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Abstract 

The core objective of this research is to develop an estimator capable of tracking the states of 

ground targets with observation measurements obtained from a single monocular camera 

mounted on a small unmanned aerial vehicle (UAV).  Typical sensors on a small UAV include 

an inertial measurement unit (IMU) with three axes accelerometer and rate gyro sensors and a 

global positioning system (GPS) receiver which gives position and velocity estimates of the 

UAV.  Camera images are combined with these measurements in state estimate filters to track 

ground features of opportunity and a target.  The images are processed by a keypoint detection 

and matching algorithm that returns pixel coordinates for the features.  Kinematic state equations 

are derived that reflect the relationships between the available input and output measurements 

and the states of the UAV, features, and target.  These equations are used in the development of 

coupled state estimators for the dynamic state of the UAV, for estimation of feature positions, 

and for estimation of target position and velocity.   

 

The estimator developed is tested in MATLAB/SIMULINK, where GPS and IMU data are 

generated from the simulated states of a nonlinear model of a Navion aircraft.  Images are also 

simulated based upon a fabricated environment consisting of features and a moving ground 

target.  Target observability limitations are overcome by constraining the target vehicle to follow 

ground terrain, defined by local features, and subsequent modification of the target’s observation 

model.  An unscented Kalman filter (UKF) provides the simultaneous localization and mapping 

solution for the estimation of aircraft states and feature locations.  Another filter, a loosely 

coupled Kalman filter for the target states, receives 3D measurements of target position with 

estimated covariance obtained by an unscented transformation (UT).  The UT uses the mean and 

covariance from the camera measurements and from the UKF estimated aircraft states and 

feature locations to determine the estimated target mean and covariance.  Simulation results 

confirm that the new loosely coupled filters are capable of estimating target states.  Experimental 

data, collected from a research UAV, explores the effectiveness of the terrain estimation 

techniques required for target tracking.      
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Chapter 1: Introduction 

This thesis details the development of an estimation technique which tracks the position and 

velocity of ground targets with measurements obtained from a single monocular camera mounted 

on an unmanned aerial vehicle (UAV).  The tracking is limited to ground targets as this 

constraint is necessary to deal with observability limitations associated with single vision target 

tracking approaches.  The well known simultaneous localization and mapping (SLAM) 

estimation technique is also applied in estimating the states of the UAV and local ground 

features defining the environment since it is required as an intermediate step for the solution of 

this complex problem.  SLAM refers to the class of optimal state estimation methods in which 

both vehicle states and the environment about the vehicle are simultaneously estimated within a 

probabilistic framework.  Specifically, knowledge of the relationships between the UAV and the 

ground features, observed as distinctive gradient changes in images, aid in the development of a 

solution for the aircraft states and a digital terrain map of the UAV’s environment.     

1.1 Previous Work 
Many disciplines have investigated solutions to the target tracking problem for various 

applications including tracking military convoys, air traffic monitoring, and surveillance 

systems.  Much of this work utilizes range and bearing sensors such as radar or laser scanners.  

For example, both [1] and [7] modified aircraft tracking algorithms to incorporate radar 

measurements taken from stationary positions.  While these algorithms are readily extended to 

tracking ground vehicles, the targets must be located in the vicinity of the measurement device.  

For many situations, this may be simply impractical depending upon the nature of the targets 

(e.g. friend or enemy).  Ref. [14] provides an alternative to fixed sensor locations by assuming 

moving target indicator reports, or target position measurements, are available from an aircraft 

sensor.  Even though the author limits this approach by only considering ground vehicles moving 

in a 2D plane, the use of aircraft in tracking ground targets provides several advantages over 

fixed radar stations.  Many aerial vehicles have a tremendous range of operation, are not limited 

by ground topography, and are often flown autonomously.  In recent years, the use of UAVs for  

missions which require great precision or are too dangerous for manned flight has increased due 
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to their autonomous capabilities. However, many smaller framed UAVs are generally not 

equipped with either radar or laser range finders due to weight and power limitations.  For such 

power and weight limited systems, cameras are the sensor of choice.   

 

UAV mounted vision systems are appealing for several reasons and have been applied in a 

variety of applications including geophysical surveying, remote sensing, ecological research, and 

autonomous navigation.  In general, cameras are lightweight, inexpensive, and provide 

informative data that can be utilized in many different ways.  While it is possible to obtain range 

measurement from stereoscopic cameras, this is not a viable option on UAVs because the 

stereoscopic effects are limited by the large distance the camera is located from the terrain.  

Therefore, monocular cameras are predominately used aboard aircraft.  The use of cameras in 

tracking targets is also an emerging UAV research field.  In target tracking applications, cameras 

have an advantage over several ranging sensors, which are typically active and allow the target to 

know when it is being observed.   

 

However, several implications arise from the inherit projection of 3D space onto 2D image 

space.  The inability to resolve scale for scene reconstruction from images alone is well known 

within machine vision literature.  Recovery of scale requires other sensors such as the global 

positioning system (GPS) that provide absolute position or control points with known locations 

within the scene.  Even with GPS sensors, this loss of scale continues to pose observability issues 

when tracking moving targets with video.  Essentially, the component of the target’s velocity 

along a line between it and the camera is ambiguous or unobservable.  Therefore, other 

constraints or assumptions are necessary before target tracking from monocular vision is 

possible.  One possible solution constrains the target motion to a 2D ground plane.  After taking 

video images of the local terrain and targets from a UAV, the authors of [19] reconstruct the 

camera poses based upon projective homography matrices developed from the camera images 

and a geo-referenced satellite image.  The pose information for each picture provides a means to 

determine a latitude and longitude position measurement of the target.  While novel in some 

aspects, this method is limited to flat ground planes, and when a geo-referenced image is 

unavailable, the estimator performance degrades rapidly.  Other works appear content on using 

multiple coordinated UAVs for tracking ground targets.  Much of the work outlined in [13] is 
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based upon the realization that inexpensive UAVs are often instrumented with low cost sensors 

due to the high loss rate associated with autonomous flight and hostile target tracking.  

Therefore, a necessity for success involves the coordinated flight and collaboration of sensor data 

obtained from multiple UAVs.  This includes the use of several UAVs outfitted with monocular 

cameras.  Multiple camera poses obtained at the same instance provide triangulation of the 

target’s position in 3D space, which negates the camera scaling loss generated by any one 

camera.          

 

This thesis researches another solution to the target tracking problem.  Like [19], the target is 

constrained to follow the ground terrain and is captured in images obtained from a UAV 

mounted camera.  However, most terrain undulates in 3D space and terrain models are seldom 

available to the accuracy required.  Therefore, this thesis borrows some techniques of SLAM to 

estimate the 3D terrain near the moving target.  Unlike moving targets, stationary features are 

observable using vision from a moving platform.  If the ground features can be accurately 

mapped, then terrain information, combined with camera states and image measurements, 

provides an alternative method to determine the 3D target position measurement vector.   

 

The SLAM problem has received substantial attention in recent years.  A wide array of sensors 

and configurations of sensors have been studied including binocular vision, laser scanners, radar, 

and ultrasonic sensors.  Currently, SLAM techniques are applied to monocular vision systems in 

[2], [3], and [12].  In [2], the authors assume that an air vehicle maintains a constant altitude and 

that all the features are located in a flat plane.  With these assumptions, they can reconstruct the 

2D location of the aircraft and a 2D map of the features.  In another work involving a UAV with 

monocular vision, [3], the researchers utilize artificially placed features with a known size.  In 

this case, the range to the fiducials is estimated directly from the image, allowing a 3D 

reconstruction.  Unfortunately, both [2] and [3] have synthetically modified the problem to 

overcome the image scaling difficulties.  In order to find 3D monocular SLAM implementations, 

more literature searches were required.  The research conducted by Andrew Davison et al. 

explores MonoSLAM techniques as they apply to a system defined by a single camera with no 

other external sensors [12].  Since their camera does not receive absolute position from a GPS 

sensor, the estimation filter is initialized with a priori knowledge of a few feature locations.  
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Provided with this initial scale, the filter is able to systematically generate the 3D location of the 

camera as it varies with time and a map of features locations in 3D space. 

1.2 Research Objectives 
This thesis seeks to accomplish two major tasks.  The first is to develop a filter that will estimate 

the navigation states of a UAV and the 3D terrain feature locations defining its environment.  

The model developed must accurately incorporate typical UAV inertial measurement unit (IMU) 

input data and GPS and camera image output data in a recursive state estimator.  This research 

differs from [2] and [3] by not limiting the environment to a 2D plane and considers features 

with unknown size.  Since GPS is available, scale will not have to defined as in [12].  

   

The next objective is to develop a novel technique which incorporates information obtained from 

the aircraft and terrain estimator for use in tracking a ground vehicle.  This requires redefinition 

of the observation model to cope with the unobservability issues present with 3D target tracking 

from a single camera.  The solution must also adhere to statistical theory present within filter 

derivations.                          

1.3 Estimator Design  
The estimator design consists of two loosely coupled (LC) filters: one for SLAM and one for the 

target.  In filter terminology, LC filters obtain input and/or output measurements that are 

estimates from other filters.  Many GPS aided inertial navigation solution (GPS/INS) filters, 

commonly used for aircraft navigation, are loosely coupled.  In these filters, the output GPS 

position and velocity measurements are actually estimates determined from satellite constellation 

and pseudo range measurements.  In contrast, tightly coupled aircraft navigation filters use the 

actual satellite information as direct output measurements.  In regards to the target tracking 

estimator setup, LC refers only to separation of aircraft and feature states from target states, 

although the SLAM filter is truly loosely coupled with respect the GPS position and velocity 

measurements.  

  

In the first filter, GPS is used to overcome the scale issue and obtain a 3D SLAM estimate of 

both the UAV’s navigation states and the terrain feature locations.  The results also apply when 
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the aircraft and feature states are estimated in separate LC estimators, which may be necessary 

for certain applications.  Terrain features that were observed, but have gone out of view, are 

discarded in order to maintain reasonable computational loads.  Thus the map is only maintained 

in the vicinity of the target.  An unscented Kalman filter generates the estimated states and the 

associated state error covariance matrix for the system.  A Feature Manager handles updating the 

state vector and covariance matrices as required by the addition and deletion of feature states.  

  

The moving target’s states are housed within another state estimator that incorporates the 

estimates from the first filter.  An unscented transformation (UT) is employed to propagate the 

means and uncertainties of the SLAM states and camera measurements into a 3D measurement 

vector for the target with an estimated covariance.  The 3D target position measurement allows 

both the position and velocity of the target to be estimated where the accuracy of this tracking 

method is directly correlated with the accuracy of the SLAM estimator. 

1.4 Overview 
A brief overview of this thesis is given here.  Chapter 2 explains the experimental setup used for 

data collection.  This includes describing the airframe and the various electronic hardware 

components, including sensors, used by a research UAV named the ECat.  Chapter 3 details the 

state equation development for the experimental setup.  Chapter 4 reviews background 

information and important assumptions regarding the Kalman filter family of estimators.  A brief 

heuristic explanation of the observability issues encountered in monocular vision approaches 

follows in Chapter 5.  Chapter 6 details the proposed solution, which utilizes the UT and loosely 

coupled estimators.  This is followed with simulation results in Chapter 7 that illustrate the 

viability of the theoretical development.  Chapter 8 outlines the development and analysis of 

three different feature initialization techniques.  Experimental terrain mapping results are given 

in Chapter 9 followed by the conclusions and recommendations of Chapter 10. 
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Chapter 2: Hardware Setup 

The experimental data presented in this thesis is collected using the ECat UAV from the 

Autonomous Vehicle Systems (AVS) Lab at KSU.  The research focuses on target tracking using 

lightweight, inexpensive instruments on a UAV.  The hardware on the ECat is typical of what 

might be expected on such a system.  It is outfitted with a digital camera, data collection 

computer, and an autopilot with the typical set of sensors that are included in inexpensive 

GPS/INS and air data systems.  However, the camera in the ECat is not gimbaled as might be in 

UAV systems targeted in this research. 

2.1 Unmanned Aerial Vehicle Airframe  
A SIG Kadet Senior ARF hobbyist kit is used as the basic ECat UAV airframe.  The high wing 

design and approximate 2m wingspan provide stability and adequate lift.  Thrust is generated by 

a Hacker C50 brushless motor with a 16x10” CAM carbon composite folding propeller.  Hitec 

HS-81 servos actuate the elevator, rudder, aileron, and flap control surfaces.  The ECat airframe 

is shown in Fig 2-1.  

         

 
Figure 2-1: ECat UAV 
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A few modifications to the basic airframe are necessary for hardware accommodation and 

mission specific requirements.  A larger lightweight carbon composite payload bay was designed 

and inserted in place of the original balsa wood compartment, which relied on several cross-

members for structural support.  Another noticeable change includes the addition of skid style 

landing gear, allowing grass prairie landings.  Finally, a balsa wood autopilot and camera mount 

resides in the fore compartment between the firewall and the payload bay bulkhead.  This mount 

is designed to keep the camera and IMU axes orthogonal as is assumed in model development.  

2.2 Piccolo II Autopilot 
The Piccolo II autopilot, purchased from Cloud Cap Technology, Inc. (CCT), provides the 

functionality required for the ECat UAV navigation and control applications.  With a mass of 

233 grams and a 12.2cm x 6.1cm x 3.8cm size, the autopilot avionics unit, pictured in Fig. 2-2, 

readily mounts within most UAV airframes. 

   

IMU

GPS MODULE
 

Figure 2-2: Piccolo II Autopilot Hardware 

 

A Motorola MPC555 processor, executing at 40 MHz, provides computation and communication 

with five RS232 payload ports, up to ten PWM servo channels, two CAN ports, six GPIO pins, 

and four analog input pins.  These peripheral devices are interfaced via a 44 pin D sub connector 

and a high density 25 pin microdot connector.  The daughter cards are comprised of several 

daughter boards including a MHX-910 Datalink Radio chipset, a Motorola M12 GPS module, an 

IMU, and dual ported mpxv50045 dynamic pressure and mpx4115a static pressure sensors.  The 

radio link allows the streaming of data to and from a ground station unit that provides a 
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networking interface between multiple avionics units and CCT’s operator interface (OI) 

software.  The OI, which executes on a personal computer, displays telemetry updates and also 

enables the dynamic changing of commands, gains, and flight plans.  The IMU, pre-calibrated by 

CCT, delivers three axis gyro and accelerometer readings to the processor over a serial port.  The 

gyros measure angular rates up to 5.2 radians per second, and the accelerometers record up to 

10G accelerations.  The Motorola M12 GPS unit generates an estimate of the position and 

velocity of the Synergy Systems AR-05 antenna.  The Piccolo also supports DGPS corrections 

received from the ground station.  The pitot and static ports retrieve air data information vital for 

true air speed estimation. 

 

CCT also distributes free aircraft simulator and Flight Gear graphical display software as part of 

their development package.  This allows hardware in-the-loop and software in-the-loop 

laboratory testing necessary for the extensive Piccolo II source code modifications required for 

this research.   

2.3 Marlin Digital Camera 
High rate images are captured using a Marlin model MF-201C digital camera from Allied Vision 

Technologies pictured in Fig. 2-3.  With a mass of less than 120 grams and a 5.8cm x 4.4 cm x 

2.9 cm dimension (without the lens), this camera provides a practical solution for UAV vision 

systems.  The camera is triggered externally through a HiRose plug connector input pin.  The 

images, up to two Mega pixel resolution, are accessible through a 400 Mb/s Firewire A bus.  The 

lens is a Kowa with an 8mm nominal focal length, which generates an approximate 30° x 39° 

field of view (FOV). 

 

 
Figure 2-3: Marlin Digital Camera 
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2.4 PC104 Stack 
A PC104 stack from Kontron collects and stores images and external sensor data for post 

processing.  This 700 MHz Pentium 3 data collection computer was chosen for its small form 

factor, minimal weight, processing capabilities, and data storage devices.  A basic PC104 stack 

contains a motherboard, flash to IDE converter board, and power supply.  Two additional boards 

were purchased from Advanced Digital Logic and installed on the stack to provide a 

communication interface to avionics’ processor and the digital camera.  These include a 

controller area network (CAN) board and a IEEE 1394 Firewire A board, which both utilize the 

PC104+ Bus.  An additional 2G of removable flash memory is accessible through the USB port.  

