Conformational Changes and Catalytic Competency of Hydrolases Adsorbing on Fumed Silica Nanoparticles: II. Secondary Structure

Juan C. Cruz¹, Peter H. Pfromm¹*, John M. Tomich², Mary E. Rezac¹

(1) Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, Manhattan, KS 66506 - 5106, USA.
(2) Department of Biochemistry and Biotechnology/Proteomics Core Facility, Kansas State University, Burt Hall, Manhattan, KS 66506 - 5106, USA.

Please cite this article in press as: J.C. Cruz et al., Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: II. Secondary structure, Colloids Surf. B. Biointerfaces (2010), doi: 10.1016/j.colsurfb.2010.06.005.

Abstract

Secondary conformational analysis via Circular Dichroism (CD) and Amide-I FTIR was applied to preparations of Candida antarctica Lipase B (CALB), subtilisin Carlsberg, and the Lipase from Thermomyces lanuginosus (TLL) on fumed silica to confirm that the “hardness” and packing density of the enzymes on the solid fumed silica nanoparticle surface can be used to rationalize the variable enzyme-dependent changes of catalytic competency with surface coverage. “Soft” enzymes should be immobilized at a surface coverage where enzyme-enzyme interactions predominate thereby preventing detrimental structural changes caused by enzyme-support interactions, while “hard” enzymes can be immobilized at low to intermediate surface coverage with good catalytic performance. Multi-layered coverage reduces the superficial average catalytic performance in all cases due to mass transfer limitations.

*Corresponding author: Tel: +1 785 532 4312; fax: +1 785 532 7372
E-mail address: pfmm@ksu.edu

Keywords: Conformational Stability; Adsorption; Fumed Silica; Protein-surface interactions; FTIR; CD.
Introduction

Use of enzymes in non-aqueous media is an alternative avenue for the production of numerous compounds of commercial interest [1-11]. The exquisite selectivity and stereoselectivity of enzymes is well recognized. Some additional advantages of enzymatic catalysis in non-aqueous media include increased solubility and stability of reactants and products [12-22], reduced complexity for downstream recovery of products and enzyme [12-22], and improved sterility [12-22]. However, enzymes are essentially insoluble in those organic solvents that do not denature them [23-26]. Various strategies have been attempted to overcome this major limitation including the incorporation of lyo- and cryo-protectants [27, 28], encapsulation in reverse micelles [29, 30], lyophilization in the presence of non-buffer salts (termed salt-activation) [7, 31], and immobilization on micro- and nano-sized organic and inorganic materials [23, 24, 26, 32, 33]. These immobilizates are often costly due in part to expensive solid supports, which ultimately limits industrial applications of non-aqueous enzymatic catalysis [34, 35].

We have immobilized enzymes on fumed silica, an inexpensive nanostructured solid support [24-26], to tackle the cost issue while maintaining or increasing catalytic efficiency. Fumed silica is a fractal aggregate with large specific surface area (up to 500 m²/g) formed by the fusion of individual nanoparticles of approximately 10-50 nm in diameter [36-38]. Fumed silica has been successfully used for adsorbing a wide variety of compounds ranging from polymers to proteins [39-42]. Our protocol exploits these unique adsorptive properties using a two-step immobilization strategy. The enzyme molecules are first adsorbed on the nanoparticles from aqueous solution and then lyophilized to obtain the adsorbates. The lyophilized nanobiocatalysts
are then ready-to-use in non-aqueous media. Our protocol has been successfully applied to *subtilisin Carlsberg* [25, 26] and *Candida antarctica* Lipase B (CALB) [24].

The maximum observed apparent catalytic activity in hexane reached or even exceeded results obtained with commercial preparations of CALB, and salt-activated immobilizates for *s. Carlsberg*. CALB is a monomeric polypeptide with 317 amino acid residues and belongs to the family of globular α/β-hydrolase-like fold enzymes [43, 44]. CALB’s structure contains 7 central β-strands flanked by 10 α-helices [43, 44]. In particular, α5 and α10 are found to be extremely mobile regions that are loosely associated with the rest of the structure [45]. This flexibility confers a plasticity and dynamism thought to be responsible for broadening its substrate specificity [46, 47]. Four disulfide bridges help to stabilize CALB’s structure [43]. The *s. Carlsberg* enzyme is a single polypeptide chain enzyme with 274 amino acid residues and two α/β domains that are composed of 7 central β-parallel strands flanked by 5 α-helices [48]. Relative to CALB, *s. Carlsberg*’s structure is more packed, which leads to a substantial reduction in flexibility and dynamism.

The apparent catalytic activity in hexane for our enzyme/fumed silica preparations was found to depend strongly on the nominal surface coverage (%SC) of the fumed silica by the enzyme [24, 26]. Surprisingly, enzyme activity levels are dissimilar for *s. Carlsberg* and CALB at comparable levels of surface coverage. Apparent catalytic activity increases with increasing %SC at high surface coverage for both enzymes. CALB’s apparent catalytic activity attains a maximum at an intermediate %SC but then steeply drops with decreasing %SC. On the other hand, *s. Carlsberg*’s activity remains high even at low %SC. This behavior has been explained by us and others in light of three regimes of surface loading as follows: I. a low surface coverage regime where enough surface area is provided for the enzyme molecules, therefore, maximizing
the opportunities for multi-point attachment and detrimental spreading. This will promote substantial conformational changes and a decrease in flexibility, which in turn leads to a reduction in activity, II. an intermediate surface coverage regime where the enzyme molecules are less dispersed thus affording beneficial interactions with neighboring molecules along with surface interactions to maintain a high population of active conformations, and III. a multi layer coverage regime where the enzyme molecules are aggregated but mass transfer limitations reduce the availability of substrate molecules to the catalytic sites.

