30-202

DETERMINATION OF A COEFFICIENT MODEL FOR A HYDROSTATIC TRANSMISSION

73

by

DAVID ANTHONY PACEY

B. S., Kansas State University, 1974

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1979

Approved by:

Japph O. Junquist

Spec. Coll. LD 2668 .T4 1979 P32 c.2

TABLE OF CONTENTS

Chapte	er	Page
I.	INTRODUCTION	1
	Introduction	1 2 2
II.	DEVELOPMENT OF THE MODEL	6
	Reformulation of Equations • • • • • • • • • • • • • • • • • • •	6 7
III.	TEST EQUIPMENT	11
	Hydrostatic Transmission	11 17 17 19 20 23
IV.	EXPERIMENTAL PROCEDURES	42
	Calibration	42 45
۷.	PRESENTATION OF RESULTS	47
	Temperature Control Analysis	479975936577171 784
VI.	CONCLUSIONS AND RECOMMENDATIONS	86
	Conclusions	86 86

		Page
LIST	OF REFERENCES	88
APFE	NDICES	89
Α.	Nomenclature	89
В.	Rearrangement of Model A Equations	93
C.	Microcomputer Non-Program and Program Memory	97
D.	Raw Data at Full Displacement	109
E.	Averaged and Reduced Data at Full Displacement	114
F	Speed and Torque Data at Full Displacement Adjusted for	
	Constant Charge Pressure	116
G.	Comparison of Model A and Measured Values at Full Displacement	118
H.	Comparison of Model B and Measured Values at Full Displacement	121
I.	Raw Data at Approximately Three-Fourths Displacement	124
J.	Averaged Data at Approximately Three-Fourths Displacement	127
K.	Raw Data at Approximately One-Half Displacement	129
L.	Averaged Data at Approximately One-Half Displacement	132
M	Comparison of Model B and Measured Values at Approximately	
	Three-Fourths Displacement	134
Ν.	Comparison of Model B and Measured Values at Approximately	
	One-Half Displacement	136
0.	Comparison of Model C and Measured Values at Approximately	- 20
	Three-Fourths Displacement	1 38
Ρ.	Comparison of Model C and Measured Values at Approximately	1)0
	One-Half Displacement	140
Q.,	Comparison of Sundstrand Pump Data and Model C	142
R.	Comparison of Sundstrand Motor Data and Model C	144
S.	Sundstrand Efficiency Data	146
Ψ.	Model C Efficiency Data	148
Ū.	Comparison of Sundstrand Efficiency Data and Model C	1 50
v.	Comparison of Sundstrand Pump Data and Model C Without	1)4
	Viscosity Allowance	152
ν.	Comparison of Sundstrand Motor Data and Model C Without	* /~
	Viscosity Allowance	7 54
X.	Model C Without Viscosity Allowance Efficiency Data	156
Y.	Commarison of Sundstrand Efficiency Data and Model C	1,0
- •	Without Viscosity Allowance	158

LIST OF FIGURES

Figure		Page
2.1.	Graphical Illustration of Determination of Pump Coefficients	9
2.2.	Graphical Illustration of Determination of Motor Coefficients	10
3.1.	Diagram of Test Stand	16
3.2.	Transmission Oil Temperature Control	18
3.3.	R-C Low-Pass Filter	22
3.4.	Main Program	24
3.5.	Initialization Subroutine	25
3.6.	Pump Speed Subroutine	27
3.7.	Pump Torque Subroutine	29
3.8.	RFM Subroutine	30
3.9.	A/D Subroutine	32
3.10.	Low Four Bits Subroutine	34
3.11.	High Four Bits Subroutine	34
3.12.	Display Subroutine	35
3.13.	Delay Subroutine	37
3.14.	Blank Display Subroutine	38
3.15.	7-Segment Display Code Subroutine	40
3.16.	Temperature Control Subrcutine	41
5.1.	Pump Torque at Constant Pressure Differential vs. Speed - Model A	52
5.2.	Motor Torque at Constant Pressure Differential vs. Speed - Model A	53

Figure

5.3.	Pump Zero-Speed Torque vs. Pressure Differential - Model A	54
5.4.	Motor Zero-Speed Torque vs. Pressure Differential - Model A	55
5.5.	Leakage Flow vs. Pressure Differential - Model B	60
5.6.	Pump Power at Constant Pressure Differential vs. Speed - Sundstrand and Model C	74
5.7.	Motor Torque at Constant Pressure Differential vs. Speed - Sundstrand and Model C	75
5.8.	Transmission Efficiency at 3000 psi Pressure Differential vs. Speed - Sundstrand and Model C	76
5.9.	Transmission Efficiency at 5000 psi Pressure Differential vs. Speed - Sundstrand and Model C	77
5.10.	Pump Power at Constant Pressure Differential vs. Speed - Sundstrand and Model C*	79
5.11.	Motor Torque at Constant Pressure Differential vs. Speed - Sundstrand and Model C*	80
5.12.	Transmission Efficiency at 3000 psi Pressure Differential vs. Speed - Sundstrand and Model C*	81
5.13.	Transmission Efficiency at 5000 psi Pressure Differential vs. Speed - Sundstrand and Model C*	82

Page

LIST OF TABLES

Table		Page
4.1.	Zero and Calibration Values	44
5.1.	Transmission Oil Temperature Analysis	48
5.2.	Linear Regression Coefficients for Torque at Constant Pressure Differential vs. Speed for Model A	56
5.3.	Linear Regression Coefficients for Zerc-Speed Torque vs. Pressure Differential for Model A	56
5.4.	Straight Line Coefficients for Torque at Constant Pressure Differential vs. Speed for Model B	64
5.5.	Linear Regression Coefficients for Zero-Speed Torque vs. Pressure Differential for Model B	64
5.6.	Comparison of Measured and Calculated Values at Full Displacement for Model A and Model B	66
5.7.	Comparison of Measured and Calculated Values at Full and Fartial Displacement for Model B	68
5.8.	Comparison of Measured and Calculated Values at Full and Fartial Displacement for Model C	72
5.9.	Comparison of Sundstrand Data and Calculated Values at Full Displacement for Model C and Model C Without Viscosity Allowance	83

LIST OF PLATES

Plate														Page
1.	Test Stand From Right-Hand Side	•	•	•	•	•	•	•	•	•	•	•	•	13
2.	Test Stand From Left-Hand Foreground													15

CHAPTER I

INTRODUCTION

Introduction

The constantly increasing use of automatic controls to enhance performance, efficiency, function, and convenience has brought forth the need to more fully understand the controlled processes. Analytic or laboratory studies of a process can be used to determine a mathematical model that describes a process such that the output variables can be determined from given input variables.

A computer analysis of a draft vehicle was conducted by Ibrahim [1] as his Fh.D. research at Kansas State University. The study determined that the overall cost of operation of the vehicle could be minimized through the use of automatic controls. Ibrahim's work was the initial phase of a long-term study aimed at improving the performance of the manmachine tillage system. The research presented in this thesis is a continuation of that work.

Ibrahim chose to study a vshicle equipped with a hydrostatic transmission because its infinite variable speed ratio capability lends it readily to automatic control techniques. A hydrostatic transmission consists of a hydraulic pump and hydraulic motor coupled by a closed-loop oil circuit. Power is transmitted through the transmission by the oil at relatively low speed and high pressure. Variable speed ratios are accomplished by changing the displacements of either the pump or motor or both.

For purposes of analysis, it was necessary for Ibrahim to develop or assume mathematical descriptions, of models, for the engine, transmission, tractive mechanism, and tillage mechanism. Since his work was basically a feasability study, it was important to have representative models but not necessarily precise models. For the hydrostatic transmission a coefficient model and typical coefficient values were assumed but not experimentally verified in much detail.

The next major phase of the research is to experimentally verify the conclusions of Ibrahim's analytical study. For this phase the transmission model must accurately predict actual performance.

Objective

The objective of the research presented in this thesis was to experimentally determine and verify a mathematical model for a hydrostatic transmission.

Literature Review

Much of the original work in the area of hydrostatic transmission modeling was done by Dr. Warren Wilson [2]. His work was based on coefficient models. This type of model has the deviations from the ideal expressed as functions of coefficients and variables in the system.

Ibrahim chose to use the following basic equations of Wilson's Model for his research.

$$\begin{aligned} & \mathbf{Qp} = \mathbf{Dp} \ \mathbf{Np} - \frac{\mathbf{Csp} \ \Delta \mathbf{P} \ \mathbf{Dpm}}{2\pi \ \mu} \\ & \mathbf{Tp} = \frac{\Delta \mathbf{P} \ \mathbf{Dp}}{2\pi} + \frac{\mathbf{Cfp} \ \Delta \mathbf{P} \ \mathbf{Dpm}}{2\pi} + \mathbf{Cdp} \ \mu \ \mathbf{Np} \ \mathbf{Dpm} \end{aligned}$$

$$Q_m = D_m N_m + \frac{C_{Sm} \Delta P D_{mm}}{2\pi \mu}$$
$$T_m = \frac{\Delta P D_m}{2\tau} - \frac{C_{fm} \Delta P D_{mm}}{2\pi} - C_{dm} \mu N_m D_{mm}$$

Examination of the flow equations reveals that the first term on the right of each equation is the ideal flow. However, leakage decreases the flow cutput of a pump and increases the flow requirement of a motor. The leakage is accounted for by a coefficient term much in the same manner that the coefficient of friction is used to calculate friction force as a function of normal force. The leakage is shown to be a function of the variables pressure differential and viscosity. The maximum displacement and 2π terms are constants present only for dimensional consideration.

The first term on the right of the torque equations is the ideal torque term. The torque required to drive a pump is greater than the ideal: likewise, the torque output of a motor is less than the ideal. The torque losses are grouped as dry friction losses and viscous friction losses. The dry friction losses are a function of pressure differential. The viscous friction losses are a function of speed and viscosity.

In a study of fluidic control of a hydrostatic transmission, Reid [3] also used the basic model of Wilson. In that study the equations were arranged in matrix form to calculate motor speed and pump torque as functions of the other system variables as follows:

$$\begin{bmatrix} Nm \\ Tp \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} Np \\ Tm \end{bmatrix}$$

The symbols a, b, c, and d represent expressions involving the coefficients, viscosity, and displacements.

A modified form of Wilson's Model was used in a simulation of a hydraulic hybrid vehicle power train by Elder and Otis [4]. The flow and torque equations follow.

$$Tm = \frac{(Ps - Pc)}{2\pi} Dm - \frac{Cfn}{2\pi} (Ps + Pc - 2Pd)}{(1 - tan \alpha m)} - \frac{Cdn Nm Dmn \mu}{(1 - tan \alpha m)}$$

$$Qm = Dm Nm + \frac{(Dmm - Dn)}{2} Nm \left[exp \left(\frac{Ps - Pc}{\beta} \right) - 1 \right] + Csn1 Nm Dnm tan \alpha m$$

$$+ \frac{Csm2}{2\pi} (Ps - Pd) Dmm + \frac{Csm3}{2\pi} (Ps - Pc) Dmm$$

$$Tp = \frac{(Ps - Pc)}{2\pi} Dp + \frac{Cfp}{2\pi} (Ps + Pc - 2Pd) Dmm + \frac{Cdp Np Dom \mu}{2\pi}$$

$$Qp = Dp Np \left[\frac{1.0}{exp} \left(\frac{Ps - Pc}{\beta} \right) \right] - \frac{(Dpm - Dp) Np}{2} \left[exp \left(\frac{Ps - Pc}{\beta} \right) - 1 \right]$$

$$+ Csp1 Np Dpm tan \alpha p - \frac{Csp2}{2\pi} (Ps - Pd) Dpm - \frac{Csp3}{2\pi} (Ps - Pc) Dpm$$

2π

271

Although Elder and Otis do not present a formal development of the modified model, observations can be made. The flow equations are more complex than the basic Wilson Model. The model acknowledges leakage paths from system pressure to charge pressure as the basic model does. It also acknowledges a leakage path from system pressure to drain pressure which the basic model does not. The flow equation also has a term relating to the compressibility of the fluid. Another term in the flow equation shows a component of the leakage as a function of speed and displacement.

The torque equations are similar to those of Wilson's basic model except the denominator of the coefficient terms contains the 1 - tan α term. This causes the torque losses to be a function of displacement

whereas in the basic model they remain constant relative to changing displacement.

Blackburn, Reethof, and Shearer [5] give thorough coverage of coefficient models in <u>Fluid Power Control</u>. Wilson's model is developed and a practical method of experimental determination is given. The basic equations are as follows:

$$Qp = Dp Np - \frac{Csp \Delta P Dpm}{2\pi \mu}$$

$$fp = \frac{\Delta P Dp}{2\pi} + \frac{Cfp \Delta P Dpm}{2\pi} + Cdp \mu Np Dpm + Tcp$$

 $Q_m = D_m N_m + \frac{C_{Sm} \Delta P D_{mm}}{2\pi \mu}$

$$Tm = \frac{\Delta P Dm}{2\pi} - \frac{Cfm \Delta P Dmm}{-2\pi} - Cdm \mu Nm Dmm - Tcm$$

The model presented in <u>Fluid Power Control</u> is the same as the model used by Ibrahim except for the addition of the constant torque term to the torque equations in the former. Due to its relative simplicity and thorough coverage in the literature, the model presented by Blackburn was selected for the initial investigation in this research. The modified model used by Elder and Otis was used as a background for modifications to improve the basic model.

