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Abstract

Sexual selection via female choice and male-male aggression leads to elaboration of male traits. 

If male traits correlated with reproductive success are honest signals of male quality, survival

costs may be associated with the expression of those traits. Testosterone (hereafter ‘T’) may

enhance male breeding success, but T can also reduce immunocompetence and survival.  Socially

monogamous male birds with higher circulating T experience reproductive advantages, but the

role of T in lek mating systems is largely unknown.  To address these issues, I individually

marked and conducted focal behavioral observations of greater prairie-chickens (Tympanuchus

cupido) at five lek sites over a 5-year period.  Females were fitted with radio-telemetry to

monitor nesting success and survival.  I examined the relationship between male traits and

mating success using multinomial discrete choice models, a statistical method not previously

applied to studies of sexual selection.  Male mating success was highly skewed at greater prairie-

chicken leks with 18.5% of males obtaining 87.2% of all successful copulations (n = 108 males;

85 copulations).  Mating success was influenced most by male behavior, followed by several

morphological attributes.  The role of T was quantified using blood samples and by

experimentally implanting a subset of males with T.  T did not consistently affect mating success. 

Non-territorial males had lower T levels than territorial males.  Among territory holders, T was

unexpectedly negatively correlated with mating success.  However, the odds of receiving a

copulation were 4.3 times (0.42 to 45.3) greater for T-implanted males than males with sham

implants.  Future work should explore the interactions among the immune system, parasite load,

and mating success of prairie-chickens.  Annual survival of male prairie-chickens was not related

to mating success, behavior, age or T level, suggesting there is no cost of increased male mating

success.  Like males, reproductive success of females was also highly skewed because < 10% of

nests successfully hatched young.  Comparisons of seasonal and annual survival rates indicate

that females experience increased mortality during the breeding season relative to the

nonbreeding season.  Synthesis of field estimates of demographic parameters indicates prairie-

chicken populations will decline without changes in rangeland management to reduce predator

numbers or provide more nesting cover. 
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CHAPTER 1 – Introduction

Behavioral ecology focuses on how behavior affects reproduction and survival, and

includes the subfields of predator-prey interactions, resource competition, sociality and sexual

selection.  One aspect of sexual selection research involves the study of the different selective

pressures exerted on males and females during reproduction (Emlen and Oring 1977).  In socially

monogamous songbirds, males defend a territory, attract a mate, guard their mate during their

mate’s fertile period, seek extra-pair copulations, and provide parental care.  Socially

monogamous females choose a social mate, seek extra-pair copulations, lay and incubate the

eggs, and provide parental care.  One drawback for studies of socially monogamous systems is

that biparental care makes it difficult to disentangle the contributions of each sex to reproduction. 

Uniparental care, found in many polygamous and promiscuous mating systems, allows for the

study of the proximate factors reproductive success of each sex independent from the

contributions of the other sex.  A complication of socially monogamous and polygamous systems

is that resource defense (i.e., territoriality) affects the food and habitat resources available for

reproduction.  Most promiscuous mating systems lack resource defense by the sex that provides

parental care.  Sexual selection may be particularly intense in lek-mating systems, a unique form

of promiscuity.  In lek-mating systems, males only provide gametes to the females.  Males are

responsible for attracting a mate by displaying and defending small territories at lek sites;

whereas, females are the sole caretakers of the nest and offspring.  In lek mating grouse, the

benefits of mate choice to females are primarily indirect (good genes for her offspring) because

males are not defending food, nesting sites or any other resources required by females (Höglund

and Alatalo 1995).  Unlike monogamous systems where access to a particular male may be

limited once he pairs with a female, lek-mating females are able to choose any male on the lek,

regardless of the decisions of previous females.  Another characteristic of lek mating systems is a

high skew in male reproductive success.  Because of this reproductive skew, sexual selection of

male traits is intense in lek-mating systems, so links between male traits and male mating success

should be relatively easy to discover. 

Proximate factors affecting reproductive success vary by sex.  In birds, males with

brighter plumage, more elaborate ornaments, certain song characteristics, more aggressive

behavior, or more intense displays are more successful than males without these qualities
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(Brodsky 1988, Gibson et al. 1991, Fiske et al 1998, Duckworth 2006).  Body condition and

weather can influence reproduction in both sexes (Shorey 2002, Nooker et al. 2005).  The

hormonal factors mediating variation in male traits and mating success are relatively unknown.

Testosterone (hereafter ‘T’) may play a key role in enhancing male breeding effort and success.

T-dependent traits should be honest signals of male quality, because T can have

immunosuppressive effects (Folstad and Karter 1992, Ditchkoff et al. 2001), leading to a

negative correlation between circulating T and annual survival (Ketterson and Nolan 1999). 

Advantages during female choice and male-male competition are often associated with T-

dependent traits, such as large fleshy head combs (in red jungle fowl Gallus gallus, Zuk et al

1995a,b), high-quality territories (Moss et al. 1994), and more vigorous courtship displays

(Mateos and Carranza 1999).  Experimental manipulations of T are needed to confirm causal

links between T, male traits and mating success, especially in lek-mating species.  

Only two studies of lek-mating species have experimentally implanted males with

testosterone.  T-implanted manakins increased rates of several display behaviors compared to

sham-implanted controls (Day et al. 2006).  Aggressive, display and territory attributes of

T-implanted males of the lek-mating sharp-tailed grouse (Tympanuchus phasianellus) remained

unchanged relative to unmanipulated control males, but lek attendance was higher for T-

implanted males (Trobec and Oring 1972).  Neither of these two studies examined mating

success of T-implanted males relative to controls.  No copulations were observed in the sharp-

tailed grouse study (Trobec and Oring 1972), and the manakin study was conducted during the

non-breeding season (Day et al. 2006). 

Skew in male mating success has been widely documented in lek-mating systems;

however, variation in female reproductive success is relatively unknown.  Females are generally

harder to capture and observe at lek sites.  Their cryptic plumage and behavior makes them

inconspicuous away from the lek.  Telemetry offers the best opportunity for obtaining

information during this portion of the life cycle.  Knowledge of reproductive success is essential

to determine the strength of sexual selection and to guide management of the population.

Survival estimates are another crucial piece of information for determining the

consequences of sexual selection and to guide management decisions (Sandercock 2006).  If

sexually selected traits are honest signals of male quality, there may be survival costs to
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possessing such traits.  Annual survival of females is an important metric of any population-level

monitoring or modeling scheme.  Since the daily movements of males and females are largely

independent of each other in lek-mating systems, it is important to calculate survival estimates

separately for each sex. 

Modern statistical techniques robustly test environmental and behavioral covariates when

estimating survival and the degree of reproductive skew.  Cormack-Jolly-Seber (CJS) models

based on live encounter data improve upon return rates by separating apparent survival (N) from

the probability of encounter (p; Sandercock 2006).  The nest survival model in Program Mark

improves upon Mayfield estimates (Mayfield 1975) because it relaxes the assumption of constant

daily survival, is less sensitive to variation in nest monitoring efforts, and allows for daily

survival rate to be modeled as a function of environmental covariates (Dinsmore et al. 2002). 

Multinomial discrete choice models tests how an individual chooses among a defined set of

choices (Buskirk and Millspaugh 2006; Cooper and Millspaugh 1999; Moore and Swihart 2006). 

In the first application of multinomial discrete choice models to mate choice, I modeled how a

female chooses a single male from all the available males on a lek.  Male mating skew was

quantified using lambda values to describe the intensity of sexual selection and allow for

comparisons across leks regardless of lek size (Kokko and Lindström 1997).  These four models

have rarely been applied to lek-mating species.

The greater prairie-chicken (T. cupido) is a lek-mating grouse with economic importance

as a gamebird.  Male greater prairie-chickens perform ritualized courtship and territorial

behaviors on small territories at lek sites (Schroeder and Robb 1993).  Courtship displays consist

of rapid foot-stomping while displaying feather and fleshy ornaments and emitting a low 3-note

‘boom’ vocalization.  Territorial boundary disputes are frequent and often escalate to physical

combat.  The historic range of greater prairie-chickens extended from the prairie provinces of

Canada, south to central Texas and east to western Ohio (Schroeder and Robb 1993, Ross et al.

2006).  Loss and fragmentation of the tallgrass prairie have restricted sizable populations of

prairie-chickens to four states (Silvy et al. 2004, Ross et al. 2006).  Kansas is one of these four

states with >5000 breeding birds, but prairie-chickens have declined 70% in Kansas during the

past 20 years (Applegate and Horak 1999, Svedarsky et al. 2000).  Recent declines in Kansas call
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for contemporary estimates of prairie-chicken demography in order to guide rangeland

management.

The lek-mating greater prairie-chicken is an ideal study species to examine reproduction

and survival in the context of sexual selection for five reasons.  Because males do not provide

parental care and benefits to females are indirect, I can examine the contribution of each sex to

reproduction without many confounding effects typical of socially monogamous systems. 

Second, plumage dichromatism of grouse is estrogen-dependent, not T-dependent (Kimball and

Ligon 1999).  The cryptic plumage of females is a derived condition within three basal orders of

birds: Struthioniformes (ostriches), Anseriformes (ducks), and Galliformes (grouse).  Derived

female plumage allows study of T-dependent traits without the confounding effects of T on most

plumage ornaments.  Third, male mating success is highly skewed (18.5% of males obtained

87.2% of copulations; Chapter 2) and male-male aggression is intense (Schroeder and Robb

1993), making this species a good model to study variation in male reproductive success.  Fourth,

behavior as it relates to mating success has not been quantified for greater prairie-chickens. 

Lastly, most demographic estimates of greater prairie-chickens occurred 30 years ago (Horak

1985; Robel 1966, 1970a,b; Robel and Ballard 1974), before the increased use of annual burning

for rangeland management (Robbins et al. 2002).  There is need for modern estimates to guide

prairie-chicken conservation. 

The goals of this dissertation were to integrate behavioral ecology, population biology,

experimental manipulations, and modern statistical techniques to understand how reproduction

and survival vary between the sexes.  During a 5-year field study, my research objectives have

been: 1) to correlate male traits with mating success, 2) to determine the proximate role of T in

mediating variation in male traits and mating success, 3) to examine the demography of prairie-

chickens including which factors affect female reproduction, and 4) to analyze the survival

consequences of reproduction in both sexes.  My research results contribute to evolutionary

ecology theory and the conservation biology of prairie-chickens, a declining grouse species. 

This dissertation is organized into three core chapters.  In Chapter 2, I used detailed

behavioral observations and multinomial discrete choice models to quantify the skew in male

mating success, to analyze the variation in male traits, to correlate male traits with mating

success and to determine if survival costs were associated with male traits or mating success.  I
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found that behavioral traits exhibited more variation and were better predictors of male mating

success than morphological traits or territory attributes.  In Chapter 3, I quantified the natural

variation in male T, examined links between T and male traits, mating success and survival, and

tested for causal links between T and male attributes experimentally by comparing T-implanted

males with sham-implanted controls.  T was a better predictor of male mating success than

behavioral traits.  In Chapter 4, I estimated demographic parameters for radio-marked female

prairie-chickens using nest survival and Cormack-Jolly-Seber mark-recapture models.  Predation

of nests and females during the breeding season appears to be the primary factor limiting

population sizes of prairie-chickens. Chapter 5 is a summary of the major findings of these

studies, a discussion of their theoretical and conservation importance, and suggestions for future

research. 
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CHAPTER 2 –

Correlates and Consequences of Male Mating Success in Lek-mating

Greater Prairie-Chickens (Tympanuchus cupido)

Jacqueline K. Nooker and Brett K. Sandercock

Kansas State University

Abstract 

Female choice and male-male aggression are two modes of sexual selection that can lead to

elaboration of male morphological and behavioral traits.  In lek-mating species, male mating

success is often strongly skewed, and it is puzzling why variation in male traits is still observed

(lek paradox).  If male traits correlated with reproductive success are honest signals of male

quality, there may be survival costs associated with the expression of those traits.  In this study,

we determined which morphological, behavioral and territorial traits are correlated with male

mating success and survival in the lek-mating greater prairie-chicken (Tympanuchus cupido). 

We introduce a novel application of multinomial discrete choice (MDC) models for analysis of

female mate choice behavior.  We found that behavioral and territorial attributes showed 6.5

times more variability among males than morphological traits.  Both display and aggressive

behaviors were strong predictors of male mating success, suggesting that both female choice and

male-male aggression were important in determining mating success among male greater prairie-

chickens.  Moreover, annual survival of male prairie-chickens was independent of mating

success and male traits.  Since most morphological traits showed little variation (mean CV <

5%), the lek paradox applies only to behavioral traits of male greater prairie-chickens. 

Behavioral traits were the most important factor determining mating success of male prairie-

chickens, but the proximate mechanism underlying this relationship is unknown.  In the future,

experimental manipulations of male hormones and parasite loads could bridge the proximate

mechanisms and ultimate consequences of factors mediating male mating success in lek-mating

birds. 
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Introduction

Sexual selection is an important driver of evolutionary change and leads to elaboration of

male traits including morphology, behavior, and territory attributes.  The intensity of sexual

selection may be particularly high in lek-mating species because male mating success is often

strongly skewed, where a subset of males receive the majority of copulations (Bradbury and

Gibson 1983; Wiley 1991).  Lek-mating is a rare mating system, but is found in a variety of taxa,

including insects, birds, and mammals (Bradbury 1981; Höglund and Alatalo 1995).  In lek-

mating species, aggregated males perform displays at a communal lek site (Wiley 1991). 

Females visit lek sites to copulations, and may obtain indirect benefits such as good genes for

offspring or possibly direct benefits such as reductions in copulation disturbance, transmittal of

parasites, predation risk or the cost of searching for a mate (Reynolds and Gross 1990; Gratson et

al. 1991; Höglund et al. 1992; but see Sæther et al. 1999).  In most cases, females do not obtain

food or nesting sites, so they must select mates based on male traits alone.  

Three important factors affecting male mating success in lek-mating birds include

morphology, behavior, and territorial position (Balmford 1991; Fiske et al. 1998).  In lek-mating

greater sage-grouse (Centrocercus urophasianus), females choose males based on their display

characteristics, but aggressive behaviors, territory position and physical size have little or

variable effects on female choice (Gibson and Bradbury 1985; Gibson et al. 1991; Gibson 1996;

Spurrier et al. 1994).  In black grouse (Tetrao tetrix), univariate analyses indicate that successful

males are heavier, have larger combs (fleshy area above the eye), invest more in display and

aggressive behaviors, and hold territories closer to the center of the lek than unsuccessful males

(Alatalo et al. 1991; Alatalo et al. 1996b; Höglund et al. 1997; Rintamäki et al. 2000).  However,

male traits may be correlated, and some male traits may be non-significant predictors of mating

success in multifactor analyses (Höglund and Alatalo 1995; Alatalo et al. 1996b).  

If male traits are honest signals of male quality, they should be costly to produce or

maintain (Wiley 1991; Jennions et al. 2001).  Steroid hormones, such as testosterone, may be the

proximate mechanism that mediates variation in male traits.  If high testosterone levels enhance

male traits at the cost of suppressing the immune system (Mougeot et al. 2004; Redpath et al.

2006), elaborate male traits should be correlated with reduced survival (natural vs sexual

selection trade-off; Jennions et al. 2001).  On the other hand, males may vary in their expression
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of sexually selected traits relative to their ability to bear the costs of producing the trait (Jennions

et al. 2001).  In this case, there should be positive correlations among condition, male traits and

survival.  However, the links among male traits, mating success and survival are usually not

examined in concert.  

In this field study, we examined how male mating success correlates with male traits and

survival in greater prairie-chickens (Tympanuchus cupido), a lek-mating species of prairie

grouse.  We improve on past work in three ways: 1) We describe the first quantitative field study

of female mate choice in greater prairie-chickens;  2) We examine the survival consequences of

sexually-selected traits; and 3) We present a new application of multinomial discrete choice

(MDC) models to studies of mate choice.  Past studies of the reproductive behavior of greater

prairie-chickens have been qualitative only (Ballard and Robel 1974; Hamerstrom and

Hamerstrom 1973; Robel 1966, 1970; Robel and Ballard 1974).  In these studies, aggressive

males in the center of the lek tended to receive more copulations.  The roles of morphology and

age on male mating success have not been addressed in previous studies of prairie grouse.   We

also determined if the consequence of increased mating success was reduced survival.  Links

among male traits, mating success and survival have been examined in one other lek-mating

species but was limited to males greater than two years old (Alatalo et al. 1991).  MDC models

have not been used previously in studies of mate choice.  This statistical method improves upon

logistic regression and other procedures because mating success is not assumed to be normally

distributed among males and it controls for pseudoreplication among males.  The objectives of

our study were threefold: 1) to quantify mating skew among male greater prairie-chickens, 2) to

investigate morphological, behavioral and territorial correlates of male mating success

simultaneously using MDC models, and 3) to examine the effects of male mating success on

annual survival. 

Methods

Overview

We observed greater prairie-chickens at lek sites between mid-March and mid-May,

2003-2006.  All leks were located on cattle-grazed pastures in Riley and Geary Counties in

northeast Kansas, USA (39º 05’N, 96º 34’W).  Three leks were observed in 2003, and we
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expanded our sampling effort to four leks in 2004-2006.  In this study, we restricted our mate

choice analyses to observations from three leks in 2003, four leks in 2004 and two leks in 2005

due to manipulations at the other leks for a separate study.  Leks were visited in 2006 to

determine annual return rates only. 