Integrating proteins with nanomaterials has gained popularity as this approach provides an avenue for developing new materials with applications in fields as diverse as biomedicine [49-51], biosensors and bioelectronics [50, 52-55], and bioelectrochemistry [56]. One of the major challenges is to preserve protein functionality in the final biomaterial [49, 57]. This can be achieved by developing strategies to enhance the conformational stability of the adsorbed proteins [58, 59]. Numerous studies have described the crucial role of surface chemistry, size, and curvature of the nanomaterials in the conformational stability of the immobilized proteins [49, 58-63]. Recent reports have proposed that considerable attention should also be given to characterizing the different intricate surface-protein and protein-protein interactions during and after the adsorption process [61, 64, 65].

Quantifying conformational perturbations for proteins immobilized on solid supports is challenging due to the scarcity of tools for direct interrogation of the molecular rearrangements associated with structural fluctuations [66]. The most popular approaches include Fourier Transform Infrared- (FTIR), Circular Dichroism- (CD), Intrinsic Fluorescence-, Raman optical activity- and Nuclear Magnetic Resonance- (NMR) spectroscopy. CD and FTIR have been particularly useful to collect secondary structural information for both proteins in solution and
immobilized on solids [62, 63, 66-74]. CD spectroscopy relies on the different response of chiral secondary structural components to circularly polarized light [75, 76]. Therefore, CD can be successfully applied to estimate the individual contributions of α-helical, β-sheet, and less ordered secondary structural components. FTIR can be also exploited for the analysis of secondary structure of proteins, principally, by observing changes in the amide absorptions [67]. The amide group exhibits 9 vibrational modes that give rise to amide bands A, B, and I-VII [77, 78]. The preferred spectral components for secondary analysis are, however, amide I [79], amide II [79, 80], and amide III [79, 81-83] due to the simplicity for analysis. Amide I has attracted the most attention due to its increased sensitivity towards conformational changes in the secondary arrangement of the protein backbone [84, 85]. This has allowed extensive use for structural analyses of proteins including folding, unfolding, and aggregation [86-96]. The main challenge for the analysis is posed by the overlapping of the individual structural components [97]. Two strategies have been applied to overcome this issue, thereby allowing the extraction of quantitative information from the spectrum: (i) resolution enhancement (also called band-narrowing) [98-101] followed by curve-fitting [102, 103] and (ii) deconstruction into basis spectra with a reference calibration set [104, 105]. Here we applied second derivative of the amide I band as resolution enhancement method to identify the dominant secondary structural components.

Secondary conformational stability studies of hydrolases with different native “hardness” on solid fumed silica nanoparticles are performed here for both enzyme adsorbates prepared from aqueous solution, and the resulting preparations after lyophilization. In both cases, the impact of varying the surface coverage by the enzyme molecules was evaluated. Perturbation on the intramolecular hydrogen bonding sustaining the secondary structure by attachment of the
enzymes to the nanoparticles was inferred from CD spectral information after normalizing with respect to the native state in aqueous buffer solution. Three regions of secondary conformational stability were visualized as a function of the surface coverage which correlated well with those observed previously from tertiary structural analyses. The analysis confirmed also that as opposed to “hard” enzymes, “soft” enzymes show a marked tendency to denature when sufficient opportunities for surface interaction are provided. This can however be counteracted by providing enzyme-enzyme interactions at higher levels of surface coverage. Structure modifiers were added to further probe the types of interactions prevailing in each region of conformational stability of immobilized enzymes. The amide I-FTIR analyses in the lyophilized state confirmed alteration on the secondary structure in the low surface coverage regime and showed that applying our protocol apparently does not introduce additional perturbations in the secondary structure relative to those already present in the native lyophilized preparation. The FTIR analysis for lyophilized preparations obtained under the crowding conditions of surface coverages below 100%SC and initial enzyme concentrations above 3.0 mg/mL revealed major conformational changes apparently triggered by association-induced structural transitions. Emerging applications in nanobiotechnology where preserving protein conformational stability is a major issue may benefit from the data discussed here [106-108].
Materials and Methods

Materials

Crude CALB (lyophilized; specific activity of 28U/mg solid) and TLL (lyophilized; specific activity of 1400U/mg solid) were obtained from Codexis, Inc. (Pasadena, CA), stored at 4°C, and used as-received. TLL is a glycosylated monomeric protein with 269 amino acid residues, containing eight central β-sheets (predominantly parallel) flanked by 5 interconnecting α-helices [74, 109-111]. TLL is used for the interesterification and hydrolysis of vegetable oils and animal fats [112]. Subtilisin Carlsberg (EC 3.4.21.14; proteinase from Bacillus licheniformis; specific activity of 8 U/mg solid), fumed silica (purity of 99.8 wt.%, specific surface area 255 m²/g, primary particle diameter ~7-50 nm, as reported by the manufacturer), ultrapure Guanidine Hydrochloride (GdmCl), 2,2,2-trifluoroethanol (TFE), and dithiothreitol (DTT) were from Sigma-Aldrich (St. Louis, MO), and used as received. Glass vials (24 mL screw-capped, flat-bottom) were used to prepare the enzyme-fumed silica suspensions.

