
THREE SET INEQUALITIES IN INTEGER PROGRAMMING

by

MICHAEL JOHN MCADOO

B.S., Kansas State University, 2005

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2007

Approved by:

Major Professor

Dr. Todd Easton

Abstract

Integer programming is a useful tool for modeling and optimizing real world problems.

Unfortunately, the time required to solve integer programs is exponential, so real world

problems often cannot be solved. The knapsack problem is a form of integer programming

that has only one constraint and can be used to strengthen cutting planes for general integer

programs. These facts make finding new classes of facet-defining inequalities for the knapsack

problem an extremely important area of research.

This thesis introduces three set inequalities (TSI) and an algorithm for finding them.

Theoretical results show that these inequalities will be of dimension at least 2, and can be

facet defining for the knapsack problem under certain conditions. Another interesting aspect

of these inequalities is that TSIs are some of the first facet-defining inequalities for knapsack

problems that are not based on covers. Furthermore, the algorithm can be extended to

generate multiple inequalities by implementing an enumerative branching tree.

A small computational study is provided to demonstrate the effectiveness of three set

inequalities. The study compares running times of solving integer programs with and without

three set inequalities, and is inconclusive.

Table of Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Complexities of Integer Programs . 2

1.2 Motivation . 5

1.3 Contribution . 5

1.4 Outline . 6

2 Background Information 7

2.1 Polyhedral Theory . 8

2.1.1 Knapsack Polyhedra . 14

2.1.2 Cover Inequalities . 17

2.1.3 Lifting . 19

3 Three Set Inequalities 28

3.1 Extensions and Issues of TSIA . 37

3.2 Theoretical Results . 44

iii

4 Computational Results 51

5 Conclusions 56

5.1 Extensions and Future Research . 56

Bibliography 58

iv

List of Figures

2.1 Graph of the IP and Linear Relaxation from Example 2.1 11

2.2 Graph of the Convex Hull from Example 2.1 12

2.3 Graph of a Valid Inequality for the IP from Example 2.1 13

2.4 Graph of a Face of the IP from Example 2.1 14

2.5 Graph of a Facet-defining Inequality of the IP from Example 2.1 15

2.6 Matrix of Affinely Independent Points from Example 2.5 23

3.1 Matrix of Affinely Independent Points for TSIIJK
0.1875,0.125,0.0625 37

3.2 Example of a Tetrahedron Created by Four Points 38

3.3 Branching Path for Example 3.1 . 40

3.4 Cycling Branching Path for Example 3.1 . 43

3.5 Matrix of Affinely Independent Points from Example 3.1 50

v

List of Tables

2.1 Values and Weights of Items in Example 2.3 17

3.1 Iteration Summary for Example 3.1 . 36

4.1 Initial Points and α Values . 53

4.2 Comparison of Run Times with and without TSI Inequalities 54

4.3 Comparison of Node Tree Sizes with and without TSI Inequalities 54

4.4 TSI Preprocessing Times . 55

vi

Chapter 1 - Introduction

Integer programming (IP) is an important class of mathematical programming problems

used to optimize linear systems that require the variables to be integer. This thesis presents

a new class of inequalities, called three set inequalities (TSIs) that can be used as a tool to

help solve IPs. Both theoretical and computational results relating to TSIs are presented.

In recent years, integer programs have been applied to numerous applications. IPs are

beneficial because, if one can solve them, then one is guaranteed to obtain the best solution.

However, this guarantee of optimality has a computational tradeoff, and integer programs

currently may require exponential time to solve. The computational problems are so extreme

that many IPs cannot be solved, even using supercomputers.

One example of the usefulness of IPs optimized the scheduling and deployment of San

Francisco Police Department patrol officers [18, 28]. The criteria used in this study were

the level of public safety, level of officer morale, and cost of operations. The computerized

system that was developed used a mathematical model to incorporate each of these goals

and increased SFPD’s net income by 14 million dollars and decreased response times by 20

percent.

In addition to the above application, integer programs have been used to solve a number

of real-world problems, including airline scheduling [16, 18, 20], sports scheduling [10, 18,

20], construction site selection [18, 20, 23], manufacturing job scheduling [18, 23, 29], and

1

telephone network optimizations [16, 20, 23]. The number of uses these programs have is

the reason that finding better ways to solve them is so important.

The specific form of integer programs that this thesis focuses on is the knapsack problem

(KP). The knapsack problem seeks to optimize a set of yes/no decisions subject to a single

non-negative constraint. A classic example of this problem is a camper going backpacking.

He wishes to bring the best combination of equipment he can. Each piece of equipment

(tent, food, water, fire supplies, etc.) has a value to the camper that is assigned a numerical

representation. Each piece of equipment also has a corresponding weight. The camper can

only bring as much equipment as he can carry.

Knapsack problems are widely used in financial decision making. Two examples of these

applications are resource allocation [13, 23] and portfolio management [6, 24, 27]. In resource

allocation, a company wishes to maximize its return from resources invested into each division

or product subject to the total resources available. In portfolio management, the goal is to

maximize return while minimizing risk.

The knapsack problem is widely studied because of its importance to integer programs.

Any single constraint of a binary integer program can be viewed as a knapsack constraint.

Therefore, advancements to KPs can frequently be applied to any general integer program.

1.1 Complexities of Integer Programs

Formally, an integer programs is defined as

2

Maximize cT x

Subject to: Ax ≤ b

x ≥ 0 and integer

where A ∈ Rn, x ∈ Rn, b ∈ R1×m.

The only difference between this form and the common form of linear programs is the

integer restriction. The problem with IPs is the time and resources needed to solve such

a problem. Integer programs are NP-complete [21], meaning that all known algorithms

require exponential time. Although many small IPs can be solved quickly, more complex IPs

can take extraordinary amounts of time to solve and frequently use the entire memory of a

computer without obtaining an optimal or even a feasible solution.

Because solving IPs is difficult but beneficial, considerable effort has been made to develop

methods that can decrease solution times for IPs. The two most common algorithms use a

linear relaxation. Linear relaxation is the solution to the IP without the integer constraint.

Linear programming can solve much faster than an IP, so the IP is reformulated as a linear

program. The optimal value in the linear program (called the linear relaxation point) is

found using any of the methods available to solve LPs. Once the linear relaxation point is

found, either branch and bound or cutting planes can be used to find the solution to the IP.

Branch and bound uses the linear relaxation as a starting point to search for the optimal

integer solution. Every linear relaxation solution that is found during the branch and bound

process is given a corresponding node on the branching tree. Once a node’s relaxation point

3

has been found, any variable with a fractional value may be chosen as the branching variable.

Two child nodes with corresponding branches are created from this parent node. One branch

requires the branching variable to be greater than or equal to its relaxation value rounded

up to the nearest integer. The other branch requires the branching variable to be less than

or equal to the relaxation solution rounded down to the nearest integer. Using these values,

two new relaxation points are found and two more nodes are created in the tree. The process

is repeated until all nodes have been fathomed.

A fathomed node is finished, and no more nodes or branches are created below any

fathomed nodes. Fathoming a node in a branch and bound algorithm occurs under three

circumstances. If a node is found that can not produce a feasible solution to the linear

relaxation, then that node is fathomed. If a node is found that returns an integer solution,

then the node is fathomed. Although other feasible solutions may exist below that node,

none will be better than that node’s solution. This property is applied to produce the third

fathoming condition. If a node has a linear relaxation solution with a value lower than the

value of a previously discovered integer solution, then that node is fathomed.

An alternative to the branch and bound method is to use cutting planes to reduce the

linear relaxation space. This method attempts to find a hyperplane that intersects the

solution space below the current linear relaxation point without eliminating any integer

solutions. Once such a hyperplane has been put in place, a new linear relaxation point is

found and branch and bound can be implemented or additional cutting planes can be added

until an integer solution is returned as the solution to the LP.

4

Some cutting planes are more useful than others. Facet-defining cutting planes are the

most useful cutting planes. If all facet-defining cutting planes are included as constraints for

an IP, then the solution to the linear relaxation is guaranteed to also be the solution to the

IP.

1.2 Motivation

The goal of this research was to develop a method for finding a set of facet-defining cutting

planes not based on cover inequalities. These inequalities could then be used to help solve

integer programs. This research also sought to use a method that could be developed into

an interior method for solving integer programming, an approach that has not been explored

much at this point.

1.3 Contribution

This research developed a new class of valid inequalities for the knapsack problem called

three set inequalities. These inequalities can be facet defining under certain conditions, and

are among the first non-cover facet-defining inequalities for the knapsack problem. A method

for finding these inequalities, called the three set inequality algorithm, is also provided along

with relevant examples. This method is extended to a branching tree that can find numerous

such inequalities. A small computational study is performed and reveals some benefits and

issues associated with this algorithm.

5

1.4 Outline

Chapter 2 provides necessary background information on integer programming, polyhedral

theory and facet-defining inequalities. This chapter also explains lifting and cover inequalities

and the theory related to these areas of research. Some of the reasons for the exponential

time required to run an IP and current theories on reducing that time will also be explored.

Finally, cutting planes and the knapsack problem will be discussed.

In Chapter 3 three set inequalities will be introduced and explained. Included in this

chapter will be a formal definition of these inequalities and an algorithm that finds these

inequalities. Some extensions and issues of this algorithm along with the theoretical proofs

are also presented.

Chapter 4 will provide a computational study of three set inequalities applied to knapsack

instances. This chapter will compare running times and number of nodes evaluated using

three set inequalities against standard integer programming techniques.

Chapter 5 will conclude this thesis with additional comments on three set inequalities.

Some exciting areas of future research are also discussed along with possible ideas to pursue

these important problems.

6

Chapter 2 - Background Information

In order to understand the value of three set inequalities, it is necessary to have a good

understanding of some of the background polyhedral theory for both general IPs and specif-

ically for knapsack polyhedra.

As stated above, an integer program can be formally stated as:

Maximize cT x

Subject to: Ax ≤ b

x ≥ 0 and integer

where A ∈ Rn×m, x ∈ Zn, b ∈ R1×m.

Every IP has a corresponding linear relaxation. The linear relaxation is used as part of

various methods to solve IPs, and is defined as:

Maximize cT x

Subject to: Ax ≤ b

x ≥ 0

where A ∈ Rn, x ∈ Rn, b ∈ R1×m.

Solving IPs can be difficult and time consuming. A great deal of research has been

performed to improve the solving times and ease of IPs. One of the major areas this research

7

has been done in is polyhedral theory.