CHAPTER II

DEVELOPMENT OF THE MODEL

Reformulation of Equations

The basic equations of the selected form of Wilson's Model are given below.

$$Qp = Dp Np - \frac{Csp \Delta P Dpm}{2 \pi \mu}$$

$$Tp = \frac{\Delta P Dp}{2 \pi} + \frac{Gfp \Delta P Dpm}{2 \pi} + Cdp \mu Np Dpm + Tcp$$

$$Qm = Dm Nm + \frac{Gsm \Delta P Dmm}{2 \pi \mu}$$

$$Tm = \frac{\Delta P Dm}{2 \pi} - \frac{Gfm \Delta P Dmm}{2 \pi} - Cdm \mu Nm Dmm - Tcm$$

To be useful for the computer analysis conducted by Ibrahim [1], the model must be arranged to calculate pump speed and pump torque as functions of motor speed and motor torque and conversely.

The procedure for reformulation of the equations is given in Appendix B. The resulting equations are as follows.

$$Np = \frac{Dm Nm}{Dp} + \frac{K (Tm + Gdm \mu Nm Dmm + Tcm)}{\mu (Dm - Gfm Dmm) Dp}$$

$$Tp = (Tm + Tcm) \left[\frac{(Dp + Gfp Dpm)}{(Dm - Gfm Dmm)} + \frac{Gdp Dpm K}{Dp (Dm - Cfm Dmm)} \right]$$

$$+ Nm \left[Gdm \mu Dmm \frac{(Dp + Gfp Dpm)}{(Dm - Gfm Dmm)} + \frac{Gdp \mu Dpm}{Dp} \left(Dm + \frac{K Gdm Dmm}{(Dm - Gfm Dmm)} \right) \right]$$

$$+ Tcp$$

$$N_{m} = \frac{D_{D} N_{p}}{D_{m}} - \frac{K (T_{p} - Cd_{p} \mu N_{p} D_{pm} - T_{Cp})}{\mu (D_{p} + Cf_{p} D_{pm}) D_{m}}$$

$$T_{m} = (T_{p} - T_{Cp}) \left[\frac{(D_{m} - Cf_{m} D_{mm})}{(D_{p} + Cf_{p} D_{pm})} + \frac{K Cd_{m} D_{nm}}{D_{n} (D_{p} + Cf_{p} D_{pm})} \right]$$

$$- N_{p} \left[Cd_{p} \mu D_{pm} \frac{(D_{m} - Cf_{m} D_{mm})}{(D_{p} + Cf_{p} D_{pm})} + \frac{Cd_{m} \mu D_{nm}}{D_{m}} \left(D_{p} + \frac{K Cd_{p} D_{pm}}{(D_{p} + Cf_{p} D_{pm})} \right) \right]$$

$$- T_{Cm}$$

Determination of Coefficients

Fluid Power Control [5] covers the procedure for experimentally determining the coefficients of the selected model. The procedure requires measurements of pump speed, motor speed, pump torque, motor torque, system pressure, and charge pressure at various operating conditions. All tests for determination of the coefficients are conducted with both the pump and motor at full displacement. The oil temperature must be held constant to maintain the same oil viscosity throughout the tests.

It is interesting to note that development of a model for a hydrostatic transmission does not require flow rate measurement. However, flow rate measurement is necessary for development of a model for either a pump or a motor as a single unit.

The composite slip factor, K, can be calculated from the data by the relationship

$$K = \frac{(Dp Np - Dm Nm) 2 \pi \mu}{\Delta P}$$

Determination of the other coefficients requires plotting graphs or using linear regression analysis. The coefficient of viscous drag for the pump, Cdp, is related to the slope of the constant pressure differential

lines of the torque vs. speed graph as shown in Figure 2.1. The coefficient of viscous drag for the motor, Cdm, can be determined in a similar manner as shown in Figure 2.2.

The lines of constant pressure on the torque vs. speed graph can be extrapolated to zero speed to determine the zero-speed torque values. These values are then plotted as zero-speed torque vs. pressure differential. The coefficient of dry friction for the pump, Cfp, is related to the slope and the constant friction torque of the pump, Tcp, is the zeropressure differential torque as shown in Figure 2.1. The coefficient of dry friction for the motor, Cfm, and the constant friction torque of the motor, Tcm, can be determined in a similar manner as shown in Figure 2.2.

As stated in Chapter I, determination of the coefficients requires only measurements to be taken with both the pump and motor at full displacement. The approach chosen for this research was to determine the coefficients at full displacement according to the prodecure, and then evaluate the model at full displacement and various partial displacements.

Speed

Pressure Differential

Figure 2.1. Graphical Illustration of Determination of Pump Coefficients

Pressure Differential

Figure 2.2. Graphical Illustration of Determination of Motor Coefficients

CHAPTER III

TEST EQUIPMENT

Hydrostatic Transmission

The hydrostatic transmission test stand used in this research is pictured in Plates 1 and 2 and is diagrammed in Figure 3.1.

Sundstrand Hydro-Transmission [6] of Ames, Iowa manufactures the transmission used in this research. It consists of their Model 22 variable displacement pump and Model 24 variable displacement motor. The pump displacement is variable from 0 to 4.26 in³/rev which corresponds to a swashplate angle variation from 0 to 18°. The motor displacement is variable from 2.73 to 7.24 in³/rev which corresponds to a swashplate angle variation from 0 to 18°. The motor displacement is variable from 2.73 to 7.24 in³/rev which corresponds to a swashplate angle variation from 7 to 18°. The transmission is rated for 3000 psi continuous working pressure at maximum shaft speeds. Normal relief valve setting is 5000 psi.

A 0.75 in³/rev fixed displacement charge pump is mounted on the main pump. It provides a flow of oil through the transmission for cooling purposes and provides sufficient oil under pressure for control purposes and to replace internal leakage. The main pump supply oil and motor return oil are maintained at charge pressure. The charge pressure relief valve setting is 160 to 180 psi.

The pump displacement and motor displacement are controlled by Moog controllers. Moog Model 62-600 controllers are mounted on the pump and motor and are used in conjunction with Moog Model 122-105 Servoamplifiers. These units control displacement proportional to an operator determined input voltage.

EXFLANATION OF FLATE 1

Item	Description
l	Engine
2	Pump Torque Transducer
3	Pump Speed Transducer
4	HST Pump
5	Pump Moog Controller
6	Charge Pump (integral with HST pump)
7	HST Motor
8	Motor Moog Controller
9	Motor Torque Transducer
10	Motor Speed Transducer
11	Load Pump
12	Load Valve
13	Load Circuit Heat Exchanger
14	Inlet Temperature Transducer
15	Charge Pressure Port
16	System Pressure Port

Plate 1. Test Stand From Right-Hand Side

EXPLANATION OF PLATE 2

Item	Description
1	Outlet Temperature Transducer
2	Transmission Oil Reservoir
3	Transmission Heat Exchanger
4	Cooling Water Control Solenoid
5	Charge Pressure Transducer
6	System Pressure Transducer
7	Load Circuit Oil Reservoir
8	Microcomputer (protective cover removed)
9	Interface (protective cover removed)
10	Moog Electronics (protective cover removed)
11	Pump Displacement Control
12	Motor Displacement Control
13	Signal Conditioners
14	Teletype

Flate 2. Test Stand From Left-Hand Foreground

Figure 3.1. Diagram of Test Stand

For this research the transmission oil was cooled by a Thermxchanger heat exchanger, Number 530-BFX, manufactured by E. C. Cooley Company. The transmission oil temperature was regulated by a microcomputer controlled solenoid valve that initiated or terminated the flow of cooling water through the heat exchanger. The microcomputer is discussed in a subsequent section of this chapter.

The transmission oil temperature control scheme was an on-off nonlinearity with hysteresis as shown in Figure 3.2. Temperature measurement locations at the charge pump inlet and case drain outlet were selected to avoid placing transducers in high pressure lines or passages of the transmission. The average of these two temperatures was used as representative of the average oil temperature in the transmission. The lower and upper temperature settings were 51.2° C and 52.0° C giving a total hysteresis band of 0.3° C. This gave a nominal control temperature of 51.6° C or 125° F.

Engine

The engine used to supply power to the transmission in this research was a John Deere Model 3164 DT. This three cylinder diesel engine displaces 164 in³. Raw performance data provided by John Deere indicate it has maximum brake torque of 134 ft.lb at 1400 rpm and maximum brake power of 56.7 hp at 2400 rpm. The torque curve is relatively flat with a rise of about 10 ft.lb between 2400 rpm and 1400 rpm.

Load Unit

The cutput of the transmission was coupled directly to a Cessna 24600 Series gear pump with fixed displacement of $3.78 \text{ in}^3/\text{rev}$. The

Figure 3.2. Transmission Oil Temperature Control

output flow of the load pump was throttled across a needle valve to dissipate the energy. The load circuit oil then entered a Model F-303-EY-4P heat exchanger manufactured by Young Radiator Company. The needle valve setting was used to control the load on the transmission.

The load pump was mounted in a frame that allowed the pump free rotation about its shaft centerline. The rotation was restrained by the . load cell used to measure the transmission output torque.

Microcomputer and Interface

A microprocessor based system was used for data acquisition and transmission oil temperature control. The KIM-1 Microcomputer manufactured by MOS Technology, Inc. [7] was selected for its versatility and low cost. It uses an 8-bit MCS 6502 microprocessor array operating in conjunction with two MCS 6530 arrays. The basic system plus an additional 3K of RAM (random-access-memory) gives 2048 bytes of ROM (read-only-memory) and 9344 bytes of RAM. The unit has an address range of 65536 bytes.

A Teletype Model 33 teletypewriter was connected to the microcomputer. The teletypewriter provided an alternative to the microcomputer keyboard and display for communication with the microcomputer. It also provided printed hard copy and punched paper tape. The paper tape could be used for subsequent re-entry of the program.

The interface provided the link between the transmission, the microcomputer, and the operator. The major functions of the interface were to control input signals, control output signals, provide timekeeping, and display measured parameter values. Major components in the interface were an analog-to-digital converter, a multiplexer, an interface adapter, and the display. The analog-to-digital converter used was an ADC-8S manufactured by Analog Devices. This 8-bit converter uses the staircase conversion technique. Its range is 0 to 10 volts and a full scale conversion is accomplished in one millisecond.

The multiplexer allowed the eight analog signals to be converted by one A/D converter. An AD7501 Multiplexer manufactured by Analog Devices was used in the interface.

The interface adapter was a MCS 6522 manufactured by MOS Technology. This device provided much of the control of the input and output signals and also included the timekeeping function.

The display consisted of 24 units of 7-segment light emitting diodes. Each unit was individually addressable.

Transducers and Signal Conditioning

Fump speed and motor speed were measured by an Airpax 4-000S magnetic pickup with pulses generated from a 60 tooth gear. The pump speed gear was mounted in the Lebow torque meter. The motor speed gear was mounted on the shaft coupling the motor and the load unit pump. The microcomputer and interface recorded pulses for one second with the result being the shaft speed in rpm.

Pump torque was measured by a Lebow Model 1104-2K strain gage torque transducer installed between the engine and the pump. Motor torque was measured by a Transducers, Inc. Model BTC-FF63-CS-200# strain gage force transducer attached to a 9 inch lever arm restraining the rotation of the load unit pump mounting cradle.

Taytronic Type 91 Strain Gage Transducer Input Modules and Type P

Galvanometer Driver Output Modules were used for signal conditioning of the torque signals. The Daytronic units provided an output voltage compatible with the 0 to 10 volt range of the A/D converter.

The raw torque signal exhibited extreme variation probably due to engine induced torsional vibrations. The Daytronic output signals were filtered with a low-pass R-C filter. The filter configuration and frequency response characteristics are shown in Figure 3.3.

Pressures were sensed with Statham Model UGP4 Pressure Accessories with interchangeable diaphragms used in conjunction with Gould Statham Model UC3 Universal Transducing Cells. A 2000 psi diaphragm was used for the system pressure transducer, and a 200 psi diaphragm was used for the charge pressure transducer.

Statham Model SC1001 Universal Transducer Readout units were used for pressure signal conditioning. The output signal of each pressure indicator was filtered with the same type filter used for the torque signals and illustrated in Figure 3.3. The 0 to 5 volt cutput range was amplified to the 0 to 10 volt A/D converter range by an amplifier in the interface.

Pump displacement and motor displacement were sensed from the feedback signal from the Mocg Model 62-600 Controllers mounted on the transmission. The signals were in the 0 to 10 volt range and thereby were directly compatible with the A/D converter.

Transmission inlet and outlet oil temperatures were measured by Analog Devices AD590 Temperature Transducers. Their output is a current that is proportional to absolute temperature. A circuit built into the interface converted the temperature signal into the A/D converter compatible range of 0 to 10 volts.

Amplitude Ratio

Figure 3.3. R-C Low-Pass Filter

Software

The software developed for this research had the tasks of data acquisition and transmission oil temperature control. The programming of the microcomputer was done in hexadecimal machine language code. MOS Technology publications [7, 8, 9, 10] detail the microcomputer and the program code. The program is listed in Appendix C.

A structured programming technique was used in developing the software. The main feature of structured programming is that the program is composed of numerous segments with each segment having a narrowly defined function. This keeps the segments short and enhances program debugging and component trouble-shooting. It also improves understanding of the program by persons other than the programmer. The program is also versatile in that the main program can easily be revised to call only one or several of the subroutines for reduced program scope.