The complete PC104 stack is shown in Fig. 2-4.   

 

 
Figure 2-4: PC104 Stack 

 

A Gentoo distribution of the Linux 2.6.22 kernel and operating system provides a versatile 

programmable interface to the PC104 stack hardware components.  Threaded software services 

the 6.2 Peak Linux CAN driver and the Firewire Linux kernel driver interrupts.  The Piccolo 

avionics’ data are collected, parsed, and stored in a text file located on the external memory drive 

along with the compressed images from the digital camera.  The Marlin camera software library 

is also stored on the PC104 stack and allows camera mode changes and programmable 

adjustments.    
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2.5 Target Tracking Hardware Schematic 
Fig. 2-5 illustrates the relationships between all of the ECat’s hardware components.  An 8000 

mah LiPo Thunder Power battery provides a nominal 18.5V to the system.  Both 12V and 5V 

BECs regulate voltage input into the Piccolo avionics unit.  The Hacker motor controller, PC104 

Stack, and voltage divider also have power supplied directly from the battery.  The high 

resistance voltage divider scales the battery voltage from 0-18.5V to 0-5V for analog input 

battery voltage monitoring.  The 900 MHz antenna, GPS antenna, and pitot/static tube mate 

directly into their respective ports and connectors located on the front panel of the avionics’ case.  

The autopilot supplies PWM signals to actuate the rudder, elevator, aileron, flaps, and motor 

controller.  A CAN 2.0 B bus is used to ferry relevant sensor data from the Piccolo to the PC104 

Stack at 20 Hz (autopilot control law rate).  CAN is used for communication instead of serial 

communication for its higher bandwidth capability (up to 1 Mega baud) and its cyclic 

redundancy checking.  The autopilot is also responsible for triggering the camera when new GPS 

data is available.  This is accomplished at a rate of approximately 4Hz with one of the discrete 

output pins.  The PC104 Stack powers the camera and retrieves the triggered images through the 

Firewire A cable.   
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Figure 2-5: Hardware Component Wiring Schematic
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Chapter 3: Model Development 

An integral step in simulation and estimator development includes defining a set of realistic 

assumptions that accurately describe the actual hardware.  In this thesis, the setup consists of 

modeling the relatively small ECat UAV flying at low velocity and altitude over varying terrain.  

Sensor data are available from an IMU, a GPS module, and a monocular digital camera.   

3.1 Assumptions 
The following list details important assumptions used for model development. 

• The aircraft’s initial position, or base station, defines the location of the inertial North 

East Down (NED) frame, .  This assumption is valid for highly maneuverable low 

velocity aircraft flying over a small area. 

}{i

• The gravity vector will be constant during the flight.  Its orientation will be aligned with 

the “down” axis of . }{i

• The three angular rate sensors and three accelerometers within the IMU are located at the 

center of mass of the aircraft and are aligned with the axes of the body fixed reference 

frame, .  The GPS antenna is near the center of mass. }{b

• The camera is located at the center of mass pointing down along the z axis of the body 

frame.  Therefore, the camera frame is coincident with the body frame. 

• The intrinsic parameters of the camera are known including the focal length, image 

center, skew coefficient, and radial and tangential distortions. 

• A scale invariant distinctive feature based extraction algorithm exists for locating features 

within discrete images and for specifying the corresponding image coordinate locations 

from overlapping images. 

• Targets are distinguishable from stationary features in images.  However, no other 

properties about the target are known. 

• The targets are limited to ground targets that must remain in contact with local ground 

terrain. 
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3.2 State Equations 
As is typical for GPS aided inertial navigation solutions, kinematic equations rather than kinetic 

equations are used.  This allows for estimation of the aircraft and target states without knowledge 

of the intrinsic parameters of the aircraft and target.  Therefore, the resulting state estimation 

technique is less dependent on the specific application.  Kinematic relationships generally tend to 

decrease the number of states necessary for estimation while providing a quantifiable means for 

determining output and process noise.  

 

For the development, three sets of kinematic equations are required: one for the UAV, one for 

the features, and one for the target. The general form for these nonlinear state equations is given 

by 

 ),,( wuxfx vvvv
&v =  (3.1) 

 ),( vxhz vvvv =  (3.2) 

where xv  is state vector,  is the input vector, uv wv  is the zero mean white input noise vector, vv is 

the zero mean white output noise vector, and zv  is the output vector.  In the following discussion, 

(3.1) will be referred to as the dynamic model as it defines the relationship between the 

derivative of the state vector and the nonlinear vector function, )(⋅f
v

, of the states, inputs, and 

process noise.  Equation (3.2) will be referred to as the observation or output model where the 

nonlinear output vector function, , defines the combination of states and output noise that 

form the output vector. 

)(⋅h
v

3.2.1 Aircraft Nonlinear State Equations 

The definitions for the aircraft state vector, input vector, and output vector are shown below.  

The “a” subscript denotes aircraft states.  
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The state vector, , consists of the UAV’s inertial position vector, axv }{iapv , inertial velocity 

vector, }{iap&v , and the quaternion vector, qv , where 

 [ ]Tqqqqq 3210≡v . (3.6) 

The input vector, , contains the body axes accelerations, auv }{bav , and angular rates, }{bωv .  The 

output, , contains the inertial position vector,  azv }{iapv , and inertial velocity vector, }{iap&v .   

 

Quaternions are used to represent the orientation between the inertial and body fixed frames 

instead of their Euler angle counterparts.  This avoids the singularity condition apparent with 

Euler angle attitude representations.  A detailed description of the quaternion vector elements, 

quaternion to Euler angle conversions, and the quaternion inertial to body frame rotation matrix 

is located in Appendix A.   

3.2.1.1 Aircraft Dynamic Equations 

 The aircraft dynamic equations are given by ax&v , the time derivative of the state vector.  The 

time derivative of position within the inertial frame, }{iap&v , is simply the inertial velocity vector. 

 }{}{ )( iaia pp
dt
d &vv =  (3.7) 

The time rate of change of the velocity vector, )(iap&&v , represents the true inertial kinematic 

accelerations.  However, the accelerometers located on the body frame will measure the true 

kinematic accelerations, }{bav , corrupted with components of zero mean white noise, }{bawv , and 

the body frame representation of the constant magnitude gravity vector, g .  Hence, the 

acceleration measurement is given as 

 [ ]Tibbabbm gwaa 00}{}{}{}{ R−+= vvv  (3.8) 

where  is the body frame to inertial frame rotation matrix.  The sign of the zero mean noise 

term is arbitrary.  In (3.8) and subsequent developments, the noise terms are added to the true 

}{ibR
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states strictly for notational consistency.  The true inertial accelerations, , are obtained by 

solving (3.8) for the true body frame accelerations and rotating this vector into the inertial frame.   

}{iav

 }{}{}{}{ bibiia aap vv&&v R==  (3.9) 

 ( ) [ ]Tbabmibia gwap 00}{}{}{}{ +−= vv&&v R    (3.10) 

The other IMU input contains the angular velocity vector measurements from the rate gyros, 

}{bmωv .  In accordance with the accelerometers, this measurement contains the true angular 

velocities and zero mean white noise, }{bmwv . 

 }{}{}{ bbbm wωωω vvv +=  (3.11) 

The relationship between the time derivatives of the quaternion states, whose elements are 

functions of the rotation matrix, and the gyro measurements is known as the “strapdown” 

equations [6] 

 ))((
2
1

}{bqq ωv&v Ω=  (3.12) 

where 

 . (3.13) 
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Solving (3.11) for the true angular velocity vector and substituting into (3.12) results in 

 ))((
2
1

}{}{ bbm wqq ωω vv&v −= Ω . (3.14) 

The concatenation of equations (3.7), (3.10), and (3.14) results in the nonlinear aircraft dynamic 

equation vector. 
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3.2.1.2 Aircraft Observation Equations 

The output measurements given by the GPS includes estimates of both inertial position, }{iampv , 

and inertial velocity, }{iamp&v .  Both of these measurement vectors contain the true inertial position 

and velocity and their corresponding noise components, }{ipa
νv  and }{ipa&

vν . 
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3.2.2 Feature Nonlinear State Equations 

The following definitions list the state vector, input vector, and output vector associated with the 

features.  The “f” subscript denotes feature states.   
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The feature state vector, , in (3.17) contains the feature vector locations, , relative to the 

NED inertial frame.  The number of estimated features may vary with time as new features come 

into observation and other features go out of observation.  The superscripts are used to identify 

the various features where  denotes the total number of features comprising the state vector at 

any given time.  The variable size input vector, 

fxv
}{ifpv

fN

fuv , in (3.18) is all zero vectors as the features are 

stationary.  The output vector, , contains the image space vector, fzv }{bfi
v

, for each feature.  Each 

 consists of two elements which define the measured x and y components of a single image 

space feature representation relative to .   

}{bfi
v

}{b
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3.2.2.1 Feature Dynamic Equations 

Features are assumed stationary, which implies the time derivative of the feature state vector, 

, is zero. fx&v

 0}{

v
&v&v == iff px  (3.20) 

3.2.2.2 Feature Observation Equations 

A monocular camera installed along the body axes of the aircraft captures images at periodic 

intervals.  Unfortunately these images do not provide a depth measurement to the feature located 

in 3D space, but instead capture its image space coordinates.  Therefore, the feature observation 

equations need to determine the relationships between the aircraft position and orientation, the 

intrinsic camera parameters, and the feature’s position that result in its image coordinate 

representation.  Fig. 3-1 depicts the relationships between the inertial frame, the camera frame, 

and a feature viewed through a pinhole camera model.  
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Figure 3-1: Feature Observation Development Assuming Pinhole Camera Model 

 

The vector, , from the camera frame to the feature, is given by the following equation }{bcv

 )( }{}{}{}{ iaifbib ppc vvv −= R  (3.21) 

where the rotation matrix, , transforms the inertial frame representations of the feature and 

aircraft into the body frame.  The image space feature coordinates are realized when the z 

component of  is equal to the focal length, , of the camera.  Therefore, the actual images 

coordinates  and  of a feature are computed as follows. 
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The measured image space coordinate vectors, }{bfmi
v

, consist of the true image coordinate vector, 

, plus a noise vector, }{bfi
v

}{bi f
νv , due to camera calibration and feature extraction errors.  

Therefore, the true measured image space coordinates are given by  
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An implication of the feature observation model exists when the z component of  becomes 

negative.  This negative value switches the signs of the pixel coordinates.  The x-y plane of the 

body axes defines this “singularity” region.  In fact, if the z component of  approaches zero, 

the pixel coordinates  and  become infinite.  In reality, this is never a concern as the field 

of view of the camera is less than 180 degrees.  However, in filter implementations, this is 

possible as several of the estimated states, especially orientation, used in (3.21) and (3.22) 

contain a high degree of uncertainty.  In practice, this issue is addressed by eliminating image 

updates during periods of poor orientation estimates, which usually occur during filter 

initialization.     

}{bcv

}{bcv

}{bxi }{byi

3.2.3 Target Nonlinear State Equations 

Like the aircraft, the target state equations consist of kinematic relationships.  However, unlike 

the aircraft model, no direct acceleration measurements are available from the target.  One 

commonly used motion model assumes the velocity of the target is a random walk with 

acceleration modeled using zero mean Gaussian white noise.  For this technique, a larger 

standard deviation in acceleration noise corresponds to a target that is more maneuverable.  This 

results in greater uncertainty in the target states predicted by the model, thereby weighting the 

observation more heavily than the prediction in the state estimation process.  In this thesis, the 

target velocity is modeled as a random walk with unchanging noise statistics and dynamic 

model.  For highly maneuverable targets, the Interacting Multiple Model (IMM) estimator can 

provide improved accuracy at the expense of increased computational complexity.  The 

interested reader should consult [1], [7], [8], and [14].  The target tracking concepts developed in 
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this thesis pertain equally to both the IMM target estimator and the basic single model estimator 

used for the remainder of this development.  

 

The following equations represent the target state vector, input vector, and output vector.  The 

“t” subscript denotes target states.    
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 }{itt wu vv ≡  (3.25) 

 }{btt iz
vr

≡  (3.26)  

In (3.24), the target state vector, , contains the target position vector, txv }{itpv , and velocity vector, 

, relative to the inertial frame.  Since the velocity is modeled using a random walk, the input 

vector for the target model, , is a noise term, 

}{itp&v

tuv }{itwv .  The target output vector, , consists of 

the camera sensor vector, , which contains the two image space coordinates of the target. 

tzr

}{bti
v

3.2.3.1 Target Dynamic Equations 

The time derivative of the target state vector, tx&v , is a concatenation of the velocity and 

acceleration terms.   

 }{}{ )( itit pp
dt
d &vv =  (3.27) 

 }{}{ itit wp v&&v =  (3.28) 

Therefore,  is written compactly as tx&v
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3.2.3.2 Target Observation Equations 

The target observation model is very similar to the feature observation model since the camera 

image provides the only output measurement for the target.  The image space coordinate vector, 

, is given by (3.22) when  in (3.21) is replaced with }{bti
v

}{ifpv }{itpv .   

 )( }{}{}{}{ iaitbib ppc vvv −= R  (3.30) 
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The target measurement pixel measurement vector, }{btmi
v

, consists of the true image space vector, 

, positively perturbed by a noise vector, }{bti
v

}{bit
vv , for similar reasons as described for the feature 

observation equations.   

 }{}{}{ bibtmbtt t
viiz vvvv −==  (3.32) 
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Chapter 4: Observer Research 

The standard procedure for estimating the states of a system involves implementing an observer.  

Observers utilize dynamic/observation models, input, and error feedback during state estimation.  

The robustness of the observer is highly correlated with how accurately the true system is 

modeled.  In theory, complete knowledge of a linear system model allows for any desired pole 

placement for the observer.  This is possible since the observer is implemented in software, 

which negates any physical limitations.  In actuality, unmodeled dynamics and noisy input and 

output data limit the achievable bandwidth of the state estimator.  The state equations developed 

in the previous sections are no exception.  The input and output sensors are all assumed to 

include zero mean, white noise components.  The Kalman filter family of estimators considers 

the noise statistics, current estimate uncertainty, and state equations during state estimation.  

Background information regarding the Kalman filter (KF), extended Kalman filter (EKF), and 

unscented Kalman filter (UKF) is presented in this chapter.  

 

A typical discrete time observer setup and its relationships with a linear time invariant system are 

shown in Fig. 4-1.  The continuous time linear state equation model for this system is given by  

 uxx vv&v GF +=  (4.1) 

 xz vv H=  (4.2) 

where xv  is the state vector, u  is the input vector, and v zv  is the output vector.  This system is 

described in discrete time by 

 11 −− += kkk uxx vvv ΓΦ  (4.3) 

 kk xz vv H= . (4.4) 

Φ  and  are often referred to as the state transition model and control input model, 

respectively.  Their actual values may vary slightly depending upon the discretization method 

used and the integration time-step.  

Γ
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Figure 4-1: Discrete Time Linear System and Observer Relationships 

 

The observer block contains additional complexities.  The observer receives input, 1
~

−kuv , and 

output, kz~v , measurements that are corrupted with their respective noise components, 1−kwv  and 

.  The major difference between the observer and the system models is the correction step.  

The error between the observer output, 

kvv

kẑv , and the actual system measured output, kz~v , is 

multiplied by a feedback gain and used to correct the predicted state estimate, .   1|
ˆ

−kkxv

 

From another perspective, the observer illustrated in Fig. 4-1 is estimating the system defined by 

(4.1) and (4.2), which can be rewritten as 

 111
~

−−− −+= kkkk wuxx vvvv ΓΓΦ  (4.5) 

 kkk vxz vvv += H~  (4.6) 

where 
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 111
~

−−− += kkk wuu vvv  (4.7) 

 kkk vzz vvv +=~ . (4.8) 

These equations take the standard form for the discrete time KF when the process noise, 1−kwv , 

originates from the input source.  Various forms of the KF equations exist, including those that 

take into consideration plant modeling and/or plant disturbance errors.  While only input noise 

disturbances are considered here due to the structure of the model equations previously 

developed, the concepts are readily extendable to the other cases.    