Trapping and morphometrics

Birds were trapped at lek sites using walk-in funnel traps (Hamerstrom and Hamerstrom

1973, Toepfer et al. 1987).  Males were given a unique combination of colored leg bands and tail

markings using non-toxic permanent markers to aid in individual identification.  Seven

morphometric measurements were recorded during handling: body mass (± 1 g), four linear

measurements of body size (lengths of tarsus plus the longest toe, keel, wing, tail; ± 1 mm for

all), and two sexually dimorphic ornaments (comb area, measured as length x height, ± 1 mm2;

pinnae length, feathers behind head erected during display, ± 1 mm).  To minimize measurement

variation between observers, one observer (JKN) measured >90% of males.  Principal

components analysis was not performed on morphometric data because these variables were

weakly correlated (|r| < 0.35).  We determined age-class as second-year (SY) or after-second-year

(ASY) from the shape, coloration and wear of the outermost two primaries (numbers 9 and 10;

Schroeder and Robb 1993).  In SY birds, the outer primaries are retained from juvenile plumage,

appear tapered with light brown dots on the leading edge extending to the tip, and contrast in

coloration and wear with primaries 1 through 8.  The outer two primaries of ASY birds have

truncate tips, light brown dots on the leading edge that terminate > 2 cm from the tip, and do not

contrast with the inner primaries. 

Behavioral observations

Male greater prairie-chickens perform ritualized courtship and territorial behaviors on

small territories at lek sites (Schroeder and Robb 1993).  Courtship displays consist of rapid foot-

stomping with tail fanning and raising of the pinnae feathers above the head.  Displays culminate

with the inflation of air sacs, a low 3-note ‘boom’ vocalization, and flicking of the tail and wing

feathers.  Flutter-jumps are a courtship display that consists of short flights (~3 m) and a

‘clucking’ vocalization, and are used to attract females when they are near the lek or on another
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male’s territory.  Display behaviors are performed by unaccompanied males or can be directed at

females.  Territorial boundary disputes consist of two males facing each other at the territory

boundary, frequently exchanging dry ‘neh’ calls.  Fights often escalate to physical combat with

males striking or pulling feathers from each other with their wings, beaks and feet.  Aggressive

behavior is easily distinguished from display behavior, because aggressive behavior is directed at

another male and causes a reaction in the adjacent male.  Males rarely boom during aggressive

behavior.

Blinds were placed ~6 m from the edge of each lek.  Grid stakes were placed at 6-m

intervals and did not interfere with the movement of males or females.  To control for the

possible effects of observer, time of day and weather, observers were rotated among leks, the

order that males were observed was varied systematically, and all observations were conducted

during the peak of activity (30 minutes before sunrise to 3 hours after sunrise) on days without

rainfall.  Males were observed every other day on average to quantify display and aggressive

behaviors.  The behavior of individual males was recorded with continuous 10-min focal

observations.  Time spent in each of three main behavior categories (display, fighting, other) was

calculated.  Other behaviors included preening, foraging and roosting.  Tallies were taken of the

number of fights, males approached, boom vocalizations, and flutter-jump displays.  Female

presence or absence on the lek during the observation period was recorded for every focal

observation.

Position of males relative to grid stakes and copulations were recorded during focal

observations and periodic scans of the lek.  Territorial positions of males were only recorded if

associated with a boom vocalization or a territorial boundary dispute.  When a pair attempts to

copulate, adjacent males may attempt to disrupt the copulation.  We determined that a copulation

attempt was successful if females vigorously shook their wings and body feathers, preened their

vent and departed the lek shortly after the copulation (Schroeder and Robb 1993).  After

unsuccessful copulations, females did not shake, remained on the lek, and continued to solicit

males.
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Statistical analyses

Statistical analyses were conducted in JMP IN (Ver. 4.0.4, SAS Institute, 2001), except

where otherwise noted.  Sample sizes varied among analyses because it was not possible to

measure every attribute for all males.  Descriptive statistics are presented as 0 ± 1 SD unless

otherwise indicated.  Some males survived between years and multiple records were included in

the descriptive statistics of morphology, behavior and territory attributes.  Our conclusions did

not change if we selected one record per male at random (results not shown).  

Lambda values of male mating skew allows the intensity of sexual selection to be

quantified and compared across leks regardless of lek size (Kokko and Lindström 1997).  This

index varies from 0 to 1 where 8 = 0 indicates random mating and 8 = 1 indicates one male

obtaining all the matings.  Lambda values for male mating skew were calculated using Skew

Calculator 2003 PC (Nonacs 2003).  Mean skew per lek was calculated with one exception:

lambda could not be calculated at Poole lek in 2004 because only one copulation was observed. 

The only value presented for the Poole lek is from 2005. 

The six behavioral variables (% time displaying, % time fighting, and number of boom

vocalizations, flutter-jump displays, fights, and males approached) were correlated.  Eleven of 15

pairwise correlations were statistically significant (|r| > 0.44; P < 0.01).  Thus, we used principal

components analysis (PCA) to obtain two principal components of behavior that were

statistically independent of each other.  The Kaiser criterion (eigenvalues $ 1) was used to select

the number of principal components to retain for use in our analysis (Kaiser 1960).  Female

presence has a large effect on male behavior in other species of lek-mating grouse (Wiley 1991;

Höglund et al. 1997).  To minimize variation among focal observations and to control for female

presence, principal component scores were averaged separately for each male for observations

when females were present or absent.  Changes in behavior with respect to female presence were

analyzed using a matched pairs analysis.

Territorial positions of males were plotted in ArcView (Ver. 3.3; Environmental Systems

Research Institute, Inc., St. Charles, MO).  Using the Animal Movement extension (Hooge et al.

1999), we obtained 95% kernel estimates of territory size from positions of each male and lek

size from the pooled positions of all males (± 0.1 m2).  Centroids of the 95% kernel estimates

were determined using the XTools extension (Delaune 2003).  Distance to lek center was defined
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as the distance between the centroid of each males’ range to the centroid of the entire lek

(± 0.1 m).

 Annual survival was estimated from return rates of male prairie-chickens to lek sites. 

Return rates are the product of multiple probabilities including: true survival (S), site-fidelity (F),

and encounter rate (p) (Sandercock 2006).  Our data indicated that F and p were close to unity

(see Results), and we interpret return rates as estimates of true survival for male greater prairie-

chickens.  The SE of survival was calculated using the formula:

where  = annual survival and N = sample size of males.  Logistic regression was used to

analyze annual survival rates.  Predictor variables included number of successful copulations

received, mass, comb size, aggressive and display behavior when females were present and

distance to the lek center.

The discrete choice model

Studies correlating mating success with male traits are complicated in lek-mating species

because male mating success is highly skewed and males may be observed in multiple years. 

Previous studies have often used Pearson correlations or multiple regression to examine the

effects of male traits on mating success (Höglund and Lundberg 1987; Hill 1991; Shorey 2002). 

Data on mating success among males in a lek frequently violate both the assumptions of

normality and independence that underlie correlation and regression analyses.  These problems

can be avoided by using logistic regression to compare unsuccessful (0 copulations) and

successful males ($ 1 copulation; Gibson and Bradbury 1985; Höglund et al. 1997).  However,

use of a binomial response variable reduces the power to detect differences because males that

received one or multiple copulations are pooled, and it still does not address the lack of

independence in responses among males in a lek.  An additional complication is that some males

may be observed in more than one year, leading to possible pseudoreplication (Hurlbert 1984). 

Discrete choice models provide a solution to these issues by testing how an individual chooses

among a defined set of choices (Buskirk and Millspaugh 2006; Cooper and Millspaugh 1999;
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Moore and Swihart 2006).  Discrete choice models use multinomial distributions to describe how

females choose a mate from among a group of males in a lek.  Each copulating female increases

the copulation count of exactly one male, so that features such as skewed mating success among

males and dependence among males’ counts arise naturally from the model. 

Three assumptions of the discrete choice model include: choices are equally accessible to

the individual, the individual gains a ‘benefit’ from making the choice, and the ‘benefit’ is a

function of the attributes of the resource (sensu ‘satisfaction’ in Cooper and Millspaugh 1999). 

These three assumptions are likely to be met with respect to lek-mating prairie-chickens.  First,

forced copulations do not occur, and females have the ability to choose any male on a lek

regardless of previous matings by that male.  Moreover, there is no evidence that male prairie-

chickens will refuse to mate with a soliciting female although this may be an issue for other lek-

mating birds (Sæther et al. 2001).  Second, females may gain indirect benefits of good genes for

their offspring and possibly direct benefits such as avoiding harassment or reduced search costs

(Reynolds and Gross 1990).  Last, female benefits are presumably a function of male traits such

as morphology, behavior or territory position. 

Correlates of female choice were analyzed using a conditional logit multinomial discrete

choice model (Proc MDC, SAS Ver. 9.1, SAS Institute 2003).  The utility of a choice (U) in

benefitting the individual is modeled as:

where female i chooses among males j using characteristics of the choice j.  $n is the slope

coefficient for explanatory variables, and , is the error term.  In this study, each lek represents a

different set of choices (males) from which the females choose, which are represented in the

model by different sets of values for the characteristics, x1,...,xn.

Each successful copulation was considered an independent choice of a female among the

males at a lek.  Studies of other lek-mating grouse indicate that females may copy choices of

prior-mating females (Gibson et al. 1991; Gibson 1996; but see Spurrier 1994).  To test for a

possible role of female mate choice copying in greater prairie-chickens, we modified the best fit

MDC model ()AIC = 0) to examine correlates of female choice with respect to female mating

order (a = first-mated or only females to copulate on a given day; b = females that copulated

subsequently).  We partitioned the model as follows:
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where x1_a and x1_b are the contributions of x1 of first- and second-mated females, respectively. 

The resulting model AIC was compared to the best fit MDC model to determine model support. 

The paired estimates (x1_a and x1_b, for example) were also compared using a Z-statistic to

determine if first- and second-mated females used different male traits to choose a mate.  

In general, female prairie-chickens visited lek sites for short periods, were rarely available

for capture, and a majority of the copulations were with unbanded females.  However, we

expected pseudoreplication among females to be low for three reasons.  First, behavioral and

genetic data indicate that in lek-mating species of grouse, females typically copulate only once to

fertilize the entire clutch and do not copulate again unless to fertilize a re-nesting attempt

(Alatalo et al. 1996a; Semple et al. 2001).  Second, we included only successful copulations in

our analyses.  Last, annual survival of females is low (51-59%, Hamerstrom and Hamerstrom

1973; 33%, Chapter 4) and turnover of females was expected to be high. 

In the global discrete choice model, male characteristics hypothesized to be linked to

female choice included four behavioral indices (PC scores of display and aggression with and

without females), five measurements of body size (mass, tarsus, keel, wing, and tail), two

ornaments used in display (comb and pinnae), age class (SY or ASY, coded as 0 and 1), and two

territory measurements (distance to lek center and size).  Morphometric and territory

measurements were standardized before analysis (0 = 0, SD = 1) so slope coefficients would be

directly comparable with our PC-scores for components of behavior.  Backward elimination was

used to simplify the model, and the resulting models were evaluated using an information-

theoretic approach (Burnham and Anderson 2002).  Additional models where variables were

added and subtracted from the minimum-AIC model were also considered.  In all, 51 models

were analyzed.  Akaike weights (wi), model-averaged estimates ( ), and weighted

unconditional standard error [se ( )] were calculated using formulae in Burnham and Anderson

(2002; eqns. 4.1 and 4.9).  
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Results

Copulations observed

Over three years and 263 mornings of observations, 108 males were observed at four lek

sites of greater prairie-chickens (9 lek-years).  On average, 2.3 ± 2.9 females visited a lek each

morning (range 0-18, n = 263 mornings).  A majority of copulation attempts were unsuccessful

(55.5% of 191 copulation attempts).  Therefore, successful copulations were relatively infrequent

events occurring at an average rate of 9.6 ± 7.5 successful copulations/lek/season.  Lek size

varied slightly (10-14 territorial males per lek), but male attendance was consistently high during

the observation period with 92.4 ± 14.6% of all territorial males attending per day (n = 263

mornings).  Male mating success was strongly skewed at each lek site (Figure 2.1).  Lambda

values for male mating skew ranged from 0.38-0.90 with a mean of 0.62 ± 0.17 (Figure 2.1). 

Overall, 18.5% of males obtained 87.2% of all successful copulations (n = 108 males; 85

copulations). 

Of 85 successful copulations, 84.7% involved unbanded females.  Of 10 banded females

observed to copulate, eight females copulated once and two females mated multiple times.  One

female copulated with two different males with a one-month interval between copulations.  The

timing of the second copulation was consistent with a re-nesting attempt.  The second female

copulated successfully with the same male three times in the span of four days.  We included

only the first copulations in the MDC analyses. 

Morphology

Of the 108 males observed over three years, 67 were captured and banded in the year of

the observation, 13 were recaptured in years after initial capture, 14 were resighted only after

initial capture, and 14 were unbanded.  Thus, 80 handling records from 67 birds were used to

describe morphometrics. Most morphological characters showed little variability (CV < 9%;

Table 2.1).  Excluding comb size, the mean coefficient of variation in morphological characters

was 4.8 ± 2.3%.  Comb size exhibited the most variability, with a coefficient of variation over 3

times greater than other morphological characters (Table 2.1). 
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Behavioral attributes

In total, 912 10-minute focal observations were conducted with 8.4 ± 3.3 observations per

male each year (n = 108 males).  Behavior showed greater variability among males (CV > 30%)

than morphological traits (CV < 10%; Table 2.1).  The first and second principal components of

behaviors (PC1 and PC2) were extracted from a principal components analysis of six behavioral

traits.  Together, PC1 and PC2 explained 74.8% of the variance in male behavior (Table 2.2). 

Loadings on PC1 were high and positive for number of booms and time in display but negative

for time in fights, so we interpreted PC1 as an index of ‘display’ behavior.  Loadings on PC2

were high and positive for number of fights and number of males engaged, so we considered PC2

an index of ‘aggressive’ behavior.  In a matched pairs analysis, both male display and aggression

were greater if females were present on the lek (t98 < -9.1, P < 0.001).

Territory attributes

For nine lek-years, a total of 911 ± 211 male positions per year per lek were obtained. 

The 95% kernel estimates of lek size ranged from 0.10 to 0.27 ha with a mean of 0.15 ± 0.06 ha

(n = 9 lek-years).  The four leks were located on average 4.0 ± 2.0 km from each other (range 1.0

- 7.3 km).  For 108 males, 74.6 ± 34.8 positions per male per year were obtained.  Males showed

strong fidelity to lek territories within a breeding season, and territory size averaged 385.3 ±

251.9 m2 (range = 107.9 - 2078.1 m2).  The two largest territories (1250.2 and 2078.1 m2) were

due to peripheral males shifting territorial positions around the edge of the lek during the mating

season.  Male territories were located on average 13.1 ± 6.1 m from the center of the lek. 

Territory attributes had coefficients of variation similar to behavioral traits (46-65%, Table 2.1). 

Results of MDC model

To be included in the multinomial discrete choice (MDC) analysis, males had to have a

complete set of explanatory variables (behavioral, morphological and territorial measurements). 

This analysis was limited to 62 successful copulations among 20 successful and 43 unsuccessful

males.  Of the 51 models considered, 17 models had )AIC-values # 2 (Table 2.3).  Male mating

success was consistently linked to behavior and body mass as indicated by the inclusion of these

variables in all the minimum-AIC models and by their large slope coefficients ($ > 0.55,
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Figure 2.2).  Male behavior when females were present was the strongest predictor of mating

success, but behavior when females were absent was also important.  Male mating success

increased if males were more aggressive ($ = 0.80) but displayed less ($ = -0.80) when females

were absent.  Of the seven morphological traits, body mass ($ = 0.55) and comb size ($ = 0.24)

made the largest contributions toward mating success, but the magnitude of slope coefficients

were less than half of behavior (Figure 2.2).  Of the two territorial metrics examined, neither

distance from the lek center nor territory size correlated with mating success (Figure 2.2). 

Female mate choice copying

Opportunities for mate-choice copying among female prairie-chickens were limited.  Of

the 57 morning observation periods when successful copulations occurred, only one female

copulated on 40 mornings (70.2%), but multiple females were observed copulating on 17

mornings (29.8%).  Of the subset of mornings where multiple females copulated, two or more

females copulated with the same male on nine mornings (52.9%) and with different males on

eight mornings (47.1%).  At most, only 15 of the 85 successful copulations observed (17.6%)

could be the result of mate choice copying because they involved a female mating with a male

that had mated previously that same morning.

When the best fit MDC model ()AIC = 0) was compared to a model that partitioned

female choice between first- and subsequently-mating females, the partitioned model had a

)AIC = 8.6 and a wi < 0.01.  Thus, there is little evidence that females are copying the mating

choices of previously mated females.  Moreover, a comparison of the parameter estimates

indicated that first- and subsequently-mated females were using the same cues to select a mate

(estimates considered: mass, tail length, comb size and display and aggression with and without

females; Z < 1.63; P > 0.05).

Annual survival

Return rates were determined for 64 newly-banded males and 31 returning males for a

total of 95 bird-years.  Return rates are the product of true survival (S), site-fidelity (F), and

encounter rate (p).  The encounter rate of male prairie-chickens was at unity (p = 1) because

males were readily observed at leks and no males were overlooked for an intervening year
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between breeding seasons (i.e., bird banded at time t, not seen in t +1, but seen again at or after t

+ 2).  In our study area, only 1 of 108 males (0.9%) was detected at more than one lek.  This bird

did not establish a territory on the second lek he visited.  From these observations, we conclude

that once males established a territory on a lek, they were unlikely to emigrate to a new lek, and

that F was also close to 1.  Therefore, return rates are effectively an estimate of true survival for

male greater prairie-chickens in our study population.