Circular Dichroism Conditions to Monitor Unfolding

Unfolding was monitored in a cylindrical quartz cuvette (1 cm pathlength) by collecting the far-UV CD spectrum from 190 nm to 300 nm every 0.2 nm with 2 nm bandwidth and at a scan rate of 50 nm/min (Jasco J-815 spectropolarimeter, Jasco Spectroscopic Co., Hachioji, Japan, room temperature). The simple point-by-point average of three consecutive full wavelength scans is reported here. A baseline for the buffer was electronically subtracted from each enzyme spectrum (after averaging). The CD signal at 222 nm was extracted from the spectra.
Enzyme in Aqueous Buffer Solution: Unfolding by GdmCl /Urea and Unfolded Fraction Tracking by CD

When proteins undergo unfolding, the α-helical content decreases, which can be monitored by tracking the CD signal loss at 222 nm [62, 63]. The GdmCl/Urea-induced unfolding of the three hydrolases in aqueous buffer solution was normalized based on the degree of signal loss at 222 nm according to [62, 63]:

$$\phi_{GdmCl} = \frac{\text{CD}^S_{222} - \text{CD}^N_{222}}{-\text{CD}^N_{222}}$$

Equation 1

where ϕ_{GdmCl} is the unfolded fraction (0, native; 1, completely unfolded).

CD^S_{222} is the CD signal at 222 nm for enzyme molecule ensembles at any state of unfolding, and CD^N_{222} is the CD signal at 222 nm for ensembles of native enzyme molecules both in aqueous buffer solution and in millidegrees (mdeg).

The ability of CD spectroscopy to detect unfolding was tested for reference in aqueous buffer with the powerful denaturants GdmCl and Urea. Typically, the α-helical content decreases upon exposure of the enzyme to these denaturants while both the β-sheet and random coil contents increase [72, 73], which is detected by CD due to its sensitivity to subtle changes in the secondary structure.

Crude enzyme solution was made (0.5 to 4.7 mg enzyme/mL in 10 mM monobasic phosphate buffer, adjusted to pH 7.8 by KOH 1M). GdmCl with final concentrations in the range of 1M to 6M was added followed by vortexing for about 30 seconds. Buffer solutions with final Urea concentrations from 1M to 10 M were produced and analyzed in the same manner. Fig. 1 shows typical CD spectra for the three hydrolases in aqueous buffer solution about 30 seconds after the denaturant was added.
TLL and CALB show unfolding with increasing concentration of the denaturant (Fig. 2). The much more pronounced magnitude of unfolding for TLL compared to CALB at low GdmCl concentrations may be attributed to TLL’s 5 α-helices vs. CALB’s 10 α-helices. Thus, more denaturant is initially required per CALB molecule to promote unfolding. The modest increase in TLL’s unfolding at higher GdmCl concentrations, however, could be correlated with its high conformational stability. *S. Carlsberg* shows significant resistant to unfolding (low magnitude) and a reversal of the trend at high denaturant concentrations perhaps due to the higher energy penalty associated with introducing the urea into a very rigid “hard” enzyme [113]. Similar experiments for different enzyme concentrations (not shown) confirm trends and magnitudes in Fig. 2.

Enzyme Adsorption: Secondary Conformational Changes of Enzymes Interacting with Fumed Silica Nanoparticles in Aqueous Buffer Solution

Secondary conformational changes of enzymes interacting with fumed silica nanoparticles were monitored by following the loss of CD signal at 222 nm. Previous studies have shown that the CD signal is not significantly scattered by the presence of nanoparticles [63, 72, 73]. CD data at 222 nm (or alternatively 235 nm for *S. Carlsberg* adsorbates at initial enzyme concentrations of 3.3 mg/mL and above, see discussion for explanation) were normalized based on the degree of signal loss according to [62, 63]:

\[
\phi_{FS} = \left(\frac{CD_{FS}^{222} - CD_{N}^{222}}{-CD_{N}^{222}} \right)
\]

Equation 2

where \(\phi_{FS}\) is the average unfolded fraction for enzyme ensembles in the presence of fumed silica nanoparticles (0, native; 1, completely unfolded).
\(\mathbf{CD}_{FS}^{222} \) is the net average CD signal at 222 nm of enzyme molecule ensembles interacting with fumed silica at any state of unfolding in millidegrees, and \(\mathbf{CD}^{N}_{222} \) is the average CD signal at 222 nm for ensembles of native enzyme molecules both in aqueous buffer and in millidegrees (mdeg).

Crude enzymes (i.e., CALB, s. Carlsberg and TLL) were weighed in a glass vial and 10 mM monobasic phosphate buffer (adjusted to pH 7.8 by KOH 1M) was added followed by vortexing for about 30 seconds. Fumed silica was then added followed by vortexing until visually homogeneous suspensions were formed (about 30 seconds) as described elsewhere [24, 26].

