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Abstract

Huge amounts of data that are generated on social media during emergency situations are

regarded as troves of critical information. The use of supervised machine learning techniques

in the early stages of a disaster is challenged by the lack of labeled data for that particular

disaster. Furthermore, supervised models trained on labeled data from a prior disaster may

not produce accurate results. To address these challenges, domain adaptation approaches,

which learn models for predicting the target, by using unlabeled data from the target disaster

in addition to labeled data from prior source disasters, can be used. However, the resulting

models can still be affected by the variance between the target domain and the source

domain. In this context, we propose to use a hybrid feature-instance adaptation approach

based on matrix factorization and the k-nearest neighbors algorithm, respectively. The

proposed hybrid adaptation approach is used to select a subset of the source disaster data

that is representative of the target disaster. The selected subset is subsequently used to learn

accurate supervised or domain adaptation Näıve Bayes classifiers for the target disaster. In

other words, this study focuses on transforming the existing source data to bring it closer to

the target data, thus overcoming the domain variance which may prevent effective transfer

of information from source to target. A combination of selective and transformative methods

are used on instances and features, respectively. We show experimentally that the proposed

approaches are effective in transferring information from source to target. Furthermore, we

provide insights with respect to what types and combinations of selections/transformations

result in more accurate models for the target.
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Chapter 1

Introduction

Social media is becoming a more prevalent part of our everyday life, due to the advancements

in technology and virtualization. The availability of the Internet, cameras and real-time

message boards at our fingertips has brought about live and parallel reporting, and witness

testimonies during many events. These reports can be useful to responders and can help

create awareness among the populace, especially in emergency situations (Meier, 2015; Wat-

son et al., 2017). Despite the potential benefits, major response groups and organizations

under-utilize these sources of information, as therein lie many administrative and technical

challenges (Meier, 2013). Among the challenges, there are reliability issues associated with

public and unstructured data, as well as information overload issues, as millions of messages

are posted during a crisis situation (Bullock et al., 2012).

There are many recent studies that propose the use of machine learning techniques to

provide automated methods for analyzing social media data to reduce the information over-

load (Imran et al., 2015; Beigi et al., 2016). Machine learning techniques can help transform

raw data into usable information by labeling, prioritizing and structuring data, and making

them beneficial to responders and to the populace in times of need (Qadir et al., 2016). How-

ever, supervised learning algorithms rely on labeled training data to build predictive models.

Accurate labeling of data for an emerging disaster is both time consuming and expensive,

and, hence, it is not appropriate to assume that labeled data for a current disaster will be
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promptly available to be used for analysis. The lack of labeled data for emerging disasters

prohibits the use of supervised learning techniques.

To address this challenge, several works proposed to use labeled data from prior “source”

disasters to learn supervised classifiers for a “target” disaster (Verma et al., 2011; Imran et al.,

2013, 2016b). However, due to the divergence of each disaster domain in terms of location,

nature, season, etc. (Palen and Anderson, 2016), the source disaster might not accurately

represent the characteristics of the target disaster (Qadir et al., 2016; Imran et al., 2015).

Domain adaptation techniques (Pan and Yang, 2010; Jiang, 2008) are designed to circumvent

the lack of labeled target data by making use of unlabeled target data as guideposts for the

readily available labeled source data. Studies in the disaster space have shown that using

domain adaptation techniques, which use together target unlabeled data and source labeled

data, significantly improve classification results as compared to supervised techniques that

use solely labeled source data (Li et al., 2015, 2017b). Unlabeled data from the target disaster

become more abundant as the event unfolds, and it can enable the use of domain adaptation

techniques during emerging or occurring disasters. This property of domain adaptation,

which is in line with realistic data availability, makes it more appealing to employ, during

emerging or occurring disasters.

There are several ways in which the unlabeled target data can be used with domain

adaptation techniques, including parameter-based adaptation, instance-based adaptation

and feature-based adaptation (Pan and Yang, 2010). In the parameter-based adaptation,

the labeled source data is used together with the unlabeled target data to identify shared

parameters that result in good predictions for the target data. In the instance-based adap-

tation, the unlabeled target data is used to identify and/or reweigh the most relevant source

labeled instances with respect to the target classification task, while in feature-based adap-

tation, the target unlabeled data and source labeled data are used together to find a feature

representation that minimizes the difference between the two domains. Prior work on disas-

ter tweet classification using domain adaptation has relied on parameter-based adaptation.

Specifically, Li et al. (2017b) proposed to learn weighted source and target Näıve Bayes

classifiers with the iterative method of Expectation-Maximization (EM) (Dempster et al.,
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1977), and showed that the resulting classifiers can accurately predict the target.

In this study, we propose to use a combination of two domain adaptation approaches,

specifically a hybrid between feature-based adaptation and instance-based adaptation, to

reduce the variation between the two domains. First, the Alternating Nonnegative Least

Squares Matrix Factorization (LSNMF) (Lin, 2007) is used on the combined source and

target data, represented using binary vectors, to create a dense and reduced conceptual rep-

resentation of source and target instances. Subsequently, the k-Nearest Neighbors algorithm

(kNN) is used to select a subset of the source instances which are most similar to the tar-

get instances, according to the cosine similarity calculated based on the reduced common

representation. Data are represented using both binary (existence) and numeric (TF-IDF)

representations, as these representations allow us to observe how the different feature types

affect different method combinations. The objective is to gain an understanding of the

benefits provided by the hybrid feature-instance adaptation approach, as compared to the

independent feature or instance adaptation approaches. Furthermore, given that both the

LSNMF approach and the kNN approach have parameters that need to be tuned, specifically,

the number of reduced features f for LSNMF and the number of neighbors k for kNN, we

aim to study the variation of performance with these parameters and identify overall good

values that can be used in practice.

As an application, we focus on the task of classifying disaster tweets as being relevant

to the disaster of interest (i.e., on-topic) or not relevant (i.e., off-topic). This is one of the

most basic but crucial classifications needed during a disaster, as subsequent analysis should

be done only on data relevant to the disaster in question. Furthermore, this classification

is not trivial: supervised classifiers may not achieve accurate results due to domain vari-

ations. Hence, we use our feature-instance adaptation approach and perform comparisons

to baselines such as supervised Naive Bayes and individual components of our approach

(e.g., feature adaptation only or instance adaptation onclassification of the binary repre-

sentationly). Furthermore, we compare our approach to an existing Self-Training Domain

Adaptation approach, which does not perform feature or instance adaptation, but instead

adapt parameters of the source model based on the target model.
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To summarize, our main contributions are as follows:

• We design a hybrid feature-instance adaptation approach to adapt the source disaster

data to the target disaster data. Specifically, we use a matrix factorization approach to

construct a shared representation of source and target instances, and subsequently use

the kNN algorithm to select source instances that are most similar to target instances.

Finally, we train supervised Näıve Bayes classifiers on the modified source data.

• We perform an extensive set of experiments on pairs of source-target disasters from the

CrisisLexT6 datasets to evaluate the feature-instance adaptation approach by compari-

son with approaches that make use of either feature-based adaptation or instance-based

adaptation, but not both.

• We study the variation of performance with the parameters of the feature-based adap-

tation (specifically, the number of features, f), and instance-based adaptation (specif-

ically, the number of neighbors, k), respectively, to identify parameters that result in

good overall performance.
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Chapter 2

Methods

There are many traditional machine learning techniques that can be used for disaster tweet

classification, such as Näıve Bayes (NB), Support Vector Machines (SVM), Logistic Regres-

sion (LR), Random Forest (RF), etc. Compared to other algorithms, Näıve Bayes has the

advantage of not requiring hyper-parameter tuning. Furthermore, a recent study on disaster

tweet classification (Li et al., 2017b) has shown that the results obtained with Näıve Bayes

are comparable, and sometimes better, than the results obtained with other more sophisti-

cated algorithms used with default parameters. Therefore, in this work, we will use Näıve

Bayes together with a hybrid feature-instance adaptation approach to learn classifiers for

disaster data, as described below.

Given a source and target pair of disasters, our goal is to adapt the source data by reducing

the variance with respect to the target data, and then train Näıve Bayes classifiers on the

adapted source data. The source adaptation is guided by the target unlabeled data. More

specifically, we propose a hybrid feature-instance adaptation approach to select a subset

of the source instances, which are most similar to the target instances. First, the target

instances are used to construct a target vocabulary V , which is subsequently used to represent

both source and target data as bag-of-words binary vectors. As part of the feature adaptation

step, the resulting data matrix D is decomposed using the popular Least Squares Non-

negative Matrix Factorization (LSNMF) proposed by Lin (2007). The implementation of this
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method is available in Python under the “nimfa” package. Intuitively, the decomposition will

produce a reduced dense representation of the data, which is more suitable for identifying

similar instances as compared to the sparse binary representation (Guo and Diab, 2012).

As part of the instance adaptation step, the reduced representation is used to identify

source instances that are most similar to the target. More precisely, for each target (unla-

beled) instance, we calculate the cosine similarity to the source instances and select the k

nearest neighbors from the source. If two different target instances have the same source

instance among the k nearest neighbors, the selected subset of the source may contain du-

plicate instances. We experiment with two settings, one in which we retain duplicates (i.e.,

we reweigh source instances), and another one in which we remove duplicates (under the

assumption that duplicates can bias the classifier).