Annual survival of males was 55.8 ± 5.1% (± SE; n = 95 bird-years) and was not affected

by number of successful copulations received (P2 = 0.27, P = 0.60, n = 95 bird-years), mass at

capture (P2 = 0.98, P = 0.37, n = 80), comb size (P2 = 0.47, P = 0.49, n = 75), display behavior

when females were present (P2 = 0.00, P = 1.00, n = 88), aggressive behavior when females were

present (P2 = 0.07, P = 0.79, n = 88), or territory distance to lek center (P2 = 0.10, P = 0.75,

n = 94).  Moreover, annual survival of males did not differ between age-classes (SY = 57.8 ±

7.4%, n = 45; ASY = 55.1 ± 7.1%, n = 49; Fisher’s Exact P = 0.84).

Discussion

In this three-year study of greater prairie-chickens, male mating success was strongly

skewed, similar to other lek-mating grouse (Wiley 1991; Höglund et al. 1997).  This is the first

study to calculate 8-values of male mating skew for greater prairie-chickens.  Behavioral traits

were better predictors of male mating success than morphological and territorial attributes, and

showed the most variability among males.  Remarkably, male mating success did not correlate

with survival, suggesting that male traits preferred by females (i.e., behavior) may not be costly. 

The importance of behavioral traits in determining male mating success may be a general

pattern that is common to lek-mating species of birds.  Our PC scores (PC1=Display,

PC2=Aggression) were similar to a previous study of the lek-mating white-bearded manakin

(Manacus manacus, Shorey 2002).  In greater prairie-chickens, both display and aggressive

behavior were important predictors of male mating success, contrary to previous studies of lek-

mating birds where aggressive behavior did not correlate with mating success (Gibson and

Bradbury 1985; Höglund and Lundberg 1987; Gibson et al. 1991; Alatalo et al. 1996b; Shorey

2002).  Aggression may be particularly important in male-male competition if males establish

dominance hierarchies at lek sites (Alatalo et al. 1991; Höglund et al. 1997), but the importance
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of male-male competition might vary among species.  In the absence of females, aggressive and

display behavior of male prairie-chickens were positively and negatively correlated with mating

success, respectively.  We conclude that males that fight more but display less may be

establishing dominance relationships in the absence of females, which females subsequently may

use to select a mate (Bradbury and Gibson 1983).

Plumage characters had low predictive power for determining male mating success in

prairie-chickens, with the exception of comb size (Gratson et al. 1991).  Comb size was the only

morphological trait with high variation (CV = 26%) and it was included in 71% of the 17 models

with )AIC # 2.  The low predictive power of most plumage characters in mate choice may be a

general feature of galliform birds (Alatalo et al. 1991; Beani and Dessi-Fulgheri 1995; Rintamäki

et al. 1998; Hagelin and Ligon 2001; Parker and Ligon 2003).  We propose three possible

explanations.  First, male plumage ornamentation is a primitive character in Galliformes with the

cryptic female plumage being a derived estrogen-dependent character (Kimball and Ligon 1999). 

Given that female plumage is a derived character, natural selection for cryptically colored

females may be more intense than sexual selection for more elaborate male plumage.  Second,

natural selection may be relatively more important than sexual selection in determining the

plumage of grouse (Bleiweiss 1997).  Grouse living in similar habitats have more similar

plumage than those with similar mating systems (Drovetski et al. 2006).  Mating system

correlates with sexual size dimorphism (Wiley 1974; Payne 1984), but not the degree of sexual

plumage dichromatism in grouse (Drovetski et al. 2006).  Lastly, low CV values may limit the

statistical power to detect female choice. 

Previous studies of lek-mating birds have frequently emphasized a link between territory

position and male mating success (Höglund and Lundberg 1987; Gratson et al. 1991; Alatalo et

al. 1996b; Shorey 2002).  We did not find territory size or position to be an important predictor

of male mating success, despite CVs > 46% and contrary to previous studies of prairie grouse

(Robel 1966; Robel and Ballard 1974; Gratson et al. 1991).  Our results support the hypothesis

that direct female choice (via behavior) may be more important than indirect female choice (via

territory; Sæther et al. 2005).  

An unexpected result of our study was that male survival was not related to any of the

traits examined (mating success, morphological, behavioral, or territorial traits), despite strong
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evidence from previous studies showing that male characteristics correlate with survival due to

condition-dependence or trade-offs between natural and sexual selection (Jennions et al. 2001). 

Yearling males had slightly higher survival than adult birds, but this difference was not

significant.  A trend for higher survival among yearlings than adults has been reported in

previous studies of greater (Hamerstrom and Hamerstrom 1973) and lesser prairie-chickens

(Hagen et al. 2005).  Future work should determine if counteracting selective pressures may

differentially affect males based on their mating success or behavior.  For example, variation in

predation among successful and unsuccessful males could arise from male position or dominance

on and off the lek.  If male traits are energetically costly (Vehrencamp et al. 1989), successful

males may be better foragers than less successful males, and are able to off-set the costs of

enhanced traits with greater food intake.  Parasites have been shown to vary with mating success

and male traits (Höglund et al. 1992), and may affect survival.  In these examples, apparent

survival would not vary with mating success due to multiple or compensatory selective pressures

reducing the observed variation in survival.

Given the high skew in male mating success, the lek paradox asks the question “Why

have male traits not been selected to fixation?”  We have shown that the variability of

morphological traits is much lower than the variation in either behavioral or territorial attributes. 

In the case of body size and male ornaments, such as the pinnae feathers, low CV (mean < 5%)

may suggest that these traits have been under strong selection in the past.  Territorial traits had

high CV values, but were not used by females to select mates.  Female greater prairie-chickens

select males based on behavioral traits where adequate variation may still exist to base their

decision.  

Five hypotheses have been proposed as solutions to the lek paradox.  One hypothesis is

that the high skew in male mating success observed on a lek differs from the mating skew

observed when examining the paternity in the offspring due to alternative mating tactics (Lanctot

et al. 1997; Foster and Kokko 2006).  This explanation may not apply to lek-mating grouse,

because only low rates of multiple paternity have been reported (0-20% of broods) and

copulations observed on the lek match the paternity of the brood (Alatalo et al. 1996a; Semple et

al. 2001).  Second, male mate choice or female-female aggression may maintain variability on

leks if assortative mating occurs where high quality males mate with high quality females and
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poor quality females mate with poor quality males (Rintamäki et al. 1998; Werner and Lotem

2006).  This hypothesis is unlikely for greater prairie-chickens, because males never refused to

copulate with a soliciting female, copulations were relatively rare events, and female-female

aggression did not preclude multiple females from mating during the same morning.  A third

hypothesis states that if male-male competition was the sole determinant of skewed mating

success, then the lack of female choice would negate the lek paradox (Beehler and Foster 1988;

Höglund and Alatalo 1995).  Seasonal mating success positively correlated with more aggressive

males that displayed less frequently when females were not present, suggesting that male-male

competition is important in greater prairie-chickens.  However, female choice is also important

because we found no evidence of forced copulations, and mating success is correlated with

display behavior when females are present.  Fourth, females may be obtaining direct benefits,

such as reduced mate search costs (Reynolds and Gross 1990).  Since most females in our

population were unbanded, we are unable to evaluate the cost of mate searching for females. 

Future tests of this hypothesis will require better information on female movements and rates of

lek visitation.  A fifth hypothesis states that the lek paradox can be maintained with condition-

dependence of sexually selected traits and high genetic variance in condition (Pomiankowski and

Møller 1995; Turner 1995; Rowe and Houle 1996; Parker and Garant 2004).  Our study shows

that behavior is more variable and preferred by females more strongly than male body mass.  If

behavior proves to have high genetic variance, the genetic variance hypothesis may be the best

explanation for the lek paradox in greater prairie-chickens.

In the future, research on the correlates of male mating success in lek-mating species will

benefit from utilizing MDC models, quantifying the display and aggressive components of

behavior, and determining the underlying physiological mechanisms mediating variation in male

mating success and survival.  MDC models are unique among statistical methods in that it

directly models the process of female mate choice.  In addition, MDC models control for

pseudoreplication of males observed in multiple years and eliminates the problem of the non-

normal distribution of male mating success.  Past studies link male mating success of lek-mating

species to components of display, but have not considered the role of aggressive behaviors.  We

showed the importance of aggression in determining male mating success, but were unable to

examine the proximate causes.  Variation in steroid hormones, such as testosterone, may underlie
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the variation in male traits and survival.  Testosterone has been linked to aggression, comb size

and increased male mating success (Zuk et al 1995a,b; Alatalo et al. 1996b).  In addition, male

grouse with higher testosterone levels can have higher parasite loads, which may ultimately

decrease survival (Redpath et al. 2006; Seivwright et al. 2005).  A better understanding of the

interactions among testosterone, parasite loads, mating success and survival in a lek-mating

species would link the proximate mechanisms and ultimate consequences of factors mediating

male mating success. 
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Table 2.1 – Descriptive statistics for traits of male greater prairie-chickens observed at four leks

near Manhattan, northeast Kansas during 2003-2005.

Category Male Traits Mean SD N %CV

Morphology Mass (g) 1034 60 80 5.8

Tarsus (mm) 107 3 79 3.0

Tail (mm) 96 5 78 5.3

Keel (mm) 121 10 78 8.5

Wing (mm) 230 4 80 1.9

Pinnae (mm) 77 4 78 4.8

Comb (mm2) 229 59 75 25.7

Behaviora Time displaying (%) 51 15 108 30.2

Time fighting (%) 31 15 108 47.4

Boom vocalizations (#) 30 10 108 38.8

Flutter jump displays (#) 3 3 108 99.9

Fights (#) 4 2 108 41.5

Males engaged (#) 2 1 108 33.2

Territory Territory Size (m2) 385 252 108 65.4

Distance to lek center (m) 13 6 108 46.4

a Quantified during 10-min focal observations of males.
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Table 2.2 – Eigenvectors of a principal component analysis of male behavior from 912 ten-

minute focal observations of 108 male greater prairie-chickens on 2-4 leks per year. 

Observations were conducted during the breeding season (mid-March through mid-May) near

Manhattan in northeast Kansas during 2003-2005.  Principal component loadings > 0.4 are in

bold. 

Behavior PC1 (Display) PC2 (Aggression)

Percent time displaying 0.52 0.33

Percent time fighting -0.52 0.08

Number of boom vocalizations 0.47 0.37

Number of flutter jump displays 0.34 0.06

Number of fights -0.25 0.62

Number of males engaged -0.26 0.60

Eigenvalue 2.75 1.73

Percent of variance explained 45.9 28.9
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Table 2.3 – Comparison of multinomial discrete choice models that had )AIC # 2 examining

the effects of male morphology, behavior and territory attributes on mating success.  Data

included 62 copulations among 20 successful and 43 unsuccessful males on four greater prairie-

chicken leks between 2003-2005 in northeast Kansas.  Model abbreviations are as follows:

morphological variables (m = mass at capture; c = comb area; t = tail; k = keel; r = tarsus; p =

pinnae; w = wing; g = age class);  behavioral variables (D = display with females; A = aggression

with females; d = display without females; a = aggression without females); and territory

variables (l = distance to center of lek, - = no effect).

Model Morphology Behavior Territory Deviance K (# parameters) AIC )AIC wi

1 mct DAda - 132.7 7 146.72 0.00 0.09
2 mctk DAda - 130.7 8 146.73 0.01 0.09
3 mk DAda - 134.8 6 146.77 0.05 0.09
4 mc DAda - 134.8 6 146.85 0.13 0.08
5 mck DAda - 133.0 7 146.99 0.27 0.08
6 mtk DAda - 133.2 7 147.16 0.44 0.07
7 mctr DAda - 131.3 8 147.29 0.57 0.07
8 mcr DAda - 133.4 7 147.39 0.67 0.06
9 mt DAda - 135.4 6 147.43 0.71 0.06
10 mctk DAda l 129.6 9 147.63 0.91 0.06
11 mk DAda l 133.9 7 147.93 1.21 0.05
12 mct DAd - 136.1 6 148.14 1.42 0.04
13 mp DAda - 136.3 6 148.27 1.55 0.04
14 mct DAda l 132.6 8 148.63 1.91 0.03
15 mctp DAda - 132.7 8 148.69 1.97 0.03
16 mctw DAda - 132.7 8 148.72 2.00 0.03
17 mctg DAda - 132.7 8 148.72 2.00 0.03
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Figure 2.1 - Mating success of male greater prairie-chickens observed at four leks from 2003-

2005 near Manhattan in northeast Kansas.  Bars and whiskers represent means and SD.  Lambda

values are means per lek.  Males are ranked on the x-axis based on the number of copulations

they received. 
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Figure 2.2 - Model-averaged estimates of the slope coefficients from a multinomial discrete

choice model estimating the effect of male attributes on male mating success.  Explanatory

variables were standardized so slope estimates are directly comparable.  Estimates of SE are

unconditional and include uncertainty due to model selection.  Data included 62 copulations

among 20 successful and 43 unsuccessful male greater prairie-chickens from four leks between

2003-2005 near Manhattan in northeast Kansas.  Abbreviations are as follows: morphological

variables (m = mass at capture; c = comb area; t = tail; k = keel; r = tarsus; p = pinnae; w = wing;

g = age class);  behavioral variables (D = display with females; A = aggression with females; d =

display without females; a = aggression without females); and territory variables (l = distance to

center of lek, s = territory size). 
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Abstract 

Testosterone (hereafter ‘T’) plays a key role in enhancing male breeding success, but T can also

reduce immunocompetence and survival.  Socially monogamous males with higher circulating T

experience advantages during both female choice and male-male aggression. The role of T in lek-

mating systems is largely unknown. Over three years, we quantified natural and experimental

levels of T at five greater prairie-chicken (Tympanuchus cupido) leks with three objectives: 1) to

quantify natural T variation in blood plasma and determine whether T levels are correlated with

male traits and mating success; 2) to experimentally manipulate T to determine causal

relationships between T and male traits and mating success; and 3) to analyze return rates to

determine if increased T is costly.  This project was one of the first manipulations of T in a lek-

mating bird.  Using a before-after control-impact (BACI) experimental design, changes in

aggression, display behavior, territory attributes, mating success and survival were compared

between 15 T-implanted males and 13 sham-implanted controls.  Natural variation in T was a

strong predictor of male mating success, but T was not related to any morphological, behavioral

or territory traits considered.  Comb area, tarsus length and distance to the center of the lek were

also significant predictors of male mating success.  Similar trends were found in the T-implant

experiment: T-implanted males tended to gain more copulations than sham-implanted males, but

the two groups did not vary with respect to their behavior or territory attributes.  The odds of

returning were 4.1 times higher in sham-implanted males than in T-implanted males, but return

rates did not vary with respect to T.  Future work should search for a link between T and male

attributes because it is unlikely that females are assessing T levels directly.  Possible sexually-
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selected traits that may link T level to male mating success include parasite load, coloration of

plumage and fleshy areas, and vocalizations. 

Introduction

Life history trade-offs are ubiquitous in organismal biology but the proximate

mechanisms driving variation in life history trade-offs are poorly understood (Ricklefs and

Wikelski 2002).  Steroid hormones may be one factor mediating life history trade-offs, such as

the trade-off between mating and parental effort (Ketterson and Nolan 1999).  Testosterone

(hereafter ‘T’) plays a key role in enhancing male breeding effort and success. T-dependent traits

should be honest signals of male quality, because T can have immunosuppressive effects (Folstad

and Karter 1992, Ditchkoff et al. 2001) leading to a negative correlation between circulating T

and annual survival (Ketterson and Nolan 1999).  If T increases reproductive success but

decreases survival, natural selection should confer an advantage to individuals who can balance

these two fitness components.

 Trade-offs between mating and parental effort create a continuum in avian mating

systems including social monogamy, facultative polygyny, and promiscuity.  In socially

monogamous species of temperate songbirds, male T peaks during pair formation and drops

during brood rearing (Ketterson et al. 1992, Ketterson and Nolan 1999).  In facultatively

polygynous species, males have high circulating T levels during pair formation and brood-

rearing, leading to increased mating effort and reduced parental effort (Wingfield 1984).  Lek-

mating is a rare mating system found in a variety of taxa, including insects, birds, and mammals

(Bradbury 1981).  Lek mating is a type of mating system where males perform aggregated

display at a lek site in which females visit to obtain copulations.   Only females provide parental

care, so T is predicted to remain high in lek-mating males during periods of territory

establishment and female visitation (Wingfield et al. 1990).  However, the available data from

lek-mating grouse and manakins suggest that T is elevated only during the short period of peak

female visitation to the lek (Alatalo et al. 1996b, Wikelski et al. 2003).  In these two studies,

sampling was limited to fewer than 30 individuals (Alatalo et al. 1996b, n = 23 males; Wikelski

et al. 2003, n # 27 for each species).  Larger sampling of T levels over the course of the breeding

season are needed to confirm these predictions. 
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T may influence sexual selection through female choice and male-male competition.

Because T peaks during periods of mating activity, T-mediated traits may be used by females to

select a mate.  Studies in galliformes have found T-dependent traits are often associated with

female choice, such as large fleshy head combs (in red jungle fowl Gallus gallus, Zuk et al

1995a,b), high-quality territories (Moss et al. 1994), and more vigorous courtship displays

(Mateos and Carranza 1999).  Jungle fowl with larger combs were also more likely to attract

multiple mates (Parker and Ligon 2003).  T could also affect male fitness through male-male

aggression.  T-mediated male ornaments or behaviors often predict the winner of paired tests

(Ligon et al. 1990, Hagelin 2002). 