The Main Program as illustrated in Figure 3.4 is solely a sequence of Jump to Subroutine statements. Upon commencing the Main Program, control is immediately transferred to the Initialization Subroutine where upon its completion control is transferred back to the Main Program and then immediately to the Funp Speed Subroutine. This sequence continues until program control is returned from the Temperature Control Subroutine to the Main Frogram. The Main Program then loops back to the Funp Speed Subroutine. The program continues in this infinite loop that each cycle determines and displays ten separate data values and provides for transmission oil temperature control. Execution can be halted by pressing the STOP key.

The Initialization Subroutine, Figure 3.5, is a sequence that defines and stores constants required for proper program execution. The first

Figure 3.4. Main Program

Figure 3.5. Initialization Subroutine

step is to initialize the Data Direction Register B to specify the pins as either inputs or outputs. Fort B pins are all outputs with the exception of PB6 which is the shaft speed input pin. DDRE is therefore initialized to HEX EF or BIN 1011 1111.

The Auxilary Control Register is initialized to HEX 60 or BIN 0110 0000. This sets up Timer 2 as a pulse counter on PB6 and puts Timer 1 in the free-running mode.

The next step of the Initialization Subroutine clears the decimal mode. This sets up the microprocessor for binary arithmetic operations.

The two bytes of the Non-Maskable Interrupt must be initialized to HEX 1000 so that the program can be terminated by pressing the STOP key.

The Peripheral Control Register is initialized to HEX 00. This step is possibly unnecessary in that the PCR is redefined in the Temperature Control Subroutine. However, it does provide a convenient check on the operation of the cooling water solenoid when the oil is cold. When the PCR is defined as HEX 00 it allows CB2 to go high which energizes the solenoid. The solenoid is subsequently de-energized as the Temperature Control Subroutine is executed.

The Initialization Subroutine then calls the Blank Display Subroutine to clear the interface display and the 7-Segment Display Code Subroutine to store the code for the symbols 0 to F.

The Pump Speed Subroutine and Motor Speed Subroutine are identical except for the address of the input channel and the display addresses. The Pump Speed Subroutine is illustrated in Figure 3.6. The first step is to specify the input channel address. Control is then transferred to the RPM Subroutine which determines and stores the rpm value in memory as a high and low byte.

The remainder of the RPM Subroutine is dedicated to displaying the result. First the low byte is recalled and the low four bits are separated, decoded, and displayed as a hexadecimal digit. Next the high four bits of the low byte are separated, decoded, and displayed. Finally, the low four bits of the high byte are separated, decoded, and displayed. Only the lower 12 bits of the 16 bits total are actually used for the speed value. This gives a range of 0 to 4095 rpm with a resolution of one rpm.

The subroutines that determine and display the values of the eight analog channels consisting of torque, displacement, pressure, and temperature are similar with only the channel and display address differing. The Pump Torque Subroutine is shown in Figure 3.7.

First the subroutine specifies the appropriate analog input channel. Control is then transferred to the analog to digital conversion subroutine. The remainder of the subroutine separates, decodes, and displays the four low bits and four high bits of the eight bit digital value.

The RPM Subroutine, Figure 3.8, determines the selected shaft speed by activating the appropriate input channel and counting pulses for one second. The pulses are generated by a magnetic pickup on a 60 tooth gear so the number of pulses counted in one second is the shaft speed in rpm. The pulses are counted by Timer 2 which decrements for each negativegoing pulse of PB6. The one second time period is determined by Timer 1 in the free-running mode used in conjunction with a loop counter.

The RPM Subroutine first activates the input channel specified by the calling routine. It then initializes the loop counter to HEX 11 or DEC 17. Since the pulse counter decrements, it is initialized to the large number

Figure 3.7. Fump Torque Subroutine

Figure 3.8. RPM Subroutine
HEX FFFF and the final count will be subtracted from it to determine rpm. The timer is initialized to HEX E5C8 or DEC 58824. Loading the timer also triggers the count-down which is at system clock rate of 1 MHz.

The program then enters a loop that keeps checking if the timer has timed-out. When the timer reaches zero it sets a flag and also reloads the initial value, HEX E5C8, and continues to decrement. When the time-out occurs, the timer flag is reset by reading the timer value. The loop counter is decremented and the program loops back to the loop that checks the timer flag. This sequence continues until the loop counter reaches zero. The counting down of the timer 17 times from 58824 at 1 MHz clock rate gives an elapsed time of one second.

The pulse counter is then read and subtracted from the initial value. The resulting value is stored in memory and program control is returned to the calling routine.

The A/D Subroutine, Figure 3.9, determines the digital representation of the analog value on the input channel specified by the calling routine. The channel address is passed to the subroutine in the X-register. The digital result is loaded into the Accumulator for use by the calling routine. It also remains in memory location 0400.

The subroutine first adds the A/D control bit FB4 to the A/D enable and channel address in the Accumulator. The result is then stored in ORB which activates the selected input channel and clears the previous conversion result. The following twenty-five NOP commands are to allow time for the multiplexor to switch and settle. The A/D control bit is then driven low to initiate the conversion.

The subroutine then enters a loop where the IFR is loaded and checked

Figure 3.9. A/D Subroutine

to determine if the conversion is complete. Upon completion of the conversion, the result is loaded into the Accumulator and control is returned to the calling routine.

The Low Four Bits Subroutine, Figure 3.10, and High Four Bits Subroutine, Figure 3.11, serve to prepare data for the display. Each eight bit number must be separated into two four bit numbers to be represented as two hexadecimal digits. The Display Subroutine requires the four bits being displayed to be the low four bits. The incoming eight bit number must be in the Accumulator. The resulting number is returned to the calling routine in the Y-register along with the original number being restored in the Accumulator.

The Low Four Bits Subroutine masks the high four bits by an AND operation with the number HEX OF. The High Four Bits Subroutine places the high four bits in the low four bit locations and zeros in the high four bit locations by using a logical shift right four times.

The data is displayed in hexadecimal form to provide efficient use of the display units. The simultaneous presentation of eight two-digit parameters and two three-digit parameters uses 22 of the 24 available digits. Conversion to base ten would require one additional digit for each parameter or a total of 32. Scaling to appropriate units would require 39 digits.

The Display Subroutine, Figure 3.12, displays the selected hexadecimal number at a selected display address. The low byte of the display address must be in the X-register and the digit to be displayed must be in the Y-register.

The subroutine determines the 7-segment code for the digit to be

Figure 3.11. High Four Bits Subroutine

displayed by using the digit to specify the address where the code is stored by the 7-Segment Display Code Subroutine. The code is then stored at the selected display address.

The subroutine then must delay for a period to allow the display multiplexer to sweep before addressing another display address. The delay length is loaded in the Y-register and the Delay Subroutine is then called.

The Delay Subroutine, Figure 3.13, causes a delay of approximately one millisecond for each unit in the Y-register. The inner loop consists of operations requiring 7 machine cycles and is executed 143 times for a total of approximately 1000 cycles or about 1 millisecond at the one MHz clock rate. The subroutine executes the outer loop once for each unit initially in the Y-register.

The subroutine first initializes the inner loop counter to HEX 2F. The routine then enters the inner loop. The inner loop counter is decremented and then checked for zero. When the inner loop counter reaches zero, the outer loop counter is then decremented and checked for zero. If the outer loop counter is not zero, the routine then loops back and initializes and executes the inner loop again. When the outer loop counter reaches zero, control is returned to the calling routine.

The Blank Display Subroutine, Figure 3.14, is used in the Initialization Subroutine to clear all display memory locations. This could be to remove garbage present when the machine woke up or to remove previous data from display memory locations not currently being used by the routines called by the Main Program.

The first step is to load HEX 00 which is the code for a blank display

Figure 3.13. Delay Subroutine

digit. The next step is to initialize the loop counter to count down the four low bits of the address location. The subroutine then enters a loop where the loop counter is first decremented and then the result is combined with the values HEX 0600 and HEX 0640 to address the display memory locations. When the loop counter reaches zero, control is transferred back to the calling routine.

The 7-Segment Display Code Subroutine, Figure 3.15, is a sequence of steps that loads and stores the 7-segment code for each of the hexadecimal digits.

The Temperature Control Subroutine, Figure 3.16, regulates the transmission oil temperature by controlling the flow of cooling water to the transmission oil heat exchanger. The subroutine first determines and stores the inlet oil temperature. Next, the outlet oil temperature is determined and averaged with inlet oil temperature.

The average temperature is first compared to the high temperature limit. If the average temperature exceeds the high temperature limit, the value HEX EO is stored in the PCR to cause CB2 to go or remain high and energize the solenoid to initiate or maintain the flow of cooling water.

If the average temperature is not above the high temperature limit, it is then compared to the low temperature limit. If the average temperature is below the low temperature limit, the value HEX CO is stored in the PCR to cause CB2 to go or remain low and de-energize the solenoid to terminate the flow of cooling water or keep it off if previously off.

If the average temperature is less than or equal to the high limit and greater than or equal to the low limit, no action is taken and control is returned to the Main Program.

Figure 3.16. Temperature Control Subroutine

CHAPTER IV

EXPERIMENTAL FROCEDURES

Calibration

Pump speed and motor speed were determined from pulses generated by a magnetic pickup on a 60 tooth gear. A one second period was selected so that the number of pulses during that period would give rpm directly. The one second interval was timed by the microcomputer and its crystal controlled 1 MHz clock. The time period was written into the software and required no further calibration.

The torque, displacement, pressure, and temperature signals entered the interface as voltage levels. These voltage signals were converted to a digital representation by the analog to digital converter. The digital representation was a 8-bit number which was displayed as two hexadecimal digits. This gave 256 distinct values for the 0 to 10 volt range of the A/D converter.

The zero point of the input signal was hard to detect because the A/D converter would indicate zero for all negative voltages. It was therefore found convenient to use a digital voltmeter during calibration procedure. With the voltmeter set to read in increments of 0.01 volt, it also provided better resolution than the 0.04 volt per increment of the 2-bit A/D converter.

A small amount of input voltage bias was caused by the A/D input buffers. This required a small positive voltage in the input signal to represent the zero value of the A/D converter. Therefore the zero parameter value condition was actually represented by a small positive

-0

voltage signal but due to the input bias was still represented as zero by the A/D converter.

The pump torque and motor torque were calibrated by shunt resistance. The equivalent torque of the shunt was determined by comparison to a known torque generated by dead weight. A scaling factor of 7.2 in.1b per increment of the 8-bit A/D converter was used. The zero and calibration values are given in Table 4.1.

The pump displacement and motor displacement were assumed to be linear with the feedback signal from the Moog controllers. The A/D digital values for minimum and maximum displacements were determined and straight line coefficients were calculated.

The A/D digital value HEX 11 corresponded to the 0 in³/rev minimum pump displacement and HEX F8 corresponded to the 4.26 in³/rev maximum pump displacement. Pump displacement could then be calculated from the relationship

Dp = 0.018442 Vdpa/d - 0.31351

where Vdpa/d is the digital representation of the pump displacement voltage as determined by the A/D converter.

To illustrate the use of the pump displacement equation, consider the value HEX F8 being read from the pump displacement display. Convert HEX F8 to DEC 248 and then calculate pump displacement as

 $Dp = (0.018442) (248) - 0.31351 = 4.26 in^3/rev$

The A/D digital value HEX 4B corresponded to the 2.73 in³/rev minimum motor displacement and HEX D7 corresponded to the 7.24 in³/rev

TABLE 4.1

ZERO AND CALIBRATION VALUES

	Zero	Calibration
Pump Speed	none	none
Motor Speed	none	none
Pump Torque	0 = 0.09 V = HEX 00	shunt = 8.09 V = HEX CD
Motor Torque	0 = 0.09 V = HEX 00	shunt = $8.00 V = HEX CA$
Pump Displacement	none	none
Motor Displacement	none	none
System Pressure	0 = 0.11 V = HEX 00	2020 psi = 4.05 V = HEX CA
Charge Pressure	0 = 0.11 V = HEX 00	205 psi = 4.09 V = HEX CD
Inlet Temperature	0° C = HEX 00	99.6° C = HEX FF
Outlet Temperature	0° C = HEX 00	99.6° C = HEX FF

maximum motor displacement. Motor displacement could then be determined from the relationship

Dm = 0.032214 Vdma/d + 0.31395

where Vdma/d is the digital representation of the motor displacement voltage as determined by the A/D converter.

System pressure and charge pressure were calibrated with a dead weight pressure tester. A scaling factor of 10 psi per increment of the 8-bit A/D converter was used for system pressure, and a scaling factor of 1 psi per increment was used for charge pressure. The zero and calibration values are listed in Table 4.1.

The temperature measurements were calibrated to read HEX 00 for 0° C and HEX FF for 99.6°C. This gave 1/2.56 or 0.3906°C per increment of the 8-bit A/D converter.

Test Procedure

The test procedure followed for data acquisition at full displacement is listed below.

- 1. Turn on all electronic equipment at least thirty minutes prior to calibration.
- 2. Perform calibration procedure.
- 3. Check engine and transmission oil levels.
- 4. Turn on exhaust fan, ccoling water, and fuel.
- 5. Start engine and allow brief warm-up period without load.
- 6. Completely open load circuit valve.
- 7. Engage clutch to activate transmission.

- 8. Slowly increase the load and speed to near the first data point.
- 9. Allow ample warm-up time (normally twenty minutes or greater)
- 10. Turn pump to zero displacement and set no-load speed on engine.
- 11. Turn pump to full displacement and set load circuit valve for the highest system pressure to be included in the run.
- 12. Allow a several minute stabilization period.
- 13. Record three sets of data at one minute intervals.
- 14. Change the load circuit valve setting to the next lower system pressure to be run.
- Allow five minutes from the time data was initially read at the previous load setting.
- Repeat steps 13, 1⁴, and 15 until the test run is completed.
- 17. Shut down and check calibration.