Finally, we use the Näıve Bayes algorithm to learn classifiers from the selected subset

of the source. Here, we also experiment with three settings: one in which the supervised

Gaussian Näıve Bayes algorithm is used on the reduced representation of the selected source

instances, and one in which the supervised Bernoulli Näıve Bayes algorithm is used on the

original binary representation of the selected source instances, and another where we use a

self-training domain adaptation technique based on a weighted Näıve Bays Bernoulli classifier

proposed by Li et al. (2017a). The reason we also experiment with the binary representation

of the adapted source is that in preliminary experimentation the binary representation gave

better results than the numeric TF-IDF representation Finally, the resulting classifiers are

tested on separate target test data. The approach is summarized in Algorithm 1.
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Algorithm 1: Hybrid feature-instance adaptation with Näıve Bayes and domain adap-
tation classifiers

1. Given: Target unlabeled data TU , source labeled data SL, and target test data TT .

2. Use target unlabeled data TU to construct the vocabulary V .

3. Represent source SL and target TU data as binary vectors. The resulting data
matrix is denoted by D.

4. Feature adaptation: Use the Least Squares Non-negative Matrix Factorization to
obtain a reduced representation of the source and target data. The dimension of the
reduced representation is denoted by f .

5. Instance adaptation: For each target instance in TU , find its k nearest neighbors and
add them to the selected subset of source instances Sel-SL, by retaining duplicates or
by removing duplicates, respectively.

6. Näıve Bayes: Use the selected subset of source instances Sel-SL, with the reduced
representation or the original binary representation, respectively, to learn a classifier
for the target data. Alternatively, use the Self-Training Domain Adaptation approach
on the modified source/target.

7. Evaluate the resulting Näıve Bayes and Self-Training Domain Adaptation classifiers
on the target test data TT .

7



Chapter 3

Dataset and Experimental Setup

3.1 Dataset

The CrisisLexT6 dataset (Olteanu et al., 2014) is a collection of six disasters that occurred

between October 2012 and July 2013 in United States, Canada and Australia. This dataset

was collected through Twitter API based on disaster keywords and the geographic locations

of the affected areas. Each disaster’s data contains approximately 10,000 tweets which

were manually labeled as on-topic or off-topic using CrowdFlower, a popular crowdsourcing

platform. The data was cleaned according to the pre-processing steps described in (Li

et al., 2015), which included removing re-tweets (RT), duplicate tweets, non-printable ASCII

characters, and replacing URL, email addresses and usernames with placeholders pertaining

to each. Furthermore, the dataset is split into combinations of consecutive source-target pairs

of all six disasters and converted into bag-of-words binary (word existence) representations.

Each feature (word) must appear at least 10 times in any given pair of disasters to be included

in the vocabulary as a feature. Hence, the feature set is different from one source-target pair

to the another, although, on average, pairs have approximately 1200-1300 features.
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3.2 Experimental Setup

In this section, we state the research questions that are driving our experiments, describe

the evaluation setup and also the parameter setting for the constituent approaches of the

experiments, and finally our baselines.

3.3 Research Questions

Our experiments are designed to answer the following research questions:

• Are the adaptation approaches more effective than the baseline, where Bernoulli Näıve

Bayes is used to learn classifiers from the binary representation of the source data?

Does this also hold true when classifying using the Self-Training Domain Adaptation

approach? Are the same effects observed when using the numeric representation of the

data?

• Is the hybrid feature-instance adaptation approach more effective than the individ-

ual feature adaptation and instance adaptation approaches? Between Gaussian Näıve

Bayes on the reduced or numeric representation of the selected source data and Bernoulli

Näıve Bayes on the binary representation of the selected numeric or binary source data,

which classifier gives better results?

• Between the feature adaptation approach and the instance adaptation approach, which

one is more effective? What parameter values result in better performance for the two

approaches, respectively considering either the numerical or binary representation?

• When using the instance adaptation approach, is it better to keep duplicate neighbors

or to remove them?

• How do the feature and hybrid approaches affect the Self-Training Domain Adaptation

classifier?
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Table 3.1: Summary of source and target disaster pairs used in the experiments, together
with information about instances and features in the combined source and target datasets

Crisis Instances Features

Abbreviation Source Target On-topic Off-topic Total

BB-AF
Boston Bombings

Alberta Floods 7938 9023 16961 1322
BB-OT Oklahoma Tornado 7650 9358 17008 1143
BB-WT West Texas Explosion 8564 9042 17606 1239

OT-AF Oklahoma Tornado Alberta Floods 6706 9763 16469 1322

QF-AF
Queensland Floods

Alberta Floods 6733 9264 15997 1322
QF-BB Boston Bombings 7677 8859 16536 1317
QF-OT Oklahoma Tornado 6445 9599 16044 1143

SH-AF

Sandy Hurricane

Alberta Floods 8758 8466 17224 1322
SH-BB Boston Bombings 9702 8061 17763 1317
SH-OT Oklahoma Tornado 8470 8801 17271 1143
SH-QF Queensland Floods 8497 8302 16799 1242
SH-WT West Texas Explosion 9384 8485 17869 1239
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Chapter 4

Evaluation Strategy and Baselines

4.1 Evaluation Strategy

We consider the six disasters in our dataset in chronological order and create 12 pairs of

source and target disasters, by ensuring that the source disaster has occurred before the

target disaster (under the assumption that a later disaster may mention an earlier disaster

but not the other way around). This strategy creates pairs of natural or man-made disasters,

but also pairs that contain a combination of natural and man-made disasters. In our result

tables, we use the abbreviations shown in Table 3.1 to specify the source and target disasters

in a pair, respectively. Out of the six disasters used as part of our dataset, BB (Boston

Bombings) and WT (West Texas Explosion) are man-made while the others are natural

disasters.

We used the 5-fold cross-validation technique for each pair of disasters to select target

test and target unlabeled data. Similar to (Li et al., 2017b), the folds are rotated five times

to obtain five combinations of consecutive folds, within each selecting the first three folds as

target unlabeled TU data, the next fold as target test TT data, and last one as target labeled

TL data (reserved for future work). Each domain has between 8000-9000 instances, as can

be seen from Table 3.1. Only target unlabeled data is used with the instance adaptation

approach, which means that the classifiers are different for each test fold, as they are trained
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from different subsets of the source instances, as guided by the corresponding unlabeled

target data. We report accuracy results averaged over 5 folds.

4.1.1 Matrix Factorization Setup

Data from each pair of disasters, represented as a binary matrix which consists of bag-of-

words vectors, is reduced using the LSMNF technique. Specifically, the number of features f

for each pair is reduced from approximately 1200-1300 to 30, 50, 100, 200, and 500 features,

respectively.

4.1.2 K-Nearest Neighbors Setup

The kNN algorithm is used to select the k nearest neighbors from the entire source for each

of the instances in the target unlabeled dataset. We experiment with the following values

for k: 1, 3, 5, 7, 9, 11, to understand what value of k results in best overall performance.

As there is a possibility of having the same source neighbor for multiple target instances,

duplicates may exist in the source subset. Hence, we experiment with two options: retaining

duplicates (d) or not retaining duplicates (n) to understand which one is more appropriate.

4.1.3 Bernoulli Näıve Bayes and Gaussian Näıve Bayes

After selecting a subset of the source instances using the hybrid feature-instance adaptation,

the next step is to learn a Näıve Bayes classifier from the adapted source. We experiment

with two options. First, we use the reduced representation of the selected source subset

(r) to train Gaussian Näıve Bayes classifiers. Furthermore, we also use the original binary

representation of the instances in the selected source subset (b) to train Bernoulli Näıve

Bayes, given preliminary experimentation that showed better results with Bernoulli Näıve

Bayes on the binary representation, as compared to Gaussian Näıve Bayes on the numeric

representation.
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4.1.4 Self-Training Domain Adaptation

After reverting to the original binary feature set based on the source subset, we use a self-

training domain adaptation classifier with Näıve Bayes Bernoulli as proposed in (Li et al.,

2017a) to train a target model iteratively. This is done by performing a weighted combination

of source and target until the predicted labels do not change significantly between two

consecutive iterations. This model is trained and used to classify each of the pairs with

binary features.

4.2 Total Number of Models Trained

Figure 4.1 provides a visual representation for this section. Initially, we consider the 12

original binary pairs of disasters, and then reduced each to the five feature sets mentioned in

4.1.1, resulting in 60 pairs of feature reduced datasets and corresponding models. Similarly,

the numeric representation of the dataset will also create the same number of feature adapted

pairs and models. Adding up the 24 original pairs (12 for the binary representation and

12 for the numeric representation), and the 60 feature adapted pairs, with different feature

combinations. Furthermore, after performing the six combinations of the instance adaptation

approach on the previous 60 pairs, creates 360 pairs of source subsets/models. This number

doubles to 720 with the additional choice of removing duplicates in source subsets. That

being said, the initial 60 pairs from feature adaptation should also be tested as a control for

instance adaptation. Finally, by reverting to the original binary feature set mentioned in

4.1.3 for each pair we create another 720 pairs to model.

The Self-Training Domain Adaptation classifier is trained on the binary featured data, which

is about half of the pairs, in addition to the Bernoulli Näıve Bays classifier, while the numeric

featured data are only classified using the Gaussian Näıve Bays. Hence, we trained about

4908 models in this work.
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Figure 4.1: Hybrid workflow combinations and number of models trained considering the
feature-instance domain adaptation approach in conjunction with the classification models.
X is the number of reduced features, Y is the number of neighbors and Z is the duplication
retaining policy. The previous stage of each adaptation approach is considered a baseline as
to whether the baseline affects the accuracy of the trained models
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4.3 Baselines

We compare our proposed approach against the following baselines:

• Supervised Bernoulli Näıve Bayes classifiers learned from the binary representation of

the source and evaluated on the test target data.

• Supervised Gaussian Näıve Bayes classifiers learned from the numeric representation

of the source and evaluated on the test target data.

• Self-Training Domain Adaptation classifiers learned from the binary representation of

the source and evaluated on the test target data.