2.1 Polyhedral Theory

Polyhedral theory is an important body of knowledge that helps describe and develop so-

lutions to both linear and integer programs. The feasible region of any linear program can

be represented as a polyhedron, and it is this polyhedron that polyhedral theory seeks to

describe.

First, a set, T ⊆ Rn, is convex if and only if λx1 + (1− λ)x2 ∈ T for every λ ∈ [0, 1] and

every point x1 and x2 ∈ T . Another way of stating this is that the line between any two

points contained in T is entirely contained in T . Similarly, if S ⊆ Rn, then the convex hull,

conv(S), is defined as the intersection of all convex sets that contain S.

A halfspace is the set of points that satisfy a linear inequality, {x ∈ Rn : aT x ≤ b}.

A polyhedron is a finite intersection of halfspaces. Clearly, a polyhedron is a convex set.

Furthermore, the solution space of a linear program is also a polyhedron. A polytope is

defined as a bounded polyhedron.

Given an integer program, Max cTx, subject to Ax ≤ b, x ≥ 0 and integer, let P be the

set of feasible solutions. Thus, P = {x ∈ Zn : Ax ≤ b, x ≥ 0}. The goal of polyhedral theory

in integer programming is to completely describe conv(P), which is now referred to as P ch.

The fact that P ch is a polyhedron is vital to IP research.

Two types of polyhedron points are critical to this research. Let x′ ∈ P ch, then x′

8

is an extreme points if and only if there does not exist x1, x2 ∈ P ch, x1 6= x2, such that

x′ = 0.5x1 + 0.5x2. Any point that is not an extreme point is called an inner point. See

[23] for a more complete discussion on these topics. Observe that the extreme points of P ch

are always integer and that an optimal solution to any LP will always occur at an extreme

point.

To describe P ch, a knowledge of the dimension of a set of points is also critical. It is

important to determine the dimension so that we can know what spaces are critical in P ch.

Affine independence can be used to determine the dimension of a space.

The points x1, ..., xq ∈ Rn are affinely independent if and only if the unique solution

to
∑q

i=1 λix
i = 0 and

∑q
i=1 λi = 0 is λi = 0 for i = 1, ..., q. The dimension of a space

is equal to the maximum number of affinely independent points minus one. The problem

with determining a polyhedron’s dimension by the maximum number of affinely independent

pointsis that it may be challenging to know whether or not the maximum is obtained.

Two theorems are very important to this area of polyhedral theory. The first relates the

dimension of a space to its rank, which is defined as the number of linearly independent

vectors that can be found. The second theorem relates the dimension of a face to a space

and is given further on in the thesis.

Theorem 2.1 If P ch ⊆ Rn, then dim(P ch)+rank(A′=, b′=) = n where A′= and b′= are the

constraints that are met at equality by every x ∈ P ch.

Proof: [23]. If a polyhedron has dimension equal to n, then it is considered to be full-

9

dimensional. In the case that the polyhedron is the empty set (∅), the dimension is defined

to be -1.

An inequality αT x ≤ β is a valid inequality for P ch if and only if the inequality is

satisfied by every point in P . That is, the inequality cannot eliminate a feasible point. A

valid inequality is also called a cut or cutting plane.

Each cut or cutting plane, αT x ≤ β, induces a face of P ch and the face takes the form

{x ∈ P ch : αTx = β}. A face is proper if it is not P ch or ∅. A valid inequality that does not

define a proper face of P ch is redundant and can be removed.

A facet-defining inequality is an inequality that defines a face of dimension one less than

the dimension of P ch. Facets are important because of the role they can play in solving

IPs. If a facet is found, the portion of space in the linear relaxation above the facet will be

completely cut off, and any other inequalities used to describe that face will be dominated

by the facet. If all facets are found, an optimal solution to the linear relaxation is guaranteed

to be an integer point and thus it will also be the optimal solution to the IP.

The following theorem is frequently used to prove that an inequality defines a facet.

Theorem 2.2 Let αT x ≤ β be a valid in equality of P ch. Then if there exists an x′ ∈ P ch

such that αT x′ < β, then the dimenstion of the face induced by αtx ≤ β is at most dim(P ch)-

1.

Proof: [17].

Given the theory explored so far, it is useful to look at a two dimensional example. The

10

following example shows the basics of polyhedral theory.

Example 2.1

Maximize 4x1 + 3x2

Subject to: x1 + 2x2 ≤ 7

3x1 + x2 ≤ 10

x1, x2 ≥ 0

xi ∈ Z1

This problem is modeled graphically in Figure 2.1. An examination of the graph makes

it obvious that the problem is indeed 2-dimensional (as there are only two variables). The

integer points within the polyhedron are shown by the solid circles. The optimal solution to

the linear relaxation is shown by the empty circles. The lines represent the constraints.

1

2

3

4

5

1 2 3 4 5

HHHHHHHHHHHHHHHH

x1 + 2x2 ≤ 7

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B
B

3x1 + x2 ≤ 10

xlr∗
1 = 2.6 xlr∗

2 = 2.2

u

u

u

u

u

u

u

u

u

u

u

u

u

e

Figure 2.1: Graph of the IP and Linear Relaxation from Example 2.1

The convex hull of this polyhedron is the space defined by all of the facets. Figure 2 shows

11

a graphical representation of P ch. As in the IP graph, it is clear that P ch is 2-dimensional

and so is also full-dimensional.

1

2

3

4

5

1 2 3 4 5

@
@

@
@

@
@

u

u

u

u

u

u

u

u

u

u

u

u

u

Figure 2.2: Graph of the Convex Hull from Example 2.1

A valid inequality for this polyhedron exists at x2 ≤ 4. However, as Figure 3 clearly

shows, this does not cut off any space from the linear relaxation, and so is not a cutting

plane.

Figure 4 shows the inequality x2 − x1 ≤ 3, which does cut off a portion of the linear

relaxation without cutting off any integer points. In fact, this cut intersects a feasible

integer point, so it is a face of this polyhedron. However, because it only intersects one

feasible integer point, its dimension is too low for it to be a facet.

A facet of this polyhedron can be found by using the valid inequality x2 ≤ 3. This face

intersects two affinely independent integer points, which is the most possible for a cutting

plane in a two dimensional problem. This fact can be seen in Figure 5. A formal proof that

12

1

2

3

4

5

1 2 3 4 5

HHHHHHHHHHHHHHHH

x1 + 2x2 ≤ 7

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B
B

x2 ≤ 4

3x1 + x2 ≤ 10

xlr∗
1 = 2.6 xlr∗

2 = 2.2

u

u

u

u

u

u

u

u

u

u

u

u

u

e

Figure 2.3: Graph of a Valid Inequality for the IP from Example 2.1

this cut is facet-defining is shown below:

1. As stated above, dim(P ch) = 2.

2. As seen in Figure 5, clearly no integer points are cut off, so the cut x2 ≤ 3 is a valid

inequality

3. There are two points, (3, 0) and (0, 3) that meet this constraint at equality, and they

are clearly affinely independent. So, dim(F) ≥dim(P ch) − 1 = 1. Because there is a feasible

point that does not meet the constraint at equality at (0, 0), dim(F) ≤dim(P ch) − 1 = 1.

So, dim(F) = 1, and x2 ≤ 3 is a facet-defining inequality.

13

1

2

3

4

5

1 2 3 4 5

HHHHHHHHHHHHHHHH

x1 + 2x2 ≤ 7

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B
B

�
�

�
�

�
��x2 − x1 ≤ 3

3x1 + x2 ≤ 10

xlr∗
1 = 2.6 xlr∗

2 = 2.2

u

u

u

u

u

u

u

u

u

u

u

u

u

e

Figure 2.4: Graph of a Face of the IP from Example 2.1

2.1.1 Knapsack Polyhedra

The knapsack problem is a specific type of integer program to which the above polyhedral

theory can be applied. The knapsack formulation is the same as a basic IP with only one

constraint and binary variables. Without loss of generality, the knapsack problem can be

assumed to be sorted in the form a1 ≥ a2 ≥ ... ≥ ai and
∑

ai ≥ b.

Formally, a knapsack problem is defined as

Maximize cT x

Subject to: aT x ≤ b

x ∈ {0, 1}N

Because the knapsack problem is formulated for sets of solutions containing only ones

and zeroes, it is ideally suited to model decision systems. One of these types of problems

is the capital budgeting problem, in which a decision maker wishes to maximize profit from

14

1

2

3

4

5

1 2 3 4 5

HHHHHHHHHHHHHHHH

x1 + 2x2 ≤ 7

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B
B

x2 ≤ 3 3x1 + x2 ≤ 10

xlr∗
1 = 2.6 xlr∗

2 = 2.2

u

u

u

u

u

u

u

u

u

u

u

u

u

e

Figure 2.5: Graph of a Facet-defining Inequality of the IP from Example 2.1

choosing how much to budget to a set of projects or divisions [7].

Any other integer program constraint with binary variables can also easily be reformatted

into a KP constraint. This is useful because it can help develop facets for the IP by finding

facet-defining inequalities for the KP. The application of the knapsack problem to other IPs

is important because KPs are relatively easy to solve and can provide facets quickly.

The requirements for a knapsack constraint are that it must be a ≤ constraint and that

it must have only positive values for its coefficients and right hand side. Reformatting a

constraint from ≥ to ≤ is easy, as both sides are simply multiplied by -1. Reformatting a

constraint from = to ≤ is a little more complicated, as two separate constraints have to be

made: one ≥ and one ≤. The ≥ constraint then must be reformatted as already discussed,

and two KPs must be solved separately. To reformat negative coefficients, let xi be a variable

with a negative coefficient. Let xi = 1 − x′
i, and substitute x′

i into the inequality. This will

15

give a positive coefficient for x′
i, and the KP can be solved. To show how an IP might be

reformulated as a KP, see the following example.

Example 2.2 Assume a general integer program needs to be solved. One of its constraints

is −12x1−3x2 +9x3 = 6. To speed up solving time, it is recommended that the IP be solved

with only the equality constraint as a knapsack problem.