Several field studies in monogamous, territorial songbirds have used T-implants to

determine experimentally how sex hormones influence male attributes, female choice, and male-

male competition.  In most studies, T-implanted males displayed more frequently and attracted

more females than sham-implanted control males (Wingfield 1984, Ketterson et al. 1992, Hill et

al. 1999).  T manipulations have been conducted in one lek-mating passerine and three wild

galliformes including one lek-mating grouse.  T-implanted lek-mating golden-collared manakins

(Manacus vitellinus)  increase rates of several display behaviors compared to sham-implanted

controls (Day et al. 2006).  T-implanted male pheasants, with harem-defense polygyny, are more

aggressive, have higher social rank, and increased frequency of male-male interactions (Briganti

et al. 1999, Giudice and Ratti 2001). T-implanted males of the monogamous red grouse (Lagopus

l. scoticus) had higher display rates and territory sizes compared to control males (Moss et al.

1994; Mougeot et al 2003a, b).  Aggressive, display and territory attributes of T-implanted males

of the lek-mating sharp-tailed grouse (Tympanuchus phasianellus) remained unchanged relative

to unmanipulated control males, but lek attendance was higher for T-implanted males (Trobec

and Oring 1972).  These studies demonstrate that T may impact display rates, male-male

aggression, and territory attendance of lek-mating grouse.  Of the two manipulations of T in lek-

mating birds, neither study examined mating success of T-implanted males relative to controls. 

No copulations were observed in the sharp-tailed grouse study (Trobec and Oring 1972), and the

manakin study was conducted during the non-breeding season (Day et al. 2006).  

Over three years, we examined how male traits, mating success and survival varies with

natural and experimentally manipulated levels of T in male greater prairie-chickens (T. cupido), a
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lek-mating bird.  Our objectives were: 1) to quantify natural variation in T and determine whether

T levels correlate with male traits and mating success; 2) to experimentally manipulate T to

determine causal relationships between T and male traits and mating success; and 3) to analyze

return rates to determine if increased T is costly.  This project is one of the first experimental

field studies of the interacting effects of T, male attributes, mating success and survival in a lek-

mating bird.  We predict that T will have a large impact on male aggression and mating success

in lek-mating prairie-chickens, because peak T levels are significantly higher in lek-mating

species as compared to monogamous species after controlling for phylogeny (Garamszegi et al.

2005).

Methods

We observed greater prairie-chickens at lek sites between mid-March and mid-May,

2004-2007.  All leks were located on cattle-grazed pastures in Riley and Geary Counties in

northeast Kansas, USA (39º 05’N, 96º 34’W).  Four leks were observed in 2004-2005, and we

expanded our sampling effort to five leks in 2006.  In 2005-2006, a subset of males were given

subcutaneous testosterone implants at two and four leks, respectively.  Therefore, two leks were

unmanipulated in 2005 and one in 2006.  Leks were visited in 2007 to determine annual return

rates only. 

Trapping and Morphometrics

Birds were trapped at lek sites using walk-in funnel traps and drop nets (Hamerstrom and

Hamerstrom 1973, Toepfer et al. 1987, Silvy et al. 1990, Schroeder and Braun 1991).  Males

were given a unique combination of colored leg bands and tail markings using non-toxic

permanent markers to aid in individual identification.  Seven morphometric measurements were

recorded during handling: body mass (± 1 g), three linear measurements of body size (lengths of

tarsus plus the longest toe, wing, tail; ± 1 mm for all), and two sexually dimorphic ornaments

(comb area, measured as length x height, ± 1 mm2; pinnae length, feathers behind head erected

during display, ± 1 mm).  Principal components analysis was not performed on morphometric

data because the seven variables were weakly correlated (|r| < 0.35).  We determined age-class as

second-year (SY) or after-second-year (ASY) from the shape, coloration and wear of the
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outermost two primaries (numbers 9 and 10; Schroeder and Robb 1993).  In SY birds, the outer

primaries are retained from juvenile plumage, appear tapered with light brown dots on the

leading edge extending to the tip, and contrast in coloration and wear with primaries 1 through 8. 

The outer two primaries of ASY birds have truncate tips, light brown dots on the leading edge

that terminate > 2 cm from the tip, and do not contrast with the inner primaries. 

Behavioral observations

Male greater prairie-chickens perform ritualized courtship and territorial behaviors on

small territories at lek sites (Schroeder and Robb 1993).  Courtship displays consist of rapid foot-

stomping with tail fanning and raising of the pinnae feathers above the head.  Displays culminate

with the inflation of air sacs, a low 3-note ‘boom’ vocalization, and flicking of the tail and wing

feathers.  Flutter-jumps are a courtship display that consists of short flights (~3 m) and a

‘clucking’ vocalization, and are used to attract females when they are near the lek or on another

male’s territory.  Display behaviors are performed by unaccompanied males or can be directed at

females.  Territorial boundary disputes consist of two males facing each other at the territory

boundary, frequently exchanging dry ‘neh’ calls.  Fights often escalate to physical combat with

males striking or pulling feathers from each other with their wings, beaks and feet.  Aggressive

behavior is easily distinguished from display behavior, because aggressive behavior is directed at

another male and causes a reaction in the adjacent male.  Males rarely boom during aggressive

behavior.

Blinds were placed ~6 m from the edge of each lek.  Grid stakes were placed at 6-m

intervals and did not interfere with the movement of males or females.  To control for the

possible effects of observer, time of day and weather, observers were rotated among leks, the

order that males were observed was varied systematically, and all observations were conducted

during the peak of activity (30 minutes before sunrise to 3 hours after sunrise) on days without

rainfall.  Males were observed every other day on average to quantify display and aggressive

behaviors.  The behavior of individual males was recorded with continuous 10-min focal

observations.  Time spent in each of three main behavior categories (display, fighting, other) was

calculated.  Other behaviors included preening, foraging and roosting.  Tallies were taken of the

number of fights, males approached, boom vocalizations, and flutter-jump displays.  Female
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presence or absence on the lek during the observation period was recorded for every focal

observation.

Position of males relative to grid stakes and copulations were recorded during focal

observations and periodic scans of the lek.  Territorial positions of males were only recorded if

associated with a boom vocalization or a territorial boundary dispute.  When a pair attempts to

copulate, adjacent males frequently attempt to disrupt the copulation.  We determined that a

copulation attempt was successful if females vigorously shook their wings and body feathers,

preened their vent and departed the lek shortly after the copulation (Schroeder and Robb 1993). 

After unsuccessful copulations, females did not shake, remained on the lek, and continued to

solicit males.

Testosterone Sampling

Since handling stress can affect circulating T, traps were monitored from a blind to

determine how long each male was in a trap.  We collected a blood sample immediately

following the bird’s removal from the trap or drop net and placed the sample on wet ice.  Within

3 hours, the blood sample was centrifuged at 14,000 rpm for 5 min to separate the blood plasma

from the red blood cells.  The blood plasma was collected with a pipette, transferred to a new

tube, and frozen at -20 C until it could be transferred to -70 C freezer.

We measured plasma testosterone concentrations in each blood sample using a

commercially available kit for salivary testosterone enzyme immunoassay (EIA; Cat. #1-2402,

Salimetrics LLC, State College, Pennsylvania).  We followed the Salimetrics protocol for the

EIA.  All plasma samples were diluted 1:10 with assay dilutant (e.g., 15 :L of plasma into

135 :L of assay dilutant) for our assays. 

We conducted a standard assay validation including assessment of parallelism, recovery

of exogenous testosterone, intra- and interassay precision, and assay sensitivity (Jeffcoate 1981,

Grotjan and Keel 1996, O'Fegan 2000), to confirm that testosterone concentrations in prairie-

chicken plasma were measured accurately and precisely.  Validation assays were conducted on

two pooled plasma samples (low and high) where each pooled sample consisted of plasma from

three individuals.  Parallelism ensures the assay maintains linearity under dilution, and recovery

of exogenous testosterone verifies accurate measurement throughout the working range of the
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assay (Jeffcoate 1981).  We used the low and high controls from the kit and analyzed them in

each of the assays.  Inter-assay variation was calculated from these two controls.  We calculated

intra-assay variation by averaging the coefficient of variation (CV) of replicate tubes from 20

randomly chosen samples.

Methodological validation confirmed that variation in T levels represented variation

among the males sampled.  Serial dilutions (1:1, 1:2, 1:4, 1:8, and 1:16) of two pooled plasma

samples yielded a displacement curve that was parallel (test of equal slopes, all P > 0.6) to the

standard testosterone curve.  Mean recovery of exogenous testosterone (range 38.4-240 pg/mL;

levels chosen to correspond with expected plasma testosterone levels from actual samples) added

to low and high pooled plasma samples were 109.9 ± 1.1% (±SE, n=6) for the low and 108.4 ±

0.7% (±SE, n = 6) for the high.  Acceptable recovery of exogenous testosterone (within

90–110%) and demonstration of parallelism suggested no sample matrix effects (Jeffcoate 1981,

Grotjan and Keel 1996, O'Fegan 2000).  Inter-assay variation for six assays was 9.14% and

average intra-assay variation was 4.68%.  The sensitivity of this assay is 1.0 pg/mL.  Estimates of

plasma T concentration were log10-transformed to normalize the data.  

Testosterone Implant Experiment

To test for a link between T and male behavior, we used a Before-After Control-Impact

Design (BACI; Conquest 2000).  Behavior, territory attributes and mating success were

compared before and after experimental application of implants filled with testosterone or left

empty.  T-implants were used following protocols developed for red grouse (Trobec and Oring

1972, Moss et al. 1994, Mougeot et al. 2003b, 2004).  T-implants were constructed from 35-mm

lengths of silastic tubing (Dow Corning, inner diameter = 1.47 mm, outer diameter = 1.95 mm,

sealed with silastic glue; 30 mg testosterone propionate, Sigma-Aldrich, St. Louis, MO).  The

sham-treatment consisted of insertion of an empty silastic tube.  The implant was inserted

subcutaneously between the skin and breast muscles and the incision covered with “liquid

bandage” to prevent infection (Band-Aide brand).  Previous studies in red grouse have shown

that T in similar implants last up to 5-6 weeks (Moss et al. 1994, F. Mougeot pers. comm.).  

T was implanted in unsuccessful males to raise their level of circulating T to that of

successful males.  Banding and behavioral observations beginning in mid-March were used to
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determine which males were successful and which were unsuccessful.  Males were considered

successful if they held territories that were completely surrounded by other males, fought often

with many adjacent males, and obtained copulations previously.  Males were considered

unsuccessful if they held territories at the edge of the lek (at least 25% of territory not shared with

another male), engaged in few fights, and obtained no copulations prior to implant.  Unsuccessful

males were alternately assigned to the T or the sham treatment.  Using drop nets, sham and

unsuccessful males were recaptured during the 1st and 2nd week of April, just before the peak of

female visitation.  The effect of the treatment was monitored by comparing blood serum

analyses, behavioral observations, and territory attributes of T- and sham-implanted males before

and after the treatment.  In addition, a subset of T-implanted males were recaptured in early May,

their implants were removed, dried in a desiccator at room temperature for 24 h, and weighed to

determine the amount of T remaining.  

In a previous analysis (Chapter 2), aggression scores derived from a principal components

analysis were significantly different between successful and unsuccessful males (PC2 in Table

3.1, difference in aggression scores = 2.20, F1,25 = 24.1, P <0.001).  If implants raise T levels of

unsuccessful males to be comparable to successful males, we predict a similar magnitude of

difference between the aggression of T-implanted unsuccessful males and the aggression of

sham-implanted successful males.  Given this variation and at least 8 males in each of the two

groups, we can expect to detect a similar difference in aggression scores over 95% of the time

(power analysis in JMP, Version 4.0).

Statistical analyses

Statistical analyses were conducted in JMP IN (Ver. 4.0.4, SAS Institute, 2001), except

where otherwise noted.  Sample sizes varied among analyses because it was not possible to

measure every attribute for all males.  Descriptive statistics are presented as 0 ± 1 SD unless

otherwise indicated.  

The six behavioral variables (% time displaying, % time fighting, and number of boom

vocalizations, flutter-jump displays, fights, and males approached) were correlated.  Eleven of 15

pairwise correlations were statistically significant (|r| > 0.44; P < 0.01).  Thus, we used principal

components analysis (PCA) to obtain two principal components of behavior that were
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statistically independent of each other.  The Kaiser criterion (eigenvalues $ 1) was used to select

the number of principal components to retain for use in our analysis (Kaiser 1960).  Two

principal components were retained (Table 3.1).  Female presence has a large effect on male

behavior in other species of lek-mating grouse (Wiley 1991, Höglund et al. 1997).  To minimize

variation among focal observations and to control for female presence, principal component

scores were averaged separately for each male for observations when females were present or

absent.  

Territorial positions of males were plotted in ArcView (Ver. 3.3; Environmental Systems

Research Institute, Inc., St. Charles, MO).  Using the Animal Movement extension (Hooge et al.

1999), we obtained 95% kernel estimates of territory size from positions of each male and lek

size from the pooled positions of all males (± 0.1 m2).  Centroids of the 95% kernel estimates

were determined using the XTools extension (Delaune 2003).  Distance to lek center was defined

as the distance between the centroid of a male’s territory to the centroid of the entire lek

(± 0.1 m).

 Annual survival was estimated from return rates of male prairie-chickens to lek sites. 

Return rates are the product of multiple probabilities including: true survival (S), site-fidelity (F),

and encounter rate (p; Sandercock 2006).  F and p were close to unity in our study population

(Chapter 2), and we interpret return rates as estimates of true survival for male greater prairie-

chickens. 

Changes in behavior, territory attributes, mating success and survival were compared

among T-implanted and sham-implanted males before and after treatment, and among

unmanipulated unsuccessful and unmanipulated successful males before and after the mean

implant date.  To analyze behavior, PC scores were standardized by female presence.  Mean PC

score, SD and number of observations were calculated for each male before and after treatment. 

Effect sizes were calculated in MetaWin Ver. 2.0 (Rosenberg et al. 2000).  Differences among T-

implanted, sham-implanted, unmanipulated unsuccessful, and unmanipulated successful males

were analyzed using a categorical fixed effects model in MetaWin.  QB statistics were used to test

for variation in the mean effect size between different categories of males (Gurevitch and Hedges

1993).  Changes in territory size and distance to lek center were analyzed using a matched pairs

analysis in JMP IN.  Mating success and return rates were analyzed using a Fisher’s Exact test in
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JMP IN.  The odds ratio of mating success were calculated using Proc Freq in SAS (Ver. 9.1,

SAS Institute 2003). 

The Discrete Choice Model

Studies correlating mating success with male traits are complicated in lek-mating species

because male mating success is highly skewed and males may be observed in multiple years.  We

used multinomial discrete choice (MDC) models to describe how females choose a mate from

among a group of males in a lek (Chapter 2).  Correlates of female choice were analyzed using a

conditional logit multinomial discrete choice model (Proc MDC, SAS Ver. 9.1).  The utility of a

choice (U) in benefitting the individual is modeled as:

where female i chooses among males j using characteristics of the choice j, $n is the slope

coefficient for explanatory variables, and , is the error term.  In this study, each lek represents a

different set of choices (males) from which the females choose, which are represented in the

model by different sets of values for the characteristics, x1,...,xn.

Each successful copulation was considered an independent choice of a female among the

males at a lek.  Studies of other lek-mating grouse indicate that females may copy choices of

prior-mating females (Gibson et al. 1991; Gibson 1996; but see Spurrier 1994).  In a previous

study, we found no support for a model that quantified the effects of mate choice copying

(Chapter 2).  In addition, second-mated females used the same male traits to select a mate as

first-mated females.

In general, female prairie-chickens visited lek sites for short periods, were rarely available

for capture, and a majority of the copulations were with unbanded females.  However, we

expected pseudoreplication among females to be low for three reasons.  First, behavioral and

genetic data indicate that in lek-mating species of grouse, females typically copulate only once to

fertilize the entire clutch and do not copulate again unless to fertilize a re-nesting attempt

(Alatalo et al. 1996a; Semple et al. 2001).  Second, we included only successful copulations in

our analyses.  Last, annual survival of females is low (51-59%, Hamerstrom and Hamerstrom

1973; 28-42%, Chapter 4) and turnover of females was expected to be high. 
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In the global discrete choice model, male characteristics hypothesized to be linked to

female choice included four behavioral indices (PC scores of display and aggression with and

without females), four measurements of body size (mass, tarsus, wing, and tail), two ornaments

used in display (comb and pinnae), age class (SY or ASY, coded as 0 and 1), and two territory

measurements (distance to lek center and size).  Only copulations observed on unmanipulated

leks were used in the MDC model.  Morphometric and territory measurements were standardized

before analysis (0 = 0, SD = 1) so slope coefficients would be directly comparable with our PC-

scores for components of behavior.  The log10 of T values were calculated to obtain normally-

distributed values.  Backward elimination was used to simplify the model, and the resulting

models were evaluated using an information-theoretic approach (Burnham and Anderson 2002). 

Additionally, we considered the minAIC model from Chapter 2 and the minAIC model including

Log10T.  In all, 12 models were analyzed.  Akaike weights (wi), model-averaged estimates ( ),

and weighted unconditional standard error [se ( )] were calculated using formulae in Burnham

and Anderson (2002; eqns. 4.1 and 4.9).  