4.1 Kalman Filter 
The KF can be interpreted as a recursive minimum least squares estimator, which optimally 

determines the states of a linear system with input, output, and/or process noise.  It is optimal in 

the sense that it minimizes the trace of the estimated state error covariance matrix.  Therefore, 

the foundation of the filter relies upon accurate modeling of the propagation of the mean and 

covariance matrix of random variables (RV) through linear transformations.  This is 

accomplished by recalling the linear transformation properties for RVs.  Suppose that a vector, 

, is related to a random vector, zv xv , through the linear transformation, .  H

 xz vv H=  (4.9) 

Taking the expected value, , of (4.9) results in an expression for the mean. {}⋅E

 { } { }xEzE vv H=  (4.10) 

 xz vv H=  (4.11)  

The covariance matrix, , for  is found by its definition. zzP zv

 ( )( ){ }Tzz zzzzE vvvv −−=P  

 ( )( ){ }TTzz xxxxE HHP vvvv −−=  (4.12) 

This is simply 

 Txxzz HHPP =  (4.13) 

where the covariance matrix  is defined by xxP ( )( ){ }TxxxxE vvvv −− .  These principles are used in 

the KF to determine the mean and covariance propagation of RVs through linear dynamic and 

observation models.  The Kalman gain, K , is then determined which minimizes the trace of the 

estimated state error covariance matrix.  If the RVs have Gaussian probability density functions 
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(PDF), then they are fully described by their corresponding means and covariance matrices, and 

the KF provides the optimal solution.  A weaker condition occurs when the input and 

measurement noises are white and zero mean, but not necessarily Gaussian.  In this case, the KF 

provides the optimal linear solution [15].  The filter accomplishes these tasks in two distinct 

phases, prediction and correction. 

4.1.1 Prediction 

During the prediction phase, both the current estimated state mean and error covariance matrix 

are updated.  The new state estimate 1|
ˆ

−kkxv  is given by   

 11|11|
~ˆˆ

−−−− += kkkkk uxx vvv ΓΦ . (4.14) 

Essentially, (4.14) represents the time integration of the dynamic equation with known initial 

conditions and corrupted input, 1
~

−kuv .  The next step involves calculation of the updated state 

error covariance matrix.  This new covariance matrix , , is given by its definition. xx
kk 1| −P

 ( )( ){ }T

kkkkkk
xx
kk xxxxE vvvv −−= −−− 1|1|1|

ˆˆP  (4.15) 

Substituting in the dynamic model, (4.3), for kxv and 1|
ˆ

−kkxv  gives 

 ( ) ( )( ) ( ) ( )( ){ }T

kkkkkkkk
xx
kk wxxwxxE 111|111|1|

ˆˆ
−−−−−−− +−+−= vvvvvv ΓΦΓΦP  (4.16) 

where   

 111
~

−−− −= kkk uuw vvv . (4.17) 

Since  is uncorrelated with the other terms in (4.16),  can be written as 1−kwv xx
kk 1| −P

 ( )( ) ( )( ){ } ( )( ) ( )( ){ }T
kk

T

kkkkkk
xx
kk wwExxxxE 1111|111|11|

ˆˆ
−−−−−−−−− +−−= vvvvvv ΓΓΦΦP . (4.18) 

Realizing the linear properties of covariance, (4.18) is simply 

  (4.19) T
k

Txx
kk

xx
kk ΓΓQΦΦPP 11|11| −−−− +=

where 

 ( )( ){ }T

kkkkkk
xx

kk xxxxE 11|111|11|1
ˆˆ

−−−−−−−− −−= vvvvP  (4.20) 

 ( )( ){ }T
kkk wwE 111 −−− = vvQ . (4.21) 
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This series of prediction steps occurs at the rate of new input data.  Note that the development 

applies to both linear time invariant systems and linear time varying systems, although only time 

invariant systems are shown here for notation simplicity. 

4.1.2 Correction 

When an output measurement is available, the estimated state is updated by 

 )ˆ~(ˆˆ
1|1|| −− −+= kkkkkkkk xzxx vvvv HK  (4.22) 

where  

 1|
ˆ~

−− kkk xz vv H  (4.23) 

is the measurement residual or error.  The measurement vector, kz~v , also contains zero mean  

white noise, . kvv

 kkk vxz vvv += H~  (4.24) 

This correction results in a new posterior estimate covariance matrix, , which is defined by xx
kk |P

 ( )( ){ }T

kkkkkk
xx
kk xxxxE vvvv −−= |||

ˆˆP . (4.25)  

Substituting (4.22) and (4.24) into (4.25), expanding the terms, and simplifying the expression 

using covariance properties results in an equation for   xx
kk|P

 ( ) ( ) T
kkk

T
k

xx
kkk

xx
kk KRKHKIPHKIP +−−= −1||  (4.26) 

that is a function of  I  (Identity Matrix), , , , and , where kK H xx
kk 1| −P kR

 ( )( ){ }T
kkk vvE rv=R . (4.27) 

Up to this point, the Kalman gain determination has not been addressed.  However, the 

covariance, or uncertainty, of the updated state estimate is a function of this gain.  Therefore, this 

gain is chosen to minimize the expected error, { }kkk xxE vv −|
ˆ , which is the trace of .  Setting 

the partial of the trace of  with respect to the Kalman gain equal to zero results in an 

expression that is solved for the optimal gain. 

xx
kk |P

xx
kk |P

  (4.28) 1
1|1| )( −
−− += k

Txx
kk

Txx
kkk RHHPHPK

The posterior error covariance matrix update is performed by using this gain.  

  (4.29) xx
kkk

xx
kk

xx
kk 1|1|| −− −= HPKPP
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A compact algorithm for the KF is located in Appendix B. 

 

Several intuitive properties result from the Kalman gain and its calculation given in (4.28).  The 

gain is entirely determined by the current state error covariance matrix, the output matrix, and 

the measurement noise statistics, where the current uncertainty is found with the dynamic model 

and input noise statistics.  In theoretical applications where noise is not considered, the poles of 

the observer are placed to provide a very quick transient response to disturbances and incorrect 

initial state estimates.  For systems that have noisy input and output measurements, choosing a 

feedback gain in this manner results in a suboptimal estimate that may even diverge.  However, 

the optimal Kalman gain determines the pole location based upon the current uncertainty.  This 

uncertainty essentially defines the feedback gain, and thus the bandwidth, of the system.  An 

interesting characteristic also arises when the measurement vector is noise free and the output 

matrix is square.  In this case, the gain becomes 

 . (4.30) 1−= HK k

The use of this gain in (4.22) forces the new current state estimate to be updated in one 

correction to the actual state, as observed through the observation model, and sets the posterior 

covariance matrix equal to the zero matrix.  In other words, an uncorrupted measurement vector 

update mitigates any doubt about the uncertainty of the state estimates when the observation 

matrix is square and nonsingular.  Another interesting characteristic happens when the current 

state error covariance matrix tends toward the zero matrix.  When this happens, the current state 

mean estimates are very likely to be near the actual states.  Equation (4.28) then determines a 

feedback gain that is also near zero since the innovation covariance, , is pre-

multiplied by a small magnitude matrix.  A null feedback gain emphasizes the fact that the 

system mean is near the true mean and any noisy measurement should therefore have very little 

or no effect on the current estimates.   

k
Txx

kk RHHP +−1|

4.2 Extended Kalman Filter 
The KF provides an optimal state estimate for linear systems.  However, most practical systems, 

including the developments in this thesis, are defined by nonlinear state equations of the form 

given in (3.1) and (3.2).  The problem of estimating the predicted mean and covariance from 

nonlinear functions has been addressed by many filtering techniques including the EKF.  The 
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following equation shows the first several elements of a Taylor series expansion of a nonlinear 

function  about an operating point defined by the mean of a random variable, )(⋅h
v

xv .   
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1  (4.31) 

If the second and higher order terms of the expansion are considered negligible, then zv  is 

approximated by 

 ( ) ( )( ) ( xx
x
xhxhz
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). (4.32) 

With this assumption, the new mean is predicted using the nonlinear function, and the new 

covariance is found by taking expected value of the outer product of (4.32) 

 ( )xhz vvv =  (4.33) 

 ( )( ){ }Tzz zzzzE vvvv −−=P   (4.34) 
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where 

 ( )( ){ }Txx xxxxE vvvv −−=P  . (4.36) 

4.2.1 Modifications to Kalman Filter 

The KF equations require modifications to employ the mean and covariance estimation 

techniques of the EKF.  At each time step the following Jacobian matrices must be evaluated.    

 
),ˆ( 1,1|1 −−− ==

∂
∂

≡
kkk uuxx

k x
f

vvvv
v

v

F  (4.37) 

 
),ˆ( 1,1|1 −−− ==

∂
∂

≡
kkk uuxx

k w
f

vvvv
v

v

G  (4.38) 

 
)ˆ( 1| −=

∂
∂

≡
kkxx

k x
h

vv
v

v

H  (4.39) 

These Jacobian matrices replace their counterparts in equations (4.14) through (4.29) with two 

exceptions.  The mean prediction based upon the dynamic model is often accomplished with a 
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higher order integration technique, such as a Runga Kutta algorithm, which utilizes the nonlinear 

dynamic model given by (3.1).  Also, the 1|
ˆ

−kkxvH  term in (4.22), (4.23), and (4.24) is replaced 

with the nonlinear function given by (3.2).  A compact algorithm for the EKF is located in 

Appendix C.  

  

The EKF method of estimating the covariance is only an approximation.  If the mean and 

covariance do not accurately capture the posterior statistics, the EKF solution is not optimal.  

However, when implemented at a high frequency with slightly nonlinear equations, this filter 

provides very good results. 

4.3 Unscented Kalman Filter 
While the EKF is effective for many applications, several limitations hinder its performance.  As 

mentioned, the nonlinear function should exhibit nearly linear characteristics about the current 

operating point.  If this approximation is not accurate, the state estimates may degrade or even 

diverge [15].  The covariance approximation technique also requires calculation of the Jacobian 

matrices.  Often these derivatives do not exist about discontinuous operating points or their 

resulting values are ill conditioned.  Even if the Jacobian matrix exist for highly nonlinear 

functions, its calculation can be very tedious and error prone, and the resulting matrix elements 

are often very complex and increase computational load. 

 

The drawbacks of the EKF approximations have led to the development of a higher fidelity and 

derivative free mean and covariance estimation technique for extremely nonlinear functions.  

Central to the unscented Kalman filter, the unscented transformation addresses these deficiencies 

by using a sampling technique that improves covariance and mean estimates.    

4.3.1 Unscented Transformation 

The primary concept of the UT involves selecting a set of deterministically chosen weighted 

“sigma points” (vectors), which have a known mean, xv , and covariance, .  These points are 

propagated through the nonlinear model, resulting in transformed points.  The statistical data 

represented by the transformed points approximates the true PDF.  Ref. [4] has shown that the 

xxP
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UT accurately predicts the mean and covariance to the second order, and has similar 

computational cost as the EKF.  

  

Various sigma point sets exist.  The set used for the UT in this research is known as the basic 

symmetric set.  The symmetric sigma points, , and their associated weights are generated as 

follows where  is the dimension of the random vector. 

χ

xN

 xNp ,,1K=∀  (4.40) 

 ( )
][][ p

xx
xp Nx Pχ += v  (4.41) 

 ( )
][][ p

xx
xNp Nx

x
Pχ −=+

v  (4.42) 

 
x

Npp N
WW

x 2
1

][][ == +

vv
 (4.43) 

The bracketed subscript in equations (4.41) through (4.43) represents the row or column of a 

matrix or the element of a vector which corresponds to the given sigma point.  The term 

( )
][ p

xx
xN P  denotes the “pth” row or column of the matrix square root.  Generally, this is 

calculated with a numerically stable algorithm such as the Cholesky decomposition.  If the 

decomposition returns the matrix square root, , in the form , then the columns of  

are used.  If it returns the matrix square root, C , in the form , then the rows are used.  

These sigma points have the desired mean, which is calculated by 

C TCCP = C

CCP T=

 ∑=
=

xN

p
ppWx

2

1
][][ χ

vv , (4.44) 

and the desired covariance, which is calculated by 

 ( )( )Tp

N

p
pp

xx xxW
x vvv

−∑ −=
=

][

2

1
][][ χχP . (4.45) 

 

Intuitively, symmetric sigma points represent vectors in  dimensional space.  These vectors 

are perturbed about the mean estimate by an amount that properly models the mean and 

covariance.  These concepts are illustrated in Fig. 4-2 for a two element random vector with 

mean values and covariance matrix given in Table 4-1.  In (a), the PDF for two random variables 

 and  are plotted with the probability along the  axis.  Three contour lines and sigma 

xN

1x 2x z
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points are plotted in (b).  The innermost contour line denotes the value in which 68.2% of the 

variables should lie assuming a Gaussian distribution.  The middle and outer contour lines 

correspond to 95.5% and 99.7% confidence intervals, respectively.  The sigma points for this 

plot are generated using (4.40) through (4.43).  The actual points represent the end of vectors, 

which originate from the mean values.   

 

Table 4-1: Mean and Covariance Matrix for Random Variables 

Variables Mean Covariance Matrix

⎥
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0
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Figure 4-2: (a) The PDF of Two Random Variables x1 and x2, and (b) the Corresponding 

Probability Ellipses and Sigma Points 

 

31 



After the sigma points are generated, they are propagated through a nonlinear function, )(⋅h
v

, 

which yields the transformed points, . ζ

 ( )∑=
=

xN

p
pp h

2

1
][][ χζ

v
 (4.46) 

The mean is estimated with 

 ∑=
=

xN

p
ppWz

2

1
][][ ζ

vv , (4.47) 

and transformed covariance is found by 

 ( )( )Tp

N

p
pp

zz zzW
x vvv

−∑ −=
=

][

2

1
][][ ζζP . (4.48) 

 

While this mean and covariance estimation technique is conceptually simple, its effectiveness for 

capturing the posterior statistics of nonlinear functions is superior to the first order 

approximation used in the EKF in many situations.  Also, the simple symmetric set presented in 

detail here only represents one set of sigma points.  If higher order moment information is known 

about the error distribution of a RV, other advanced sigma points sets exist, which capture these 

higher moments.  For a thorough description of other advanced sigma points see [4]. 

4.3.1.1 Mean and Covariance Estimation Example 

A simple nonlinear mean and covariance estimation example is presented here to demonstrate 

the accuracy gains of the UT over the traditional linear approximations utilized in the EKF.  The 

example, outlined in Fig. 4-3, consists of the conversion from polar to Cartesian coordinates.  

The current mean values for two Gaussian random variables Θ  and r  and their associated 

covariance matrix are assumed known.  Mean and covariance estimates for x  and  are desired.  

This problem is often encountered in state estimation as many sensors, such as radar and laser 

rangefinders, measure a range with respect to a relative bearing.  The nonlinearities become 

increasingly apparent as the variance on the angle increases, and thus, this problem is often 

studied in nonlinear estimation literature  [4].  

y
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y

Θ

r

x  
Figure 4-3: Simple Nonlinear Example 

 

Table 4-2 describes the initial mean vector values and initial covariance matrix used for this 

demonstration where 

 . (4.49) ⎥
⎦

⎤
⎢
⎣

⎡Θ
=

r
xv

Note that Θ  is given in radians while the units for r , x , and  are the same but arbitrary. y

 

Table 4-2: Initial Mean Vector and Covariance Matrix 

Mean Covariance Matrix 

⎥
⎦

⎤
⎢
⎣

⎡
=

5
7854.

xv  ⎥
⎦

⎤
⎢
⎣

⎡
=

05.0
01.xxP  

 

The desired output vector consists of x  and  y

  (4.50) ⎥
⎦

⎤
⎢
⎣

⎡
=

y
x

zv

and is calculated with the following nonlinear output model. 

 ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
Θ
Θ

=Θ
sin
cos

,
r
r

rh
v

 (4.51) 

 

Figure 4-4 displays the results of the EKF linearization, UT symmetric sigma points, and Monte 

Carlo mean and covariance approximations.  The Monte Carlo method provides a benchmark 

33 



comparison for the other two estimation techniques.  As in Fig. 4-2 (b), the ellipses in the first 

row of plots represent the true 68.2%, 95.5%, and 99.7% confidence intervals because Θ  and r  

are Gaussian.  The sigma points are denoted with solid black circles as shown in the middle 

column plots, (b), while the plus signs in the rightmost column of plots, (c), denote Monte Carlo 

points.  The circle near the middle of the ellipse contours marks the mean values.  The first row 

of plots represents the initial mean and covariance of the random variables as given in Table 4-2.  

Both the symmetric sigma points and Monte Carlo generated points are displayed on their 

corresponding graphs to emphasize how they model the initial Gaussian statistics.  The last row 

of plots represents the mean and covariance of the random variables after undergoing the 

nonlinear transformation where the symmetric sigma points and Monte Carlo points are plotted 

again to provide visual understanding.  The true distributions are no longer Gaussian after 

transformation, and the confidence interval ellipses in those corresponding figures are used only 

to represent crude approximations of probability. 
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Figure 4-4: Mean and Covariance Transformation Using (a) EKF Linearization 

Approximation,  (b) UT Symmetric Sigma Points, and (c) Monte Carlo Sampling 

 

The actual numerical values for the means and covariance matrices are located in Table 4-3.  The 

EKF linearization uses (4.33) and (4.35) to calculate these values where 

  ( )( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
ΘΘ
ΘΘ−

=
∂

∂

=
)sin(cos

cos)sin(
r
r

x
xh

xx vv
v

vv

. (4.52) 

The UT uses (4.40) through (4.43) to generate a symmetric set of sigma points where 2=xN .  

The points are transformed via (4.51), upon which the mean and covariance are determined by 

(4.47) and (4.48).  The Monte Carlo (MC) points are generated with MATLAB’s ( )⋅randn  

function.  These points are randomly generated with a zero mean and unit normal distribution.  In 

order to get the desired covariance and mean, the generated points are scaled by the matrix 

square root, i.e. the Cholesky decomposition, of  and then shifted by the mean value. xxP
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 xsamplenumsizevectorrandnspointMC v+∗= )_,(C  (4.53) 

where C  is the matrix square root of in the form xxP

  (4.54) Txx CCP =

After transformation through the output model, the posterior statistics are determined using 

MATLAB’s  and  functions. ( )⋅mean ( )⋅cov

 

Table 4-3: Transformed Mean Vector and Covariance Matrix 

Estimation Technique Mean Covariance 

EKF Linearization 

Approximation 
⎥
⎦

⎤
⎢
⎣

⎡
=

5355.3
5355.3

zv  ⎥
⎦

⎤
⎢
⎣

⎡
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−
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UT Symmetric Sigma Points ⎥
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⎤
⎢
⎣

⎡
=
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3617.3

zv  ⎥
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⎤
⎢
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⎡
−

−
=

2241.11136.1
1136.12241.1zzP  

Monte Carlo 1000 Points ⎥
⎦

⎤
⎢
⎣

⎡
=

3773.3
3589.3

zv  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1767.10242.1
0242.12184.1zzP  

 

For this particular example, the UT clearly has a distinct advantage over the EKF linearization 

technique for both mean and covariance estimation.  While both the UT and the EKF 

linearization overestimate covariance matrix values, the UT generates results closer to the 

sampled estimate.  The same is true for the mean values.  Even though the UT provides a better 

estimate, it is still an approximation technique as is evident during comparison with Monte Carlo 

results.  However, the tradeoff between accuracy and computational load makes this method 

appealing for practical applications such as real-time state estimation. 

4.3.2 Unscented Kalman Filter Algorithm 

Julier and Uhlmann modified the basic Kalman Filter algorithm to incorporate the UT’s ability to 

improve mean and covariance estimates for nonlinear systems [4].  A detailed version of this 

algorithm, which uses symmetric sigma points, is shown in this section for state equations given 

in the form of (3.1) and (3.2).  This basic filter is also used as the core estimator for this research 

due to the nonlinear nature of the state equations presented in Chapter 3, especially the feature 

observation model.   
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FOR  ∞= ,,1Kk
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 Generate sigma points: 
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 END FOR 
 Propagate sigma points through nonlinear dynamic model: 
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 (4.63) 
 END FOR 
 Determine mean and covariance of sigma points: 

  (4.64) ∑=
=

−

xN

p

x
pp

x
kk Wx

2

1
][][1|

ˆ χ
vv

 ( )( Tx
kk

x
p

N

p

x
kk

x
pp

xx
kk xxW

x

1|][

2

1
1|][][1|

ˆˆ
−

=
−− −∑ −= vv )v

χχP  (4.65) 

 IF (Output Measurement Update) 
  Form augmented state vector and covariance matrix: 
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  Generate sigma points: 
  FOR  xNp ,,1K=
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  END FOR 
  Propagate sigma points through nonlinear output model: 
  FOR  xNp 2,,1K=
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  END FOR 
  Determine mean and covariance of sigma points: 
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  Correct estimates: 
   (4.78) ( ) 1−

= zz
k

xz
kk PPK

  ( )kkk
x

kk
x

kk zzxx ˆ~ˆˆ
1||

vvvv −+= − K  (4.79) 

   (4.80) T
k

zz
kk

xx
kk

xx
kk KPKPP −= −1||

 ELSE 
  x

kk
x

kk xx 1||
ˆˆ

−= vv  (4.81) 

   (4.82) xx
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 END IF 
END FOR 
 

This algorithm needs additional explanation.  One of the most notable distinctions between the 

UKF algorithm and traditional KF and EKF algorithms is the creation of an augmented state 

vector, (4.55) and (4.66), and covariance matrix, (4.56) and (4.67), during both the start of the 

prediction and correction phases.  The mean vector augmentation must include the current state 

vector estimates and input, 1−kwv , or output, kvv , noise vectors.  The mean of the noise vectors do 

not have to be zero.  They can be modified to reflect known biases (i.g. thermally induced 

biases).  This augmentation is required since both the nonlinear dynamic and observation models 

are functions of random noise vectors.  In order to account for the random noise influence upon 

the uncertainty of the state estimates, sigma points must be created for these random variables, 
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which is also the reason an augmented covariance matrix  is formed.  Equation (4.58) 

represents the determination of the length of the augmented vector where  is the length of the 

state estimate vector and  is the length of the input noise vector.  The next major step involves 

calculation of the simple symmetric sigma points.  The points are then propagated through the 

nonlinear dynamic model.  For this research, a fourth order Runga Kutta algorithm is used for 

integration due to its accuracy over standard Euler integration.  The new mean and state error 

covariance matrix are then approximated with the aid of (4.64) and (4.65).  This process 

continues until a measurement update is available.  When a measurement is available, a new set 

of sigma points are formed with the new augmented vector and covariance matrix.  This new 

vector and matrix may be a different size than those used during the prediction steps, which is 

why  must be recalculated in (4.69) where  is the length of the output noise vector.  

Following the sigma point propagation through the nonlinear output model, the new output mean 

, and covariance matrix, , are determined.  After calculation of the cross covariance, , 

the Kalman gain is found.  Finally, the state estimate and error covariance estimate are corrected 

based upon the Kalman gain.  Equations (4.78) through (4.80) are actually the same correction 

equations as used in both the KF and EKF where the cross covariance matrix, , is 

replaced by  and the innovation covariance, , is given by .  However, the 

covariance estimates are found with the UT instead of linearization approximation techniques.           
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Chapter 5: Observability Issues 

This chapter discusses the observability of the state equations developed for the aircraft, feature, 

and target.  A set of state equations is said to be observable when knowledge of the input and 

output over a finite time interval allows unique determination of the initial state vector [9].  A 

traditional test for linear systems analyzes the rank of the observability matrix.  If the rank of the 

observability matrix is greater to or equal to the number of states, the system is considered 

observable.  Observability is the fundamental requirement for any observer, as the loss of 

observability corresponds to the inability to generate converging state estimates. 

 

Nonlinear equations, unfortunately, have to be linearized before the observability matrix can be 

formed.  The analytical observability matrix developed from the first order term of the Taylor 

series expansion of the nonlinear equations will contain elements dependent upon current states 

and inputs.  Therefore, in certain instances, observability may be lost for some states depending 

upon the current operating point.  This is not a problem so long as the state does not persist in 

this condition.  For example, the GPS/INS is unobservable when the accelerations are zero.  The 

state frequently passes through/near this condition, but the estimator still works very well.  

However, a major problem occurs when the unobservable condition is not a function of a 

particular state but rather a fundamental problem of the system itself.  In this case determining 

rank of the observability matrix from the linearized system does not necessarily lead to physical 

intuition of observability issues.  This thesis provides an intuitive observability explanation 

based upon heuristic arguments developed during simulations. 

5.1 Feature Observability 
The proposed target tracking solution requires information obtained from the 3D location of 

features, and therefore, their observability is analyzed here.  Because the camera poses are 

consistent with the position and orientation of the aircraft, the state equations discussed here 

include both the aircraft and feature states, thus defining the SLAM problem.    
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Fig. 5-1 illustrates the relationships between the aircraft states and feature states through multiple 

observations.  At time , the UAV, denoted with a solid outline, flies directly over a 

stationary feature and captures an image. 
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Figure 5-1: The Triangulation of a Feature as Viewed from Two Different Poses 

 

The vector pointing from the camera through the actual feature location denotes the line in space 

corresponding to the family of possible, but still unknown, 3D feature locations.  A short time 

later, , the UAV, now denoted by its dashed outline, has traveled a small distance and 

captures another image.  A new vector, pointing from the new camera location to the feature, 

symbolizes the line along which the feature should reside.  Assuming the feature’s location did 

not change, these two vectors fully triangulate the feature’s location.  However, the scale of the 

resulting triangle remains unknown.  The scale of this triangle can be determined if the distance 

vector, , pointing from the previous aircraft position to the current position, is observed with 

GPS.  Realistically, the measurement of these two vectors is corrupted by noise and uncertainty 

tΔ

d
v
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among the state estimates, resulting in skew vectors with some residual error in the feature’s 

location.  With sufficient measurements taken from different aircraft positions and orientations, 

the mean location of the feature in 3D space can be estimated accurately.  The camera, and 

hence, the aircraft must move to allow triangulations and residuals corrections to exist. 

5.2 Target Observability 
The state equations necessary for the examination of observability for the target tracking model 

must contain both the aircraft and target state equations because the target measurement depends 

upon the aircraft states in much the same way as the feature observations did. 
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The major difference between target estimation and feature estimation originates from the 

dynamic nature of the target.  This is illustrated in Fig. 5-2. 
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Figure 5-2: The Lack of Triangulation of a Moving Target as Viewed from Two Different 

Poses 
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Once again, the vector from the camera passing through the target represents the family of 

possible target locations.  The target, in this case, has a velocity component near the same 

magnitude and direction as the aircraft, resulting in the same target images.  Triangulation of the 

target’s position is not possible. The target’s velocity also retains ambiguity along the direction 

of observation, as illustrated by the two dashed target positions in Fig. 5-2.  Simulations based 

upon the dynamic and observation models of (5.3) and (5.4) have supported this heuristic 

argument.  A moving vehicle cannot observe states of another moving vehicle from monocular 

vision alone. 
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Chapter 6: Novel Solution 

The ground target constraint is used to extrapolate a 3D measurement from the 2D image 

coordinates to overcome the unobservability problems for monocular tracking of moving targets.  

The general target observation model is redefined as illustrated in Fig. 6-1, where the target is 

assumed to lie in a plane defined by nearby features.  
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Figure 6-1: The Relationships for the Redefined Target Observation Model 

 

In Fig. 6-1, the ground plane is defined by the three closest features to the target.  The normal 

vector for the ground plane is given by 
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 }{31}{21}{ iii vvn vvv ×=  (6.1) 

where 

 1
}{

2
}{}{21 ififi ppv vvv −=  (6.2) 

 1
}{

3
}{}{31 ififi ppv vvv −= . (6.3) 

The unit vector pointing from the camera toward the target is found using the image of the target 

and the aircraft state.  This vector is expressed in the inertial frame as follows. 
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The position of the target, }{itpv , is now written as a vector sum 

 }{}{}{ iaiit pup vvv += λ  (6.5) 

where λ  is an unknown scalar at this point.  To solve for this scalar quantity, another equation is 

formed based on the fact the dot product of any vector in the plane with the normal vector, T
in }{

v , 

must be zero.  This includes the vector from any feature to the target. 

 0)( 1
}{}{}{ =− ifit

T
i ppn vvv  (6.6) 

Substituting (6.5) into (6.6) and rearranging results in the following. 
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Solving (6.7) for λ  gives 
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Substituting (6.8) into (6.5) results in an expression for the target location. 
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All of the terms on the right side of (6.9) are obtained from the camera sensor and estimated 

SLAM states.  By providing a position estimate in 3D space, the observability issue for the 

ground target is eliminated.  The measurement equation for the target, in (3.32), is thus modified 

to consist of a target position measurement with noise.   

 }{}{}{ ipitmbtt t
vppz vvvv −==  (6.10) 
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The covariance of the noise term, }{ipt
vv , in the target position measurement can be estimated 

using the UT and the covariance of the feature estimates, aircraft estimate, and camera 

coordinates used in (6.1), (6.4), and (6.9). 

6.1 Loosely Coupled Estimation Solution 
While the UT provides a method for determining a mean measurement with predicted 

covariance, care must be taken when applying the target observation model given by (6.10) 

within a tightly coupled KF, EKF, or UKF.  Tightly coupled, in this section, refers to the 

combination of target states and SLAM states within a single filter.  The modified target position 

measurement is a function of other estimated states and its covariance is dependent upon current 

state covariance estimates.  A fundamental assumption made within the derivation of the KF is 

that the measurement noise is white and orthogoanal to the estimated state covariance [10].  By 

using the target observation model defined by (6.10) instead of (3.32), correlation is induced.  

This issue is avoided by estimating the target states with another loosely coupled KF, although 

this does not guarantee that the output target measurement is a white signal.  However, any 

autocorrelation of the target measurement signal does not adversely influence the aircraft and 

feature state estimates in this loosely coupled setup.  Fig. 6-2 illustrates the high-level 

perspective of the loosely coupled estimators and their relationships. 
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Figure 6-2: The Relationships between the SLAM UKF, UT, and the Target KF 

 

The SLAM model utilizes the state equations given in (5.1) and (5.2).  A UKF is employed to 

estimate the aircraft and feature states due to the noise terms and nonlinear nature of the state 

equations.  The input and output measurements are contained in dashed boxes, which represent 

the conversion from continuous to discrete time.  The output of this SLAM UKF estimator, 

including the estimated values for aircraft position, aircraft orientation, and feature locations, 

becomes one input to the UT block.  Another input to this block includes the output 

measurements of the target location in image space coordinates.  The UT then converts the input 

means     
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and covariance matrix 
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utututut

xx xxxxEutut vvvv −−=P  (6.12) 

into a target position measurement and covariance matrix estimate via the nonlinear relationships 

defined by (6.1), (6.4), and (6.9).  The output of the UT block becomes the output measurement 

for the target KF.  The input to the target model is simply the random walk zero mean noise 

term.  A basic Kalman Filter is used for the target estimator, because the target state equations 

are linear. 