To solve this, it will be necessary to break the constraint into two constraints: −12x1 −

3x2 +9x3 ≤ 6 and −12x1 − 3x2 +9x3 ≥ 6. Because the principles used in solving the second

constraint can also be used on the first, this example will only look at formulating the second

constraint. First, the constraint needs to be a ≤ constraint. By multiplying both sides by

-1, the constraint becomes 12x1 + 3x2 − 9x3 ≤ −6. All of the coefficients also need to be

positive. To achieve positive values, let x3 = 1 − x
′

3. Substituting this equation into the

inequality and adding 9 to both sides yields the new inequality 12x1 + 3x2 + 9x
′

3 ≤ 3. This

inequality is a valid knapsack constraint, and the IP can be solved as a knapsack.

An example of a knapsack problem can be seen below.

Example 2.3 Two hikers are preparing to go on a hiking trip. They will carry all of their

supplies in two knapsacks. They have assigned relative values to the fifteen items they have

to choose from and have also found the weight in pounds (lbs) of each of the items. They

know they can only carry a combined 114 lbs. Table 1 shows the values and weights of the

fifteen items. An integer programming representation of this problem can be seen below.

16

Table 2.1: Values and Weights of Items in Example 2.3

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value 75 36 12 34 54 23 19 34 89 49 43 21 30 67 50

Weight 21 21 20 15 14 13 13 13 8 8 8 8 7 7 7

Max 75x1 + 36x2 + 12x3 + 34x4 + 54x5 + 23x6 + 19x7 + 34x8 + 89x9+

49x10 + 43x11 + 21x12 + 30x13 + 67x14 + 50x15

s.t. 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8+

8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

0 ≤ x ≤ 1 and integer.

This example will be used for examples throughout the rest of this thesis.

2.1.2 Cover Inequalities

One of the most important types of cuts used in integer programming are cover cuts. Cover

inequalities describe these cuts, and are useful because they frequently describe facets in an

integer program and also can be found quickly.

A cover in a knapsack problem is a set of indices that takes the form C ⊂ N such that

∑
i∈C ai ≥ b. Clearly, the structure of this inequality dictates that at least one variable in

the equality will have to be omitted in any valid solution, so the number of variables that

17

will be included in the solution can be at most |C|-1. Therefore, all covers induce a valid

inequality of the form
∑

x∈C xi ≤ |C| − 1 and are called cover cuts.

The most important covers are called minimal covers. Formally, a cover C is a minimal

cover if and only if
∑

i∈C\{j} ai ≤ b ∀ j ∈ C . In other words, a cover is minimal if and only if

C \{j} is not a cover for all j ∈ C . In the knapsack example given above, the set of variables

{1, 2, 3, 4, 5, 6, 7} is a minimal cover, as any combination of six of these seven variables can

be taken without violating feasibility.

An extended cover, E(C), can be obtained from a cover by adding variables with higher

constraint coefficients into the original cover. Formally, E(C) = C∪J , where J = {j1, j2, ..., jq},

and j1 < j2 < ... < jq < i1. The set of variables in the extended cover is {j1, ..., jq, i1, ..., ip}

and the inequality will be valid and take the form
∑

i∈E(C) xi ≤ |C| − 1.

Example 2.4 For example, take the minimal cover {2,3,4,5,6,7,8,10} from the KP given in

Example 2.3. Clearly this is a minimal cover, as any combination of seven variables in the

cover can be taken without violating 21x2+20x3+15x4+14x5+13x6+13x7+13x8+8x10 ≤ 114,

and this cover yields the cover inequality x2+x3+x4+x5+x6+x7+x8+x10 ≤ 8. Because x1

is the only variable with a higher coefficient than all of the other coefficients in the original

cover, adding {1} yields the extended cover {1,2,3,4,5,6,7,8,10}. So, the extended cover

inequality is x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 ≤ 8.

Extended cover inequalities are useful because they frequently yield facet-defining in-

equalities. Given a knapsack instance with a minimal cover C , an extended cover inequality

18

is facet-defining if it meets one of the following conditions[22, 23]:

1. C = N , where N is the set of variables i = 1, 2, ..., n

2. E(C) = N and (1) a1 +
∑

i∈C\{i1,i2} ai ≤ b

3. C = E(C) and (2) ap +
∑

i∈C\{i1} ai ≤ b, where p = min{i ∈ N \ E(C)}

4. C ⊂ E(C) ⊂ N and (1) and (2).

In the minimal cover from Example 2.3, it can be shown that the cover inequality x1 +

x2 + x3 + x4 + x5 + x6 + x7 ≤ 6 is a facet-defining inequality by condition 3 above. Clearly,

the cover above is also the extended cover. The minimum index p is {8} in this case, and

a8 = 13. So, a8 +
∑

i∈C\{i1} ai = 108, which is less than 114. Thus, this extended cover

inequality is facet defining.

2.1.3 Lifting

Lifting was introduced by Gomory [12] in 1969. Lifting seeks to improve the coefficients of

a valid constraint in an integer program. In other words, given a valid inequality, a lifting

process is applied to make the constraint stronger, cutting off more linear relaxation space

and may eventually lead to a facet-defining inequality.

The basic idea behind lifting is to have an inequality that is valid on some small space

and to increase the strength of the inequality by increasing the dimension of the underlying

polytope. So, define the S restricted space of P to be PS = {x ∈ P : xi = 0 ∀ i ∈ N \ S}

and let P ch
S = conv(PS).

19

There are a number of lifting techniques in common use, including uplifting [1, 2], down-

lifting [5, 16, 30], sequential lifting [1, 2, 16], simultaneous lifting [11, 16], and approximate

lifting. The lifting techniques that relate directly to three set inequalities are sequential

uplifting and simultaneous uplifting techniques, which are explained below.

Sequential uplifting is a widely used lifting process. Let
∑n

i=2 αixi ≤ β be a valid in-

equality over P ch
{2,3,...,n}. Sequentially uplifting x1 into this inequality seeks to yield a valid

inequality of the form α1x1 +
∑n

i=2 αixi ≤ β. Solving the following optimization problem

helps to determine valid values for α1.

Maximize
∑n

i=2 αixi

Subject to: Ax ≤ b

x1 = 1

0 ≤ xi ≤ 1 and integer.

Let Z∗ be the optimal value to this integer program. Then α1x1 +
∑n

i=2 αixi ≤ β is a

valid inequality as long as α1 ≤ β − Z∗.

Exact sequential lifting seeks to obtain an α1 value that is as large as possible where

α1 = β−Z∗, while approximate sequential lifting will sacrifice some strength in the inequality

α1 ≤ β − Z∗ in order to avoid solving the above IP.

Numerous individuals have provided fundamentally important results in sequential lifting.

Wolsey [30] presented the first method to exactly sequentially lift general integer variables,

which requires the solution to many IPs. Recently, Gutierrez [16] improved upon this result

20

and general integer variables can now be sequentially lifted with a single IP.

Due to the importance of the knapsack polyhedron, numerous individuals have provided

results on sequential lifting over this polyhedron. In particular, Balas provided both upper

and lower bounds on lifting coefficients (Thus this can be considered an approximate sequen-

tial lifting technique). Other results by Balas and Zemel and Zemel [1, 2] go on to provide

additional results. More recently some work has been done on sequentially lifting over mixed

integer programs [4, 15, 25, 14].

One of the biggest advantages of sequential lifting is that if
∑n

i=2 αixi ≤ β defines a face

of dimension r in P ch
{2,3,...,n}, then α1x1 +

∑n
i=2 αixi ≤ β defines a face of dimension at least

r+1 in P ch as long as α1 = β−Z∗, which is the theoretical advantage of exact simultaneous

lifting.

Sequential lifting is frequently used on cover inequalities. The reason for this is that if

you start with a minimal cover, it is possible to lift in all of the other variables and find a

facet-defining inequality over the entire space. This is because a minimal cover inequality is

facet defining over P ch
C .

Example 2.5 For an example of sequential lifting, let us return to Example 2.3 and observe

that C = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} is a minimal cover. Lifting x1 into this cover

inequality, which is x4 +x5 +x6 +x7 +x8 +x9 +x10 +x11 +x12 +x13 +x14 +x15 ≤ 11, begins

by solving.

21

Maximize x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15

Subject to: 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8

+8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

x1 = 1

0 ≤ xi ≤ 1 and integer.

In this optimization, Z∗ = 10. Therefore, α1 ≤ β−Z∗ = 11−10 = 1. So the sequentially

uplifted inequality is now x1+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15 ≤ 11.

Suppose that x2 is the next variable lifted. So the following IP is solved.

Maximize x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15

Subject to: 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8

+8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

x2 = 1

0 ≤ xi ≤ 1 and integer.

Again, we get Z∗ = 10. As before, α8 ≤ β−Z∗ = 11−10 = 1, and the uplifted inequality

is now x1 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≤ 11. This

algorithm can be repeated for x3. The same result is achieved, and the final sequentially

uplifted inequality is x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15 ≤ 11.

The above inequality will be facet defining over P ch. This can be easily seen by observing

that it is an extended cover and meets the criteria set above. Figure 6 also shows a set of

22

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 2.6: Matrix of Affinely Independent Points from Example 2.5

affinely independent points that prove it is facet defining. Each of these points is represented

as a column of the matrix, and this notation will be used throughout the remainder of this

thesis.

It is also notable the effect lifting has on dimension of the constraint. The minimal cover

inequality shows that by cyclically permuting which of the 12 variables is not taken, 12

affinely independent points can be found, from which it can be concluded that dim(F) ≥ 11.

With each variable lifted in, the dimension of the constraint is increased by at least one by

the point that finds z∗. As a result, the final dim(F) ≥ 14.

It should be noted that the order in which a set of points is lifted into an inequality is

important. Different orders may yield different inequalities, though all such inequalities are

still valid and facet defining. Furthermore, the average coefficient values of these inequalities

23

will also yield a valid inequality. Simultaneous lifting is a method developed to attempt to

improve upon this average of sequentially lifted inequalities.

While sequential uplifting lifts one variable at a time into an inequality, simultaneous

uplifting seeks to create a new inequality by lifting in several variables at once. Similar to

sequential lifting, simultaneous lifting takes a valid inequality as input. Let S ⊂ N and

∑
i∈S αixi ≤ β be a valid inequality of P ch

S . Now let F ⊂ N \ S be the set of variables being

simultaneously lifted into this inequality. A simultaneously lifted inequality could take the

form α
∑

i∈F wixi+
∑

i∈S αixi ≤ β where wi is called the scaling coefficient for the ith variable.

As in the case of sequential lifting, simultaneous lifting can be done exactly or approx-

imately. Exact simultaneous lifting will provide the largest α possible, while approximate

will create inequalities where α may be able to be strengthened. Very few results lift on

simultaneous lifting and the only approximate techniques exist in what is known as sequence

independent lifting [14, 15].