Essentially the same procedure given above was also followed for data taken at partial displacement except step 13 was changed so that six sets of data were read at one-half minute intervals. The number of data sets at each load setting was increased because the partial displacement data had more scatter than the full displacement data. This was possibly due to minor changes in the displacements during partial displacement operation that did not occur during full displacement operation because of the swashplate angle being fixed by internal stops.

CHAPTER V

PRESENTATION OF RESULTS

Temperature Control Analysis

The internal leakage and viscous drag are both functions of oil viscosity which is a function of temperature. The procedure for determination of the model coefficients required the transmission oil temperature to be held constant throughout the tests so that the viscosity would remain constant.

As discussed in Chapter III, the transmission oil temperature control scheme was an on-off nonlinearity with hysteresis. The input temperature was the average of the inlet oil temperature and outlet oil temperature. The lower and upper temperature settings were 51.2°C and 52.0°C giving a total hysteresis band of 0.8°C. This gave a nominal control temperature of 51.6°C.

A detailed analysis of the temperature controller was not conducted. However, it was observed that the controller exhibited a stable limit cycle at all transmission operating conditions.

A summary of the transmission oil temperature is given in Table 5.1. These data were taken when the tests for determination of the coefficients were run and are listed in Appendix D. The operating conditions covered a wide range of torques and speeds with the pump and motor both at full displacement.

TΠΔ	RI	111	5	1
711	202		2	-

	ANALY	SIS	
	x	S	n
^t in	47.78	1.11	135
tout	55.66	1.41	135
tave	51.72	1.05	135

TRANSMISSION	OIL	TEMPERATURE
ANA	LYS	ts .

The average temperature of 51.72° C was reasonably close to the control temperature of 51.6° C. The standard deviation of 1.05° C of the average temperature gave an indication of the amount of variation in the average temperature. The temperature controller was considered acceptable for its application in this research.

Amoco 1000 cil was used in the transmission during this research. The Amoco specification sheet [11] for this oil lists its viscosity as 315 SSU at 100° F and 59 SSU at 210° F. From a standard viscosity vs. temperature graph, the viscosity was determined to be 180 SSU at the average transmission oil temperature of 51,72° C or 125° F. Using the standard conversion formula [5] for t greater than 100 SSU the kinematic viscosity was converted to cm2/sec.

 $v = 0.0022t - \frac{1.35}{t} = (0.0022) (180) - \frac{1.35}{180} = 0.3885 \text{ cm}^2/\text{sec}$

The Amoco specification sheet lists the specific gravity of the oil as 0.8911 at 60° F. From information in the Petroleum Measurement Tables [12], the specific gravity at the average transmission oil temperature of 125° F was determined to be 0.868,

The absolute viscosity was determined as follows.

$$\mu = \frac{(0.3885 \text{ cm}^2/\text{sec}) \ (0.868) \ (1.94 \text{ slug/ft}^3) \ (1b \text{ sec}^2/\text{slug ft})}{(2.54 \text{ cm/in})^2 \ (12 \text{ in/ft})^4 \ (60 \text{ sec/min})}$$

$$\mu = 8.15 \times 10^{-8} \text{ lb.min/in}^2$$

Development of Model A

The model selected in Chapter I for initial investigation will be referred to as Model A to distinguish it from modified versions to be considered later in this chapter.

Speed, torque, and pressure data were recorded over a wide range of operating conditions for determination of the coefficients of Model A. The raw data are listed in Appendix D. System pressures from 600 to 1600 psi in increments of 200 psi and no-load engine speeds from 1000 to 2400 rpm in increments of 200 rpm were considered. Every system pressure setting was used at every no-load engine speed setting except only system pressures of 1000 psi and less could be run at 1000 rpm no-load engine speed. This gave a total of 45 distinct load and speed settings.

From the three readings taken at each setting, the average of each measured parameter was determined. This information is listed in Appendix E. From the average values, the value of K/μ was found from the relationship developed in Appendix E.

$$\frac{K}{\mu} = \frac{2 \pi (Dp Np - Dm Nm)}{\Delta P}$$

Ideally, this value would be the same for all data points. However,

observation of the calculated values of K/μ listed in Appendix E reveals it to be quite variable. The mean value of K/μ of 42 data prints was determined to be 2.135 with a standard deviation of 0.895. The data at 1000 rpm no-load engine speed were not included in this calculation since they didn't include the full range of system pressures. Since only one number could be used for K/μ in the model, the mean of the values was used. The value of K for model A was determined as follows.

 $K = (2.135) (8.15 \times 10^{-8}) = 1.740 \times 10^{-7}$

Determination of the remainder of the coefficients required a plot of torque vs. speed at constant pressure differential for various pressure levels. When the data were recorded, system pressure was held constant but charge pressure varied somewhat as a function of pump speed. It was therefore necessary to adjust the measured torque for a common charge pressure.

The charge pressure data recorded at the 45 load settings used for determination of the coefficients is listed in Appendix E. Analysis of this data determined the mean charge pressure to be 170.8 psi with a standard deviation of 6.4 psi. For convenience, the value of 170 psi was chosen for use as the standard charge pressure.

The torque values were adjusted for the standard charge pressure by multiplying the measured torque value by the ratio of the standard pressure differential value to the measured pressure differential value. This can be illustrated by an example. The first data point listed in Appendix E lists a measured pump torque of 1147 in.1b with system pressure of 1600 psi and charge pressure of 183 psi. The adjusted pump torque value is

calculated by

1147 (1600 - 170) / (1600 - 183) = 1158

The adjusted torque values are listed in Appendix F.

The graph of torque at constant pressure differential vs. speed for the pump is given in Figure 5.1 and for the motor is given in Figure 5.2. Least-squares regression analysis was used to determine the slope, intercept, and correlation coefficient of the best fitting straight line for each set of data at constant pressure differential. This information is summarized in Table 5.2.

The coefficients of viscous drag were determined from the average slope as follows.

$$Cdp = \frac{m}{Dpm \mu} = \frac{0.049021}{(4.26) (8.15 \times 10^{-8})} = 141194$$

$$Cdm = \frac{-m}{Dmm \ \mu} = \frac{0.075469}{(7.24) \ (8.15 \times 10^{-8})} = 127901$$

The next step in the determination of the coefficients required the value of the zero-speed torque as a function of pressure differential. Graphically this was determined as the torque value at the zero-speed intercept of the constant pressure differential lines for the pump and motor given in Figures 5.1 and 5.2. These values are listed in Table 5.2 as b, or intercept.

The graph of zero-speed torque vs. pressure differential is given in Figure 5.) for the pump and Figure 5.4 for the motor. Least-squares

vs. Speed - Model A

TA	BL.	E	5		2
		_	~	•	

Δ.D.		Pump	2		Motor	2
	111	Q	r	m	0	Г
1430	0.050122	1050.2	0.959	-0.056604	1526.3	0.880
1230	0.051573	914.4	0.953	-0.059172	1299.9	0.968
1030	0.047818	783.6	0.914	-0.072966	1080.1	0.927
830	0.051884	638.2	0.914	-0.082110	857.2	0.935
630	0.047354	506.1	0.940	-0.088267	634.7	0.927
430	0.045373	370.8	0.934	-0.093692	412.8	0.931
x	= 0.049021		Ŧ	= -0.075469		
s	= 0.002587		s	= 0.015282		

LINEAR REGRESSION COEFFICIENTS FOR TORQUE AT CONSTANT PRESSURE VS. SPEED FOR MODEL A

TABLE 5.3

LINEAR REGRESSION COEFFICIENTS FOR ZERO SPEED TORQUE VS. PRESSURE FOR MODEL A

			······································		
m	b	r ²	 M	b b	r ²
0.681043	77.18	0.99986	1.112286	-65.93	0.999999

regression analysis was used to determine the slope, intercept, and correlation coefficient of the best fitting straight line. This information is summarized in Table 5.3.

The coefficients of dry friction were determined from the slope as follows.

$$Cfp = \frac{2 \pi m}{Dpm} - 1 = \frac{2 \pi (0.681043)}{4.26} - 1 = 0.004488$$

$$Gfm = 1 - \frac{2 \pi (-m)}{Dmm} = 1 - \frac{2 \pi (1.112286)}{7.24} = 0.034710$$

The constant friction torques for Model A were determined from the intercepts in Table 5.3 as follows.

Tep = b = 77.18

Tem = -b = 65.93

Evaluation of Model A at Full Displacement

The method chosen to evaluate a model was to compare a value calculated by the model to a value measured under the same input conditions. The model was used to calculate pump speed and pump torque from the inputs of measured values of motor speed and motor torque for which measured values of pump speed and pump torque were also known. From the values of torque and speed, power was also calculated for comparison.

Comparisons were made on both a ratio basis and a difference basis to give an indication of relative and absolute error between the calculated and measured values. For example, if for one of the points considered the calculated speed from the model was 1010 rpm and the measured value was 1000 rpm the ratio of calculated to measured speed would be 1.0100 and the difference would be +10 rpm. If the model speed was 2020 rpm and the measured value was 2000 rpm the ratio would also be 1.0100 but the difference would then be +20 rpm. Both types of comparison were considered important as evaluation tools for the models.

The main evaluation of the model was based on the speed and torque calculations. Power calculations were also made and compared but were only of secondary importance as they were only a combined reflection of the speed and torque comparison.

Model A was evaluated by comparing its calculated values to all the measured values used for determination of its coefficients. This information is listed in Appendix G.

Model A on the average predicted the pump speed to be 1.0094 of the measured pump speed with a standard deviation of 0.0199. In other words, the model predicted pump speed about 1% high on the average with a standard deviation of about 2%. This corresponded to the model predicting 9.0 rpm high on the average with a standard deviation of 26.2 rpm.

Model A on the average predicted the pump torque to be 0.9986 of the measured pump torque with a standard deviation of 0.0098. This corresponded to the model predicting 0.6 in.1b high on the average with a standard deviation of 7.6 in.1b. In this case the ratio basis indicated the average prediction was low while the difference basis indicated the average prediction was high. This was due to the ratio terms at the lower parameter values dominating the ratio terms at the higher parameter values but yet on the difference basis the difference terms at the higher parameter values dominated the difference terms at the lower parameter values.

The pump power predicted by Model A was on the average 1.0081 of the measured power with a standard deviation of 0.0253. This corresponded to the model predicting 0.20 hp high on the average with a standard deviation of 0.50 hp.

Development of Model B

On the average, Model A did a relatively good job of predicting actual pump speed, pump torque, and pump power. The variability of the predictions as compared to the measured values was indicated by the standard deviation. Although the variations were at an acceptable level, two modifications to possibly improve the model were determined and evaluated as Model B.

The first modification involves the leakage term in the flow equation. Model A recognizes leakage as a constant times pressure differential for a given oil viscosity. The variability in the K/μ terms evaluated for Model A suggested the need for a more comprehensive accounting of the leakage.

Leakage values were determined for each data point and are given in Appendix E. This information is plotted in Figure 5.5 as leakage vs. pressure differential. The leakage values from the 1000 rpm nc-load speed runs were not included as they didn't cover the full pressure range of the remainder of the data. Although there was considerable scatter in the data in Figure 5.5, it appeared that leakage could be better approximated by a constant leakage component plus a component that is a constant times pressure differential.

The flow and torque equations for Model B are given below. Only the flow equations are changed from Model A.

$$Q_{p} = D_{p} N_{p} - \frac{Csp \ \Delta P \ Dpm}{2 \ \pi \ \mu} - \frac{Lcp}{\mu}$$

$$T_{p} = \frac{\Delta P \ Dp}{2 \ \pi} + \frac{Cfp \ \Delta P \ Dpm}{2 \ \pi} + Cdp \ \mu \ Np \ Dpm + Tcp$$

$$Q_{m} = D_{m} \ N_{m} + \frac{Csm \ \Delta P \ Dmm}{2 \ \pi \ \mu} + \frac{Lcm}{\mu}$$

$$T_{m} = \frac{\Delta P \ Dm}{2 \ \pi} - \frac{Cfm \ \Delta P \ Dmm}{2 \ \pi} - Cdm \ \mu \ Nm \ Dmm - Tcm$$

The procedure for rearranging the flow and torque equations to get the speed and torque equations needed to use the model was the same for Model B as that for Model A given in Appendix B. The resulting equations are given below.