• Instance adaptation with Bernoulli Näıve Bayes classifiers, where we first use the bi-

nary representation of the source to identify a subset of instances most similar to the

target instances, and subsequently learn Bernoulli Näıve Bayes classifiers from the

selected source subset.

• Feature-adaptation with Gaussian Näıve Bayes classifiers, where we first use the binary

and numeric representations of the source and target to find a reduced dense repre-

sentation, and subsequently learn Gaussian Näıve Bayes classifiers from the selected

source subset.
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Chapter 5

Experimental Results and Discussion

5.1 Instance Adaptation with Bernoulli Näıve Bayes

Classifiers

Instance adaptation is performed on the original binary representation of the combined source

and (unlabeled) target datasets using kNN. Specifically, for each target instance we select

the k nearest neighbors from the corresponding source. Subsequently, Bernoulli Näıve Bayes

is used on the selected source subset, with duplicates (d) or no duplicates (n). The goal of

this adaptation is to subsample the portion of source which is closer to target, decreasing the

variance between the two datasets. Table 5.1 shows the results of this set of experiments.

As can be seen, the best results overall are obtained for the model labeled 3k-n which is a

model where the 3 nearest neighbors are selected for each target instance, and duplicates are

not kept in the selected source subset. Furthermore, the performance slightly decreases for

values of k greater than 3 (regardless of the fact that duplicates are retained or removed),

suggesting that noisy source instances are added to the selected subset when more than

3 neighbors are included. Given this observation (and other preliminary experiments now

shown), the subsequent experiments that make use of kNN will be run with k = 3 and

k = 7 for binary and numeric represented pairs, respectively. When comparing the instance

adaption results with the results of Bernoulli Näıve Bayes on the original binary data (labeled
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Original in Table 5.1), it can be seen that the instance adaptation consistently improves the

classification accuracy by as much as 7.4% and 6% in the case of SH-BB and BB-AF pairs,

respectively. The same claim can be made when using Gaussian Näıve Bayes on the original

numeric data (labeled Original in Table 5.2) with the exception of the SH-OT pair, observing

improvements as high as 6.5% and 5.9% in the case of QF-OT and QF-BB pairs, respectively.

Table 5.1: Instance-based adaptation using kNN on the binary representation, followed by
Bernoulli Näıve Bayes, on the selected source subset. Accuracy results on 12 source-target
pairs are shown for three values of k, specifically, 3, 5, and 7, and two instance-selection
settings, specifically, with duplicates (denoted by d) and with no duplicates (denoted by n).
For example, 3k-d means that 3 nearest neighbors are selected for each target instance, and
duplicates are retained, while 3k-n means that 3 nearest neighbors are selected, but duplicates
are removed. The Original results are obtained when Bernoulli Näıve Bayes is used on the
original binary data. The standard deviation of cross-validation is shown under each result
(denoted by ±). Significant best results for each pair are highlighted in bold (based on a t-test
with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.744 0.842 0.946 0.871 0.813 0.728 0.848 0.759 0.755 0.832 0.823 0.820
3k-d ±0.014 ±0.010 ±0.005 ±0.005 ±0.005 ±0.009 ±0.008 ±0.005 ±0.007 ±0.008 ±0.006 ±0.019

0.736 0.847 0.949 0.868 0.811 0.717 0.848 0.756 0.758 0.830 0.819 0.809
5k-d ±0.010 ±0.009 ±0.005 ±0.006 ±0.005 ±0.007 ±0.006 ±0.010 ±0.009 ±0.006 ±0.010 ±0.008

0.732 0.844 0.948 0.869 0.810 0.712 0.850 0.757 0.753 0.828 0.816 0.830
7k-d ±0.008 ±0.008 ±0.004 ±0.006 ±0.004 ±0.006 ±0.005 ±0.007 ±0.006 ±0.008 ±0.012 ±0.006

0.752 0.842 0.946 0.874 0.806 0.780 0.853 0.726 0.747 0.829 0.789 0.846
3k-n ±0.015 ±0.010 ±0.004 ±0.005 ±0.005 ±0.006 ±0.010 ±0.009 ±0.014 ±0.008 ±0.010 ±0.011

0.749 0.846 0.946 0.874 0.804 0.770 0.850 0.724 0.739 0.823 0.786 0.833
5k-n ±0.021 ±0.010 ±0.002 ±0.007 ±0.005 ±0.005 ±0.008 ±0.008 ±0.013 ±0.007 ±0.014 ±0.008

0.746 0.848 0.947 0.874 0.800 0.772 0.849 0.720 0.733 0.817 0.782 0.820
7k-n ±0.017 ±0.009 ±0.003 ±0.007 ±0.005 ±0.008 ±0.008 ±0.005 ±0.021 ±0.009 ±0.011 ±0.012

5.2 Feature Adaptation with Gaussian Näıve Bayes Clas-

sifiers

Similar to the instance-based adaptation, the feature-based adaptation is also performed on

the original binary and numeric data matrices, consisting of source and (unlabeled) target

data. The goal of this adaptation is to create a denser feature set that better captures the
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Table 5.2: Instance-based adaptation using kNN on the numeric representation, followed by
Gaussian Näıve Bayes, on the selected source subset. Accuracy results on 12 source-target
pairs are shown for three values of k, specifically, 3, 5, and 7, and two instance-selection
settings, specifically, with duplicates (denoted by d) and without duplicates (denoted by n).
For example, 3k-d means that 3 nearest neighbors are selected for each target instance, and
duplicates are retained, while 3k-n means that 3 nearest neighbors are selected, but duplicates
are removed. The Original results are obtained when Gaussian Näıve Bayes is used on the
original numeric data.The standard deviation of cross-validation is shown under each result
(denoted by ±). Significant best results for each pair are highlighted in bold (based on a t-test
with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.561 0.789 0.914 0.720 0.612 0.449 0.573 0.760 0.631 0.777 0.799 0.791
Original ±0.015 ±0.010 ±0.007 ±0.006 ±0.009 ±0.017 ±0.009 ±0.009 ±0.015 ±0.008 ±0.005 ±0.007

0.617 0.691 0.882 0.733 0.618 0.508 0.631 0.734 0.661 0.731 0.768 0.820
3k-d ±0.023 ±0.018 ±0.011 ±0.014 ±0.017 ±0.022 ±0.012 ±0.013 ±0.020 ±0.007 ±0.014 ±0.008

0.598 0.722 0.899 0.749 0.630 0.505 0.638 0.744 0.677 0.740 0.782 0.829
5k-d ±0.011 ±0.012 ±0.007 ±0.020 ±0.014 ±0.025 ±0.010 ±0.011 ±0.022 ±0.008 ±0.009 ±0.004

0.603 0.749 0.908 0.757 0.637 0.490 0.635 0.746 0.654 0.752 0.787 0.826
7k-d ±0.009 ±0.006 ±0.006 ±0.011 ±0.012 ±0.025 ±0.013 ±0.011 ±0.019 ±0.005 ±0.010 ±0.006

0.597 0.648 0.890 0.687 0.574 0.469 0.562 0.749 0.657 0.750 0.780 0.837
3k-n ±0.029 ±0.017 ±0.011 ±0.021 ±0.017 ±0.016 ±0.008 ±0.016 ±0.023 ±0.006 ±0.008 ±0.006

0.567 0.696 0.909 0.696 0.593 0.462 0.585 0.764 0.648 0.758 0.797 0.837
5k-n ±0.014 ±0.012 ±0.009 ±0.031 ±0.020 ±0.016 ±0.014 ±0.012 ±0.024 ±0.006 ±0.008 ±0.008

0.570 0.741 0.919 0.705 0.601 0.445 0.589 0.757 0.649 0.763 0.791 0.808
7k-n ±0.016 ±0.011 ±0.009 ±0.025 ±0.014 ±0.015 ±0.010 ±0.017 ±0.026 ±0.003 ±0.007 ±0.018
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similarity between target and source instances, and ultimately produces better classification

results. We use a wide range of dimensions, specifically 30, 50, 100, 200 and 500. Table

5.3 shows the results of the Gaussian Näıve Bayes classifiers trained on the reduced rep-

resentations from the original binary representation, by comparison with the results of the

Bernoulli Näıve Bayes classifiers trained on the original binary representation. Similarly,

Table 5.4 shows results with the minor difference of using reduced representations from

the numeric representation and the Gaussian Näıve Bayes classifier on the original numeric

representation.

As can be seen, the highest accuracy overall is obtained with the reduced representation,

although there are pairs in Table 5.3 for which the original representation gives better results.

This suggests that the reduced representation by itself is not always enough to ensure best

results on the target. We hypothesize that the reason behind the highest values obtained

with the original models could be given by the overall similarity of those source and target

disasters, as reflected by the higher accuracy scores when compared with other original

models. It can also be observed that three of the four cases in Table 5.3 where feature

adaptation did not perform well, OT is one of the disasters in the pair, which might hint to

an anomaly in this specific disaster. The results in Table 5.3 also show that the classifiers

trained with 200 reduced features (i.e., 200f) give the best results overall, while sometimes

the models trained with 50 or 100 reduced features give the best results for specific pairs.