Table 1 shows a summary of the amounts of fumed silica and enzyme used to form the suspensions at the various nominal surface coverage %SC of enzyme in the final enzyme/fumed silica adsorbates. The suspensions were transferred to the CD instrument for analysis.

Regions of Secondary Conformational Stability: 3D Filled Contour Plots

The values of unfolding tracked by changes in the CD signal at 222 nm (as a function of total enzyme molecules present, compositions see Table 1) for each enzyme are plotted as the elevation (z-direction) of contour plots where the y-axis is the concentration of enzyme in the solution prior to preparing the adsorbate and the horizontal x-axis represents the expected %SC by the enzyme molecules in the final adsorbates (Table 1). Fig. 3 shows the unfolding data for CALB on fumed silica as an example to introduce this type of plot. A total of 20 data points were used to develop contour plots (see below). An inverse-distance algorithm (SigmaPlot®) was used to interpolate. Fig. 3 indicates that at low surface coverage unfolding becomes very significant, and appears to be independent of the initial concentrations. Detailed discussions follow below.
FTIR Analysis of Lyophilized Adsorbates

The adsorbates at the various %SC were placed in a refrigerator at -20°C for several hours until frozen. These preparations were then transferred to a lyophilizer where most of the water is removed by sublimation over approximately 72h as described elsewhere [24, 26]. The lyophilized powders are removed and stored at 4°C for secondary structure analysis with FTIR. Samples of approximately 0.5 mg were placed in a Spectrum 100 Fourier Transform Infrared Spectrometer (FTIR) (PerkinElmer, Waltham, MA). Absorbance IR spectra were collected from 2000 cm\(^{-1}\) to 700 cm\(^{-1}\). The reported spectra were an average of 10 scans at 2 cm\(^{-1}\) resolution. All spectra were corrected by the automatic subtraction of water vapor and carbon dioxide using the Atmospheric Vapor Compensation (AVC) algorithm incorporated in the instrument.

Second Derivative Spectral Analysis of Lyophilized Adsorbates

The conformational state of the immobilized enzyme molecules previous to their incorporation in the reaction media was accomplished by deconstructing the information contained under the amide I region of the IR spectrum. The resolution of the original IR spectra was enhanced by taking the second derivative. This approach has been reported to narrow the half-bandwidth of the Amide I without losing the band frequencies and relative contributions of the structural components [99, 101, 114-116]. The generated peaks were then assigned to secondary structural components according to Table 2 [67, 116-120]. The derivative was calculated with the Savitsky–Golay method (4\(^{th}\) grade polynomial, 13 smoothing points) and baseline corrected using EssentialFTIR® v.150.250.

To determine the major secondary structural components for CALB and its preparations, a sample of crude lyophilized enzyme was interrogated with the FTIR. The spectrum was collected
3 times and the second derivative calculated as described above. This analysis revealed that 1660±3 cm⁻¹ and 1635±3 cm⁻¹ were the dominant bands. Less intense bands were also detected at 1690±3 cm⁻¹, 1677±3 cm⁻¹, 1642±3 cm⁻¹, 1627±3 and 1622 ±3 cm⁻¹. The assignment to secondary structural components was prepared with the reported values of Table 2 and is summarized in Table 3. These assignments agree well with a recent report for CALB immobilized on titania [121].
Results and Discussion

Unfolding of Enzymes Interacting with Fumed Silica in Aqueous Solution

Fig. 4 panel A shows a comparison of the CD spectrum of native CALB in aqueous buffer solution with those of the enzyme in the presence of fumed silica nanoparticles at different levels of surface coverage (%SC). A loss of signal at 222 nm is observed with decreasing %SC and this indicates loss of the α-helical content with decreasing surface coverage. Based on secondary structure analysis with CD, Wu and Narsimhan [73] recently reported a similar loss of α-helical content when lysozyme was absorbed on 90 nm diameter colloidal silica nanoparticles at low surface coverages. Wu and Narsimhan [72, 73] as well as our data shown here and reported earlier [122] is also consistent with the findings of Vertegel et al. [123] for lysozyme adsorbing on 20 nm diameter colloidal silica nanoparticles and FRET measurements [124]. When the initial enzyme concentration in solution is increased, a substantial loss of α-helical content with respect to the native enzyme demonstrates an even higher extent of unfolding at low %SC (Panel B in Fig. 4). This suggests that structural perturbations leading to disruption of the hydrogen bonding network associated with the secondary structure is likely to be favored in highly crowded adsorption environments.

Similar CD experiments with s. Carlsberg and TLL at low enzyme concentrations (panels A of Fig. S1 and Fig. S2 in Supporting Information) confirm stable conformations and substantial loss of α-helical components at low %SC most likely due to increased interactions with the surface.

In summary, protein-protein interactions appear to minimize the structural perturbations that are observed at low coverage. Increased initial enzyme concentrations roughly doubled the maximum extent of unfolding of both s. Carlsberg and TLL (panels B of Fig. S1 and Fig. S2 in Supporting Information).
Regions of Secondary Conformational Stability for Enzyme/Fumed Silica Adsorbates

The secondary structure is assembled with the aid of a hydrogen bonding network along the enzyme backbone. A general view of secondary conformational stability for *s. Carlsberg* and CALB adsorbing on fumed silica was obtained by conducting multiple unfolding experiments to map secondary conformational stability of *s. Carlsberg* and CALB adsorbates on fumed silica (Table 1). Conformational maps are produced (see [122] for details on this approach) to identify three regions of secondary conformational stability.