6.2 Mean and Covariance Extraction and Inclusion 
Extracting desired mean values from an estimator is trivial.  For the UT block in the previous 

section, a simple orthogonal linear transformation, T , is defined which relates the SLAM UKF 

state estimate vector to the first five vectors in utxv .  This matrix, which consists solely of ones 

and zeros, must continually be updated since the three features that describe the ground plane 

about the target change.  The required position and quaternion vectors in utxv  are then found by 

pre-multiplication of the SLAM state vector by T .  The associated covariance terms must also 

be extracted from the SLAM UKF state covariance matrix, .  Since the mean transformation 

matrix is linear, linear covariance propagation techniques apply.  The upper diagonal block of 

 is then found by the following transformation 

xxP

utut xxP

 . (6.13) TxxTTP

 

Finally, utxv  is completed with concatenation of the target pixel measurements.  The pixel noise 

covariance matrix is also augmented to the covariance matrix determined from (6.13), giving 

.  This covariance matrix is block diagonal, which is required to assure that it is positive 

semidefinite.   

utut xxP

  

The basic process of extracting and augmenting mean and covariance information from the filter 

is a common necessity for a variety of applications, including feature initialization and loosely 

coupled estimator interaction.  Any future reference regarding the manipulation of mean and 

covariance information follows the guidelines listed in this section and are not explained in 

detail. 
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Chapter 7: Simulation 

Simulation has been used to test the validity of the SLAM and target tracking estimators 

discussed previously.  The analysis includes assessment of the convergence of feature locations, 

the aircraft state estimation accuracy gained by SLAM estimation techniques over the typical 

GPS/INS estimation, and the ability to track ground targets.   

7.1 Environment and Setup 
The simulation requires modeling of an aircraft’s dynamic equations, and the generation of IMU, 

GPS, and camera data for filter estimation.  Since aerodynamic coefficients and inertial values 

for the ECat UAV are unknown, a common six DOF Navion aircraft model, taken from [11], is 

implemented in a MATLAB/SIMULINK S-Function.  The steady level flight conditions were 

found using MATLAB’s trim function.  At a 100m altitude, the equilibrium trim values were a 

44.7m/s velocity, a 2.36° pitch angle, a -1.73° elevator deflection, and 1,331N of propeller thrust.  

A simple autopilot, consisting of lateral and longitudinal dynamic controllers designed about the 

trim conditions, allows tracking of commands from a straight-line waypoint navigator.  The S-

Function, autopilot controllers, and navigator are all housed in the leftmost block of Fig. 7-1.  

The vector outputs from this block include the aircraft velocity (m/s), angular rates (rad/s), Euler 

angles (rad), position (m), and body axes accelerations (m/s^2).  Three of these output vectors 

are routed to and stored in the “Actual” states variable for plotting analysis and filter 

performance comparisons. 
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Figure 7-1: Target Tracking Estimator Simulink Diagram 

 

All aircraft outputs become inputs to the filter block.  The filter subsystem includes three 

different discrete time S-Functions.  The main S-Function includes the proposed loosely coupled 

UKF SLAM and Target KF estimators.  The next two S-Functions, one utilizing a UKF and the 

other a EKF, both generate a typical aircraft GPS aided INS for benchmark comparisons.  All 

three filters require 25Hz IMU input data and 5Hz GPS correction data.  In order to generate 

accelerometer and gyro IMU measurements, the aircraft’s true accelerations and angular rates are 

corrupted with zero mean Gaussian white noise.  The aircraft’s position and velocity outputs are 

also corrupted to construct GPS measurements.  Several of the noise statistics, displayed in Table 

7-1, were approximated from a commercial grade UAV IMU and GPS chipset.  All noise vector 

elements are assumed independent and therefore their covariance matrices are diagonal.  

Independence between the noise vectors themselves is also assumed.  The UKF SLAM filter also 
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requires uncorrupted position and Euler angle inputs to produce camera images.  The estimated 

position, velocity, and orientation are outputted and stored in the “Estimated” variable.  

 

Table 7-1: Noise Statistics 

Location Noise Source Notation Covariance Matrix 

Accelerometer }{bawv  { } 4

2

001.,001.,001.
s
mdiag  

Gyro }{bwω
v  { } 2

2

00005.,00005.,00005.
s

raddiag  Input 

Target Random Walk }{itwv  { } 4

2

10,10,10
s
mdiag  

GPS Position }{ipa
νv  { } 21,4.,4. mdiag  

GPS Velocity }{ipa&

vν  { } 2

2

003.,003.,003.
s
mdiag  

Pixel }{bi f
νv  { } 200001.,00001. mdiag  

Output 

Target Measurement }{ipt
vv  variable  

 

The next step involves defining a relevant simulation environment.  This consists of determining 

the initial states for the aircraft, features, and target and their relationships as a function of time.  

These conditions are illustrated in the two diagrams of Fig. 7-2, which are not drawn to scale.  In 

(a), the top view of the environment is shown while (b) depicts the side view from an observer 

looking West.  The coordinate frames only represent direction and do not define the inertial 

coordinate system origin.  The UAV begins flight in a Northwest direction along the dotted 

arrow with a nominal velocity of 44.704m/s and altitude 100m above flat ground, defined by 

features.  The slight initial Northwesterly jog in the flight plan allows for filter and aircraft state 

excitement.  At 750m to the North of the aircraft’s initial position, the ground terrain begins 

sloping downward at approximately 20°.  The target’s initial position is located at 550m to North 

of the aircraft’s initial position.  After nearly 15 seconds of flight, the target, heading due North 

along the dotted arrow with the same nominal velocity as the aircraft, comes into view.  After the 

target travels 200m to the North of its starting position, it turns and follows the slope maintaining 
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its same velocity.  The slope is included to verify that the target can be tracked in 3D terrain.  

The features are placed in a symmetric triangular arrangement, which allows easy reference for 

use in the target measurement projection equations.  Also, more features are present in the actual 

simulation than shown in the diagrams.  These features are dropped from the diagram to avoid 

clutter.   
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(a) (b)  
Figure 7-2: Simulation Environment (a) Top View and (b) Side View 

 

Once the initial states are determined, the filters are initialized with mean estimates that are 

perturbed from their true values by amounts consistent with the initial error covariance matrices.  

This is accomplished with (4.53) and (4.54) where the initial covariance matrix is used and only 

one set of random points is generated.  While initializing features in this manner is statistically 

consistent, the true feature locations are not available in application.  Therefore, feature mean 

and covariance initialization techniques are the topic of the next chapter.   
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The UKF SLAM algorithm, detailed in section 4.3.2, commences at the start of the simulation.  

The only modification required for the algorithm includes quaternion normalization after (4.65) 

and (4.80). 

 
[ ]
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3210

qqqq
qqqq

q
T

=v      (7.1) 

Normalization is required due to integration and UKF correction errors.  Ref [5] outlines a more 

complex method for insuring the vector is normalized within the filter algorithm.  For the first 

several seconds of implementation, no features are visible and the UKF SLAM estimator only 

generates a GPS/INS.  Once features are observed their states are added to the state vector, until 

they are no longer observed.  The loosely coupled target KF also begins estimation only after the 

target is observed.    

7.2 Feature Updating 
The tremendous quantity of features defining an environment must be managed effectively to 

provide reasonable computation load, a requirement for real-time applications.  Finding a 

practical solution to the problem is a major topic receiving substantial attention from SLAM 

researchers.  The authors of Ref. [16] present a compressed filter.  This filter is ideal for 

applications in which a vehicle enters an environment where many of the estimated features are 

temporarily not observed.  Once in the new environment, only local feature estimates are 

updated.  A total filter update, based upon the evolution of the state error covariance matrix, is 

performed once the complete environment is reobserved.  Another method for constant-time 

SLAM involves the creation of submaps.  In [17], each submap contains multiple local features, 

which may also be members of other submaps.  At any given time, the vehicle is located within 

one active submap, and SLAM is performed on the vehicle and local feature states within this 

map.  The global estimates for feature locations are improved through a map location estimation 

process which takes place when the vehicle moves to a new submap.  The process requires the 

redefinition of the submap root location to be coincident with the feature location with the lowest 

uncertainty.   

 

While many methods for increasing SLAM computation efficiency exist, the most feasible 

alternative for this application involves the dropping of unobserved features.  Unfortunately, the 
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deletion of states from a filter results in what is commonly referred to as filter information loss.  

Since the feature locations and vehicle locations are related through dynamic/observation models 

and nonzero correlation coefficients within the state covariance matrix, the Kalman gain may 

modify feature estimates, even when they are not currently observed.  The correction also results 

in the update of the state error covariance.  Therefore, the covariance and mean information 

associated with a feature when it is removed can not be used when the same feature is 

reobserved.  The deletion of a feature’s mean states and its associated rows within the state 

covariance filter is allowed as removal does not affect the statistical consistency of the mapping 

process [18].  

 

The adding and dropping of features reduces the magnitude of computations, but results in code 

that is slightly more complex.  At the beginning of each correction step of the SLAM UKF 

algorithm, new image data are generated.  Part of image generation involves the determination of 

which features are viewed in the current image based upon the camera’s actual location, 

orientation, and FOV.  The newly observed feature mean values are appended to the filter’s 

mean vector.  The initial 3x3 covariance matrix for each feature, defined during environment 

initialization, is then concatenated to the current state covariance matrix.  Features that are no 

longer in view have their mean values dropped from the filter and the row and column 

corresponding to their states in the state covariance matrix.  The operations specified here obey 

the developments in section 6.2.       

7.3 Results 
The error magnitude, or Euclidean norm, for a feature position estimate is shown in Fig. 7-3.  

During the first ten seconds of flight, this feature is not in view.  Once in view, the UKF 

dynamically updates and improves the position estimate of the feature.  Other features exhibit 

similar behavior. 
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Figure 7-3: Feature One Position Error Magnitude 

 

The next plot emphasizes the orientation accuracy for the aircraft gained through SLAM 

estimation as compared to traditional GPS/INS estimation.  Improved orientation estimates are 

particularly noticeable when the features come into view after approximately nine seconds.  This 

behavior is expected because the observation model for the features depends heavily upon the 

position and orientation of the aircraft.  In fact, the EKF GPS/INS actually developed a 

substantial orientation bias as the aircraft started entering steady level flight.  
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Figure 7-4: Aircraft Orientation Error Magnitude 
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The target position error illustrates the effectiveness of the target tracking technique developed.  

Fig. 7-5 plots the error magnitude as a function of the time during which the target is observed.  

The error peak between four and five seconds corresponds to the point where the target vehicle 

turns and transverses down the slope.  While the error never converges completely to zero, the 

target state estimates do track the target.   
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Figure 7-5: Target Position Error Magnitude 

 

The target velocity error magnitude is shown in Fig. 7-6.  The general shape of this plot is very 

similar to the target position error plot.  However, the error peak which occurs between four and 

five seconds is significantly larger.  This is expected as no direct observation measurement for 

the target’s velocity is provided, and the zero mean random walk on velocity implies that the 

average acceleration should be zero.  
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Figure 7-6: Target Velocity Error Magnitude 

 

Overall, these error plots confirm that the estimator setup developed is capable of tracking the 

states of a target, contingent upon the accurate estimation of local terrain features.  The 

information gained from this estimation technique may be used to provide tracking information 

for a range of applications. 
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Chapter 8: Feature Initialization 

While the feature mean and covariance matrix initialization performed in the previous chapter is 

statistically consistent, it required knowledge about the true 3D location of the features.  This 

information is not available with experimental data.  The only sensor data available from the 

features are the pixel measurements returned from the feature extraction algorithm discussed in 

the next chapter.  The problem now becomes one of constructing a 3D feature position 

initialization from the sensor data and camera pose estimates.  Unfortunately, the camera states 

are plagued with uncertainty and are typically biased over short intervals as the estimate error is 

generally not a white signal.  Therefore, the initial covariance matrix for each feature’s position 

must reflect the transformation of these uncertainties into an accurate 3x3 feature covariance 

matrix.  Also, the set of equations which determine the mean value must themselves be designed 

to handle perturbation from the true camera pose and pixel locations.  These difficulties have led 

to the implementation and comparison of three different initialization techniques: single 

triangulation, ground plane projection, and depth conditioning. 

 

After the equation development for each of the initialization techniques is introduced, simulation 

is used as an identical and reproducible medium for feature mean and covariance analysis.  This 

is accomplished by setting the seed values for the SIMULINK and image simulation function 

random number generators to a known value for every simulation.  The same features are also 

used for all mean comparisons plots in the next three analysis sections.  These 50 features are 

initially randomly distributed in a 400m x 200m plane located 100m below the aircraft.  The 

feature locations are also initially perturbed about the plane in the z direction by random values 

between +/- 20m.  The metric used for mean evaluation is the average magnitude of the position 

error for all of the features.  This metric is used for both the initial and final positions.  For all but 

the single triangulation method, both a tightly coupled SLAM estimator and a loosely coupled 

estimator are compared.  Here LC refers to the separation of feature and aircraft states into two 

separate estimators as shown in Fig. 8-20.  This comparison is needed because detrimental 

feature mean and covariance initial estimates adversely affect the aircraft state estimates in 
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tightly coupled SLAM.  The accuracy of the initial covariance estimate values are also examined 

with the LC filter setup.  This is accomplished by determining the error in the x, y, and z axes 

and transforming this value into a standard deviation based upon the initial covariance matrix.  

However, determining the effectiveness of this parameter is slightly more difficult as the 

covariance matrix provides statistical information based upon several samples.  Therefore, 100 

total features are created and used for the covariance analysis where the percentage of initial 

mean estimates within the standard confidence intervals is plotted.             

8.1 Single Triangulation 
The initialization equations developed for the single triangulation are based upon the 

environment shown in Fig. 8-1.  In the diagram, the measured pixel coordinates from two poses 

are known along with the corresponding camera pose information.  The “1” and “2” subscripts 

and superscripts are used as a reference to the two poses.  Since the camera poses and 

measurements contain uncertainty, a high likelihood exists that the projected lines from the 

camera pose body frame through the pixel measurements are skew.  Therefore, the assumption is 

made that the feature lies halfway along the shortest line between the two projected lines.   
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Figure 8-1: Single Triangulation 

 

The first step in acquiring the feature’s position involves determining the unit vectors, }{1 iuv  and 

}{2 iuv , along which the feature should reside. 
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}{3 iuv , which is orthogonal to }{1 iuv  and }{2 iuv , is found by normalizing the cross product of }{1 iuv  and 

}{2 iuv .    
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The following vector equality may be written. 

 22
2
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1
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vvvvv λλλ +=++  (8.4) 
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Here 1λ , 2λ , and 3λ  are unknown scalar values.  Manipulation of this equation results in 
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where the solution is given by 
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provided the matrix of unit vectors is not singular.  As long as }{1 iuv  and }{2 iuv  are not parallel, this 

matrix will have full rank.  When the unit vectors are parallel an infinite number of values for 1λ  

and 2λ  exist that solve (8.4).  Even before the unit vectors become parallel, the matrix starts to 

become ill-conditioned.  For this reason, an angle threshold condition, discussed below, must be 

passed before a feature is initialized.  The initial feature location, fpv , is then assumed to reside 

halfway between the skew projected vectors along }{3 iuv .   

 }{3
3

}{11
1

}{ 2 iiiaf uupp vvvv λ
λ ++=  (8.7) 

 

While (8.7) provides a nonlinear equation for determining the feature location from two poses, 

the covariance matrix for this feature is still needed.  Due to the highly nonlinear nature of the 

equation, the UT is employed for mean and covariance calculation of a feature’s initial position.  

As mentioned, the UT provides a superior mean and covariance estimate for nonlinear equations 

when compared to Jacobian based covariance techniques. 

8.1.1 Analysis 

In general, the integrity of this initialization depends on the stereoscopic nature of the camera 

poses.  In other words, by making the angle between the two legs of the triangle larger, the 

resulting triangulation should be more accurate.  This is especially true for systems, like this 

SLAM UKF estimator, where knowledge of the true pose of the camera is an estimate. 

Therefore, the angle between the two unit vectors, }{1 iuv  and }{2 iuv , is calculated and then 

compared with a minimum angle threshold.  If the angle is greater than the threshold, the feature 
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is allowed to be initialized with the single triangulation equations.  The angle, α , between the 

vectors given by (8.1) and (8.2) is determined by taking the arccosine of the dot product. 

