026</td>
<td>0.067</td>
<td>1.316</td>
</tr>
<tr>
<td>B1</td>
<td>12.916</td>
<td>13.003</td>
<td>13.484</td>
<td>0.321</td>
<td>1.892</td>
<td>0.001</td>
<td>0.013</td>
<td>-0.841</td>
</tr>
<tr>
<td>A2</td>
<td>1.480</td>
<td>1.904</td>
<td>1.770</td>
<td>0.224</td>
<td>0.124</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.067</td>
</tr>
<tr>
<td>B2</td>
<td>-0.244</td>
<td>0.967</td>
<td>1.454</td>
<td>-0.356</td>
<td>-1.621</td>
<td>-0.016</td>
<td>-0.003</td>
<td>0.600</td>
</tr>
<tr>
<td>A3</td>
<td>-0.184</td>
<td>0.308</td>
<td>0.333</td>
<td>0.028</td>
<td>-0.421</td>
<td>0.017</td>
<td>0.002</td>
<td>0.108</td>
</tr>
<tr>
<td>B3</td>
<td>0.185</td>
<td>0.548</td>
<td>0.498</td>
<td>-0.330</td>
<td>0.075</td>
<td>0.015</td>
<td>-0.015</td>
<td>-0.075</td>
</tr>
<tr>
<td>A4</td>
<td>-0.123</td>
<td>-0.721</td>
<td>-0.563</td>
<td>0.027</td>
<td>-0.069</td>
<td>0.003</td>
<td>0.000</td>
<td>0.013</td>
</tr>
<tr>
<td>B4</td>
<td>0.009</td>
<td>-0.409</td>
<td>-0.473</td>
<td>0.307</td>
<td>0.138</td>
<td>-0.006</td>
<td>0.018</td>
<td>-0.069</td>
</tr>
<tr>
<td>A5</td>
<td>-0.061</td>
<td>-0.240</td>
<td>-0.262</td>
<td>0.427</td>
<td>-0.160</td>
<td>-0.009</td>
<td>-0.011</td>
<td>0.024</td>
</tr>
<tr>
<td>B5</td>
<td>-0.290</td>
<td>-0.482</td>
<td>-0.434</td>
<td>0.221</td>
<td>0.178</td>
<td>0.015</td>
<td>-0.017</td>
<td>-0.018</td>
</tr>
<tr>
<td>A6</td>
<td>0.116</td>
<td>0.008</td>
<td>-0.049</td>
<td>0.160</td>
<td>0.345</td>
<td>0.000</td>
<td>0.009</td>
<td>0.018</td>
</tr>
<tr>
<td>B6</td>
<td>-0.084</td>
<td>-0.135</td>
<td>-0.155</td>
<td>-0.098</td>
<td>0.001</td>
<td>0.008</td>
<td>0.004</td>
<td>-0.023</td>
</tr>
</tbody>
</table>
Table 14a. Columbus Fourier Coefficients
for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>46.398</td>
<td>69.116</td>
<td>46.317</td>
<td>-1.403</td>
<td>1.629</td>
<td>0.390</td>
<td>0.345</td>
<td>6.133</td>
</tr>
<tr>
<td>A1</td>
<td>-18.339</td>
<td>-19.848</td>
<td>-18.235</td>
<td>-1.208</td>
<td>0.686</td>
<td>-0.131</td>
<td>0.092</td>
<td>1.688</td>
</tr>
<tr>
<td>A2</td>
<td>12.172</td>
<td>12.412</td>
<td>12.127</td>
<td>1.027</td>
<td>-0.983</td>
<td>-0.018</td>
<td>0.035</td>
<td>-1.292</td>
</tr>
<tr>
<td>A3</td>
<td>0.720</td>
<td>1.319</td>
<td>0.899</td>
<td>-0.314</td>
<td>-0.390</td>
<td>0.025</td>
<td>-0.042</td>
<td>-0.006</td>
</tr>
<tr>
<td>A4</td>
<td>0.728</td>
<td>2.220</td>
<td>0.463</td>
<td>0.278</td>
<td>0.769</td>
<td>-0.068</td>
<td>0.084</td>
<td>0.346</td>
</tr>
<tr>
<td>A5</td>
<td>-0.068</td>
<td>0.204</td>
<td>-0.080</td>
<td>0.052</td>
<td>0.093</td>
<td>-0.011</td>
<td>-0.004</td>
<td>0.067</td>
</tr>
<tr>
<td>A6</td>
<td>0.237</td>
<td>0.607</td>
<td>0.126</td>
<td>0.455</td>
<td>0.141</td>
<td>-0.049</td>
<td>0.007</td>
<td>-0.130</td>
</tr>
<tr>
<td>B1</td>
<td>-0.159</td>
<td>-0.309</td>
<td>-0.239</td>
<td>0.139</td>
<td>0.199</td>
<td>-0.024</td>
<td>0.010</td>
<td>-0.108</td>
</tr>
<tr>
<td>B2</td>
<td>0.134</td>
<td>-0.214</td>
<td>0.143</td>
<td>0.168</td>
<td>-0.129</td>
<td>0.001</td>
<td>-0.011</td>
<td>-0.057</td>
</tr>
<tr>
<td>B3</td>
<td>-0.310</td>
<td>-0.417</td>
<td>-0.366</td>
<td>0.023</td>
<td>0.221</td>
<td>-0.005</td>
<td>0.003</td>
<td>-0.080</td>
</tr>
<tr>
<td>B4</td>
<td>-0.170</td>
<td>-0.086</td>
<td>-0.243</td>
<td>0.147</td>
<td>0.101</td>
<td>-0.012</td>
<td>0.008</td>
<td>-0.137</td>
</tr>
<tr>
<td>B5</td>
<td>0.051</td>
<td>-0.040</td>
<td>0.020</td>
<td>0.157</td>
<td>0.016</td>
<td>-0.007</td>
<td>0.011</td>
<td>-0.135</td>
</tr>
<tr>
<td>B6</td>
<td>0.015</td>
<td>-0.021</td>
<td>0.026</td>
<td>0.071</td>
<td>-0.159</td>
<td>-0.030</td>
<td>0.019</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Table 14b. Columbus Fourier Coefficients
for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{LH}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>46.398</td>
<td>69.116</td>
<td>70.817</td>
<td>-1.795</td>
<td>-4.801</td>
<td>0.401</td>
<td>0.456</td>
<td>5.947</td>
</tr>
<tr>
<td>A1</td>
<td>-18.339</td>
<td>-19.848</td>
<td>-19.425</td>
<td>-0.944</td>
<td>-0.838</td>
<td>-0.145</td>
<td>0.190</td>
<td>1.376</td>
</tr>
<tr>
<td>A2</td>
<td>12.172</td>
<td>12.412</td>
<td>12.347</td>
<td>0.912</td>
<td>0.728</td>
<td>0.017</td>
<td>-0.059</td>
<td>-0.778</td>
</tr>
<tr>
<td>A3</td>
<td>0.720</td>
<td>1.319</td>
<td>1.268</td>
<td>0.213</td>
<td>-0.272</td>
<td>0.033</td>
<td>-0.000</td>
<td>0.117</td>
</tr>
<tr>
<td>A4</td>
<td>0.728</td>
<td>2.220</td>
<td>2.661</td>
<td>-0.308</td>
<td>-0.800</td>
<td>-0.051</td>
<td>0.012</td>
<td>0.465</td>
</tr>
<tr>
<td>A5</td>
<td>-0.068</td>
<td>0.204</td>
<td>0.154</td>
<td>0.003</td>
<td>0.022</td>
<td>0.027</td>
<td>-0.012</td>
<td>0.095</td>
</tr>
<tr>
<td>A6</td>
<td>0.237</td>
<td>0.607</td>
<td>0.580</td>
<td>-0.002</td>
<td>-0.241</td>
<td>0.023</td>
<td>-0.003</td>
<td>0.193</td>
</tr>
<tr>
<td>B1</td>
<td>-0.159</td>
<td>-0.309</td>
<td>-0.303</td>
<td>-0.067</td>
<td>0.158</td>
<td>0.003</td>
<td>0.004</td>
<td>0.023</td>
</tr>
<tr>
<td>B2</td>
<td>0.134</td>
<td>-0.214</td>
<td>-0.177</td>
<td>-0.179</td>
<td>0.024</td>
<td>-0.007</td>
<td>0.018</td>
<td>-0.036</td>
</tr>
<tr>
<td>B3</td>
<td>-0.310</td>
<td>-0.417</td>
<td>-0.351</td>
<td>-0.093</td>
<td>-0.110</td>
<td>-0.004</td>
<td>-0.005</td>
<td>-0.146</td>
</tr>
<tr>
<td>B4</td>
<td>-0.170</td>
<td>-0.086</td>
<td>-0.043</td>
<td>-0.144</td>
<td>-0.070</td>
<td>-0.000</td>
<td>0.009</td>
<td>-0.022</td>
</tr>
<tr>
<td>B5</td>
<td>0.051</td>
<td>-0.040</td>
<td>-0.051</td>
<td>0.066</td>
<td>-0.085</td>
<td>0.024</td>
<td>-0.014</td>
<td>-0.089</td>
</tr>
<tr>
<td>B6</td>
<td>0.015</td>
<td>-0.021</td>
<td>-0.012</td>
<td>-0.106</td>
<td>0.084</td>
<td>0.012</td>
<td>-0.015</td>
<td>0.023</td>
</tr>
</tbody>
</table>
Table 15a. Elkhart Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>(\overline{L}_t)</th>
<th>(\overline{H}_t)</th>
<th>(C_L)</th>
<th>(C_{L,t-1})</th>
<th>(C_{L,t})</th>
<th>(C_{LL})</th>
<th>(C_{HL})</th>
<th>(\mathbf{S}_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.954</td>
<td>70.954</td>
<td>41.065</td>
<td>-0.589</td>
<td>-0.564</td>
<td>0.377</td>
<td>0.243</td>
<td>5.864</td>
</tr>
<tr>
<td>A1</td>
<td>-19.338</td>
<td>-19.068</td>
<td>-19.256</td>
<td>-1.022</td>
<td>-0.471</td>
<td>-0.038</td>
<td>0.049</td>
<td>1.353</td>
</tr>
<tr>
<td>B1</td>
<td>12.446</td>
<td>12.291</td>
<td>12.491</td>
<td>0.860</td>
<td>-0.438</td>
<td>-0.009</td>
<td>-0.013</td>
<td>-0.861</td>
</tr>
<tr>
<td>A2</td>
<td>1.531</td>
<td>1.579</td>
<td>1.559</td>
<td>0.036</td>
<td>-0.378</td>
<td>0.012</td>
<td>0.000</td>
<td>-0.058</td>
</tr>
<tr>
<td>B2</td>
<td>-0.004</td>
<td>1.093</td>
<td>-0.206</td>
<td>0.878</td>
<td>1.131</td>
<td>-0.028</td>
<td>0.010</td>
<td>0.429</td>
</tr>
<tr>
<td>A3</td>
<td>-0.111</td>
<td>0.370</td>
<td>-0.128</td>
<td>0.296</td>
<td>0.214</td>
<td>-0.005</td>
<td>-0.004</td>
<td>0.150</td>
</tr>
<tr>
<td>B3</td>
<td>-0.113</td>
<td>0.255</td>
<td>-0.086</td>
<td>0.147</td>
<td>0.002</td>
<td>-0.030</td>
<td>0.003</td>
<td>-0.205</td>
</tr>
<tr>
<td>A4</td>
<td>-0.175</td>
<td>-0.495</td>
<td>-0.136</td>
<td>0.127</td>
<td>-0.080</td>
<td>0.002</td>
<td>-0.014</td>
<td>-0.126</td>
</tr>
<tr>
<td>B4</td>
<td>-0.019</td>
<td>-0.190</td>
<td>0.004</td>
<td>-0.141</td>
<td>0.065</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.166</td>
</tr>
<tr>
<td>A5</td>
<td>0.079</td>
<td>-0.210</td>
<td>0.001</td>
<td>0.416</td>
<td>0.445</td>
<td>0.004</td>
<td>-0.007</td>
<td>0.093</td>
</tr>
<tr>
<td>B5</td>
<td>-0.255</td>
<td>-0.551</td>
<td>-0.228</td>
<td>-0.202</td>
<td>-0.002</td>
<td>0.006</td>
<td>-0.009</td>
<td>-0.018</td>
</tr>
<tr>
<td>A6</td>
<td>0.188</td>
<td>0.097</td>
<td>0.185</td>
<td>0.192</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.098</td>
</tr>
<tr>
<td>B6</td>
<td>-0.047</td>
<td>-0.098</td>
<td>0.020</td>
<td>-0.447</td>
<td>-0.436</td>
<td>0.006</td>
<td>-0.000</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Table 15b. Elkhart Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>(\overline{L}_t)</th>
<th>(\overline{H}_t)</th>
<th>(C_H)</th>
<th>(C_{H,t-1})</th>
<th>(C_{H,t})</th>
<th>(C_{HH})</th>
<th>(C_{HL})</th>
<th>(\mathbf{S}_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.954</td>
<td>70.954</td>
<td>72.134</td>
<td>-1.828</td>
<td>-7.692</td>
<td>0.384</td>
<td>0.479</td>
<td>7.214</td>
</tr>
<tr>
<td>A1</td>
<td>-19.338</td>
<td>-19.068</td>
<td>-19.011</td>
<td>-0.420</td>
<td>-2.401</td>
<td>-0.039</td>
<td>0.098</td>
<td>1.869</td>
</tr>
<tr>
<td>B1</td>
<td>12.446</td>
<td>12.291</td>
<td>12.513</td>
<td>0.685</td>
<td>2.191</td>
<td>0.017</td>
<td>-0.012</td>
<td>-1.019</td>
</tr>
<tr>
<td>A2</td>
<td>1.531</td>
<td>1.579</td>
<td>1.483</td>
<td>0.178</td>
<td>0.364</td>
<td>0.011</td>
<td>-0.007</td>
<td>-0.281</td>
</tr>
<tr>
<td>B2</td>
<td>-0.004</td>
<td>1.093</td>
<td>1.415</td>
<td>-0.351</td>
<td>-1.414</td>
<td>-0.027</td>
<td>-0.001</td>
<td>0.403</td>
</tr>
<tr>
<td>A3</td>
<td>-0.111</td>
<td>0.370</td>
<td>0.315</td>
<td>0.124</td>
<td>-0.175</td>
<td>0.023</td>
<td>-0.014</td>
<td>0.199</td>
</tr>
<tr>
<td>B3</td>
<td>-0.113</td>
<td>0.255</td>
<td>0.289</td>
<td>-0.709</td>
<td>-0.222</td>
<td>0.007</td>
<td>-0.020</td>
<td>0.023</td>
</tr>
<tr>
<td>A4</td>
<td>-0.175</td>
<td>-0.495</td>
<td>-0.465</td>
<td>0.117</td>
<td>0.057</td>
<td>0.037</td>
<td>-0.030</td>
<td>0.050</td>
</tr>
<tr>
<td>B4</td>
<td>-0.019</td>
<td>-0.190</td>
<td>-0.238</td>
<td>-0.255</td>
<td>0.362</td>
<td>-0.006</td>
<td>0.007</td>
<td>0.079</td>
</tr>
<tr>
<td>A5</td>
<td>0.079</td>
<td>-0.210</td>
<td>-0.138</td>
<td>0.009</td>
<td>0.126</td>
<td>-0.010</td>
<td>-0.014</td>
<td>0.022</td>
</tr>
<tr>
<td>B5</td>
<td>-0.255</td>
<td>-0.551</td>
<td>-0.496</td>
<td>0.014</td>
<td>0.153</td>
<td>0.022</td>
<td>-0.012</td>
<td>0.007</td>
</tr>
<tr>
<td>A6</td>
<td>0.188</td>
<td>0.097</td>
<td>0.016</td>
<td>0.382</td>
<td>0.345</td>
<td>0.026</td>
<td>-0.011</td>
<td>-0.064</td>
</tr>
<tr>
<td>B6</td>
<td>-0.047</td>
<td>-0.098</td>
<td>-0.155</td>
<td>0.106</td>
<td>0.203</td>
<td>0.005</td>
<td>-0.008</td>
<td>0.087</td>
</tr>
</tbody>
</table>
Table 16a. Garden City Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.212</td>
<td>69.318</td>
<td>40.419</td>
<td>-1.138</td>
<td>-0.405</td>
<td>0.435</td>
<td>0.193</td>
<td>5.910</td>
</tr>
<tr>
<td>A1</td>
<td>-20.412</td>
<td>-20.418</td>
<td>-20.278</td>
<td>-1.383</td>
<td>-0.476</td>
<td>0.009</td>
<td>0.020</td>
<td>1.079</td>
</tr>
<tr>
<td>A2</td>
<td>13.595</td>
<td>13.158</td>
<td>13.724</td>
<td>0.640</td>
<td>-0.695</td>
<td>-0.031</td>
<td>-0.006</td>
<td>-0.667</td>
</tr>
<tr>
<td>A3</td>
<td>1.601</td>
<td>1.665</td>
<td>1.674</td>
<td>-0.208</td>
<td>-0.552</td>
<td>0.017</td>
<td>-0.007</td>
<td>-0.054</td>
</tr>
<tr>
<td>A4</td>
<td>0.118</td>
<td>0.191</td>
<td>-0.104</td>
<td>0.910</td>
<td>1.019</td>
<td>-0.014</td>
<td>0.011</td>
<td>0.551</td>
</tr>
<tr>
<td>A5</td>
<td>-0.175</td>
<td>0.403</td>
<td>-0.153</td>
<td>0.134</td>
<td>0.102</td>
<td>-0.001</td>
<td>-0.003</td>
<td>0.124</td>
</tr>
<tr>
<td>A6</td>
<td>-0.034</td>
<td>0.501</td>
<td>0.005</td>
<td>0.134</td>
<td>-0.034</td>
<td>-0.039</td>
<td>0.000</td>
<td>-0.285</td>
</tr>
<tr>
<td>A7</td>
<td>-0.178</td>
<td>-0.569</td>
<td>-0.157</td>
<td>-0.043</td>
<td>0.101</td>
<td>0.021</td>
<td>-0.015</td>
<td>-0.146</td>
</tr>
<tr>
<td>A8</td>
<td>0.137</td>
<td>-0.226</td>
<td>0.187</td>
<td>0.042</td>
<td>-0.193</td>
<td>-0.007</td>
<td>0.012</td>
<td>0.154</td>
</tr>
<tr>
<td>A9</td>
<td>-0.057</td>
<td>-0.295</td>
<td>-0.106</td>
<td>0.160</td>
<td>0.364</td>
<td>0.018</td>
<td>-0.009</td>
<td>0.079</td>
</tr>
<tr>
<td>A10</td>
<td>-0.252</td>
<td>-0.420</td>
<td>-0.233</td>
<td>-0.073</td>
<td>0.041</td>
<td>0.006</td>
<td>-0.007</td>
<td>-0.035</td>
</tr>
<tr>
<td>A11</td>
<td>0.132</td>
<td>-0.004</td>
<td>0.098</td>
<td>0.209</td>
<td>0.150</td>
<td>0.000</td>
<td>0.009</td>
<td>-0.088</td>
</tr>
<tr>
<td>A12</td>
<td>-0.081</td>
<td>-0.152</td>
<td>-0.035</td>
<td>-0.143</td>
<td>-0.268</td>
<td>0.009</td>
<td>0.001</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Table 16b. Garden City Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{LH}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.212</td>
<td>69.318</td>
<td>70.925</td>
<td>-3.121</td>
<td>-8.128</td>
<td>0.365</td>
<td>0.509</td>
<td>7.790</td>
</tr>
<tr>
<td>A1</td>
<td>-20.412</td>
<td>-20.418</td>
<td>-20.216</td>
<td>-0.277</td>
<td>-3.270</td>
<td>-0.026</td>
<td>0.077</td>
<td>1.710</td>
</tr>
<tr>
<td>A2</td>
<td>13.595</td>
<td>13.158</td>
<td>13.418</td>
<td>0.697</td>
<td>2.474</td>
<td>-0.013</td>
<td>0.028</td>
<td>-0.769</td>
</tr>
<tr>
<td>A3</td>
<td>1.601</td>
<td>1.665</td>
<td>1.634</td>
<td>0.080</td>
<td>-0.173</td>
<td>-0.005</td>
<td>0.005</td>
<td>-0.088</td>
</tr>
<tr>
<td>A4</td>
<td>0.118</td>
<td>1.191</td>
<td>1.597</td>
<td>-0.216</td>
<td>-1.635</td>
<td>-0.017</td>
<td>-0.011</td>
<td>0.624</td>
</tr>
<tr>
<td>A5</td>
<td>-0.175</td>
<td>0.403</td>
<td>0.379</td>
<td>0.018</td>
<td>-0.283</td>
<td>0.017</td>
<td>-0.006</td>
<td>0.166</td>
</tr>
<tr>
<td>A6</td>
<td>-0.034</td>
<td>0.501</td>
<td>0.594</td>
<td>-0.363</td>
<td>-0.123</td>
<td>0.021</td>
<td>-0.023</td>
<td>-0.103</td>
</tr>
<tr>
<td>A7</td>
<td>-0.178</td>
<td>-0.569</td>
<td>-0.480</td>
<td>-0.094</td>
<td>0.263</td>
<td>0.029</td>
<td>-0.014</td>
<td>0.043</td>
</tr>
<tr>
<td>A8</td>
<td>0.137</td>
<td>-0.226</td>
<td>-0.287</td>
<td>0.191</td>
<td>0.069</td>
<td>-0.005</td>
<td>0.011</td>
<td>-0.034</td>
</tr>
<tr>
<td>A9</td>
<td>-0.057</td>
<td>-0.295</td>
<td>-0.372</td>
<td>0.373</td>
<td>0.085</td>
<td>0.002</td>
<td>-0.043</td>
<td>0.057</td>
</tr>
<tr>
<td>A10</td>
<td>-0.252</td>
<td>-0.420</td>
<td>-0.416</td>
<td>0.379</td>
<td>-0.197</td>
<td>0.019</td>
<td>-0.028</td>
<td>0.027</td>
</tr>
<tr>
<td>A11</td>
<td>0.132</td>
<td>-0.004</td>
<td>0.016</td>
<td>0.020</td>
<td>0.149</td>
<td>0.004</td>
<td>-0.005</td>
<td>-0.038</td>
</tr>
<tr>
<td>A12</td>
<td>-0.081</td>
<td>-0.152</td>
<td>-0.127</td>
<td>0.060</td>
<td>-0.148</td>
<td>0.000</td>
<td>0.012</td>
<td>-0.007</td>
</tr>
</tbody>
</table>
Table 17a. Hays Fourier Coefficients
for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>S_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.142</td>
<td>67.660</td>
<td>40.323</td>
<td>-1.747</td>
<td>0.699</td>
<td>0.429</td>
<td>0.195</td>
<td>6.593</td>
</tr>
<tr>
<td>A1</td>
<td>-21.132</td>
<td>-21.623</td>
<td>-21.096</td>
<td>-1.245</td>
<td>0.210</td>
<td>0.007</td>
<td>0.017</td>
<td>1.027</td>
</tr>
<tr>
<td>A2</td>
<td>13.765</td>
<td>13.333</td>
<td>13.950</td>
<td>0.564</td>
<td>-1.106</td>
<td>-0.020</td>
<td>-0.015</td>
<td>-0.585</td>
</tr>
<tr>
<td>A3</td>
<td>1.298</td>
<td>1.772</td>
<td>1.430</td>
<td>-0.280</td>
<td>-0.898</td>
<td>0.022</td>
<td>-0.009</td>
<td>-0.060</td>
</tr>
<tr>
<td>A4</td>
<td>0.278</td>
<td>1.615</td>
<td>0.047</td>
<td>0.627</td>
<td>0.919</td>
<td>-0.021</td>
<td>0.008</td>
<td>0.596</td>
</tr>
<tr>
<td>A5</td>
<td>-0.180</td>
<td>0.306</td>
<td>-0.155</td>
<td>0.198</td>
<td>-0.121</td>
<td>-0.007</td>
<td>-0.003</td>
<td>0.040</td>
</tr>
<tr>
<td>A6</td>
<td>0.229</td>
<td>0.827</td>
<td>0.213</td>
<td>0.159</td>
<td>0.261</td>
<td>-0.040</td>
<td>0.005</td>
<td>-0.343</td>
</tr>
<tr>
<td>A7</td>
<td>-0.130</td>
<td>-0.706</td>
<td>-0.046</td>
<td>-0.373</td>
<td>0.137</td>
<td>0.024</td>
<td>-0.023</td>
<td>-0.189</td>
</tr>
<tr>
<td>A8</td>
<td>0.089</td>
<td>-0.197</td>
<td>0.174</td>
<td>-0.069</td>
<td>-0.194</td>
<td>0.010</td>
<td>-0.006</td>
<td>0.160</td>
</tr>
<tr>
<td>A9</td>
<td>-0.132</td>
<td>-0.353</td>
<td>-0.191</td>
<td>-0.005</td>
<td>0.325</td>
<td>0.006</td>
<td>-0.006</td>
<td>0.071</td>
</tr>
<tr>
<td>A10</td>
<td>-0.218</td>
<td>-0.323</td>
<td>-0.231</td>
<td>-0.101</td>
<td>0.266</td>
<td>-0.021</td>
<td>0.007</td>
<td>-0.095</td>
</tr>
<tr>
<td>A11</td>
<td>0.166</td>
<td>-0.040</td>
<td>0.192</td>
<td>-0.021</td>
<td>0.085</td>
<td>0.013</td>
<td>0.004</td>
<td>-0.123</td>
</tr>
<tr>
<td>A12</td>
<td>0.030</td>
<td>-0.073</td>
<td>0.083</td>
<td>-0.240</td>
<td>-0.206</td>
<td>-0.003</td>
<td>0.008</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Table 17b. Hays Fourier Coefficients
for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>S_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>40.142</td>
<td>67.660</td>
<td>69.404</td>
<td>-3.531</td>
<td>-6.968</td>
<td>0.381</td>
<td>0.534</td>
<td>7.804</td>
</tr>
<tr>
<td>A1</td>
<td>-21.132</td>
<td>-21.623</td>
<td>-21.572</td>
<td>-0.244</td>
<td>-2.687</td>
<td>-0.029</td>
<td>0.072</td>
<td>1.643</td>
</tr>
<tr>
<td>A2</td>
<td>13.765</td>
<td>13.333</td>
<td>13.693</td>
<td>0.723</td>
<td>2.079</td>
<td>0.013</td>
<td>-0.004</td>
<td>-0.963</td>
</tr>
<tr>
<td>A3</td>
<td>1.298</td>
<td>1.772</td>
<td>1.703</td>
<td>-0.052</td>
<td>-0.122</td>
<td>-0.004</td>
<td>0.031</td>
<td>0.101</td>
</tr>
<tr>
<td>A4</td>
<td>0.278</td>
<td>1.615</td>
<td>2.028</td>
<td>-0.506</td>
<td>-0.989</td>
<td>-0.030</td>
<td>-0.008</td>
<td>0.588</td>
</tr>
<tr>
<td>A5</td>
<td>-0.180</td>
<td>0.306</td>
<td>0.329</td>
<td>-0.286</td>
<td>-0.346</td>
<td>0.015</td>
<td>-0.001</td>
<td>0.207</td>
</tr>
<tr>
<td>A6</td>
<td>0.229</td>
<td>0.827</td>
<td>0.841</td>
<td>-0.612</td>
<td>0.113</td>
<td>0.026</td>
<td>-0.018</td>
<td>-0.013</td>
</tr>
<tr>
<td>A7</td>
<td>-0.130</td>
<td>-0.706</td>
<td>-0.587</td>
<td>-0.337</td>
<td>0.353</td>
<td>0.020</td>
<td>-0.011</td>
<td>-0.093</td>
</tr>
<tr>
<td>A8</td>
<td>0.089</td>
<td>-0.187</td>
<td>-0.180</td>
<td>0.341</td>
<td>-0.119</td>
<td>-0.007</td>
<td>0.000</td>
<td>0.071</td>
</tr>
<tr>
<td>A9</td>
<td>-0.132</td>
<td>-0.353</td>
<td>-0.390</td>
<td>0.086</td>
<td>0.373</td>
<td>0.004</td>
<td>-0.025</td>
<td>-0.004</td>
</tr>
<tr>
<td>A10</td>
<td>-0.218</td>
<td>-0.323</td>
<td>-0.298</td>
<td>0.449</td>
<td>-0.286</td>
<td>0.021</td>
<td>-0.011</td>
<td>0.030</td>
</tr>
<tr>
<td>A11</td>
<td>0.166</td>
<td>-0.040</td>
<td>0.019</td>
<td>-0.105</td>
<td>0.009</td>
<td>0.009</td>
<td>-0.011</td>
<td>-0.071</td>
</tr>
<tr>
<td>A12</td>
<td>0.030</td>
<td>-0.073</td>
<td>-0.166</td>
<td>0.014</td>
<td>0.035</td>
<td>0.010</td>
<td>-0.004</td>
<td>-0.020</td>
</tr>
</tbody>
</table>
Table 18a. Horton Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>I_t</th>
<th>H_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>41.828</td>
<td>64.992</td>
<td>41.847</td>
<td>-1.603</td>
<td>1.495</td>
<td>0.380</td>
<td>0.323</td>
<td>6.491</td>
</tr>
<tr>
<td>A1</td>
<td>-20.822</td>
<td>-21.810</td>
<td>-20.760</td>
<td>-1.137</td>
<td>0.628</td>
<td>-0.064</td>
<td>0.045</td>
<td>1.386</td>
</tr>
<tr>
<td>B1</td>
<td>13.449</td>
<td>14.183</td>
<td>13.528</td>
<td>0.855</td>
<td>-1.199</td>
<td>-0.014</td>
<td>-0.005</td>
<td>-0.744</td>
</tr>
<tr>
<td>A2</td>
<td>0.481</td>
<td>0.789</td>
<td>0.582</td>
<td>-0.079</td>
<td>-0.556</td>
<td>0.020</td>
<td>-0.009</td>
<td>-0.018</td>
</tr>
<tr>
<td>B2</td>
<td>1.025</td>
<td>2.541</td>
<td>0.847</td>
<td>0.363</td>
<td>0.542</td>
<td>-0.036</td>
<td>0.014</td>
<td>0.591</td>
</tr>
<tr>
<td>A3</td>
<td>0.023</td>
<td>0.226</td>
<td>0.041</td>
<td>0.050</td>
<td>-0.029</td>
<td>0.010</td>
<td>-0.016</td>
<td>0.029</td>
</tr>
<tr>
<td>B3</td>
<td>0.559</td>
<td>0.854</td>
<td>0.496</td>
<td>0.266</td>
<td>0.130</td>
<td>-0.039</td>
<td>0.001</td>
<td>-0.314</td>
</tr>
<tr>
<td>A4</td>
<td>-0.119</td>
<td>-0.551</td>
<td>-0.064</td>
<td>-0.132</td>
<td>-0.009</td>
<td>0.006</td>
<td>-0.011</td>
<td>-0.140</td>
</tr>
<tr>
<td>B4</td>
<td>0.114</td>
<td>-0.308</td>
<td>0.164</td>
<td>0.041</td>
<td>-0.214</td>
<td>0.010</td>
<td>-0.016</td>
<td>0.018</td>
</tr>
<tr>
<td>A5</td>
<td>-0.301</td>
<td>-0.435</td>
<td>-0.290</td>
<td>-0.268</td>
<td>0.263</td>
<td>0.021</td>
<td>-0.015</td>
<td>0.028</td>
</tr>
<tr>
<td>B5</td>
<td>-0.047</td>
<td>-0.097</td>
<td>-0.008</td>
<td>-0.262</td>
<td>0.065</td>
<td>-0.002</td>
<td>0.003</td>
<td>-0.077</td>
</tr>
<tr>
<td>A6</td>
<td>0.074</td>
<td>-0.020</td>
<td>0.069</td>
<td>-0.182</td>
<td>0.186</td>
<td>0.001</td>
<td>0.012</td>
<td>-0.088</td>
</tr>
<tr>
<td>B6</td>
<td>0.034</td>
<td>0.038</td>
<td>0.142</td>
<td>-0.289</td>
<td>-0.185</td>
<td>0.001</td>
<td>0.003</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Table 18b. Horton Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>I_t</th>
<th>H_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>41.828</td>
<td>64.992</td>
<td>66.448</td>
<td>-1.873</td>
<td>5.022</td>
<td>0.402</td>
<td>0.481</td>
<td>6.566</td>
</tr>
<tr>
<td>A1</td>
<td>-20.822</td>
<td>-21.810</td>
<td>-21.698</td>
<td>-0.225</td>
<td>-1.449</td>
<td>-0.050</td>
<td>0.078</td>
<td>1.463</td>
</tr>
<tr>
<td>B1</td>
<td>13.449</td>
<td>14.183</td>
<td>14.406</td>
<td>0.702</td>
<td>0.614</td>
<td>0.008</td>
<td>0.001</td>
<td>-0.612</td>
</tr>
<tr>
<td>A2</td>
<td>0.481</td>
<td>0.789</td>
<td>0.691</td>
<td>0.412</td>
<td>-0.274</td>
<td>-0.014</td>
<td>0.030</td>
<td>0.118</td>
</tr>
<tr>
<td>B2</td>
<td>1.025</td>
<td>2.541</td>
<td>3.001</td>
<td>-0.468</td>
<td>-1.012</td>
<td>-0.013</td>
<td>-0.004</td>
<td>0.561</td>
</tr>
<tr>
<td>A3</td>
<td>0.023</td>
<td>0.226</td>
<td>0.208</td>
<td>-0.013</td>
<td>-0.227</td>
<td>0.027</td>
<td>-0.024</td>
<td>0.119</td>
</tr>
<tr>
<td>B3</td>
<td>0.559</td>
<td>0.854</td>
<td>0.779</td>
<td>-0.128</td>
<td>-0.081</td>
<td>0.035</td>
<td>0.001</td>
<td>0.077</td>
</tr>
<tr>
<td>A4</td>
<td>-0.119</td>
<td>-0.551</td>
<td>-0.492</td>
<td>-0.199</td>
<td>0.201</td>
<td>0.011</td>
<td>-0.005</td>
<td>0.077</td>
</tr>
<tr>
<td>B4</td>
<td>0.114</td>
<td>-0.308</td>
<td>-0.246</td>
<td>-0.051</td>
<td>-0.093</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.027</td>
</tr>
<tr>
<td>A5</td>
<td>-0.301</td>
<td>-0.435</td>
<td>-0.399</td>
<td>0.008</td>
<td>-0.121</td>
<td>0.007</td>
<td>-0.026</td>
<td>0.024</td>
</tr>
<tr>
<td>B5</td>
<td>-0.047</td>
<td>-0.097</td>
<td>-0.058</td>
<td>-0.018</td>
<td>-0.326</td>
<td>0.016</td>
<td>-0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>A6</td>
<td>0.074</td>
<td>-0.020</td>
<td>0.013</td>
<td>-0.023</td>
<td>-0.168</td>
<td>0.012</td>
<td>-0.014</td>
<td>-0.050</td>
</tr>
<tr>
<td>B6</td>
<td>0.034</td>
<td>0.038</td>
<td>0.043</td>
<td>-0.068</td>
<td>0.035</td>
<td>0.025</td>
<td>-0.025</td>
<td>-0.031</td>
</tr>
</tbody>
</table>
Table 19a. McPherson Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>44.277</td>
<td>68.158</td>
<td>44.622</td>
<td>-1.559</td>
<td>-0.065</td>
<td>0.403</td>
<td>0.259</td>
<td>6.480</td>
</tr>
<tr>
<td>A1</td>
<td>-20.595</td>
<td>-21.932</td>
<td>-20.588</td>
<td>-1.292</td>
<td>0.717</td>
<td>-0.064</td>
<td>0.055</td>
<td>1.590</td>
</tr>
<tr>
<td>B1</td>
<td>12.858</td>
<td>14.194</td>
<td>13.078</td>
<td>0.650</td>
<td>-1.171</td>
<td>-0.007</td>
<td>-0.023</td>
<td>-1.078</td>
</tr>
<tr>
<td>A2</td>
<td>1.033</td>
<td>1.877</td>
<td>1.153</td>
<td>-0.066</td>
<td>-0.898</td>
<td>0.016</td>
<td>-0.015</td>
<td>-0.013</td>
</tr>
<tr>
<td>B2</td>
<td>0.779</td>
<td>2.087</td>
<td>0.550</td>
<td>0.517</td>
<td>0.774</td>
<td>-0.026</td>
<td>0.023</td>
<td>0.310</td>
</tr>
<tr>
<td>A3</td>
<td>-0.006</td>
<td>0.375</td>
<td>0.007</td>
<td>0.090</td>
<td>-0.018</td>
<td>-0.027</td>
<td>0.016</td>
<td>0.044</td>
</tr>
<tr>
<td>B3</td>
<td>0.408</td>
<td>1.006</td>
<td>0.286</td>
<td>0.251</td>
<td>0.429</td>
<td>-0.047</td>
<td>0.024</td>
<td>-0.325</td>
</tr>
<tr>
<td>A4</td>
<td>-0.203</td>
<td>-0.463</td>
<td>-0.167</td>
<td>0.023</td>
<td>0.087</td>
<td>0.002</td>
<td>-0.014</td>
<td>-0.191</td>
</tr>
<tr>
<td>B4</td>
<td>0.006</td>
<td>-0.140</td>
<td>0.071</td>
<td>-0.056</td>
<td>-0.026</td>
<td>0.009</td>
<td>-0.012</td>
<td>0.039</td>
</tr>
<tr>
<td>A5</td>
<td>-0.292</td>
<td>-0.440</td>
<td>-0.371</td>
<td>-0.033</td>
<td>0.500</td>
<td>0.002</td>
<td>-0.008</td>
<td>0.046</td>
</tr>
<tr>
<td>B5</td>
<td>-0.190</td>
<td>-0.231</td>
<td>-0.170</td>
<td>-0.360</td>
<td>0.257</td>
<td>-0.010</td>
<td>0.008</td>
<td>-0.067</td>
</tr>
<tr>
<td>A6</td>
<td>0.148</td>
<td>0.016</td>
<td>0.144</td>
<td>-0.140</td>
<td>0.201</td>
<td>0.003</td>
<td>0.011</td>
<td>-0.089</td>
</tr>
<tr>
<td>B6</td>
<td>-0.050</td>
<td>-0.133</td>
<td>0.023</td>
<td>-0.040</td>
<td>-0.446</td>
<td>-0.005</td>
<td>0.003</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Table 19b. McPherson Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>44.277</td>
<td>68.158</td>
<td>69.630</td>
<td>-2.068</td>
<td>-5.453</td>
<td>0.400</td>
<td>0.507</td>
<td>6.545</td>
</tr>
<tr>
<td>A1</td>
<td>-20.595</td>
<td>-21.932</td>
<td>-21.709</td>
<td>-0.324</td>
<td>-1.904</td>
<td>-0.063</td>
<td>0.082</td>
<td>1.511</td>
</tr>
<tr>
<td>B1</td>
<td>12.858</td>
<td>14.194</td>
<td>14.325</td>
<td>0.480</td>
<td>1.362</td>
<td>0.007</td>
<td>-0.003</td>
<td>-0.760</td>
</tr>
<tr>
<td>A2</td>
<td>1.033</td>
<td>1.877</td>
<td>1.919</td>
<td>0.082</td>
<td>-0.582</td>
<td>-0.007</td>
<td>0.036</td>
<td>0.032</td>
</tr>
<tr>
<td>B2</td>
<td>0.779</td>
<td>2.087</td>
<td>2.501</td>
<td>-0.229</td>
<td>-1.058</td>
<td>-0.028</td>
<td>-0.020</td>
<td>0.757</td>
</tr>
<tr>
<td>A3</td>
<td>-0.006</td>
<td>0.375</td>
<td>0.391</td>
<td>-0.109</td>
<td>-0.272</td>
<td>0.029</td>
<td>-0.023</td>
<td>0.141</td>
</tr>
<tr>
<td>B3</td>
<td>0.408</td>
<td>1.006</td>
<td>0.918</td>
<td>-0.195</td>
<td>-0.020</td>
<td>0.026</td>
<td>-0.011</td>
<td>0.080</td>
</tr>
<tr>
<td>A4</td>
<td>-0.203</td>
<td>-0.463</td>
<td>-0.410</td>
<td>-0.144</td>
<td>0.052</td>
<td>0.015</td>
<td>-0.006</td>
<td>-0.035</td>
</tr>
<tr>
<td>B4</td>
<td>0.006</td>
<td>-0.140</td>
<td>-0.109</td>
<td>-0.252</td>
<td>0.218</td>
<td>0.001</td>
<td>-0.001</td>
<td>-0.029</td>
</tr>
<tr>
<td>A5</td>
<td>-0.292</td>
<td>-0.440</td>
<td>-0.428</td>
<td>-0.090</td>
<td>0.131</td>
<td>0.006</td>
<td>-0.019</td>
<td>-0.054</td>
</tr>
<tr>
<td>B5</td>
<td>-0.190</td>
<td>-0.231</td>
<td>-0.197</td>
<td>0.017</td>
<td>-0.138</td>
<td>0.022</td>
<td>-0.014</td>
<td>-0.051</td>
</tr>
<tr>
<td>A6</td>
<td>0.148</td>
<td>0.016</td>
<td>0.009</td>
<td>0.135</td>
<td>0.046</td>
<td>0.031</td>
<td>-0.025</td>
<td>-0.146</td>
</tr>
<tr>
<td>B6</td>
<td>-0.050</td>
<td>-0.133</td>
<td>-0.113</td>
<td>-0.103</td>
<td>-0.011</td>
<td>0.018</td>
<td>-0.017</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Table 20a. Winfield Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>46.338</td>
<td>70.104</td>
<td>46.320</td>
<td>-0.959</td>
<td>1.228</td>
<td>0.400</td>
<td>0.298</td>
<td>6.435</td>
</tr>
<tr>
<td>A1</td>
<td>-19.674</td>
<td>-20.093</td>
<td>-19.735</td>
<td>-0.736</td>
<td>0.947</td>
<td>-0.085</td>
<td>0.056</td>
<td>1.644</td>
</tr>
<tr>
<td>B1</td>
<td>12.798</td>
<td>13.309</td>
<td>12.970</td>
<td>0.427</td>
<td>-1.638</td>
<td>-0.013</td>
<td>0.010</td>
<td>-1.013</td>
</tr>
<tr>
<td>A2</td>
<td>0.938</td>
<td>1.725</td>
<td>1.103</td>
<td>-0.315</td>
<td>-0.941</td>
<td>0.012</td>
<td>-0.020</td>
<td>-0.027</td>
</tr>
<tr>
<td>B2</td>
<td>0.950</td>
<td>2.193</td>
<td>0.845</td>
<td>0.065</td>
<td>0.399</td>
<td>-0.021</td>
<td>0.028</td>
<td>0.669</td>
</tr>
<tr>
<td>A3</td>
<td>-0.076</td>
<td>0.291</td>
<td>-0.040</td>
<td>-0.062</td>
<td>-0.130</td>
<td>-0.008</td>
<td>-0.007</td>
<td>0.125</td>
</tr>
<tr>
<td>B3</td>
<td>0.239</td>
<td>0.880</td>
<td>0.180</td>
<td>0.305</td>
<td>0.347</td>
<td>-0.049</td>
<td>0.023</td>
<td>-0.223</td>
</tr>
<tr>
<td>A4</td>
<td>-0.216</td>
<td>-0.338</td>
<td>-0.262</td>
<td>-0.086</td>
<td>0.527</td>
<td>-0.012</td>
<td>-0.004</td>
<td>-0.082</td>
</tr>
<tr>
<td>B4</td>
<td>0.076</td>
<td>-0.165</td>
<td>0.110</td>
<td>0.156</td>
<td>-0.052</td>
<td>-0.001</td>
<td>-0.009</td>
<td>-0.019</td>
</tr>
<tr>
<td>A5</td>
<td>-0.318</td>
<td>-0.441</td>
<td>-0.427</td>
<td>0.178</td>
<td>0.537</td>
<td>-0.007</td>
<td>-0.005</td>
<td>-0.048</td>
</tr>
<tr>
<td>B5</td>
<td>-0.206</td>
<td>-0.287</td>
<td>-0.230</td>
<td>0.110</td>
<td>-0.088</td>
<td>-0.005</td>
<td>0.005</td>
<td>-0.060</td>
</tr>
<tr>
<td>A6</td>
<td>0.076</td>
<td>0.004</td>
<td>0.063</td>
<td>0.219</td>
<td>-0.087</td>
<td>-0.010</td>
<td>0.013</td>
<td>-0.077</td>
</tr>
<tr>
<td>B6</td>
<td>-0.129</td>
<td>-0.142</td>
<td>-0.078</td>
<td>-0.175</td>
<td>-0.267</td>
<td>-0.015</td>
<td>0.011</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 20b. Winfield Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>46.338</td>
<td>70.104</td>
<td>71.302</td>
<td>-2.041</td>
<td>-4.952</td>
<td>0.445</td>
<td>0.425</td>
<td>6.275</td>
</tr>
<tr>
<td>A1</td>
<td>-19.674</td>
<td>-20.093</td>
<td>-19.968</td>
<td>-0.854</td>
<td>-1.140</td>
<td>-0.083</td>
<td>0.116</td>
<td>1.627</td>
</tr>
<tr>
<td>B1</td>
<td>12.798</td>
<td>13.309</td>
<td>13.439</td>
<td>0.621</td>
<td>0.920</td>
<td>-0.006</td>
<td>-0.020</td>
<td>-0.762</td>
</tr>
<tr>
<td>A2</td>
<td>0.938</td>
<td>1.725</td>
<td>1.709</td>
<td>-0.301</td>
<td>-0.195</td>
<td>0.011</td>
<td>0.028</td>
<td>0.092</td>
</tr>
<tr>
<td>B2</td>
<td>0.950</td>
<td>2.193</td>
<td>2.451</td>
<td>-0.221</td>
<td>-0.495</td>
<td>-0.021</td>
<td>-0.025</td>
<td>0.520</td>
</tr>
<tr>
<td>A3</td>
<td>-0.076</td>
<td>0.291</td>
<td>0.315</td>
<td>-0.135</td>
<td>-0.152</td>
<td>0.024</td>
<td>-0.010</td>
<td>0.108</td>
</tr>
<tr>
<td>B3</td>
<td>0.239</td>
<td>0.880</td>
<td>0.767</td>
<td>0.108</td>
<td>0.054</td>
<td>0.024</td>
<td>-0.011</td>
<td>0.095</td>
</tr>
<tr>
<td>A4</td>
<td>-0.216</td>
<td>-0.338</td>
<td>-0.363</td>
<td>-0.005</td>
<td>0.250</td>
<td>0.006</td>
<td>-0.001</td>
<td>0.096</td>
</tr>
<tr>
<td>B4</td>
<td>0.076</td>
<td>-0.165</td>
<td>-0.138</td>
<td>-0.053</td>
<td>0.138</td>
<td>0.002</td>
<td>0.004</td>
<td>-0.008</td>
</tr>
<tr>
<td>A5</td>
<td>-0.318</td>
<td>-0.441</td>
<td>-0.478</td>
<td>0.283</td>
<td>-0.060</td>
<td>0.008</td>
<td>-0.011</td>
<td>-0.055</td>
</tr>
<tr>
<td>B5</td>
<td>-0.206</td>
<td>-0.287</td>
<td>-0.220</td>
<td>-0.143</td>
<td>-0.115</td>
<td>-0.001</td>
<td>0.003</td>
<td>0.045</td>
</tr>
<tr>
<td>A6</td>
<td>0.076</td>
<td>0.004</td>
<td>-0.005</td>
<td>0.283</td>
<td>-0.141</td>
<td>0.018</td>
<td>-0.008</td>
<td>-0.083</td>
</tr>
<tr>
<td>B6</td>
<td>-0.129</td>
<td>-0.142</td>
<td>-0.094</td>
<td>-0.209</td>
<td>0.013</td>
<td>-0.001</td>
<td>0.008</td>
<td>-0.005</td>
</tr>
</tbody>
</table>
Table 21a. Kansas Fourier Coefficients for the Minimum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_L</th>
<th>$C_{L,t-1}$</th>
<th>$C_{L,t}$</th>
<th>C_{LL}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>42.354</td>
<td>68.282</td>
<td>42.443</td>
<td>-1.236</td>
<td>0.591</td>
<td>0.393</td>
<td>0.273</td>
<td>6.312</td>
</tr>
<tr>
<td>A1</td>
<td>-20.096</td>
<td>-20.899</td>
<td>-20.011</td>
<td>-1.170</td>
<td>0.200</td>
<td>-0.045</td>
<td>0.040</td>
<td>1.339</td>
</tr>
<tr>
<td>B1</td>
<td>13.061</td>
<td>13.335</td>
<td>13.154</td>
<td>0.725</td>
<td>-0.950</td>
<td>-0.019</td>
<td>-0.001</td>
<td>-0.857</td>
</tr>
<tr>
<td>A2</td>
<td>1.093</td>
<td>1.534</td>
<td>1.211</td>
<td>-0.133</td>
<td>-0.688</td>
<td>0.018</td>
<td>-0.013</td>
<td>-0.025</td>
</tr>
<tr>
<td>B2</td>
<td>0.498</td>
<td>1.810</td>
<td>0.271</td>
<td>0.560</td>
<td>0.845</td>
<td>-0.033</td>
<td>0.026</td>
<td>0.485</td>
</tr>
<tr>
<td>A3</td>
<td>-0.096</td>
<td>0.312</td>
<td>-0.071</td>
<td>0.094</td>
<td>-0.018</td>
<td>-0.005</td>
<td>-0.006</td>
<td>0.079</td>
</tr>
<tr>
<td>B3</td>
<td>0.239</td>
<td>0.704</td>
<td>0.210</td>
<td>0.211</td>
<td>0.161</td>
<td>-0.040</td>
<td>0.006</td>
<td>-0.280</td>
</tr>
<tr>
<td>A4</td>
<td>-0.157</td>
<td>-0.520</td>
<td>-0.137</td>
<td>-0.044</td>
<td>0.112</td>
<td>0.004</td>
<td>-0.010</td>
<td>-0.143</td>
</tr>
<tr>
<td>B4</td>
<td>0.076</td>
<td>-0.236</td>
<td>0.126</td>
<td>0.022</td>
<td>-0.117</td>
<td>0.003</td>
<td>-0.005</td>
<td>0.073</td>
</tr>
<tr>
<td>A5</td>
<td>-0.187</td>
<td>-0.358</td>
<td>-0.252</td>
<td>0.065</td>
<td>0.390</td>
<td>0.007</td>
<td>0.006</td>
<td>0.030</td>
</tr>
<tr>
<td>B5</td>
<td>-0.199</td>
<td>-0.296</td>
<td>-0.194</td>
<td>-0.132</td>
<td>0.096</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.070</td>
</tr>
<tr>
<td>A6</td>
<td>0.111</td>
<td>0.005</td>
<td>0.111</td>
<td>0.043</td>
<td>0.048</td>
<td>0.003</td>
<td>0.006</td>
<td>-0.102</td>
</tr>
<tr>
<td>B6</td>
<td>-0.038</td>
<td>-0.084</td>
<td>0.019</td>
<td>-0.181</td>
<td>-0.247</td>
<td>0.008</td>
<td>0.008</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Table 21b. Kansas Fourier Coefficients for the Maximum Temperature