Two regions of conformational stability are observed in Fig. 5 at surface coverages above approximately 250%SC (highly stable, region III, lighter shading) and below 250%SC (significant unfolding, region I, darker shading) with a transition (region II). Values of unfolding near unity indicate that some adsorbed enzyme molecules approach to complete denaturation. The inset in Fig. 5 demonstrates that the catalytic competency of lyophilized adsorbates on the diagonal line in Fig. 5 (main figure) is better at concentrations where the conformation is retained after adsorption. This also supports our hypothesis that the surface loading regimes are essentially determined during the initial adsorption step of our immobilization protocol.

As shown in Fig. S3 in Supporting Information, three regions of secondary conformational stability were also identified for *s. Carlsberg*. When carefully examined, however, the lower section of region I (i.e., below 0.7 mg/mL) shows less unfolding compared to CALB in the same region. This could be seen as support for our hypothesis that “hard” *s. Carlsberg* has a less pronounced tendency to unfold in the presence of abundant surface area than “soft” CALB. The presence of these highly stable and functional conformations in region I is most likely responsible for the high catalytic competency in hexane of the lyophilized adsorbates in this regime (inset in Fig. S3, below 200%SC).
In summary, our findings confirm that the three regions of conformational stability previously identified by probing the structure at the residue scale with Trp fluorescence spectroscopy [122] are supported by CD spectroscopy. It appears, therefore, that the structural perturbations upon adsorption at low %SC are strong enough to disrupt the hydrogen bonding network responsible for stabilizing the secondary structure of the analyzed hydrolases. Additionally, the usefulness of conformational diagrams is validated here for designing coverage schemes that produced highly active and stable nanobiomaterials. Our findings also corroborate the importance of the enzyme “hardness” in defining the physical arrangement and ultimately the functionality of enzyme molecules immobilized on solid surfaces.

Impact of Structure Modifiers for Enzymes Interacting with Fumed Silica in Aqueous Buffer Solution

Structure modifying additives to the enzyme solutions were used to further investigate the intricate enzyme/fumed silica interactions.

Fig. 6 panel A demonstrates that disrupting the hydrophobic regions of CALB by addition of 30% (v/v) TFE leads to increased unfolding at higher surface coverages compared to the experiments with untreated enzymes most likely due to the higher affinity of the expose groups for the surface. At lower surface coverages, however, the flexible unfolded state of CALB molecules is likely to have a reduced molecular dynamism that leads to fewer opportunities for unfolding. This agrees with our previous data observed by following Trp fluorescence spectral shifts under the different adsorption loading schemes [122] and a recent report that suggests a positive correlation between reduced mobility on surfaces and a suppression of the tendency to spread [124].
Disrupting the disulfide bridges of CALB (0.5 mg/mL DTT) promotes unfolding even at lower surface coverage because the exposed segments by unfolding are likely to promote a very rapid and rather detrimental attachment to the abundant surface provided in this regime.

The impact of disrupting hydrophobic areas of *s. Carlsberg* (**Fig. 6**, panel B) shows initially increased unfolding at low surface coverages most likely due to the tendency of the rigid unfolded ensemble of *s. Carlsberg* to rapidly attach to the abundant surface area. At intermediate surface coverages, however, the unfolding is reduced most likely due to beneficial protein-protein interactions outweighing surface-protein interactions. At high surface coverages and perhaps due to the association-induced conformational transitions, substantial unfolding is detected. Similar trends to those described in the presence of TFE were observed for *s. Carlsberg* in the presence of DTT (**Fig. 6**, panel B). This is somewhat surprising due to the absence of disulfide bridges in *s. Carlsberg*’s structure. Apparently, additional interactions of DTT with the secondary structure may promote intramolecular instabilities that may lead to the disruption of the hydrogen bonding network and ultimately to unfolding. This behavior was not detected previously in the Trp fluorescence spectroscopy studies [122].

Secondary Conformational Changes for Lyophilized Adsorbates

Fig. 7 shows that the FT-infrared absorbance increases with increasing surface coverage towards the absorbance of native lyophilized CALB with no silica present. Because the silica does not absorb in this region of the spectrum, the observed FTIR signal emerges only from the enzyme and corroborates an increasingly higher surface packing density with increasing surface coverage.

The position and number of the secondary structural components for the preparations obtained at 2%SC and 1250%SC are shown in **Fig. 8** panel A and B, respectively. These components
were determined with the second derivative and assigned according to Table 3. The 1250%SC lyophilized preparation clearly shows two dominant bands at 1636.4 cm\(^{-1}\) and 1656.8 cm\(^{-1}\). These two bands can be attributed to the \(\beta\)-sheets and \(\alpha\)-helices, respectively, representing aspects of CALB’s native conformation [121]. This supports the notion that at high %SC attachment to the nanoparticles in single or perhaps multiple layers does not alter the secondary structure significantly. The 2%SC preparation, however, has a dominant broad band that peaks at 1645.1 cm\(^{-1}\). This band has been ascribed to disordered components most likely resulting from rearrangements within the enzyme secondary structure as expected upon spreading on the surface. Bands at 1672.4 cm\(^{-1}\) and at 1628.1 cm\(^{-1}\) can be attributed to \(\beta\)-sheets, respectively, which are also present when significant rearrangements occur in the secondary structure [121].