Results

Natural Variation in Testosterone

Over three years, 166 blood samples were collected from 100 individuals at five leks.  T

levels could not be quantified for 8 samples (4.8%).  An average of 1.6 ± 0.9 samples were

collected from 87 males and 10 females.  Log10T varied by sex (F = 23.38, P < 0.001) and the

amount of time the bird was in the trap (F = 4.92, P = 0.03), but was not affected by lek site (F =

1.12, P = 0.11), time of day with respect to sunrise (F = 0.97, P = 0.34) or either linear or

quadratic seasonal trend (F = 0.26, 0.28, P = 0.61, 0.60, respectively; overall model F10,137 = 4.01,

P < 0.001).  T levels were 4.0 times higher in males (1.15 ± 0.91 ng/mL, n = 82) than in females

(0.29 ± 0.18 ng/mL, n = 10).  Time in trap was negatively correlated with Log10T levels, but the

coefficient of determination was low (r2 = 0.03).  Since this correlation was unlikely to be

biologically significant, this variation was not controlled in the analyses examining associations

between testosterone, male traits, mating success, and survival.
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Since there was no seasonal trend, average Log10T levels of each male were compared

with male traits and mating success.  Some males were not observed on the lek following

capture.  These males had lower T levels than territory-holders (non-territorial males: 0.86 ± 0.85

ng/mL, n = 14; territorial males: 1.28 ± 0.96 ng/mL, n = 81; F1,93 = 9.72, P = 0.002).

No male behavior or morphological traits correlated with natural variation in T (Log10T)

among territorial males on unmanipulated leks.  Neither male territory size or the territory’s

distance from lek center correlated with Log10T (size: F1,43 = 0.001, P = 0.97; distance: F1,43 =

0.001, P = 0.97).  Log10T did not correlate with display or aggressive behavior when females

were present (display: F1,40 = 0.06, P = 0.81; aggression: F1,40 = 0.16, P = 0.69) or when females

were absent (display: F1,44 = 1.22, P = 0.28; aggression: F1,44 = 0.12, P = 0.73).  Of the five

morphological traits considered (mass, length of tarsus plus longest toe, keel, wing and tail),

none were correlated with T levels (F1,43 < 3.10, P > 0.09).  Two sexually dimorphic traits were

not associated with Log10T (pinnae: F1,41 < 0.01, P = 0.99; comb area: F1,42 = 2.39, P = 0.13).

The MDC model included 23 copulations among 12 successful and 26 unsuccessful

males at five greater prairie-chicken leks over three years.  Of the 15 models considered, two had

)AIC values < 2 (Table 3.2).  Mating success was correlated with natural variation in Log10T,

two morphological traits and one territorial trait as indicated by the minAIC model (Table 3.2). 

Log10T had the largest slope coefficient (Figure 3.1), indicating that it was the strongest predictor

of male mating success.  Log10T was positively correlated with mating success such that males

with higher natural levels of T obtained more copulations (Figure 3.1; t = 2.87, P = 0.004).  One

sexually-selected trait and one measurement of body size were positively correlated with higher

mating success (Figure 3.1; comb area: t = 2.43, P = 0.02; length of tarsus plus longest toe: t =

3.24, P = 0.001).  Neither display nor aggressive behavior was correlated with mating success

since it was not included in the minAIC mocel (Table 3.2; Figure 3.1).  There was support for a

model that included a negative, but nonsignificant, correlation between display behavior when

females were absent and mating success during the breeding season (t = -0.72, P = 0.47; Table

3.2, Figure 3.1).  Distance to lek center was negatively correlated with male mating success so

that males closer to the center of the lek obtained more copulations (Figure 3.1; t = -2.26, P =

0.02). 
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Return rates did not vary with traits that affected male mating success.  Survival did not

vary with natural variation in Log10T (P2 < 0.03, P = 0.86, n = 45), comb area (P2 = 0.23, P =

0.63, n = 50), tarsus length (P2 = 0.06, P = 0.80, n = 50), or distance from the center of the lek (P2

= 0.01, P = 0.93, n = 66).  Males that displayed less when females were not present had higher

return rates (P2 = 6.52, P = 0.01, n = 67), even after Bonferroni correction (P < 0.01).  The odds

of returning were 2.1 times higher among males that did not receive a single copulation than

among males that received one or more copulations (Odds Ratio 95% CI: 0.73 to 5.91; Fisher’s

exact test: P = 0.19).

Testosterone Implants

In 2005 and 2006, 15 T-implants and 13 sham-implants were conducted for a total of 28

males at five leks.  There was no difference in Log10T levels at the time of implant between T-

and sham-implanted males (natural T levels of T-males: 1.33 ± 1.24 ng/mL, n = 14; sham-males:

1.84 ± 1.48 ng/mL, n = 13; F1,25 = 0.94, P = 0.34) or the date which the implant occurred (T-

males: 10 April ± 4, n = 15; sham-males: 12 April ± 5, n = 13; F1,26 = 1.67, P = 0.21).  After

implant, the odds of T levels increasing were 2.0 times higher for of T-males than sham-

implanted males (Odds Ratio 95% CI: 0.08 to 51.6).  T-implanted males tended to have higher

Log10T levels (1.58 ± 0.93 ng/mL, n = 6) than sham-implanted males following implant (0.71 ±

0.33 ng/mL, n = 2; F1,6 = 2.82, P = 0.14).  T-implants were removed from two experimental

males 26 and 35 days after implant.  The implants were completely empty.  Therefore, behavioral

observations >21 days post-implant were excluded from the behavioral analyses.

Before implant, males did not differ with respect to behavior, territory attributes,

morphology or age.  Male behavior before implanting did not differ between the two treatment

groups (display with females: F1,22 = 0.69, P = 0.41; aggression with females: F1,22 = 0.68, P =

0.42; display without females:  F1,23 = 0.01, P = 0.94; aggression without females: F1,23 = 3.21, P

= 0.09).  Neither territory size nor distance to lek center varied by treatment before the

experiment (size: F1,26 = 1.02, P = 0.17; distance: F1,22 = 0.20, P = 0.66).  Comb size, pinnae

length, tarsus length, mass, wing length, and tail length did not differ between T- and sham-

implanted males (all F1,25 <1.37, P > 0.25).  Males in the two treatments were the same age

(Fisher’s exact P = 0.43). 
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The testosterone treatment did not affect males’ behavior or territory attributes.  There

was no difference between sham-implanted males and unmanipulated unsuccessful males with

respect to behavior standardized for female presence (meta-analysis; display: QB = 0.19, P =

0.66; aggression: QB = 2.36, P = 0.12; n = 23 unsuccessful, 8 sham-implanted males) or territory

attributes (matched pairs; size: F = 0.20, P = 0.66; distance to center: F = 0.49, P = 0.49; n = 15

unsuccessful, 11 sham), so they were pooled in subsequent analyses.  Neither aggressive or

display behavior differed between T-implanted males, unmanipulated unsuccessful males and

unmanipulated successful males following treatment (display: QB = 3.76, P = 0.15; aggression:

QB = 5.44, P = 0.07; Table 3.3).  Using a matched pairs analysis comparing territory size and

distance to lek center before and after treatment, no differences were detected among T-

implanted, unsuccessful and successful males (matched pairs; size: F = 1.39, P = 0.26; distance

to center: F = 1.11, P = 0.34; n = 14 T-implanted, 26 unsuccessful, 16 successful males).  Comb

size increased during the season in both T-implanted and unsuccessful males (T-males: +25.4 ±

69.0 mm2, n = 5; unmanipulated: +21.5 ± 17.7 mm2, n = 4; matched pairs F = 0.01, P = 0.92). 

No other morphometrics were expected to change during the course of this study because the

birds do not molt during the breeding season.  

 T-implanted males tended to have higher mating success than sham-implanted males. 

Four of 15 T-implanted males (14.3%) received six copulations; whereas, only one of 13 sham-

implanted males (3.6%) received a single copulation.  The odds of receiving a copulation were

thus 4.3 times (95% CI: 0.42 to 45.3) greater for T-implanted than sham-implanted males, but

this difference was not significant (Fisher’s exact P = 0.33).  Two of 15 T-implanted males

returned the subsequent year (13.3%); whereas, five of 13 sham-implanted males returned

(38.5%).  The odds of returning was 4.1 times (95% CI: 0.63 to 26.1) higher for sham-implanted

than T-implanted males, but the probability of returning did not differ with respect to treatment

(Fisher’s exact P = 0.20).  The return rate was 25% in both years of the study (2005-06: 3 of 12

males returned; 2006-07: 4 of 16 returned).    

Discussion

Our research project is one of the first studies to demonstrate a direct link between T and

mating success in a lek-mating bird.  We improve on preceding studies of the natural variation of
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T in a lek-mating species by analyzing T levels from >4 times the number of males examined

previously (n = 87, this study; n = 23 males, Alatalo et al. 1996b;  n = 15-27 per species,

Wikelski et al. 2003).  The T-implant experiment suggests that there may be a causal link

between T and mating success, but low sample sizes and high variability limited the power to

detect differences.  Surprisingly, natural and experimental variation in T did not correspond with

any male traits examined, including aggression.  Since increased T was not linked to decreased

survival, T may not be an honest signal of male quality in greater prairie-chickens. 

T was related to male mating success, but not via any of the behavioral, morphological, or

territorial traits considered.  This lack of a relationship was surprising because it was unlikely

that females were assessing T levels directly.  We did not expect T to affect male plumage,

because male plumage ornamentation is a primitive character in Galliformes with the cryptic

female plumage being a derived estrogen-dependent character (Kimball and Ligon 1999). 

However, T may affect mating success via cumulative effects, unmeasured male traits, and

territory establishment in fall.  T may have small, statistically insignificant, effects on multiple

male traits that, when taken together, influence male mating success (Ligon et al. 1998), but we

were unable to test for such a cumulative effect.  Secondly, T could also be related to male traits

that were not measured, such as parasite load, UV reflectance, plumage color or vocalization

attributes (Gibson et al. 1991; Mougeot et al. 2005b, 2006; Blas et al. 2006).  Lastly, male

prairie-chickens can be detected at lek sites throughout the year (Baines 1996, Salter and Robel

2000, pers. obs.).  In the fall, juvenile males visit multiple leks and initiate territory

establishment; whereas, adult males maintain or shift their territories closer to the lek center.  T

may enhance a male’s fighting ability, suggesting that T may be a proximate mechanism

mediating territory establishment in fall.

T increased male mating success, but did not decrease survival, suggesting that T, by

itself, is not an honest signal of male quality.  Since T was not related to any male traits

examined, T levels are not likely to be under direct sexual selection.  The average lifespan of a

greater prairie-chicken is short (1.6 years, Robel and Ballard 1974) so cumulative detrimental

effects may not have time to become apparent.  In addition, high turnover of males at the lek

(Chapter 2) indicates that there may be high rates of predation (Chapter 4), suggesting that
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natural selection being a stronger determinant of male traits than sexual selection (Bleiweiss

1997; Drovetski et al. 2006).  

Our T-implants did not have as large a magnitude of effect as we predicted.  We predicted

T-implanted males would be more aggressive than sham-implanted males.  A study in domestic

fowl detected the conversion of T to estradiol in the skin, producing female-like feathers on male

chickens (George et a. 1981).  We were not able to evaluate whether this occurred in our study,

but estradiol also plays a role in aggression and territory defense (Soma et al. 2000).  To separate

the effects of T and estradiol, future work could use an enzyme inhibitor to prevent the

conversion of T to estradiol (fadrozole, FAD blocks the aromatase enzyme; Soma et al. 2000,

Mougeot et al. 2005a).  Another hypothesis is that aggression did increase in our T-implanted

males, but adjacent sham-implanted males increased their aggressive levels in response to

repeated intrusions of T-implanted males (i.e. the challenge hypothesis, Wingfield et al. 1990). 

The overall effect would be no difference between the aggression levels of T- and sham-

implanted males. 

The inclusion of T in the MDC model reduced the effects of behavior on male mating

success.  Model 10 of this chapter (Table 3.2) includes the same variables as the minAIC model

presented in Chapter 2 (aggressive and display behavior with and without females, mass, tail,

comb).  The slope coefficients of these two models are similar in magnitude and direction (data

not presented), indicating that the results presented in this chapter are due to the inclusion of T in

the model and not due to smaller sample sizes.  T accounted for a large proportion of the

variation in male mating success and was a better predictor of mating success than behavior. 

However, prairie-chicken territories were established and maintained through ritualized behavior

(Schroeder and Robb 1993).  The inclusion of distance to lek center in the analysis of male

mating success suggested that certain specific aggressive behaviors, that were not quantified in

our PCA of behavior, may be important in mediating male mating success.  Structural size was

an important component in mate choice decisions, but different aspects of size may be preferred

by different females in different years.  Females may be using different male traits to choose a

mate on different leks, but we did not detect any differences among leks.  We found a link

between comb size and mating success similar to other studies (Rintamäki et al. 2000). 

However, we did not find a link between comb size and T as expected (Briganti et al. 1999,
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Parker et al. 2002).  Our research showed the importance of examining a suite of male traits since

multiple traits were used by females to select a mate. 

In conclusion, we found that T related to mating success, but we could not detect any

male traits correlated with T that females might used to detect differences in T levels.  To obtain

a better understanding of the seasonal changes in T, multiple samples from individuals

throughout the breeding season are needed.  Fecal sampling would provide a non-invasive way to

obtain such samples (Washburn et al. 2003, 2004; Wells et al. 2003).  Future work should also

examine parasites, UV plumage coloration and vocalizations as possible intermediary steps

linking T to mating success. 
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Table 3.1 - Eigenvectors of a principal component analysis of male behavior from 1332 ten-

minute focal observations of 129 male greater prairie-chickens at 4-5 leks per year.  Observations

were conducted during the breeding season (mid-March through mid-May) near Manhattan in

northeast Kansas during 2004-2006.  Principal component loadings > 0.4 are in bold. 

Behavior PC1 (Display) PC2 (Aggression)

Percent time displaying 0.53 0.26

Percent time fighting -0.5 0.08

Number of boom vocalizations 0.49 0.31

Number of flutter jump displays 0.38 0.02

Number of fights -0.21 0.65

Number of males engaged -0.19 0.64

Eigenvalue 2.79 1.69

Percent of variance explained 46.4 28.2
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Table 3.2 – Comparison of multinomial discrete choice models examining the effects of male

testosterone (on a log10 scale), morphology, behavior and territory attributes on mating success. 

Data included 23 copulations among 12 successful and 26 unsuccessful males on five greater

prairie-chicken leks between 2004-2006 in northeast Kansas.  Table abbreviations are as follows:

S = parameters included in the survival model; Dev = deviance, K = number of parameters;

AIC = Akaike’s Information Criterion; )AIC = difference of the AIC value in the given model

compared to the minimum AIC model; and wi = Akaike weights.  Model abbreviations are as

follows: testosterone variables (T = log-transformed testosterone levels), morphological variables

(c = comb area; p = pinnae; r = tarsus; m = mass at capture; w = wing; t = tail; g = age class); 

behavioral variables (D = display with females; A = aggression with females; d = display without

females; a = aggression without females); and territory variables (l = distance to center of lek, s =

territory size), and - = none included.

Model Testosterone Morphology Behavior Territory Dev K AIC )AIC wi

1 - Step 10 T rc - l 60.6 4 68.62 0.00 0.47
2 - Step 9 T rc d l 60.1 5 70.07 1.45 0.23
3 - Step 8 T rcp d l 59.2 6 71.17 2.56 0.13
4 - Step 7 T rcp d ls 58.5 7 72.48 3.86 0.07
5 - Step 6 T wrcp d ls 57.5 8 73.50 4.89 0.04
6 - Step 5 T wrcpg d ls 56.4 9 74.43 5.81 0.03
7 - Step 4 T twrcpg d ls 55.7 10 75.74 7.13 0.01
8 - min AICa + T T mrc DAda - 59.9 8 75.89 7.28 0.01
9 - Step 3 T twrcpg Ad ls 54.9 11 76.89 8.27 0.01
10 - min AICa - mrc DAda - 62.9 7 76.92 8.30 0.01
11 - Step 2 T twrcpmg Ad ls 54.4 12 78.37 9.75 0.00
12 - Step 1 T twrcpmg DAd ls 54.1 13 80.13 11.51 0.00
13 - Global + T T twrcpmg DAda ls 54.0 14 82.00 13.38 0.00
14 - Global - twrcpmg DAda ls 59.7 13 85.71 17.09 0.00
15 - T only T - - - 92.3 1 94.33 25.71 0.00

a Model from Chapter 2
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Table 3.3 - Comparison of effect sizes following a testosterone implant experiment of greater

prairie-chickens.  Data included 15 T-implanted males, 31 sham-implanted and unmanipulated

unsuccessful males pooled, and 24 successful males on five leks between 2005-2006 in northeast

Kansas.  Display and aggressive behavior was quantified using a principal component analysis of

behavior observed during 10-min focal observations and standardized for female presence

(Table 3.1).