In 1981, Zemel [3] developed the first technique to simultaneously uplift sets of integer

variables. This result can only simultaneously lift over binary integer programs. This method

solves exponentially many integer programs and finds some associated extreme points to a

linear relaxation space. The end result is all of the facet-defining inequalities that could be

obtained from lifting over the starting inequality. Clearly, this is intractable even on the

fastest computers.

In 2007, Gutierrez [16] presented two alternate techniques to simultaneously lift general

integer variables. Her methods could either require the solution to one or many integer

24

programs. The result is a single valid inequality. Unlike Zemel’s results, her technique is

only guaranteed to increase the dimension of the face by one. Her method using many integer

programs is used to demonstrate how to simultaneously uplift general integer variables. The

following IP is critical to using this method.

Maximize α
∑

i∈F wixi +
∑

i∈S αixi

Subject to: Ax ≤ b

∑
i∈F xi ≥ 1

0 ≤ xi ≤ 1 and integer.

The method begins by assigning α to M , a very large initial value. If the optimal solution

to the IP is larger than β, then the optimal x∗ from the IP is used to solve for α. In other

words, α =
β−

∑
i∈S

αix
∗

i∑
i∈F

wix
∗

i

. This new α is input into the objective function and the IP is resolved.

This is repeated until Z∗ ≤ β, which indicates that the inequality α
∑

i∈F wixi+
∑

i∈S αixi ≤ β

is valid.

Example 2.6 Returning to Example 2.3, we have a cover inequality of x4 + x5 + x6 + x7 +

x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≤ 11 that is valid. All three variables that

are not in this inequality are simultaneously lifted with the scaling coefficients all set to 1

(w1 = w2 = w3 = 1). This procedure begins by solving

25

Maximize 10000(x1 + x2 + x3) + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11+

x12 + x13 + x14 + x15

Subject to: 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8

+8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

∑3
i=1 xi ≥ 1

0 ≤ xi ≤ 1 and integer.

Solving this IP results in Z∗ = 30006 > 11 and x∗ = (1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1).

Solving 6 + 3α = 11 for α, the new α is 1.6667. This value is put back into the original IP,

and it is resolved.

Maximize 1.6667(x1 + x2 + x3) + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11+

x12 + x13 + x14 + x15

Subject to: 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8

+8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 116

∑3
i=1 xi ≥ 1

0 ≤ xi ≤ 1 and integer

The new solution is Z∗ = 11.6667 > 11 with x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Solving 10+α = 11 for α, we get α = 1. Putting this value back into the IP yields a Z∗ = 11

and so the inequality is valid. The algorithm returns the inequality x1 + x2 + x3 + x4 + x5 +

x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≤ 11. As seen above, this inequality is

26

valid and facet-defining.

As this example shows, sequential and simultaneous lifting do not always yield especially

useful inequalities. In both of these examples, the inequalities are extended cover inequalities.

The main idea behind three set inequalities will seek to use the principles of these methods

to yield stronger and possibly more useful facet-defining inequalities.

27

Chapter 3 - Three Set Inequalities

The remainder of this thesis is dedicated to explaining three set inequalities (TSIs) and

their usefulness. First, the theory behind three set inequalities and an algorithm, called Three

Set Inequalities Algorithm (TSIA), for finding TSIs will be presented. Then, circumstances

under which TSIs are facet defining will be shown. Finally, computational results using TSIs

compared to standard IP methods will be presented in Chapter 4.

Prior to giving TSIA, a few definitions and notations are required. Let J ⊂ N , K ⊂ N ,

and L ⊂ N where J, K, and L are mutually exclusive sets, J ∩ K = ∅, K ∩ L = ∅, and

J ∩ L = ∅. Let αJ , αK , and αL be any real numbers. Then, the three set inequality over

sets J , K, and L with parameters αJ , αK , and αL is defined as.

TSIJ,K,L
αJ ,αK ,αL

= αJ

∑
j∈J xj + αK

∑
k∈K xk + αL

∑
l∈L xl ≤ 1.

A key step in TSIA is to find a TSIJ,K,L
αJ ,αK ,αL

hyperplane passing through three feasible

integer solutions. The following definitions are used to define this hyperplane. For any

x ∈ P , define s′J(x), s′K(x), and s′L(x) to be |{xj : xj = 1, j ∈ J}|, |{xk : xk = 1, k ∈ K}|,

and |{xl : xl = 1, l ∈ L}|, respectively.

The input to TSIA is the feasible region of a binary integer program {x ∈ {0, 1}n :

Ax ≤ b}, mutually exclusive sets J , K, and L ⊂ N , and three initial feasible integer

solutions x1, x2, and x3 such that the vectors given by (s′J(x1), s′K(x1), s′L(x1)); (s′J(x2),

28

s′K(x2), s′L(x2)); and (s′J (x3), s′K(x3), s′L(x3)) are linearly independent. Since these points

are linearly independent, there exists a TSIJ,K,L
αJ ,αK ,αL

hyperplane that passes through all of

these points. The values of αJ , αK and αL can be obtained by solving the following system

of equations.

s′J(x1) s′K(x1) s′L(x1) αJ 1

s′J(x2) s′K(x2) s′L(x2) αK = 1

s′J(x3) s′K(x3) s′L(x3) αL 1

.

The condition that the points induce linearly independent vectors may seem too restric-

tive because all that is needed is affine independence to generate a hyperplane. However, if

the points are only affinely independent, then either there exists no solution to the above

system of equations or an infinite number of solutions. For instance, if the three points

are (1, 0, 0), (0, 1, 0) and (1, 1, 0), then there is no solution and the appropriate hyperplane

is x3 = 0, which is not a TSI inequality. In the infinite number of solutions case, there

exists a row which is redundant and can be removed. However, this implies that the original

three points are not affinely independent, which violates the above assumption and should

never occur. Therefore, TSIA assumes that the three points are linearly independent, but

some obvious modifications could be made and some alternate valid inequalities could be

generated by this algorithm.

Finding three such linearly independent points is clearly NP-complete, since just finding

a single integer solution is NP-complete [21]. However, in the case of a knapsack instance,

29

such points can easily be generated. These three feasible points generate an αJ , αK and αL

by solving the above equations. TSIA assumes that TSIJ,K,L
αJ ,αK ,αL

αJ

∑
j∈J xj + αK

∑
k∈K xk +

αL

∑
l∈L xl ≤ 1 is a valid inequality, which is verified or shown to be false by solving the

following integer program.

Maximize αJ

∑
j∈J xj + αK

∑
k∈K xk + αL

∑
l∈L xl

Subject to: Ax ≤ b

x ∈ {0, 1}N .

If the optimal solution is less than or equal to one, then TSIJ,K,L
αJ ,αK ,αL

is a valid inequality.

If not, then the x∗ from this IP violates the inequality and it will be used to provide new

values for αJ , αK , and αL. A more detailed discussion of the geometry of this concept will

be provided later in this chapter. Formally, TSIA is

The Three Set Inequality Algorithm (TSIA)

Input:

The feasible region of a binary integer program P = {x ∈ {0, 1}n : Ax ≤ b}.

Mutually exclusive sets J , K, L ⊂ N .

x1, x2, x3 ∈ P such that the vectors given by (s′J (x1), s′K(x1), s′L(x1)),

(s′J (x2), s′K(x2), s′L(x2)), and (s′J (x3), s′K(x3), s′L(x3)) are linearly

30

independent.

Initialization:

z∗ := 2.

Main Step:

while z∗ > 1 do.

Solve the following system of equations.

s′J(x1) s′K(x1) s′L(x1) αJ 1

s′J(x2) s′K(x2) s′L(x2) αK = 1

s′J(x3) s′K(x3) s′L(x3) αL 1

.

Solve the following IP generating z∗ and x∗.

Maximize αJ

∑
j∈J xj + αK

∑
k∈K xk + αL

∑
l∈L xl

Subject to: Ax ≤ b

x ∈ {0, 1}N .

If z∗ > 1 then.

Select some p ∈ {1, 2, 3} such that when xp is replaced by x∗, the

vectors (s′J(x1), s′K(x1), s′L(x1)), (s′J(x2), s′K(x2), s′L(x2)), and

(s′J (x3), s′K(x3), s′L(x3)) are linearly independent.

end (while).

31

Termination:

Report TSIJ,K,L
αJ ,αK,αL

= αJ

∑
j∈J xj + αK

∑
k∈K xk + αL

∑
l∈L xl ≤ 1 as a valid

inequality.

This algorithm has several theoretical and computational issues, which will be discussed

in detail near the end of this chapter. The following KP example is used to show TSIA.

Example 3.1 To better understand the process used in this algorithm, it is useful to look

at the following example. Consider the KP presented in Example 2.3, which is restated here.

Max 75x1 + 36x2 + 12x3 + 34x4 + 54x5 + 23x6 + 19x7 + 34x8 + 89x9+

49x10 + 43x11 + 21x12 + 30x13 + 67x14 + 50x15

s.t. 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8+

8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

0 ≤ x ≤ 1 and integer.

The three selected sets are J = {1, 2, 3}, K = {4, 5, 6, 7, 8}, and L = {9, 10, 11, 12, 13, 14,

15}. The starting three feasible points are identified as x1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

x2 = (0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0), and x3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1). Using

these as the input, the values of the s′s can be generated as s′J(x1) = 3, s′K(x1) = 0, and

s′L(x1) = 0; s′J(x2) = 0, s′K(x2) = 5, and s′L(x2) = 0; s′J(x3) = 0, s′K(x3) = 0, and s′L(x3) = 7.

Clearly, the three corresponding vectors are linearly independent. From these values, the

32

following system of equations is generated and solved for the α’s.

3 0 0 αJ 1

0 5 0 αK = 1

0 0 7 αL 1

.

The values of α’s are αJ = 0.333, αK = 0.200, and αL = 0.143. These values are entered

into an IP solver, generating the following IP.

Max 0.333
∑3

j=1 xj + 0.200
∑8

k=4 xk + 0.143
∑15

l=9 xl

s.t. 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8+

8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

0 ≤ x ≤ 1 and integer.