In summary, the amide I-FTIR analysis confirms the substantial loss of \(\alpha\)-helical content relative to the native state that was detected with CD for adsorbates obtained at low %SC, and supports the idea of very well maintained structures at high %SC.

Prevention of conformational changes to maintain catalytic competency is clearly an important issue. It has been suggested that increasing the enzyme concentration in the aqueous phase during immobilization would be beneficial to reduce detrimental conformational changes [125]. The results from CD and fluorescence spectroscopy suggest that at low %SC this approach leads to substantial conformational changes in both the secondary (upper part of region I in Fig. 5 and Fig. S3, darker areas) and tertiary structure. This approach is therefore tested below for the 17%SC preparation obtained at different initial enzyme concentrations.

Adsorbates with 17%SC were obtained from enzyme solutions with initial concentrations ranging from 0.3 mg/mL to 4.7 mg/mL. The adsorbates were then lyophilized and the amide I
FTIR spectra collected (data not shown). The occurrence of secondary structure conformational changes was examined further via FTIR spectra and the second derivative of these spectra for the preparations obtained from 0.3 and 4.7 mg enzyme/mL solution, Fig. 9 panels A and B, respectively. Band assignments were according to Table 3.

As shown in Fig. 9 panel A, two dominant bands that peak at 1660.5 cm\(^{-1}\) and 1649.0 cm\(^{-1}\) were detected for the 0.3 mg/mL case, which can be assigned to \(\alpha\)-helix and disordered components, respectively. Less intense signals were detected at 1673.5 cm\(^{-1}\) and 1627.7 cm\(^{-1}\), that are normally attributed to turns and \(\beta\)-sheets. This suggests partially folded structures since the \(\alpha\)-helical ordered components are still relatively abundant.

Fig. 9 panel B shows the second derivative for the 4.7 mg enzyme/mL case. A substantial loss of signal at 1660.0 cm\(^{-1}\) was detected relative to that observed at low concentration. This can be explained by a significant decrease in the \(\alpha\)-helical content. The contribution of disordered components (1644.0 cm\(^{-1}\), turns (1673.5 cm\(^{-1}\)), \(\beta\)-aggregates (1626.5 cm\(^{-1}\)), and \(\beta\)-sheets (1635.5 cm\(^{-1}\)) significantly increased. Similar results were obtained for 2 and 10 %SC preparations (data not shown). This suggests that obtaining adsorbates under crowding conditions and especially in the region of low %SC should be avoided as it may lead to considerable unfolding.

Similar studies for lyophilized preparations have identified a loss of \(\alpha\)-helical components concomitantly with an increase in the \(\beta\)-sheet, turns, and disordered components and suggested association-induced conformational transitions occurring either pre- or post- immobilization as a possible trigger mechanism [126-129].
Conclusions

We have confirmed that the existence of three regions of conformational stability for hydrolases adsorbing on fumed silica as a function of the nominal surface coverage (%SC) can be seen at the secondary structural level upon disruption of the well organized intramolecular hydrogen bonding network of these enzyme molecules. Unfolding data was inferred from far-UV CD spectra of adsorbing hydrolases on fumed silica. At low %SC, enzyme molecules were seen to undergo major conformational changes. This region of low conformational stability is thought to occur due to increased interactions of the enzyme molecules with excess silica surface area. This phenomenon was exacerbated for CALB, which is an enzyme with a loosely packed or “soft” structure. The loss in catalytic activity in hexane for fumed silica based CALB nanobiocatalysts prepared in this region can be, therefore, correlated with this surface-induced structural distortion as it may ultimately lead to disruption of the active site. The “hard” s. Carlsberg enzyme at low %SC showed a relatively higher tolerance to surface-induced unfolding, which appeared to correlate well with the high activity in hexane of lyophilized adsorbates at low %SC. At an intermediate %SC of about 250%, a region of transitional stability was identified where enzyme molecules have stable conformations and clustering appears to be absent. This region appears to be correlated with an optimum in catalytic activity for CALB in hexane. At high %SC, enzyme structure is well maintained which could be attributed to a different energy landscape where strong interactions with the surface are suppressed and protein-protein interactions dominate. This region is characterized by enzyme multilayer packing on the surface, which resulted in a substantial loss of catalytic activity of nanobiocatalysts in hexane due principally to mass transfer limitations.
TFE (30% v/v) incubation revealed the importance of hydrophobic segments in maintaining the CALB’s structure at high %SC. At low %SC, however, this approach seemed to support the idea that suppression of protein dynamics could be a useful strategy to avoid spreading on surfaces. The static structure of *s. Carlsberg* is postulated to be responsible for the even higher levels of unfolding in the presence of TFE at low %SC. DTT addition increased the unfolding levels of CALB for all %SC cases, which suggested that the exposed regions had increased affinity for the surface as well as poor mobility.