Table 5.4 results show that models trained with 30 reduced features give the overall best

result, while the ones trained with 200 perform well when the 30 feature model falls short. In

subsequent experiments we will only train classifiers with 50 and 200 features for pairs from

the binary representation, and 30 and 200 features for pairs from the numeric representation

to reduce the number of experiments (by eliminating several values from the original feature

adaptation experiment).
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Table 5.3: Feature-based adaptation using LSNMF on the original binary representation,
followed by Gaussian Näıve Bayes on the reduced representation. Accuracy results on 12
source-target pairs are shown for six values of f , specifically, 30, 50, 100, 200, and 500. For
example, 50f means that the LSNMF decomposition has 50 reduced features. The Original
results are obtained with Bernoulli Näıve Bayes on the original binary data. The standard
deviation of cross-validation is shown under each result (denoted by ±). Significant best
results for each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.792 0.801 0.922 0.756 0.860 0.444 0.770 0.720 0.807 0.751 0.781 0.704
30f ±0.010 ±0.013 ±0.004 ±0.011 ±0.007 ±0.009 ±0.011 ±0.008 ±0.005 ±0.009 ±0.004 ±0.012

0.764 0.850 0.921 0.774 0.796 0.457 0.760 0.790 0.565 0.766 0.809 0.736
50f ±0.011 ±0.010 ±0.006 ±0.002 ±0.006 ±0.009 ±0.013 ±0.005 ±0.015 ±0.011 ±0.013 ±0.002

0.563 0.829 0.948 0.798 0.849 0.643 0.808 0.828 0.698 0.758 0.819 0.843
100f ±0.022 ±0.010 ±0.005 ±0.006 ±0.006 ±0.011 ±0.012 ±0.008 ±0.010 ±0.009 ±0.007 ±0.016

0.618 0.851 0.932 0.814 0.841 0.729 0.815 0.834 0.669 0.743 0.833 0.846
200f ±0.012 ±0.009 ±0.004 ±0.007 ±0.010 ±0.018 ±0.007 ±0.003 ±0.010 ±0.011 ±0.002 ±0.013

0.721 0.807 0.936 0.815 0.824 0.463 0.694 0.799 0.671 0.742 0.840 0.825
500f ±0.013 ±0.011 ±0.003 ±0.006 ±0.007 ±0.012 ±0.007 ±0.012 ±0.007 ±0.009 ±0.007 ±0.011

Table 5.4: Feature-based adaptation using LSNMF on the original numeric representation,
followed by Gaussian Näıve Bayes on the reduced representation. Accuracy results on 12
source-target pairs are shown for six values of f , specifically, 30, 50, 100, 200, and 500. For
example, 50f means that the LSNMF decomposition has 50 reduced features. The Original
results are obtained with Gaussian Näıve Bayes on the original numeric data. The standard
deviation of cross-validation is shown under each result (denoted by ±). Significant best
results for each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.561 0.789 0.914 0.720 0.612 0.449 0.573 0.760 0.631 0.777 0.799 0.791
Original ±0.015 ±0.010 ±0.007 ±0.006 ±0.009 ±0.017 ±0.009 ±0.009 ±0.015 ±0.008 ±0.005 ±0.007

0.768 0.791 0.891 0.776 0.835 0.778 0.797 0.774 0.805 0.851 0.836 0.886
30f ±0.012 ±0.011 ±0.007 ±0.012 ±0.004 ±0.008 ±0.011 ±0.010 ±0.008 ±0.009 ±0.009 ±0.007

0.842 0.800 0.913 0.777 0.846 0.761 0.781 0.789 0.802 0.835 0.820 0.873
50f ±0.007 ±0.011 ±0.005 ±0.014 ±0.003 ±0.012 ±0.014 ±0.012 ±0.005 ±0.007 ±0.015 ±0.009

0.813 0.794 0.916 0.811 0.831 0.759 0.817 0.823 0.785 0.808 0.828 0.864
100f ±0.009 ±0.003 ±0.006 ±0.009 ±0.005 ±0.010 ±0.014 ±0.008 ±0.011 ±0.012 ±0.007 ±0.008

0.809 0.798 0.934 0.823 0.795 0.695 0.800 0.818 0.753 0.795 0.817 0.862
200f ±0.010 ±0.010 ±0.008 ±0.005 ±0.012 ±0.020 ±0.014 ±0.007 ±0.008 ±0.006 ±0.003 ±0.010

0.605 0.821 0.931 0.804 0.703 0.542 0.699 0.770 0.649 0.727 0.819 0.760
500f ±0.008 ±0.012 ±0.005 ±0.002 ±0.007 ±0.014 ±0.013 ±0.015 ±0.006 ±0.008 ±0.004 ±0.008
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Table 5.5: Hybrid feature-instance adaptation. Accuracy results on 12 source-target pairs
from the binary representation are shown for k = 3, f = 50, 200, respectively, combined with
settings with duplicates (denoted by d) or with no duplicates (denoted by n). Näıve Bayes
is run on the selected source subset with reduced (denoted by r) and binary (denoted by b)
representations, respectively. For example, 50f-3k-d-r means that LSNMF gives 50 reduced
features, kNN selects 3 nearest neighbors, duplicated are retained, and the Gaussian Näıve
Bayes is trained on the reduced representation, while 50f-3k-n-b means that there are no
duplicates and Bernoulli Näıve Bayes is trained on the binary representation of the selected
source subset. The Original results are obtained when Bernoulli Näıve Bayes is used on the
original data. The standard deviation of cross-validation is shown under each result (denoted
by ±). Significant best results for each pair are highlighted in bold (based on a t-test with
p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.757 0.822 0.928 0.753 0.780 0.749 0.758 0.775 0.645 0.696 0.796 0.883
50f-3k-d-r ±0.012 ±0.009 ±0.008 ±0.007 ±0.007 ±0.009 ±0.012 ±0.010 ±0.099 ±0.012 ±0.007 ±0.006

0.742 0.828 0.934 0.771 0.775 0.618 0.758 0.757 0.653 0.757 0.765 0.884
50f-3k-n-r ±0.009 ±0.007 ±0.007 ±0.005 ±0.004 ±0.013 ±0.012 ±0.010 ±0.105 ±0.007 ±0.008 ±0.019

0.705 0.816 0.923 0.799 0.834 0.771 0.803 0.838 0.797 0.707 0.833 0.828
200f-3k-d-r ±0.016 ±0.011 ±0.010 ±0.007 ±0.008 ±0.024 ±0.009 ±0.008 ±0.014 ±0.012 ±0.006 ±0.059

0.669 0.789 0.931 0.815 0.820 0.762 0.788 0.803 0.753 0.691 0.790 0.806
200f-3k-n-r ±0.015 ±0.010 ±0.008 ±0.007 ±0.011 ±0.013 ±0.011 ±0.012 ±0.030 ±0.020 ±0.005 ±0.065

0.782 0.846 0.940 0.868 0.810 0.716 0.848 0.805 0.746 0.815 0.851 0.895
50f-3k-d-b ±0.004 ±0.007 ±0.006 ±0.006 ±0.005 ±0.017 ±0.005 ±0.014 ±0.013 ±0.005 ±0.008 ±0.006

0.764 0.840 0.945 0.873 0.807 0.773 0.850 0.773 0.762 0.846 0.834 0.891
50f-3k-n-b ±0.008 ±0.011 ±0.005 ±0.008 ±0.005 ±0.011 ±0.007 ±0.011 ±0.025 ±0.009 ±0.004 ±0.004

0.758 0.836 0.926 0.865 0.773 0.694 0.822 0.789 0.766 0.815 0.858 0.868
200f-3k-d-b ±0.010 ±0.010 ±0.009 ±0.005 ±0.006 ±0.011 ±0.002 ±0.007 ±0.007 ±0.006 ±0.003 ±0.012

0.766 0.830 0.939 0.874 0.795 0.762 0.831 0.784 0.776 0.843 0.839 0.897
200f-3k-n-b ±0.013 ±0.009 ±0.008 ±0.006 ±0.008 ±0.008 ±0.003 ±0.008 ±0.004 ±0.004 ±0.010 ±0.010

5.3 Hybrid Feature-Instance Adaptation with Bernoulli

or Gaussian Näıve Bayes

Finally, we experiment with our proposed hybrid feature-instance adaptation approach com-

bined with Gaussian and Bernoulli Näıve Bayes classifiers, respectively. We fix the value of

k 3 and 7 for pairs from the binary and numeric representations, respectively, as each value

gave the best results in our instance adaptation experiments. We also fix f to 50 or 200

reduced features for the binary representation, and to 30 or 200 reduced features for the

numeric representation, respectively. For kNN, we experiment with duplicates (d) and with
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Table 5.6: Hybrid feature-instance adaptation. Accuracy results on 12 source-target pairs
from the numeric representation are shown for k = 7, f = 30, 200, respectively, combined
with settings with duplicates (denoted by d) or with no duplicates (denoted by n). Näıve Bayes
is run on the selected source subset with reduced (denoted by r) and binary (denoted by b)
representations, respectively. For example, 30f-7k-d-r means that LSNMF gives 30 reduced
features, kNN selects 7 nearest neighbors, duplicated are retained, and the Gaussian Näıve
Bayes is trained on the reduced representation, while 50f-3k-n-b means that there are no
duplicates and Bernoulli Näıve Bayes is trained on the binary representation of the selected
source subset. The Original results are obtained when Gaussian Näıve Bayes is used on the
original data. The standard deviation of cross-validation is shown under each result (denoted
by ±). Significant best results for each pair are highlighted in bold (based on a t-test with
p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.561 0.789 0.914 0.449 0.612 0.449 0.573 0.760 0.631 0.777 0.799 0.791
Original ±0.015 ±0.010 ±0.007 ±0.017 ±0.009 ±0.017 ±0.009 ±0.009 ±0.015 ±0.008 ±0.005 ±0.007

0.719 0.771 0.913 0.775 0.842 0.773 0.821 0.727 0.775 0.783 0.808 0.847
30f-7k-d-r ±0.010 ±0.010 ±0.005 ±0.010 ±0.008 ±0.011 ±0.009 ±0.010 ±0.013 ±0.022 ±0.011 ±0.018

