AN INVESTIGATION OF THE DIFFERENT TYPES OF CLASS ORGANIZATION
IN THE TEACHING OF ARITHMETIC IN THE
INTERMEDIATE GRADES

by

Lois Vilander
B. S., Kansas State University, 1958

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

College of Education

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1969

Approved by:

[Signature]
Major Professor
ACKNOWLEDGMENTS

The writer expresses her appreciation for the assistance given by Dr. Harlan Trennepohl in the preparation of this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>2</td>
</tr>
<tr>
<td>Questions</td>
<td>3</td>
</tr>
<tr>
<td>Research Design</td>
<td>4</td>
</tr>
<tr>
<td>Limitations and Delimitations</td>
<td>4</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>4</td>
</tr>
<tr>
<td>Differentiating arithmetic instruction</td>
<td>4</td>
</tr>
<tr>
<td>Individual differences</td>
<td>4</td>
</tr>
<tr>
<td>Mathematical phase of arithmetic</td>
<td>4</td>
</tr>
<tr>
<td>Social phase of arithmetic</td>
<td>4</td>
</tr>
<tr>
<td>Trait differences</td>
<td>4</td>
</tr>
<tr>
<td>REVIEW OF THE LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>Literature on Individual Differences in the</td>
<td>6</td>
</tr>
<tr>
<td>Intermediate Grades</td>
<td>6</td>
</tr>
<tr>
<td>Literature on Class Organization</td>
<td>11</td>
</tr>
<tr>
<td>Whole class organization</td>
<td>12</td>
</tr>
<tr>
<td>Ability grouping</td>
<td>14</td>
</tr>
<tr>
<td>Individualized instruction</td>
<td>21</td>
</tr>
<tr>
<td>Combination of the whole class method and small group organization</td>
<td>23</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>26</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>30</td>
</tr>
</tbody>
</table>
INTRODUCTION

Much has been written about the individual differences that exist in the elementary classroom. The differences that exist are even greater today than they have been in the past. This is partly due to the current promotion and retention policies of the school. The slow learner and rapid learner are kept with their chronological age group in an attempt to assure the social and emotional development of all children. Socially this may be best for the child, but unless the teacher provides for the various levels of ability in his classroom, the rapid learners coast through the grades with very little challenge and the slow learners are quite often frustrated by demands which are beyond their abilities.¹

Reading instruction has received the most attention in regard to handling individual differences while arithmetic has received very little attention. Many teachers still teach arithmetic as though individual differences did not exist in that area. The class proceeds from topic to topic with no variation in the material and assignments. Evidence has been established that "Children in a typical fifth grade class may differ in arithmetic ability as much as five years."²

Differences in arithmetic do not correlate highly with intelligence according to the National Council Teacher of Mathematics.

Theoretically, differences in arithmetic achievement might be expected to vary as greatly as intelligence or as aptitude for arithmetic varies. Actually the variation is probably somewhat greater. The correlation between intelligence (or any of its factors or combinations thereof) and arithmetic achievements rarely exceeds .60, and in most cases proves to be lower. Obviously unmeasured factors such as experience, emotional stability, modes of thinking, and attitudes contribute to success in arithmetic. ¹

In order for the teacher to best take care of the differences that exist in the students of his classroom he must be able to recognize the differences that exist and then plan his arithmetic class carefully. The first step the teacher faces is the organization of his class. There are several ways in which he can organize his arithmetic class.

Statement of the Problem

The purpose of this paper was to investigate the advantages and disadvantages of the following methods and determine which method best takes care of the individual differences:

I. The class as a whole method.

2. Grouping the class into permanent groups according to arithmetic ability.

3. Individualized instruction.

4. Combination of whole class and small groups.

Questions

This report was written to answer the following questions concerning the teaching of arithmetic in the intermediate grades:

1. What are some of the factors causing individual differences in the intermediate grades?

2. What are the advantages and disadvantages of the various methods of organization in an arithmetic class in the intermediate grades?

3. Which method does research say enables the individual child to make the most measureable gain?

4. Which method is the most feasible for the teacher to use in regard to time and materials?

5. Do the various methods have other affects on the individual child such as social adjustments?

6. Is the behavior of the child affected by the organization of the class?
Research Design

This is a library report which compares the existing information concerning the various methods of class organization in the teaching of arithmetic in the intermediate grades.

Limitations and Delimitations

This report is limited to the resources of the Kansas State University Library. Study was concentrated on the teaching of arithmetic in the intermediate grades.