The solution to this IP is z∗ = 1.933 at the point x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

This point clearly violates TSIJ,K,L
0.333,0.2,0.143 = 0.333

∑
j∈J xj +0.2

∑
k∈K xk +0.143

∑
l∈L xl ≤ 1,

because putting x∗ into the left side of TSIJ,K,L
0.333,0.2,0.143 yields a value of 1.933, which is greater

than 1. Replacing the point x3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1) with this optimal point,

a new set of s′s is generated as s′J(x1) = 3, s′K(x1) = 0, and s′L(x1) = 0; s′J (x2) = 0,

s′K(x2) = 5, and s′L(x2) = 0; s′J(x3) = 1, s′K(x3) = 3, and s′L(x3) = 7. Using these values the

following system of equations is solved to find the new values of α.

33

3 0 0 αJ 1

0 5 0 αK = 1

1 3 7 αL 1

.

Solving this system of equations results in αJ = 0.333, αK = 0.200, and αL = 0.009524.

Using the new set of α’s, the new IP seen below is formulated and solved.

Max 0.333
∑3

j=1 xj + 0.200
∑8

k=4 xk + 0.009524
∑15

l=9 xl

s.t. 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8+

8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

0 ≤ x ≤ 1 and integer.

This time the solution found is z∗ = 1.667, with the point x∗ = (0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,

0, 0, 0), which would clearly violate TSIJ,K,L
0.333,0.2,0.009524 = 0.333

∑
j∈J xj + 0.2

∑
k∈K xk +

0.009524
∑

l∈L xl ≤ 1. The point, x2 = (0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0), is replaced by x∗

and the new system of equations is as follows.

3 0 0 αJ 1

2 5 0 αK = 1

1 3 7 αL 1

.

The new set of α’s is αJ = 0.333, and αK = αL = 0.0667. Again, a new IP is formulated

and solved.

34

Max 0.333
∑3

j=1 xj + 0.0667
∑8

k=4 xk + 0.0667
∑15

l=9 xl

s.t. 21x1 + 21x2 + 20x3 + 15x4 + 14x5 + 13x6 + 13x7 + 13x8+

8x9 + 8x10 + 8x11 + 8x12 + 7x13 + 7x14 + 7x15 ≤ 114

0 ≤ x ≤ 1 and integer.

The new solution is z∗ = 1.400, and x∗ = (1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1). The point

x1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is replaced with x∗ and the following system of equa-

tions is solved.

3 0 6 αJ 1

2 5 0 αK = 1

1 3 7 αL 1

.

This time, αJ = 0.207, αK = 0.117, and αL = 0.063. The IP is reformulated and solved

in the same way as has been seen above. The best solution found is z∗ = 1.054 at x∗ =

(1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1). The oldest point, x3 = (0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)

is replaced.

The corresponding new system of equations is solved as seen before to find αJ = −0.333,

αK = 0.333, and αL = 0.333. The new z∗ = 3.667, and the new x∗ = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0). Again, the oldest point x2 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) is replaced, and

the new values of α are found to be αJ = 0.152, αK = 0.091, and αL = 0.091.

Solving the new IP yields z∗ = 1.061 and x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), which

35

Table 3.1: Iteration Summary for Example 3.1

x1 x2 x3 αJ αK αL z∗ x∗ xi out

(3, 0, 0) (0, 5, 0) (0, 0, 7) 0.333 0.2 0.143 1.93 (1, 3, 7) x3

(3, 0, 0) (0, 5, 0) (1, 3, 7) 0.333 0.2 0.00952 1.67 (2, 5, 0) x2

(3, 0, 0) (2, 5, 0) (1, 3, 7) 0.333 0.0667 0.0667 1.4 (3, 0, 6) x1

(3, 0, 6) (2, 5, 0) (1, 3, 7) 0.207 0.117 0.063 1.05 (3, 1, 5) x3

(3, 0, 6) (2, 5, 0) (3, 1, 5) −0.333 0.333 0.333 3.67 (0, 5, 6) x2

(3, 0, 6) (0, 5, 6) (3, 1, 5) 0.152 0.091 0.091 1.06 (1, 3, 7) x1

(1, 3, 7) (0, 5, 6) (3, 1, 5) 0.1875 0.125 0.0625 1.00 (1, 3, 7) none

replaces x1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) in the system of equations. The solution to

the system of equations gives the new values of the α’s as αJ = 0.1875, αK = 0.125, and

αL = 0.0625.

Solving the new IP results in z∗ = 1, so the algorithm is finished and reports the valid

inequality TSIIJK
0.1875,0.125,0.0625 = 0.1875

∑3
j=1 xj + 0.125

∑8
k=4 xk + 0.0625

∑15
l=9 xl ≤ 1. Table

2 provides a summary of this example.

To show that fifteen affinely independent points can be generated from this solution, see

Figure 7. As in the previous point diagram, each point is represented by a column in the

matrix. These points show that this inequality is facet defining.

36

J K L
1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

J 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1

K 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1
1 1 1 0 0 0 1 0 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

L 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3.1: Matrix of Affinely Independent Points for TSIIJK
0.1875,0.125,0.0625

3.1 Extensions and Issues of TSIA

The nature of TSIA causes both some exciting avenues for extensions and also creates some

problems. This section describes a technique to generate many TSIA inequalities through

an enumerative branching tree and also describes some of TSIA’s shortcomings such as not

necessarily terminating.

It is important to note that a couple of factors will affect what valid inequality TSIA

finds. Initial α values, which are directly related to the initial feasible integer points, and

the order of replacement will affect what inequalities are found. An enumeration tree can be

applied to this method to see all possible facet-defining inequalities that can be found from

a given starting set of α’s and a given set of initial points.

37

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

������������

HHHHHHHHHHHH

������������

HHHHHHHHHHHH

s

s

ss

x2x1

x3

x∗

Figure 3.2: Example of a Tetrahedron Created by Four Points

The importance of order becomes clearer when the geometry of TSIA is considered.

Observe that the points that satisfy TSIJ,K,L
αJ ,αK ,αL

, αJ

∑
j∈J xj +αK

∑
k∈K xk +αL

∑
l∈L xl ≤ 1

at equality define a hyperplane. If the solution to the IP from TSIA is larger than 1, then

there exists a point, x∗, that violates αJ

∑
j∈J xj +αK

∑
k∈K xk +αL

∑
l∈L xl ≤ 1. Examining

the four points x1, x2, x3 and x∗ in three dimension results in a tetrahedron as shown in

Figure 8.

This tetrahedron can be represented by 4 hyperplanes. Clearly, the hyperplane going

through x1, x2 and x3 is not valid and can be defined by TSIJ,K,L
αJ ,αK ,αL

at equality. If TSIA

drops x1, then the next value of αJ , αK and αL will be such that TSIJ,K,L
αJ ,αK,αL

at equality

crosses through the points x∗, x2 and x3. Similarly two other hyperplanes could be generated,

which leads to the idea of an enumerative branching tree that could determine all TSI

inequalities from a given set of starting points.

38

The following example describes this branching tree in detail. Clearly, each unfathomed

node will have three child nodes representing the three hyperplanes that could be generated

at that iteration. As a result, this enumeration tree is trinary. Because the tree increases in

size by a factor of three with each successive level, only the path through the tree and each

node’s sibling nodes are displayed. The current method for choosing which node to branch

on is a simple rotation.

Example 3.2 In Example 3.1, the basic three set inequality algorithm is used to find

a single inequality. Now, this same algorithm is used in combination with a branching

tree on the same problem to show that multiple valid inequalities can be found for the

same problem depending upon which xi is replaced in each iteration. As before, x1 =

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), x2 = (0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0), and x3 = (0, 0, 0,

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1) are used as the initial feasible points, which yields αJ = 0.333,

αK = 0.2, and αL = 0.143. The branching tree corresponding to Example 3.1 is shown in

Figure 9. Each node shows the current three points, the current αJ , αK , and αL, and the

current solution z∗. Fathomed nodes are marked with valid solutions and are highlighted.

A depth-first process is used to find a solution, and the tree is drawn to reflect this process.

Each node represents a hyperplane described by a TSI inequality. When a point is found

that violates the TSI inequality, three new hyperplanes are generated, which is why three

child nodes are created for each parent node.

As can be seen in Figure 9, the substitution pattern used in the TSIA example is cyclical,

replacing the oldest point in the set each time. Note that in node 7 of Figure 9, an inequality

39

(3, 0, 0), (0, 5, 0), (0, 0, 7)
ᾱ = 0.333, 0.2, 0.143

z
∗ = 1.93 1

(1, 3, 7), (0, 5, 0), (0, 0, 7)
ᾱ = −0.6, 0.2, 0.143

z
∗ = 1.86 2

�����������

(3, 0, 0), (1, 3, 7), (0, 0, 7)
ᾱ = 0.333,−0.111, 0.143

z
∗ = 1.86 3

(3, 0, 0), (0, 5, 0), (1, 3, 7)
ᾱ = 0.333, 0.2, 0.00952

z
∗ = 1.67 4

PPPPPPPPPPP

(2, 5, 0), (0, 5, 0), (1, 3, 7)
ᾱ = 0, 0.2, 0.0571

z
∗ = 1.34 5

(((((((((((((((((((((

(3, 0, 0), (2, 5, 0), (1, 3, 7)
ᾱ = 0.333, 0.0667, 0.0667

z
∗ = 1.4 6

�����������

(3, 0, 0), (0, 5, 0), (2, 5, 0)
−

∑
l∈L

xl ≤ 0
z
∗ = 1 7

(3, 0, 6), (2, 5, 0), (1, 3, 7)
ᾱ = 0.207, 0.117, 0.063

z
∗ = 1.05 8

�����������

(3, 0, 0), (3, 0, 6), (1, 3, 7)
ᾱ = 0.333, 0.222, 0

z
∗ = 1.78 9

(3, 0, 0), (2, 5, 0), (3, 0, 6)
ᾱ = 0.333, 0.0667, 0

z
∗ = 1.2 10

PPPPPPPPPPP

(3, 1, 5), (2, 5, 0), (1, 3, 7)
ᾱ = 0.1875, 0.125, 0.0625

z
∗ = 1.00 11

(3, 0, 6), (3, 1, 5), (1, 3, 7)
ᾱ = 0.167, 0.0833, 0.0833

z
∗ = 1.00 12

PPPPPPPPPPP

(3, 0, 6), (2, 5, 0), (3, 1, 5)
ᾱ = −0.333, 0.333, 0.333

z
∗ = 3.67 13

hhhhhhhhhhhhhhhhhhhhh

(0, 5, 6), (2, 5, 0), (3, 1, 5)
ᾱ = 0.1875, 0.125, 0.0625

z
∗ = 1.00 14

(((((((((((((((((((((

(3, 0, 6), (0, 5, 6), (3, 1, 5)
ᾱ = 0.152, 0.091, 0.091

z
∗ = 1.06 15

�����������

(3, 0, 6), (2, 5, 0), (0, 5, 6)
ᾱ = 0.2, 0.12, 0.0667

z
∗ = 1.05 16

(1, 3, 7), (0, 5, 6), (3, 1, 5)
ᾱ = 0.1875, 0.125, 0.0625

z
∗ = 1.00 17

�����������

(3, 0, 6), (1, 3, 7), (3, 1, 5)
ᾱ = 0.167, 0.0833, 0.0833

z
∗ = 1.00 18

(3, 0, 6), (0, 5, 6), (1, 3, 7)
ᾱ = 0.238, 0.143, 0.0476

z
∗ = 1.19 19

PPPPPPPPPPP

Figure 3.3: Branching Path for Example 3.1

40

is found in the form −
∑

l∈L xl ≤ 0. Although this is a valid inequality, it is not a TSI

inequality, so that node is fathomed. This occurs as a result of the three points not being

linearly independent as discussed previously.