<table>
<thead>
<tr>
<th></th>
<th>\bar{L}_t</th>
<th>\bar{H}_t</th>
<th>C_H</th>
<th>$C_{H,t-1}$</th>
<th>$C_{H,t}$</th>
<th>C_{HH}</th>
<th>C_{HL}</th>
<th>s_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>42.354</td>
<td>68.282</td>
<td>69.819</td>
<td>-2.249</td>
<td>-6.314</td>
<td>0.397</td>
<td>0.477</td>
<td>6.990</td>
</tr>
<tr>
<td>A1</td>
<td>-20.096</td>
<td>-20.899</td>
<td>-20.713</td>
<td>-0.467</td>
<td>-1.955</td>
<td>-0.061</td>
<td>0.101</td>
<td>1.559</td>
</tr>
<tr>
<td>B1</td>
<td>13.061</td>
<td>13.335</td>
<td>13.549</td>
<td>0.621</td>
<td>1.484</td>
<td>0.007</td>
<td>-0.010</td>
<td>-0.810</td>
</tr>
<tr>
<td>A2</td>
<td>1.093</td>
<td>1.534</td>
<td>1.478</td>
<td>0.093</td>
<td>-0.141</td>
<td>0.002</td>
<td>0.016</td>
<td>0.021</td>
</tr>
<tr>
<td>B2</td>
<td>0.498</td>
<td>1.810</td>
<td>2.213</td>
<td>-0.302</td>
<td>-1.106</td>
<td>-0.024</td>
<td>-0.009</td>
<td>0.578</td>
</tr>
<tr>
<td>A3</td>
<td>-0.096</td>
<td>0.312</td>
<td>0.304</td>
<td>-0.050</td>
<td>-0.220</td>
<td>0.023</td>
<td>-0.011</td>
<td>0.140</td>
</tr>
<tr>
<td>B3</td>
<td>0.239</td>
<td>0.704</td>
<td>0.668</td>
<td>-0.248</td>
<td>-0.044</td>
<td>0.025</td>
<td>-0.014</td>
<td>0.048</td>
</tr>
<tr>
<td>A4</td>
<td>-0.157</td>
<td>-0.520</td>
<td>-0.464</td>
<td>-0.090</td>
<td>0.165</td>
<td>0.016</td>
<td>-0.008</td>
<td>0.020</td>
</tr>
<tr>
<td>B4</td>
<td>0.076</td>
<td>-0.236</td>
<td>-0.233</td>
<td>-0.024</td>
<td>0.096</td>
<td>-0.004</td>
<td>0.008</td>
<td>-0.007</td>
</tr>
<tr>
<td>A5</td>
<td>-0.187</td>
<td>-0.358</td>
<td>-0.354</td>
<td>0.098</td>
<td>0.039</td>
<td>0.001</td>
<td>-0.019</td>
<td>-0.023</td>
</tr>
<tr>
<td>B5</td>
<td>-0.199</td>
<td>-0.296</td>
<td>-0.252</td>
<td>0.070</td>
<td>-0.114</td>
<td>0.014</td>
<td>-0.010</td>
<td>0.001</td>
</tr>
<tr>
<td>A6</td>
<td>0.111</td>
<td>0.005</td>
<td>-0.001</td>
<td>0.086</td>
<td>0.074</td>
<td>0.018</td>
<td>-0.012</td>
<td>-0.075</td>
</tr>
<tr>
<td>B6</td>
<td>-0.038</td>
<td>-0.084</td>
<td>-0.094</td>
<td>-0.028</td>
<td>0.016</td>
<td>0.010</td>
<td>-0.006</td>
<td>0.005</td>
</tr>
</tbody>
</table>
APPENDIX A