Definition of Terms

Differentiating arithmetic instruction. Refers to adjustment in depth and scope of arithmetic topics presented in keeping with individual and trait differences.

Individual differences. The variations that exist among the various individuals of a group on any single measure or trait.

Mathematical phase of arithmetic. The phases of arithmetic having to do with computational skills.

Social phase of arithmetic. Those phases of arithmetic which are essential for intelligent living among human beings. Examples of this would be buying and selling, money, or standard time and measurements.

Trait Differences. The variations in scores made
by a single individual on a number of tests dealing with different abilities in a single area.
REVIEW OF LITERATURE

Much has been written concerning individual differences and how to allow for these differences in educating children. This report is a summary of the individual differences in regard to arithmetic ability and the types of classroom organization that will help the individual to make the most measureable gain.

Literature on Individual Differences in the Intermediate Grades

One of the most difficult and perplexing problems faced by the arithmetic teacher is how to recognize and provide for the wide range of differences among the individuals in his classroom. It is the teacher's responsibility to help each child achieve to his fullest potential in accordance with his ability. In order to do this, the teacher must be able to determine factors causing differences in achievement and must know how to deal with these factors to develop the achievement potential of each child.¹

Studies indicate that high achievers in arithmetic display such personality and intellectual characteristics

as a healthy ego, relative freedom from conflicts and anxieties, independent thinking, creativity, flexibility, and the ability to handle abstract symbols and relationships.1

In accordance, the following are commonly recognized factors relating to achievement in arithmetic.2

1. Intellectual ability. Related to learning arithmetic are attentiveness, ability to remember what is heard, seen, and read, ability to work with abstract symbols, and ability to generalize and see relationships. A person may not be able to succeed in all of these areas because he is below average general intelligence. However he may have other attributes which will enable him to do well in certain areas of arithmetic. At the same time, a person with high intelligence may do poorly in arithmetic because he is adversely affected by other factors.

2. Environmental influences. Favorable environmental influences such as a happy home life with a favorable

1Ernest A. Haggard, "Socialization, Personality, and Academic Achievement in Gifted Children," \textit{The Social Review}, LXV (1957), 388-414.

attitude toward arithmetic experiences will play an important role in the development of the child's arithmetic abilities. A classroom environment that makes learning exciting and important is also conducive to developing the child's potential abilities.

3. Emotional factors. Emotional factors greatly influence learning. A thorough understanding of the emotions surrounding the child is essential if the teacher is to help the child to develop his potential arithmetic ability. Often an adverse factor can not be altered but an understanding teacher can help the child develop as far as possible under the existing circumstances.

4. Physical factors. Learning like anything else is best accomplished when the individual is in good general health, eats the right food, and gets plenty of rest. Very important to learning is seeing and hearing properly.

5. Instructional factors. Since this paper is concerned primarily with the teaching of arithmetic in the intermediate grades, the arithmetic instruction previously had by the child is important. Pupils will differ in their understanding of the numeration system and number operations,
their mastery of basic facts, and their understanding of the social usefulness of arithmetic.

The fact that arithmetic involves abstractions complicates the learning further. These concepts may be understood only after the child has succeeded in making generalizations based upon various experiences with numbers in situations which help him identify the abstract number relationships. ¹

Numerous investigations have demonstrated the fact that at all grade levels there is a wide range of abilities. The older the students the greater will be the range of abilities. Brueckner and Grossnickle found the range in arithmetic age to be even greater than the chronological and mental ranges of the students. They also found a tendency for differences to increase grade by grade. ² This makes it even more difficult for the teacher of the upper elementary grades because the differences are even greater here than in the primary grades.

There are two kinds of differences that should be of

concern to the teacher of arithmetic, namely, individual
differences and trait differences. An individual may vary
as much as three or four grade levels on separate traits.\footnote{Leo J. Brueckner and Foster E. Grossnickle, \textit{How to
Make Arithmetic Meaningful}, (Philadelphia: The John C.
Winston Company, 1947), pp. 393-399.} This fact must be recognized in planning and organizing the
instructional program.

Probably the most difficult problem facing a teacher
in the intermediate grades is that of trying to develop a
program which is suited to the needs of each child in a
large group of from twenty-five to thirty-five children. By
selecting and arranging learning activities, the teacher
attempts to provide learning experiences which are most
valuable for the low achievers in the class and at the same
time provide stimulating experience for the high achiever.
The problem is made even greater in that the fast achiever
will advance at a greater speed than the low achiever and
the ability levels tend to become even greater as the children
move through the elementary grades.