Unsuccessfula T-Implants Successful

E+ 95% CI n E+ 95% CI n E+ 95% CI n

Display 0.22 -0.02 to 0.47 31 0.54 0.16 to 0.92 13 0.13 -0.11 to 0.38 24

Aggression 0.01 -0.24 to 0.25 31 -0.20 -0.57 to 0.16 13 0.26 0.01 to 0.51 24

aSham-implanted males and unsuccessful unmanipulated males combined.
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Figure 3.1 - Model-averaged estimates of the slope coefficients from a multinomial discrete

choice model estimating the effect of male attributes on male mating success.  Explanatory

variables were standardized so slope estimates are directly comparable.  Estimates of SE are

unconditional and include uncertainty due to model selection.  Data included 23 copulations

among 12 successful and 26 unsuccessful males on five greater prairie-chicken leks between

2004-2006 in northeast Kansas.  Abbreviations are as follows: testosterone variables (T = log-

transformed testosterone levels), morphological variables (c = comb area; p = pinnae; r = tarsus;

m = mass at capture; w = wing; t = tail; g = age class);  behavioral variables (D = display with

females; A = aggression with females; d = display without females; a = aggression without

females); and territory variables (l = distance to center of lek, s = territory size).
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CHAPTER 4 –

Breeding Ecology of Female Greater Prairie-Chickens

in Unfragmented Grasslands

Jacqueline K. Nooker and Brett K. Sandercock

Kansas State University

Abstract 

Populations of greater prairie-chickens (Tympanuchus cupido) have been declining for at least 30

years due to the destruction and fragmentation of their tallgrass prairie habitat.  Management of

this species is hindered by a lack of contemporary demographic data analyzed with modern

statistics.  In this study, we examined nesting success and female movements to provide baseline

demographic information for a population in natural, unfragmented prairie.  Four leks were

monitored for four years (2003-2006) in northeast Kansas.  We fitted 43 females with radio-

transmitters to monitor movements and to locate nests.  On average, females nested 1.8 ± 1.3 km

(± SD; n = 19 nests) and ranged up to 3.7 ± 1.9 km from the lek of capture (n = 8 females). 

Potential reproductive output was high because females laid large clutches (10.9 ± 1.7 eggs, n =

24), renested following clutch loss (22.2%, n = 27 females), and had high egg viability (88.6 ±

13.3 % of eggs hatched; n = 7 nests).  However, daily survival rate of nests was low (0.928, n =

34 nests) resulting in a predicted nest success rate of 7.4% for a 35-day exposure period.  By

applying known fate models to our telemetry data of 40 female prairie-chickens, we estimated a

weekly survival rate of 0.970 resulting in a predicted survival rate of 45.7% for the 6-month

breeding season.  Using time-since-marking Cormack-Jolly-Seber models for live encounter data

to control for transience, annual apparent female survival was 0.277 ± 0.081 (± SE) for 55

marked females after initial capture, and 0.424 ± 0.139 among females that returned at least once

in a time-since-marking model.  Comparison of seasonal and annual survival of females indicates

that survival is 1.6 to 2.0 times higher during the nonbreeding season than the breeding season,

presumably because females are susceptible to predation during incubation.  Loss and

fragmentation of native prairie would affect nesting up to 2 km and female movements up to 4

km from the disturbance.  Conservation should protect large tracts of land and avoid disturbance
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within 4 km of leks.  Nest survival was unexpectedly low in greater prairie-chickens in natural

habitats and may be the primary demographic factor limiting population viability.  Rangeland

practices that increase residual nesting cover or reduce predator impacts may be beneficial. 

Introduction

Habitat loss and fragmentation have been the primary factors leading to population

declines in grassland birds.  Eastern tallgrass prairie is one of the most highly altered biomes in

North America  (Ryan et al. 1998). With declines between 82-99%, the destruction of tallgrass

prairie exceeds those reported for any other major ecosystem in North America, including the

bottomland hardwoods of south-central United States and the temperate rainforest of British

Columbia (Samson and Knopf 1994).  Greater prairie-chickens (Tympanuchus cupido pinnatus)

are an indicator species for remaining North American tallgrass prairie.  The historic range of

greater prairie-chickens extended from the prairie provinces of Canada south to central Texas and

east to western Ohio (Schroeder and Robb 1993, Ross et al. 2006).  However, prairie-chickens

have been extirpated or in danger of being extirpated from 15 states and provinces (Schroeder

and Robb 1993).  Kansas is one of only four states to hold >5,000 breeding birds (Silvy et al.

2004, Ross et al. 2006).  However, prairie-chickens have declined 70% in Kansas during the past

20 years (Applegate and Horak 1999, Svedarsky et al. 2000).  Recent declines in Kansas

correspond with a shift in rangeland management of the tallgrass prairie from periodic burning

and moderate cattle grazing to annual burning and early intensive cattle stocking (Robbins et al.

2002).

Movement and demographic information are critical to determining the size of

management units for the conservation of greater prairie-chickens.  Recent studies examining

greater prairie-chicken movements at the landscape scale were located in a habitat that consisted

of only 15% grasslands (Ryan et al. 1998).  Studies in more extensive, contiguous habitat are

needed to serve as a reference for field studies of relict populations of prairie-chickens in

marginal habitats.  The Flint Hills of Kansas are largely unplowed prairie due to the rocky

substrate and offer one of the best localities for studying prairie-chicken ecology in contiguous

habitat, but the most recent research was conducted over 20 years ago (Horak 1985; Robel 1966,

1970a,b; Robel and Ballard 1974).
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One demographic factor that may have an important effect on the population dynamics of

gamebirds is nest survival (Wisdom and Mills 1997).  In greater prairie-chickens, nesting success

ranges from 20-67% with considerable annual variation (Robel 1970a, Schroeder and Robb

1993).  Most available estimates of nest survival for greater prairie-chickens have been reported

as apparent nest survival (% of nests that hatch), uncorrected for the age of the nest when it was

found.  Nest survival modeling in Program Mark computes daily nest survival estimates while

controlling for days of exposure and can yield estimates that are comparable between populations

or management areas (Dinsmore et al. 2002, Rotella et al. 2004).  The nest survival model

improves upon Mayfield estimates (Mayfield 1975) because it relaxes the assumption of constant

daily survival, is less sensitive to variation in nest monitoring efforts, and allows for daily

survival rate to be modeled as a function of environmental covariates (Dinsmore et al. 2002).  

Survival of juveniles and adults may also influence the rate of population change in

grouse (Aldridge and Brigham 2001, Sandercock et al. 2005, Hannon and Martin 2006).  Annual

survival estimates of adults used in recent population models for greater prairie-chickens

(Wisdom and Mills 1997, Peterson et al. 1998) are based upon return rates collected greater than

30 years ago from an isolated population in Wisconsin (Hamerstrom and Hamerstrom 1973). 

Modern estimates of adult annual survival are needed in light of the drastic population declines

that have occurred in Kansas during the past 30 years (Applegate and Horak 1999).  Cormack-

Jolly-Seber (CJS) models based on live encounter data improve upon return rates by separating

apparent survival (N) from the probability of encounter (p).  However, apparent survival (N) is a

minimum estimate of true survival (S) because it is the product of S and site fidelity (F;

Sandercock 2006).  In addition to estimates of annual survival, seasonal estimates of breeding

and nonbreeding survival are needed to determine the portion(s) of the annual cycle when birds

are most vulnerable (Kirby and Cowardin 1986, Devries et al. 2003).

Conservation efforts would benefit from better information concerning the movement and

demography of prairie-chickens in the core of their range (Applegate and Horak 1999, Peterson

et al. 1998).  In light of the greater prairie-chicken’s most recent population declines in Kansas,

our objectives were to: 1) estimate home range size using minimum convex polygons and kernel

methods (Barg et al. 2005); 2) estimate nest survival using the nest survival procedure of

Program Mark (Dinsmore et al. 2002); 3) estimate seasonal survival of radio-marked female
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prairie-chickens during the breeding season using known fate models (Murray 2006, Mong and

Sandercock 2007); and 4) estimate annual survival of female prairie-chickens using CJS models

that control for the probability of encounter (Sandercock 2006).  Our use of modern statistical

techniques for analyzing nest and adult survival yields less biased estimates that can be compared

among populations.

Methods

We monitored greater prairie-chickens at four lek sites between mid-March and mid-May,

2003-2006.  All leks were located on cattle-grazed pastures in Riley and Geary Counties in

northeast Kansas, USA (39º 05’N, 96º 34’W).  We observed three leks in 2003, and expanded

our sampling effort to four leks in 2004-2006.  Prairie-chickens were captured and observed at

lek sites between 2003-2005, and were resighted in 2006 only for estimation of apparent survival

rates.

Trapping and morphometrics

Male and female prairie-chickens were trapped at lek sites using walk-in funnel traps and

by spot-lighting at night (Hamerstrom and Hamerstrom 1973, Toepfer et al. 1987, Schroeder and

Braun 1991).  When we discovered nests of unbanded females, the female was captured by

placing a mist net over the nest during incubation.  All birds were given a unique combination of

colored leg bands and tail markings to aid in individual identification.  Seven morphometric

measurements were recorded, including body mass (± 1 g) and two linear measurements of body

size (lengths of tarsus plus the longest toe, keel; ± 1 mm).  We determined age-class as second-

year (SY) or after-second-year (ASY) from the shape, coloration and wear of the outermost two

primaries (numbers 9 and 10; Schroeder and Robb 1993).  In SY birds, the outer primaries are

retained from juvenile plumage, appear tapered with light brown dots on the leading edge

extending to the tip, and contrast in coloration and wear with primaries 1 through 8.  The outer

two primaries of ASY birds have truncate tips, light brown dots on the leading edge that

terminate > 2 cm from the tip, and do not contrast with the inner primaries.  A subset of males

and females were fitted with necklace-style radio collars (Model RI-2BM, ca. 10.9 g, Holohil
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Systems Ltd., Ontario, Canada; or Model TS - 25, ca. 15.6 g, Telemetry Solutions, Walnut Creek,

CA; expected life was ~18 months and have 24 hour mortality sensors). 

Estimation of home range size and distances

Prairie-chicken locations were estimated weekly using 2 methods.  We triangulated bird

positions using hand-held Yagi antennas by recording the position of the observer and a compass

bearing to the bird.  We also approached birds on foot to locate nests, broods and mortality

events.  Handheld global positioning system receivers (GPS, Model III Plus, Garmin

International Inc., Olathe, KS 66062) were used to record locations of triangulation points, bird

sightings and mortality events.  Program LOCATE II was used to determine locations of

radio-marked birds for each set of triangulation bearings (n = 3 or 4 bearings; Nams 2000,

Millspaugh and Marzluff  2001).  All locations (in universal transverse mercator, UTM,

coordinates) were imported into ArcView (Ver. 3.3; Environmental Systems Research Institute,

Inc., St. Charles, MO 2002) for home range analyses.  

We present both minimum convex polygon (MCP) and kernel estimates to provide

measures of home range size that can be compared across studies.  MCP estimates of home range

size are often larger than kernel estimates even if using the same location data set (Girard et al.

2002, Barg et al. 2005).  MCP methods require fewer locations but estimates may be affected by

peripheral locations and include large areas that are not used by the organism (Barg et al. 2005). 

Kernel estimates are less affected by peripheral locations, and provide insight into areas of

intense use, but require a greater number of locations per individual (> 15, Girard et al. 2002). 

Both MCP and kernel home range estimates are influenced by the number of locations

considered with biased estimates and large error associated with MCP estimates derived from <

10 positions/individual and kernel estimates derived from < 15 positions/individual (Girard et al.

2002).  Bias can also occur in home range estimation using kernel estimates with species that

exhibit a central-place behavior to a nest site within their home range (Mong 2005). 

Home range for the entire breeding season was determined with two methods: MCP and

50% and 95% kernel estimates using the Animal Movement extension (Hooge et al. 1999). 

Calculation of MCP and maximum distance was restricted to birds with > 10 positions recorded. 

For birds with $ 15 positions, we also calculated 50% and 95% fixed kernel estimates.  The nest
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site location was only included once in our set of home range data points used to calculate kernel

estimates.  In kernel metrics, the smoothing parameter was determined using the Least Square

Cross Validation (LSCV) method (Seaman and Powell 1996, Gitzen and Millspaugh 2003).  We

used the P2 approximation to the nonparametric Kruskal-Wallis test to examine sexual

differences in home range size (JMP IN Ver. 4.0.4, SAS Institute, 2001).   Three additional linear

measurements were determined in ArcView using the Animal Movement extension: the distance

between the nest site and the lek of banding, the distance between the nest site and the closest

lek, and the maximum distance traveled from the lek of banding.  

Nest monitoring

Nest contents were examined by flushing females once or twice during incubation.  We

restricted our nest visits to hot, dry afternoons to minimize scent trails.  We recorded the position

of the nest using handheld GPS receivers, marked the location using a flag placed 15-20 m from

the nest in a random direction, and mapped nest locations relative to natural landmarks.  We

counted eggs to determine clutch size, and measured the maximum length (L) and width (W) of

the eggs.  Egg volume (V) was calculated as V = kLW2 where constant k was set at 0.49 for

spherical eggs of grouse (Hoyt 1979, Sandercock and Pedersen 1994).  Eggs were also floated in

a small cup of lukewarm water to estimate stage of incubation in a 24-day incubation period

(Schroeder and Robb 1993).  Buoyancy of eggs was related to stage of incubation as follows:

horizontal on the bottom of the container = 0 days; oriented at 45° = 5 days; vertical orientation

(90°) = 10 days; float to the surface = 13 days; ~18 mm diameter circle protrudes above the water

surface = 21 days.  On incubation days 22, 23 and 24, the initial stages of hatching can be

detected as faint tapping, a star-shaped crack in the egg shell, and a small hole pip in the egg

shell, respectively.  Date of clutch initiation was estimated by back-dating from the stage of

incubation and by assuming the laying period for a given clutch size was one egg per day.  If

buoyancy indicated that incubation had not yet been initiated (i.e., horizontal), we revisited the

nest a week later to determine final clutch size and estimate start of incubation.  If egg flotation

indicated that incubation had been initiated (i.e., buoyancy > 0°), we considered the clutch to be

complete. 
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Nests were monitored every other day by triangulating the female’s radio signal > 30 m

from the nest site.  If the female’s signal was not heard from the nest location for two or three

consecutive visits, the nest’s contents were examined.  Nests were visited daily at sunrise starting

1-2 days before the predicted day of hatching.  Number of hatched and unhatched eggs were

recorded.  Nestlings were weighed (± 0.1 g) and measured (length of the tarsus, wing and total

head from the back of the head to the tip of the beak).  We marked hatchlings with individually

numbered patagial wing tags to investigate local recruitment (Hannon et al. 1990). 

The daily probability of nest survival (S) was estimated using the nest survival model in

Program Mark (Ver. 4.1, White and Burnham 1999; Dinsmore et al. 2002, Rotella et al. 2004). 

Five assumptions of the nest survival model are (Dinsmore et al. 2002): stage of egg laying or

incubation can be correctly determined when they are first found, nest fates are correctly

determined, discovery and subsequent check do not influence nest survival, nest fates are

independent, and homogeneity of daily nest survival rates.  These assumptions were likely met in

this study.  Stage of incubation was determined by the buoyancy of eggs.  Nest fates were

relatively easy to determine.  Successful nests contained eggs that were neatly pipped and chicks

were found on subsequent checks of the female.  Whereas, unsuccessful nests contained many

fragmented egg shells usually with bloody remains and no chicks were accompanying the female. 

We minimized disturbance at the nest (approaching it only once or twice on hot, dry afternoons

to minimize scent trails), but we cannot rule out possible observer effects completely.  Nests

were likely to be independent in this study because nests were not spatially clumped, and

distances between first nests and renesting attempts of the same female were often > 1 km (see

results).  Daily nest survival rates were unlikely to be heterogeneous because all nests

experienced the same climatic conditions and were probably exposed to similar predator

communities.  

Encounter histories for the nest survival analysis required five types of information: the

date nest was located (k), the last date nest was checked and was active (l), the last date nest was

checked (m), this was either the date the nest was discovered to be depredated or hatched, the fate

of the nest (f), where 0 = hatched and 1 = failed, and the number of nests (n) with this encounter

history.  To model an effect of nest age on daily survival rate, we included a nest age covariate

(age of nest when found).  To transform our date information into an acceptable format for the
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nest survival model, we determined the earliest date the first nest was found (22 April = k = 1)

and calculated k, l and m relative to that date for all nests.  Daily probability of survival was

modeled as a linear function of day of season (lin), age of the nest (age), their interaction (*),

main-effects (+), or as a constant (c). 

Breeding survival of females

To measure survival within the breeding season, we monitored the subset of females that

was given radio collars and modeled weekly probability of female survival (S) using the ‘nest

survival’ procedure (Dinsmore et al. 2002) in Program Mark (White and Burnham 1999). 

Originally developed for nest data, this procedure can also be applied to “ragged” telemetry data

for radio-marked birds (Hartke et al. 2006, Mong and Sandercock 2007).  Birds that were never

detected after first marking and presumably had failed radios were censored from analysis (n = 7

females).  We assume that this censoring is random and noninformative, and had limited effect

on our survival estimates (Hagen et al. 2006, Murray 2006).  To test the assumption that

censoring was random, we developed two models.  The first model coded females that were not

detected greater than 2 weeks into the study as ‘surviving’.  A second model coded these females

as ‘dead’.  Weekly probability of survival was modeled as a function of mass at initial capture

(mass), week since marking (t), a linear trend throughout the season (lin), a quadratic trend

throughout the season (quad), constant (c), and additive (+) combinations of these factors. 

Cause of mortality was grouped into four categories based on the following criteria

(Hagen et al. 2007, Wolfe et al. 2007).  Since it is difficult to make unambiguous statements

about causes of mortality (Bumann and Stauffer 2002), we refer to ‘‘probable causes of

mortality’’.  Cases where feathers, radios or leg bands were chewed, had obvious tooth marks,

and were clumped (~1m) were considered to be the probable result of mammalian predators. 

Cases where feathers appeared cut and were spread over 2 m were considered probable avian

predators.  Cases where the carcass was intact, was located near the nest and had feathers that

were pasted to the body as the result of trying to swallow the bird whole were considered the

probable result of snake predation.  Birds found dead on roadsides or near fences with evidence

of trauma injuries were considered collision mortalities.  We visited mortality locations as soon
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as a mortality signal was detected, but we are unable to exclude the possibility of scavenging

post-mortality. 