 ( )}{2}{1cos i
T

i uua vv=α  (8.8) 

 

Simulation results confirm the argument that a greater initial angle threshold results in better 

initial feature positions.  In order to generate data for Fig. 8-2 and Fig. 8-3, the only variable that 

is allowed to change is the angle threshold.  As the angle threshold increases, the average error 

decreases as expected.  This same general trend is illustrated for the final position error as shown 

in Fig. 8-3.  Unfortunately, the LC filter estimates diverged as denoted by the high final error 

values.  The SLAM filter estimates also diverged.  However, in a tightly coupled filter, this 

results in diverging aircraft state estimates.  Therefore, no discernable information is available 

from either of the SLAM filter plots, and they are not shown here. 
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Figure 8-2: LC Single Triangulation Feature Initial Position Error Magnitude Plot 
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Figure 8-3: LC Single Triangulation Feature Final Position Error Magnitude Plot 

 

A covariance matrix analysis is used to determine if the generated initial covariance matrix 

captures the uncertainty in the initial feature position.  This analysis uses 100 features that are 

initialized after passing the angle threshold requirement of 35deg.  Calculations reveal an 

average 21m initial feature position error.  While the average initial covariance matrix is very 

large (det = 3.060*105m2), Fig. 8-4 shows the UT only slightly overestimates each covariance 

matrix for each of the x, y, and z axes.  Ideally, for a normally distributed variable, the one sigma 

value should reside at the 68.2% confidence interval, while the two, and three sigma values 

should denote the 95.5%, and 99.7% intervals, respectively.  Although the initial mean error is 

large, the large covariance matrix enables the filter to perform properly.  The high covariance 

terms allow the estimates greater freedom of movement because their uncertainty is large.  

However, once a feature’s mean estimate approaches the singularity plane defined in section 

3.2.2.2, the filter’s performance degrades and eventually diverges.  A possible solution to this 

problem might be to increase the angle threshold.  Unfortunately, this decreases the number of 

correction updates since each feature is in view for a finite number of frames.  Clearly, other 

methods are needed to address the deficiencies of a single triangulation initialization. 
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Figure 8-4: LC Single Triangulation Initial Feature Covariance Analysis 

8.2 Ground Plane Projection 
In many scenarios, the local terrain along which a ground target may travel is not very rugged.  

For these cases, the local features that define the terrain should reside very near a ground plane.  

Therefore, initializing the features about a ground plane might provide a good initial estimate.  

This ground plane projection scheme is illustrated in Fig. 8-5. 
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Figure 8-5: Ground Plane Projection 

 

The scale factor, λ , along the unit vector, }{iuv , is found by the following equation 

 [ ] }{100 iu
d

v=λ    (8.9) 

where  is a scalar distance to the ground plane from the aircraft and the unit vector is given by 

(8.1).  If the aircraft flies at a steady nominal altitude, then the scalar  is constant.  If the 

aircraft constantly changes altitude, this scalar value is determined from the z component of the 

aircraft’s position vector and the altitude of the ground plane with respect to the inertial frame.  

The feature’s initial position, 

d

d

}{ifpv , is then given by 

 }{}{}{ iiaif upp vvv λ+= .   (8.10) 

Equation (8.10) is used by the UT algorithm to capture the current feature position and 

covariance.  Most of the mean values are provided by the SLAM UKF estimator and the pixel 

coordinate measurement vector.  However, the properties assigned to the distance variable  are 

available for tuning.  In certain cases, an above ground level altitude sensor may provide 

satisfactory measurements of this variable.  Otherwise, the ground plane location should be 

d
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chosen based upon prior knowledge of average terrain elevation and the flight altitude of the 

aircraft.  The variance of the distance to the plane is also important.  If the variable is chosen to 

have zero variance, the UT interprets this as a constraint in the feature’s z direction.  In other 

words, the feature is initialized in the plane with a covariance that includes zero values for all 

terms associated with the down direction.  To avoid this artificial constraint, the variance on the 

distance variable is tuned such that the features are not fixed to the ground plane, but are allowed 

some movement.        

8.2.1 Analysis 

Perhaps the greatest benefit from the ground plane projection technique is the ability to initialize 

features the first time they are viewed.  This allows successive frames to be used strictly for 

correction updates.  For non-gimbaled cameras mounted on UAV’s, every observation is critical 

since the number of frames in which a feature is viewed tends to decrease greatly as the aircraft 

velocity increases and/or the altitude decreases. 

 

The greatest drawback of this method originates from the value chosen for the distance to the 

ground plane and its associated variance.  Underestimation of the variance of this distance results 

in feature position estimates that stubbornly reject convergence to their true locations.  

Overestimation results in feature estimates that require more observations for convergence and 

that may erratically shift about their true locations during their first few observations.  Incorrect 

distance estimates result in even more negative behavior.  These results are illustrated in Fig. 8.6 

through Fig. 8.9 where the average feature error is plotted as a function of nominal ground plane 

distance and the variance associated with the distance.  In general, as the variance of the distance 

variable decreases, the overall error tends to increase.  This characteristic is especially true for 

the SLAM estimator when the distance to the actual ground plane, located at approximately 

100m below the aircraft, is incorrect.  While the final error is relatively small when the correct 

nominal ground plane distance is used, the SLAM estimator is not very robust to incorrect 

altitude and variance estimates.  This is expected as the incorrect initial feature positions are 

correlated to the aircraft states in tightly coupled estimators.  On the other hand, the LC estimator 

appears to be less sensitive to incorrect aircraft to ground plane distance estimates.  In fact, the 

initial error plot confirms this statement as every combination of variance results in the same 

66 



initial error.  The aircraft estimate is not influenced by the mapping of features in the LC 

estimator.  Another interesting LC estimator trait is illustrated in Fig. 8.9.  As the variance 

increases, the final feature error tends to find a minimum when the nominal ground plane 

distance is larger than the true nominal ground plane distance, even after very large incorrect 

initial estimates.  As the distance between the aircraft and the expected ground plane increases, 

the covariance matrix values also tend to increase.  For example, a small perturbation in 

orientation results in a larger change in the ground plane feature position when the ground plane 

distance from the aircraft increases.  A larger covariance matrix corresponds to a higher 

uncertainty in the initial feature estimate, and thus the estimate is allowed greater freedom of 

movement during future corrections.  
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Figure 8-6: SLAM Ground Plane Projection Feature Initial Position Error Magnitude Plot 
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Figure 8-7: SLAM Ground Plane Projection Feature Final Position Error Magnitude Plot 
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Figure 8-8: LC Ground Plane Projection Feature Initial Position Error Magnitude Plot 
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Figure 8-9: LC Ground Plane Projection Feature Final Error Magnitude Plot 

 

The covariance analysis data is collected from a simulation utilizing the ground plane projection 

equations.  A 100m ground plane distance is used with a 10m2 variance.  As can be readily 

inferred from Fig. 8-10, the ground plane projection severely underestimates the true covariance 

for all three axes.  In fact, this initialization technique produces an average initial position error 

of 20.3m, equivalent to the single triangulation initial error, with a relatively small valued 

average covariance matrix (det = 2.612*103m2).  Even with this underestimation, the estimator is 

able to provide fairly accurate final position estimates.   
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Figure 8-10: LC Ground Plane Projection Initial Feature Covariance Analysis 

8.3 Depth Conditioning 
Literature searches yielded the final initialization technique examined.  In their MonoSLAM 

research, Davison et. al. encountered a similar initialization dilemma where the depth to a feature 

is not directly obtainable from the observation model [12].  To overcome this difficulty, they 

start by generating a semi-infinite 3D line in space along which the feature should reside based 

upon the camera’s states and the feature’s pixel measurements.  In general, this line is described 

by unit vector in the inertial frame that originates from the end of the camera position vector.  

The depth along the line in which the feature is located, however, is unknown.  A set of particles 

are then uniformly distributed along the line.  Each particle represents a new scalar magnitude, 

λ , or depth along the line.  Each successive image then provides an observation of the measured 

feature’s pixel coordinates.  All the particles are then projected into the new image space where 

their likelihoods are determined for Bayesian re-weighting of the particle distribution.  The 

likelihoods consider the uncertainty due to the camera’s location at the given time, pixel 

measurement noise, and also uncertainty in the parameters of the 3D line in space along which 

the features should reside.  As the number of measurements increase, the depth distribution 

becomes more Gaussian.  Once a certain ratio of the standard deviation over mean depth of 

particles is reached, the feature is initialized. 
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A modification of Davison’s approach as applied to UAV mounted monocular vision systems is 

illustrated in Fig. 8-11.  Using the initial image of a feature and the current camera states, a unit 

vector defining the line along which the feature is assumed to lie is formed.  The set of depth 

hypotheses, or particles, are then uniformly distributed along this line.  The particles are shown 

as circles in the figure.  Three parameters regarding the initial particles are available for fine-

tuning and adjustment in the algorithm.  These include the number, mean, mλ ; and spread, sλ , of 

the particles.            
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Figure 8-11: Depth Conditioning 

 

At each new observation of the feature, the conditional relative likelihood of each particle is 

determined.  This involves the propagation of all of the particles through the nonlinear camera 

observation model given by (3.21) and (3.22).  Assuming the measurement noise has a Gaussian 
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PDF, the likelihood, , that the “ith” particle’s projection into image space is equal to current 

measurement must be proportional to 

iq
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where 

 }{}{ bfibfmi iie
vvv −= . (8.12) 

iev  is the error between the current pixel measurement vector, }{bfmi
v

, and the image space 

representation of the “ith” particle, }{bfii
v

.  R  is usually the 2x2 measurement noise covariance 

matrix.  However, since the observation model is also a function of the current orientation and 

position of the camera, uncertainty in those parameters must also be ascertained.  Therefore, the 

total covariance is given by 
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where kvr  is the zero mean Gaussian pixel measurement noise, and the current state estimate 

vector is  
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The covariance matrix, , of xxP xv  is found via the linear covariance transformation properties 

outlined in section 6.2.  The relative likelihood for each of the particles are determined by 

normalizing all .  A set of new particles are randomly generated based upon these new relative 

likelihoods [15].  This process is completed for each additional observation of the feature, upon 

which the depth distribution becomes increasingly Gaussian.  Fig 8-12 illustrates this 

progression.  The data generated for these plots are obtained from the Navion simulation where 

200 particles were used with a mean value of 150m and a spread of 200m.  At each discrete time 

step, the particle data for one of the features was stored.  The first row of plots contain the ray 

along which the feature should reside based upon the initial camera states and pixel 

measurements for the feature.  They also contain the particle locations denoted by the circles 

along this line.  The camera’s location is given by the body axes plots of the aircraft at 

(0m,100m).  Histogram plots of the lambda depth hypotheses fill in the second row.  Each 

iq
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column corresponds to a different view number, as given in the caption.  Even though all views 

of this particle are not shown for brevity, a general trend is obvious.  The particles tend to 

become more clustered with increasing number of views.  The distribution also appears to take 

on the tradition bell curve shape of a Gaussian PDF.      
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(a) (b) (c) (d)  
Figure 8-12: Particle Location and Histogram for a Feature after (a) One View, (b) Three 

Views, (c) Five Views, and (d) Seven Views 

 

For initialization in this research, the ratio of the variance over depth must be below a preset 

threshold.  This is slightly different than Davison et al. who use the standard deviation over depth 

ratio as the threshold condition [12].  Both the mean and variance are numerically calculated 

after each re-sampling.  Given a ratio threshold of .25m, the feature in the above example 

initialized with a final mean lambda value of 117.1850m as opposed to the actual value of 

117.2857m.  While this mean value is very close to the actual, the initial ray in space along 

which the feature should reside is not completely accurate because it was obtained with estimates 

and measurements.  The corresponding position initialization has a slightly greater error. 
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Finally, once a feature is ready for initialization, its new mean position and covariance matrix are 

determined.  This is accomplished by the UT.  The position of the feature is given by 

 }{}{}{ iiaif upp vvv λ+=  (8.15) 

where λ  refers to the final depth conditioning mean lambda value, not to be confused with the 

initial lambda mean of the uniformly distributed particles.  The UT considers the uncertainty in 

the aircraft position, unit vector formulation, and lambda for the determination of the feature’s 

initial mean and covariance matrix. 

8.3.1 Analysis 

Many variables influence the behavior of the depth conditioning method.  Unfortunately, testing 

the performance of every possible combination of these variables is intractable.  For this reason, 

a standard set of variable values based upon preliminary observations are chosen as a suitable 

operating point.  These values are given as 200 particles with a lambda mean and spread of 

200m.  In each subsequent test, one variable changes as all others are held constant. 

 

Quantitatively, varying the number of particles did not provide any conclusive results.  In 

general, the final average error varied randomly between 1.5m and 2m as the number of particles 

varied from 150 to 250.  However, lowering the number of particles below 150 did have 

consequences.  During re-sampling, the new distribution of particles is extracted from the 

previous set of particles.  Therefore, the possibility that all of the particles converge to a single 

point increases as the distance between the initial particles becomes more coarse.  This is 

commonly referred to as sample impoverishment, and several methods exists for overcoming this 

limitation other than increasing the number of particles [15].  However, this problem never 

occurred when more than 150 points were used.  For this reason and to limit computational 

loads, 200 points are used during depth conditioning implementations. 

 

Changes to both the mλ  and sλ  parameters slightly affect the final error statistics.  Once again, a 

simulation provides the data necessary for performance assessment.  The final results for three 

different sλ  values are plotted in Fig. 8-13 through Fig. 8-16.  With a mλ  value ranging from 

150 to 250, all lambda spread error lines produce nearly consistent results.  The overall average 

final feature position error in this region is generally below 2m.  When the lambda mean value is 
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significantly incorrect, the error plots tend to increase.  This is more prevalent when sλ  

decreases.  Essentially, the feature’s actual position is out of the range of possible depth 

hypotheses generated.  Since the particles are re-sampled from previous sets, this imposes a 

limitation.  Some sample impoverishment techniques may reduce this tendency.  Even so, the 

particle method provides a robust means to initialize particles as fairly significant changes in mλ  

do not result in substantial errors.  These beneficial characteristics are even more prevalent in the 

LC estimator results, where the final position error is less than 2m for all combinations of mλ  

and sλ .      
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Figure 8-13: SLAM Depth Conditioning Feature Initial Position Error Magnitude Plot 
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Figure 8-14: SLAM Depth Conditioning Feature Final Position Error Magnitude Plot 
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Figure 8-15: LC Depth Conditioning Feature Initial Position Error Magnitude Plot 
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Figure 8-16: LC Depth Conditioning Feature Final Position Error Magnitude Plot 

 

The final check includes the covariance analysis.  For this analysis, 200m mλ  and sλ  values are 

used as they provide an adequate range of depth hypotheses that are not too sparsely distributed.  

Both the average initial error magnitude (6.71m) and average covariance matrix (det = 

1.870*103m2) are lower than the previous two initialization techniques.  The initial position 

errors are also accurately described by their corresponding covariance matrices as shown by the 

data in Fig. 8-17.  The combination of accurate initialization and covariance determination 

strengthen the argument for its use with the experimental data.  
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Figure 8-17: LC Depth Conditioning Initial Feature Covariance Analysis 

8.4 Initialization Technique Conclusions 
Several general trends and conclusions are attainable from the simulation data regarding the 

mean and covariance initialization techniques.  The single triangulation’s poor mean estimates 

and large covariance matrix values promote filter divergence, and it is, therefore, not considered 

any further.  The other two initialization techniques appear to provide fairly similar final error 

results for the set of test conditions provided.  However, other parameters need to be examined 

including the affects of feature density.  Finally, the LC estimator appears to perform better than 

the tightly coupled SLAM estimator when considering the final feature errors.   

 

Another series of simulations provides data emphasizing the influence of feature density on the 

ground plane projection and the depth conditioning methods.  The LC and SLAM estimation 

techniques are also compared in this analysis.  The simulation environment is identical to that 

presented in the previous section.  However, the number of features comprising the ground plane 

is allowed to change.  Since the volume of the possible feature locations is constant, a higher 

feature number represents an increase in average feature density.  In general the depth 

conditioning method provides better initial mean estimates for both the SLAM and LC filters as 

shown in Fig. 8-18. 