Although no perfect solution to this problem has been
found, research has provided many suggestions which are
helpful in alleviating certain types of situations, thus
making it possible for the good teacher to function
effectively where extreme differences are not too great.

Literature on Class Organization

The fact that pupils in all arithmetic classes differ in such ways as understanding of number operations, rate of learning, background of experience, and interest in the subject, indicates that arithmetic instruction should be adjusted to provide for the apparent variations in pupils.\(^1\) Classroom teachers are concerned with methods of instruction which will meet the individual needs of the students. Authors of texts are concerned about the variations in the ability of the students and offer suggestions on classroom organization and methods of handling the individual differences. M. Devault stated:

> Recognized authorities in the teaching of arithmetic generally agree that providing for differences in learning ability is an essential element of a good instructional program. But these authorities differ as to the means by which we should provide for these differences.\(^2\)

In discussing individual differences Harold H. Lerch said:

> Most of the proposals and methods for adjusting

arithmetic instruction to pupil differences in arith-
metical abilities and understandings are concerned
with some organizational procedure and involve some
type of ability grouping or some type of individual-
ized program.

Whole class organization. The class organization
that is the most common in the intermediate grade arithmetic
class is the whole class organization. In this type of
organization the whole class moves through the assigned arith-
metic program for that grade level and the teacher gives
individual help to those students who need it. The whole
class is introduced to the basic list of topics at the same
time. Efforts at meeting individual differences might in-
clude help for individual pupils as time permits, occasional
variation in practice, extra assignments for individual
pupils, and whatever enrichment the teacher encourages rapid
learners to pursue.

The whole class organization is the most often used
in the classroom. Frances Flournoy gives several reasons
for this:

The arithmetic texts available are written for
the average children with only token provisions for

1Harold H. Lerch, "Arithmetic Instruction Changes
Pupils' Attitudes Toward Arithmetic," Arithmetic Teacher,
VIII (March, 1961), 117.

2Frances Flournoy, Elementary School Mathematics
(Washington, D. C.: The Center for Applied Research in
the slow or rapid learner. Teachers have found
from experience that it takes a great deal of time,
effort, and ability to operate more than one arith-
metic grouping and consequently have shied away from
several groupings because of the work involved and an
inefficient amount of time allotted to the arithmetic
program which would make grouping impossible. 1

Even though the whole class method of organization
is the easiest, it may not be the best for the children in-
volved. The class usually is taught for the average achiever
with the few minutes of time that the teacher can spare work-
ing with those children who can not keep up with the average
group in the class. Even with the extra help the low achiever
is often working at the frustration level and growing to dis-
like every minute of arithmetic instruction. "It is never
possible, try as we may, to bring the performance level of
the slow moving child up to the level of the rapid learner
unless we place the latter in an intellectual deep-freeze." 2

While the low achiever is frustrated the high achiever
may be coasting through arithmetic, learning poor study habits
and becoming quite uninterested in school due to the lack of
challenging material.

The whole class organization may not always be detri-
mental to the children involved. If a teacher has a fairly

1George H. McMeen, "Differentiating Arithmetic In-
struction for Various Levels of Achievement," Arithmetic
Teacher, VI (April, 1959), 114.

2Ibid., p. 114.
homogeneous group this type of organization may be best and conserve both the children's and teacher's time without negative affects on the children. However if a teacher has a heterogeneous group it would seem logical that children at either end of the arithmetic spectrum would not receive the attention due them under the present whole class method of teaching. ¹

In a report on an in-service project designed to meet individual differences in the teaching of arithmetic, Flournoy observed that there was less variation in an attempt to provide the extra help needed by slow learners and the extra challenge needed by fast learners in the whole class teaching organization than in other types of class organization. ²

Ability grouping. The most research has been done in organizing arithmetic classes into groups according to the arithmetic ability of the children. No effort is made to keep the entire class together as successive topics are studied. At the beginning of the school year, the class is divided into two or more subgroups on the basis of general

¹George H. McMeen, "Differentiating Arithmetic Instruction for Various Levels of Achievement," Arithmetic Teacher, VI (April, 1959), 114.

arithmetic achievement. Each subgroup starts with the topics and level of difficulty at which it can experience reasonable success. Each group moves forward through the logical sequence of arithmetic topics at its own rate.¹

The other area in the elementary curriculum that we think of when grouping is discussed is reading. There are some important differences that make ability grouping in the teaching of arithmetic more difficult than in the teaching of reading.²