Also in Figure 9, a solution is found at node 18, in the same level as the TSI solution

given. This solution is actually a simultaneously or sequentially lifted cover inequality. The

inequality found is 0.167
∑

j∈J xj + 0.0833
∑

k∈K xk + 0.0833
∑

l∈L xl ≤ 1. Thus, one exciting

extension of TSIA is to generate numerous different classes of inequalities and not just TSI

inequalities.

This example of TSIA found the valid inequality described by TSIJ,K,L
0.1875,0.125,0.0625 =

0.1875
∑

j∈J xj + 0.125
∑

k∈K xk + 0.0625
∑

l∈L xl ≤ 1. This is not necessarily the only TSI

inequality in the tree, it is merely the first one found.

Another noteworthy result of this tree is the fact that the TSI inequality found was

actually generated in one of the child nodes in each of the previous two levels, nodes 11 and

14. The substitution method used in the TSIA example caused the algorithm to miss these

inequalities. The ability to identify solutions and choice of substitution pattern are potential

areas of improvement that exist for TSIA and could allow it to find valid inequalities faster.

One other interesting finding of TSI inequalities is that the inequalities yielded are not

necessarily based on a cover inequality. This is significant, as the majority of the algorithms

that exist produce cover-based inequalities.

Another shortcoming of TSIA is that it can only obtain inequalities that are ≤ 1. In-

41

equalities less than or equal to 0 are ignored in this algorithm. In some cases, such as node

7 in Figure 9, an alternate hyperplane could be found that has the right hand side equal to

0. This would allow TSIA to find more valid inequalities.

Although TSIA in this example produces a valid inequality, this may not always be the

case. The biggest problem with TSIA is the potential for cycling. That is, in certain areas

of this enumerative branching tree one could continue to repeat and never terminate. Figure

10 has an example of TSIA that cycles. Notice that node 6 is identical to node 9 and thus

this branching tree could continue indefinitely.

At this point, a complete explanation of cycling is not available, but examining the

geometry may describe why this unfortunate phenomenon occurs. If during TSIA two points

are used that are not on the same facet of P ch, then the TSI inequality can never be valid.

Therefore, if neither of these points is replaced, then cycling must occur. Thus, finding

adjacent facet points would help TSIA. Some work on this has been done by Huschka [20].

Due to this reason, TSIA always replaces the oldest point in an effort to avoid keeping two

nonadjacent facet points. An open question is whether or not TSIA with this replacement

strategy will actually terminate. In the author’s belief, such a cycling example does exist,

but would be difficult to find.

Although there are a number of problems with TSIA, there are clearly a number of ways

to improve upon the method. The algorithm yields a number of valid inequalities, but in

order to truly be useful, these inequalities need to induce strong faces.

42

(3, 0, 0), (0, 5, 0), (0, 0, 7)
ᾱ = 0.333, 0.2, 0.143

z
∗ = 1.93 1

(3, 0, 0), (1, 3, 7), (0, 0, 7)
ᾱ = 0.333,−0.111, 0.143

z
∗ = 1.86 2

PPPPPPPPPPP

(3, 0, 0), (1, 3, 7), (3, 0, 6)
ᾱ = 0.333, 0.222, 0

z
∗ = 1.78 3

(((((((((((((((((((((

(2, 5, 0), (1, 3, 7), (3, 0, 6)
ᾱ = 0.207, 0.117, 0.063

z
∗ = 1.05 4

PPPPPPPPPPP

(2, 5, 0), (3, 1, 5), (3, 0, 6)
ᾱ = −0.333, 0.333, 0.333

z
∗ = 3.67 5

�����������

(0, 5, 6), (3, 1, 5), (3, 0, 6)
ᾱ = 0.152, 0.091, 0.091

z
∗ = 1.06 6

PPPPPPPPPPP

(0, 5, 6), (1, 3, 7), (3, 0, 6)
ᾱ = 0.238, 0.143, 0.048

z
∗ = 1.19 7

(0, 5, 6), (3, 3, 1), (3, 0, 6)
ᾱ = 0.194, 0.116, 0.0698

z
∗ = 1.05 8

(0, 5, 6), (3, 1, 5), (3, 0, 6)
ᾱ = 0.152, 0.091, 0.091

z
∗ = 1.05 9

Figure 3.4: Cycling Branching Path for Example 3.143

3.2 Theoretical Results

In order to show that these valid inequalities are useful, conditions under which the TSIA

will yield facets for the knapsack polyhedron are presented in this chapter. Even if these

conditions are not met, the following theorem provides a lower bound on the dimension of

the induced face and also shows that the inequality found is valid.

Theorem 3.3 Every TSI inequality reported from TSIA is valid and induces a face of di-

mension at least 2.

Proof: Let αJ

∑
j∈J xj +αK

∑
k∈K xk +αL

∑
l∈L xl ≤ 1 be an inequality reported from TSIA.

In order for TSIA to report an inequality, the solution to z∗ = max αJ

∑
j∈J xj+αK

∑
k∈K xk+

αL

∑
l∈L xl subject to x ∈ P has z∗ ≤ 1. Thus there does not exist a point in P that violates

αJ

∑
j∈J xj + αK

∑
k∈K xk + αL

∑
l∈L xl ≤ 1 and so this inequality is valid.

The points x1, x2 and x3 are all feasible and due to the choices of αJ , αK and αL each

of these points satisfy TSIJ,K,L
αJ,αK ,αL

at equality. These points are clearly affinely independent

and so the dimension of the induced face is at least 3 -1=2.

2

This result states that every TSI inequality for any polytope induces a face of dimension

at least 2. Besides providing a general new class of cutting planes, TSI inequalities have also

expanded the knowledge around the knapsack polytope. The following theorem shows that

TSI inequalities are a new class of facet-defining inequalities for the knapsack polytope. One

44

important fact is that these inequalities are not based upon cover inequalities.

Before this result can be given, a few definitions are necessary. First, observe that linear

independence of the s′ vectors is slightly too unrestrictive for the results here. So for any

x ∈ P define t′J(x) = s′J (x) if s′J (x) < |J | and 0 if s′J (x) = |J |; t′K(x) = s′K(x) if s′K(x) < |K|

and 0 if s′K(x) = |K|; and t′L(x) = s′L(x) if s′L(x) < |L| and 0 if s′L(x) = |L|.

A key component for the theoretical result is that the vectors (t′J(x1), t′K(x1), t′L(x1)),

(t′J(x2), t′K(x2), t′L(x2)), and (t′J(x3), t′K(x3), t′L(x3)) are linearly independent. To help with

the results, assume that x1, x2 and x3 are given in such an order that no swapping of rows

are necessary to get the t′ vectors into reduced row echelon form. Thus, the x1 point can be

used to represent points in J , x2 for K, and x3 for L. The following theorem presents a new

class of facets for the knapsack polyhedron.

Theorem 3.4 From a knapsack problem, let TSIJ,K,L
αJ,αK ,αL

be an inequality reported from

TSIA with corresponding points x1, x2 and x3. If the following ten conditions are met, then

TSIJ,K,L
αJ ,αK ,αL

defines a facet in P ch
KP J∪K∪L.

(a) The vectors (t′J(x1), t′K(x1), t′L(x1)), (t′J(x2), t′K(x2), t′L(x2)), and (t′J(x3),

t′K(x3), t′L(x3)) are linearly independent.

(b1) If s′J(x1) = 1, then the set {j1} ∪ {k|K|−s′
K

(x1)+1, ..., k|K|} ∪ {l|L|−s′
L
(x1)+1, ..., l|L|}

is not a cover.

(b2) If s′J(x1) = |J | − 1, then the set {j1, ..., j|J|−1} ∪ {k|K|−s′
K

(x1)+1, ..., k|K|}∪

{l|L|−s′
L
(x1)+1, ..., l|L|} is not a cover.

45

(b3) If s′J(x1) ≥ 2 and s′J(x1) ≤ |J | − 2, then the sets {j1, j|J|−s′
J
(x1)+2, j|J|−s′

J
(x1)+3,

..., j|J|} ∪ {k|K|−s′
K

(x1)+1, ..., k|K|} ∪ {l|L|−s′
L
(x1)+1, ..., l|L|} and {j|J|−s′

J
(x1), ...,

j|J|−1} ∪ {k|K|−s′
K

(x1)+1, ..., k|K|} ∪ {l|L|−s′
L
(x1)+1, ..., l|L|} are not covers.

(c1) If s′K(x2) = 1, then the set {k1} ∪ {j|J|−s′
J
(x2)+1, ..., j|J|} ∪ {l|L|−s′

L
(x2)+1, ..., l|L|}

is not a cover.

(c2) If s′K(x2) = |K| − 1, then the set {k1, ..., k|K|−1} ∪ {j|J|−s′
J
(x2)+1, ..., j|J|}∪

{l|L|−s′
L
(x2)+1, ..., l|L|} is not a cover.

(c3) If s′K(x2) ≥ 2 and s′K(x2) ≤ |K| − 2, then the sets {k1, k|K|−s′
K

(x2)+2, k|K|−s′
K

(x2)+3,

..., k|K|} ∪ {j|J|−s′
J
(x2)+1, ..., j|J|} ∪ {l|L|−s′

L
(x2)+1, ..., l|L|} and {k|K|−s′

K
(x2),

..., k|K|−1} ∪ {j|J|−s′
J
(x2)+1, ..., j|J|} ∪ {l|L|−s′

L
(x2)+1, ..., l|L|} are not covers.