0.759 0.785 0.892 0.776 0.847 0.789 0.811 0.697 0.807 0.848 0.839 0.883
30f-7k-n-r ±0.010 ±0.007 ±0.006 ±0.013 ±0.004 ±0.006 ±0.012 ±0.007 ±0.009 ±0.011 ±0.011 ±0.008

0.807 0.754 0.881 0.787 0.803 0.723 0.752 0.774 0.784 0.749 0.813 0.844
200f-7k-d-r ±0.015 ±0.013 ±0.007 ±0.003 ±0.011 ±0.019 ±0.017 ±0.011 ±0.009 ±0.011 ±0.006 ±0.008

0.775 0.729 0.930 0.820 0.802 0.694 0.745 0.742 0.747 0.748 0.756 0.798
200f-7k-n-r ±0.014 ±0.016 ±0.006 ±0.007 ±0.011 ±0.022 ±0.018 ±0.013 ±0.008 ±0.006 ±0.011 ±0.006

0.770 0.845 0.924 0.868 0.803 0.694 0.849 0.815 0.718 0.816 0.868 0.842
30f-7k-d-b ±0.010 ±0.006 ±0.005 ±0.005 ±0.008 ±0.016 ±0.004 ±0.012 ±0.010 ±0.007 ±0.009 ±0.004

0.771 0.840 0.954 0.872 0.824 0.784 0.852 0.767 0.725 0.854 0.833 0.860
30f-7k-n-b ±0.010 ±0.010 ±0.003 ±0.009 ±0.007 ±0.009 ±0.007 ±0.008 ±0.016 ±0.008 ±0.012 ±0.012

0.757 0.837 0.909 0.859 0.816 0.653 0.813 0.787 0.707 0.796 0.861 0.806
200f-7k-d-b ±0.011 ±0.012 ±0.009 ±0.006 ±0.016 ±0.016 ±0.004 ±0.005 ±0.012 ±0.006 ±0.006 ±0.014

0.762 0.835 0.945 0.872 0.752 0.760 0.828 0.771 0.763 0.855 0.828 0.869
200f-7k-n-b ±0.013 ±0.007 ±0.005 ±0.008 ±0.005 ±0.006 ±0.004 ±0.008 ±0.006 ±0.007 ±0.013 ±0.015
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no-duplicates (n) options. Finally, once we select a subset of the source, we train Gaussian

Näıve Bayes classifiers on the reduced representation of that subset (r), and Bernoulli Näıve

Bayes classifiers on the binary representation of that subset (b). The results of the experi-

ments are shown in Tables 5.5 and 5.6. As can be seen, the results of the hybrid approach

are overall better than the results of the original models.

In Table 5.5 specifically, SH-AF and SH-WT, the increase in performance is close to

13%. Between duplicates and no-duplicates options, the no-duplicates option is usually

better than the duplicates option, suggesting that the combination of feature and instance

adaptation is good at identifying source instances that are representative for the target

and prevents the need for changing the weights of the source instances (which was already

apparent in the instance adaptation approach that used the sparse binary representation

to find neighbors). Regarding the number of reduced features f , the results obtained with

50 features are overall better than the results obtained with 200 features. However, when

looking at duplicate retainment and feature reduction together, we observe that they affect

each other. Table 5.6 shows increases in performance of about 42% on OT-AF and 28% on

QF-OT pairs.

For example, in Table 5.5 we can compare the difference between 50f-3k-d-b and 50-3k-n-

b, on one hand, and 200f-3k-d-b and 200-3k-n-b, on the other hand. It can be observed that

in the case of 50f features the performance is overall higher for the no-duplicates option, as

compared to the duplicates option, while this is not the case when considering 200f features.

Intuitively, a higher-level representation (i.e., smaller number of features) helps identify good

nearest neighbors, which in turn helps obtain good performance. We could also gain this

intuition from Table 5.6.

Finally, when comparing the performance of the Gaussian Näıve Bayes classifiers with the

performance of the Bernoulli Näıve Bayes classifiers, the results are not conclusive: Gaussian

Näıve Bayes classifiers give better results for half of the pairs, while Bernoulli Näıve Bayes

classifiers give better results for the other half.
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Chapter 6

Summary of the Results and

Discussion

A summary of our results is shown in Tables 6.1 and 6.2, where we compare the origi-

nal classifiers with the feature adaptation, instance adaptation and hybrid feature-instance

adaptation classifiers. We will use the results in this table to answer our original research

questions.

Are the adaptation approaches more effective than the baseline, where Bernoulli Näıve

Bayes is used to learn classifiers from the binary representation of the source data? Are the

same effects observed when using the numeric representation of the data? As can be seen

from Tables 6.1 and 6.2, the adaptation-based classifiers are generally significantly better

than the original classifiers.

Is the hybrid feature-instance adaptation approach more effective than the individual fea-

ture adaptation and instance adaptation approaches? Between Gaussian Näıve Bayes on the

reduced or numeric representation of the selected source data and Bernoulli Näıve Bayes on

the binary representation of the selected source data from either the reduced from the initial

binary or numeric representations, which classifier gives better results? This question can

be answered using Figures 6.1 and 6.2 which show the mean accuracy over all pairs and

values of k for instance adaptation. The two figures show that on the average, regardless of
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Table 6.1: Summary of the results for 12 source-target pairs originating from the binary
representation. The upper section of the table contains the individual feature adaptation
(50f and 200f) and instance adaptation (3k-d and 3k-n) approaches, while the bottom section
contains the hybrid approach for 50f and 200f, respectively, and 3k. The standard deviation
of cross-validation is shown under each result (denoted by ±). Significant best results for
each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.744 0.842 0.946 0.871 0.813 0.728 0.848 0.759 0.755 0.832 0.823 0.820
3k-d ±0.014 ±0.010 ±0.005 ±0.005 ±0.005 ±0.009 ±0.008 ±0.005 ±0.007 ±0.008 ±0.006 ±0.019

0.752 0.842 0.946 0.874 0.806 0.780 0.853 0.726 0.747 0.829 0.789 0.846
3k-n ±0.015 ±0.010 ±0.004 ±0.005 ±0.005 ±0.006 ±0.010 ±0.009 ±0.014 ±0.008 ±0.010 ±0.011

0.764 0.850 0.921 0.774 0.796 0.457 0.760 0.790 0.565 0.766 0.809 0.736
50f ±0.011 ±0.010 ±0.006 ±0.002 ±0.006 ±0.009 ±0.013 ±0.005 ±0.015 ±0.011 ±0.013 ±0.002

0.618 0.851 0.932 0.814 0.841 0.729 0.815 0.834 0.669 0.743 0.833 0.846
200f ±0.012 ±0.009 ±0.004 ±0.007 ±0.010 ±0.018 ±0.007 ±0.003 ±0.010 ±0.011 ±0.002 ±0.013

0.757 0.822 0.928 0.753 0.780 0.749 0.758 0.775 0.645 0.696 0.796 0.883
50f-3k-d-r ±0.012 ±0.009 ±0.008 ±0.007 ±0.007 ±0.009 ±0.012 ±0.010 ±0.099 ±0.012 ±0.007 ±0.006

0.742 0.828 0.934 0.771 0.775 0.618 0.758 0.757 0.653 0.757 0.765 0.884
50f-3k-n-r ±0.009 ±0.007 ±0.007 ±0.005 ±0.004 ±0.013 ±0.012 ±0.010 ±0.105 ±0.007 ±0.008 ±0.019

0.782 0.846 0.940 0.868 0.810 0.716 0.848 0.805 0.746 0.815 0.851 0.895
50f-3k-d-b ±0.004 ±0.007 ±0.006 ±0.006 ±0.005 ±0.017 ±0.005 ±0.014 ±0.013 ±0.005 ±0.008 ±0.006

0.764 0.840 0.945 0.873 0.807 0.773 0.850 0.773 0.762 0.846 0.834 0.891
50f-3k-n-b ±0.008 ±0.011 ±0.005 ±0.008 ±0.005 ±0.011 ±0.007 ±0.011 ±0.025 ±0.009 ±0.004 ±0.004

0.705 0.816 0.923 0.799 0.834 0.771 0.803 0.838 0.797 0.707 0.833 0.828
200f-3k-d-r ±0.016 ±0.011 ±0.010 ±0.007 ±0.008 ±0.024 ±0.009 ±0.008 ±0.014 ±0.012 ±0.006 ±0.059

0.669 0.789 0.931 0.815 0.820 0.762 0.788 0.803 0.753 0.691 0.790 0.806
200f-3k-n-r ±0.015 ±0.010 ±0.008 ±0.007 ±0.011 ±0.013 ±0.011 ±0.012 ±0.030 ±0.020 ±0.005 ±0.065

0.758 0.836 0.926 0.865 0.773 0.694 0.822 0.789 0.766 0.815 0.858 0.868
200f-3k-d-b ±0.010 ±0.010 ±0.009 ±0.005 ±0.006 ±0.011 ±0.002 ±0.007 ±0.007 ±0.006 ±0.003 ±0.012

0.766 0.830 0.939 0.874 0.795 0.762 0.831 0.784 0.776 0.843 0.839 0.897
200f-3k-n-b ±0.013 ±0.009 ±0.008 ±0.006 ±0.008 ±0.008 ±0.003 ±0.008 ±0.004 ±0.004 ±0.010 ±0.010
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Table 6.2: Summary of the results for 12 source-target pairs originating from the numeric
representation. The upper section of the table contains the individual feature adaptation
(30f and 200f) and instance adaptation (7k-d and 7k-n) approaches, while the bottom section
contains the hybrid approach for 30f and 200f, respectively, and 7k. The standard deviation
of cross-validation is shown under each result (denoted by ±). Significant best results for
each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.561 0.789 0.914 0.449 0.612 0.449 0.573 0.760 0.631 0.777 0.799 0.791
Original ±0.015 ±0.010 ±0.007 ±0.017 ±0.009 ±0.017 ±0.009 ±0.009 ±0.015 ±0.008 ±0.005 ±0.007