Amide-I FTIR secondary analysis for CALB lyophilized adsorbates with low %SC showed a marked decrease in the α-helical component signal. This further supported the notion of induced structural perturbation when sufficient surface area is provided for immobilization. Filled contour conformational maps suggested that an increase in the initial enzyme concentration at low %SC gives rise to a pronounced unfolding most likely due to association-induced conformational transitions. The FTIR analysis corroborated that for the lyophilized adsorbates of CALB with low %SC, turns and β-sheets dominated over α-helical components.
References

Tables

Table 1

Summary of the amounts of fumed silica and enzyme employed to form the suspensions with different nominal surface coverages. The protein concentration for each suspension was varied from 0.5 mg/mL to 4.70 mg/mL.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Enzyme mass (mg)</th>
<th>Mass fumed silica (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2%SC</td>
</tr>
<tr>
<td>CALB</td>
<td>7</td>
<td>0.718</td>
</tr>
<tr>
<td>TLL</td>
<td>5</td>
<td>0.350</td>
</tr>
<tr>
<td>s. Carlsberg</td>
<td>5</td>
<td>0.315</td>
</tr>
</tbody>
</table>

* The Nominal Surface Coverage (% SC) was calculated as follows:

\[
\%SC = \frac{\text{Projected area of enzyme molecule}}{\text{Nominal surface area of Fumed Silica}} \times 100
\]

Equation 3

The projected area of enzyme is calculated assuming a spherical shape for the enzyme molecules. The diameter of the enzyme molecules from crystallographic data were 6.4 nm [28], 5.0 nm [58], and 4.2 nm [29] for CALB, TLL and s. Carlsberg, respectively. The nominal surface area of fumed silica is as provided by the manufacturer: 255 m²/g.

Table 2

Band assignments for proteins in the infrared amide I region of the spectrum [121]

<table>
<thead>
<tr>
<th>Wavenumber [cm⁻¹]</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1620-1628</td>
<td>Intermolecular β aggregates</td>
</tr>
<tr>
<td>1629-1632</td>
<td>β-sheet</td>
</tr>
<tr>
<td>1636-1640</td>
<td>β-sheet, antiparallel β-sheet</td>
</tr>
<tr>
<td>1645-1657</td>
<td>Disordered</td>
</tr>
<tr>
<td>1648-1652</td>
<td>α-helix</td>
</tr>
<tr>
<td>1655-1658</td>
<td>α-helix</td>
</tr>
<tr>
<td>1668-1674</td>
<td>Turns</td>
</tr>
<tr>
<td>1681-1683</td>
<td>Turns</td>
</tr>
<tr>
<td>1684-1696</td>
<td>β-sheet</td>
</tr>
</tbody>
</table>
Table 3

Band assignments for CALB in the infrared amide I region of the spectrum [121]

<table>
<thead>
<tr>
<th>Wavenumber [cm$^{-1}$]</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1622±3</td>
<td>Intermolecular β aggregates</td>
</tr>
<tr>
<td>1627±3</td>
<td>β-sheet</td>
</tr>
<tr>
<td>1636±3</td>
<td>β-sheet, antiparallel β-sheet</td>
</tr>
<tr>
<td>1643±3</td>
<td>Disordered</td>
</tr>
<tr>
<td>1660±3</td>
<td>α-helix</td>
</tr>
<tr>
<td>1677±3</td>
<td>Turns</td>
</tr>
<tr>
<td>1690±3</td>
<td>β-sheet</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1 CD spectra for native enzymes in aqueous buffer at an enzyme concentration of 0.7 mg/mL. CALB (●), *s. Carlsberg* (○), TLL (▼). The signal at 222 nm can be used as baseline to estimate the α-helical content in the presence of denaturants. Similar plots were obtained for enzyme solutions with other concentrations.

Fig. 2. Chemically-induced unfolding of enzymes. Equation 1 was employed to compute the unfolded fraction based on signal loss at 222 nm. The unfolding pathways in the presence of denaturants are similar to those reported previously based on intrinsic fluorescence spectroscopy. The relatively modest unfolding for *s. Carlsberg* and TLL after an initial unfolding can be attributed to their high conformational stabilities.

Fig. 3. Unfolding data for CALB on fumed silica (z-axis) as a function of initial enzyme concentration (y-axis) and nominal surface coverage (x-axis). These data will be shown in 3D contour plots to identify regions of conformational stability and to subsequently correlate them with surface loading regimes previously postulated for the lyophilized adsorbates. This approach was introduced in the first part of this series for tertiary unfolding data [122].

Fig. 4. CD spectra for CALB adsorbing on fumed silica nanoparticles at different %SC and at initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.3 mg/mL. (Δ) Native, (●) 2%SC, (○) 100%SC, (▼) 400%SC. The signal loss at 222 nm is higher at low %SC for both low and high enzyme concentrations. This was attributed to reduced α-helical content. These results support the notion that increased surface interactions may lead to substantial conformational changes.

Fig. 5. Regions of secondary conformational stability for CALB/Fumed Silica adsorbates. The dotted vertical line at ~250%SC separates two different regions of conformational stability: Region I delimited by a long-dash-dot line where adsorbates exhibit low conformational stability, and Region III delimited by a short-dash-dot line where highly stable enzyme ensembles are adsorbed on the surface. The presence of these two regions is likely to be responsible for the observed catalytic activity (*r*₀) of the lyophilized adsorbates in hexane (inset). The poor catalytic competency observed at low %SC can be linked to Region I while low activities at high %SC are linked to Region III where catalysis is severely reduced by mass transfer limitations. The maximum in activity between those two regions can be attributed to an optimal arrangement on the surface where the structure is relatively well maintained without excessive clustering (Region II, delimited by a dotted line). A very similar conformational diagram was previously found from intrinsic fluorescence spectroscopy experiments.