$$\begin{split} \mathrm{Nm} &= \frac{\mathrm{Dp} \ \mathrm{Np}}{\mathrm{Dm}} - \frac{\mathrm{K} \ (\mathrm{Tp} \ - \mathrm{Cdp} \ \mathrm{\mu} \ \mathrm{Np} \ \mathrm{Dpm} \ - \mathrm{Top})}{\mathrm{\mu} \ (\mathrm{Dp} \ + \mathrm{Cfp} \ \mathrm{Dpm}) \ \mathrm{Dm}} - \frac{\mathrm{K}^{\bullet}}{\mathrm{\mu} \ \mathrm{Dm}} \end{split}$$
$$\mathrm{Np} &= \frac{\mathrm{Dm} \ \mathrm{Nm}}{\mathrm{Dp}} + \frac{\mathrm{K} \ (\mathrm{Tm} \ + \mathrm{Cdm} \ \mathrm{\mu} \ \mathrm{Nm} \ \mathrm{Dnm} \ + \mathrm{Tom})}{\mathrm{\mu} \ (\mathrm{Dm} \ - \mathrm{Cfm} \ \mathrm{Dnm}) \ \mathrm{Dp}} + \frac{\mathrm{K}^{\bullet}}{\mathrm{\mu} \ \mathrm{Dp}} \end{split}$$
$$\mathrm{Tm} &= (\mathrm{Tp} \ - \ \mathrm{Top}) \left[\frac{(\mathrm{Dm} \ - \ \mathrm{Cfm} \ \mathrm{Dmm})}{(\mathrm{Dp} \ + \ \mathrm{Cfp} \ \mathrm{Dpm})} + \frac{\mathrm{K} \ \mathrm{Cdm} \ \mathrm{Dnm}}{(\mathrm{Dp} \ + \ \mathrm{Cfp} \ \mathrm{Dpm}) \ \mathrm{Dm}} \right] \\ &- \ \mathrm{Np} \left[\frac{\mathrm{Cdp} \ \mu \ \mathrm{Dpm} \ (\mathrm{Dm} \ - \ \mathrm{Cfm} \ \mathrm{Dmm})}{(\mathrm{Dp} \ + \ \mathrm{Cfp} \ \mathrm{Dpm})} + \frac{\mathrm{Cdm} \ \mu \ \mathrm{Dnm}}{\mathrm{Dm}} \left(\mathrm{Dp} \ + \ \frac{\mathrm{K} \ \mathrm{Cdp} \ \mathrm{Dpm}}{(\mathrm{Dp} \ + \ \mathrm{Cfp} \ \mathrm{Dpm})} \right) \right] \\ &+ \frac{\mathrm{K}^{\bullet} \ \mathrm{Cdm} \ \mathrm{Dnm}}{\mathrm{Dm}} - \mathrm{Tom} \end{split}$$

$$T_{p} = (T_{m} + T_{cm}) \left[\frac{(D_{p} + Cf_{p} D_{pm})}{(D_{m} - Cf_{m} D_{mm})} + \frac{Cd_{p} D_{pm} K}{(D_{m} - Cf_{m} D_{mm}) D_{p}} \right] + N_{m} \left[\frac{Cd_{m} u D_{mm} (D_{p} + Cf_{p} D_{pm})}{(D_{m} - Cf_{m} D_{nm})} + \frac{Cd_{p} u D_{pm}}{D_{p}} \left(D_{m} + \frac{K Cd_{m} D_{mm}}{(D_{m} - Cf_{m} D_{nm})} \right) \right] + \frac{K' Cd_{p} D_{pm}}{D_{p}} + T_{cp}$$

where K' = Lcp + Lcm

Least-squares regression analysis was conducted on the leakage vs. pressure differential data presented in Figure 5.5. The slope was determined to be 0.084124, the intercept was 201.30, and the correlation coefficient was 0.1563. The composite slip factor, K, was determined from the slope as follows.

$$K = 2 \pi \mu m = 2 \pi (8.15 \times 10^{-8}) (0.084124) = 4.3078 \times 10^{-8}$$

The constant leakage coefficient, K', was determined from the intercept as follows.

$$K^{\bullet} = \mu b = (8.15 \times 10^{-8}) (201.30) = 1.6406 \times 10^{-5}$$

The second modification to be included in Model B was a modification in the method of determination of the coefficients and was not a change in the model equations. According to the model, the slope of all the pump torque at constant pressure differential vs. pump speed lines should have been the same. Likewise, all the motor torque at constant pressure differential vs. motor speed lines should have had the same slope. The slopes of all the lines are listed in Table 5.2 as m and are seen to be somewhat variable.

For Model B each line was rotated about its mean speed value so that

all the pump lines had slope equivalent to the average slope of the pump lines and each motor line had slope equivalent to the average of the motor lines. The mean speed of each line, the average slope, and the resulting zero-speed torque value are listed in Table 5.4.

The coefficients of viscous drag were determined from the average slope for Model A and are therefore the same for Model B: Cdp = 141194 and Cdm = 127901.

Least-squares regression analysis was used to determine the slope, intercept, and correlation coefficients of the revised zero-speed torque vs. pressure differential data. This information is summarized in Table 5.5.

The coefficients of dry friction for Model B were determined from the slope as follows.

$$Cfp = \frac{2 \pi m}{Dpm} - 1 = \frac{2 \pi (0.688400)}{4.26} - 1 = 0.015339$$

$$Cfm = 1 - \frac{2 \pi (-m)}{Dmm} = 1 - \frac{2 \pi (1.148043)}{7.24} = 0.003679$$

The constant friction torques for Model B were determined from the intercepts in Table 5.5 as follows.

Tcp = b = 70.29

Tcm = -b = 99.40

Comparison of Model A and Model B at Full Displacement

Model B was evaluated on the same basis as Model A was in an earlier section. Model B was used to calculate pump speed and pump torque from the inputs of motor speed and motor torque of actual data. The values of

TA	BI	Ξ	5.	4
_			_	

		Pumn			Motor	
ΔΡ	Np	m	ъ	Nm	m	ъ
1430	1530	0.049021	1051.9	856	-0.075469	1542.4
1230	1571	0.049021	918.4	882	-0.075469	1314.3
1030	1604	0.049021	781.7	904	-0.075469	1082.4
830	1550	0.049021	642.6	876	-0.075469	851.4
630	1581	0.049021	503.5	898	-0.075469	623.2
430	1616	0.049021	364.9	920	-0.075469	396.0

STRAIGHT LINE COEFFICIENTS FOR TORQUE AT CONSTANT PRESSURE VS. SPEED FOR MODEL B

TABLE 5.5

LINEAR REGRESSION COEFFICIENTS FOR ZERO SPEED TORQUE VS. PRESSURE FOR MODEL B

	Punp		**=**=***	Motor	
m	b	r	m	ъ	r
0.688400	70.29	0.99994	1.148043	-99.40	0.99999

pump speed, torque, and power were then compared on a ratio basis and difference basis involving the calculated and measured values. This information is listed in Appendix H.

Table 5.6 provides a comparison of Model A and Model B at full displacement. Model B on the average predicts speed closer to the actual value and also with less variability. The average ratio of calculated to measured value for Model B was 1.0042 compared to 1.0094 for Model A. The standard deviation on the ratio basis was significantly less for Model B at 0.0124 compared to 0.0199 for Model A. Speed comparison on the difference basis also indicates substantial improvement with Model B.

The average pump torque prediction was changed very little between Model A and Model B. However a slight reduction in the standard deviation on both the ratio basis and difference basis showed Model B to have less variation from the measured values.

Model B gave improved predictions for pump power mostly as a result of the model's improved speed prediction capability.

It was concluded that Model B provided the better model at full displacement and should be evaluated at partial displacements.

Evaluation of Model B at Partial Displacement

Sets of data were taken at partial displacements to determine the transmission performance and provide a basis for further evaluation of Model B. Appendix I contains raw data taken with both the pump and motor set at approximately three-fourths displacement. Appendix J gives the averaged data at approximately three-fourths displacement. Appendix K contains raw data taken with both the pump and motor set at approximately one-half displacement and is followed by Appendix L with the averaged data.

		Model A full disp	Model B full disp
Np/Np calc/meas	x	1.0094	1.0042
	S	0.0199	0.0124
Tp/Tp	x	0.9986	1.0016
Carty meas	s	0.0098	0.0081
HPp/HPp	x	1.0081	1.0058
carc/ meas	s	0.0253	0.0133
∆Np	x	+ 9.0	+ 1.7
Carc - meas	s	26.2	16.7
ΔTp	x	+ 0.6	+ 0.7
care - meas	s	7.6	5.4
∆HPp	x	+0.20	+0.03
carc - meas	s	0.50	0.24

COMPARISON OF MEASURED AND CALCULATED VALUES AT FULL DISPLACEMENT FOR MODEL A AND MODEL B

TABLE 5.6
Values calculated by Model B were compared to the actual measured data. This information is listed in Appendices M and N and is summarized in Table 5.7. Comparison of any parameter on either the ratio basis or difference basis showed that the model became progressively less accurate as displacement was decreased. This was especially apparent in the torque comparison. This indicated that the torque losses were probably not constant relative to changing displacement and therefore needed to be accounted for as functions of displacement.

Development of Model C

The evaluation of Model B at partial displacement suggested that the torque losses are probably not constant relative to displacement. The model used by Elder and Otis [4] that was discussed in Chapter I used the term $1 - \tan \alpha$, where α is the swashplate angle, in the denominators of the viscous drag and dry friction torque terms. These losses then become a function of displacement rather than being constant relative to displacement as in Model B.

The only modification beyond Model B to obtain Model C was the inclusion of the $l = \tan \alpha$ term in the denominator of the viscous drag and dry friction torque terms. The model evaluated as Model C is given below.

$$Q_p = D_p N_p - \frac{C_{SD} \Delta P D_{pm}}{2 \pi \mu} - \frac{L_{CD}}{\mu}$$

 $Tp = \frac{\Delta P Dp}{2 \pi} + \frac{Cfp \Delta P Dpm}{2 \pi (1 - \tan \alpha p)} + \frac{Cdp u Np Dpm}{(1 - \tan \alpha p)} + Tcp$

 $Qm = Dm Nm + \frac{C sm \Delta P Dmm}{2 \pi \mu} + \frac{L cm}{\mu}$

TA	B	LE	5.	7
_	_			

		Model B full disp	Model B 3/4 disp	Model B 1/2 disp
Np/Np	x	1.0042	1.0204	1.0325
calc/meas	s	0.0124	0.0133	0.0163
Tp/Tp	x	1.0016	1.0310	1.0753
calc/meas	s	0.0081	0.0183	0.0338
HPp/HPp	x	1.0058	1.0520	1.1102
calc/meas	s	0.0133	0.0233	0.0376
∆Np	x	+ 1.7	+29.2	+50.0
carc - meas	s	16.7	16.3	16.1
ΔTp	x	+ 0.7	+20.8	+37.3
care - meas	s	5.4	6.6	6.1
AHPp	x	+0.03	+0.89	+1.47
Care - meas	s	0.24	0.17	0.21

COMPARISON OF MEASURED AND CALCULATED VALUES AT FULL AND PARTIAL DISPLACEMENT FOR MODEL B

$$Tm = \frac{\Delta P Dp}{2 \pi} - \frac{Cfm \Delta P Dmm}{2 \pi (1 - tan \alpha m)} - \frac{Cdm \mu Nm Dmm}{(1 - tan \alpha m)} - Tcm$$

The procedure for rearranging the flow and torque equations to get the speed and torque equations needed to use the model was the same for Model C as that used for Model A given in Appendix B. The resulting equations are given below.

$$Nm = \frac{D_{\rm p} N_{\rm p}}{Dm} - \frac{\kappa \left(T_{\rm p} - \frac{Cdp \ u \ Np \ Dpm}{(1 - \tan \alpha p)} - T_{\rm cp} \right)}{\mu \left(D_{\rm p} + \frac{Cfp \ Dpm}{(1 - \tan \alpha p)} \right) \ Dm} - \frac{\kappa}{\mu \ Dm}$$

$$N_{p} = \frac{D_{m} N_{m}}{D_{p}} - \frac{K \left(T_{1n} + \frac{Cdm \mu N_{m} Dnm + T_{cm}}{(1 - \tan \alpha m)} + T_{cm} \right)}{\mu \left(D_{m} - \frac{Cfm Dmm}{(1 - \tan \alpha m)} \right) D_{p}} + \frac{K^{*}}{\mu \cdot D_{p}}$$

$$T_{m} = (T_{p} - T_{cp}) \left[\frac{\left(D_{m} - \frac{Cf_{m}}{(1 - \tan \alpha m)} \right)}{\left(D_{p} + \frac{Cf_{p}}{(1 - \tan \alpha m)} \right)} + \frac{\frac{K \ Cdm \ Dnm}{(1 - \tan \alpha m)}}{\left(D_{p} + \frac{Cf_{p}}{(1 - \tan \alpha p)} \right)} \right] - N_{p} \left[\frac{Cd_{p} \ \mu \ Dpm}{(1 - \tan \alpha p)} \left(D_{m} - \frac{Cf_{m} \ Dmm}{(1 - \tan \alpha p)} \right)}{\left(1 - \tan \alpha p \right)} \right] + \frac{Cd_{m} \ \mu \ Dmm}{(1 - \tan \alpha p)} \right] + \frac{Cd_{m} \ \mu \ Dmm}{(1 - \tan \alpha p)} \left(D_{p} + \frac{Cf_{p} \ Dpm}{(1 - \tan \alpha p)} \right) + \frac{Cd_{m} \ \mu \ Dmm}{(1 - \tan \alpha p)} \right) + \frac{K \ Cdm \ Dmm}{(1 - \tan \alpha p)} \left(D_{p} + \frac{K \ Cdm \ Dpm}{(1 - \tan \alpha p)} \right) \right] + \frac{K' \ Cdm \ Dmm}{Dm} \left(D_{m} - \tan \alpha m \right) \left(D_{p} + \frac{K \ Cdm \ Dpm}{(1 - \tan \alpha p)} \right) \right) = \frac{K' \ Cdm \ Dmm}{(1 - \tan \alpha p)} - T_{cm}$$

$$Tp = (Tm + Tcm) \left[\frac{\left(Dp + \frac{Cfp Dpm}{(1 - \tan \alpha p)} \right)}{\left(Dm - \frac{Cfm Dnm}{(1 - \tan \alpha m)} \right)} + \frac{\frac{K Cdp Dpm}{(1 - \tan \alpha p)}}{\left(Dm - \frac{Cfm Dnm}{(1 - \tan \alpha m)} \right)} \right] + Nm \left[\frac{Cdm \mu Dmm \left(Dp + \frac{Cfp Dpm}{(1 - \tan \alpha p)} \right)}{\left(1 - \tan \alpha m \right) \left(Dm - \frac{Cfm Dmm}{(1 - \tan \alpha m)} \right)} \right] + \frac{Cdp \mu Dpm}{Dp (1 - \tan \alpha m)} \left(Dm - \frac{Cfm Dmm}{(1 - \tan \alpha m)} \right) \right] + \frac{Cdp \mu Dpm}{Dp (1 - \tan \alpha p)} \left(Dm + \frac{\frac{K Cdm Dnm}{(1 - \tan \alpha m)}}{\left(Dm - \frac{Cfm Dmm}{(1 - \tan \alpha m)} \right)} \right) \right] + \frac{K^* Cdp Dpm}{Dp (1 - \tan \alpha p)} + Tcp$$

The terms K and K' determined for Model B remain the same for Model C and are relisted below.