Annual survival of females

We observed lek-mating behavior from a blind placed ~6 m from the edge of each lek. 

Between mid-March through early May, leks were observed every 1-2 days to record visits and

the identity of color-banded and radio-marked females.  We estimated apparent survival using

time-since-marking Cormack-Jolly-Seber models for live encounter data in Program Mark (Ver.

4.1, White and Burnham 1999).  Apparent annual survival (N) was modeled as a function of time

(t) or constant (c) for females overall, and separately for females after initial capture (N1) and for

females that returned at least once (N2+) to determine if transience affected apparent survival. 

Resighting probability (p) was modeled as a function of time (t) or held constant (c).  We were

unable to test whether transmitters affected survival of female prairie-chickens, but no transmitter

effects were recorded with the same field methods in lesser prairie-chickens (Tympanuchus

pallidicinctus; Hagen et al. 2006).  The global model for the mark-resight data was: N1
t, N

2+
t, pt. 

The variance inflation factor ( ) was used to adjust for lack of fit and was estimated using

bootstrap goodness-of-fit (GOF) tests using 1000 replicates on the global model (Lebreton et al.

1992, White et al. 2001). 

Synthetic estimates

Prairie-chicken nests were discovered at different stages of the nesting cycle.  To obtain

an unbiased estimate of fecundity per nest (Fn) that controlled for variation in nest exposure and

made full use of our demographic parameters, we calculated the mean number of female

fledglings produced per female by: 

Fn = {[BREED*TCL1*HATCH1]+[(1-HATCH 1)*RENEST*TCL2*HATCH2]}*ES*HS*0.5

where BREED = probability of breeding, TCL = total clutch laid, HATCH = probability of nests

hatching at least one chick, RENEST = probability of renesting after clutch loss, ES = proportion

of eggs that survived until hatching if the nest survived incubation, HS = proportion of eggs

hatching if the nest survived incubation, subscripts 1 and 2 indicating estimates for first and

second nests, and 0.5 is the assumed sex ratio of females per clutch.  HATCH was calculated as
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the product of estimates from the best fit nest survival model from the average laying date of first

and second nests for 35 days or 24 days.  Thirty-five days corresponds to the combined length of

the egg laying (11 days, see Results) and incubation stages (24 days, Schroeder and Robb 1993);

24 days is the average length of incubation and would be the period of exposure if predation is

negligible during egg laying. 

We lacked direct estimates of juvenile survival.  To estimate juvenile survival (Sjuv) from

hatching until the spring of the following year necessary for a stationary population, we used the

equation:

where 8 is the rate of population change and was set to 1 for a stationary population, Fn was the

seasonal estimate of fecundity per female, and Sfem was maximum annual apparent female

survival as estimated from the Cormack-Jolly-Seber mark-resight models.

Statistical analyses

Components of fecundity were analyzed using procedures of Program JMP IN (Ver.

4.0.4, SAS Institute 2001).  Correlates of laying date, clutch size, egg volume, and nestling size

were analyzed using one-way ANOVAs.  Egg volume and nestling measurements were averaged

per female before analysis because eggs and nestlings within a clutch were not independent

observations.  Sample sizes varied among analyses because it was not possible to measure every

parameter for all birds.  

Models of survival in Program Mark were constructed with design matrices and the logit

link function.  The number of parameters were adjusted to match the model structure, which in

most cases was the number of columns in the design matrix.  Model selection was based on the

information theoretic approach, and we considered the model with the lowest Akaike’s

Information Criterion value corrected for small sample sizes (AICc) to be the best supported by

the data (Lebreton et al. 1992, Burnham and Anderson 2002).  Models with )AICc # 2 were

considered equally parsimonious.  When two or more models were equally parsimonious, we

used the model averaging procedure in Program Mark to obtain overall parameter estimates
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(Burnham and Anderson 2002, Cooch and White 2006).  Akaike weights (wi), model-averaged

estimates ( ), and weighted unconditional standard error [se ( )] were calculated using

formulae in Burnham and Anderson (2002; eqns. 4.1 and 4.9).  Descriptive statistics are

presented as 0 ± 1 SD unless otherwise indicated.

Results

Between 2003-2005, we captured, banded and fitted 43 female and 4 male prairie-

chickens with necklace radio collars.  An additional 15 females were banded only.  Radios were

1.2 to 1.8 % of female body mass at capture (0 = 889 ± 75 g; n = 32) and 1.1 to 1.5 % of male

body mass (0 = 1007 ± 62 g; n = 4). 

Home range size

Females moved a maximum distance of  3.7 ± 1.9 km from the lek they were banded (n =

8 females with $ 10 locations) and had minimum convex polygon (MCP) estimates of home

ranges 395 ± 234 ha in size (range: 130 to 804 ha; n = 9 females).  MCP estimates of male home

ranges were 153 ± 151 ha (range: 51 to 327 ha; n = 3), and were similar in size to female MCP

estimates (Z = -1.47, P = 0.14).  For females, 95% kernel estimates of 575 ± 145 ha (range: 469

to 831 ha; n = 5) were 39.2% larger than the MCP estimates, with core use areas (50% kernel

estimates; 95 ± 36 ha, range: 66 to 155 ha) that were 16.6% of the 95% kernel estimate (n = 5).

Nesting propensity

Of 24 females fitted with radio collars before egg laying and where 3 or more localities

were obtained, nests were located for 19 females (79.2%).  Two females presumably nested due

to localization of movements and broody behavior, such as flying short distances when

approached and emitting clucking calls (8.3%), but their nests were never located.  The

remaining three birds dropped their radios shortly after marking (12.5%).  Thus, the probability

of nesting (BREED) was 1.0 for female prairie-chickens.

During 2003-2005, 34 nests were found for radio-marked and unmarked females.  One

nest was depredated before the female could be captured and marked.  Following nest failure,
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22.2% of females laid a second nest (RENEST, n = 27 females).  Females tended to be more

likely to attempt second nests if first nests were destroyed during egg laying or early incubation

( = 2.69, P = 0.10; Figure 4.1), but timing of loss had no seasonal effect  ( = 0.12, P =

0.73; overall logistic model = 3.42, P = 0.18).

Nest locations

First nests were located 1.5 ± 1.0 km (range = 0.2 to 4.6 km) from the nearest lek (n = 27

nests) and 1.8 ± 1.3 km from the lek of capture (range = 0.2 to 4.7 km; n = 19 nests).  Average

distance between the first nests and renesting attempts within the same breeding season was 1.9 ±

1.6 km (range = 0.5 to 4.6 km; n = 5); whereas, the average distance between first nests in

consecutive years was 1.7 ± 0.7 km (range = 1.2 to 2.5 km; n = 3).

Laying date

Average date of clutch initiation for first nests was 5 May ± 13 days (range = 14 April to

3 June; n = 27).  Laying date of first clutches did not correlate with female age, mass at capture,

tarsus, or keel (all P > 0.11; model F5,18 = 1.18, P = 0.36).  Average laying date of known re-

nesting attempts was 24 May ± 12 days (range = 4 May to 9 June; n = 6). 

Clutch size

Average clutch size of first nests was 10.9 ± 1.7 eggs (TCL1, range = 7 to 14 eggs; n = 24)

and did not vary with respect to laying date, female age, mass, tarsus, or keel (all P > 0.15; model

F6,14 = 1.18, P = 0.12).  Average clutch size of renesting attempts was 10.8 ± 2.4 eggs (TCL2,

range 8 to 15; n = 6), and was not different from the clutch size of first nesting attempts (F1,28 =

0.01, P = 0.92).  There was no evidence of interspecific nest parasitism by female ring-necked

pheasants (Phasianus colchicus). 

Egg measurements

Average egg length and width were 42.4 ± 1.1 mm and 31.7 ± 0.7 mm, respectively (n =

32 clutches).  Average egg volume per female was 20.8 ± 1.2 cm3 (n = 32 clutches).  Egg volume

increased slightly with increasing female tarsus length (P = 0.07), but egg volume did not vary
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with respect to laying date, clutch size, female mass, or female keel length or female age (all F <

1.26, P > 0.31; overall model  F7,18 = 0.77, P = 0.62). 

Nesting success and survival

Apparent nesting success was higher for re-nesting attempts (4 of 6 nests successful) than

first nests (3 of 28 nests successful; Fisher’s exact test P = 0.01, n = 33).  Pooling first and

second nesting attempts, apparent nesting success was low (20.6% ; n = 34).  Of the 27 nests that

failed to hatch, 85.2% of nests were depredated, 11.1% were destroyed by prescribed fires, and

3.7% were abandoned.  Moreover, females were found depredated near the nest in 3 of 27 failed

nesting attempts (11.1%).  Probable cause of female mortality included snakes (n = 1) and

mammals (n = 2).  Of nests that survived until hatching, two clutches were partially depredated

during incubation resulting in only 75.6 ± 35.0 % of eggs laid surviving until hatching (ES, n = 7

nests).  Of nests surviving to hatching, egg hatchability was high and 89.3 ± 12.4 % of eggs

produced chicks (HS, n = 7 nests).

Nest survival was modeled using data from 34 greater prairie-chicken nests.  The model

analyzed nest survival during an 84-day nesting period (22 April to 14 July).  The best fit model

included a linear effect of time on nest survival (Table 4.1).  Model-averaged estimates revealed

that nest survival increases throughout the nesting season from 0.868 ± 0.069 (±SE) during the

first week (22 April) to 0.958 ± 0.023 (±SE) during the last week (15 July).  Nest age had a

positive, but nonsignificant effect on nest survival (Table 4.1, $ estimate = 0.02 ± 0.01 ±SE;

95% CI: -0.005 to 0.04).  Using the constant model, nest survival throughout the entire season

was 0.928 ± 0.013 (± SE; 95% CI: 0.897 to 0.951).  On average, we found nests when they had

been incubated four days, so our model predicted that our expected apparent survival should be

22.6% (0.92820), which was close to our observed apparent survival of 20.6%.  Assuming a 24-

day incubation period, an average clutch size of 11 eggs, and constant risk of predation during

laying and incubation, nest success was extrapolated to be 7.4% (0.92835).  Since we found most

nests after the female initiated incubation, females may visit nests for only short periods during

egg laying.  The risk of nest predation during laying may be lower than during incubation if

female attendance increases risk of detection by a predator.  Under this scenario, predation

exposure would be limited to the incubation period, resulting in a maximum estimate of nest
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survival of 16.8% (0.92824) for first nests and renesting attempts combined.  Using daily survival

rates from the best fit model that included a seasonal increase in daily survival rates, the

proportion of nests surviving until hatching was 0.041 for first nests (HATCH1) and 0.117 for

renesting attempts (HATCH2) for a 35-day exposure period.  For a 24-day exposure period, the

proportion of nests surviving until hatching was 0.088 for first nests (HATCH1) and 0.196 for

renesting attempts (HATCH2). 

Nestling measurements

Average total head length of hatchlings was 28.0 ± 0.6 mm (n = 7 broods) and was

correlated with female mass ($ = 0.01 ± 0.001, P < 0.01) and the tarsus length ($ = -0.11 ± 0.02,

P = 0.02), but not mean egg volume ($ = 0.18 ± 0.19, P = 0.43; model F3,3 = 36.5, P = 0.01). 

Average nestling tarsus, wing and mass were 18.6 ± 0.3 mm, 18.9 ± 1.4 mm, and 15.6 ± 1.4 g,

respectively (n = 7 broods).  None of these measurements varied with the female’s mass (P >

0.12), the length of the female’s tarsus (P > 0.30), or mean egg volume (P > 0.11; model |F3,3| <

1.74, P > 0.33). 

Recruitment

Fifty-one chicks were marked with patagial wing tags.  Two chicks (3.9%), one male and

one female, were recaptured the following spring at the lek closest to their nest.  The male

dispersed 1.5 km and the female dispersed 2.3 km. 

Breeding survival of females

Of 43 females fitted with radio collars, seven females were never detected after capture

and were censored from the analysis of breeding season survival.  Four females were detected in

years subsequent to the year of banding and were included twice in the data set of breeding

season survival.  Of the 40 females included in the survival analysis, seven were alive at the end

of the breeding season (17.5%), six dropped their radio collars and were considered alive at last

observation (15.0%), ten died (25.0%), and 17 were not detected (42.5%).  Of the 10 females

found dead, probable cause of mortality included four killed by mammals, two by raptors, two by

collisions with a fence or vehicle, one by a snake, and one was of unknown cause.  
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The best fit model to the telemetry data for females was the constant model (Sc),

regardless of whether females that were not detected greater than 2 weeks into the study were

considered alive or dead (Table 4.2).  If females that were not detected greater than 2 weeks into

the study were considered alive, weekly apparent survival estimates were 0.970 ± 0.009 (±SE,

95% CI: 0.946 to 0.984).  If this estimate is extrapolated, apparent survival would be 0.457 for

the 6-month (26-week) breeding season (0.97026).  There was support for models that included an

effect of mass and a linear trend ()AIC < 2.0; Table 4.2).  Female mass at capture had a positive,

but nonsignificant effect on female survival ($ estimate = 0.27 ± 0.32 ±SE; 95% CI: -0.36 to

0.90).  There was a linear trend of female survival with survival estimates declining throughout

the breeding season (week 1 = 0.978 ± 0.013 ±SE; week 23 = 0.955 ± 0.032 ±SE).  If females

that were not detected greater than 2 weeks into the study were considered dead, weekly survival

estimates were 0.922 ± 0.014 (±SE, 95% CI: 0.889 to 0.946).  If this estimate is extrapolated,

survival would be 0.122 for the 24-week breeding season (0.92226).  There was support for

models that included a quadratic time trend, an effect of mass and a linear time trend ()AIC #

2.01; Table 4.2), but the trends were not in the same direction as when undetected females were

considered alive.  The quadratic time trend showed a mid-season decrease in survival which fell

to 0.893 ± 0.027 (±SE) with higher estimates at the beginning and end of the breeding season

(0.980 ± 0.023 ±SE).  Female mass had a negative, but nonsignificant effect on female survival

($ estimate = -0.10 ± 0.23 ±SE; 95% CI: -0.55 to 0.35).  There was a linear time trend of female

survival with survival estimates increasing throughout the breeding season (week 1 = 0.920 ±

0.026 ±SE; week 23 = 0.925 ± 0.037 ±SE).  

Annual survival of females

Fifty-five females were banded between 2003 and 2005, and 13 were resighted in

subsequent years.  One female was observed every year during the entire four-year study period. 

There was no evidence for overdispersion using bootstrap goodness-of-fit procedures (mean

expected = 0.35; P = 0.74).  We set the variance inflation factor to 1 and used AICc for model

selection.  The best fit model included an interaction effect in apparent survival that included an

effect of time separately for females after initial capture and for females that returned at least

once, and a constant resighting probability (N1
t, N

2+
t, pc, Table 4.3).  Model-averaged estimates
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showed considerable variation between years.  Weighted average estimates of apparent survival

of females after first capture was 0.277 ± 0.081 (±SE, range: 0.180 to 0.341) and in subsequent

intervals was 0.424 ± 0.139 (±SE, range: 0.355 to 0.430).  Overall estimates of apparent survival

of females regardless of time since capture was 0.328 ± 0.083 (±SE, 95% CI: 0.189 - 0.506). 

Model-averaged estimates of resighting probability were constant throughout the study at 0.857 ±

0.174 (± SE; 95% CI: 0.270 - 0.990).

Nonbreeding survival of females

We calculated survival during the 6-month nonbreeding season (mid-September to mid-

March) from our estimates of annual survival and 6-month breeding season survival (mid-March

through mid-September).  Annual survival was 0.424 for females that showed site-fidelity and

breeding season survival was 0.456 for radio-marked females, so nonbreeding survival was

0.424/0.456 = 0.930.  Thus, survival during the nonbreeding season is 2.0 times higher than the

breeding season (0.930/0.456).  If we use our overall estimate of annual survival of females

(0.328), survival during the nonbreeding season was 0.328/0.456 = 0.719.  This nonbreeding

survival estimate is 1.6 times higher than survival during the breeding season (0.719/0.456).

Synthetic estimates

Our unbiased estimate of fecundity per nest (Fn) that controlled for variation in nest

exposure was 0.24 and 0.47 female chicks per female using estimates of nest survival based on

35 and 24 day exposure periods, respectively.  Assuming a constant rate of population growth

(8 = 1) and annual female survival (Sfem) = 0.424, juvenile survival (Sjuv) would have to be > 1.0

to maintain a stable population.  A more realistic estimate for Sjuv is 0.124 from a field study of

lesser prairie-chickens (Pitman et al. 2006).  Using this value for juvenile survival, the rate of

population growth would be 0.45 or 0.48 using Fn values of 0.24 and 0.47, respectively.  A 8

value less than one predicts declines in population size.  In order to maintain a stationary

population for the field estimates of juvenile and adult survival, fecundity per nest would have to

be increased to 4.64 female chicks per female.  This is equivalent to nearly 100% nesting success

since clutch size averages 11 eggs.  
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Discussion

Our field data show that greater prairie-chickens in natural grasslands experience high

rates of predation on nests and incubating females.  These results complement modeling studies

that found that low nesting success may be the primary demographic factor limiting population

viability in greater prairie-chickens (Wisdom and Mills 1997; Robel et al. 2003).  We provide

updated demographic rates in the core of the greater prairie-chicken range.  Our parameter

estimates are critical to conservation monitoring since previous estimates do not reflect land use

changes or statistical advances of the past 20-30 years.  Our estimates of nest survival control for

varying exposure and produce biologically-meaningful estimates by including nest age as a

covariate (Dinsmore et al. 2002).  Our estimates of apparent survival account for the variation in

the probability of encounter (Sandercock 2006).  All females in our study attempted nesting, and

hatchability of eggs was high suggesting that our study population is genetically healthy

(Westemeier et al. 1998).  Additional loss and fragmentation of native prairie could affect female

greater prairie-chicken movements up to 3.7 km and nesting up to 1.5 km from the disturbance. 