(d1) If s′L(x3) = 1, then the set {l1} ∪ {j|J|−s′
J
(x3)+1, ..., j|J|} ∪ {l|K|−s′

K
(x3)+1, ..., k|K|}

is not a cover.

(d2) If s′L(x3) = |L| − 1, then the set {l1, ..., l|L|−1} ∪ {j|J|−s′
J
(x3)+1, ..., j|J|}∪

{k|K|−s′
K

(x3)+1, ..., k|K|} is not a cover.

(d3) If s′L(x3) ≥ 2 and s′L(x3) ≤ |L| − 2, then the sets {l|L|−s′
L
(x3), ...,

l|L|−1} ∪ {j|J|−s′
J
(x3)+1, ..., j|J|} ∪ {k|K|−s′

K
(x3)+1, ..., k|K|} and {l1, l|L|−s′

L
(x3)+2,

l|L|−s′
L

(x3)+3, ..., l|L|} ∪ {j|J|−s′
J
(x3)+1, ..., j|J|} ∪ {k|K|−s′

K
(x3)+1, ..., k|K|} are

not covers.

46

Proof: Theorem 3.3 showed that the TSI inequalities returned from TSIA are valid. The

origin never satisfies a TSI inequality at equality, and so the dimension of any TSI inequality

is at most |J |+|K|+|L|−1 in P ch
KP J∪K∪L. So it remains to be seen that there are |J |+|K|+|L|

affinely independent points that meet TSIJ,K,L
αJ ,αK ,αL

at inequality.

This proof begins by finding |J | affinely independent points. Observe that s′J (x1) 6= |J |

and s′J(x1) 6= 0 due to assumption (a). Therefore, the proof divides into the following 3 cases

based upon values of s′J(x1).

If s′J (x1) = 1, then the set {j1} ∪ {k|K|−s′
K

(x1)+1, ..., k|K|} ∪ {l|L|−s′
L
(x1)+1, ..., l|L|} is not a

cover. The set J is sorted in descending order of its corresponding coefficients. Therefore,

the point ej” +
∑|K|

k′=|K|−s′
K

(x1)+1 xk′ +
∑|L|

l′=|L|−s′
L

(x1)+1 el′ is feasible for all j” ∈ J . This clearly

results in |J | linearly independent points.

If s′J(x1) = |J |−1, then the set {j1, ..., j|J|−1}∪{k|K|−s′
K

(x1)+1, ..., k|K|}∪{l|L|−s′
L
(x1)+1, ..., l|L|}

is not a cover. Again, the set J is sorted in descending order of its corresponding coefficients.

Therefore the point (
∑|J|

j′=1 ej′)− ej” +
∑|K|

k′=|K|−s′
K

(x1)+1 xk′ +
∑|L|

l′=|L|−s′
L

(x1)+1 el′ is feasible for

all j” ∈ J . Since upper left |J | × |J | rows and columns are a cyclical permutation of |J | − 1

ones and |J | and |J | − 1 are relatively prime, these |J | points are linearly independent as

required.

The case when s′J(x1) ≥ 2 and s′J (x1) ≤ |J | − 2 is merely a combination of the two above

cases. Since {j1, j|J|−s′
J
(x1)+2, j|J|−s′

J
(x1)+3, ..., j|J|}∪{k|K|−s′

K
(x1)+1, ..., k|K|} ∪{l|L|−s′

L
(x1)+1, ..., l|L|}

is not a cover, ej” +
∑|J|

j′=|J|−s′
J
(x1)+2 e′j +

∑|K|
k′=|K|−s′

K
(x1)+1 xk′ +

∑|L|
l′=|L|−s′

L
(x1)+1 el′ is a feasi-

ble point for all j” ∈ {j1, ..., j|J|−s′
J
(x1)−1}. For the remaining s′J(x1) + 1 points, observe

47

that {j|J|−s′
J
(x1), ..., j|J|−1} ∪ {k|K|−s′

K
(x1)+1, ..., k|K|} ∪{l|L|−s′

L
(x1)+1, ..., l|L|} is not a cover. So,

∑|J|
j′=|J|−s′

J
(x1) ej′ − ej” +

∑|K|
k′=|K|−s′

K
(x1)+1 xk′ +

∑|L|
l′=|L|−s′

L
(x1)+1 el′ is a feasible point for all

j” ∈ {j|J|−s′
J
(x1), ..., j|J|}. These points are clearly linearly independent following a combina-

tion of the logic of the above two paragraphs.

In all three cases, the |J | linearly independent points can be easily applied for sets K and

L. For instance, to get |K| linearly independent points the s′J (x2) and s′L(x2) variables with

the smallest a coefficients would be set to one in J and L, respectively. The points selected

for K would be chosen as was the case for the points for J in the above three paragraphs.

A similar logic could be followed for L.

There are now |J | + |K| + |L| points that are generated and each of these points meet

the TSIA inequality at equality due to the choices of αJ , αK and αL. This matrix of points

can be analyzed by first partitioning it into the obvious 9 submatrices, based upon J , K

and L. Every row in the J × K, J × L, K × J , K × L, L × J and L × K submatrices is a

constant of either a 0 or a 1. The sum of the first |J | rows, the next |K| rows and the next

|L| rows results in the same matrix as the transpose of the s′ matrix that TSIA uses. Since

this TSIA’s matrix is linearly independent, the above matrix is also linearly independent

and the result follows.

2

48

To help understand this theorem, the TSI inequality from Example 3.1 will be reex-

amined. The affinely independent points shown in Figure 7 clearly show the cases where

s′J(xi) = 1 and where s′J (xi) = |J |−1. Observe that the points in the first three columns are

clearly affinely independent. All three points are identical below the first three rows, so if

the first point is valid, both of the other points are clearly valid. The sum of the coefficients

corresponding to the ones in this first point is 113, which is less than 114, so all of these

three points are feasible.

Similarly, the last seven points in Figure 7 demonstrate the s′J(xi) = |J | − 1 case. In this

situation, the largest point is the last one, so the last column is evaluated. The sum of the

coefficients of all the variables set to one is 114, which is equal to 114. All of the other six

points are clearly feasible due to the sorted of order of the ai’s.

Figure 11 provides an example of the third case and shows that it also gives affine

independence. Figure 11 shows the matrix of affinely independent points that could be

generated from node 11 in Figure 9. Observe that the middle five points in Figure 11 meet

the final condition. Two points need to be evaluated to determine whether these points are

feasible. The points corresponding to the fourth column and the eigth column need to be

evaluated: If they are feasible, the other points in this section are also feasible. The sum of

the ai’s from the first point is 106 and so it is clearly feasible. The second point’s sum of the

ai’s is 105 and is also clearly feasible, so all points in this set are feasible.

49

J K L
0 1 1 0 0 0 0 0 1 1 1 1 1 1 1

J 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 0 0 0 0 0

K 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 0 1 0 1 1 1 1

L 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3.5: Matrix of Affinely Independent Points from Example 3.1

50

Chapter 4 - Computational Results

In order to show that TSIs can reduce the computing time for knapsack problems, several

KPs were solved using CPLEX 10.0 [9] both at default settings and with three set inequalities.

These tests were performed on a Pentium IV 1.5 GHz processor with 512 MB of RAM. The

time these problems took to solve and the number of nodes evaluated by CPLEX are recorded

and compared in this section. Twenty random KPs each were generated with a problem size

of 25, 50, 75, and 100 variables.

A problem with computational studies on knapsack instances is the fact that most solvers

will find an optimal solution relatively quickly. However, this challenge can be overcome, as

shown by Chvátal [8], who provided a class of knapsack instances that requires exponentially

many branches to solve when using branch and bound. Later, Hunsaker and Tovey improved

upon these findings to show that some KPs require exponentially many branches even with

all sequence dependent cover inequalities added to the formulation [19]. Both of these results

were found using very large random numbers for all ai and forcing all ci = ai for all i = 1, ..., n.

Given these conditions, there is a high probability that there exists a solution with the

objective value equal to b.

In order to generate difficult KPs, a process based on these results was used. The ai’s

are generated using random integers uniformly distributed between 50,000 and 100,000, and

all ci’s are set equal to the corresponding ai’s. After all of the ai’s are generated, b is set to

51

half of the sum of the ai’s.

When implementing this algorithm, a specific form of sets are chosen as input. The KPs

used all had two minimal covers that shared at least one variable. These overlapping covers

were found by taking the variable with the highest ai and adding variables in descending

order of their ai’s until a cover was formed. The size of the overlap was set before solving

each set of problem sizes and held constant throughout the twenty iterations for each size.

This overlap represented the last number of variables in the first cover, and the first number

of variables in the second cover. The second cover was generated by taking the variables in

the overlap and adding variables in descending order of the corresponding ai’s until a cover

is found. In other words, C1 ∪ C2 = {1, 2, ..., (|C1| + |C2| − sizeofoverlap)}.

The two overlapping minimal covers, C1 and C2, are used to define the three sets as

J = C1 \C2, K = C1 ∩ C2, and L = C2 \ C1. The initial values for αJ , αK , and αL are set

to be 1/|J |, 1/|K|, and 1/|L|, respectively. Because the three sets chosen are overlapping

minimal covers, these three α values clearly correspond to feasible points. The three points

are shown in the s′ form along with the initial values of α in Table 3.

The results of these runs are summarized in Tables 4, 5, and 6. Table 4 gives a com-

parison of solution times between default CPLEX 10.0 and default CPLEX 10.0 with one

TSI inequality. Table 5 compares the sizes of the node trees of these two situations. Table

6 gives the preprocessing time for generating TSI inequalities. All reported values are the

average of the twenty problem instances.

52

Table 4.1: Initial Points and α Values

Set s′X(x1) s′X(x2) s′X(x3) αX

J |J | 0 0 1/|J |

K 0 |K| 0 1/|K|

L 0 0 |L| 1/|L|

Table 4 shows the current techniques used to generate TSI inequalities are not sub-

stantially beneficial. In only one of the four test instances (n = 50) were TSI inequalities

beneficial. For the remainder of the instances TSI inequalities didn’t substantially improve

CPLEX’s solution time.