THE LINMOD PROGRAM
PROGRAM
LINMOD, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH L. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO PERFORM MULTIPLE REGRESSIONS OR ANALYSES OF COVARIANCE
ON DAILY WEATHER DATA.

USAGE
THE INPUT STREAM REQUIRES THE FOLLOWING:
A STANDARD WDL TITLE CARD (USED AS A COMMENT).
A STANDARD WDL STATION CARD (USED AS A COMMENT).
A STANDARD WDL DATES CARD.
A STANDARD PERFORM CARD WITH THE INDICATOR INDCPY.
A SELECT CARD.
A LGRP CARD.
A MINGRP CARD.
A NMDLS CARD.
ALTERNATING MODEL AND NAMES CARDS.
WEATHER RECORDS MUST BE AVAILABLE TO SUBROUTINE RDREC.

DESCRIPTION OF PARAMETERS
INDCPY - SET TO *TRUE* IF DATA MUST BE COPIED TO DISK.
SELECT - A SELECTION CRITERION OF THE FORM 'DW', WHERE
N IS NO SELECTION, D IS DRY, AND W IS WET.
LGRP - THE NUMBER OF DAYS IN EACH PERIOD (EXCEPT LAST).
MINGRP - THE NUMBER OF THE FIRST GROUP TO BE USED.
NMDLS - THE NUMBER OF MODELS TO BE USED WITH EACH GROUP.
MODEL - SEE THE SUBROUTINE 'DESIGN' FOR DETAILS.
NAMES - 8-CHAR. NAMES FOR THE MODEL VARIABLES.
FOR INFORMATION ABOUT THE STANDARD INPUT CARDS
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY.

REMARKS
THIS PROGRAM WILL SOLVE A FULL RANK LINEAR MODEL OF UP
TO 7 PARAMETERS WITHOUT STORAGE AND FORMAT MODIFICATION.
THE ANALYSIS OF VARIANCE TABLE ASSUMES THAT THE FIRST
PARAMETER OF THE MODEL IS A CONSTANT (OR MEAN).
UP TO 1000 OBSERVATIONS MAY BE IN EACH GROUP.
UP TO 9 MODELS MAY BE APPLIED TO EACH DATA GROUP.
DISK SPACE IS RESERVED FOR 71 YEARS OF DATA.

SELECTION OF A PRECIPITATION PATTERN MAY BE DONE FOR THE
ENTIRE RUN OR FOR INDIVIDUAL MODELS. IN THE LATTER CASE
THE MEANS SUBTRACTED TO FORM DEVIATE VARIABLES ARE NOT
AVAILABLE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

ERRSET (ALTERS SYSTEM ERROR HANDLING)
RDSTT (READS A STANDARD WEATHER DATA LIBRARY TITLE CARD)
RDSTT (READS A STANDARD WDL STATION CARD)
RDDATE (READS A STANDARD WDL DATES CARD)
RDPERF (READS A STANDARD PERFORM CARD)
ABEND (PRINTS A MESSAGE AND TERMINATES)
DSKCPY (TRANSFERS WEATHER DATA FROM TAPE TO DISK)
GRPLIM (CALCULATES INITIAL AND FINAL DAYS OF ANY GROUP)
CPYGRP (BUILDS A GROUP MATRIX FROM DISK RECORDS)
PTSTAT (PRINTS A VARIETY OF STATISTICS)
DESIGN (BUILDS THE DESIGN MATRIX FOR A LINEAR MODEL)
CTIE (CATENATES TWO MATRICES BY COLUMNS)
PTREG (COMPUTES AND PRINTS REGRESSION DATA)

METHOD

RECORDS FROM TAPE ARE TRANSFERRED TO DISK. THEN THE
RECORDS FOR A SINGLE PERIOD ARE READ INTO CORE. THESE
ARE SELECTED TO FORM THE DESIGN MATRIX OF A GENERAL
LINEAR MODEL, WHICH IS SOLVED FOR THE PARAMETER
ESTIMATES.

LOGICAL INDEND/.FALSE./,INDYR,INDCPY
INTEGER MODEL(68,9),IBLANK(68)/68*
/
REAL GRP(6000),X(7000),Y(1000),ASEL(9)/'NN','ND','NW','DN',
1 'DD','DW','WN','WD','WW'/
REAL*8 GRPLBL(8)/'PREWET ','PREMIN ','PREMAX ','PSTWET ',
1 'PSTMIN ','PSTMAX '/,XLBL(8,10)
COMMON /DSKREC/ NULL(3),NXKREC
COMMON /EQIV/ GRPT(7000),XY(8000)
COMMON /STATUS/ SELECT,NOWGRP,MNDAY,MXDAY,NOWMDL

SUPRESS UNDERFLOW AND DIVIDE ERROR MESSAGES.

CALL ERRSET (208,0,-1,0,0,0)
CALL ERRSET (209,256,-1,0,0,0)

READ THE RUN PARAMETERS.

READ THE RUN TITLE, STATION NAME, AND DATES TO BE USED.

CALL RDTITL (INDEND)
CALL RDSTT (INDEND)
CALL RDDATE (INDEND)
DETERMINE WHETHER THE DISK DATA SET MUST BE CREATED.

CALL RDPERF (INDEND, INDCPY)

READ AND INTERPRET THE CRITERION FOR SELECTION OF RECORDS.

READ (5,2) SELECT
DO 10 KSEL=1,9
 IF (SELECT.EQ.ASEL(KSEL)) GO TO 20
10 CONTINUE
 KSEL=1

READ THE NUMBER OF DAYS PER GROUP AND FIRST GROUP NUMBER.

20 READ (5,1) LGRP, MINGRP

READ THE MODEL CARDS AND CORRESPONDING VARIABLE NAMES.

READ (5,1) NMDLS
 IF (NMDLS.GT.9) CALL ABEND (*LINMOD ',
 'THE NUMBER OF MODELS EXCEEDS 9."
)
 IF (NMDLS.GT.0) READ (5,3) (MODEL(I,J), I=1,68),
 (XLBL(I,J), I=1,8), J=1,NMDLS)

DEFINE THE DIRECT ACCESS FILE.

DEFINE FILE 4((25915,3,U,NXTREC)

TRANSFER TAPE RECORDS TO DISK IF THE DISK FILE DOES NOT EXIST.

IF (INDCPY) CALL DSKCPY

PROCESS THE RECORDS FOR ONE PERIOD.

NINGRP=MINGRP-1

CALCULATE THE BEGINNING AND ENDING DAYS.

30 NINGRP=NINGRP+1
 NOWMDL=0
 CALL GRPLIM (NINGRP, LGRP, MNDAY, MXDAY, INDCP)
 IF (INDCP) GO TO 50

RETRIEVE THE RECORDS FOR THIS PERIOD.

CALL CPYGRP (GRP, MNDAY, MXDAY, NRECS, KSEL, GRPT)
 IF (NRECS.LT.2) GO TO 30

COMPUTE AND WRITE STATISTICS FOR THE ENTIRE GROUP.

CALL PTSTAT (GRP, NRECS, 6, 10, IBLANK, GRPLBL)

PROCESS EACH MODEL.
IF (NMDLS.LT.1) GO TO 30
DO 40 NOWMDL=1,NMDLS

C
SET THE OUTPUT DATA SET NUMBER FOR THIS MODEL.
C
IUNT=NOWMDL+10
C
CONSTRUCT X, THE DESIGN MATRIX.
C
CALL DESIGN (GRP,NRECS,MODEL(1,NOWMDL),Y,X,NOBS,NCOLS,GRPT)
IF (NOBS.LT.2) GO TO 40
C
WRITE STATISTICS FOR THIS DESIGN MATRIX AND Y VECTOR.
C
CALL CTIE (X,Y,XY,NOBS,NCOLS,0,0,1)
CALL PTSTAT (XY,NOBS,NCOLS+1,IUNT,MODEL(1,NOWMDL),
1 XLBL(1,NOWMDL))
C
COMPUTE AND PRINT THE REGRESSION PARAMETERS AND THE
ANALYSIS OF VARIANCE.
C
CALL PTREG (X,Y,NOBS,NCOLS,IUNT,MODEL(1,NOWMDL),XLBL(1,NOWMDL))
40 CONTINUE
GO TO 30
50 WRITE (6,4)
STOP
C
**
C
1 FORMAT (12X,I3)
2 FORMAT (13X,A2)
3 FORMAT (12X,68A1/12X,8A8)
4 FORMAT (/4X,'(NORMAL TERMINATION)')
END
SUBROUTINE
DSKCPY, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO COPY A PERIOD OF WEATHER DATA FROM TAPE TO A
DIRECT ACCESS DATA SET.

USAGE
CALL DSKCPY
COMMON /DATES/ MINDTE, MAXDTE, NUL1(4), MINYR, MINDAY, MAXYR,
NUL2
COMMON /DSKREC/ NUL1(3), NXTREC

DESCRIPTION OF PARAMETERS
MINDTE - THE FIRST RECORD DATE (YYMMDD) TO BE USED.
MAXDTE - THE LAST RECORD DATE (YYMMDD) TO BE USED.
MINYR - THE CLIMATIC YEAR (YYYY) OF THE FIRST RECORD.
MINDAY - THE CLIMATIC DAY (DDD) OF THE FIRST RECORD.
MAXYR - THE CLIMATIC YEAR (YYYY) OF THE LAST RECORD.
NXTREC - THE ASSOCIATED VARIABLE FOR THE DISK DATA SFT.

REMARKS
THE DIRECT ACCESS FILE MUST BE DEFINED ELSEWHERE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
RDREC (READS AND INTERPRETS A STANDARD WEATHER RECORD)
ABEND (WRITES AN ERROR MESSAGE AND ENDS EXECUTION)

METHOD
THE DATA ARE READ FROM TAPE WITH SUBROUTINE RDREC.
EACH RECORD IS STORED IN LOCATION 365*(YEAR-MINYR)+DAY.

SUBROUTINE CSKCPY
LOGICAL INDEND/.FALSE./
REAL REC(3)
COMMON /DATES/ MINDTE, MAXDTE, NUL1(4), MINYR, MINDAY, MAXYR, NUL2
COMMON /DSKREC/ MAX, MIN, WET, NXTREC
EQUIVALENCE (REC(1), MAX)
SET THE INITIAL DATE AND RECORD NUMBER.

NOWDTE=MINDATE
NXTREC=MINDAY

READ THE NEXT RECORD.

10 CALL RDREC (INDEND, NOWDTE, MAX, MIN, WET)
IF (INDEND .OR. NOWDTE .GT. MAXDTE) GO TO 20
WRITE (4, NXTREC) REC
GO TO 10

TERMINATE IF INSUFFICIENT DATA IS PRESENT.

20 IF (NOWDTE .GE. MAXDTE) RETURN
CALL ABEND ('DSKCPY ',
1 'END OF FILE BEFORE MAXDTE WAS REACHED. ')
END
SUBROUTINE GRPLIM, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY, SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO FIND THE BEGINNING AND ENDING DAYS OF A SPECIFIED GROUP.

USAGE
CALL GRPLIM (NOWGRP,LGRP,MINDAY,MAXDAY,INDYR)

DESCRIPTION OF PARAMETERS
NOWGRP - THE NUMBER OF THE GROUP.
LGRP - THE LENGTH OF EACH GROUP.
MINDAY - THE RESULTANT INITIAL DAY.
MAXDAY - THE RESULTANT FINAL DAY.
INDYR - A LOGICAL INDICATOR SET TO .TRUE. IF THE GROUP DOES NOT BEGIN WITHIN THE BASE YEAR.

REMARKS
NOWGRP AND LGRP ARE ASSUMED TO BE POSITIVE INTEGERS.
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

METHOD
THE FIRST GROUP BEGINS WITH MINDAY EQUAL TO 1.
MINDAY IS COMPUTED MODULO 365; AN INDICATOR IS SET IF IT EXCEEDS 365 DAYS. MAXDAY IS COMPUTED FROM MINDAY AND IS SET TO 365 IF IT WOULD OTHERWISE EXCEED THIS VALUE.

SUBROUTINE GRPLIM (NOWGRP,LGRP,MINDAY,MAXDAY,INDYR)
LOGICAL INDYR

RESET THE LOGICAL INDICATOR.
INDYR=.FALSE.

COMPUTE THE INITIAL DAY OF THE GROUP.
MINDAY = 1 + LGRP*(NOWGRP - 1)

C
C VERIFY THAT THE INITIAL DAY IS WITHIN THE BASE YEAR.
C
10 IF (MINDAY.LT.366) GO TO 20
 MINDAY = MINDAY - 365
 INDYR = .TRUE.
 GO TO 10
C
C COMPUTE THE FINAL DAY OF THE GROUP.
C
20 MAXDAY = MINDAY + LGRP - 1
 IF (MAXDAY.GT.365) MAXDAY = 365
 RETURN
 END
SUBROUTINE
CPYGRP, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
Supported by Project NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO CONSTRUCT A MATRIX OF 2-DAY WEATHER RECORDS FOR A
GIVEN PERIOD AND SELECTION CRITERION FROM 1-DAY RECORDS
PREVIOUSLY STORED ON DISK.

USAGE
CALL CPYGRP (GRP,MNDAY,MXDAY,NRECS,KSEL,GRPT)
COMMON /DATES/ NUL1(6),MINYR,MNDAY,MAXYR,MAYDAY
COMMON /DSKREC/ NUL3(3),NXTREC

DESCRIPTION OF PARAMETERS
GRP - THE MATRIX TO BE FILLED WITH REAL*4 VALUES.
MNDAY - THE FIRST CLIMATIC DAY (DDD) OF THIS GROUP.
MXDAY - THE LAST CLIMATIC DAY (DDD) OF THIS GROUP.
NRECS - THE NUMBER OF RECORDS COPIED INTO GRP. THIS
 VALUE IS RESET TO 0 INITIALLY.
KSEL - THE SELECTION CRITERION.
GRPT - THE TRANSPOSE OF GRP.
MINYR - THE CLIMATIC YEAR (YYYY) OF THE FIRST DISK RECORD.
MINDAY - THE CLIMATIC DAY (DDD) OF THE FIRST DISK RECORD.
MAXYR - THE CLIMATIC YEAR (YYYY) OF THE LAST DISK RECORD.
MAXDAY - THE CLIMATIC DAY (DDD) OF THE LAST DISK RECORD.
NXTREC - THE ASSOCIATED VARIABLE FOR THE DISK DATA SET.

REMARKS
THE MATRIX IS STORED IN COLUMN VECTOR FORM (MODE 0).
AFTER TRANSPOSITION THE COLUMNS REPRESENT WET1,MIN1,MAX1,
WET2,MIN2,MAX2. ALL VALUES ARE REAL*4.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
GMTRA (TRANSPOSES A MODE 0 MATRIX)

METHOD
THE RECORDS IN GRP CONTAIN DATA FOR THE PREVIOUS DAY
AS WELL AS FOR THE SPECIFIED DAY. BOTH DAYS' RECORDS
MUST BE READ FROM THE DIRECT ACCESS DATA SET. ANY 2-DAY
RECORD CONTAINING A MISSING VALUE IS ELIMINATED, AS IS
ANY RECORD NOT MEETING THE SELECTION CRITERIA. ALL
NEGATIVE PRECIPITATIONS ARE SET TO 0.

SUBROUTINE CPYGRP (GRP, MNDAY, MXDAY, NRECS, KSEL, GRPT)
 LOGICAL INDSKP, INDBAD
 REAL GRP(1), REC(3), GRPT(1)
 COMMON /DATES/ NUL(6), MINYR, MNDAY, MAXYR, MAXDAY
 COMMON /DSKREC/ MAX, MIN, WET, NXTREC
 EQUIVALENCE (REC(1), MAX)

 ESTABLISH THE SELECTION CRITERIA (0, 1, OR 2 FOR N, D, OR W).
 KSEL1=(KSEL-1)/3
 KSEL2=(KSEL-1)-3*KSEL1

 CALCULATE THE NUMBER OF THE LAST DISK RECORD.
 MAXREC=MNDAY+365*(MAXYR-MINYR)

 READ THE RECORDS FOR THE PERIOD FROM ONE YEAR AT A TIME.
 NRECS=0
 NOWYR=0
 10 NOWYR=NOWYR+1
 LSTDAY=MNDAY-1
 IF (NOWYR.GT.1) GO TO 30

 CHOOSE THE FIRST YEAR AND DAY.
 IF (MXDAY.LE.MNDAY) NOWYR=2
 IF (MNDAY.GT.MNDAY.OR.NOWYR.EQ.2) GO TO 30
 LSTDAY=MNDAY

 READ THE 1-DAY RECORD WHICH JUST PRECEDES THIS PERIOD.
 30 NOWDAY=LSTDAY-1
 NXTREC=LSTDAY+365*(NOWYR-1)
 MNSUB=1+6*NRECS
 INDSKP=.TRUE.
 GO TO 50

 READ THE REMAINING RECORDS OF THIS PERIOD AND YEAR.
 USE NXTREC, THE ASSOCIATED VARIABLE.

 40 INDSKP=.FALSE.
 50 NOWDAY=NOWDAY+1
 IF (NOWDAY.GT.MXDAY) GO TO 10
 IF (NXTREC.GT.MAXREC) GO TO 100
 READ (4*NXTREC) REC
 IF (NXTREC.LT.MAXREC) FIND (4*NXTREC)
 IF (WET.LT.0.) WET=0.