Conservation efforts should focus on increasing nesting success and protecting contiguous blocks

of habitat within 4 km of lek sites. 

Prairie-chicken movements in our study area are larger than estimates in other locations. 

The average distance between first nests of a female in subsequent years was 1.7 km, a figure that

two times greater than previously reported estimates (0.8 km; Schroeder and Braun 1993). 

Average distance between nests and the nearest lek (1.5 km) was also greater than previously

reported distances (1.1 km, Robel 1970a; 0.5 km, Horak 1985).  This could be due to the large

amount of habitat available in Kansas.  Our estimates of MCP home ranges of female prairie-

chickens (~413 ha) were similar to previous estimates for birds in Colorado (213-624 ha using

75% probability contours; Schroeder 1991).  Our estimates may be biased due to the relatively

few number of positions and females used to obtain home range estimates.  However, previous

studies have shown that the number of locations is not as important as number of individuals

(Girard et al. 2006), so future studies should focus on fitting transmitters on as many birds as

possible.  In addition, habitat selection studies should utilize kernel estimates to accurately define

territory boundaries and size (Barg et al. 2005). 



CHAPTER 4 Survival and Fecundity of Female Prairie-Chickens

4 - 18

Nesting success is the primary variable limiting prairie-chicken population growth

(Wisdom and Mills 1997), so it is important to have contemporary estimates to guide

management decisions.  Our estimates of the probability a female will initiate nesting (100%)

was high and consistent with previous studies (90-100%; Wisdom and Mills 1997).  However,

our apparent nesting success (20.6%) was considerably lower than other reported rates (48%,

Hamerstrom 1939; 26%, Robel 1970a; 30%, Horak 1985; 50%, Peterson and Silvy 1996)

including those for the endangered subspecies of greater prairie-chicken (Attwater’s prairie-

chicken T. c. attwateri; 39%, Lockwood et al. 2005).  Observed rates of nesting success are

biased high because they do not consider the nests that were destroyed before discovered by an

observer.  Our estimate of apparent nest survival might have been more comparable to past

estimates of nest survival if previous field studies also located nests during incubation but

controlled for exposure before discovery (Green 1989).  We report one of the first applications of

nest survival models to greater prairie-chicken nesting success.  The daily survival estimate of 

0.928 derived from this model controls for varying exposure and allows for direct comparisons

among studies.  There was support for a model that included a linearly increasing trend of nest

survival throughout the breeding season.  This could be due to a combination of increased

frequency of prescribed burning early in the breeding season and increased nesting cover later in

the breeding season.  If our estimate for daily nest survival is extrapolated to include the egg-

laying and the entire incubation period, nesting success would be 7.4%.  This value is

considerably lower than apparent rates of nesting success, and indicates an urgent need for more

proactive prairie-chicken conservation.  Future management experiments could include predator

removal (Schroeder and Baydack 2001), changes in rangeland management to increase nesting

cover (Schroeder and Robb 1993), and limiting further habitat loss.

  High nest failure may be why we observed higher rates of renesting (22.2%) than

previous studies (0-17%; Wisdom and Mills 1997, Lockwood et al. 2005).  Higher rates of

renesting mitigated the effect of prescribed fires, but females moved long distances to locate

unburned areas with suitable nesting cover for renesting attempts.  In addition, we have shown

that the probability of renesting varies with the timing of destruction of the initial nest: females

are more likely to renest if their first nest was destroyed during laying or early incubation than if

the nest was destroyed during late incubation similar to willow ptarmigan (Lagopus lagopus,
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Robb et al. 1992).  Prescribed fires should be set before mid-April to encourage re-nesting and

allow adequate time for re-nesting. 

 We could not detect any relationships between female mass or size and egg size, clutch

size, egg hatchability, or chick size, contrary to analyses for other grouse species (Moss et al.

1981, Robb et al. 1992, Martin and Horn 1993).  Estimates of clutch size and egg hatchability

were similar to previous studies (clutch size: 10.9 eggs, this study; 12.0, Hamerstrom 1939; 11.6,

Robel 1970a; 10.7, Horak 1985; 11.3, Schroeder and Robb 1993; 12.1 Peterson and Silvy 1996;

egg hatchability: 89%, this study; 98%, Hamerstrom 1939; 86-93%, Lutz et al. 1994; 89%,

Peterson and Silvy 1996; 91%, Lockwood et al. 2005).  We may have failed to detect a

relationship between females and their eggs or offspring because weather has a greater impact on

grouse survival and reproduction than individual variation (Dusek et al. 2002).

Seasonal estimates of survival indicate that female greater prairie-chickens are more

vulnerable during the breeding season.  A seldom-documented observation was high mortality

among incubating hens (11.1%, this study; 9.2%, Hamerstrom 1939).  Breeding season survival

of females was 45.7% using known fate models.  Breeding season survival of our population of

greater prairie-chickens is somewhat higher than estimates for the endangered subspecies,

Attwater’s prairie-chicken (36%; Lutz et al. 1994).  Our results suggest that predation is the

proximate factor mediating female breeding season survival.  This result is similar to a study on

lesser prairie-chickens that found low female survival during the breeding season, especially

among females attending broods (Hagen et al. 2007).  However, other proximate factors, such as

parasite loads, nutritional stress or increases in accidental deaths, could also be important

(Hannon and Martin 2006).  The annual estimates of apparent survival obtained from Cormack-

Jolly-Seber models for live encounter data (42%) are comparable to return rates previously

reported for prairie-chickens (41-56%, Hamerstrom and Hamerstrom 1973; 24-57%, Wisdom

and Mills 1997), but improve upon previous estimates of return rates by controlling for

probability of encounter (Sandercock 2006).  Our estimates of apparent survival could be biased

low if radio-transmitters negatively affected the survival of hens or if there is substantial

emigration from our study site (Hagen et al. 2006, Sandercock 2006, Mong and Sandercock

2007).  Radio-transmitters are not likely to have affected our results because similar transmitters

did not reduce the survival of lesser prairie-chickens (Hagen et al. 2006) and the necklace
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transmitters used in this study were lighter and less restrictive than the backpack transmitters

used in early studies of greater prairie-chickens (Burger et al. 1991).  We partially accounted for

permanent emigration from our study site by using time-since-marking models that partition

survival estimates between individuals that were only captured once with those that were

captured or resighted multiple times (Sandercock 2006).  The pattern of low breeding season

survival, especially during incubation, as compared to higher nonbreeding survival may be a

general feature of ground-nesting grouse and waterfowl (Kirby and Cowardin 1986, Devries et al.

2003, Hagen et al. 2007). 

We estimated that juvenile survival (from hatching until the following spring) would have

to be greater than 100% to maintain a stable population given our field estimates of other

demographic parameters.  Empirical estimates are more likely to be 12% to 38% (38% = 55%

brood survival * 69% post-brood survival, greater prairie-chickens, Wisdom and Mills 1997;

12.4%, lesser prairie-chickens, Pitman et al. 2006).  Therefore, the greater prairie-chicken

population examined in this study is unlikely to be maintained by current levels of fecundity and

survival.  Juvenile grouse mortality increases with resource extraction, agriculture, and grazing

which create less area of high-quality forage (Hannon and Martin 2006).  If few food resources

are available, broods concentrate, increasing competition and predation.  Every effort should be

taken to create large areas with high quality brood forage in addition to increasing nesting

success.

In the past 25 years, greater prairie-chicken populations have been extirpated or are in

danger of being extirpated in 15 states and provinces and show declining trends in seven states

(Schroeder and Robb 1993).  Despite prairie-chicken’s economic importance as a game bird and

target for naturalists, current management decisions are based on demographic estimates that are

20 to 30 years old.  We propose that increases in productivity, female survival during the

breeding season, and juvenile survival from independence to spring are needed to maintain stable

populations in the northern Flint Hills of Kansas.  Our study was based on a single field site near

Manhattan, Kansas, and further research is needed to determine if prairie-chicken demography

varies in different regions of the Flint Hills.  Land use in the Flint Hills of Kansas is changing

due to encroachment of woody plants, increased development of wind power resources, and loss

of conservation reserve program acreage in favor of ethanol-producing crops.  Rangeland
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practices that increase residual nesting cover or reduce predator impacts are needed, as well as

experimental tests to confirm predation and nesting cover as the proximate mechanisms

mediating variation in survival of nests and breeding females. 
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Table 4.1 – Comparison of nest survival models examining the survival of greater prairie-

chicken nests in northeast Kansas between 2003 to 2005 (n = 34).  Table abbreviations are as

follows: S = parameters included in the survival model; Dev = deviance, K = number of

parameters; AICc = Akaike’s Information Criterion corrected for small sample sizes; )AICc =

difference of the AICc value in the given model compared to the minimum AICc model; and wi =

Akaike weights.  Model abbreviations are as follows: lin = linear time; age = nest age; c =

constant; * = interaction; and + = main effects model.

Model S Dev K AICc )AICc wi

1 lin 139.5 2 143.5 0.00 0.35
2 age 140.1 2 144.2 0.64 0.25
3 c 142.6 1 144.6 1.04 0.21
4 lin+age 139.4 3 145.5 1.95 0.13
5 lin*age 139.2 4 147.3 3.82 0.05
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Table 4.2 – Comparison of nest survival models examining the survival of radio-marked females

during the breeding season (n = 40 females).  Females included in the analysis were marked at

three greater prairie-chicken leks between 2003 to 2005 in northeast Kansas and were detected

two weeks after banding.  Seventeen birds were not detected during the period two weeks after

banding and the end of the breeding season (1 September).  Two data sets were analyzed: one

assuming these birds were alive at the end of the study and the other assuming these birds were

dead.  Table abbreviations are as follows: S = parameters included in the survival model; Dev =

deviance, K = number of parameters; AICc = Akaike’s Information Criterion corrected for small

sample sizes; )AICc = difference of the AICc value in the given model compared to the

minimum AICc model; and wi = Akaike weights.  Model abbreviations are as follows: t = time;

mass = mass at initial capture; lin = linear seasonal trend; quad = quadratic seasonal trend; c =

constant; and + = additive model. 

Model S Dev K AICc )AICc wi

Assuming birds that were not detected to have survived
1 c 83.1 1 85.1 0.00 0.43
2 mass 82.4 2 86.5 1.35 0.22
3 lin 82.7 2 86.8 1.67 0.19
4 quad 81.7 3 87.8 2.72 0.11
5 quad+mass 81.4 4 89.5 4.39 0.05
6 t 69.5 23 119.1 34.01 0.00

Assuming birds that were not detected to have died
1 c 182.9 1 184.9 0.00 0.40
2 quad 180.0 3 186.1 1.23 0.21
3 mass 182.7 2 186.7 1.83 0.16
4 lin 182.9 2 187.9 2.01 0.15
5 quad+mass 179.9 4 188.0 3.15 0.08
6 t 153.7 23 203.2 18.31 0.00
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Table 4.3 – Comparison of Cormack-Jolly-Seber mark-resight models examining the apparent

survival of individually marked females between breeding seasons (n = 55 females).  Females

were marked and observed at four greater prairie-chicken leks during a four-year period in

northeast Kansas, 2003 to 2006.  Table abbreviations are as follows:  N1 = apparent survival for

females after initial capture; N2+ = apparent survival of females in subsequent intervals; p =

resight probability; Dev = deviance, K = number of parameters; AICc = Akaike’s Information

Criterion corrected for small sample sizes; )AICc = difference of the AICc value in the given

model compared to the minimum AICc model; and wi = Akaike weights.  Model abbreviations

are as follows: t = year and c = constant.  Separate abbreviations for N1 and N2+ indicates a time-

since-marking model; whereas, an abbreviation between N1 and N2+ indicates that the two classes

were not modeled separately.

Model N1 N2+ p Dev K AICc )AICc wi

1 t t c   1.6 6 90.2 0.00 0.28
2 c c 11.0 2 90.4 0.19 0.25
3 t c 10.1 3 91.7 1.53 0.13
4 t t t   0.7 7 91.8 1.57 0.13
5 c t   8.9 4 92.8 2.59 0.08
6 t t   6.8 5 93.0 2.83 0.07
7 c c c 10.0 4 93.9 3.71 0.04
8 c c t   8.0 5 94.3 4.06 0.04
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Figure 4.1 – Probability of renesting as a function of the stage of development of the first nesting

attempt when it was destroyed.  First nests of 23 females were destroyed by natural causes from

2003 to 2005 near Manhattan in northeast Kansas.  Points on the x-axes represent females that

renested (y = 1) or did not attempt renesting (y = 0).  Nests with negative values for day of

incubation were destroyed during egg laying.
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CHAPTER 5 – Conclusions

Sexual selection and natural selection result from differential reproductive success and

survival.  Lek mating systems provide a unique opportunity to study the various selective

pressures of males and females without interactive effects found in monogamous mating systems. 

Greater prairie-chickens are a lek-mating species that is experiencing population declines in

many parts of its range.  Thus, a better understanding of the factors affecting mating and

reproductive success is necessary for the successful management of this species.  The objectives

of this research were: 1) to determine which male traits correlate with mating success, 2) to

identify the role of testosterone in determining the variation among males with respect to male

traits and mating success, 3) to test whether male traits are honest signals of male quality by

examining the correlation between male traits and annual survival, and 4) to examine prairie-

chicken demography and the correlates of female reproductive success. 

My field research analyzed the correlations between male traits and mating success, and

provides the first detailed account describing how individual behavior affects male mating

success of greater prairie-chickens (Chapter 2).  I also presented the first application of

multinomial discrete choice models for the analysis of mate choice data.  Male prairie-chicken

behavior showed high variability among males and had the greatest impact on mating success

when compared to morphological or territorial traits.  Both display and aggressive behaviors

were strong predictors of male mating success, suggesting that both female choice and male-male

aggression were important in determining mating success among male greater prairie-chickens. 

My research emphasizes the importance of examining multiple male traits in unison.  In the

future, comb color and vocalizations should be examined with respect to mating success and

survival to determine if these traits may be honest signals of male quality. 

I addressed links among testosterone, male traits and mating success in a lek-mating bird

by examining natural variation and experimental increases in testosterone (hereafter ‘T’).  I

improve upon previous studies by analyzing a large number of plasma samples from

unmanipulated males and using T-implants to determine causation.  Sample sizes of the natural

variation in T presented in Chapter 3 are 4 times those reported in previous studies, thereby

increasing my statistical power to detect trends.  My research is only the third study manipulating

T levels in a lek-mating bird.  Natural variation and experimental increases in T indicated that
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testosterone was a strong predictor of mating success, but T was not related to any male

morphological, behavioral or territorial traits considered.  Future work should examine the link

between T and male parasite load, coloration of plumage and vocalizations because it is unlikely

that females are assessing T levels directly.  To further elucidate seasonal trends in T levels, fecal

analysis may provide a non-invasive method to obtain multiple samples from individual males. 

I failed to detect correlations between annual survival and male traits or mating success. 

Annual survival of male prairie-chickens was independent of behavior, morphology, territory

attributes, or T levels.  Without survival costs associated with the expression of the male traits,

these traits may not be honest signals of male quality.  An alternative explanation is that high

mortality due to predation may limit my ability to detect survival costs associated with the

expression of sexually-selected traits.  In other words, natural selection may be a stronger

selective force than sexual selection in determining annual survival.

In Chapter 4, I presented the first demographic data in 30 years for greater prairie-

chickens in Kansas, the core of their range.  These metrics are needed because burning and

grazing regimes have changed during the same time period.  An interesting result of my study is

that, like males, reproductive success of females was also highly skewed.  Less than 10% of nests

successfully hatched young.  However, potential reproductive output was high since females laid

large clutches, frequently renested following clutch loss, and had high egg viability. 

Comparisons of seasonal and annual survival rates indicate that survival is ~1.6 times higher

during the nonbreeding season than the breeding season, presumably because of increased

susceptibility to predation during incubation.  Synthesis of field estimates of demographic

parameters indicates prairie-chicken populations will decline without changes in rangeland

management to reduce predator numbers and provide more nesting cover. 

Taken together, this research and declining population trends provide a strong argument

for prairie-chicken conservation in at least the northern Flint Hills of Kansas.  High skew in both

male and female reproductive success suggest that the effective population size of prairie-

chickens is much less than the numbers observed on leks.  Since only a small subset of adults are

contributing offspring to successive generations, genetic diversity of prairie-chickens in the Flint

Hills should be quantified and monitored.  Previous studies in greater prairie-chickens have

shown that low genetic diversity can have detrimental effects on reproduction.  High rates of nest
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and adult predation suggest that insufficient protective cover may be the primary cause of

population declines.  Habitat fragmentation may also increase the abundance of predator

populations and create corridors for easy movement of predators across the landscape. 

In summary, selection for intense male display and aggressive behavior may be a general

trend in lek-mating birds.  Testosterone appears to be a proximate mechanism mediating

variation in male mating success, but how females utilize testosterone levels to choose a mate is

still unknown.  Variation in female reproductive success is probably a result of high predation

pressure.  Both nesting success and survival of juveniles and adults are depressed in our

population located in the core of the range of the greater prairie-chicken.  Rangeland

management should be modified to reduce predator abundance, provide increased nesting cover,

and improve survival of juveniles and adults. 
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