1. Arithmetic has a more exacting and definite sequence than other fields.

2. Most new steps require reasonable facility with background skills.

3. Textbooks are not available for a given grade written at different levels.

4. Diversified supplementary resources are usually not available in the elementary school library.

5. Most teachers do not have access to a reservoir of diversified practice materials or teaching aids.

Authorities in the teaching of arithmetic do not agree on the advisability of forming groups in the teaching of arithmetic. One area of concern is the attitudes of parents and children involved in the groups. Those who severely criticize grouping feel that the pupils in the lower group will lose self respect. Parents will object that their child is classified as a slow learner and will denounce this form of class organization as undemocratic. Spitzer felt that the lack of class unity when groups are working separately would be detrimental to a class.¹

Pinney felt a disadvantage to the grouping would be that the high achiever group would receive the high grades and honors and there would develop a feeling of snobbery and aloofness when associating with the other children in the class.²

McSwain warned that there was considerable danger in hurting children by fitting them into a slow, average, or rapid category too soon.³ Because of this danger, if a

teacher chooses to group the children, he should make the groups flexible enough so a child can be moved from one group to another.

Proponents of grouping children with like abilities together, believe that a child's success at his own level will have favorable affects on attitude. However, in a study conducted by Lerch the changes in attitude toward arithmetic of pupils taught in grouped arithmetic classes were compared with the changes in attitude toward arithmetic of pupils taught in a traditional non-grouped situation. As measured by the instruments used in this study, the changes in attitudes toward arithmetic of the experimental classes were not significantly different from the changes in attitude toward arithmetic of the contrast class. In both groups, more than one half of the pupils indicated changes to more favorable attitudes toward arithmetic. "The experimental grouping procedures had no more adverse effect upon the pupils' attitude toward arithmetic than did the more traditional approach."

In a study conducted by Holmes and Harvey, a con-

2Ibid., p. 118-119.
clusion was reached that no differential effect on the attitudes of children toward arithmetic appeared when the children were placed in groups.\footnote{Darrell Holmes and Lois Harvey, "An Evaluation of Two Methods of Grouping," Educational Research Bulletin, XXXV (November, 1956) 213-222.} Kavaraceus and Wiles reached a somewhat different conclusion in a similar study.\footnote{William C. Kavaraceus and Marion E. Wiles, "An Experiment in Grouping for Effective Learning," Elementary School Journal, XXXIX (December, 1938), 264-268.} They ascertained that when pupils were classified into groups according to their achievement and apparent abilities, disciplinary problems were reduced and pupils' attitudes toward the study of arithmetic seemed to have been improved. However in both types of grouping, the attitudes of pupils toward arithmetic were less favorable at the end of the year than at the beginning.

Reports by Ivie, Fowler, and Graham\footnote{Claude Ivie, Eugenia Fowler, and Virginia Graham, "Grouping in the Normal Mathematics Class," The Mathematics Teacher, LI (October, 1958) 450-452.} and by Ivie, Gunn, and Holladay\footnote{Claude Ivie, Lilybell Gunn, and Ivon Halladay, "Grouping in Arithmetic in the Normal Classroom," Arithmetic Teacher, IV (November, 1957) 219-221.} do not completely support these finding. They indicate that some pupils are dissatisfied with working in small groups and would rather work with the total class instead.
In a pilot study reported on by McLaughlin, fourth, fifth, and sixth grade students were grouped according to arithmetic ability. In this particular study the ranges in the regular class were from four to five grade levels, while the range in most of the ability groups were less than one year. However, the highest achiever and lowest achiever groups had ranges of between two and three years. Results were reported as follows:

1. The capable but lazy students began to show determination to achieve. The motivation was to be placed with their peer group.

2. The low ability child seemed to be happier with less discipline problems.

3. The rapid learners were no longer permitted to loaf.

4. If parents were unhappy it was due to the fact that the parents felt the child was placed in two low an achievement group.

Dewar conducted a study with sixth graders in which he used eight classrooms of sixth graders. Three classrooms

were taught the traditional organized class method. The others used three group organization to teach arithmetic. The study sought to determine which group would show the greater amount of achievement and also to determine the attitudes of teachers and students toward grouping. The experimental classrooms were divided into three groups on the basis of Stanford Achievement Tests and teacher judgement. The control groups were also divided into three groups on the same basis for purposes of statistical analysis but not for instruction. Both the experimental and control groups used well known series of textbooks and both were taught fifty-five minutes a day. The conclusion of this study was that the children in the high and low ability groups in the experimental groups made significant gains over their counterparts in the control classrooms. There was no significant difference in the average achiever. The opinionnaire given to the teachers and students involved, indicated that pupils and teachers in the experimental groups could see more and better learning going on.