 TEST THE RECORD FOR MISSING VALUES.
INDBAD=.FALSE.
IF (WET.GE.0. .AND. MIN.LT.200 .AND. MAX.LT.200) GO TO 60
INDBAD=.TRUE.
INDSKP=.TRUE.
60 IF (INDBAD) GO TO 50
IF (INDSKP) GO TO 80

SKIP THIS RECORD UNLESS THE SECOND CRITERION IS MET.

IF (KSEL2.LT.1) GO TO 70
IF (KSEL2.LT.2 .AND. WET.LT.0.01) GO TO 70
IF (KSEL2.GT.1 .AND. WET.GT.0.0) GO TO 70
INDSKP=.TRUE.
GO TO 50

COMPLETE THE LAST 2-DAY RECORD.

70 GRPT(MINSUB+3)=WET
GRPT(MINSUB+4)=MIN
GRPT(MINSUB+5)=MAX
NRECS=NRECS+1
MINSUB=MINSUB+6

SKIP THIS RECORD UNLESS THE FIRST CRITERION IS MET.

80 IF (KSEL1.LT.1) GO TO 90
IF (KSEL1.LT.2 .AND. WET.LT.0.01) GO TO 90
IF (KSEL1.GT.1 .AND. WET.GT.0.0) GO TO 90
INDSKP=.TRUE.
GO TO 50

BEGIN A NEW 2-DAY RECORD.

90 GRPT(MINSUB)=WET
GRPT(MINSUB+1)=MIN
GRPT(MINSUB+2)=MAX
IF (NXTREC.LT.30) WRITE (6,1) MAXREC,NXTREC,MAX,MIN,WET,REC
IF (NXTREC.LT.30) WRITE (6,2) GRPT(MINSUB+2),GRPT(MINSUB+1),
1 GRPT(MINSUB)
GO TO 40

TRANSPOSE THE MATRIX TO FORM GRP.

100 CALL GMTRA (GRPT,GRP,6,NRECS)
RETURN
END
SUBROUTINE
PTSTAT, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER’S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 2.

PURPOSE
TO CALCULATE AND PRINT STATISTICS CORRESPONDING TO THE
COLUMNS OF A MATRIX OF REAL NUMBERS.

USAGE
CALL PTSTAT (ARRAY, NOBS, NCOLS, IUNT, MODEL, DLBL)
COMMON /XSTATS/ AVE(8), SCP(64), COV(64)

DESCRIPTION OF PARAMETERS
ARRAY — THE MATRIX OF REAL NUMBERS.
NOBS — THE NUMBER OF ROWS IN THE MATRIX.
NCOLS — THE NUMBER OF COLUMNS IN THE MATRIX.
IUNT — THE OUTPUT DATA SET NUMBER.
MODEL — THE STATEMENT OF THE MODEL.
DLBL — AN ARRAY OF LABELS TO BE PRINTED AS HEADINGS.
XSTATS — OUTPUT STATISTICS FOR THE DESIGN MATRIX.

REMARKS
THE CORRELATION OF A CONSTANT VECTOR WITH ITSELF WILL BE
COMPUTED AS ZERO.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
CORR (CALCULATES STATISTICS FOR A MATRIX OF DATA)
DESCRBE (PROVIDES ADDITIONAL STATISTICS)
DIV (DIVIDES EACH ELEMENT OF A MATRIX BY A SCALAR)
GMPRD (MULTIPLIES TWO MODE O MATRICES)
MPY (MULTIPLIES EACH ELEMENT OF A MATRIX BY A SCALAR)
GMADD (ADDS TWO MODE O MATRICES)
MCPY (COPIES A MATRIX)
MSTR (CHANGES THE STORAGE FORM OF A MATRIX)
LCTN (CONVERTS DOUBLE SUBSCRIPTS TO SINGLE)
PTHDR (PRINTS A PAGE HEADER)
PTDECK (PUNCHES A DECK OF PARAMETERS)

METHOD
SUBROUTINES FROM THE IBM SSP PACKAGE ARE USED TO PERFORM
VECTOR ARITHMETIC.
SUBROUTINE PTSTAT (ARRAY, NOBS, NCOLS, IUNT, MODEL, DLBL)
INTEGER MODEL(68)
REAL ARRAY(NOBS, NCOLS), WRKO(64), WRKL(8), WRK2(8), WRK3(48),
 1 DSC(8,5), STD(8), COR(64)
REAL*8 DLBL(8)
COMMON /XSTATS/ AVE(8), SCP(64), COV(64)
EQUIVALENCE (WRKO(1), WRKL(1)), (WRKO(9), WRK2(1)),
 1 (WRKO(17), WRK3(1))

FIND AVERAGES, STANDARD DEVIATIONS, CROSS-PRODUCTS (CORRECTED
FOR THE MEANS), AND CORRELATIONS OF THE COLUMNS.

CALL CORRE (NOBS, NCOLS, 1, ARRAY, AVE, STD, SCP, COR, WRKL, WRK2, WRK3)

FIND VARIANCES, STANDARD ERRORS OF THE MEANS, AND COEFFICIENTS
OF VARIATION.

CALL DSCRBE (NOBS, NCOLS, AVE, STD, DSC)

FIND THE VARIANCE-COVARIANCE MATRIX.

CALL SDIV (SCP, FLOAT(NOBS-1), COV, NCOLS, NCOLS, 0)

BUILD THE UNCORRECTED CROSS-PRODUCTS MATRIX.

CALL GMPRD (AVE, AVE, WRKO, NCOLS, 1, NCOLS)
CALL SMPY (WRKO, FLOAT(NOBS), WRKO, NCOLS, NCOLS, 0)
CALL GMADD (WRKO, SCP, SCP, NCOLS, NCOLS)

CONVERT COR FROM SYMMETRIC (MODE 1) TO GENERAL (MODE 0).

CALL MCPY (COR, WRKO, NCOLS, NCOLS, 1)
CALL MSTR (WRKO, COR, NCOLS, 1, 0)

WRITE THE PAGE HEADINGS.

CALL PTHDR (IUNT, NOBS, MODEL)

WRITE THE DESCRIPTIVE TABLE.

WRITE (IUNT, 1) (DLBL(I), (DSC(I,J), J=1, 5), I=1, NCOLS)

WRITE THE UNCORRECTED CROSS-PRODUCTS MATRIX.

WRITE (IUNT, 2) (DLBL(I), I=1, NCOLS)
DO 10 I=1, NCOLS
 WRITE (IUNT, 3) DLBL(I), (SCP(LCTN(I,J, NCOLS)), J=1, NCOLS)

WRITE THE VARIANCE-COVARIANCE MATRIX.

WRITE (IUNT, 4) (DLBL(I), I=1, NCOLS)
DO 20 I=1, NCOLS
20 WRITE (IUN=5) DLBL(I), (COV(LCTN(I,J,NCOLS)), J=1,NCOLS)
WRITE THE CORRELATIONS MATRIX.
WRITE (IUN=6) (DLBL(I), I=1,NCOLS)
DO 30 I=1,NCOLS
30 WRITE (IUN=5) DLBL(I), (COR(LCTN(I,J,NCOLS)), J=1,NCOLS)
PUNCH THE COLUMN MEANS AND THEIR COVARIANCES.
CALL PTDECK (AVE,COV,NOBS,NCOLS,MODEL)
RETURN

1 FORMAT ('/4X,'DESCRIPTIVE STATISTICS'/65X,'STANDARD',4X,
'COEFFICIENT'/9X,'VARIABLE',34X,'STANDARD',6X,'ERROR OF',8X,
'OF'/11X,'NAME',10X,'MEAN',8X,'VARIANCE',6X,'DEVOLUTION',5X,
'THE MEAN VARIATION'/(10X,A8,F13.5,3F14.5,3X,F9.2,')
2 FORMAT ('/4X,'CROSS-PRODUCTS MATRIX'/17X,8(6X,A8))
3 FORMAT (10X,A8,8E14.5)
4 FORMAT ('/4X,'VARIANCE-COVARIANCE MATRIX'/17X,8(6X,A8))
5 FORMAT (10X,A8,F12.4,7F14.4)
6 FORMAT ('/4X,'CORRELATIONS MATRIX'/17X,8(6X,A8))
END
SUBROUTINE
 DSCRBE, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAW, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO CALCULATE DESCRIPTIVE STATISTICS FOR A GROUP OF
 VARIABLES, BASED ON THE MEANS AND STANDARD DEVIATIONS.

USAGE
 CALL DSCRBE (NRECS,NCOLS,AVE,STD,DSC)

DESCRIPTION OF PARAMETERS
 NRECS - THE NUMBER OF RECORDS IN THE GROUP.
 NCOLS - THE NUMBER OF VARIABLES.
 AVE - A VECTOR OF THE SIX AVERAGES.
 STD - A VECTOR OF THE SIX STANDARD DEVIATIONS.
 DSC - AN ARRAY WHICH IS TO CONTAIN THE STATISTICS.

REMARKS
 DIVIDE CHECKS ARE HANDLED BY THE SYSTEM.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 THE OUTPUT MATRIX IS IN DOUBLE SUBSCRIPT FORM. EACH
 ROW REPRESENTS A VARIABLE.

SUBROUTINE DSCRBE (NRECS,NCOLS,AVE,STD,DSC)
REAL AVE(1),STD(1),DSC(8,8)
DO 10 NOWVAR=1,NCOLS
 STORE THE ESTIMATE OF THE MEAN.
 VARAVE=AVE(NOWVAR)
 DSC(NOWVAR,1)=VARAVE
 STORE THE ESTIMATE OF THE VARIANCE.
 STDDEV=STD(NOWVAR)
DSC(NOWVAR,2) = STDDEV*STDDEV

C
STORE THE ESTIMATE OF THE STANDARD DEVIATION.

C
DSC(NOWVAR,3) = STDDEV

C
STORE THE STANDARD ERROR OF THE MEAN.

C
DSC(NOWVAR,4) = STDDEV/SQR(FLOAT(NRECS))

C
STORE THE COEFFICIENT OF VARIATION.

10 DSC(NOWVAR,5) = 100.*STDDEV/VARAVE
RETURN
END
FUNCTION
LCTN, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
sUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO LOCATE A DOUBLE-SUBSCRIPTED CELL IN A MODE 0 MATRIX.

USAGE
LCTN (NOWROW,NOWCOL,NROWS)

DESCRIPTION OF PARAMETERS
LCTN - THE ONE-DIMENSIONAL CELL LOCATION.
NOWROW - THE FIRST OF THE DOUBLE SUBSCRIPTS.
NOWCOL - THE SECOND OF THE DOUBLE SUBSCRIPTS.
NROWS - THE NUMBER OF ROWS IN THE MODE 0 MATRIX.

REMARKS
THE SSP SUBROUTINE LOC CAN ALSO HANDLE MATRICES OF
MODES 1 AND 2.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
MODE 0 MATRICES ARE STORED AS COLUMN VECTORS; CONVERSION
FROM DOUBLE TO SINGLE SUBSCRIPTING REQUIRES ONLY A SIMPLE
FORMULA.

FUNCTION LCTN (NOWROW,NOWCOL,NROWS)

VERIFY THAT THE ROW AND COLUMN NUMBERS ARE VALID.

IF (NOWROW.LT.1.OR.NOWROW.GT.NROWS) CALL ABEND ('LCTN
1 'THE SPECIFIED ROW IS NOT BETWEEN 1 AND NROWS.
I IF (NOWCOL.LT.1) CALL ABEND ('LCTN
1 'THE SPECIFIED COLUMN IS LESS THAN 1.

FIND THE LOCATION OF THE CELL.

LCTN=NOWROW+(NOWCOL-1)*NROWS
RETURN
END
SUBROUTINE

PTHDR, MODEL 1, VERSION 1.

PROGRAMMER

KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY, SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE NORTH CENTRAL REGION.

INSTALLATION

KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158 USING FORTRAN IV COMPILER G, LEVEL 2L.

PURPOSE

TO PRINT PAGE HEADINGS FOR PROGRAM LINMOD.

USAGE

CALL PTHDR (IJNT, NOBS, MODEL)
COMMON /TITL/ TITLE(17)
COMMON /STATUS/ SELECT, NOWGRP, MNDAY, MXDAY, NOWMDL

DESCRIPTION OF PARAMETERS

IJNT - THE OUTPUT DATA SET NUMBER.
NOBS - THE NUMBER OF ROWS IN THE OBSERVATION VECTOR.
MODEL - THE STATEMENT OF THE MODEL.
TITLE - THE RUN TITLE.
SELECT - A TWO-LETTER RUN SELECTION INDICATOR.
NOWGRP - THE NUMBER OF THIS GROUP OR PERIOD.
MNDAY - THE DAY NUMBER (DDD) OF THE GROUP'S FIRST DAY.
MXDAY - THE DAY NUMBER (DDD) OF THE GROUP'S LAST DAY.
NOWMDL - THE NUMBER OF THE MODEL BEING PROCESSED.

REMARKS

SELECTION WITHIN THE MODEL IS NOT SHOWN BY SELECT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED.
NONE

METHOD

SUBROUTINE PTHDR (IJNT, NOBS, MODEL)
INTEGER MODEL(68)
COMMON /TITL/ TITLE(17)
COMMON /STATUS/ SELECT, NOWGRP, MNDAY, MXDAY, NOWMDL

WRITE THE PAGE HEADINGS.

WRITE (IJNT, 1) TITLE, NOWGRP, MNDAY, MXDAY, NOBS, SELECT
IF (NOWMDL.GT.0) WRITE (IJNT, 2) NOWMDL, MODEL
RETURN

1 FORMAT (''I'',3X,17A4/4X,''PRODUCED FROM RECORDS OF THE KANSAS '',
1 ''AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY.''
2 4X,''PERIOD '',I3,'', CLIMATIC DAYS '',I3,'', ''THRU '',I3,'', ''I5,
3 ''OBSERVATIONS SELECTED FOR ('',A2,')''.
2 FORMAT (''/4X,''MODEL'',I2,': '',68A1)
END
SUBROUTINE
PTDECK, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
Supported by Project NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO OUTPUT STATION PARAMETERS AND THEIR COVARIANCES.

USAGE
CALL PTDECK (AVE,COV,NOBS,NCOLS,MODEL)
COMMON /STAT/ ASTATE,ADIVSN,ASITE,ISITE,SITE(4)
COMMON /DATES/ MINDTE,MAXDTE,NUL(8)
COMMON /STATUS/ SELECT,NOWGRP,MNDAY,MXDAY,NOWMDL

DESCRIPTION OF PARAMETERS
AVE - THE PARAMETER VALUES.
COV - THE VARIANCE-COVARIANCE MATRIX.
NOBS - THE NUMBER OF OBSERVATIONS UPON WHICH THE
PARAMETER ESTIMATES ARE BASED.
NCOLS - THE NUMBER OF PARAMETERS.
MODEL - THE MODEL STATEMENT TO BE OUTPUT.
STAT - STATION PARAMETERS TO BE OUTPUT.
DATES - THE PERIOD FOR WHICH THE PARAMETERS APPLY.
STATUS - THE SELECTION MODE AND PERIOD OF THE YEAR.

REMARKS
OUTPUT UNITS 20 TO 29 SHOULD BE AVAILABLE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
TWO HEADER CARDS ARE PRODUCED BEFORE THE DATA CARDS.
THE NUMBER OF DATA CARDS DEPENDS UPON NOWCOL; SEVEN
VALUES ARE PLACED UPON EACH CARD WITH FORMAT 3X,7F11.6.

SUBROUTINE PTDECK (AVE,COV,NOBS,NCOLS,MODEL)
INTEGER MODEL(68)
REAL AVE(NCOLS),COV(1)
COMMON /STAT/ ASTATE,ADIVSN,ASITE,ISITE,SITE(4)
COMMON /DATES/ MINDTE,MAXDTE,NUL(8)
COMMON /STATUS/ SELECT, NOWGRP, MNDAY, MXDAY, NOWMDL

SET THE OUTPUT UNIT NUMBER.
IUNT = NOWMDL + 20

WRITE THE HEADER CARDS.
WRITE (IUNT, 1) ASTATE, ADIVSN, ASITE, SITE, SELECT, MINDTE, MAXDTE,
1 MNDAY, MXDAY, NOBS, NCOLS, NOWMDL, MODEL

OUTPUT THE PARAMETERS IN STANDARD FORM.

WRITE THE VECTOR OF AVERAGES.

DO 10 MIN = 1, NCOLS, 7
 MAX = MIN + 6
 IF (MAX .GT. NCOLS) MAX = NCOLS
10 WRITE (IUNT, 2) MIN, (AVE(I), I = MIN, MAX)

WRITE THE MATRIX OF COVARIANCES.

NPOS = NCOLS * NCOLS
DO 20 MIN = 1, NPOS, 7
 MAX = MIN + 6
 IF (MAX .GT. NPOS) MAX = NPOS
20 WRITE (IUNT, 2) MIN, (COV(I), I = MIN, MAX)
RETURN

1 FORMAT (A2, A1, A4, 1X, 4A4, 2X, A2, 6I8, 'MODEL', I2, ':', 68A1)
2 FORMAT (I3, 7F11.6)
END
SUBROUTINE
 DESIGN, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO BUILD A DESIGN MATRIX FOR A LINEAR MODEL.

USAGE
 CALL DESIGN (GRP,NRECS,MODEL,Y,X,NOBS,NCOLS,SGRP)

DESCRIPTION OF PARAMETERS
 GRP - A MATRIX CONTAINING THE DATA FOR THE REGRESSION.
 NRECS - THE NUMBER OF RECORDS (ROWS) IN GRP.
 MODEL - THE STATEMENT OF THE DESIGN MODEL.
 Y - THE DEPENDENT VARIABLES CORRESPONDING TO X.
 X - THE DESIGN MATRIX.
 NOBS - A SCALAR WHICH WILL BE SET TO THE NUMBER OF
 ROWS IN X AND Y.
 NCOLS - A SCALAR SET TO THE NUMBER OF COLUMNS OF X.
 SGRP - A WORK AREA THE SAME SIZE AS GRP.

REMARKS
 ALL MATRICES ARE IN COLUMN VECTOR FORM (MODE 0) AND
 CONTAIN REAL*4 VALUES.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 IDIGIT (CONVERTS A DIGIT FROM A-FORMAT TO I-FORMAT)
 SUBST (FILLS AN INCIDENCE VECTOR FOR SELECTION CRITERIA)
 SCALAR (REDUCES A VECTOR TO A SCALAR)
 SUBMX (COPIES A SPECIFIED SUBSET OF MATRIX ROWS)
 CCPY (COPIES A MATRIX COLUMN)
 MCPPY (COPIES AN ENTIRE MATRIX)
 SCLA (SETS A MATRIX COLUMN EQUAL TO A SCALAR)
 CSUM (SUMS THE COLUMNS OF A MATRIX)
 SSUB (SUBTRACTS A SCALAR FROM A MATRIX COLUMN)
 GTPRD (MULTIPLIES A TRANSPPOSED MATRIX BY A MATRIX)

METHOD
 EACH RECORD IN GRP IS OF THE FORM WET1,MIN1,MAX1,WET2,
 MIN2,MAX2. THE PROPER ROWS ARE CHosen BY MEANS OF
 THE SELECTION CRITERIA, THEN THE PROPER COLUMNS ARE
 CHosen AND MODIFIED ACCORDING TO THE MODEL.
THE INPUT MODEL SHOULD BE OF THE FORM:
S(DW):V5=C,D1,D4,P123,D2,D3,P156 WHERE
S IS FOR SELECT (THIS TERM IS OPTIONAL),
N FOR NOT CHECKED, D FOR DRY, AND W FOR WET,
V IS FOR AN UNTRANSFORMED VARIABLE (USED HERE FOR Y),
C IS FOR A CONSTANT VECTOR OF ONES,
D IS FOR A DEVIATE FROM ITS COLUMN AVERAGE,
I IS FOR AN INCIDENCE VECTOR FOR ABOVE-ZERO ENTRIES,
P IS FOR THE PRODUCT OF TWO OTHER COLUMNS OF X.

THE INPUT MODEL IS IN A-FORMAT FORM. THE PUNCTUATION IS
TO BE DELETED AND THE NUMBERS CONVERTED TO I-FORMAT.
THE NUMBERS ARE LATER DELETED AFTER THEY ARE USED.

SUBROUTINE DESIGN (GRP,NRECS,MODEL,Y,X,NOBS,NCOLS,SGRP)
INTEGER MODEL(68),MDL(68),S/'S'/,V/'V'/,D/'D'/,C/'C'/,
1 P/'P'/,N/'N'/,AO/'O'/,A9/'9'/
REAL GRP(1),SGRP(1),X(1),Y(1),WRK(2),CND(3,2),COLTOT(8)
COMMON /SCLR/ NCND
EXTERNAL SCALAR

COMPRESS THE STATEMENT OF THE MODEL.
NOWMOD=0
NOWMDL=0
NCOLS=-1

STORE THE SELECTION CRITERIA, IF ANY.
KSEL1=-1
KSEL2=-1
IF (MODEL(1).NE.S) GO TO 20
NOWMOD=6
IF (MODEL(3).EQ.N) GO TO 10
KSEL1=0
IF (MODEL(3).EQ.D) GO TO 10
KSEL1=1
10 IF (MODEL(4).EQ.N) GO TO 20
KSEL2=0
IF (MODEL(4).EQ.D) GO TO 20
KSEL2=1

REMOVE PUNCTUATION MARKS FROM THE MODEL.
20 NOWMOD=NOWMOD+1
IF (NOWMOD.GT.68) GO TO 50
KEEP=MODEL(NOWMOD)
IF (KEEP.LT.C.OR.KEEP.GT.A9) GO TO 20
NOWMDL=NOWMDL+1
IF (KEEP.GT.AO.AND.KEEP.LE.A9) GO TO 30
NCOLS=NCOLS+1
GO TO 40
30 CALL IDIGIT (KEEP, KEEP)
40 MDL(NOWMDL)=KEEP
GO TO 20

C
C SELECT AND COPY THE ROWS TO BE INCLUDED IN THE MODEL.
C
50 NCND=0
C
C SET THE FIRST SELECTION CRITERION, IF ANY.
C
IF (KSEL1.LT.0) GO TO 60
NCND=1
CND(1,1)=1.
CND(2,1)=2.
CND(3,1)=0.
IF (KSEL1.EQ.0) GO TO 60
CND(2,1)=6.
C
C SET THE SECOND SELECTION CRITERION, IF ANY.
C
60 IF (KSEL2.LT.0) GO TO 70
NCND=NCND+1
CND(1,NCND)=4.
CND(2,NCND)=2.
CND(3,NCND)=0.
IF (KSEL2.EQ.0) GO TO 70
CND(2,NCND)=6.
C
C COPY THE SELECTED ROWS OF THE INPUT MATRIX.
C
70 IF (NCND.LT.1) GO TO 80
CALL SUBST (GRP,CND,WRK,SCALAR,Y,NRECS,6,NCND)
CALL SUBMX (GRP,SGRP,Y,NRECS,6,NOBS)
GO TO 90
80 CALL MCPY (GRP,SGRP,NRECS,6,0)
NOBS=NRECS
C
C COPY THE PROPER COLUMN INTO THE Y VECTOR.
C
90 CALL CCOPY (SGRP,MDL(2),Y,NOBS,6,0)
C
C FILL THE DESIGN MATRIX, X.
C
FIRST PASS: VARIABLES, CONSTANTS, AND INCIDENCE VARIABLES.
FURTHER CONDENSE THE STATEMENT OF THE MODEL.

NOWCOL=0
NOWMDL=1
NEWMDL=0
100 NOWCOL=NOWCOL+1
IF (NOWCOL.GT.NCOLS) GO TO 130
NOWMDL=NOWMDL+2
NEWMDL=NEWMDL+1
KND=MDL(NOWMDL)
MDL(NEWMDL)=KND

COPY THE VARIABLES (V AND D SPECIFICATIONS).

IF (KND.NE.V.AND.KND.NE.D) GO TO 110
CALL CCOPY (SGRP, MDL(NOWMDL+1), X(NOBS*(NOWCOL-1)+1), NOBS, 6, 0)
GO TO 100

STORE A COLUMN OF ONES (C AND P SPECIFICATIONS).