 $K = 4.3078 \times 10^{-8}$

 $K' = 1.6406 \times 10^{-5}$

The coefficients of viscous drag and coefficients of dry friction can be determined from those found for Model B by multiplying by the term $1 - \tan \alpha$ and using the swashplate angle at full displacement which was 18° for both the pump and the motor used in this research. The coefficients for Model C are determined below.

$$Cdp = (141194) (1 - \tan 18^{\circ}) = 95317$$

$$Cdm = (127901) (1 - \tan 18^{\circ}) = 86343$$

$$Cfp = (0.015339) (1 - \tan 18^{\circ}) = 0.010355$$

$$Cfm = (0.003679) (1 - \tan 18^{\circ}) = 0.002484$$

The constant torque terms for Model C are the same as those determined for Model B and are relisted below.

Tcp = 70.29

 $T_{cm} = 99.40$

Comparison of Model B and Model C at Partial Displacement

Model C and Model B are equivalent at full displacement so the evaluation of Model B at full displacement applies to Model C. Appendices O and P list the comparison of values calculated by Model C and actual measured data at partial displacement. This information is summarized in Table 5.8.

Comparison of the Model C data summary in Table 5.8 and the Model B data summary in Table 5.7 showed that Model C gave calculated values of torque significantly closer to the measured values. At one half displacement Model C predicted torque on the average to be 1.0202 of the measured value compared to 1.0753 for Model B. This reduction was also accompanied by a reduction in standard deviation to 0.0191 from 0.0338. Speed calculations were relatively unchanged between Model B and Model C. The power calculations reflected the improved torque predictions.

Comparison of Model C and Sundstrand Data

Sundstrand publishes full displacement performance information in their <u>Engineering Applications Manual</u> [6]. The data are given for 3000 psi and 5000 psi pressure differential across the pumps and motors. Sundstrand uses Mobil 300 oil at 180° F during their tests. The oil viscosity at that temperature is 65 SSU and the density is 7.30 lb/gal. Absolute viscosity was determined to be 2.47 x 10^{-8} lb.min/in².

TA	BLE	5.	8
			-

		Model C full disp	Model C 3/4 disp	Model C 1/2 disp
Np/Np	x	1.0042	1.0202	1.0318
Carc/ meas	s	0.0124	0.0133	0.0163
Tp/Tp	x	1.0016	1.0095	1.0202
calc/meas	S	0.0081	0.0137	0.0191
HPp/HPp	x	1.0058	1.0299	1.0527
carc/meas	s	0.0133	0.0216	0.0282
ANp calc - meas	x	+ 1.7	+28.8	+48.9
	s	16.7	16.2	16.2
ATp	x	+ 0.7	+ 5.6	+ 8.9
Care - meas	s	5.4	7.4	6.6
∆HPp	x	+0.03	+0.48	+0.66
carc - meas	s	0.24	0.29	0.23

COMPARISON OF MEASURED AND CALCULATED VALUES AT FULL AND PARTIAL DISPLACEMENT FOR MODEL C

Model C calculations and Sundstrand data for the pump power are compared in Figure 5.6. This information is listed in Appendix Q. On the average, Model C predicts the pump power to be 0.9803 of the Sundstrand pump power data at 3000 psi and 0.9915 of the Sundstrand pump power data at 5000 psi. On the difference basis, Model C predicts pump power to be 1.27 hp lower on the average than the Sundstrand data at 3000 psi and 1.00 hp lower than the Sundstrand data at 5000 psi.

Model C calculations and Sundstrand data for motor torque are compared in Figure 5.7. This information is listed in Appendix R. On the average, Model C predicts the motor torque to be 1.0247 of the Sundstrand motor torque data at 3000 psi and 1.0244 of the Sundstrand motor torque data at 5000 psi. On the difference basis, Model C predicts motor torque to be 79 in.lb higher on the average than the Sundstrand data at 3000 psi and 113 in.lb higher than the Sundstrand data at 5000 psi.

Model C calculations and Sundstrand data for volumetric and overall efficiency are compared at 3000 psi in Figure 5.8 and 5000 psi in Figure 5.9. This information along with torque efficiency is listed in Appendices S, T, and U. Model C does not provide a very accurate prediction of volumetric efficiency which is also reflected in the overall efficiency.

The Sundstrand tests were conducted with much less viscous oil than the tests in this research. It appeared that the model did not accurately account for the differences in viscosity which were substantially reflected in the difference between Sundstrand volumetric efficiencies and Model C volumetric efficiencies.

Figure 5.6. Pump Power at Constant Pressure Differential vs. Speed - Sundstrand and Model C

Figure 5.7. Motor Torque at Constant Pressure Differential vs. Speed - Sundstrand and Model C

Figure 5.9. Transmission Efficiency at 5000 psi Pressure Differential vs. Speed - Sundstrand and Model C

Comparison of Model C Without Viscosity Allowance and Sundstrand Data

In an effort to verify the inadequacy of Model C relative to viscosity allowance, a comparison of Model C and Sundstrand data was made using the viscosity of the oil used in this research rather than that used in Sundstrand's tests. This is termed Model C Without Viscosity Allowance and is indicated as Model C*.

Model C* calculations and Sundstrand data for the pump power are compared in Figure 5.10. This information is listed in Appendix V. Model C and Model C* provide about the same accuracy in pump power prediction with Model C* predicting power about as much high as Model C predicted low.

Model C* calculations and Sundstrand data for motor torque are compared in Figure 5.11. This information is listed in Appendix W. Comparison of Figures 5.11 and 5.7 showed Model C* to provide somewhat better motor torque prediction than Model C.

Model C* calculations and Sundstrand data for volumetric and overall efficiency are compared at 3000 psi in Figure 5.12 and at 5000 psi in Figure 5.13. This information along with torque efficiency is listed in Appendices S. X. and Y. Comparison of Figures 5.12 and 5.13 and Figures 5.8 and 5.9 show Model C* to provide much better efficiency prediction than Model C.

Table 5.9 summarizes the comparison of Model C and Model C*. Comparison of pump power, motor torque, volumetric efficiency, torque efficiency, and overall efficiency shows Model C* to be better than Model C in every case. The main improvement is in prediction of volumetric efficiency which is then reflected in overall efficiency.

Figure 5.10. Pump Power at Constant Pressure Differential vs. Speed - Sundstrand and Model C*

Figure 5.11. Motor Torque at Constant Pressure Differential vs. Speed - Sundstrand and Model C*

Figure 5.12. Transmission Efficiency at 3000 psi Pressure Differential vs. Speed - Sundstrand and Model C*

Figure 5.13. Transmission Efficiency at 5000 psi Pressure Differential vs. Speed - Sundstrand and Model C*

TABLE	5.	9

		Model C 300	Model C* 0 psi	Model C 5000	Model C* psi
HPp/HPp	x	0.9803	1.0054	0.9915	1.0070
calc/Sund	s	0.0080	0.0076	0.0068	0.0044
Tm/Tm	x	1.0247	1.0043	1.0244	1.0120
calc/Sund	s	0.0118	0.0154	0.0070	0.0113
nv/nv	x	0.7783	0.9983	0.7180	1.0553
calc/Sund	s	0.1847	0.0341	0.2795	0.0339
nt/nt	x	1.0204	0.9800	1.0253	1.0004
calc/Sund	s	0.0091	0.0221	0.0098	0.0187
ŋ/ŋ	x	0.7932	0.9777	0.7337	1.0550
calc/Sund	s	0.1866	0.0120	0.2838	0.0162
∆H₽p	x	-1.27	+0.50	-1.00	+0.71
calc - Sund	s	0.77	0.67	0.74	0.69
$\Delta \mathbf{Tm}$	x	+79	+14	+113	+68
calc - Sund	s	37	49	37	59
∆ŋv	x	-0.1990	-0.0009	-0.2237	+0.0475
calc - Sund	s	0.1573	0.0301	0.2017	0.0289
Ant	x	+0.0180	-0.0177	+0.0230	+0.0003
calc - Sund	s	0.0078	0.0195	0.0087	0.0169
Δη	x	-0.1648	-0.0179	-0.1914	+0.0426
calc - Sund	s	0.1411	0.0090	0.1861	0.0135

COMPARISON OF SUNSTRAND DATA AND CALCULATED VALUES AT FULL DISPLACEMENT FOR MODEL C AND MODEL C WITHOUT VISCOSITY ALLOWANCE

* Model C Without Viscosity Allowance

Summary of Model C Performance

Model C was determined to provide the best hydrostatic transmission performance model of the three considered. The evaluation summary given in Table 5.8 gives an indication of its performance.

At full displacement, pump speeds were predicted on the average to be 1.0042 of the measured values with a standard deviation of 0.0124. This corresponded to speed being predicted 1.7 rpm high on the average with a standard deviation of 16.7 rpm. Pump torque values were predicted on the average to be 1.0016 of the measured values with a standard deviation of 0.0081. This corresponded to torque being predicted 0.7 in.1b high on the average with a standard deviation of 5.4 in.1b.

The pump power predictions at full displacement were on the average 1.0058 of the measured values with a standard deviation of 0.0133. This corresponded to power being predicted 0.03 hp high on the average with a standard deviation of 0.24 hp.

With the pump and motor each at approximately one-half displacement, pump speeds were predicted on the average to be 1.0318 of the measured values with a standard deviation of 0.0163. This corresponded to speed being predicted 48.9 rpm high on the average with a standard deviation of 16.2 rpm. Pump torque values were predicted on the average to be 1.0202 of the measured values with a standard deviation of 0.0191. This corresponded to torque being predicted 8.9 in.1b high on the average with a standard deviation of 6.6 in.1b.

The pump power predictions at one-half displacement were on the average 1.0527 of the measured values with a standard deviation of 0.0282. This corresponded to power being predicted 0.66 hp high on the average with a standard deviation of 0.23 hp. The model performance at three-fourths displacement was between the full displacement and one-half displacement performances.

Model C was determined and verified with Amoco 1000 oil at 125° F. It must be restricted to use with oil of the same viscosity until it is confirmed or modified for use with other oil viscosities.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- Model C, a modified form of the basic Wilson's Model, was determined to provide a good steady state performance model for the hydrostatic transmission at full and partial displacements with constant oil temperature.
- A microcomputer based system was successfully used for data acquisition and control of transmission oil temperatures in this research.
- Internal leakage can be represented as a constant component and a component that is a constant times pressure differential to obtain improved model accuracy.
- 4. Viscous drag and dry friction torque terms must be represented as functions of displacement to obtain an accurate partial displacement model.
- Further research is needed to evaluate Model C at various oil viscosities. Preliminary comparison with Sundstrand's data showed the model did not accurately account for changing oil viscosity.

Recommendations

Model C as determined in this research will provide a good performance model at constant oil temperature to be used for further computer simulation and laboratory studies relating to automatic control of hydrostatic transmissions.

More research will be necessary to account for the effect of oil

viscosity on transmission performance and how to represent it in the model if the model is to be used with different oil temperatures. The present models do not appear to accurately account for viscosity changes, especially as they affect speed calculations.

Further microcomputer programming could ease the task of data acquisition by providing the data in base ten and converted to the appropriate units. The 24-unit display will limit flexibility in this area but one possibility would be to have a user controlled toggle switch to select the set of parameters to be displayed. For example, have pump parameters of speed, torque, and displacement displayed in one switch position and the same motor parameters displayed with the switch in its alternate position.

LIST OF REFERENCES

- Ibrahim, B. B., "Closed Loop Control of Hydrostatic Drive Farm Tractors," <u>Ph.D Dissertation</u>, Department of Mechanical Engineering, Kansas State University, 1975.
- Wilson, W. E. and Lemme, C. D., "Hydrostatic Transmissions," Parts 1 through 7, <u>Hydraulics and Pneumatics</u>, Vol. 23, 1970.
- Reid, K. N. and Woods, R. L., "Fluidic Control of a Hydrostatic Transmission in a Vehicle Propulsion System," <u>ASME paper number</u> <u>72-WA/Flos-5</u>.
- Elder, F. T. and Otis, D. R., "Simulation of a Hydraulic Hybrid Vehicle Power Train," <u>ASME paper number 73-ICT-50</u>.
- Blackburn, J. F., Reethoff, G., and Shearer, J. L., <u>Fluid Power</u> <u>Control</u>, (New York, 1960).
- Engineering Application Manual, Sundstrand Hydro-Transmission, Bulletin 9565, Rev. D, June 1972.
- <u>KIM-1 Microcomputer Module User Manual</u>, Second Edition, MOS Technology, August 1976.
- MCS6500 Microcomputer Family Hardware Manual, Second Edition, MOS Technology, January 1976.
- MCS6500 Microcomputer Family Programming Nanual, Second Edition, MCS Technology, January 1976.
- "MCS6522 Versatile Interface Adapter," Freliminary Data Sheet, MCS Technology, November 1977.
- 11. Amoco 1000 Fluid Specification Sheet, Amoco Oil Company.
- Petroleum Measurement Tables, American Society for Testing Materials, (Philadelphia, 1952).