Provus conducted a study similar to Devar.¹ His results showed that the more competent student profited

most from ability grouping.

A conclusion from these studies seems to indicate that the low and high achiever would benefit the most from grouping in the arithmetic class. However the teacher must be competent and willing to plan and experiment in order to benefit the children. To merely divide the children into three groups and teach the same lesson three times will not profit the students any more than teaching the class as if no difference existed. The high achievers must have more challenging work while the low achievers often need more concrete materials to work with. Howard and Dumas agree with this when they stated:

It should be noted that any grouping procedure will require more skill and probably more effort on the part of the teacher in order for him to do the most effective teaching, but the necessary skill is not beyond the capabilities of a competent teacher, and the effort should be repaid by the satisfaction the teacher derives from noting the improved progress of individual pupils.\footnote{Charles F. Howard and Enoch Dumas, \textit{Basic Procedures in Teaching Arithmetic} (Boston: D. C. Heath and Company, 1963), p. 374.}

\textbf{Individualized instruction.} Another type of class organization is individualized instruction. Each pupil proceeds from one topic to another at his own rate. Each child uses some self-teaching materials appropriate for his
level of achievement and moves at his own rate of learning with minimal teacher guidance.

In the limited available literature on individualized instruction most authorities do not favor this type of class organization. According to Devault the limitations of individualized instruction are as follows:

1. The enormous task of preparing, merchandising, purchasing, and managing materials is impractical.
2. The level of motivation is diminished, particularly on the part of the low achiever.
3. Group spirit is gone.

Spitzer agrees with Devault when he says:

The individual instruction plan has not been too successful partly due to the lack of material but primarily because class spirit quickly reaches a point of no consequence when members of the class are not working on the same area of the subject.

Flournoy also suggests that the student would tend to perform on a mechanical level with no mathematical understanding or social appreciation.

There seems to be a lack of studies and experiments involving individualized instruction, the reason being the lack of texts and materials available to carry out studies of this nature. However from the literature available it would seem that this type of class organization is impractical to consider due to the lack of available materials and the extreme amount of time required on the part of the teacher.

Combination of the whole class method and small group organization. This combination was favored by several authorities. In this combination the class is heterogeneously grouped. Each new topic is introduced to the class as a whole. The class is later divided into groups and those students needing more help or concrete instruction are given this help. Those students needing more challenging work are grouped together and this type of instruction is given. When another new topic is introduced the class again works all together. "Individual differences are probably handled more systematically under this arrangement than the strict class as a whole organization."¹

A combination of these two plans helps preserve the

uniform forward movement of the class. In discussing this combination Devault stated:\footnote{1}

All children in the class have each successive topic in the course of study introduced to them at the same time but intraclass groups are used to differentiate the methods, materials, and aspects of the topics which are presented.

Some areas in the arithmetic program lend themselves well to class as a whole organization and some other areas are better understood if pupils work in small groups. Flournoy agrees when he says:\footnote{2}

Teachers willing to try out varied class organization learn to recognize situations or activities in which the class as a whole can work well together and other times when the topic or activity seems best carried out through the use of small groups.

The variety in using the whole class organization and the smaller groups in the classroom adds interest to the arithmetic program. It also makes it easier to have a more flexible grouping plan. Since each child differs in individual traits he would not necessarily be placed in the same level of achievement group each time. It would depend upon the area studied and the child's ability in that area. This would eliminate the possibility of placing a child in a

\footnote{1}{M. Devault, Improving Mathematics Programs: Trends and Issues in Elementary School Mathematics (Ohio: C. E. Merrill Books, 1961), p. 130.}

\footnote{2}{Frances Flournoy, "Meeting Individual Differences in Arithmetic," Arithmetic Teacher, VII (February, 1960), 80-86.}
group and then find it too difficult to move him to another group even though he did not belong where he had been placed.

Since most schools have only one arithmetic text to be used at a grade level the teacher can conserve his time by presenting the new material only once and then differentiate instruction in the groups as necessary.
SUMMARY AND CONCLUSIONS

The writer has reviewed the literature and has found that educators are becoming concerned with the methods used in teaching arithmetic. Most of the studies reported on are concerned with grouping the children in arithmetic in much the same way that reading has been taught. There is limited research done in other areas of classroom organization. However, there is evidence that the traditional whole class method of teaching arithmetic is not challenging to either the high or low achiever. The writer feels that either grouping students or a combination of the whole class method and smaller groups is the best classroom organization to take care of individual differences. Complete individualized math seems impractical because of the vast amount of time required by the teacher and the large supply of teaching materials that would be required and which are often not available. The lack of class unity and motivation also makes individualized instruction seem inadvisable.