110 IF (KND.NE.C.AND.KND.NE.P) GO TO 120
CALL SCAL (X(NOBS*(NOWCOL-1)+1), 1, NOBS, 1, 0)
NOWMDL=NOWMDL-1
IF (KND.NE.P) GO TO 100
NOWMDL=NOWMDL+2
MDL(NEWMDL+1)=MDL(NOWMDL)
MDL(NEWMDL+2)=MDL(NOWMDL+1)
NEWMDL=NEWMDL+2
GO TO 100

STORE AN INCIDENCE VARIABLE (I SPECIFICATION).

120 CND(1,1)=MDL(NOWMDL+1)
CND(2,1)=6.
CND(3,1)=0.
CALL SUBST (SGRP, CND, WRK, SCALAR, X(NOBS*(NOWCOL-1)+1), NOBS, 6, 1)
GO TO 100

SECOND PASS: CONVERSION OF VARIATES TO DEVIATES.

130 CALL CSUM (X, COLTOT, NOBS, NCOLS, 0)
NOWCOL=0
NOWMDL=0

140 NOWCOL=NOWCOL+1
NOWMDL=NOWMDL+1
IF (NOWCOL.GT.NCOLS) GO TO 160
KEEP=MDL(NOWMDL)
IF (KEEP.NE.D) GO TO 150
AVE=COLTOT(NOWCOL)/NOBS
CALL SSUB (X(NOBS*(NOWCOL-1)+1), AVE, X(NOBS*(NOWCOL-1)+1), NOBS, 1, 0)
GO TO 140

150 IF (KEEP.EQ.P) NOWMDL=NOWMDL+2
GO TO 140

THIRD PASS: INTERACTIONS (PRODUCTS OF OTHER COLUMNS).

160 NOWCOL=0
NOWMDL=0

170 NOWCOL=NOWCOL+1
NOWMDL=NOWMDL+1
IF (NOWCOL.GT.NCOLS) RETURN
IF (MDL(NOWMDL).NE.P) GO TO 170
ISUB=NOBS*(NOWCOL-1)
ISUB1 = NOBS * (MDL(NOWMDL+1) - 1)
ISUB2 = NOBS * (MDL(NOWMDL+2) - 1)
DO 180 NOWROW = 1, NOBS
 180 X(I$UB+NOWROW) = X(I$UB1+NOWROW) * X(I$UB2+NOWROW)
NOWMDL = NOWMDL + 2
GO TO 170
END
SUBROUTINE
 IDIGIT, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO CONVERT A SINGLE DIGIT FROM A-FORMAT TO I-FORMAT.

USAGE
 CALL IDIGIT (AFORM,IFORM)

DESCRIPTION OF PARAMETERS
 AFORM - A VARIABLE CONTAINING THE CHARACTER.
 IFORM - AN INTEGER SET TO THE VALUE OF AFORM.

REMARKS
 AFORM MAY BE EITHER REAL OR INTEGER.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 TABLE LOOK-UP IS USED.

SUBROUTINE IDIGIT (AFORM,IFORM)
 INTEGER INTEGR(9)/'1','2','3','4','5','6','7','8','9'/,AFORM
 DO 10 IFORM=1,9
 IF (AFORM.EQ.INTEGR(IFORM)) GO TO 20
 10 CONTINUE
 IFORM=0
 20 RETURN
END
SUBROUTINE
 SCALAR, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO REDUCE A SELECTION VECTOR TO A SINGLE ELEMENT.

USAGE
 CALL SCALAR (VECTOR,RESULT)
 COMMON /SCLR/ NCND

DESCRIPTION OF PARAMETERS
 VECTOR - A VECTOR OF ONES AND ZEROS.
 RESULT - A SINGLE ELEMENT TO BE SET TO 1 OR 0.
 NCND - THE LENGTH OF THE VECTOR.

REMARKS
 THE INPUT VECTOR OR SCALAR IS PROVIDED BY SUBROUTINE
 SUBST OF THE IBM SCIENTIFIC SUBROUTINE PACKAGE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 RESULT IS THE PRODUCT OF THE VECTOR ELEMENTS.
 MULTIPLICATION REPRESENTS LOGICAL INTERSECTION, THE 'AND'
 OPERATOR.

SUBROUTINE SCALAR (VECTOR,RESULT)
 COMMON /SCLR/ NCND
 REAL VECTOR(NCND)
 RESULT=1.
 DO 10 I=1,NCND
 10 RESULT=RESULT*VECTOR(I)
RETURN
END
SUBROUTINE
 PTREG, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO COMPUTE AND PRINT THE PARAMETERS AND ANALYSIS OF
 A MULTIPLE REGRESSION.

USAGE
 CALL PTREG (X,Y,NOBS,NCOLS,IUNT,MODEL,DLBL)
 COMMON /XSTATS/ AVE(8),SCP(64),COV(64)

DESCRIPTION OF PARAMETERS
 X - THE DESIGN MATRIX.
 Y - THE VECTOR OF OBSERVATIONS.
 NOBS - THE NUMBER OF OBSERVATIONS.
 NCOLS - THE NUMBER OF COLUMNS IN THE DESIGN MATRIX.
 IUNT - THE OUTPUT DATA SET NUMBER.
 MODEL - THE MODEL TO BE PRINTED.
 DLBL - A VECTOR OF VARIABLE NAMES.
 STAT - STATISTICS RELATING TO THIS DESIGN MATRIX.

REMARKS
 IT IS ASSUMED THAT THE FIRST COLUMN REPRESENTS A
 CONSTANT (OR MEAN) TERM.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 GTPRD (PREMULTIPLIES A MATRIX BY ITS TRANSPOSE)
 MCPY (COPIES A MATRIX)
 MNV (FINDS THE INVERSE OF A MATRIX)
 ABEND (WRITES A MESSAGE AND TERMINATES)
 GMTRA (TRANSPOSES A MODE 0 MATRIX)
 GMPRD (MULTIPLIES TWO MODE 0 MATRICES)
 PTAOV (WRITES AN ANALYSIS OF VARIANCE TABLE)
 SMPY (MULTIPLIES A MATRIX BY A SCALAR)
 LCTN (CONVERTS DOUBLE SUBSCRIPTS TO SINGLE)
 PTDECK (PUNCHES THE PARAMETERS AND THEIR COVARIANCES)

METHOD
 A SUBROUTINE IS CALLED TO DO THE ANALYSIS OF VARIANCE.
 SSP SUBROUTINES ARE CALLED TO DO VECTOR ARITHMETIC.
SUBROUTINE PTREG (X, Y, NOBS, NCOLS, IUNT, MODEL, DLBL)
INTEGER MODEL(68)
REAL XTX(64), XTXINV(64), BTA(7), COVBTA(64), WRK1(8), WRK2(8),
 1 F(7)/2.71, 2.30, 2.08, 1.94, 1.85, 1.77, 1.72/, X(NOBS, NCOLS),
 2 Y(NOBS)
REAL*8 DLBL(8)
COMMON /XSTATS/ AVE(8), SCP(64), COV(64)
COMMON /EQUIV/ XT(7000), XGNV(7000), YHAT(1000)

FORM X'X, THE MATRIX OF CROSS-PRODUCTS.

CALL GTPRD (X, X, XTX, NOBS, NCOLS, NCOLS)

INVERT X'X, THE CROSS-PRODUCTS MATRIX.

CALL MCPY (XTX, XTXINV, NCOLS, NCOLS, 0)
CALL MINV (XTXINV, NCOLS, DEXTX, WRK1, WRK2)
IF (DETXX .EQ. 0.) CALL ABEND ('PTREG ',
 1 'THE MATRIX X'X IS SINGULAR. ')

COMPUTE THE MCORE-PENROSE GENERALIZED INVERSE OF X.

CALL GMTRA (X, XT, NOBS, NCOLS)
CALL GMPRD (XTXINV, XT, XGNV, NCOLS, NCOLS, NOBS)

FIND THE VECTOR OF PARAMETER ESTIMATES.

CALL GMPRD (XGNV, Y, BTA, NCOLS, NOBS, 1)

PERFORM THE ANALYSIS OF VARIANCE.

WRITE THE PAGE HEADING AND THE MODEL.

CALL PTHDR (IUNT, NOBS, MODEL)

FIND THE TOTAL SUM OF SQUARES AND THOSE FOR THE MEAN
AND THE REGRESSION.

NVARS = NCOLS + 1
SSTOT = SCP(NVARS*NVARS)
SSAVE = NOBS*(AVE(NVARS))**2
CALL GMPRD (X, BTA, YHAT, NOBS, NCOLS, 1)
CALL GTPRD (Y, YHAT, SSREG, NOBS, 1, 1)
SSREG = SSREG - SSAVE

COMPUTE AND PRINT THE REMAINING VALUES.

CALL PTAOV (SSTOT, SSAVE, SSREG, NOBS, NCOLS, MSRES, IUNT)

COMPUTE THE COVARIANCE MATRIX.
CALL SMPY(XTXINV, MSRES, COVBTA, NCOLS, NCOLS, 0)

FIND AND WRITE RELATED STATISTICS FOR EACH PARAMETER ESTIMATE.

WRITE THE TABLE HEADINGS AND SET THE CONSTANTS.

WRITE (IUNIT, 1)
FACTOR = SQRT(NCOLS * F(NCOLS))
VARY = COVINVARS * NVARS
NDFRES = NOBS - NCOLS
SSCFM = SSTOT - SSAVE
DO 10 NOWCOL = 1, NCOLS

FIND THE STANDARD DEVIATION OF EACH PARAMETER ESTIMATE.

BTANOW = BTA(NOWCOL)
SDVBTA = SQRT(COVBTA(LCTN(NOWCOL, NOWCOL, NCOLS)))

FIND 95% SIMULTANEOUS CONFIDENCE INTERVALS FOR THE PARAMETER
ESTIMATES (BASED ON INFINITE D.F. FOR MSRES).

SUBBTA = BTANCW - (FACTOR * SDVBTA)
SUPBTA = BTANCW + (FACTOR * SDVBTA)

FIND THE STANDARDIZED PARAMETER ESTIMATE.

VARCOL = COV(LCTN(NOWCOL, NOWCOL, NVARS))
STDBTA = BTANOW * SQRT(VARCOL / VARY)

FIND THE SUM OF SQUARES COMPONENT DUE TO THIS PARAMETER.

SSBTA = BTANOW * BTANOW / XTXINV(LCTN(NOWCOL, NOWCOL, NCOLS))

FIND THE T-RATIO AND ITS TWO-TAILED PROBABILITY.

T = BTANOW / SDVBTA
TPRB = TPROB(T, NDFRES)

COMPUTE THE VALUE OF R-SQUARED WITHOUT THIS PARAMETER.
THIS HAS NO MEANING FOR A CONSTANT TERM.

R2DEL = (SSREG - SSBTA) / SSCFM
IF (NOWCOL .EQ. 1) R2DEL = 1111.

WRITE THE PARAMETER ESTIMATES AND THEIR RELIABILITIES.

10 WRITE (IUNIT, 2) DLBL(NOWCOL), BTA(NOWCOL), SDVBTA, SUBBTA, SUPBTA,
 1 STDBTA, SSBTA, T, TPRB, R2DEL

WRITE THE MATRIX OF COVARIANCES OF THE PARAMETER ESTIMATES.

WRITE (IUNIT, 3) (DLBL(NOWCOL), NOWCOL = 1, NCOLS) DO 20 NOWCOL = 1, NCOLS
20 WRITE (IUNIT,4) DLBL(NOWCOL), (COVBTA(NOWCOL+(I-1)*NCOLS),
 1 I=1,NCOLS)
C PUNCH THE PARAMETER ESTIMATES AND THEIR COVARIANCES.
C
 CALL PTDECK (BTA,COVBTA,NOBS,NCOLS,MODEL)
RETURN
C

1 FORMAT (//4X,'PARAMETER ESTIMATES'//22X,'PARAMETER',6X,
 1 'STANDARD',8X,'95% SIMULTANEOUS',7X,'STANDARD',5X,'SUMS OF',
 2 7X,'T',9X,'T',8X,'R**2'/22X,'ESTIMATES',5X,'DEVIATIONS',5X,
 3 'CONFIDENCE INTERVALS',7X,'BETAS',6X,'SQUARES',5X,'RATIO',
 4 5X,'PROB',5X,'DELETE')
2 FORMAT (10X,A8,F12.4,F14.4,F15.4,'--',F8.4,F13.3,F13.0,F10.2,
 1 F10.3,5X,F6.4)
3 FORMAT (//4X,'COVARIANCES OF THE PARAMETER ESTIMATES'//23X,
 1 8(A8,6X))
4 FORMAT (10X,A8,F12.4,F12.4)
END
FUNCTION TPROB, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
Supported by project NC-94: climatic resources of the
north central region.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
To find the probability of a value from the central
t distribution being further from zero than a
specified value.

USAGE
TPROB (T, NDF)

DESCRIPTION OF PARAMETERS
TPROB - the two-tailed probability of exceeding T.
T - the specified value.
NDF - the number of degrees of freedom.

REMARKS
This is an approximation based on large NDF.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
T is converted to an approximately normal deviate (see
AMS-55, 26.7.8). The normal quantile is then found with
absolute error less than 1.5E-7 (see AMS-55, 26.2.19,
from hastings' approximations for digital computers).

FUNCTION TPROB (T, NDF)
REAL*8 X
DF=NDF

TRANSFORM TO A NORMAL DEVIATE.
X=ABS(T)*(1.-.25/DF)/SQRT(1.+T*T/(2.*DF))

FIND THE QUANTILE OF THE NORMAL DISTRIBUTION.
TPROB=1.0D0-5.00-1/(1.0D0+X*(4.9867347D-2+X*(2.11410061D-2...
CONVERT THE QUANTILE TO A TWO-TAILED PROBABILITY.

TPROB = 2.0 * (1.0 - TPROB)
RETURN
END
SUBROUTINE
PTAOV, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
Supported by Project NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO PRINT AN ANALYSIS OF VARIANCE TABLE FOR A REGRESSION.

USAGE
CALL PTAOV (SSTOT,SSAVE,SSREG,NOBS,NCOLS,FMSRES,IUNT)

DESCRIPTION OF PARAMETERS
SSTOT - THE TOTAL SUM OF SQUARES.
SSAVE - THE CORRECTION FOR THE MEAN.
SSREG - THE SUM OF SQUARES DUE TO THE REGRESSION,
 AFTER CORRECTION FOR THE MEAN.
NOBS - THE NUMBER OF OBSERVATIONS.
NCOLS - THE NUMBER OF COLUMNS IN THE DESIGN MATRIX.
FMSRES - THE RESIDUAL MEAN SQUARE TO BE RETURNED.
IUNT - THE OUTPUT DATA SET NUMBER.

REMARKS
IT IS ASSUMED THAT THE MEAN IS INCLUDED IN THE DESIGN.
ONE DEGREE OF FREEDOM IS ALLOWED FOR IT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FPORB (FINDS THE PROBABILITY OF AN F RATIO)

METHOD
THE TOTAL SUM OF SQUARES IS BROKEN INTO SUMS OF SQUARES
DUE TO THE MEAN AND THE CORRECTED TOTAL. THE LATTER IS
BROKEN INTO THE SUMS OF SQUARES FOR REGRESSION AND FOR
RESIDUAL ERROR.

SUBROUTINE PTAOV (SSTOT,SSAVE,SSREG,NOBS,NCOLS,FMSRES,IUNT)
CALCULATE THE DEGREES OF FREEDOM.

NDFTOT=NOBS
NDFAVE=1
NDFCFM=NDFTOT-NDFAVE
NDFREG=NCOLS-NDFAVE
NDFRES=NDFCFM-NDFREG

C CALCULATE THE REMAINING SUMS OF SQUARES.
SSCFM=SSTOT-SSAVE
SSRES=SSCFM-SSREG

C CALCULATE THE MEAN SQUARES.
FMSAVE=SSAVE
FMSREG=SSREG/NDFREG
FMSRES=SSRES/NDFRES

C CALCULATE THE F RATIOS FOR THE MEAN AND REGRESSION.
FAVE=FMSAVE/FMSRES
FREG=FMSREG/FMSRES

C FIND THE PROBABILITIES OF THE F RATIOS (ASSUMING CENTRALITY).
PAVE=FPROB(FAVE,NDFAVE,NDFRES)
PREG=FPROB(FREG,NDFREG,NDFRES)

C CALCULATE THE SQUARED MULTIPLE CORRELATION COEFFICIENT.
R2=SSREG/SSCFM

C WRITE THE ANALYSIS OF VARIANCE TABLE.
WRITE (IUNT,1) NDTOTOT,SSTOT,NDFAVE,SSAVE,FMSAVE,FAVE,PAVE,
1 NDFCFM,SSCFM,NDFREG,SSREG,FMSREG,FREG,PREG,NDFRES,SSRES,
2 FMSRES,R2
RETURN

1 FORMAT (//4X,'ANALYSIS OF VARIANCE'//44X,'SUM OF',9X,'MEAN',
1 13X,'F',14X,'F'//10X,'SOURCE',14X,'D.F.',10X,'SQUARES',7X,
2 'SQUARE',10X,'RATIO',10X,'PROB.'//10X,'TOTAL',117,F19.0//13X,
3 'MEAN',116,4X,F14.0,2F14.2,F15.3//13X,'CORRECTED TOTAL',15,
4 F18.0//16X,'REGRESSION',18,3X,F14.0,2F14.2,F15.3//16X,
5 'RESIDUAL',110,3X,F14.0,F14.2//10X,'R**2 = ',F7.5)
END
FUNCTION
 FPROB, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO FIND THE PROBABILITY OF A VALUE FROM THE CENTRAL
 F DISTRIBUTION EXCEEDING THE SPECIFIED VALUE.

USAGE
 FPROB (F,NDFNMR,NDFDNM)

DESCRIPTION OF PARAMETERS
 FPROB - ONE MINUS THE QUANTILE CORRESPONDING TO F.
 F - THE SPECIFIED VALUE.
 NDFNMR - DEGREES OF FREEDOM IN THE NUMERATOR.
 NDFDNM - DEGREES OF FREEDOM IN THE DENOMINATOR.

REMARKS
 THE SOURCE OF THIS CODING IS UNKNOWN.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 THE CONVERGENT SERIES EXPANSION OF POSITIVE TERMS: SEE
 AMS-55, PAGE 944.

FUNCTION FPROB (F,NDFNMR,NDFDNM)

F-PROBABILITY VIA CONVERGENT SERIES OF POSITIVE TERMS.

A=.5*NDFNMR
B=.5*NDFDNM
TEMP=B+A*F
X=A*F/TEMP
FPROB=1.0
IF(F.LE.0.0.OR.X.LE.0.0)RETURN
XC=B/TEMP
AB=A+B
CON=0.
SGN=+1.
IF(F.GE.1.0)GO TO 10
TEMP=A
A=B
B=TEMP
TEMP=XC
XC=X
X=TEMP
CON=1.
SGN=-1.

CONVERGENT SERIES EXPANSION.

10 TOP=A+B
BOT=B+1.
SUM=1.
TERM=1.
20 TEMP=SUM
TERM=TERM*(TOP/BOT)*XC
SUM=SUM+TERM
TOP=TOP+1.
BOT=BOT+1.
IF(SUM.GT_TEMP)GO TO 20
FPRED=CON*SGN*EXP(A+ALOG(X)+B+ALOG(XC)+ALGAMA(AB)-ALGAMA(A))
1 -ALGAMA(B))*SUM/B
RETURN
END
PROGRAM
SIMREC, MODEL 1, VERSION 2.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 370/158
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO SIMULATED DAILY PRECIPITATION AND TEMPERATURE READINGS
FROM INPUT PARAMETERS

USAGE
THE INPUT STREAM MUST CONTAIN THE FOLLOWING:
A STANDARD TITLE CARD
A STANDARD WDL TITLE CARD (USED AS A COMMENT).
A STANDARD STATION CARD.
A STANDARD DATES CARD.
AN ISEE CARD.
A STANDARD DECK OF TRANSITION PROBABILITIES
(.01 LEVEL).
A DECK OF PRECIPITATION SIMULATION PARAMETERS.
A NGRPS CARD.
A DECK OF GROUP MEANS.
STANDARD DECKS OF THE FOLLOWING:
AVEMIN, SDVMIN, AVEMAX, SDVMAX.
CNSMIN, PREOC1, PSTOC1, MNMIN, MXMIN.
CNSMAX, PREOC2, PSTOC2, MXMAX, MNMAX.

DESCRIPTION OF PARAMETERS
ISEED - ANY EIGHT-DIGIT INTEGER. TWO RUNS FOR ONE
STATION WILL GENERATE THE SAME OUTPUT UNLESS
THE STARTING DATE OR THE SEED IS CHANGED.
NGRPS - THE NUMBER OF PRECIPITATION INTERVALS.
AVEMIN - AVERAGE DAILY MINIMUM TEMPERATURES.
SDVMIN - STANDARD DEVIATIONS OF THE MINIMUM TEMPERATURES.
AVEMAX - AVERAGE DAILY MAXIMUM TEMPERATURES.
SDVMAX - STANDARD DEVIATIONS OF THE MAXIMUM TEMPERATURES.
CNSMIN - CONSTANT TERM IN THE REGRESSION FOR THE MINIMUM.
PREOC1 - ADDITIVE TERM FOR PREWT PRECIPITATION (MIN).
PSTOC1 - ADDITIVE TERM FOR PSTWT PRECIPITATION (MIN).
MNMIN - THE PARAMETERS FOR THE EFFECT OF THE LAST DAY'S
MINIMUM TEMPERATURE ON THE NEW MINIMUM.
MXMIN - THE PARAMETERS FOR THE EFFECT OF THE LAST DAY'S
MAXIMUM TEMPERATURE ON THE NEW MINIMUM.
CNSMIN - CONSTANT TERM IN THE REGRESSION FOR THE MAXIMUM.
PREOC2 - ADDITIVE TERM FOR PREWET PRECIPITATION (MAX).
PSTOC2 - ADDITIVE TERM FOR PSTWET PRECIPITATION (MAX).
MXMAX - THE PARAMETERS FOR THE EFFECT OF THE LAST DAY'S
 MAXIMUM TEMPERATURE ON THE NEW MAXIMUM.
MNMAX - THE PARAMETERS FOR THE EFFECT OF THE SAME DAY’S
 MINIMUM TEMPERATURE ON THE NEW MAXIMUM.
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY FOR FURTHER
INFORMATION ABOUT THE STANDARD INPUT CARDS OR THE INPUT
DECKS.

REMARKS
SIMULATED DAILY RECORDS ARE WRITTEN ON UNIT 9. FORTRAN
FORMATS ARE USED, SO INITIAL ZEROES ARE SUPPRESSED.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
RDTITL (READS A STANDARD WDL TITLE CARD)
RDSTAT (READS A STANDARD WDL STATION CARD)
RDDDTE (READS A STANDARD WDL DATES CARD)
CDFGMM (BUILDS GAMMA CUMULATIVE DISTRIBUTION FUNCTIONS)
INTERP (LINEARLY INTERPOLATES MISSING VECTOR ELEMENTS)
DAYWET (GENERATES A RANDOM PRECIPITATION)
INCDTE (INCREMENTS A CALENDAR DATE)
INCDAY (INCREMENTS A DAY NUMBER)
RNMDEV (GENERATES TWO RANDOM NORMAL DEVIATES)
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
CUMULATIVE DISTRIBUTION FUNCTIONS ARE CALCULATED BY
SUBROUTINE CDFGMM. THESE VALUES ARE USED BY
SUBROUTINE DAYWET TO CALCULATE THE PRECIPITATION ON
ANY GIVEN DAY. MAX AND MIN TEMPERATURES ARE THEN
SIMULATED BY ADDING A NORMAL DEVIATE (WITH THE PROPER
VARIANCE) TO THE AVERAGE MAX AND MIN TEMPERATURES FOR
THE PROPER DAY AND PRECIPITATION HISTORY. A PORTION OF
THE PREVIOUS TEMPERATURES IS ALSO CARRIED INTO THE NEW
ONES.