0.603 0.749 0.908 0.757 0.637 0.490 0.635 0.746 0.654 0.752 0.787 0.826
7k-d ±0.009 ±0.006 ±0.006 ±0.011 ±0.012 ±0.025 ±0.013 ±0.011 ±0.019 ±0.005 ±0.010 ±0.006

0.570 0.741 0.919 0.705 0.601 0.445 0.589 0.757 0.649 0.763 0.791 0.808
7k-n ±0.016 ±0.011 ±0.009 ±0.025 ±0.014 ±0.015 ±0.010 ±0.017 ±0.026 ±0.003 ±0.007 ±0.018

0.768 0.791 0.891 0.776 0.835 0.778 0.797 0.774 0.805 0.851 0.836 0.886
30f ±0.012 ±0.011 ±0.007 ±0.012 ±0.004 ±0.008 ±0.011 ±0.010 ±0.008 ±0.009 ±0.009 ±0.007

0.809 0.798 0.934 0.823 0.795 0.695 0.800 0.818 0.753 0.795 0.817 0.862
200f ±0.010 ±0.010 ±0.008 ±0.005 ±0.012 ±0.020 ±0.014 ±0.007 ±0.008 ±0.006 ±0.003 ±0.010

0.719 0.771 0.913 0.775 0.842 0.773 0.821 0.727 0.775 0.783 0.808 0.847
30f-7k-d-r ±0.010 ±0.010 ±0.005 ±0.010 ±0.008 ±0.011 ±0.009 ±0.010 ±0.013 ±0.022 ±0.011 ±0.018

0.759 0.785 0.892 0.776 0.847 0.789 0.811 0.697 0.807 0.848 0.839 0.883
30f-7k-n-r ±0.010 ±0.007 ±0.006 ±0.013 ±0.004 ±0.006 ±0.012 ±0.007 ±0.009 ±0.011 ±0.011 ±0.008

0.770 0.845 0.924 0.868 0.803 0.694 0.849 0.815 0.718 0.816 0.868 0.842
30f-7k-d-b ±0.010 ±0.006 ±0.005 ±0.005 ±0.008 ±0.016 ±0.004 ±0.012 ±0.010 ±0.007 ±0.009 ±0.004

0.771 0.840 0.954 0.872 0.824 0.784 0.852 0.767 0.725 0.854 0.833 0.860
30f-7k-n-b ±0.010 ±0.010 ±0.003 ±0.009 ±0.007 ±0.009 ±0.007 ±0.008 ±0.016 ±0.008 ±0.012 ±0.012

0.807 0.754 0.881 0.787 0.803 0.723 0.752 0.774 0.784 0.749 0.813 0.844
200f-7k-d-r ±0.015 ±0.013 ±0.007 ±0.003 ±0.011 ±0.019 ±0.017 ±0.011 ±0.009 ±0.011 ±0.006 ±0.008

0.775 0.729 0.930 0.820 0.802 0.694 0.745 0.742 0.747 0.748 0.756 0.798
200f-7k-n-r ±0.014 ±0.016 ±0.006 ±0.007 ±0.011 ±0.022 ±0.018 ±0.013 ±0.008 ±0.006 ±0.011 ±0.006

0.757 0.837 0.909 0.859 0.816 0.653 0.813 0.787 0.707 0.796 0.861 0.806
200f-7k-d-b ±0.011 ±0.012 ±0.009 ±0.006 ±0.016 ±0.016 ±0.004 ±0.005 ±0.012 ±0.006 ±0.006 ±0.014

0.762 0.835 0.945 0.872 0.752 0.760 0.828 0.771 0.763 0.855 0.828 0.869
200f-7k-n-b ±0.013 ±0.007 ±0.005 ±0.008 ±0.005 ±0.006 ±0.004 ±0.008 ±0.006 ±0.007 ±0.013 ±0.015
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Figure 6.1: Mean for 12 binary source-target pairs tested on k odd values from 1-11 for
each approach. This figure compares the original Binary mean with the instance adaptation
approach k, feature adaptation approach 30-500mf, and the hybrid approaches of the reduced
r and binary feature approach b using different numbers of features. The effect of retaining
and removing instances are also shown as adjacent values in approaches that include the
instance adaptation process. The error bars show the confidence interval of each model’s
accuracy.
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the number of reduced features, the hybrid approach maximizes accuracy especially when

duplicates are not retained. We can also observe a significant increase of accuracy in Figure

6.2 from the original Numeric features compared to feature reduced or hybrid approach.

The question above can also be answered more specifically based on Tables 6.1 and 6.2.

We have separated each table into two sections: one for the individual feature adaptation

and instance adaptation approaches, and the other one for the hybrid approach. The best

results for each pair (based on a t-test with p ≤ 0.05) are highlighted in bold.

As can be seen in Table 6.1, when using the original binary representation, the hybrid

approach achieves best results for all 12 pairs, while the feature adaptation approach achieves

best results for only 3 pairs, and the instance adaptation approach achieves best results

for only 4 pairs. While the individual adaptation approaches with 200f and 3k-n achieve

best results for 7 pairs combined, the other results obtained with these approaches are not

competitive. The hybrid approach with 50f-3k-d-b and 50f-3k-n-b settings achieves either
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Figure 6.2: Mean for 12 numeric source-target pairs tested on k odd values from 1-11 for
each approach. This figure compares the original Numeric mean with the instance adaptation
approach k, feature adaptation approach 30-500mf and the hybrid approaches of the reduced r
and binary feature approach b using different numbers of features. The effect of retaining and
removing duplicate instances are also shown as adjacent values in approaches that include
the instance adaptation process. The error bars show the confidence interval of each model’s
accuracy.
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best values for almost all pairs or values closest to the best values for other pairs. In other

words, the individual adaptation approaches can produce very good results in some cases

and poor results in other cases, while the hybrid feature-instance adaptation approach with

50f, 3k and no duplicates can produce competitive results consistently, suggesting that this

approach is more reliable. Table 6.2, where instances are represented using the original

numeric features, also shows that the hybrid approach gives the best results for all pairs.

However, in half of the the pairs, the feature adaptation approach is able to match the beset

results of the hybrid approach. Similar to table 6.1, the hybrid approach with the lower

initially reduced feature set selecting from the original feature set, 30-7k-d-b and 30-7k-n-b,

achieve the best result or values close to it. Moreover, the hybrid approach which does not

retain duplicates seems to perform better than the one which retains duplicates, similar to

what was discovered using the original binary features.
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Figure 6.3: Displaying the change in the accuracy of each pair of binary represented pairs
when different domain adaptation approaches are performed on the dataset and how each
pair behaves. 3k-d and 3k-n are instance adaptation approaches while 50f-3k-d-r and 50f-3k-
d-b are hybrid approaches with reduced and original feature sets, respectively while retaining
duplicates. The error bars show the confidence interval of each model’s accuracy.
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Comparing Tables 6.1 and 6.2, we observe that the hybrid adaptation approaches used

on the original numeric features perform better than the hybrid adaptation approaches used

on the original binary features in six pairs, and stay within about a 3% distance for the

remaining pairs. This is interesting because the corresponding models have outperformed or

matched the same accuracy as in Table 6.1 despite the fact that they started with pairs that

had very low accuracy to begin with in most cases.

Between the feature adaptation approach and the instance adaptation approach, which one

is more effective? What parameter values result in better performance for the two approaches,

respectively considering either the numerical or binary representation? As mentioned above,

this question does not have a definite answer, as the Gaussian Näıve Bayes classifiers give

better results for half pairs, pairs with reduced numeric features,and the Bernoulli Näıve
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Bayes classifiers give better results for the other half pairs, original binary features.

Between the feature adaptation approach and the instance adaptation approach, which one

is more effective? What parameter values result in better performance for the two approaches,

respectively? The instance adaptation approach gives better results than the feature adap-

tation approach for 7 out of 12 pairs and they have a tie for 2 pairs in Table 6.1. Thus, we

can say that the two approaches have complementary strengths when used with the original

binary features, as the instance adaptation has performed well on pairs where feature adap-

tation has not performed well, and vice-versa. In Table 6.2 however, the instance adaptation

performs better than the instance adaptation for all pairs.

Furthermore, we observe that feature adaptation performs better on pairs with more

dissimilar source and target datasets, as opposed to the instance adaptation which performs

better on pairs with more similar source and target datasets. Consequently, combining the

instance based and the feature based approaches should ensure good results, as seen in our

experiments. In terms of parameters, for the instance adaptation approach, the best results

were obtained for k = 3 and k = 5 on binary and numeric representations, respectively.

As for the number of reduced features, when comparing the hybrid models with 30f and

50f versus 200f, the results are visibly better for 30f and 50f. The opposite is true for the

feature adaptation models when considering binary representations, where better results are

observed for 200f as compared to 50f.