APPENDIX A NOMENCLATURE

NOMENCLATURE

Symbol	Definition
A/D	Analog-to-digital
Ъ	Intercept from equation of a straight line
calc	Calculated from a model
Cdm	Coefficient of viscous drag of HST motor
Cdp	Coefficient of viscous drag of HST pump
Cfm	Coefficient of dry friction of HST motor
Cfp	Coefficient of dry friction of HST pump
Csm	Coefficient of slip of HST motor (also Csml, Csm2, and Csm3 used by Elder and Otis)
Csp	Coefficient of slip of HST pump (also Cspl, Csp2, and Csp3 used by Elder and Otis)
Dm	HST motor displacement (in ³ /rev)
Dmm	Maximum HST motor displacement (in ³ /rev)
Dp	HST pump displacement (in ³ /rev)
Dpm	Maximum HST pump displacement (in ³ /rev)
HPcp	HST charge pump shaft power (hp)
HPm	HST motor shaft power (hp)
НРтр	HST main pump shaft power (hp)
HPp	HST pump (charge + main) shaft power (hp)
HST	Hydrostatic transmission
K	Composite slip factor
K.	Composite constant leakage coefficient
L	Internal HST leakage (in ³ /min)
Lcm	Coefficient of constant leakage of HST motor

Lcp	Coefficient of constant leakage of HST pump
m	Slope from equation of a straight line
meas	Measured
n	Number of data used in statistical analysis
no-load	Engine no-load condition
Nm	HST motor shaft speed (rpm)
$\overline{N}m$	Average HST motor shaft speed for a set of data (rpm)
Np	HST rump shaft speed (rpm)
Np	Average HST pump shaft speed for a set of data (rpm)
Pc	HST charge pump pressure (psi)
Pd	HST drain pressure (psi)
Ps	HST system pressure (psi)
Qm	Fluid flow rate into HST motor (in ³ /min)
Qp	Fluid flow rate from HST pump (in ³ /min)
r ²	Correlation coefficient from linear regression analysis
S	Standard deviation
SSU	Seconds Saybolt Universal
Sund	Sundstrand
t	Viscometer efflux time (sec)
tavg	Average of HST inlet and outlet oil temperatures (°C)
tin	HST inlet oil temperature (°C)
tcut	HST outlet oil temperature (°C)
x	Arithmetic average or mean
Tem	HST motor constant friction torque (in.1b)
Tep	HST pump constant friction torque (in.1b)
Tm	HST motor shaft torque (in.1b)

- Tp HST pump shaft torque (in.1b)
- α Swashplate angle
- am HST motor swashplate angle (°)
- αp HST pump swashplate angle (°)
- β Bulk modulus (psi)
- ΔP Pressure differential between system pressure and charge pressure (psi)
- η Overall HST efficiency
- nm Overall HST motor efficiency
- np Overall HST pump efficiency
- nt Composite HST torque efficiency
- ntm Torque efficiency of HST motor
- ntp Torque efficiency of HST pump
- nv Composite HST volumetric efficiency
- nvm Volumetric efficiency of HST motor
- nvp Volumetric efficiency of HST pump
- μ Absolute viscosity of HST oil (lb.min/in²)
- v Kinematic viscosity

APPENDIX B

REARRANGEMENT OF MODEL A EQUATIONS

One form of the basic equations used for Wilson's Model is given below. The equations are solved for flow and torque and contain the pressure differential term on the right hand side. To be useful as a hydrostatic transmission performance model, the equations must be solved for pump torque and pump speed as functions of motor torque and motor speed and vice versa. The rearrangement of the equations follows.

$$Q_p = D_p N_p - \frac{C_{SD} \Delta P D_{Dm}}{2 \pi \mu}$$
(1)

$$Tp = \frac{\Delta P Dp}{2 \pi} + \frac{Cfp \Delta P Dpm}{2 \pi} + Cdp \mu Np Dpm + Tcp$$
(2)

$$Q_m = D_m N_m + \frac{C_{Sm} \Delta P D_{mm}}{2 \pi \mu}$$
(3)

$$Tm = \frac{\Delta P \ Dm}{2 \ \pi} - \frac{Gfm \ \Delta P \ Dmm}{2 \ \pi} - Cdm \ \mu \ Nm \ Dmm - Tcm$$
(4)

Since Qm = Qp, then from (1) and (3),

$$Dp Np - \frac{Csp \Delta P Dpm}{2 \pi \mu} = Dm Nm + \frac{Csm \Delta P Dmm}{2 \pi \mu}$$
(5)

Solving (5) for Nm and Np,

$$N_{m} = \frac{1}{D_{m}} \left[D_{p} N_{p} - \frac{C_{sp} \Delta P D_{pm}}{2 \pi \mu} - \frac{C_{sm} \Delta P D_{mm}}{2 \pi \mu} \right]$$
(6)

$$N_{\rm p} = \frac{1}{D_{\rm p}} \left[D_{\rm m} \ N_{\rm m} + \frac{C_{\rm Sp} \ \Delta P}{2 \ \pi \ \mu} + \frac{C_{\rm Sm} \ \Delta P}{2 \ \pi \ \mu} \right]$$
(7)

Define K,

K = Csp Dpm + Csm Dmm (8a)

$$K = \frac{2 \operatorname{rr} \mu \left(Dp \operatorname{Np} - Dm \operatorname{Nm} \right)}{\Delta P}$$
(8b)

Substitute (8a) into (6) and (7),

$$N_{m} = \frac{D_{D} N_{D}}{D_{m}} - \frac{K \Delta P}{2 \pi \mu D_{m}}$$
(9)

$$Np = \frac{Dm}{Dp} + \frac{K}{2 \pi \mu} \frac{\Delta P}{Dp}$$
(10)

Solving (2) and (4) for ΔP ,

$$\Delta P = \frac{2 \pi (Tp - Cdp u Np Dpm - Tcp)}{Dp + Cfp Dpm}$$
(11)

$$\Delta P = \frac{2 \pi (Tm + Cdm \mu Nm Dmm + Tcm)}{Dm - Cfm Dmm}$$
(12)

Substituting (11) into (9),

$$Nm = \frac{Dp Np}{Dm} - \frac{K (Tp - Cdp \mu Np Dpm - Tcp)}{\mu (Dp + Cfp Dpm) Dm}$$
(13)

Substituting (12) into (10),

$$Np = \frac{Dm Nm}{Dp} + \frac{K (Tm + Cdm \mu Nm Dmm + Tcm)}{\mu (Dm - Cfm Dmm) Dp}$$
(14)

Substituting (11) and (13) into (4),

$$T_{m} = \frac{(Dm - Cfm Dnm) (Tp - Cdp \mu Np Dpm - Tcp)}{(Dp + Cfp Dpm)} - Cdm \mu Dnm \left[\frac{Dp Np}{Dm} - \frac{K (Tp - Cdp \mu Np Dpm - Tcp)}{\mu (Dp + Cfp Dpm) Dm} \right] - Tcm (15)$$

Rearranging (15),

$$Tm = (Tp - Tcp) \left[\frac{(Dm - Cfm Dmm)}{(Dp + Cfp Dpm)} + \frac{K Cdm Dmm}{Dm (Dp + Cfp Dpm)} \right] - Np \left[\frac{Cdp \mu Dpm (Dm - Cfm Dmm)}{(Dp + Cfp Dpm)} + \frac{Cdm \mu Dmm}{Dm} \left(Dp + \frac{K Cdp Dpm}{(Dp + Cfp Dpm)} \right) \right] - Tcm$$
(16)

Substituting (12) and (14) into (2),

$$Tp = \frac{(Dp + Cfp Dpm) (Tm + Cdm \mu Nm Dmm + Tcm)}{(Dm - Cfm Dmm)} + Cpd \mu Dpm \left[\frac{Dm Nm}{Dp} + \frac{K (Tm + Cdm \mu Nm Dmm + Tcm)}{\mu (Dm - Cfm Dmm) Dp} \right] + Tcp (17)$$

Rearranging (17),

$$Tp = (Tm + Tcm) \left[\frac{(Dp + Cfp Dpm)}{(Dm - Cfm Dmm)} + \frac{K Cdp Dpm}{Dp (Dm - Cfm Dmm)} \right] + Nm \left[\frac{Cdm \mu Dmm (Dp + Cfp Dpm)}{(Dm - Cfm Dmm)} + \frac{Cdp \mu Dpm}{Dp} \left(Dm + \frac{K Cdm Dmm}{(Dm - Cfm Dmm)} \right) \right] + Tcp$$
(18)

APPENDIX C

MICROCOMPUTER NON-PROGRAM AND PROGRAM MEMORY

NON-PROGRAM MEMORY

MEMORY LOCATION

COMMENTS

0000 0001 0002 0003 0004 0005 0006 0007 0008 0007 0008 0009 000A 0000 0000 000C 000D 000E 000F	7-SEGMENT DISPLAY CODE FOR 0 7-SEGMENT DISPLAY CODE FOR 1 7-SEGMENT DISPLAY CODE FOR 2 7-SEGMENT DISPLAY CODE FOR 3 7-SEGMENT DISPLAY CODE FOR 4 7-SEGMENT DISPLAY CODE FOR 6 7-SEGMENT DISPLAY CODE FOR 6 7-SEGMENT DISPLAY CODE FOR 8 7-SEGMENT DISPLAY CODE FOR 8 7-SEGMENT DISPLAY CODE FOR 9 7-SEGMENT DISPLAY CODE FOR 8 7-SEGMENT DISPLAY CODE FOR 8 7-SEGM
0010	B (USER DEFINED REGISTERS)
0011	C (USER DEFINED REGISTERS)
0400	A/D CONVERSION RESULT (READ ONLY)
0480 0 <i>5</i> 00	D/A CONVERTER 1 (WRITE ONLY) D/A CONVERTER 2 (WRITE ONLY)
0580 0581 0582 0583 0584	0580 TO 058F ARE IN MCS6522 OUTPUT REGISTER B (ORB) OUTPUT REGISTER A (ORA) DATA DIRECTION REGISTER B (DDRB) DATA DIRECTION REGISTER A (DDRA) TIMER 1 LATCH (WRITE) OR COUNTER (READ)-LOW (TIL-L OR TIC-L)
0585 0586 0587	TIMER 1 COUNTER-HIGH (TIC-H) TIMER 1 LATCH-LOW (TIL-L)
0588 0589	TIMER 2 LATCH (WRITE) OR COUNTER (READ)-LOW (T2L-L OR T2C-L) TIMER 2 COUNTER-HICH (T2C-H)
058B 058C 058D 058E 058E 058F	SHIT REALSTER (SR) AUXILIARY CONTROL REGISTER (ACR) PERIPHERAL CONTROL REGISTER (PCR) INTERRUPT FLAG REGISTER (IFR) INTERRUPT ENABLE REGISTER (IER) OUTPUT REGISTER A (ORA)

	0600 TO	060B /	AND 0640	TO	064B	ARE	DISPLAY	ADDRESSES
0600	DISPLAY	DIGIT	1.1					
0601	DISPLAY	DIGIT	1.3					
0602	DISPLAY	DIGIT	1.5					
0603	DISPLAY	DIGIT	2.1					
0604	DISPLAY	DIGIT	2.3					
0605	DISPLAY	DIGIT	2.5					
0606	DISPLAY	DIGIT	3.1					
0607	DISPLAY	DIGIT	3.3					
0608	DISPLAY	DIGIT	3.5					
0609	DISPLAY	DIGIT	4.1					
060A	DISPLAY	DIGIT	4.3					
060B	DISPLAY	DIGIT	4.5					
0640	DISPLAY	DIGIT	1.2					
0641	DISPLAY	DIGIT	1.4					
0642	DISPLAY	DIGIT	1.6					
0643	DISPLAY	DIGIT	2.2					
0644	DISPLAY	DIGIT	2.4					
0645	DISPLAY	DIGIT	2.6					
0646	DISPLAY	DIGIT	3.2					
0647	DISPLAY	DIGIT	3.4					
0648	DISPLAY	DIGIT	3.6					
0649	DISPLAY	DIGIT	4.2					
064A	DISPLAY	DIGIT	4.4					
064B	DISPLAY	DIGIT	4.6					