   

78 



10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

24

Number of Features

In
iti

al
 F

ea
tu

re
 P

os
iti

on
 E

rro
r M

ag
ni

tu
de

 (m
)

 

 
SLAM - Depth Cond.
SLAM - Ground Plane
LC - Depth Cond.
LC - Ground Plane

 
Figure 8-18: SLAM and LC Ground Plane and Depth Conditioning Initial Feature Position 

Error Magnitude as a Function of Feature Density 

 

In the case of the final feature position RMS error, Fig. 8-19, the general trends are more difficult 

to ascertain.  Generally, the LC estimator average final feature estimates are closer to the true 

values than the SLAM feature estimates.  No statement can be made regarding the effectiveness 

of the depth conditioning method over the ground plane method or vice versa as their final 

feature error values are nearly equivalent. 
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Figure 8-19: SLAM and LC Ground Plane and Depth Conditioning Final Feature Position 

Error Magnitude as a Function of Feature Density 

 

Overall, the depth conditioning method’s ability to accurately generate initial feature estimates 

and covariance matrices is better than the ground plane initialization.  The ground plane 

initialization, however, represents a valid method if the local terrain approximates a relatively 

flat ground plane with high frequency terrain changes.  Therefore, the depth conditioning method 

is used during experimental data analysis. 

 

Nearly all results confirm that for this particular application a LC estimator provides the most 

robust results.  This is especially true as the features are initialized based upon current aircraft 

states.  In effect, biased aircraft estimates lead to biased feature initial position estimates.  The 

correlation and relationships between the features and aircraft states then tend to increase this 

negative behavior.  During the SLAM ground plane initialization analysis, an incorrect initial 

ground plane distance results in feature initializations that on average are biased, generally in the 

z direction.  When most of the features are initialized below their actual positions, which 

happens when the distance to the nominal ground plane is overestimated, the aircraft’s z position 

estimate starts to drift down toward the ground plane.  Intuitively, this makes sense as camera 

measurement errors are minimized as the aircraft moves downward.  However, this digression 
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may lead to filter divergence, as future feature estimates are now even more biased.  Therefore, 

for the remainder of this research a loosely coupled filter, as shown in Fig. 8-20, is used.  

Essentially, a basic GPS/INS UKF provides an estimate of the aircraft states from the fusion of 

accelerometer/gyro input measurements and GPS position/velocity correction measurements 

with the relationships defined by the dynamic (3.15) and observation (3.16) models.  The Feature 

UKF is exclusively an observation model, and therefore is only executed when feature data from 

the camera image is obtained.  The UT is used during the innovation covariance determination as 

the observation model for the features is dependent upon the aircraft state mean values and state 

covariance matrix.  This estimator is robust in the sense that a divergent map will not adversely 

influence the aircraft states.  However, this also means that any useful information possibly 

obtained from the features will not help correct the aircraft states.   
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Figure 8-20: LC GPS/INS UKF and Feature UKF State Filters 
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Chapter 9: Experimental Results 

While actual target tracking implementations need to execute in real-time, the data collected for 

this research are stored with the PC104 Stack data collection computer for post processing.  

Storing data for later processing is advantageous for several reasons.  For one, programming 

glitches are easily debugged in a lab environment.  Also, knowledge gained from hindsight is 

available.  For instance, if a feature is only viewed in a few images then its importance to the 

filter is negligible as the feature’s position will not be localized with only a few measurements.  

In fact, several images are generally required for feature initialization alone.  Therefore, these 

features are never used by the filter or the filter’s Feature Manager.  This greatly reduces filter 

computation effort while still providing proof of concept analysis.  Real-time applications, on the 

other hand, need to consider every feature because knowledge about the number of images the 

feature will be captured in is unavailable.  Finally, a single data set can be analyzed and 

iteratively tested.  This is beneficial since the process involved with collecting data is time 

consuming.  

 

Data collection consists of a series of events.  Before flight, the camera’s shutter speed, aperture, 

focus, and mode settings are adjusted for the current lighting and flight conditions.  The PC104 

Stack is also initialized.  The aircraft is then launched, and the telemetry is monitored with the 

ground station.  The flight plan is chosen such that the aircraft traverses varying terrain, 

including rural roads and valleys common to the local area.  The data collection starts upon 

reception of a command from the OI.  The camera is triggered and the processor time is recorded 

by the autopilot at the instant new GPS data are available (approximately 4Hz).  This allows the 

same observation equations to be used at each correction step of the filter.  At each control 

iteration of the autopilot cycle, which executes at 20Hz, the current sensor data and CCT’s 

GPS/INS solution are bussed across the CAN port to the data collection computer.  The PC104 

Stack also stores the image data and processor time associated with the image for post 

processing.   
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A few important modifications to the filter algorithms are necessary for experimental data 

analysis as compared to simulation.  In the simulation, the pixel measurement locations for 

features and the target within each image are artificially generated.  In the experimental data 

case, actual aerial images are used.  A feature extraction algorithm is needed to identify the pixel 

coordinates of “keypoints” and to match these features in multiple images.  Another change 

includes modifications to the feature management code.  The manager is now responsible for 

feature initialization as discussed in the previous chapter.  The process of initializing features has 

proven to be one of the greatest challenges concerning practical implementation of the methods 

in this research.  Given the results of the simulations and limitations on the extent of the 

research,  this chapter focuses on the LC GPS/INS UKF and Feature UKF.  The tightly coupled, 

SLAM, filter and target tracking are not discussed here.         

9.1 Feature Extractor 
The UKF Feature Manager must know when a feature is observed in an image and also its 

corresponding pixel coordinates.  A feature extraction algorithm generates this data from the raw 

images obtained during the data collection flight.  One of the first steps involves the application 

of the scale invariant feature transform (SIFT) algorithm to each image.  This algorithm returns 

the feature’s location within the image and its descriptor.  Since the extraction algorithm relies 

upon this feature detector and identifier application, knowledge about the functionality and 

limitations of SIFT is important.  

9.1.1 Scale Invariant Feature Transform 

A demo version of the SIFT algorithm based upon the work done by David Lowe is used in this 

thesis.  This algorithm is designed to provide a robust feature detection and matching mechanism 

for overlapping images that is invariant to image scale, rotation, noise addition, and illumination.  

This is accomplished with a series of filtering stages designed to minimize cost while providing 

consistent and reliable results [20]. 

 

1. Scale-space Extrema Detection -  In this stage, a Gaussian smoothing filter is applied 

across the image.  The scale on the filter is varied and then applied to the same image.  

The difference between the two filtered images, known as the difference of Gaussian, is 
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taken.  This method provides a means to detect points of interest, also known as 

keypoints. 

2.  Keypoint Localization – Once a keypoint is determined, a quadratic function is used to 

approximate the location of the point.  This allows the location to take values that are 

fractions of a pixel, which enhances keypoint detection stability and matching reliability.  

The local gradients are then analyzed to eliminate edge points.  These are places where 

the gradient is very prominent in one direction while very poor in another direction. 

3. Orientation Assignment – In order to account for image rotation, each keypoint is 

described relative to its distinctive orientation direction.  The orientation is determined by 

calculating gradient changes in the Gaussian filtered image about the keypoint.  The scale 

chosen to filter the image for this calculation is the one that provided the extrema 

detection point from the first stage. 

4. Keypoint Descriptor – Each keypoint is assigned a descriptor, or personal identity.  

Numerically, the descriptor is a 128 element normalized vector that describes orientation 

gradients about the keypoint.  These gradients are calculated relative to the orientation 

assignment generated in the previous stage.  The vector is normalized to reduce the 

effects of illumination.  

 

While the SIFT algorithm determines keypoint pixel locations in images and returns the 

corresponding descriptor for each feature, a metric is needed to determine reliable feature 

matches in multiple overlapping images.  Keypoint matching is accomplished by taking the 

vector dot product of every keypoint descriptor in an image with every keypoint descriptor in 

another overlapping image.  Since the descriptors are normalized, taking the arccosine of the dot 

product yields what will be loosely called the “angle” between the two vectors.  The angles, 

formed from a single descriptor in the first image and all the descriptors in the second 

overlapping image, are then ordered based upon size.  The smallest angle denotes the best match.  

However, the match must be distinctive.  This means that the next closest match should be a 

significantly larger angle.  Otherwise, obtaining a false match is probable.  The matching 

function used in this feature extractor requires the smallest angle to be at least 40% smaller than 

the next smallest angle.  If this percentage is smaller, many false matches occur while increasing 

the percentage disregards many correct matches. 

84 



 

An example of SIFT’s ability to extract and match features across overlapping images is 

demonstrated in Fig. 9-1 and Fig. 9-2.  The images, plotted side by side in both figures, were 

captured during one of the ECat’s data collection flights over rural terrain.  The SIFT algorithm 

extracted 662 keypoints from the leftmost image and 536 keypoints from the rightmost image as 

marked by the red circles in Fig. 9-1.  As expected, these points are located along areas of sharp 

contrast, such as the rock outcropping and the gully.  In other less distinctive areas where the 

ground terrain is not as rugged and the plant growth is uniform, very few features are found. 

  

 
Figure 9-1: SIFT Features 

 

The following figure displays the 168 feature matches connected by lines, as determined from 

the SIFT descriptor matching function.  In this case, the descriptors on the leftmost image are 

compared to all of the descriptors in the rightmost image.  Since the difference between the two 

images is mostly translation, the lines between all correct matches should be nearly parallel.  One 

can observe through qualitative assessment of the figure that the matching function provides a 

good method of determining correlation between keypoints.  
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Figure 9-2: Feature Matches 

9.1.2 Extraction Algorithm 

The extraction algorithm is responsible for performing all the tasks from importing the images to 

supplying a robust list of feature information to the Feature Manager.  This algorithm is built for 

identifying keypoints with SIFT and uses a series of logical comparisons to determine valid 

matches.  Since the SIFT keypoint matching algorithm is susceptible to false matches, a three 

image forward filter provides a series of tests aimed at limiting the quantity of these anomalies.  

Ultimately, the Feature Extractor must provide the Feature Manager with the output listed in 

Table 9-1.  The first variable in the table is the global number assignment.  Since SIFT only 

provides a vector of keypoints for each image, a global number assignment is necessary for 

reference and organization.  The start and size variables are used to denote which consecutive 

images the feature is located within.  This implies that if a feature goes out of view and later 

comes back into view, it will be given a new feature number.  This has a major advantage.  The 

keypoint descriptor for each image does not need to be stored in a database and checked 

indefinitely with new image features.  This decreases computational time required during 

extraction, simplifies the complexity of the code, and prevents an increased likelihood of false 

matches.  The last variable refers to the actual feature pixel coordinate locations needed by the 

Feature Manager initialization code and the correction steps of the Feature UKF.  This method 

would need slight modification for real-time implementation, but does not violate the principle of 

using only past and current knowledge within the state estimator. 
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Table 9-1: Feature Manager Required Variables and Definitions 

Variables Definition 

Global Number The unique value assigned to each feature 

Start Image number when feature is first observed 

Size Number of consecutive images with feature 

Pixel Locations x and y pixel locations of feature within each image 

 

9.1.2.1 High Level Block Diagram 

The block diagram in Fig. 9-3 provides a high level perspective of the feature extraction 

algorithm.  After images are imported, the three image forward filter is initialized.  This involves 

analyzing the first three images such that the necessary data structures required by the main filter 

are readied.  The three image forward filter, which is the most complex section of the algorithm, 

then starts to process each image.   

 

Feature Extractor
Import Images

3 Image Forward  
Filter

Global 
Feature?

Initialize Image 
Filter

Yes No

Record: Pixel Location 
Update: Size

Initialize Feature

Assign: Global Number 
Record: Start Image

False 
Match?

Yes No

Previous CurrentOld
Images

To Feature Manager  
Figure 9-3: Feature Extractor Block Diagram 
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The following example demonstrates the method by which the three image forward filter 

determines valid matches.  The general concepts involve comparing keypoints across three 

images, such as those shown in Fig 9-4.  The images are named Current, Previous, and Old.  The 

Current image represents the image most recently captured.  The Previous image was recorded in 

the previous frame while the Old image is two frames old.  

   

Previous CurrentOld

 
Figure 9-4: Three Image Example 

 

The descriptors for all keypoints in the three images are determined with the SIFT algorithm.  

The first matching function check occurs between the Old and Previous image keypoint 

descriptors.  The matching function returns a vector, OPmv , which contains all of the keypoint 

matches between the two images.  This vector has a length equal to the number of keypoints in 

the Old image where each row corresponds to an individual keypoint in the Old image.  If a 

match has occurred, the keypoint number in the Previous image is displayed in the vector, 

otherwise the element is null.  Equation (9.1) shows the first few elements of a matching vector 

for the Old and Previous photos.   

  (9.1) 
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Since the first element is zero in OPmv , no keypoint in the Previous image matches the first 

keypoint in the Old image.  Element 2, however, is nonzero.  Therefore, the second keypoint in 
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the Old image matches the 4 element in the Previous image.  This is illustrated in Fig. 9-5 where 

the keypoints are numbered.  
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Figure 9-5: Match between Keypoint in Old and Previous Images 

 

The next check involves determining if the keypoint, found in both the Old and Previous images, 

is also located in the Current photo.  Therefore, the fourth element of the Previous and Current 

image match vector, PCmv , is checked where each row in this vector corresponds to a keypoint in 

the Previous image.     

  (9.2)   
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The fourth keypoint in the Previous image does match a keypoint in the Current image, 

specifically the third keypoint.  Once again, this is shown pictorially in Fig. 9-6. 
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Figure 9-6: Match between Keypoint in Previous and Current Images 

 

One final check exists.  The original keypoint from the Old image is matched with the keypoints 

in the Current image, yielding the last matching vector, OCmv .  According to OCmv , the second 

keypoint in the Old image matches the third keypoint in the Current image.  This is the same 

keypoint in the Current image determined by the previous two matching checks.   

  (9.3) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

M

v

21
10
3
0

OCm

 

  2

  3
3)2( =OCmv

Old Current

 
Figure 9-7: Match between Keypoint in Old and Current Images 

 

All of the required matching relationships for the three image forward filter are summarized in 

Fig. 9-8.  By requiring all of the logical matching checks, shown as vectors in the figure, the 

intention is to reduce the likelihood that a falsely matched keypoint passes all the tests.     
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Figure 9-8: Match Relationships between a Keypoint in All Three Images 

 

Referring to Fig 9-3, once a keypoint has passed the requirements of the three image forward 

filter, it is checked against the current global database to determine if it is a new feature or a 

previously initialized global feature.  When the feature is not recognized within the database, it 

goes through a quick initialization procedure.  This consists of giving the feature a unique global 

number and recording the initial image number (Old image number).  The pixel coordinates of 

the feature located in the Old, Previous, and Current images are also recorded, and the feature 

size is incremented by three.  If the keypoint already contains global status and passes an 

additional logical test, then the Current image pixel coordinates for the feature are recorded and 

its size is updated by one.  The additional logical check helps identify a very rare problem, which 

is illustrated below in Fig. 9-9.   
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Previous CurrentOld

 
Figure 9-9: Rare Keypoint Matching Error 
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In this case, the fifth keypoint in the Old image passes the three image forward filter tests.  

Keypoint two also passes this test and represents the true match.  This problem usually originates 

when the keypoint descriptor for keypoints two and five are very similar.  One method to 

eliminate this problem includes operating the matching function in both a forward and reverse 

manner.  When the matching function tries to find a distinctive match for keypoint descriptor 

four in the Previous image with all of the keypoint descriptors in the Old image, two points will 

be of interest (two and five).  The matching function, however, is distinctive.  Therefore, no 

match is returned in this case since descriptors for keypoints two and five in the Old image 

generate similar matching results with the fourth keypoint descriptor in the Previous image.  

Since this problem is rare and additional matching and logical comparison increases processing 

time, another method is utilized in this extractor for identifying the problem.  This method looks 

at the size and starting image of the global feature.  If this sum of the starting image number and 

current feature size is one greater than the current image number, the feature has already been 

updated, and a possible false match has occurred.  Even if a false match occurs in this part of the 

algorithm, the global feature is updated correctly as only the pixel coordinates for the Current 

image global filter are needed.  This is not guaranteed if both keypoints two and five of the Old 

image have never been initialized.  In this case, whichever feature passes the three image 

forward filter test first has its Old image pixel coordinates stored.   