When using the instance adaptation approach, is it better to keep duplicate neighbors

or to remove them? When using the instance adaptation approach on the original binary

representation of the data, it is better to remove duplicates regardless of the original binary

or numeric representation. However, as it can be seen in Figures 6.4 and 6.5 in cases of the

hybrid approach, using the reduced representation, small neighbor numbers might benefit

from duplication to grant weights to the small number of source subset selected by instance

adaptation. Similarly, when using the instance adaptation approach in combination with the

feature adaptation approach on the original binary representation, the results are better when

removing duplicates. However, the option where duplicates are retained is more beneficial

when using the reduced representation with Gaussian Näıve Bayes.
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Figure 6.4: Relative frequency of having the best performance on binary representations
when considering to retain or remove duplicates after instance adaptation. This frequency
is calculated while having instance adaptation results from with k from 1-11 and comparing
them with Gaussian Näıve Bays or Bernoulli Näıve Bays on reduced and binary subset,
respectively. The error bars show the confidence interval of each model’s results.
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Figure 6.5: Relative frequency of having the best performance on binary representations
when considering to retain or remove duplicates after instance adaptation. This frequency
is calculated while having instance adaptation results from with k from 1-11 and comparing
them with Gaussian Näıve Bays or Bernoulli Näıve Bays on reduced and binary subset,
respectively. The error bars show the confidence interval of each model’s results.
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Table 6.3: Instance-based adaptation using kNN on the binary representation, followed by
Self-Training Domain Adaptation (denoted by a) and Bernoulli Näıve Bays, on the selected
source subset. Accuracy results on 12 source-target pairs are shown for three values of k,
specifically, 1, 3, 5 and 7, and two instance-selection settings, specifically, with duplicates
(denoted by d) and without duplicates (denoted by n). For example, 3k-d means that 3
nearest neighbors are selected for each target instance, and duplicates are retained, while
3k-n means that 3 nearest neighbors are selected, but duplicates are removed. The Original
results are obtained when Self-Training Domain Adaptation is used on the original binary
data. The standard deviation of cross-validation is shown under each result (denoted by ±).
Significant best results for each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.862 0.876 0.956 0.855 0.856 0.834 0.872 0.856 0.855 0.885 0.880 0.946
Original-a ±0.012 ±0.012 ±0.003 ±0.002 ±0.008 ±0.009 ±0.009 ±0.008 ±0.011 ±0.005 ±0.010 ±0.004

0.748 0.839 0.943 0.878 0.818 0.746 0.850 0.753 0.747 0.831 0.827 0.783
1k-d ±0.018 ±0.013 ±0.006 ±0.006 ±0.006 ±0.011 ±0.006 ±0.008 ±0.011 ±0.010 ±0.005 ±0.020

0.847 0.870 0.949 0.859 0.866 0.831 0.869 0.861 0.832 0.875 0.889 0.941
1k-d-a ±0.012 ±0.010 ±0.004 ±0.004 ±0.005 ±0.010 ±0.009 ±0.006 ±0.012 ±0.005 ±0.006 ±0.005

0.752 0.837 0.944 0.878 0.812 0.786 0.856 0.723 0.766 0.831 0.797 0.855
1k-n ±0.014 ±0.012 ±0.003 ±0.007 ±0.007 ±0.015 ±0.010 ±0.005 ±0.008 ±0.007 ±0.006 ±0.005

0.853 0.867 0.951 0.859 0.866 0.838 0.873 0.848 0.843 0.877 0.879 0.943
1k-n-a ±0.014 ±0.011 ±0.005 ±0.005 ±0.006 ±0.009 ±0.011 ±0.010 ±0.010 ±0.005 ±0.006 ±0.005

0.744 0.842 0.946 0.871 0.813 0.728 0.848 0.759 0.755 0.832 0.823 0.820
3k-d ±0.014 ±0.010 ±0.005 ±0.005 ±0.005 ±0.009 ±0.008 ±0.005 ±0.007 ±0.008 ±0.006 ±0.019

0.847 0.870 0.951 0.852 0.862 0.833 0.868 0.867 0.843 0.878 0.886 0.942
3k-d-a ±0.014 ±0.008 ±0.004 ±0.004 ±0.004 ±0.009 ±0.009 ±0.007 ±0.007 ±0.005 ±0.005 ±0.006

0.752 0.842 0.946 0.874 0.806 0.780 0.853 0.726 0.747 0.829 0.789 0.846
3k-n ±0.015 ±0.010 ±0.004 ±0.005 ±0.005 ±0.006 ±0.010 ±0.009 ±0.014 ±0.008 ±0.010 ±0.011

0.853 0.888 0.933 0.857 0.858 0.846 0.867 0.853 0.865 0.886 0.903 0.942
3k-n-a ±0.011 ±0.040 ±0.045 ±0.001 ±0.012 ±0.013 ±0.015 ±0.010 ±0.019 ±0.004 ±0.040 ±0.005

0.749 0.846 0.946 0.874 0.804 0.770 0.850 0.724 0.739 0.823 0.786 0.833
5k-d ±0.010 ±0.009 ±0.005 ±0.006 ±0.005 ±0.007 ±0.006 ±0.010 ±0.009 ±0.006 ±0.010 ±0.008

0.855 0.870 0.952 0.849 0.859 0.830 0.871 0.871 0.843 0.880 0.885 0.941
5k-d-a ±0.015 ±0.008 ±0.005 ±0.004 ±0.004 ±0.007 ±0.008 ±0.011 ±0.005 ±0.006 ±0.003 ±0.005

0.736 0.847 0.949 0.868 0.811 0.717 0.848 0.756 0.758 0.830 0.819 0.809
5k-n ±0.021 ±0.010 ±0.002 ±0.007 ±0.005 ±0.005 ±0.008 ±0.008 ±0.013 ±0.007 ±0.014 ±0.008

0.852 0.893 0.934 0.857 0.854 0.843 0.869 0.857 0.857 0.883 0.894 0.945
5k-n-a ±0.012 ±0.039 ±0.043 ±0.003 ±0.013 ±0.011 ±0.012 ±0.006 ±0.020 ±0.004 ±0.027 ±0.004

0.732 0.844 0.948 0.869 0.810 0.712 0.850 0.757 0.753 0.828 0.816 0.830
7k-d ±0.008 ±0.008 ±0.004 ±0.006 ±0.004 ±0.006 ±0.005 ±0.007 ±0.006 ±0.008 ±0.012 ±0.006

0.856 0.870 0.952 0.846 0.858 0.829 0.870 0.869 0.843 0.880 0.885 0.941
7k-d-a ±0.017 ±0.008 ±0.005 ±0.004 ±0.005 ±0.008 ±0.007 ±0.009 ±0.005 ±0.007 ±0.002 ±0.006

0.746 0.848 0.947 0.874 0.800 0.772 0.849 0.720 0.733 0.817 0.782 0.820
7k-n ±0.017 ±0.009 ±0.003 ±0.007 ±0.005 ±0.008 ±0.008 ±0.005 ±0.021 ±0.009 ±0.011 ±0.012

0.850 0.877 0.955 0.856 0.860 0.839 0.871 0.854 0.849 0.884 0.880 0.944
7k-n-a ±0.013 ±0.008 ±0.004 ±0.001 ±0.006 ±0.007 ±0.010 ±0.006 ±0.009 ±0.004 ±0.009 ±0.004
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Table 6.4: Summary of the results for 12 source-target binary represented pairs using Self-
Training Domain Adaptation (denoted by a) and Bernoulli Näıve Bays. The upper section
of the table contains the individual instance adaptation (1k-d and 1k-n) approaches, while
the bottom section contains the hybrid approach for 30f through 200f , and 1k. The standard
deviation of cross-validation is shown under each result (denoted by ±). Significant best
results for each pair are highlighted in bold (based on a t-test with p ≤ 0.05).
Source BB BB BB OT QF QF QF SH SH SH SH SH
Target AF OT WT AF AF BB OT AF BB OT QF WT

0.738 0.843 0.948 0.872 0.789 0.750 0.841 0.711 0.687 0.808 0.768 0.772
Original ±0.012 ±0.013 ±0.003 ±0.008 ±0.007 ±0.013 ±0.004 ±0.009 ±0.009 ±0.009 ±0.010 ±0.013

0.862 0.876 0.956 0.856 0.856 0.834 0.872 0.856 0.855 0.875 0.889 0.946
Original-a ±0.012 ±0.012 ±0.003 ±0.008 ±0.008 ±0.009 ±0.009 ±0.008 ±0.011 ±0.005 ±0.006 ±0.004

0.748 0.839 0.943 0.878 0.818 0.746 0.850 0.753 0.747 0.831 0.827 0.783
1k-d ±0.018 ±0.013 ±0.006 ±0.006 ±0.006 ±0.011 ±0.006 ±0.008 ±0.011 ±0.010 ±0.005 ±0.020

0.849 0.870 0.949 0.866 0.866 0.831 0.869 0.861 0.832 0.877 0.879 0.941
1k-d-a ±0.013 ±0.010 ±0.004 ±0.005 ±0.005 ±0.010 ±0.009 ±0.006 ±0.012 ±0.005 ±0.006 ±0.005

0.752 0.837 0.944 0.878 0.812 0.786 0.856 0.723 0.766 0.831 0.797 0.855
1k-n ±0.014 ±0.012 ±0.003 ±0.007 ±0.007 ±0.015 ±0.010 ±0.005 ±0.008 ±0.007 ±0.006 ±0.005

0.847 0.867 0.951 0.866 0.866 0.838 0.873 0.848 0.843 0.864 0.879 0.943
1k-n-a ±0.012 ±0.011 ±0.005 ±0.006 ±0.006 ±0.009 ±0.011 ±0.010 ±0.010 ±0.005 ±0.009 ±0.005

0.788 0.836 0.920 0.878 0.765 0.713 0.827 0.800 0.740 0.826 0.862 0.846
30f-1k-d-b ±0.003 ±0.009 ±0.008 ±0.006 ±0.008 ±0.014 ±0.006 ±0.013 ±0.009 ±0.006 ±0.008 ±0.005

0.868 0.874 0.947 0.870 0.875 0.836 0.871 0.867 0.839 0.873 0.891 0.939
30f-1k-d-b-a ±0.016 ±0.006 ±0.007 ±0.011 ±0.009 ±0.009 ±0.010 ±0.009 ±0.008 ±0.006 ±0.009 ±0.003