Fig. 6. Secondary unfolding of (A) CALB and (B) *s. Carlsberg* adsorbing on fumed silica nanoparticles in the presence of 30% (v/v) TFE and 0.5 mg/mL DTT. Unfolding with respect to the untreated enzyme was calculated according to $\Delta \phi_{FS} = \phi_{FS} in the presence of TFE or DTT - \phi_{FS} for untreated enzyme$. The unfolded fractions (ϕ_{FS}) were calculated according to Equation 2.

Fig. 7. FTIR spectra in the amide I and II regions of native lyophilized (●) and lyophilized CALB/Fumed silica adsorbates: (○) 2%SC, (★) 100%SC, (△) 150%SC, (△) 230%SC, (●) 300%SC, and (◊) 1250%SC. A clear progression in the surface loading is evidenced by the higher signal intensities as the surface coverage increases.
Fig. 8. Second derivative of the amide I-FTIR spectra of CALB/Fumed silica lyophilized adsorbates. (A) 1250% SC and (B) 2% SC. The secondary structural components associated with the resolution-enhanced bands obtained are subsequently identified according to Table 3.

Fig. 9. FTIR spectra and second derivative in the amide I and II regions of lyophilized CALB/Fumed silica adsorbates with 17% SC. Lyophilized nanobiocatalysts were prepared from enzyme solutions with initial concentrations of (A) 0.3 mg/mL and (B) 4.7 mg/mL. The secondary structural components associated with the resolution-enhanced bands are subsequently identified according to Table 3.
Supporting Information

Conformational Changes and Catalytic Competency of Hydrolases Adsorbing on Fumed Silica Nanoparticles: II. Secondary Structure

Juan C. Cruz¹, Peter H. Pfromm¹*, John M. Tomich², Mary E. Rezac¹

(1) Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, Manhattan, KS 66506 - 5106, USA.
(2) Department of Biochemistry and Biotechnology/Proteomics Core Facility, Kansas State University, Burt Hall, Manhattan, KS 66506 - 5106, USA.

Fig. S1. CD spectra for *s. Carlsberg* adsorbing on fumed silica nanoparticles at different %SC and at initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.3 mg/mL. (Δ) Native, (●) 2%SC, (○) 100%SC, (▼) 400%SC. As for CALB, the signal loss at 222 nm is higher at low %SC for the two concentrations under consideration. This was attributed to a reduction in the α-helical content due to conformational changes upon contact with the surface.

Fig. S2. CD spectra for TLL adsorbing on fumed silica nanoparticles at different %SC and at initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.30 mg/mL. (Δ) Native, (●) 2%SC, (○) 100%SC, (▼) 400%SC. At low enzyme concentration, there is an observable loss of signal at 222 nm for 2%SC and 100%SC. When the enzyme concentration is increased, there is no significant loss of signal for 100%SC and 400%SC. This is most likely due to TLL’s conformationally stable structure.

Fig. S3. Regions of secondary conformational stability for *s. Carlsberg*/Fumed Silica adsorbates. The dotted vertical line at ~250%SC separates two different regions of conformational stability. Region I and III of low and high conformational stability, respectively. In this case, the catalytic activity (r₀) of the lyophilized adsorbates in hexane (inset) is constantly increasing. It appears that the extent of unfolding while operating in the lower part of Region I is less than that observed for CALB in the same region. This resilience to denaturation could be seen as a plausible explanation for the higher activities in this regime of surface loading compared with CALB.
Fig. 3
Fig. 4

A

CD [mdeg]

Wavelength [nm]

B

CD [mdeg]

Wavelength [nm]
Fig. 5

- **Enzyme Concentration (mg/ml)**
- **Nominal Surface Coverage (%SC)**

- Regions I, II, and III
- Diffusion-controlled
- Conformation-controlled
- Maximum activity
- Current operation line

Legend:

- ϕ_{FS}
 - 0.1
 - 0.2
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7
 - 0.8
 - 0.9
Fig. 6

A

Unfolding $|\Delta \phi_{FS}|$

CALB TFE

CALB DTT

B

Unfolding $|\Delta \phi_{FS}|$

s. Carlsberg TFE

s. Carlsberg DTT
Fig. 7
Fig. 8

Second derivative

Absorbance [a.u.]

1800 1700 1600 1500

Wavenumber [cm⁻¹]

1636.4 1800 1700 1600 1500

1656.8

A

Second derivative

Absorbance [a.u.]

1800 1700 1600 1500

Wavenumber [cm⁻¹]

1696.0 1672.4 1645.1 1628.1

B
Fig. 9

A
Second derivative
Absorbance [a.u.]
Wavenumber [cm$^{-1}$]

B
Second derivative
Absorbance [a.u.]
Wavenumber [cm$^{-1}$]
Fig. S1

(A) CD [mdeg] vs. Wavelength [nm]

(B) CD [mdeg] vs. Wavelength [nm]
Fig. S2
Fig. S3

Enzyme Concentration [mg/ml]

Conformation-controlled

Diffusion-controlled

Current operation line

Nominal Surface Coverage [%SC]

\[r_0 \sim 200 \]

\(\phi_{FS} \)

- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8