However, Table 5 shows that the size of the branching trees typically decreased by using

TSI inequalities. So one may naturally question how could fewer nodes be evaluated and

still have a slower running time. The answer is that the basis has gone from one variable to

two. Obviously, each iteration of the simplex method could easily take at least twice as long

and so the effectiveness of the cutting plane is cancelled out by the longer time to solve each

node.

Table 6 shows the single biggest problem of TSI inequalities. Running TSIA can take

substantially longer than the time CPLEX requires to solve the original problem. In the

case of n = 100, the preprocessing time took nearly one and a half hours. In contrast, the

solution to the original problems took less than a minute. Twenty instances with n = 125

53

Table 4.2: Comparison of Run Times with and without TSI Inequalities

n Overlap
CPLEX
10.0
T ime

TSI
T ime

%
Difference

25 5 9.25 16.1 +74.1%
50 5 15 12.45 −17%
75 15 12.2 12.4 +1.6%
100 20 15.75 24.25 +54.0%

Table 4.3: Comparison of Node Tree Sizes with and without TSI Inequalities

n Overlap
CPLEX
10.0
Nodes

TSI
Nodes

%
Difference

25 5 58711.45 89881.5 +53.1%
50 5 61045.2 48344.35 −20.8%
75 15 54866.5 33980.75 −38.1%
100 20 43696.9 50362.4 +15.3%

did not finish in 5 days due to the preprocessing length. Thus, the current technique to

generate TSI inequalities takes far too long to be computationally beneficial.

Clearly the choice of sets that was used for this study was not the most sophisticated

that could have been developed. Selection of sets and initial points is an area of research

that could significantly improve the results of this algorithm.

It is fairly evident that another great opportunity for improvement to TSIA is to replace

the IP step with a polynomial time algorithm that is similar to an algorithm developed by

Easton and Hooker [11] that can simultaneously lift sets of variables into a cover inequality in

linear time. The resulting implementation would remove the integer programming step and

even the z > 1 loop and replace the entire algorithm with a quadratic or cubic algorithm.

54

Table 4.4: TSI Preprocessing Times

n Overlap Preprocessing
25 5 0.5
50 5 420.2
75 15 1311.7
100 20 2787.9

This would dramatically reduce this enormous preprocessing time.

In conclusion, the preprocessing time required to generate TSI inequalities will make

every computational study fall short of its goal of showing the overall time improvement of

these inequalities. However, if the preprocessing time is reduced, then a more detailed study

should be performed to demonstrate that these inequalities can be extremely useful as the

theoretical results dictate.

55

Chapter 5 - Conclusions

Integer programming is a useful tool for modeling and optimizing real world problems.

Unfortunately, the time required to solve IPs is exponential and so large problems often

cannot be solved. The knapsack problem is a form of IP that has only one constraint

and can be used to strengthen any constraint of a general integer program. These facts

make finding new classes of facet-defining inequalities to the knapsack problem an extremely

important area of research.

This thesis has introduced three set inequalities and an algorithm for finding them. The-

oretical results show that these inequalities will be of dimension at least 2, and can be facet

defining under certain conditions. Furthermore, TSIA can generate multiple inequalities for

some problems, as seen in the enumerative branching tree provided in Chapter 3.

At this time, a computational study has little value, as the preprocessing time for gener-

ating TSI inequalities is prohibitively large. However, three set inequalities can be improved

in a number of ways that would make such a study more useful.

5.1 Extensions and Future Research

In the future, three set inequalities could potentially be improved by using a more sophis-

ticated method for selection of which points to replace in a solution. Improvements in this

area could greatly improve the preprocessing time, which is a problem with the current for-

56

mulation. Using an adaptation of the simultaneous lifting process developed by Easton and

Sharma [26] could cut out the need to solve an integer program in preprocessing and improve

the algorithm to quadratic or cubic effort.

The principles behind three set inequalities could also be applied to find ways to solve

IPs with multiple covers overlapping over the same set of variables or over different sets.

These q-set inequalities would take the form QSII,J,K,...,Q
αI ,αJ ,αK ,...,αQ

= αJ

∑
j∈J xj + αK

∑
k∈K xk +

αL

∑
l∈L xl + ... + αQ

∑
q∈Q xq ≤ 1. Obviously, the enumerative branching tree for this type

of inequality would increase in size by a factor of q at each successive level.

One of the most exciting aspects of TSIA is that it could be extended to develop an

interior point method for solving IPs. When used in conjuction with branching trees, such

an approach could revolutionize the way that IPs are solved. Such an approach could branch

on potential constraints rather than on variables, cutting out large non-integer regions of

space.

57

Bibliography

[1] Balas, E., (1975). “Facets of the Knapsack Polytope”, Mathematical Programming, 8,

146-164.

[2] Balas, E and E. Zemel (1978). “Facets of the Knapsack Polytope from Minimal Covers,”

SIAM Journal of Applied Mathematics, 34, 119-148.

[3] Balas, E and E. Zemel (1980). “An Algorithm for Large Zero-One Knapsack Problems,”

Operations Research, 28, 1130-1154.

[4] Balas, E (2005). ”Projection, Lifting, and Extended Formulation in Integer and Com-

binatorial Optimization,” Annals of Operations Research, 140, 125-161.

[5] Balas, E. and E. Zemel, (1984). “Lifting and Complementing Yields all the Facets of

Positive Zero-One Programming Polytopes,” Mathematical Programming, Proceedings

of the International Conference on Mathematical Programming, R.W. Cottle et al., eds.,

13-24.

[6] Bertsimas, D., C. Darnell and R. Soucy (1999). “Portfolio Construction through Mixed-

Integer Programming at Grantham, Mayo, Van Otterloo and Company,” Interfaces, 29,

n 1, Jan.-Feb. 1999, 49-66.

[7] “Capital Budgeting.” (2006). Retrieved April 18, 2007, from http://www.netmba.com/

finance/capital/budgeting/

[8] Chvátal, V. (1980). “Hard Knapsack Problem,” Operations Research, 28(6), 1402-1412.

58

[9] CPLEX’s website marketed by ILOG ”http://www.ilog.com/products/cplex/”.

[10] Easton, K., G. Nemhauser and M. Trick (2003). “Solving the Traveling Tourna-

ment Problem: A Combined Integer Programming and Constraint Programming Ap-

proach,” Practice and Theory of Automated Timetabling IV. 4th International Confer-

ence, PATAT 2002, Selected Revised Papers (Lecture Notes in Comput. Sci. Vol.2740),

2003, p 100-9.

[11] Easton, T. and K. Hooker. “Scaled Multiple Cover Inequalities and the Knapsack Poly-

tope,” in review for the Special Issue of Discrete Optimization in memory of George B.

Dantzig (1914-2005).

[12] Gomory, R. (1969). “Some Polyhedra Related to Combinatorial Problems,” Linear Al-

gebra and its Applications, 2, 451-558.

[13] Granmo, O. C., B. J. Oommen, S. A. Myrer, and M. G. Olsen (2007). ”Learning

Automata-based Solutions to the Nonlinear Fractional Knapsack Problem with Ap-

plications to Optimal Resource Allocation,” IEEE Transactions on Systems, Man and

Cybernetics, Part B(Cybernetics), 37 n 1, 166-175.

[14] Gu, Zonghao, Nemhauser, G. L., and Savelsbergh, M. W. P. (2000). ”Sequence Indepen-

dent Lifting in Mixed Integer Programming,” Journal of Combinatorial Optimization,

4, n 1, 109-129.

[15] Gu., Z., Nemhauser, G. L., and M. W. P. Savelsbergh (1998). “Lifted Cover Inequalities

for 0-1 Integer Programs: Computation,” Informs Journal on Computing, 10, 427-437.

59

[16] Gutierrez, Maria Talia (2007). “Lifting General Integer Programs,” Kansas State Uni-

versity Masters Thesis.

[17] Hammer, P., E. Johnson, and U. Peled, (1975). “Facets of Regular 0-1 Polytopes,”

Mathematical Programming, 8, 179-206.

[18] Hillier, F. S. and G. J. Lieberman, (2001). Introduction to Operations Research,

McGraw-Hill, New York 576-581.

[19] Hunsaker, B. and C. Tovey (2004). “Simple Lifted Cover Inequalities and Hard Knap-

sack Problems,” Technical Report: Industrial Engineering, University of Pittsburgh,

Pittsburgh, PA 1-13.

[20] Huschka, Bryce (2007). ”Finding Adjacent Facet-Defining Inequalities,” Kansas State

University Masters Thesis.

[21] Karp, R. M. (1972). ”Reducability Among Combinatorial Problems,” Complexity of

Computer Computations, Plenum Press, New York 85-103.

[22] Linderoth, Jeff (2003). “Cover Inequalities.” Retrieved April 18, 2007, from Rut-

gers University Web site: http://dimacs.rutgers.edu/reconnect/Lafayette/lectures/

knaplecture.pdf

[23] Nemhauser, G. L. and L. A. Wolsey (1988). Integer and Combinatorial Optimization,

John Wiley and Sons, New York.

60

[24] Parker, Brent 2007. ”Project Allocation and Anticover Inequalities,” Kansas State Uni-

versity Masters Thesis.

[25] Richard, J. P. P., I. R. de Farias, Jr., and G. L. Nemhauser (2002). ”Lifted Inequalities

for 0-1 Mixed Integer Programming: Basic Theory and Algorithms,” 9th International

Integer Programming and Combinatorial Optimization Conference Proceedings, 161-175

[26] Sharma, Kamana (2007). ”Simultaneously Lifting Sets of Variables in Binary Knapsack

Problems,” Kansas State University Masters Thesis.

[27] Subbu, R., G. Russo, K. Chalermkraivuth, and J. Celaya (2007). ”Multi-criteria Set

Partitioning for Portfolio Management: a Visual Interactive Method,” 2007 First IEEE

Symposium on Computational Intelligence in Multicriteria Decision Making.” 6.

[28] Taylor, P. E. and S. J. Huxley, (1989). “A Break from Tradition for the San Fran-

cisco Police: Patrol Officer Scheduling Using an Optimization-Based Decision Support

System,” Interfaces, 19(1), 4-24.

[29] Tomastik, R.N. (1993). ”The Facet Ascending Algorithm for Integer Programming Prob-

lems,” Proceedings on the 32nd IEEE Conference on Decision and Control, 1993, 3,

2880-2884.

[30] Wolsey, L.A. (1975). “Faces for a Linear Inequality in 0-1 Variables,” Mathematical

Programming, 8, 165-178.

61