LOGICAL IEND/ .FALSE. /, IINDYR, IINDMO
REAL TOTWET/0.0/, PRECIP/0.0/, AVEMIN(365), SDEVMIN(365), AVEMAX(365),
1 SDVMAX(365), CNSMIN(365), PREOC1(365), PSTOC1(365), MNMIN(365),
2 MXMIN(365), CNSMAX(365), PREOC2(365), PSTOC2(365), MXMAX(365),
3 MNMAX(365)
COMMON /DATES/ NOWDTE, MAXDTE, NULKAL(4), KLIYR, KLIDAY, MAXYR,
1 MAXDAY
COMMON /STAT/ ASTATE, AIVSN, ASITE, ISITE, SITE(5)
COMMON /RND!/ ISEED
COMMON /MEANS/ NGRPS, GRPAVE(120)
COMMON /PBDRY/ AFTORY(365), AFTWET(365)
COMMON /PRMTRS/ BETA1(13), ALPHAL1(13), BETA2(13), GAMMA2(13),
1 DELTA2(13)
COMMON /GMMA/ CDF(6,120,13)
READ AND ECHO THE RUN PARAMETERS.

CALL RDTITL (INDEND)
CALL RDOPTIL (INDEND)
CALL RDATE (INDEND)
READ (5,1) ISEEED
WRITE (6,2) ISEEED

READ AND ECHO THE TABLE OF TRANSITION PROBABILITIES. FILL IN
THE MISSING VALUES BY LINEAR INTERPOLATION.

READ (5,3) (AFTDRY(I),I=4,365,7)
CALL INTERP (AFTDRY,4,7)
READ (5,3) (AFTWET(I),I=4,365,7)
CALL INTERP (AFTWET,4,7)
WRITE (6,4) AFTDRY,AFTWET

READ, ECHO THE TABLE OF SIMULATION PARAMETERS FOR THIS STATION.

READ (5,5) (BETA1(I),ALPHA1(I),BETA2(I),GAMMA2(I),DELTAM(I),
1 I=1,13)
WRITE (6,6) (BETA1(I),ALPHA1(I),BETA2(I),GAMMA2(I),DELTAM(I),
1 I=1,13)

READ AND CHECK THE VECTOR OF PRECIPITATION VALUES USED AS CLASS
MEANS IN THE FORMATION OF CUMULATIVE DISTRIBUTION FUNCTIONS.

READ (5,7) NGRPS,(GRPAVE(I),I=1,NGRPS)
IF (NGRPS.LT.2.OR.NGRPS.GT.120) CALL ABEND ('SIMREC ',
1 'THE NUMBER OF GROUPS IS LESS THAN 2 OR GREATER THAN 120. ')
DO 30 I=2,NGRPS
IF (GRPAVE(I).LT.GRPAVE(I-1)) CALL ABEND ('SIMREC ',
1 'THE GROUP AVERAGES DO NOT FORM AN ASCENDING SEQUENCE. ')
30 CONTINUE

FILL THE CUMULATIVE DISTRIBUTION FUNCTION FOR EACH PERIOD.
ECHO THEM ALONG WITH THE GROUP MEANS.

CALL CDFGMM
DO 40 NOWPRD=1,13
40 WRITE (6,8) (GRPAVE(J),(CDF(I,J,NOWPRD),I=1,6),J=1,NGRPS)

READ, INTERPOLATE, AND ECHO THE AVERAGE MINIMUM AND MAXIMUM
TEMPERATURES AND STANDARD DEVIATIONS.

READ (5,9) (AVEMIN(I),I=7,365,14)
CALL INTERP (AVEMIN,7,14)
WRITE (6,10) AVEMIN
READ (5,9) (SDVMIN(I),I=7,365,14)
CALL INTERP (SDVMIN,7,14)
WRITE (6,11) SDVMIN
READ (5,9) (AVEMAX(I),I=7,365,14)
CALL INTERP (AVEMAX,7,14)
WRITE (6,12) AVEMAX
READ (5,9) (SDVMAX(I), I=7,365,14)
CALL INTERP (SDVMAX, 7,14)
WRITE (6,13) SDVMAX

C READ, INTERPOLATE, AND ECHO THE PARAMETERS FOR THE MIN TEMP.
C
READ (5,9) (CNSMIN(I), I=7,365,14)
CALL INTERP (CNSMIN, 7,14)
WRITE (6,14) CNSMIN
READ (5,9) (PREOC1(I), I=7,365,14)
CALL INTERP (PREOC1, 7,14)
WRITE (6,15) PREOC1
READ (5,9) (PSTOC1(I), I=7,365,14)
CALL INTERP (PSTOC1, 7,14)
WRITE (6,16) PSTOC1
READ (5,9) (MNMIN(I), I=7,365,14)
CALL INTERP (MNMIN, 7,14)
WRITE (6,17) MNMIN
READ (5,9) (MXMIN(I), I=7,365,14)
CALL INTERP (MXMIN, 7,14)
WRITE (6,18) MXMIN

C READ, INTERPOLATE, AND ECHO THE PARAMETERS FOR THE MAX TEMP.
C
READ (5,9) (CNSMAX(I), I=7,365,14)
CALL INTERP (CNSMAX, 7,14)
WRITE (6,19) CNSMAX
READ (5,9) (PRECC2(I), I=7,365,14)
CALL INTERP (PRECC2, 7,14)
WRITE (6,20) PRECC2
READ (5,9) (PSTOC2(I), I=7,365,14)
CALL INTERP (PSTOC2, 7,14)
WRITE (6,21) PSTOC2
READ (5,9) (MXMAX(I), I=7,365,14)
CALL INTERP (MXMAX, 7,14)
WRITE (6,22) MXMAX
READ (5,9) (MNMAX(I), I=7,365,14)
CALL INTERP (MNMAX, 7,14)
WRITE (6,23) MNMAX

C SET THE WEATHER CONDITIONS FOR THE INITIAL 'PREVIOUS' DAY TO
C REASONABLE VALUES.
C
LSTDAY=KLIDAY-1
IF (LSTDAY.LT.1) LSTDAY=365
NEWWET=0
PSTMIN=AVEMIN(LSTDAY)
PSTMAX=AVEMAX(LSTDAY)
GO TO 60

C SIMULATE EACH DAY'S PRECIPITATION AND TEMPERATURE.
C
INCREMENT THE DATE COUNTERS.
50 IF (KLIDAY.EQ.MAXDAY.AND.KLIYR.EQ.MAXYR) GO TO 70
 LSTDAY=KLIDAY
 CALL INCOTE (NOWDTE,INDYR,INDMO)
 CALL INCDAY (KLIYR,KLIDAY,INDYR)

 SELECT A NEW PRECIPITATION.

60 LSTWET=NEWWET
 CALL DAYWET (KLIDAY,PRECIP)
 TOTWET=TOTWET+PRECIP
 NEWWET=0
 IF (PRECIP.GT.0.) NEWWET=1

 CALCULATE THE NEW MINIMUM TEMPERATURE.

 PREMIN=PSTMIN
 PREMAX=PSTMAX
 CALL NRMDDEV (CEV1,DEV2)
 DEVMIN=PREMIN-AVEMIN(LSTDAY)
 DEVMAX=PREMAX-AVEMAX(LSTDAY)
 PSTMIN=CNMIN(KLIDAY)+LSTWET*PREOC1(KLIDAY)+NEWWET
 1 *PSTOC1(KLIDAY)+MNMIN(KLIDAY)*DEVMIN+MXMIN(KLIDAY)*DEVMAX
 2 +SDVMIN(KLIDAY)*DEV1

 CALCULATE THE NEW MAXIMUM TEMPERATURE.

 DEVMIN=PSTMIN-AVEMIN(KLIDAY)
 PSTMAX=CNMAX(KLIDAY)+LSTWET*PREOC2(KLIDAY)+NEWWET
 1 *PSTOC2(KLIDAY)+MXMAX(KLIDAY)*DEVMAX+MNMAX(KLIDAY)*DEVMIN
 2 +SDVMAX(KLIDAY)*DEV2

 WRITE THE SIMULATED RECORD (AFTER ROUNCING OFF).

 IWET=100*(PRECIP+.005)
 NEWMAX=PSTMAX+.5
 NEWMIN=PSTMIN+.5
 WRITE (9,24) ASTATE,ASITE,NOWDTE,ADIVSN,NEWMAX,NEWMIN,IWET

 DETERMINE WHETHER THE END OF THE YEAR HAS BEEN REACHED.

 IF (KLIDAY.LT.365) GO TO 50

 WRITE THE TOTAL PRECIPITATION FOR THE YEAR.

 WRITE (6,25) KLIYR, TOTWET
 TOTWET=0.
 GO TO 50

 WRITE A TERMINATION MESSAGE.

70 WRITE (6,26) TOTWET,KLIDAY,KLIYR
STOP
1 FORMAT (12X,I8)
2 FORMAT ('0 THE SEED VALUE IS',I9,'.')
3 FORMAT (3X,7F11.6)
4 FORMAT ('1 DRY-TO-DRY TRANSITION PROBABILITIES:/52(4X,
1 7F11.6,/) , 4X,F11.6/1 WET-TO-DRY TRANSITION PROBABILITIES:
2 / (4X,F11.6))
5 FORMAT (5F10.4)
6 FORMAT ('1 SIMULATION PARAMETERS:/9X, 'BETA1 ALPHAI ',
1 ' BETA2 GAMMA2 DELTA2/ (4X,5F10.4))
7 FORMAT (12X,I3/(10F8.2))
8 FORMAT ('1 GROUP 1 DAY 2 DAY 3 DAY ',
1 '4 DAY 5 DAY 6+ DAY/ (4X,F8.2,2X,6F10.4))
9 FORMAT (3X,7F11.6)
10 FORMAT ('1 AVERAGE MINIMUM TEMPERATURES:/ (4X,7F11.6))
11 FORMAT ('1 STANDARD DEVIATIONS OF THE MINIMUM TEMPERATURES:/
1 (4X,7F11.6))
12 FORMAT ('1 AVERAGE MAXIMUM TEMPERATURES:/ (4X,7F11.6))
13 FORMAT ('1 STANDARD DEVIATIONS OF THE MAXIMUM TEMPERATURES:/
1 (4X,7F11.6))
14 FORMAT ('1 MINIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' CONSTANT TERM:/ (4X,7F11.6))
15 FORMAT ('1 MINIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' OCCURRENCE OF PREWET PRECIPITATION:/ (4X,7F11.6))
16 FORMAT ('1 MINIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' OCCURRENCE OF PSTWET PRECIPITATION:/ (4X,7F11.6))
17 FORMAT ('1 MINIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' DEVIATION OF THE PREVIOUS MINIMUM:/ (4X,7F11.6))
18 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' DEVIATION OF THE PREVIOUS MAXIMUM:/ (4X,7F11.6))
19 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' CONSTANT TERM:/ (4X,7F11.6))
20 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' OCCURRENCE OF PREWET PRECIPITATION:/ (4X,7F11.6))
21 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' OCCURRENCE OF PSTWET PRECIPITATION:/ (4X,7F11.6))
22 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' DEVIATION OF THE PREVIOUS MINIMUM:/ (4X,7F11.6))
23 FORMAT ('1 MAXIMUM TEMPERATURE COEFFICIENTS FOR THE',
1 ' DEVIATION OF THE PREVIOUS MAXIMUM:/52(4X,7F11.6/),
2 4X,F11.6/1')
24 FORMAT (A2,A4,I6,A1,2I3,3X,I4)
25 FORMAT ('0 TOTAL PRECIPITATION FOR THE SIMULATED CLIMATIC',
1 ' YEAR ',I4,' IS',F6.2,' INCHES.')
26 FORMAT ('0 (END OF PROCESSING WITH ',F5.2,' INCHES ',
1 ' ACCUMULATED BY DAY ',I3,' OF YEAR ',I4,'.)')
END
SUBROUTINE
 INTERP, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO COMPLETE (BY INTERPOLATION) A CYCLIC VECTOR FOR WHICH
 ONLY EVERY NTH VALUE HAS BEEN ENTERED.

USAGE
 CALL INTERP (VECTOR, IFIRST, NTH)

DESCRIPTION OF PARAMETERS
 VECTOR - A VECTOR OF 365 CONTIGUOUS POINTS. ROW OF A
 MATRIX.
 IFIRST - THE FIRST POINT TO CONTAIN A LEGITIMATE VALUE.
 NTH - THE INCREMENT BETWEEN POINTS WITH LEGITIMATE
 VALUES.

REMARKS
 ONE ROW OF A MATRIX MAY BE FILLED BY CALLING INTERP
 (MATRIX(1, IROW), IFIRST, NTH).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 THE POINTS BETWEEN TWO LEGITIMATE VALUES ARE FILLED BY
 LINEAR INTERPOLATION BETWEEN THOSE VALUES. POINTS 365
 AND 1 ARE CONSIDERED ADJACENT.

SUBROUTINE INTERP (VECTOR, IFIRST, NTH)
 REAL VECTOR(365)
 FACTOR=1.0/NTH

 INITIALIZE THE POSITION MARKERS
 LSTPOS=IFIRST-NTH
 NXTPOS=IFIRST

 INCREMENT THE POSITION MARKERS
C
10 IF (NXTPOS+NTH.GT.365) GO TO 30
 LSTPOS=NXTPOS
 NXTPOS=NXTPOS+NTH
 MINPOS=LSTPOS+1
 MAXPOS=NXTPOS-1
C
C fill the points between two legitimate values.
C
VALUE=VECTOR(LSTPOS)
CHANGE=FACTOR*(VECTOR(NXTPOS)-VALUE)
DO 20 NOWPOS=MINPOS,MAXPOS
 VALUE=VALUE+CHANGE
20 VECTOR(NOWPOS)=VALUE
 GO TO 10
C
perform around-the-clock interpolation.
C
30 LSTPOS=NXTPOS
 NXTPOS=IFIRST+365
 JUMP=NXTPOS-LSTPOS
 IF (JUMP.LT.2) RETURN
 MINPOS=LSTPOS+1
 MAXPOS=NXTPOS-1
C
C fill the points around-the-clock.
C
VALUE=VECTOR(LSTPOS)
CHANGE=(1.0/JUMP)*(VECTOR(IFIRST)-VALUE)
DO 40 I=MINPOS,MAXPOS
 NOWPOS=I
 IF (NOWPOS.GT.365) NOWPOS=NOWPOS-365
 VALUE=VALUE+CHANGE
40 VECTOR(NOWPOS)=VALUE
RETURN
END
SUBROUTINE
CDFGMM, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

THE COMPUTATION SECTION WAS PROGRAMMED BY NORBERTO T.
ISON WHEN HE HELD THE SAME POST.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50,
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO FILL IN A TABLE OF CUMULATIVE DISTRIBUTION FUNCTIONS
FOR EACH 28-DAY PERIOD OF THE CLIMATIC YEAR.

USAGE
CALL CDFGMM
COMMON /MEANS/ NGRPS, GRPAVE(120)
COMMON /PRMTRS/ BETA1(13), ALPHAI(13), BETA2(13),
 GAMMA2(13), DELTA2(13)
COMMON /GMMA/ CDF(6, 120, 13)

DESCRIPTION OF PARAMETERS
NGRPS - THE NUMBER OF PRECIPITATION INTERVALS (OR
 GROUPS) TO BE USED IN THE PRECIPITATION MODEL.
GRPAVE - A VECTOR CONTAINING THE PRECIPITATION VALUES
 WHICH ARE TO FORM THE (APPROXIMATE) CENTERS OF
 THEIR RESPECTIVE PRECIPITATION GROUPS.
PRMTRS - THESE VECTORS CONTAIN THE GAMMA DISTRIBUTION
 PARAMETERS WHICH WERE FOUND BY PROGRAM RNFALL.
CDF - THIS ARRAY HOLDS 13 TABLES, ONE FOR EACH PERIOD,
 EACH CONTAINING CUMULATIVE DISTRIBUTION
 FUNCTIONS FOR WET SEQUENCES OF FROM ONE THROUGH
 SIX+ DAYS.

REMARKS
THE LAST VALUE IN EACH CDF VECTOR IS ALWAYS 1.0.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
THE CUMULATIVE RELATIVE FREQUENCIES OF THE INCOMPLETE
GAMMA DISTRIBUTION ARE COMPUTED BY USING AN EXPANSION
GIVEN BY K. PEARSON IN HIS 'TABLES OF THE INCOMPLETE
GAMMA FUNCTION, CAMBRIDGE UNIVERSITY PRESS, REISSUE,
SUBROUTINE CDFGMM
REAL TOPBNDS(119),BETA(6),ALPHA(6)
REAL*8 R,P
COMMON /MEANS/ NGRPS,GRPAVE(120)
COMMON /PRMTRS/ BETA1(13),ALPHA1(13),BETA2(13),GAMMA2(13),
1 DELTA2(13)
COMMON /GMMA/ CDF(6,120,13)

CALCULATE UPPER BOUNDS OF CLASS INTERVALS FOR THE CUMULATIVE
DISTRIBUTION FUNCTIONS.

NBND=NGRPS-1
DO 10 NOWGR=1,NBND
10 TOPBNDS(NOWGR)=.5*(GRPAVE(NOWGR)+GRPAVE(NOWGR+1))

FILL IN THE CDF TABLE FOR EACH PERIOD.

DO 50 NOWPRD=1,13

FIND THE BETA AND ALPHA VALUE FOR EACH LENGTH OF SEQUENCE.

BETA(1)=BETA1(NOWPRD)
ALPHA(1)=ALPHA1(NOWPRD)
DO 20 LSEQ=2,6
BETA(LSEQ)=BETA2(NOWPRD)
20 ALPHA(LSEQ)=GAMMA2(NOWPRD)+(LSEQ-2)*DELTA2(NOWPRD)

CALCULATE THE CDF VALUES FOR EACH LENGTH OF SEQUENCE.

DO 50 LSEQ=1,6
IF (BETA(LSEQ).EQ.0.) GO TO 60
NCODE=0
TMP=GAMMA(ALPHA(LSEQ)+1.)
DO 40 NOWGR=1,NBND
IF (NCODE.GT.0) GO TO 40
T=TOPBNDS(NOWGR)*BETA(LSEQ)
P=1.0
R=1.0
I=0
30 I=I+1
R=R*(T/(ALPHA(LSEQ)+I))
P=P*R
IF (DABS(R).GE.0.000001) GO TO 30
F=((T**ALPHA(LSEQ))/EXP(T))*(P/TMP)
IF (F.GT.1.) F=1.
IF (F.LT.1.) NGCODE=1
40 CDF(LSEQ,NOWGR,NOWPRD)=F
50 CDF(LSEQ,NGRPS,NOWPRD)=1.
RETURN
WRITE AN ERROR MESSAGE AND TERMINATE EXECUTION.

60 WRITE (6,1) NOWPRD,LSEQ
CALL ABEND ('CDFGMM ',
1 'AN ILLEGAL VALUE HAS OCCURRED AS LISTED ABOVE. ')

1 FORMAT ('0 (SUBROUTINE CDFGMM HAS CALCULATED A ZERO BETA ',
1 'FOR PERIOD',I3,', SEQUENCE',I2,'.)')
END
SUBROUTINE DAYWET, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO PROVIDE A SIMULATED PRECIPITATION FOR ANY DAY OF THE
YEAR, BASED UPON THE TRANSITION PROBABILITY TABLE AND
THE CUMULATIVE DISTRIBUTION FUNCTION TABLES.

USAGE
CALL DAYWET (KLIDAY, PRECIP)
COMMON /RAN0/ ISEED
COMMON /PRBDRY/ AFTDRY(53), AFTWET(53)
COMMON /GMMA/ CDF(6, 120, 13)

DESCRIPTION OF PARAMETERS
KLIDAY - THE CLIMATIC DAY NUMBER.
PRECIP - THE SIMULATED PRECIPITATION.
ISEED - THE SEED VALUE USED TO PICK A RANDOM NUMBER.
AFTDRY - A VECTOR CONTAINING THE PROBABILITIES OF
TRANSITION FROM DRY TO DRY.
AFTWET - A VECTOR CONTAINING THE PROBABILITIES OF
TRANSITION FROM WET TO DRY.
CDF - THIRTEEN TABLES CONTAINING THE CUMULATIVE
DISTRIBUTION FUNCTION FOR EACH PERIOD AND EACH
LENGTH OF SEQUENCE.

REMARKS
WET DAYS ARE THOSE HAVING AT LEAST .01 INCHES OF
PRECIPITATION. THE SIMULATED PRECIPITATION FOR SUCH A
DAY, HOWEVER, MAY FALL BELOW .01.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
DAYKND (DETERMINES WHETHER A DAY IS TO BE DRY OR WET)
SEQWET (DETERMINES TOTAL PRECIPITATION FOR A SEQUENCE)

METHOD
THIS SUBROUTINE RUNS A LITTLE AHEAD OF THE CALLING
PROGRAM. WHENEVER A WET DAY IS SIMULATED, THE LENGTH OF
THE ENTIRE WET SEQUENCE IS DETERMINED AND A PRECIPITATION
VALUE IS ASSIGNED TO EACH DAY.
SUBROUTINE DAYWET (KLIDAY, PRECIP)
LOGICAL INDWET/.FALSE./
INTEGER LSEQ/-1/

TEST WHETHER THE NEXT DAY IS: UNDEFINED, THE DRY DAY AT THE END OF A WET SPELL, OR A CONTINUATION OF THE WET SPELL.

IF (LSEQ) 10, 20, 30

GENERATE A DRY DAY OR A WET SPELL.

10 LSEQ=LSEQ+1
 CALL DAYKND (KLIDAY, INDWET)
 IF (INDWET) GO TO 10
 IF (LSEQ.LT.1) GO TO 30
 CALL SEQWET (KLIDAY, LSEQ, PRECIP)
 GO TO 30

REMOVE ONE DAY FROM THE PRESENT WET SEQUENCE (ZERO THE PRECIPITATION IF IT IS THE LAST DAY).

20 PRECIP=0.
30 LSEQ=LSEQ-1
RETURN
END
SUBROUTINE
 DAYKND, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO RANDOMLY DETERMINE WHETHER A GIVEN DAY SHOULD BE
 INCLUDED IN THE SIMULATION AS WET OR DRY.

USAGE
 CALL DAYKND (KLIDAY, INDWET)
 COMMON /RAND/, ISEED
 COMMON /PRBDRY/, AFDRY(53), AFTWET(53)

DESCRIPTION OF PARAMETERS
 KLIDAY - THE CLIMATIC DAY NUMBER.
 INDWET - A LOGICAL INDICATOR SET TO .TRUE. FOR A WET DAY.
 ISEED - THE SEED VALUE USED TO PICK A RANDOM NUMBER.
 AFDRY - A VECTOR CONTAINING THE PROBABILITIES OF
 TRANSITION FROM DRY TO DRY.
 AFTWET - A VECTOR CONTAINING THE PROBABILITIES OF
 TRANSITION FROM WET TO DRY.

REMARKS
 SUBROUTINE RANU IS IN THE IBM SSP PACKAGE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 RANU (RETURNS A UNIFORM RANDOM NUMBER FROM 0 TO 1)

METHOD
 A RANDOM NUMBER FROM 0. TO .9999999 IS CHOSEN. IF IT
 EXCEEDS THE TABLE VALUE FOR THIS PERIOD THE DAY IS
 CONSIDERED WET.

SUBROUTINE DAYKND (KLIDAY, INDWET)
LOGICAL INDOLST, INDWET
COMMON /RANC/, ISEED
COMMON /PRBDRY/, AFDRY(365), AFTWET(365)

SAVE THE LAST DRY/WET CONDITION, AND RESET INDWET.
INDLST=INDWET
INDWET=.FALSE.

CALL RANDU (ISEED, IRNDM, RNDM)
ISEED=IRNDM

Determine whether this number corresponds to a wet or dry day.

IF (INDLST) GO TO 10
IF (RNDM.GT.AFTDRY(KLIDAY)) INDWET=.TRUE.
GO TO 20
10 IF (RNDM.GT.AFTWET(KLIDAY)) INDWET=.TRUE.
20 RETURN
END
SUBROUTINE
 SEQWET, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO RANDOMLY SELECT A PRECIPITATION VALUE WHICH IS TO
 BE APPLIED EQUALLY AMONG THE DAYS OF A WET SPELL.