 

The extractor algorithm continues to iterate until all images are processed.  In the three image 

forward filter, the Previous image becomes the Old image, the Current image becomes the 

Previous image, and the newest picture is designated as the Current image.  Once all the data are 

generated, the features are weighted based upon their number of observations.  They are also 

weighted based upon the number of other features viewed in an image.  For instance, a feature 

that is viewed in an image with very few other features is given a higher weight than another 

feature that is viewed in images with several features.  By doing this, a computationally efficient 

set of features are used within the Feature UKF.  The results of the extractor still apply if all of 

feature data are provided to the Feature Manager, and therefore this feature weighting and 

sorting step is not shown in the block diagram.  Finally, the pertinent features are stored in the 

appropriate format required by the Feature Manager.  
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9.2 Feature Manager  
The Feature Manager is a function within the Feature UKF algorithm that is called when 

correction data are available.  This occurs before the actual prediction step, as some features are 

no longer observed and other features are ready to be estimated.  The major tasks demanded of 

the Feature Manager are given here. 

 

• Track feature status. 

• Update the mean vector and covariance matrices. 

• Initialize feature mean and covariance. 

9.2.1 Status Description 

Each feature is given a status flag.  The values that this variable accepts along with short 

description of its meaning are located in Table 9-2. 

 

Table 9-2: Status Flag Values and Descriptions 

Value Description 

0 Feature has not been observed 

1 Feature observed at least once, but not initialized 

2 Feature observed, initialized, and being estimated 

3 Feature estimated and no longer observed 

 

Every feature imported from the Feature Extractor starts with a “0” status.  Once a feature is first 

observed in an image, the status variable is updated to “1”.  Also at this time, the current position 

and orientation of the aircraft and associated covariance terms are stored along with the current 

pixel location measurements.  Before the next status level is reached, the feature must be 

initialized through one of three techniques discussed in the previous chapter.  The number of 

poses required for the initialization is variable depending upon the method used.  Once the 

initialization procedure has deemed the feature acceptable for initialization, the feature obtains 

“2” status.  This concludes with an augmentation of the Feature UKF mean vector and 

covariance matrix.  Finally, once a feature is no longer observed, pertinent mean and covariance 

information is extracted from the main filter and the final status level is awarded.   
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9.2.2 Updating Mean Estimate and Covariance Matrix 

The state estimate vector and state covariance matrix are allowed to dynamically change based 

upon current feature status.  Once a feature’s initial mean and 3x3 covariance matrix have been 

properly identified, the mean is augmented to the end of the current state vector, and the 

covariance matrix becomes the lowest block diagonal element of the augmented error covariance 

matrix.  As outline in section 6.2, the new error covariance matrix is positive semidefinite given 

the original state covariance matrix and 3x3 initial feature covariance matrix are also positive 

semidefinite.     

9.3 Results   
The data discussed in this section were collected during a flight on the 8th of November 2007.  

The flight covered a rural section of local prairie with heavily undulating terrain.  The UAV was 

manually piloted for the duration of the mission where the pilot tried to maintain a fairly constant 

altitude while navigating the aircraft over the terrain in a loop pattern oriented from the 

Southwest to the Northeast.  The experimental data were stored for nearly three minutes of this 

flight, resulting in 614 aerial images captured during GPS updates and approximately five times 

as many IMU data packets.  The features were extracted using the Feature Extraction algorithm 

discussed previously.  The 100 most viewed features were kept for use in the LC GPS/INS UKF 

and Feature UKF estimators.         

 

The basic GPS/INS UKF uses aircraft dynamic and observation equations in conjunction with 

the accelerometer/gyro and GPS position/velocity measurements to obtain aircraft state 

estimates.  The filter also requires the input and output measurement noise statistics associated 

with the aircraft equations as given in Table 7-1.  Unfortunately, the true aircraft states are 

unavailable for error calculations.  However, CCT’s GPS/INS is available for comparison.  Their 

solution incorporates the use of the industry standard EKF for state estimation, and any 

following reference to the EKF refers to CCT’s state estimates.   

 

Several plots comparing these two aircraft navigation solutions are located in Fig. 9-10 through 

Fig. 9-14.  The position plots compare the GPS sensor reading with both the UKF and EKF 

solutions where all locations are given relative to the base station.  In general, the East and North 
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distance position estimates and measurements are nearly identical.  This is expected as the 

precision dilution of precision, or satellite constellation, typically allows accurate latitude and 

longitude GPS estimates, which are weighted more significantly within the navigation solution.  

However, the accuracy of the GPS altitude estimates is less certain.  As illustrated in Fig. 9-10, 

the UKF and EKF altitude estimates vary more than the East and North position estimates.  The 

GPS measurement covariance statistics used within the GPS/INS UKF are determined from the 

high frequency GPS estimate noise.  CCT’s EKF estimator uses a larger more conservative 

covariance term, which captures the low frequency drift of GPS altitude measurements.  Thus, 

the GPS measurements carry more merit within the UKF estimator than the EKF estimator.  This 

is the reason the UKF solution conforms more closely to the GPS position measurements, 

especially with respect to altitude.  Also shown are the three Euler angle plots, which include the 

roll, pitch, and yaw of the aircraft.  In order to avoid clutter, only the first 100 seconds of the 

flight are shown.  After approximately ten seconds, all UKF angle estimates mimic the EKF 

angle estimates.  No other observation measurements are available for this comparison as in the 

position plots.     
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Figure 9-10: 3D GPS and Position Estimates 
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Figure 9-11: 2D GPS and Position Estimates Overhead View 
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Figure 9-12: Roll Angle Estimates 
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Figure 9-13: Pitch Angle Estimates 
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Figure 9-14: Yaw Angle Estimates 

 

The Feature UKF relies upon the aircraft position and orientation estimates and image 

observations to construct a terrain map of the local environment.  The depth conditioning method 

is employed for feature initialization.  Two hundred particles are used with a base lambda of 

150m and a spread of 200m.  This base lambda is determined from the mean altitude and FOV of 

the camera lens combo.  The initial mean position estimates for the features are stored when the 
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feature’s states are augmented to the filter estimate.  Upon final observation, each feature is 

removed from the estimator, and its final mean value is stored for later evaluation.  Sorting 

algorithms allow extraction of features that meet a certain criteria, such as a specific number of 

corrections.   

 

With the resources available for this research, a quantitative measure of the feature estimator 

performance was not possible.  For this reason two general comparison techniques are 

performed.  The first comparison consists of determining the validity of the feature locations as 

geo-referenced to a Google Earth satellite image.  The feature locations within the geo-

referenced images are then compared qualitatively with actual high resolution aerial photography 

images obtained during the data collection flight.  The other comparison considers only altitude 

correctness.  This comparison uses topographic data collected with Light Detection and Ranging 

(LIDAR) measurements available for the area. 

 

A geo-referenced satellite image from Google Earth fills the background of Fig 9-15 and Fig. 9-

16.  This fairly high resolution image displays distinct landmarks in the vicinity of the UAV’s 

flight path, denoted by the blue line.  All North and East distances are given relative to the 

location of the base station.  Because the ground area encompassed by the image is relatively 

small compared to the Earth’s surface, the linear axes capture image scales well within the 

accuracy of any discussions performed here.  The linear scale is found using a constant latitude 

and longitude conversion factor based on the base station location.  The blue circles in Fig. 9-15 

correspond to the initial 2D feature locations for all features that pass through the correction step 

of the filter at least 10 times.  The red circles in Fig. 9-16 denote the final mean estimate for 

these same features.  The global feature numbers for a few features are plotted slightly due East 

of their positions.  For subsequent analysis, only these numbered points are considered due to 

their ease of identification within the photos.      
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Figure 9-15: Geo-referenced Estimator Initial North and East Feature Locations 
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Feature 17 is displayed in the high resolution aerial image in Fig. 9-17.  The feature’s location in 

this image is given strictly by the value returned by the SIFT algorithm.  Two distinct landmark 

references are discernable from within the image: the cedar tree to the lower left of the feature 

and the start of a washout to the upper right of the feature.  Both the tree and the washout are 

located in the Google Earth image.  The initial feature location, obtained from Fig. 9-15, is 

obviously incorrect.  It is located too far to the North and West of the actual location.  The final 

location is more believable as shown in Fig. 9-16, where the feature is located somewhere in 

between the two distinct landmarks. 

 

17

 
Figure 9-17: Aerial Image of Feature 17 

 

Features 11, 53, and 66 are shown in another aerial image, Fig. 9-18, where the top of the image 

corresponds to generally a Southerly direction.  Both the initial feature estimates for 11 and 66, 

displayed in Fig. 9-15, appear located too far Northwest of their correct locations.  In fact, the 

initial position of feature 66 is located in the center of the road.  The initial position of feature 53 

is also located very far from its apparent location.  In general, the final estimated feature 
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locations as illustrated in Fig. 9-16 are a better match to Fig. 9-18 than the initial position 

estimates shown in Fig. 9-15. 
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Figure 9-18: Aerial Image of Features 11, 53, and 66 

 

This same trend is noticeable when analyzing features 13 and 14, as observed in Fig. 9-19.  This 

picture is also oriented such that the top of the image is further South than the bottom.  Initially, 

the features are not even located on this road, as evident in Fig. 9-15.  However, the final 

locations as referenced in Fig. 9.16 are more highly correlated with Fig. 9.19. 
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Figure 9-19: Aerial Image of Features 13 and 14 

 

Overall, qualitative analysis of several other features in the same manner as presented here 

confirms that the Feature UKF does estimate feature location in the North and East directions to 

within a few meters of that predicted by the Google Earth images.  The GPS estimates of latitude 

and longitude provide fairly precise knowledge of the aircraft’s location relative to the base 

station.  Even with a fairly small FOV camera, this allows the general 2D position of the feature 

to be determined.  Depth reconstruction, however, is more difficult to determine. 

 

The 3D perspectives of Fig. 9-15 and Fig. 9-16 are given by Fig. 9-20 and Fig.9-22, respectively.  

However, depth is still difficult to acquire from these figures.  For this reason, 2D plots of the 

feature altitude and East distance relative to the base station are shown for the initial, Fig. 9-21, 

and final, Fig. 9-23, feature positions.  As is readily determinable from the figures, the initial 

spread of altitude feature locations is very sizeable.  Some of the features are initialized 40m 

above the base station altitude.  Knowing that the base station is located along the top of a ridge, 

these features are obviously initialized far above their actual altitude.  In fact, the variation in 

elevation of all of the roads in the high resolution images is well within a couple of meters, and 

103 



104 

the base station antenna is approximately two meters above the road.  Correspondingly all the 

features discussed, except 17, should be very near zero meters in altitude.  Although the final 

altitudes for the features discussed show more variation than this, they are obviously greatly 

improved.  Furthermore, the final feature altitude locations do not exhibit the same magnitude of 

spread that is systematic in the initial altitude plots.  The rough shape of the gully is even crudely 

approximated by this graph.  The change in the initial and final altitude estimates for feature 53 

is also of interest.  The initial altitude estimate is vastly different from those of features 11 and 

66.  However, knowledge of the local terrain and consultation of Fig. 9-18 confirm that features 

11, 53, and 66 should have nearly constant elevation values.  The final feature altitude estimates 

agree with this statement as shown in Fig. 9-23.   



 
Figure 9-20: Geo-referenced Initial 3D Feature Locations 
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Figure 9-21: Geo-referenced Initial East and Altitude Feature Locations 
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Figure 9-22: Geo-referenced Final 3D Feature Locations 
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Figure 9-23: Geo-referenced Final East and Altitude Feature Locations 
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While the final feature locations appear more accurate than the initial locations, they still contain 

significant altitude errors.  A somewhat more quantitative analysis can be performed using 

comparisons with LIDAR terrain data.  The terrain data consists of several points, described in 

terms of the universal transverse mercator (UTM) coordinate system.  The final feature latitude 

and longitude coordinates, which are believed to contain relatively small errors, are readily 

converted into the UTM coordinate system.  The UTM feature locations and LIDAR terrain data 

points are plotted in Fig. 9-24 and Fig. 9-25.  Both figures are rendered from the same 

perspective as given in Fig. 9-22 and Fig. 9-23, respectively.  In general, the spread of the feature 

altitude values is very large.  This reflects the higher uncertainty associated with the GPS altitude 

estimates and the inability of the image measurements to provide scale.    

 

An average altitude error is determined for each feature as follows.  The four closest surrounding 

LIDAR data points to each feature based solely upon the North and East UTM coordinates are 

located.  The average altitude of these four closest LIDAR data points are then calculated and 

used as the “true” altitude for that feature.  The average absolute value of the error between the 

averaged LIDAR altitude and the estimated feature altitude is shown in Fig. 9-26.  This error is 

calculated for several different feature update values.  The feature update values refer to the 

minimum number of times a feature is updated (i.e. passed through the correction step of the 

Feature UKF).  If the feature update number is less than a certain value, then its error is not 

considered.  The goal of this test is to determine how strong of a correlation exists between 

altitude error and the number of updates.  As the number of corrections increases, the average 

altitude error per feature decreases as expected.  Unfortunately, the number of features corrected 

decreases as the correction number increases.  For the creation of accurate terrain models with 

minimal salient points, valid features viewed in several images provide the best map.                  



 

 
Figure 9-24: 3D LIDAR Data Points and Final Feature Positions 
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Figure 9-25: LIDAR Data Points and Final East and Altitude Feature Locations 
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Figure 9-26: Average Altitude Error as a Function of the Number of Correction Updates 
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Chapter 10: Conclusion and Recommendations 

• A novel method has been presented for the tracking of ground targets observed from 

camera images taken from a moving platform.  The observability issues caused by using 

a monocular camera are addressed by using loosely coupled SLAM and target state 

estimators and by utilizing the UT to obtain measurement mean and covariance data for 

the target position as a function of the SLAM states.  These issues are also addressed in 

the same manner by a loosely coupled navigation filter, feature filter, and target filter.  

Simulation results confirmed that the target states are observable provided the local 

terrain can be accurately estimated. 

• Analysis of experimental data illustrated that loosely coupled aircraft and feature state 

estimators are capable of accurately determining the latitude and longitude of local terrain 

features extracted from aerial images.  However, the altitude components were more 

difficult to estimate, emphasizing the need to observe features in several frames with 

good triangulation characteristics.     

• Further research should investigate the use of a gimbaled camera mounted UAV vision 

system, including possible estimator observability implications.  This would allow 

features to be viewed in several successive frames.  Also, practical implementation of the 

target tracking estimators would require a gimbaled camera due to the generally large 

discrepancy in UAV and ground target velocities. 

• Another method to increase the number of feature observations involves increasing the 

FOV of the camera lens setup.  A larger FOV should provide better triangulations, and 

hence better altitude estimates. 

• A total of three initialization techniques were implemented in simulation.  Research 

confirmed that initialization of feature states from current estimated aircraft states can be 

detrimental to filter convergence, and thus a loosely coupled filter was used for 

experimental data analysis.  Innovative techniques should be explored for the 

initialization of features in a manner that is compatible with the SLAM methodology.   

• The IMU sensors and GPS module located on the Piccolo II avionics unit are relatively 

inexpensive and noisy sensors wrought with biases.  Including bias states within the 
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GPS/INS aircraft filter may improve overall filter performance.  The GPS estimates may 

also be improved by utilizing differential corrections from the base station GPS module.     

• The Feature Extractor used a three image forward filtering technique to decrease the 

likelihood of false matches.  If false matches become a problem, the filter could readily 

be modified at the expense of additional computational complexity to require additional 

matching logic.     

• The theoretical target tracking estimator developed and evaluated in simulation should be 

tested with experimental data, provided the feature altitude estimates can be improved. 
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Appendix A – Quaternion Background Information 

This appendix provides quaternion background information.  The material presented is obtained 

from [6].  The reference defines a basic unit quaternion vector as 

[ ]Tqqqqq 3210=
r  

where 
)2/cos(0 θ=q  

and 

[ ] uqqq T v)2/sin(321 θ= . 

uv  describes a unit vector in space which is rotated about by a magnitude  to give the new 

reference frame orientation.  
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Euler Angle to Quaternion Conversion 
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Appendix B – Kalman Filter Algorithm 

The following pseudo code is a compact version of the KF algorithm for a linear time invariant 

system [15].   
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Appendix C – Extended Kalman Filter Algorithm 

The following pseudo code is a compact version of the EKF algorithm for a nonlinear system 

[15].  
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