0.782 0.833 0.936 0.878 0.798 0.769 0.840 0.796 0.777 0.847 0.862 0.897
30f-1k-n-b ±0.008 ±0.007 ±0.008 ±0.006 ±0.009 ±0.009 ±0.009 ±0.012 ±0.008 ±0.006 ±0.009 ±0.007

0.862 0.873 0.951 0.875 0.838 0.841 0.874 0.861 0.847 0.866 0.889 0.943
30f-1k-n-b-a ±0.017 ±0.006 ±0.003 ±0.009 ±0.007 ±0.006 ±0.012 ±0.011 ±0.008 ±0.007 ±0.024 ±0.004

0.780 0.837 0.923 0.878 0.788 0.727 0.835 0.793 0.771 0.823 0.859 0.872
50f-1k-d-b ±0.009 ±0.012 ±0.010 ±0.006 ±0.009 ±0.011 ±0.006 ±0.010 ±0.007 ±0.005 ±0.003 ±0.009

0.858 0.868 0.945 0.868 0.868 0.828 0.866 0.861 0.841 0.871 0.881 0.937
50f-1k-d-b-a ±0.014 ±0.007 ±0.005 ±0.007 ±0.007 ±0.008 ±0.005 ±0.007 ±0.009 ±0.006 ±0.007 ±0.004

0.771 0.833 0.938 0.878 0.804 0.770 0.841 0.788 0.783 0.846 0.850 0.899
50f-1k-n-b ±0.010 ±0.012 ±0.004 ±0.006 ±0.006 ±0.005 ±0.007 ±0.010 ±0.012 ±0.010 ±0.005 ±0.009

0.846 0.868 0.950 0.868 0.870 0.836 0.871 0.856 0.844 0.868 0.884 0.942
50f-1k-n-b-a ±0.014 ±0.008 ±0.006 ±0.007 ±0.011 ±0.007 ±0.010 ±0.010 ±0.009 ±0.004 ±0.008 ±0.005

0.778 0.843 0.938 0.878 0.815 0.729 0.843 0.809 0.726 0.816 0.853 0.898
100f-1k-d-b ±0.012 ±0.010 ±0.007 ±0.006 ±0.006 ±0.013 ±0.003 ±0.012 ±0.013 ±0.005 ±0.006 ±0.006

0.851 0.865 0.944 0.851 0.857 0.824 0.862 0.857 0.834 0.873 0.882 0.933
100f-1k-d-b-a ±0.016 ±0.010 ±0.005 ±0.003 ±0.006 ±0.006 ±0.006 ±0.005 ±0.007 ±0.006 ±0.007 ±0.003

0.770 0.843 0.943 0.878 0.816 0.774 0.853 0.787 0.747 0.839 0.850 0.903
100f-1k-n-b ±0.014 ±0.011 ±0.007 ±0.006 ±0.009 ±0.008 ±0.006 ±0.016 ±0.025 ±0.009 ±0.007 ±0.003

0.839 0.863 0.949 0.857 0.864 0.824 0.864 0.852 0.835 0.885 0.880 0.941
100f-1k-n-b-a ±0.015 ±0.010 ±0.004 ±0.006 ±0.009 ±0.005 ±0.009 ±0.006 ±0.012 ±0.005 ±0.010 ±0.002

0.769 0.851 0.941 0.878 0.824 0.725 0.858 0.808 0.786 0.826 0.859 0.908
200f-1k-d-b ±0.012 ±0.011 ±0.004 ±0.006 ±0.005 ±0.016 ±0.010 ±0.013 ±0.013 ±0.008 ±0.005 ±0.005

0.842 0.862 0.939 0.838 0.851 0.824 0.858 0.842 0.832 0.872 0.877 0.935
200f-1k-d-b-a ±0.010 ±0.011 ±0.006 ±0.007 ±0.004 ±0.021 ±0.010 ±0.008 ±0.016 ±0.007 ±0.004 ±0.003

0.768 0.853 0.946 0.878 0.825 0.771 0.858 0.795 0.790 0.848 0.862 0.906
200f-1k-n-b ±0.011 ±0.010 ±0.003 ±0.006 ±0.008 ±0.011 ±0.011 ±0.016 ±0.019 ±0.009 ±0.007 ±0.004

0.833 0.860 0.947 0.851 0.851 0.818 0.861 0.838 0.820 0.867 0.883 0.939
200f-1k-n-b-a ±0.009 ±0.012 ±0.005 ±0.004 ±0.003 ±0.010 ±0.009 ±0.010 ±0.010 ±0.004 ±0.007 ±0.004
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How do the feature and hybrid approaches affect the Self-Training Domain Adaptation

classifier? Table 6.3 shows that feature adaptation outperforms or matches the original

binary results for all the pairs proving feature adaptation to be facilitative to domain adap-

tation classification. In Table 6.4, the hybrid approach outperforms or matches the best in

11 cases and have very close values in the other pair. Both 30f-1k-d-b-a and 30f-1k-n-b-a

perform very well which makes 30f the best feature adaptation and 1k the best instance

adaptation approach.
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Chapter 7

Related Works and Conclusion

7.1 Related Works

Machine learning algorithms have been used to help responders sift through the huge amount

of crisis data, and prioritize information that may be useful for response and relief (Verma

et al., 2011; Caragea et al., 2011; Vieweg, 2012; Terpstra et al., 2012; Purohit et al., 2013;

Imran et al., 2013; Caragea et al., 2014; Ashktorab et al., 2014; Sen et al., 2015; Huang

and Xiao, 2015; Imran et al., 2016a). For example, Imran et al. (2013) used conditional

random fields to find tweets within specific situational awareness categories. Sen et al. (2015)

used Support Vector Machine (SVM) classifiers to differentiate between situational and non-

situational tweets. Huang and Xiao (2015) introduced a detailed list of situational awareness

categories, divided based on three stages of a disaster (preparedness, emergency response,

and recovery), and used k-Nearest Neighbors, Logistic Regression and Näıve Bayes classifiers

to automatically classify tweets with respect to the categories defined.

While research on supervised machine learning in the area of emergency response has

shown that it is possible to automatically classify disaster-related data, it has also emphasized

one of the most important challenges that precludes the use of supervised machine learning

in real time in an emerging crisis situation: the lack of labeled data to train reliable supervised

models as the crisis unfolds. To address this challenge, several works proposed to use labeled
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data from prior “source” crises to learn supervised classifiers for a “target” crisis (Verma

et al., 2011; Imran et al., 2016b; Caragea et al., 2016; Nguyen et al., 2017). One drawback of

this approach is that supervised classifiers learned in one crisis event, do not generalize well to

other events (Qadir et al., 2016; Imran et al., 2015), as each event has unique characteristics

(Palen and Anderson, 2016). Domain adaptation approaches (Pan and Yang, 2010; Jiang,

2008) that make use of unlabeled data from the target disaster in addition to label data from

a source disaster are desirable. Some recent works (Li et al., 2015, 2017a,b) have shown the

using domain adaptation approaches can significantly improve the results of the supervised

classifiers learned from source only. According to Pan and Yang (2010), domain adaptation

is achieved by performing parameter adaptation, feature adaptation or instance adaptation.

A comprehensive description of works in each category can be found in (Pan and Yang,

2010).

In the space of disasters, the domain adaptation approaches proposed by Li et al. (2015;

2017b) can be seen as parameter-based adaptation approaches. To the best of our knowledge,

there are no instance-based or feature-based adaptation approaches that have been used for

classifying disaster related data. As a consequence, in this study we focus specifically on a

hybrid approach that combines feature-based adaptation based on matrix factorization with

instance-based adaptation based on the kNN algorithm, and compare the hybrid approach

with the individual feature-based and instance-based approaches.

7.2 Conclusions and Future Work

Social media data taken from sources such as Twitter contain invaluable data which can be

used in times of crisis and emergency situations to improve response and awareness. Despite

many supervised learning approaches being proposed, not many agencies and groups use

these approaches to identify useful information, due to lack of labeled data for training

the supervised models. In this study, we proposed a simple but powerful feature-instance

adaptation approach to reduce the variation between source and target disasters. Combined

with Näıve Bayes classifiers, the proposed adaptation approach produces accuracy results
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that are significantly better than the results of the supervised models learned from source

alone, in some cases by more than 12%, when used for the task of identifying tweets related

to a particular disaster.

The CrisisLexT6 dataset was used to construct twelve pairs of disasters that we experi-

mented with. Our results showed that adaptation-based models perform significantly better

than the supervised models. We also showed that feature adaptation and instance adap-

tation approaches have complementary strengths that can be combined to produce better

results. We further revealed that when using instance adaptation, the original binary repre-

sentation performs best when duplicates are retained, on the other hand when feature and

instance adaptations are combined we achieve the best results when duplicates are removed.

We argued that the hybrid feature-instance adaptation approaches are more reliable due

to their consistent competitive results, especially when not considering duplicates for the

instance adaptation step. Overall, the results of this study can be used to recommend the

best options and parameters for the adaptation approaches, based on our observations on

12 different pairs of disasters.

Performing classification on the numeric as well as binary representation, we have argued

that we can attain the best results when our hybrid approach is used to transform the

numeric representation and the instances are selected from the binary representation. This

combines the strengths of specificity of the numeric representations and the accuracy of

classification of the binary representation. We also showed that using the feature-instance

hybrid approach can not only improve accuracy in simpler models such as Näıve Bays but

also more complex domain adaptation models such as Self-Training Domain Adaptation.

In future work, more experiments can be done using different classifiers, including deep

learning classifiers, on the selected source data. Furthermore, different matrix factorization

and clustering approaches (potentially, with different distance metrics) can be explored.
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