The writer also recognizes that teachers have individual differences just the same as students do and the procedures that work well for one may not work for another. Quite often if the teacher feels he can succeed with a type of class organization, he will succeed and the students will feel confident in this type of procedure. "The child's successes in arithmetic are more basically dependent upon
his teacher's attitudes and the methods they employ than they are upon classroom organization.\(^1\)

Whether the teacher uses the whole class, grouping, individualized instruction, or a combination of these types of classroom organization, there are some general conclusions that the writer reached as the literature concerning classroom organization of the arithmetic class was reviewed.

1. Any plan of instruction requires careful planning by the teacher.

2. Assignments must be made clearly so that pupils can work as independently as possible.

3. Keeping pupils somewhat together on a common topic at three levels is difficult and yet more desirable than having pupils work on unrelated topics at the same time.

4. If desirable attitudes toward arithmetic are to be developed and if undesirable attitudes are to be changed, a pupil should be assured of a certain measure of success at his own level of ability and understanding.

5. Any system of grouping or differentiating should

be flexible.

6. The co-operation of the pupils in any differentiating program is essential if the program is to succeed.

7. No one method alone has all of the answers for handling individual differences.

8. Teachers also have individual differences and the procedures that work well for one may not prove to be valuable to another.

9. The attitude of the teacher toward the learning of arithmetic skills is very important and has an important affect on the children's attitude.

A teacher should know much about his pupils, their mental capabilities, special aptitudes, interests, and background of experience. On the basis of such information, the teacher can plan and organize the arithmetic program to bring about general growth and take care of individual differences. Brueckner and Grossnickle are concerned about individual differences when they state:¹

In the course of the learning experience the teacher should see to it that the more able children are challenged by tasks that are of concern to them.

while children of lower intelligence are given re-
sponsibility each in accordance with his ability.

Authorities and teachers of arithmetic differ as
to which is the best method to use but they all agree that
a skillful and competent teacher can organize the work in
such a way to make arithmetic both interesting and challeng-
ing for all students.
BIBLIOGRAPHY

McKee, George H. "Differentiating Arithmetic Instruction for Various Levels of Achievement," Arithmetic Teacher.

AN INVESTIGATION OF THE DIFFERENT TYPES OF CLASS ORGANIZATION
IN THE TEACHING OF ARITHMETIC IN THE
INTERMEDIATE GRADES

by

LOIS VILANDER
B. S., Kansas State University; 1958

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

College of Education

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969
The purpose of this paper was to review the literature on individual differences in arithmetic ability and to determine which method of classroom organization best handled these differences.

Library research was used as a means of obtaining information.

The individual differences of students today were found to be even greater than they have been in the past which may have been partly due to the promotion and retention policies of the schools. The range of abilities tends to increase as the students move through the grades. The children in a typical intermediate grade may differ in arithmetic ability as much as five years.

The literature was reviewed to determine the most effective way of organizing the classroom in teaching arithmetic. The whole class method was found to take the least amount of preparation on the part of the teacher but to be the least effective in handling the needs of the low and high achiever.

Organizing the class into ability groups seemed to be favored by many authorities and the most research had been done in this type of organization. Those opposing this method were concerned about the possibility of ability grouping affecting the children psychologically. The majority of the studies conducted concluded that the low and high achiever profited under ability grouped arithmetic classes.
The individualized instruction was discouraged by most authorities due to the vast amount of time required by the teacher. This method also requires a variety of materials that are not available to most teachers. Many authorities discouraged individual instruction due to the lack of class unity and group motivation.

Some authorities favored combining the whole class method with the ability groups. This makes a more flexible program and allows for more variety in the arithmetic class. There was very little research on this combination but several authors favored this method. They said that this combination would help preserve the uniform forward movement and help promote class unity. At the same time groups could be formed when necessary to give the low achiever the additional help he needs and to challenge the high achiever to more advanced work.

The authorities recognize that more research needs to be done and that no one method has proved to be consistently more effective than the others. The individual traits found in a teacher often determines which method works best for that particular teacher. The needs of the students also help dictate the type of class organization the teacher uses. A homogeneous group might make the most progress under the whole class organization while a group with a wide range of abilities would work best in groups or individually.