USAGE
 CALL SEQWET (KLIDAY, LSEQ, PRECIP)
 COMMON /RAND/ ISEED
 COMMON /GMMA/ CDF(6,120,13)
 COMMON /MEANS/ NGRPS,GRPAVE(120)

DESCRIPTION OF PARAMETERS
 KLIDAY - THE CLIMATIC DAY NUMBER.
 LSEQ - THE LENGTH OF THE WET SEQUENCE.
 PRECIP - THE SIMULATED PRECIPITATION.
 ISEED - THE SEED VALUE USED TO PICK A RANDOM NUMBER.
 CDF - THIRTEEN TABLES CONTAINING THE CUMULATIVE
 DISTRIBUTION FUNCTION FOR EACH PERIOD AND EACH
 LENGTH OF SEQUENCE.
 NGRPS - THE NUMBER OF PRECIPITATION GROUPS TO BE USED.
 GRPAVE - A VECTOR CONTAINING THE VALUE OF PRECIPITATION
 TO BE ASSIGNED TO EACH SEQUENCE ASSIGNED TO
 THE GROUP.

REMARKS
 SUBROUTINE RANDU IS IN THE IBM SSP PACKAGE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 RANDU (RETURNS A UNIFORM RANDOM NUMBER FROM 0 TO 1)
 ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
 THE CUMULATIVE DISTRIBUTION FUNCTION FOR THIS PERIOD
 AND LENGTH OF SEQUENCE CONTAINS THE BOUNDARIES OF EACH
 PRECIPITATION GROUP. THE PRECIPITATION CORRESPONDING TO
 A RANDOM NUMBER IS DIVIDED EQUALLY AMONG THE DAYS OF
 THE WET SEQUENCE.
SUBROUTINE SEGWET (KLIDAY, LSEQ, PRECIP)
COMMON /RAND/, ISEED
COMMON /GMMA/, CDF(6, 120, 13)
COMMON /MEANS/, NGRPS, GRPAVE(120)

CALCULATE THE PERIOD INVOLVED.
IPRD=(KLIDAY+27)/28
IF (IPRD.GT.13) IPRD=13

SET NDAYS TO THE LENGTH OF SEQUENCE (LIMITED TO 6).
NDAYS=LSEQ
IF (LSEQ.GT.6) NDAYS=6

DRAW A RANDOM NUMBER FROM 0.0 THROUGH 0.9999999.
CALL RANDU (ISEED, IRNDM, RNDM)
ISEED=IRNDM

FIND THE INTERVAL OF THE CUMULATIVE DISTRIBUTION FUNCTION
WHICH CONTAINS THIS RANDOM NUMBER.
DO 10 NOWGRP=1, NGRPS
 IF (RNDM.LT.CDF(NDAYS, NOWGRP, IPRD)) GO TO 20
10 CONTINUE
 CALL ABEND ('SEQWET ',
 1 'THE RANDOM NUMBER EXCEEDED ALL ENTRIES IN THE CDF."

SET THE PRECIPITATION TO THE AVERAGE VALUE FOR THIS WET PERIOD.
20 PRECIP=GRPAVE(NOWGRP)/NDAYS
RETURN
END
SUBROUTINE
NRMDEV, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPOURED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO GENERATE PSEUDO-RANDOM NUMBERS WITH THE STANDARD
NORMAL DISTRIBUTION.

USAGE
CALL NRMSDE (DEV1, DEV2)
COMMON /RAND/, ISEED

DESCRIPTION OF PARAMETERS
DEV1 - A NORMAL DEVIATE WHICH IS RETURNED BY NRMSDE.
DEV2 - A SECOND NORMAL DEVIATE.
ISEED - THE SEED VALUE FOR THE RANDOM NUMBER GENERATOR.

REMARKS
THE TWO DEVIATES ARE INDEPENDENT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
RANDU (RETURNS A UNIFORM RANDOM NUMBER FROM 0 TO 1)

METHOD
THE METHOD IS DUE TO BOX AND MULLER.

SUBROUTINE NRMSDEV (DEV1, DEV2)
COMMON /RAND/, ISEED

GENERATE A RANDOM NUMBER FROM 0.0 THROUGH 0.9999999.

CALL RANDU (ISEED, IRAND, RAND)
ISEED=IRAND

DRAW A SECOND RANDOM NUMBER AND COMBINE THEM TO FORM THE TWO
NORMAL DEVIATES.

TLOG=SQRt(-2.0*ALOG(RAND))
CALL RANDU (ISEED, IRAND, RAND)
ISEED=IRAND
DEV1 = TLOG*COS(6.2831853*RAND)
DEV2 = TLOG*SIN(6.2831853*RAND)
RETURN
END
APPENDIX C

WEATHER DATA LIBRARY SUBROUTINES
SUBROUTINE RDTTTL, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO READ A STANDARD TITLE CARD AND CHECK ITS VALIDITY.

USAGE
CALL RDTTTL (INDEND)
COMMON /TITL/ TITLE(17)
A STANDARD TITLE CARD IN THE INPUT STREAM.

DESCRIPTION OF PARAMETERS
INDEND - A LOGICAL INDICATOR WHICH WILL BE RETURNED WITH
A VALUE OF .TRUE. ONLY IF ITS ENTRY VALUE WAS
.TRUE. AND AN END OF FILE CONDITION OCCURRED.
TITLE - A VECTOR HOLDING THE ALPHAMERIC TITLE.
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY FOR FURTHER
INFORMATION ABOUT THE STANDARD TITLE CARD.

REMARKS
THE COMMON STATEMENT MAY BE OMITTED IN THE CALLING
PROGRAM IF THE INFORMATION IS TO BE TREATED AS A COMMENT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
COLUMNS 4-7 ARE CHECKED FOR THE LETTERS 'TITL'. COLUMNS
13-80 ARE TREATED AS A COMMENT STATEMENT.

SUBROUTINE RDTTTL (INDEND)
LOGICAL INDEND
INTEGER IOTITL/'TITL'/
REAL REMARK(10)
COMMON /TITL/ TITLE(17)

READ A CARD AND TEST IT FOR THE PROPER TYPE.
READ (5,1,END=10) ICARD,ID,TITLE
IF (ID.NE.IDTITL) CALL ABEND ('RDTITL ',
 1 'CARD COLUMNS 4-7 DID NOT CONTAIN THE IDENTIFIER "TITL". ')
C
C RESET THE END-OF-FILE INDICATOR.
C INDEND=.FALSE.
C ECHO THE CONTENTS OF THE CARD AND RETURN.
C WRITE (6,2) ICARD,TITLE
GO TO 20
C SIMPLY RETURN IF INDEND=.TRUE., OTHERWISE TERMINATE THE RUN.
C 10 IF (.NOT.INDEND) CALL ABEND ('RDTITL ',
 1 'END OF FILE ON UNIT 5: MISSING TITLE CARD. ')
20 RETURN
C
C ..
C 1 FORMAT (I2,1X,A4,5X,17A4)
2 FORMAT ('0',I2,' THE TITLE IS: ',17A4)
END
SUBROUTINE ROSTAT, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY, SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO READ A STANDARD STATION CARD AND CHECK ITS VALIDITY.

USAGE
CALL ROSTAT (INDEND)
COMMON /STAT/ ASTATE, ADIVSN, ASITE, ISITE, SITE(4)
A STANDARD STATION CARD IN THE INPUT STREAM.

DESCRIPTION OF PARAMETERS
INDEND - A LOGICAL INDICATOR WHICH WILL BE RETURNED WITH
A VALUE OF TRUE ONLY IF ITS ENTRY VALUE WAS
TRUE AND AN END OF FILE CONDITION OCCURED.
ASTATE - THE 2-DIGIT STATE NUMBER IN ALPHAMERIC FORM.
ADIVSN - THE 1-DIGIT STATE NUMBER IN ALPHAMERIC FORM.
ASITE - THE 4-DIGIT STATION NUMBER IN ALPHAMERIC FORMAT.
ISITE - THE 4-DIGIT STATION NUMBER IN INTEGER FORMAT.
SITE - A VECTOR CONTAINING THE STATION NAME.
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY FOR FURTHER
INFORMATION ABOUT THE STANDARD DATES CARD AND THE
VALUES PASSED IN COMMON.

REMARKS
THE COMMON STATEMENT MAY BE OMITTED IN THE CALLING
PROGRAM IF THE INFORMATION IS TO BE TREATED AS A COMMENT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
INTEGER (CONVERTS A NUMBER FROM A-FORM TO I-FORM)
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
COLUMNS 4-7 ARE CHECKED FOR THE LETTERS 'STAT'. OTHER
FIELDS ARE NOT CHECKED FOR VALIDITY.

SUBROUTINE ROSTAT (INDEND)
LOGICAL INDEND
INTEGER IDSTAT/*STAT*/
REAL REMARK(10)
COMMON /STAT/ ASTATE,ADIVSN,ASITE,ISITE,SITE(4)

READ A CARD AND TEST IT FOR THE PROPER TYPE.

READ (5,1,END=10) ICARD,ID,ASTATE,ADIVSN,ASITE,SITE,REMARK
IF (10.NE.IDSTAT) CALL ABEND ('RDSTAT '
1 'CARD COLUMNS 4-7 DID NOT CONTAIN THE IDENTIFIER "STAT". ')

RESET THE END-OF-FILE INDICATOR.

INDEND=.FALSE.

SET ISITE EQUAL TO THE INTEGER VALUE OF ASITE.

CALL INTEGR (ASITE,ISITE)
ECHO THE CONTENTS OF THE CARD AND RETURN.

WRITE (6,2) ICARD,ASTATE,ADIVSN,ISITE,SITE,REMARK
GO TO 20

SIMPLY RETURN IF INDEND=.TRUE., OTHERWISE TERMINATE THE RUN.

10 IF (.NOT.INDEND) CALL ABEND ('RDSTAT '
1 'END OF FILE ON UNIT 5: MISSING STATION CARD. ')
20 RETURN

1 FORMAT (I2,1X,A4,5X,A2,1X,A1,1X,A4,1X,4A4,2X,10A4)
2 FORMAT ('0',I2,'.' THE STATION REQUESTED IS NUMBER ',A2,'-',A1,
1 '-',I4,'.',',4A4,'.',',10A4)
END
SUBROUTINE
RDDDTE, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO READ AND INTERPRET A STANDARD DATES CARD.

USAGE
CALL RDDDTE (INDEND)
COMMON /DATES/ MINDTE, MAXDTE, KALMIN(2), KALMAX(2),
KMIN(2), KMAX(2)
A STANDARD DATES CARD IN THE INPUT STREAM

DESCRIPTION OF PARAMETERS
INDEND - A LOGICAL INDICATOR WHICH WILL BE RETURNED WITH
A VALUE OF .TRUE. ONLY IF ITS ENTRY VALUE WAS
.TRUE. AND AN END OF FILE CONDITION OCCURRED.
MINDTE - THE DATE OF THE FIRST RECORD TO BE PROCESSED,
IN THE FORM YR/MO/DAY (E.G., 711231).
MAXDTE - THE DATE OF THE LAST RECORD TO BE PROCESSED.
KALMIN - A VECTOR CONTAINING THE CALENDAR YEAR AND DAY
OF THE FIRST DAY TO BE PROCESSED.
KALMAX - A VECTOR CONTAINING THE CALENDAR YEAR AND DAY
OF THE LAST DAY TO BE PROCESSED.
KLMIN - A VECTOR CONTAINING THE CLIMATIC YEAR AND DAY
OF THE FIRST DAY TO BE PROCESSED.
KLMAX - A VECTOR CONTAINING THE CLIMATIC YEAR AND DAY
OF THE LAST DAY TO BE PROCESSED.
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY FOR FURTHER
INFORMATION ABOUT THE STANDARD DATES CARD AND THE
VALUES PASSED IN COMMON.

REMARKS
THIS SUBROUTINE ASSUMES A 365-DAY YEAR. IF FEB 29 IS TO
BE PROCESSED, THIS MUST BE DETERMINED AND ARRANGED BY
THE USER'S PROGRAM.

THE MAX DAYS MAY BE LESS THAN THE CORRESPONDING MIN
DAYS IF PROCESSING EXTENDS THROUGH THE CHANGE OF YEAR.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
YEAR, MONTH, AND DAY VALUES ARE READ AND CHECKED.
MINDETE AND MAXDETE ARE CALCULATED FROM THESE, AND THE
MONTH DAYS ARE CHANGED TO CALENDAR DAYS. THEN CLIMATIC
DATES ARE DERIVED FROM THE CALENDAR CNES.

SUBROUTINE RDDDATE (INDEND)
LOGICAL INDEND
INTEGER IDDATE,'DATE'/,
1 MFST(13)/1,32,60,91,121,152,182,213,244,274,305,335,366/
REAL REMARK(10)
COMMON /DATES/ MINDTE,MAXDETE,KALMIN(2),KALMAX(2),KLIMIN(2),
1 KLIKMAX(2)
EQUIVALENCE (KALMIN(1),MINYR),(KALMAX(1),MAXYR)

READ THE DATES CARD AND CHECK ITS VALIDITY.

READ (5,1,END=30) ICARC,ID,MINYR,MINMO,MINDAY,MAXYR,MAXMO,
1 MAXDAY,REMARK
IF (ID.NE.IDDATE) CALL ABEND ('RDDDATE ',
1 'CARD COLUMNS 4-7 DID NOT CONTAIN THE IDENTIFIER "DATE". ')

RESET THE END-OF-FILE INDICATOR.

INDEND=.FALSE.

CHECK THE YEARS FOR PROPER RANGE.

IF (MINYR.LT.1800.OR.MINYR.GT.2200) CALL ABEND ('RDDDATE ',
1 'THE FIRST YEAR IS LESS THAN 1800 OR GREATER THAN 2200. ')
IF (MAXYR.LT.1800.OR.MAXYR.GT.2200) CALL ABEND ('RDDDATE ',
1 'THE FINAL YEAR IS LESS THAN 1800 OR GREATER THAN 2200. ')

CHECK THE MONTHS FOR PROPER RANGE.

IF (MINMO.LT.1.OR.MINMO.GT.12) CALL ABEND ('RDDDATE ',
1 'THE FIRST MONTH IS LESS THAN 1 OR GREATER THAN 12. ')
IF (MAXMO.LT.1.OR.MAXMO.GT.12) CALL ABEND ('RDDDATE ',
1 'THE FINAL MONTH IS LESS THAN 1 OR GREATER THAN 12. ')

BUILD THE DATES AND CHECK FOR PROPER SEQUENCE.

MINDETE=10000*MOD(MINYR,100)+100*MINMO+MINDAY
MAXDETE=10000*MOD(MAXYR,100)+100*MAXMO+MAXDAY
IF (MAXDETE.LT.MINDETE) CALL ABEND ('RDDDATE ',
1 'THE FINAL DATE IS LESS THAN THE FIRST DATE. ')

CONVERT MONTH DAYS TO CALENDAR DAYS AND CHECK THEM.

IF (MINDAY.LT.1.OR.MAXDAY.LT.1) CALL ABEND ('RDDDATE ',
1 'EITHER THE FIRST OR THE LAST DAY NUMBER IS LESS THAN 1. ')

KALMIN(2) = MCFST(MINMO) + MNCAY - 1
IF (KALMIN(2) .GE. MOFST(MINMO + 1)) CALL ABEND ('RDATE ',
1 'THE FIRST DAY NUMBER EXCEEDS THE LENGTH OF ITS MONTH. ')
KALMAX(2) = MCFST(MAXMO) + MAXDAY - 1
IF (KALMAX(2) .GE. MOFST(MAXMO + 1)) CALL ABEND ('RDATE ',
1 'THE FINAL DAY NUMBER EXCEEDS THE LENGTH OF ITS MONTH. ')

CC CONVERSION OF CALENDAR DAYS TO CLIMATIC DAYS.

KALMIN(1) = KALMIN(1)
KALMIN(2) = KALMIN(2) - 59
IF (KALMIN(2) .GT. 0) GO TO 10
KALMIN(1) = KALMIN(1) - 1
KALMIN(2) = KALMIN(2) + 365
10 KALMAX(1) = KALMAX(1)
KALMAX(2) = KALMAX(2) - 59
IF (KALMAX(2) .GT. 0) GO TO 20
KALMAX(1) = KALMAX(1) - 1
KALMAX(2) = KALMAX(2) + 365

CC ECHO THE CONTENTS OF THE DATES CARD.

20 WRITE (6, 2) ICARD, MINDTE, MAXDTE, KALMIN, KALMAX, KLIN, KMAX,
1 REMARK
GO TO 40
C SIMPLY RETURN IF INEND=.TRUE., OTHERWISE TERMINATE THE RUN.
30 IF (.NOT. INEND) CALL ABEND ('RDATE ',
1 'END OF FILE ON UNIT 5: MISSING DATES CARD. ')
40 RETURN

C

1 FORMAT (I2, 1X, A4, 5X, 2(I4, 1x, I2, 1x, I2), T41, 10A4)
2 FORMAT ('0', 12, ' PROCESSING IS TO BEGIN WITH RECORD', I7,
1 ' AND TO END WITH RECORD', I7, ' ', ' THIS IS FROM CALENDAR ',
2 ' YEAR', I5, ', ', DAY', I4, ' THROUGH YEAR', I5, ', ', DAY', I4,
3 ', AND', '/4X, ' IS ALSO FROM CLIMATIC YEAR', I5, ', ', DAY', I4,
4 ' THROUGH YEAR', I5, ', ', DAY', I4, ' '/4X, 10A4)
END
SUBROUTINE
RDPERF, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO READ AND INTERPRET A STANDARD PERFORM CARD.

USAGE
CALL RDPERF (INDEND, INDDO)
A STANDARD PERFORM CARD IN THE INPUT STREAM

DESCRIPTION OF PARAMETERS
INDEND - A LOGICAL INDICATOR WHICH WILL BE RETURNED WITH
A VALUE OF .TRUE. ONLY IF ITS ENTRY VALUE WAS
.TRUE. AND AN END OF FILE CONDITION OCCURRED.
INDDO - A LOGICAL INDICATOR READ FROM THE PERFORM CARD.
SEE THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
EXPERIMENT STATION WEATHER DATA LIBRARY FOR FURTHER
INFORMATION ABOUT THE STANDARD PERFORM CARD.

REMARKS
THE IDENTIFIER ON THE PERFORM CARD MAY BE 'INPUT',
'PERFORM', OR 'OUTPUT'. THE USER PROGRAM MUST INTERPRET
INDDO WITHOUT KNOWING WHICH IDENTIFIER WAS USED.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
ABEND (WRITES A MESSAGE AND TERMINATES EXECUTION)

METHOD
THE CARD IS CHECKED FOR A VALID IDENTIFIER AND IS THEN
ECHOED.

SUBROUTINE RDPERF (INDEND, INDDO)
LOGICAL INDEND, INDDO
INTEGER IDINPU/'INPU'/, IDPERF/'PERF'/, IDOUTP/'OUTP'/
REAL REMARK(10), STEP*8

READ THE CARD, CHECK IT FOR VALIDITY, AND WRITE THE APPROPRIATE
ECHO MESSAGE.
READ (5,1,END=30) ICARD,ID,STEP,INDDO,REMARK

RESET THE END-OF-FILE INDICATOR.

INDEND=.FALSE.

CHECK FOR AN 'INPUT' CARD.

IF (ID.NE.IDINPU) GO TO 10
IF (INDDO) WRITE (6,2) ICARD,STEP,REMARK
IF (.NOT.INDDO) WRITE (6,3) ICARD,STEP,REMARK
GO TO 40

CHECK FOR A 'PERFORM' CARD.

10 IF (ID.NE.IDPERF) GO TO 20
IF (INDDO) WRITE (6,4) ICARD,STEP,REMARK
IF (.NOT.INDDO) WRITE (6,5) ICARD,STEP,REMARK
GO TO 40

CHECK FOR AN 'OUTPUT' CARD.

20 IF (ID.NE.IDOUTP) CALL ABEND ('RDPERF ',
 1 'CARD COLUMNS 4-7 DID NOT CONTAIN INPU, PERF, OR OUTP. ')
IF (INDDO) WRITE (6,6) ICARD,STEP,REMARK
IF (.NOT.INDDO) WRITE (6,7) ICARD,STEP,REMARK
GO TO 40

SIMPLY RETURN IF INDEND=.TRUE., OTHERWISE TERMINATE THE RUN.

30 IF (.NOT.INDEND) CALL ABEND ('RDPERF ',
 1 'END OF FILE ON UNIT 5: MISSING PERFORM CARD. ')
40 RETURN

1 FORMAT (I2,1X,A4,5X,A8,1X,L1,T41,10A4)
2 FORMAT (/I3,' INPUT CARDS ARE PROVIDED FOR THE ','A8,' STEP. ',
 1 '10A4)
3 FORMAT (/I3,' NO INPUT CARDS ARE PROVIDED FOR THE ','A8,
 1 'STEP. ',10A4)
4 FORMAT (/I3,' THE ','A8,' STEP IS TO BE PERFORMED. ',10A4)
5 FORMAT (/I3,' THE ','A8,' STEP IS TO BE SKIPPED. ',10A4)
6 FORMAT (/I3,' THE ','A8,' STEP IS TO PRODUCE OUTPUT. ',10A4)
7 FORMAT (/I3,' THE ','A8,' STEP IS NOT TO PRODUCE OUTPUT. ',10A4)
END
IDENTIFICATION DIVISION.
PROGRAM-ID. INCDATE.
AUTHOR. KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.
INSTALLATION. THE KANSAS STATE UNIVERSITY COMPUTING CENTER.
DATE-COMPILED.
REMARKS. THIS SUBROUTINE INCREMENTS A DATE FIELD, SIGNALING
CONTROL BREAKS IF THE MONTH OR YEAR VALUES CHANGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
DATA DIVISION.
WORKING-STORAGE SECTION.
DATE, PICTURE IS 9(6), USAGE IS DISPLAY.
YYMMDD REDEFINES DATE.
02 YEAR, PICTURE IS 99, USAGE IS DISPLAY.
02 MONTH, PICTURE IS 99, USAGE IS DISPLAY.
02 DAY, PICTURE IS 99, USAGE IS DISPLAY.
TABLE-VALUES.
02 JAN, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
02 FEB, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 28.
02 MAR, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
02 APR, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 30.
02 MAY, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
000530 02 JUN, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 30.
000540 02 JUL, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
000550 02 AUG, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
000560 02 SEP, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 30.
000570 02 OCT, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
000580 02 NOV, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 30.
000590 02 DEC, PICTURE IS 99, USAGE IS COMP-3, VALUE IS 31.
000600
000610 01 LENGTH-OF-MONTH-TABLE REDEFINES TABLE-VALUES.
000620 02 TABLE-ENTRY OCCURS 12 TIMES.
000630 03 LENGTH-OF-MONTH, PICTURE IS 99, USAGE IS COMP-3.
000640
000650 LINKAGE SECTION.
000660
000670 77 NOWDTE, PICTURE IS S9(9), USAGE IS COMP.
000680
000690 77 INDXR, PICTURE IS S9(9), USAGE IS COMP.
000700
000710 77 INDMO, PICTURE IS S9(9), USAGE IS COMP.
000720
000730
000740 PROCEDURE DIVISION USING NOWDTE, INDXR, INDMO.
000750
000760
000770 010-NOTE.
000780 NOTE **
000790 * RESET THE LOGICAL INDICATORS AND INCREMENT THE DATE.*
000800 **
000810
000820 010-UPDATE.
000830 MOVE 0 TO INDXR, INDMO.
000840 ADD 1 TO NOWDTE.
000850 MOVE NOWDTE TO DATE.
000860 IF DAY IS GREATER THAN LENGTH-OF-MONTH (MONTH) GO TO
000870 020-NEW-MONTH, ELSE GOBACK.
000880
000890
000900 020-NOTE.
000910 NOTE **
000920 * SET THE NEW-MONTH INDICATOR AND UPDATE THE MONTH. *
000930 **
000940
000950 020-NEW-MONTH.
000960 MOVE +1 TO INDMO.
000970 MOVE 1 TO DAY.
000980 ADD 1 TO MONTH.
000990 IF MONTH IS LESS THAN 13 MOVE DATE TO NOWDTE, GOBACK,
001000 ELSE NEXT SENTENCE.
001010
001020 030-NOTE.
001030 NOTE **
001040 * SET THE NEW-YEAR INDICATOR AND UPDATE THE YEAR. *
001050 **
001060
001070 030-NEW-YEAR.
001080 MOVE +1 TO INDYR.
001090 MOVE 1 TO MONTH.
001100 IF YEAR IS EQUAL TO 99 MOVE 0 TO YEAR, ELSE ADD 1 TO YEAR.
001110 MOVE DATE TO NOWDTE.
001120 GOBACK.
SUBROUTINE
INCDAY, MODEL 1, VERSION 1.

PROGRAMMER
KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.

INSTALLATION
KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
TO INCREMENT A DATE COUNTER AND SET AN INDICATOR IF THE
YEAR HAS CHANGED.

USAGE
CALL INCDAY (NOWYR,NOWDAY,INDYR)

DESCRIPTION OF PARAMETERS
NOWYR - THE YEAR NUMBER OF THE LAST DATE.
NOWDAY - THE DAY NUMBER OF THE LAST DATE.
INDYR - A LOGICAL INDICATOR SET TO .TRUE. ONLY IF THE
YEAR NUMBER CHANGES.

REMARKS
THIS SUBROUTINE MAY BE USED TO INCREMENT EITHER CALENDAR
OR CLIMATIC DATES.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
THE DAY COUNTER IS CYCLED FROM 1 THROUGH 365. FEB 29 IS
IGNORED.

SUBROUTINE INCDAY (NOWYR,NOWDAY,INDYR)
LOGICAL INDYR

RESET THE NEW-YEAR INDICATOR.
INDYR=.FALSE.
INCREMENT THE DAY NUMBER
NOWDAY=NOWDAY+1
IF (NOWDAY.LT.366) GO TO 10
INCREMENT THE YEAR COUNTER.

INDYR = TPUE.
NOWNOW = 1
NOWNOWR = NOWNOW + 1

RETURN TO THE CALLING PROGRAM WITH THE NEW VALUES.

10 RETURN
END
IDENTIFICATION DIVISION.
PROGRAM-ID. INTEGR.
AUTHOR. KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
NORTH CENTRAL REGION.
INSTALLATION. THE KANSAS STATE UNIVERSITY COMPUTING CENTER.
DATE-Compiled.
REMARKS. THIS SUBROUTINE SETS A BINARY FIELD EQUAL TO THE
VALUE OF A ZONED-DECIMAL FIELD.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
DATA DIVISION.
WORKING-STORAGE SECTION.
SUBROUTINE-NAME, PICTURE IS X(8), VALUE IS 'INTEGR'.
ERROR-MESSAGE.
FILLER, PICTURE IS X(36), VALUE IS
'NON-NUMERIC CHARACTER IN ARGUMENT: '.
ERROR-FIELD, PICTURE IS X(4).
FILLER, PICTURE IS X(16), VALUE IS '.'.
EXTERNAL-INTEGER, PICTURE IS 9999, USAGE IS DISPLAY.
000530 77 BINARY-INTEGER, PICTURE IS S9(9), USAGE IS COMP.
000540
000550
000560
000570 PROCEDURE DIVISION USING EXTERNAL-INTEGER, BINARY-INTEGER.
000580
000590
000600 010-NOTE.
000610 NOTE ***
000620 * CHECK THE ZONED-DECIMAL FIELD TO INSURE THAT IT *
000630 * CONTAINS ONLY VALID DIGITS. THEN PERFORM THE *
000640 * CONVERSION. *
000650 ***
000660
000670 010-CONVERT.
000680 IF EXTERNAL-INTEGER IS NOT NUMERIC
000690 MOVE EXTERNAL-INTEGER TO ERROR-FIELD,
000700 CALL 'ABEND' USING SUBROUTINE-NAME, ERROR-MESSAGE,
000710 ELSE MOVE EXTERNAL-INTEGER TO BINARY-INTEGER.
000720 GOBACK.
SUBROUTINE
 ABEND, MODEL 1, VERSION 1.

PROGRAMMER
 KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
 NORTH CENTRAL REGION.

INSTALLATION
 KANSAS STATE UNIVERSITY COMPUTING CENTER'S IBM 360/50
 USING FORTRAN IV COMPILER G, LEVEL 21.

PURPOSE
 TO WRITE AN ERROR MESSAGE AND TO CAUSE AN ABNORMAL
 TERMINATION OF PROCESSING FOR THE CALLING JOB STEP AND
 THE SKIPPING OF ALL SUBSEQUENT JOB STEPS.

USAGE
 CALL ABEND (NAME, MSG)

DESCRIPTION OF PARAMETERS
 NAME - AN EIGHT-CHARACTER LITERAL CONTAINING THE NAME
 OF THE CALLING PROGRAM OR SUBROUTINE.
 MSG - A 56-CHARACTER LITERAL CONTAINING THE MESSAGE
 TO BE PRINTED BEFORE THE ABNORMAL TERMINATION.

REMARKS
 A COMPLETE EXPLANATION OF THE ERROR MESSAGE MAY OFTEN
 BE FOUND THE USER'S MANUAL OF THE KANSAS AGRICULTURAL
 EXPERIMENT STATION WEATHER DATA LIBRARY.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE

METHOD
 THE LITERALS ARE SIMPLY PRINTED IN AN ERROR MESSAGE.
 ABNORMAL TERMINATION IS CAUSED BY REFERENCING A WORD IN
 STORAGE WHICH DOES NOT EXIST.

SUBROUTINE ABEND (NAME, MSG)
 INTEGER NULL(2), IMPOSS/1000000000/, NAME(2), MSG(14)
 WRITE THE ERROR MESSAGE.
 WRITE (6,1) NAME, MSG
 CAUSE AN ABNORMAL TERMINATION BY REFERENCING A STORAGE LOCATION
 WHICH DOES NOT EXIST.
C
NULL(IMPOSS)=0
STOP

C
C

END

1 FORMAT ('1 (ROUTINE ',2A4,',' HAS CALLED FOR A 240 ABEND ','
1 'BECAUSE OF THE FOLLOWING CONDITION:','/7X,14A4/
1 '4X,'IF FURTHER INFORMATION IS REQUIRED, PLEASE CONSULT ','
1 'THE USER'S GUIDE OF THE KANSAS','/4X,'AGRICULTURAL ','
1 'EXPERIMENT STATION WEATHER DATA LIBRARY.)')
END
IDENTIFICATION DIVISION.
000050 PROGRAM-ID. RDREC.
000070
000080 AUTHOR. KENNETH I. LAWS, RESEARCH ASSISTANT WITH THE KANSAS
000090 AGRICULTURAL EXPERIMENT STATION WEATHER DATA LIBRARY,
000100 SUPPORTED BY PROJECT NC-94: CLIMATIC RESOURCES OF THE
000105 NORTH CENTRAL REGION.
000110
000120 INSTALLATION. THE KANSAS STATE UNIVERSITY COMPUTING CENTER.
000130
000140 DATE-WRITTEN. JUN 13, 1974.
000150
000160 DATE-Compiled. (INSERTED BY COMPILER).
000170
000180 REMARKS. THIS IS MODEL 1, VERSION 5, OF SUBROUTINE RDREC.
000190 IT READS A STANDARD 1009 WEATHER DATA CARD AND RETURNS
000200 THE DATE, MAX AND MIN TEMPERATURES, AND PRECIPITATION.
000210 BLANK RECORDS AND THOSE FOR FEBRUARY 29 ARE IGNORED.
000215 RECORDS WILL BE DUMPED UNTIL ONE HAS A DATE AT LEAST AS
000216 GREAT AS THE VALUE OF IDATE IN THE CALL STATEMENT.
000220
000220
000230
000240
000240 ENVIRONMENT DIVISION.
000260
000270
000280 CONFIGURATION SECTION.
000290
000300 SOURCE-COMPUTER. IBM-370-158.
000310
000320 OBJECT-COMPUTER. IBM-370-158.
000330
000340
000350 INPUT-OUTPUT SECTION.
000360
000370 FILE-CONTROL.
000380 SELECT RECORD-FILE, ASSIGN TO UT-S-FT09F001.
000390
000400
000410
000420 DATA DIVISION.
000430
000440
000440 FILE SECTION.
000460
000470 FD RECORD-FILE,
000480 LABEL RECORDS ARE STANDARD,
000490 BLOCK CONTAINS 0 RECORDS.
000500
000510 01 CARD-IMAGE, PICTURE X(80).
000520
000530
000540
000550 WORKING-STORAGE SECTION.
000560
000570 77 DUMP-MARKER, PICTURE X(44), VALUE
000580 'SUBROUTINE RDREC WORKING-STORAGE BEGINS HERE'.
000590
000600 77 FILE-STATUS, PICTURE X, VALUE '0'.
000610 88 FILES-ARE-OPEN VALUE IS '1'.
000620
000630 77 BLANK-LINE, PICTURE X(121), VALUE SPACES.
000640
000650 01 LCGICAL-CODES.
000660 05 TRUE-VALUE, PICTURE S9(9), USAGE IS COMP, VALUE +1.
000670 05 FALSE-VALUE, PICTURE S9(9), USAGE IS COMP, VALUE ZERO.
000680
000690 01 TEMPERATURE-CODES.
000700 05 ABSENT-TEMP-CODE, PICTURE S9(9), USAGE COMP, VALUE +999.
000710
000720 01 PRECIPITATION-CODES.
000730 05 TRACE-PRECIP-CODE, USAGE IS COMP-1, VALUE -1.0E-06.
000740 05 DELAYED-PRECIP-CODE, USAGE IS COMP-1, VALUE -2.0E-06.
000750 05 ABSENT-PRECIP-CODE, USAGE IS COMP-1, VALUE -3.0E-06.
000760 05 INVALID-PRECIP-CODE, USAGE IS COMP-1, VALUE -1.0E-06.
000770
000780 01 MONTH-LENGTHS.
000790 05 JAN-JUN, PICTURE 9(12), VALUE 312831303130.
000800 05 JUL-DEC, PICTURE 9(12), VALUE 313130313031.
000810
000820 01 MONTH-TABLE REDEFINES MONTH-LENGTHS.
000830 05 LENGTH-OF-MONTH OCCURS 12 TIMES, PICTURE 99.
000840
000850 01 RECORD-IMAGE.
000860 05 IDENTIFIER.
000870 10 STATE, PICTURE S99.
000880 10 SITE, PICTURE S9(4).
000890 10 DATE-IMAGE.
000900 15 YEAR, PICTURE S99.
000910 15 DAY-OF-YEAR.
000920 20 MONTH, PICTURE S99.
000930 20 DAY, PICTURE S99.
000940 15 FILLER REDEFINES DAY-OF-YEAR, PICTURE X(4).
000950 88 FEB-29 VALUE IS '0229'.
000960 88 MAR-1 VALUE IS '0301'.
000970 10 DATE REDEFINES DATE-IMAGE, PICTURE S9(6).
000980 10 STATE-DIVISION, PICTURE S9.
000990 88 PM-OBSERVATION VALUES ARE +0 THRU +9.
001000 05 MAX-TEMP, PICTURE S999.
001010 05 FILLER REDEFINES MAX-TEMP, PICTURE XXX.
001020 88 ABSENT-MAX VALUE IS ' '.
001030 05 FILLER REDEFINES MAX-TEMP.
001040 10 MAX-SIGN, PICTURE X.
001045 88 VALID-MAX-SIGN VALUES ARE '-', '0', '1'.

163
88 NEGATIVE-MAX VALUE IS '-'.
10 MAX-VALUE, PICTURE 99.
05 MIN-TEMP, PICTURE S999.
05 FILLER REDEFINES MIN-TEMP, PICTURE XXX.
88 ABSENT-MIN VALUE IS '-'.
05 FILLER REDEFINES MIN-TEMP.
10 MIN-SIGN, PICTURE X.
88 VALID-MIN-SIGN VALUES ARE '1', '0', '1'.
88 NEGATIVE-MIN VALUE IS '-'.
10 MIN-VALUE, PICTURE 99.
05 OBS-TEMP, PICTURE S999.
05 FILLER REDEFINES OBS-TEMP, PICTURE XXX.
88 ABSENT-OBS VALUE IS '-'.
05 FILLER REDEFINES OBS-TEMP.
10 OBS-SIGN, PICTURE X.
88 VALID-OBS-SIGN VALUES ARE '1', '0', '1'.
88 NEGATIVE-OBS VALUE IS '-'.
10 OBS-VALUE, PICTURE 99.
05 PRECIPITATION, PICTURE S99V99.
05 FILLER REDEFINES PRECIPITATION, PICTURE X(4).
88 TRACE-PRECIP VALUE IS '000-'.
88 DELAYED-PRECIP VALUE IS '00-'.
88 ABSENT-PRECIP VALUE IS '-'.
88 NO-PRECIP VALUES ARE '1', '0', '000-'.
10 SNOW-FALL, PICTURE S99V9.
05 FILLER REDEFINES SNOW-FALL, PICTURE X(3).
88 TRACE-SNF VALUE IS '00-'.
88 NO-SNF VALUES ARE '1', '0', '-'.
88 DELAYED-SNF VALUE IS '0-'.
05 FILLER REDEFINES SNOW-FALL.
10 FILLER, PICTURE X.
10 SNF-SIZE, PICTURE S9.
10 FILLER REDEFINES SNF-SIZE, PICTURE X.
88 SNOW-OVER-100 VALUES ARE '1' THRU '9'.
10 FILLER, PICTURE X.
05 SNOW-DEPTH, PICTURE S999.
05 FILLER REDEFINES SNOW-DEPTH, PICTURE XXX.
88 TRACE-SND VALUE IS '00-'.
88 NO-SND VALUES ARE '1', '0', '-'.
05 FILLER, PICTURE S9.
88 EST-PRECIP VALUE IS '-9'.
05 FILLER, PICTURE X.
05 FILLER, PICTURE X.
88 HAZE VALUE IS '1'.
05 FILLER, PICTURE X.
88 FOG VALUE IS '1'.
05 FILLER, PICTURE X.
88 DRIZZLE VALUE IS '1'.
05 FILLER, PICTURE X.
88 SLEET VALUE IS '1'.
05 FILLER, PICTURE X.
88 GLAZE VALUE IS '1'.
05 FILLER, PICTURE X.
88 THUNDER VALUE IS '1'.
001570 05 FILLER, PICTURE X.
001580 05 88 HAIL VALUE IS '1'.
001590 05 FILLER, PICTURE X.
001600 05 88 DUST VALUE IS '1'.
001610 05 FILLER, PICTURE X.
001620 05 88 BLOWING-SNOW VALUE IS '1'.
001630 05 FILLER, PICTURE X.
001640 05 88 WIND VALUE IS '1'.
001650 05 FILLER, PICTURE X.
001660 05 88 TORNADO VALUE IS '1'.
001670 05 FILLER, PICTURE X(18).
001680 05 WIND-MOVEMENT, PICTURE S99.
001690 05 FILLER REDEFINES WIND-MOVEMENT, PICTURE XXX.
001700 05 88 NO-MOVEMENT VALUE IS ' '.
001710 05 88 DELAYED-MOVEMENT VALUE IS '0- '.
001720 05 FILLER REDEFINES WIND-MOVEMENT.
001730 10 MOVEMENT-SIZE, PICTURE S9.
001740 10 FILLER REDEFINES MOVEMENT-SIZE, PICTURE X.
001750 10 88 MOVEMENT-OVER-1000 VALUES ARE ' ' THRU 'R'.
001760 10 FILLER, PICTURE XX.
001770 05 EVAPORATION, PICTURE S9V99.
001780 05 FILLER REDEFINES EVAPORATION, PICTURE XXX.
001790 05 88 NO-EVAPORATION VALUE IS ' '.
001800 05 88 DELAYED-EVAPORATION VALUE IS '0- '.
001810 05 MAX-PAN, PICTURE S99.
001820 05 FILLER REDEFINES MAX-PAN.
001830 10 PAN-SIZE, PICTURE S9.
001840 10 FILLER REDEFINES PAN-SIZE, PICTURE X.
001850 10 88 PAN-OVER-100 VALUES ARE ' ' THRU 'R'.
001860 10 FILLER, PICTURE X.
001870 05 MIN-PAN, PICTURE S99.
001880 05 FILLER, PICTURE X.
001890 05 88 INTERPOLATED-MAX VALUE IS ' ',
001900 05 FILLER, PICTURE XX.
001910 05 FILLER, PICTURE X.
001920 05 88 INTERPOLATED-MIN VALUE IS ' ',
001930 05 FILLER, PICTURE X.
001940 05 88 INTERPOLATED-PRECIP VALUE IS ' ',
001950 05 CLIMATIC-WEEK, PICTURE S99.
001960 01 FILLER, PICTURE X(42), VALUE
001970 00 'SUBROUTINE RDREC WORKING-STORAGE ENDS HERE'.
001980 00 002000
002010 LINKAGE SECTION.
002020 002030 77 INDEND, PICTURE S9(9), USAGE IS COMP.
002040 002050 77 IDATE, PICTURE 9(9), USAGE IS COMP.
002060 002070 77 IMAX, PICTURE S9(9), USAGE IS COMP.
002080 002090 77 IMIN, PICTURE S9(9), USAGE IS COMP.
002110 77 PRECIP, USAGE IS COMP-1.
002120
002130
002140
002150 PROCEDURE DIVISION USING INDEND, IDATE, IMAX, IMIN, PRECIP.
002160
002170
002180 O10-CONTROL SECTION.
002190
002200 O10-COMMENT.
002210 NOTE **
002220 * THIS SECTION CONTAINS THE MAIN LOGIC OF THE *
002230 * SUBROUTINE. *
002240 **
002250
002260 O10-PROCESS-RECORD.
002270 IF FILES-ARE-OPEN NEXT SENTENCE, ELSE PERFORM
002280 O20-OPEN-FILES.
002290 PERFORM O30-LOAD-RECORD.
002300 IF INDEND IS EQUAL TO TRUE-VALUE GOBACK.
002310 IF FEB-29 PERFORM O30-LOAD-RECORD, IF INDEND IS EQUAL
002320 TO TRUE-VALUE GOBACK.
002330 MOVE DATE TO IDATE.
002340 PERFORM O40-COPY-MAX-TEMP.
002350 PERFORM O50-COPY-MIN-TEMP.
002360 PERFORM O60-COPY-PRECIPITATION.
002370 GOBACK.
002380
002390
002400
002410 O20-OPEN-FILES SECTION.
002420
002430 O20-COMMENT.
002440 NOTE **
002450 * OPEN THE INPUT FILE ON THE FIRST CALL TO THIS *
002460 * SUBROUTINE. *
002470 **
002480
002490 O20-INITIALIZE.
002500 OPEN INPUT RECORD-FILE.
002510 MOVE '1' TO FILE-STATUS.
002540
002550
002560 O30-LOAD-RECORD SECTION.
002570
002580 O30-COMMENT.
002590 NOTE **
002600 * MOVE A NEW RECORD INTO THE WORK AREA, BUT GET *
002610 * ANOTHER IF THE FIRST IS BLANK. MAKE SURE THE DATE *
002620 * IS VALID. GET ANOTHER IF THE DATE IS LESS THAN THE *
002625 * CALLING DATE. *
002630 **
002640
002650 O30-LOAD.
MOVE FALSE-VALUE TO INDEND.
READ RECORD-FILE RECORD, AT END GO TO 030-END-OF-FILE.
MOVE CARD-IMAGE TO RECORD-IMAGE.
IF IDENTIFIER IS EQUAL TO ALL SPACES GO TO 030-LOAD.
002700 030-CHECK-DATE.
002720 IF DATE IS NUMERIC GO TO 030-LOCATE.
002730 EXAMINE DATE-IMAGE REPLACING ALL SPACES BY ZEROS.
002740 IF DATE IS NUMERIC GO TO 030-LOCATE.
002750 MOVE IDATE TO DATE.
002760 ADD 1 TO DAY.
002770 IF DAY IS GREATER THAN LENGTH-OF-MONTH (MONTH) MOVE 1 TO
002780 DAY, ADD 1 TO MONTH.
002790 IF MONTH IS GREATER THAN 12 MOVE 1 TO MONTH, ADD 1 TO YEAR
002800 IF YEAR IS GREATER THAN 99 MOVE 0 TO YEAR.
002810 DISPLAY BLANK-LINE, ' (SUBROUTINE RDREC HAS REPLACED ',
002820 'A FAULTY DATE WITH ', DATE, ' THE DAY AFTER THE ',
002825 'INPUT DATE.')',
002830 030-LOCATE.
002850 IF DATE IS LESS THAN IDATE GO TO 030-LOAD.
002860 GO TO 030-EXIT.
002870 030-END-OF-FILE.
002890 MOVE TRUE-VALUE TO INDEND.
002900 030-EXIT.
002920 EXIT.
002930 040-COPY-MAX-TEMP SECTION.
002960 040-COMMENT.
002980 NOTE ***
002990 * THE MAX TEMP MUST BE CHECKED FOR SPECIAL CODES AND *
003000 * THEN BE CONVERTED TO A FORTRAN STYLE INTEGER. *
003010 ***
003020 040-MAX-TEMP.
003030 IF NOT VALID-MAX-SIGN OR MAX-VALUE IS NOT NUMERIC
003035 MOVE ABSENT-TEMP-CODE TO IMAX, GO TO 040-EXIT.
003040 IF NEGATIVE-MAX MOVE ZERO TO IMAX, SUBTRACT MAX-VALUE FROM
003050 IMAX, GO TO 040-EXIT.
003080 MOVE MAX-TEMP TO IMAX.
003090 040-EXIT.
003100 EXIT.
003120 050-COPY-MIN-TEMP SECTION.
003150 050-COMMENT.
003170 NOTE ***
003180 * THE MIN TEMP MUST BE CHECKED FOR SPECIAL CODES AND *
* THEN BE CONVERTED TO A FORTRAN STYLE INTEGER. *

003220 050-MIN-TEMP.
003223 IF NOT VALID-MIN-SIGN OR MIN-VALUE IS NOT NUMERIC
003226 MOVE ABSENT-TEMP-CODE TO IMIN, GO TO 050-EXIT.
003230 IF NEGATIVE-MIN MOVE ZERO TO IMIN, SUBTRACT MIN-VALUE FROM
003240 IMIN, GO TO 050-EXIT.
003270 MOVE MIN-TEMP TO IMIN.
003280
003290 050-EXIT.
003300 EXIT.
003310
003320
003330 060-COPY-PRECIPITATION SECTION.
003340
003350 060-COMMENT.
003360 NOTE **
003370 * THE PRECIPITATION MUST BE CHECKED FOR SPECIAL CODES *
003380 * AND THEN BE CONVERTED TO A FORTRAN REAL*4 NUMBER. *
003390 **
003400
003410 060-PRECIPITATION.
003420 IF TRACE-PRECIP MOVE TRACE-PRECIP-CODE TO PRECIP,
003430 GO TO 060-EXIT.
003440 IF DELAYED-PRECIP MOVE DELAYED-PRECIP-CODE TO PRECIP,
003450 GO TO 060-EXIT.
003460 IF ABSENT-PRECIP MOVE ABSENT-PRECIP-CODE TO PRECIP,
003470 GO TO 060-EXIT.
003480 IF NO-PRECIP MOVE ZERO TO PRECIP, GO TO 060-EXIT.
003490 IF PRECIPITATION IS NOT NUMERIC GO TO 060-ERROR.
003500 MOVE PRECIPITATION TO PRECIP, GO TO 060-EXIT.
003510
003520 060-ERROR.
003530 DISPLAY BLANK-LINE, ' (SUBROUTINE RDREC HAS REPLACED ',
003540 ' AN INVALID PRECIPITATION IN RECORD ', IDENTIFIER,
003550 ')'.
003560 MOVE INVALID-PRECIP-CODE TO PRECIP.
003570
003580 060-EXIT.
003590 EXIT.
REFERENCES

A MODEL FOR THE SIMULATION OF KANSAS TEMPERATURE DATA

by

KENNETH IVAN LAWS

B.A., Southwestern College, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1974
Models for weather data were explored using records for Manhattan, Kansas, from 1900 through 1970. Precipitation was found to be independent of antecedent conditions, but a covariance model for minimum and maximum daily temperatures proved satisfactory. Daily extreme temperatures were regressed on the occurrence of precipitation during the preceding day and the day of interest and on the deviations from normal of the preceding two temperatures. Interaction terms were found to be insignificant.

Parameter estimates are listed for nine Kansas stations. Harmonic analysis has been used to smooth the estimates. The Fourier coefficients are tabulated and mapped.

Simulation of Manhattan weather was attempted using randomly generated precipitation. The distribution of wet and dry days was found to be correct, but precipitation amounts were too uniform. This did not degrade the temperature simulation.