PROGRAM MEMORY

MEMORY LOCATION	N OP CODE	MNEMONIC	COMMENTS
2000	20 10 20	100	***MAIN PHOGRAM***
2000	20 40 20	Jon	JUMP TO INITIALIZATION SUBROUTINE
2005	ELA.	NOP	
2004	E.A.	NOP	
2005	EA CO CO	NOP	
2006	20 80 20	JSR	JUMP TO PUMP SPEED SUBROUTINE
2009	20 C0 20	JSR	JUMP TO PUMP TORQUE SUBROUTINE
2000	20 FO 20	JSR	JUMP TO FUMP DISPLACEMENT SUBROUTINE
2008	20 20 21	JSR	JUMP TO SYSTEM PRESSURE SUBROUTINE
2012	20 50 21	JSR	JUMP TO INLET TEMPERATURE SUBROUTINE
2015	EA	NOP	
2016	EA	NOP	
2017	EA	NOP	
2018	20 80 21	JSR	JUMP TO MOTOR SPEED SUBROUTINE
201B	20 CO 21	JSR	JUMP TO MCTOR TORQUE SUBROUTINE
201E	20 FO 21	JSR	JUMP TO MOTOR DISPLACEMENT SUBROUTINE
2021	20 20 22	JSR	JUMP TO CHARGE PRESSURE SUBROUTINE
2024	20 50 22	JSR	JUMP TO OUTLET TEMPERATURE SUBROUTINE
2027	20 00 24	JSR	JUMP TO TEMPERATURE CONTROL SUBROUTINE
202A	4C 06 20	JMP-ABS	JUMP TO 2006 IN MAIN PROGRAM
20/10			***INITIALIZATION SUBROUTINE***
2040	AN DE	LUA -LMM	
2042	00 02 05	STA-ABS	INITIALIZE DDRB
2045	AY OU	LLA-IMM	
2047	80 88 05	STA ABS	INITIALIZE ACR
2044	Da	CLD	CLEAR DECIMAL MODE
204B	EA	NOP	
2040	EA	NOP	
204D	EA	NOP	
2045	EA	NOP	
2044	EA	NOP	
2050	A9 00	LDA-IMM	
2052	8D FA 17	STA-ABS	INITIALIZE NMI-L
2055	A9 10	LDA -IMM	
2057	8D FB 17	STA-ABS	INITIALIZE NMI-H
205A	EA	NOP	
2058	EA	NOP	
2050	EA	NOP	
205D	EA	NOP	
205E	EA	NOP	
205	EA	NOP	
2060	A9 00	LDA-IMM	
2062	8D 8C 05	STA-ABS	INITIALIZE PCR

2065 2068 206B	20 70 23 20 90 23 60	JSR JSR RTS	JUMP TO BLANK DISPLAY SUBROUTINE JUMP TO 7-SECMENT DISPLAY CODE SUBROUTINE RETURN FROM SUBROUTINE
2080 2082 2085 2086	A2 80 20 80 22 EA EA	LDX-IMM JSR NOP NOP	***PUMP SPEED SUBROUTINE*** SELECT PUMP SPEED INPUT CHANNEL JUMP TO RPM SUBROUTINE
2087 2088 2088 2088 2088 2088	AD 10 00 20 10 23 A2 01 20 30 23	NOP LDA - ABS JSR LDX - IMM JSR	LOAD A WITH B JUMP TO LOW FOUR BITS SUBROUTINE SELECT DISFLAY ADDRESS 0601 JUMP TO DISPLAY SUBROUTINE
2093 2096 2099 2098 209E	AD 10 00 20 20 23 A2 40 20 30 23 AD 11 00	LDA - ABS JSR LDX - IMM JSR LDA - ABS	LOAD A WITH B JUMP TO HIGH FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0640 JUMP TO DISPLAY SUBROUTINE LOAD A WITH C
20A1 20A4 20A6 20A9	20 10 23 A2 00 20 30 23 60	JSR LDX-IMM JSR RTS	JUMP TO LOW FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0600 JUMP TO DISPLAY SUBROUTINE RETURN FROM SUBROUTINE
2000 2002 2005 2006 2007 2008 2009	A2 08 20 E0 22 EA EA EA EA EA	LDX-IMM JSR NOP NOP NOP NOP	***PUMP TORQUE SUBROUTINE*** SELECT PUMP TORQUE INPUT CHANNEL JUMP TO A/D SUBROUTINE
20 CA 20 CD 20 CF 20 D2 20 D2 20 D5 20 D8 20 D8	20 10 23 A2 42 20 30 23 AD 00 04 20 20 23 A2 02 20 30 23	JSR LDX-IMM JSR LDA-ABS JSR LDX-IMM JSR	JUMP TO LOW FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0642 JUMP TO DISPLAY SUBROUTINE LOAD A WITH A/D RESULT JUMP TO HIGH FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0602 JUMP TO DISPLAY SUBROUTINE
2000	60	RTS	RETURN FROM SUBROUTINE
20F0 20F2 20F5 20F6 20F7	A2 0A 20 E0 22 EA EA EA	LDX-IMM JSR NOP NOP NOP	***FUMP DISPLACEMENT SUBROUTINE*** SELECT FUMP DISPLACEMENT INFUT CHANNEL JUMP TO A/D SUBROUTINE
20F8 20F9	EA EA	NOP	

20FA 20FD 20FF 2102 2105 2108 210A 210D	20 10 23 A2 43 20 30 23 AD 00 04 20 20 23 A2 03 20 30 23 60	JSR LDX-IMM JSR LDA-ABS JSR LDX-IMM JSR RTS	JUMP TO LOW FOUR BITS SUBROUTINE SELECT DISFLAY ADDRESS 0643 JUMP TO DISFLAY SUBROUTINE LOAD A WITH A/D RESULT JUMP TO HIGH FOUR BITS SUBROUTINE SELECT DISFLAY ADDRESS 0603 JUMP TO DISFLAY SUBROUTINE RETURN FROM SUBROUTINE
2120 2122 2125 2126 2127 2128 2129	A2 0E 20 E0 22 EA EA EA EA EA	LDX-IMM JSR NOP NOP NOP NOP NOP	***SYSTEM PRESSURE SUBROUTINE*** SELECT SYSTEM PRESSURE INPUT CHANNEL JUMP TO A/D SUBROUTINE
212A 212D 212F 2132 2135 2138 213A 213D	20 10 23 A2 44 20 30 23 AD 00 04 20 20 23 A2 04 20 30 23 60	JSR LDX-IMM JSR LDA-ABS JSR LDX-IMM JSR RTS	JUMP TO LOW FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0644 JUMP TO DISPLAY SUBROUTINE LOAD A WITH A/D RESULT JUMP TO HIGH FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0604 JUMP TO DISPLAY SUBROUTINE RETURN FROM SUBROUTINE
2150 2152 2155 2156 2157 2158 2159 2159 2159 2159 2159 2159 2156 2156	A2 0C 20 E0 22 EA EA EA EA 20 10 23 A2 45 20 30 23 AD 00 04	LDX -IMM JSR NOP NOP NOP JSR LDX -IMM JSR LDA -A BS	***INLET TEMPERATURE SUBROUTINE*** SELECT INLET TEMPERATURE INPUT CHANNEL JUMP TO A/D SUBROUTINE SELECT DISPLAY ADDRESS 0645 JUMP TO DISPLAY SUBROUTINE LOAD A WITH A/D RESULT
2165 2168 216A 216D 2180 2182 2185 2186	A2 05 20 20 23 A2 05 20 30 23 60 A2 20 20 80 22 EA EA	JSR LDX-IMM JSR RTS LDX-IMM JSR NOP NOP	JUMP TO HIGH FOUR BITS SUBROUTINE SELECT DISPLAY ADDRESS 0605 JUMP TO DISPLAY SUBROUTINE RETURN FROM SUBROUTINE ***MOTOR SPEED SUBROUTINE SELECT MOTOR SPEED INPUT CHANNEL JUMP TO RPM SUBROUTINE
2187	EA	NOP	
---------------	-----------	----------------	---
2188	AD 10 00	LDA -A BS	LOAD A WITTH B
2188	20 10 23	JSB	JUND TO LOW FOUR STER SUBDOUTTING
218E	A2 07	T.DY_TMM	STIERT DISDING ADDRESS ACOS
2100	20 20 22	TCD	UND TO DIGTAY CURRENT TO
2102	AD 10 00	TDA ADC	JOHF TO DISPLAT SUBRUUTINE
2104	AD 10 00	LUA -A DO	LOAD A WITH B
2190	20 20 23	JSR	JUMP TO HIGH FOUR BITS SUBROUTINE
2199	AZ 40	LUX-IMM	SELECT DISPLAY ADDRESS 0646
2198	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
2195	AD 11 00	LDA -ABS	LOAD A WITH C
21A1	20 10 23	JSR	JUMP TO LOW FOUR BITS SUBROUTINE
21A4	A2 06	LDX-IMM	SELECT DISPLAY ADDRESS 0606
21A6	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
2 1 A9	60	RTS	RETURN FROM SUBROUTINE
2100	42 00	T.DY TMM	CETEGE MOROD CODOLE TUTTE CLUDER
2102	20 80 22	ICD	SELECT MOTOR TORQUE INPUT CHANNEL
2105	EN EN	JOR	JUMP TO A/D SUBROUTINE
2103	EA.	NOP	
2100	Taka Taka	NOP	
2107	EA.	NOP	
2108	EA	NOP	
2109	HA	NOP	
21CA	20 10 23	JSR	JUMP TO LOW FOUR BITS SUBROUTINE
21CD	A2 48	LDX-IMM	SELECT DISPLAY ADDRESS 0648
21CF	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
21D2	AD 00 04	LDA -ABS	LOAD A WITH A/D RESULT
21D5	20 20 23	JSR	JUMP TO HIGH FOUR BITS SUBROUTINE
21D8	A2 08	LDX-IMM	SELECT DISPLAY ADDRESS 0608
21DA	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
21DD	60	RTS	RETURN FROM SUBROUTINE
21F0	A2 0B	LDX-TMM	SELECT MOTOR DISTINCTION THE THE OUT NEED
21F2	20 E0 22	JSR	TIMP TO A /D SUBDOUTINE
2185	EA	NOP	JOHE TO A/D SUBRUUTINE
2186	EA	MOP	
2127	FA	NOP	
2129	TPA .	NOP	
2120	T2A	NOP	
2159	DA 10.00	NUP	
2100	20 10 23	JSH ISH THE	JUMP TO LOW FOUR BITS SUBROUTINE
2150	A2 49	LOX -IMM	SELECT DISPLAY ADDRESS 0649
2117	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
2202	AD 00 04	LUA -ABS	LOAD A WITH A/D RESULT
2205	20 20 23	JSR	JUMP TO HIGH FOUR BITS SUBROUTINE
2208	A2 09	LDX-IMM	SELECT DISPLAY ADDRESS 0609
220A	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
220D	60	RIS	RETURN FROM SUBROUTINE

			AAAAAAGE FRESSURE SUBRUUTINE
2220	A2 OF	LDX-IMM	SELECT CHARGE PRESSURE INPUT CHANNEL
2222	20 E0 22	JSR	JUMP TO A /D SUBROUTINE
2225	EA	NOP	,
2224	TTA .	NOD	
2220	En .	NOP	
2227	HA	NOP	
2228	EA	NOP	
2229	EA	NOP	
222A	20 10 23	ISB	JUMP TO LOW FOUR BITS SUBBOUTINE
2220	12 /14	T DY _TMM	CETECT ATCHINY ADDEECS ASHA
2000	00 00 00	LUX -I'I'I'	JELGOI DIGTIAI ADDIEGO UCAA
~~~~	20 30 23	JOA	JUMP TO DISPLAT SUBROUTINE
2232	AD 00 04	LUA-ABS	LOAD A WITH A/D RESULT
2235	20 20 23	JSR	JUMP TO HIGH FOUR BITS SUBROUTINE
2238	A2 OA	LDX-IMM	SELECT DISPLAY ADDRESS 060A
223A	20 30 23	JSR	JUMP TO DISPLAY SUBBOUTTINE
2230	60	RUC	PETTIEN FROM SUBPOLITINE
مدر شد	00	1110	ABIOIN FION SOBNOOTING
			***OUTLET TEMPERATURE SUBROUTINE***
2250	A2 OD	LDX-IMM	SELECT OUTLET TEMPERATURE INPUT CHANNEL
2252	20 E0 22	JSR	JUMP TO A/D SUBROUTINE
2255	EA	NOP	
2256	<b>F</b> A	NOP	
2250	TTA	NOD	
2271	DA DI	NOP	
2258	HA	NOP	
2259	EA	NOP	
225A	20 10 23	JSR	JUMP TO LOW FOUR BITS SUBROUTINE
225D	A2 4B	LDX-IMM	SELECT DISPLAY ADDRESS 064B
22 58	20 30 23	JSR	TIMP TO DISPLAY SUBBOUTTINE
2262		T DA _A BS	TOAD & WITH A /D DESIT
2015	AD 00 04		NUED TO HIGH BOUD DIES CHERONETIE
2205	20 20 23	JSR	JUMP TO HIGH FOUR BITS SUBROUTINE
2268	A2 OB	LDX-IMM	SELECT DISFLAY ADDRESS 060B
226A	20 30 23	JSR	JUMP TO DISPLAY SUBROUTINE
226D	60	RTS	RETURN FROM SUBROUTINE
			***RPM SUBROUTINE***
2280	8E 80 05	STX ARS	STORE X IN ORB TO ACTIVATE INPUT CHANNEL.
2282	10 11	TTV TMM	THITTATTOR VAC LOOD CONTER
2203	AU II	LDI -INN	INITIALIZE I AS LOUP COUNTER
2205	A9 FF	LLA-IMM	
2287	8D 88 05	STA-ABS	INITIALIZE T2L-L
228A	8D 89 05	STA-ABS	INITIALIZE T2C-H
228D	A9 C8	LDA-IMM	
228F	8D 84 05	STA-ABS	INITIALIZE TIL-L
2292	AQ ES	T.DA -TMM	
2204	an or or	CITA ADC	THINTATION MAG IL AND THINTA TO COMPANY
2274	00 05 05	STA-ABS	INTIALIAS IIC-R AND INTIALS COUNTIOWN
2297	<u>HA</u>	NOP	
2298	EA	NOP	
2299	EA	NOP	
229A	AD 8D 05	LDA-ABS	LOAD A WITH IFR

229D 229F 22A1 22A4 22A5 22A6 22A7 22A8 22AA 22AB 22AA 22AB 22AC 22AC 22AE 22AF	29 40 F0 F9 AD 84 05 EA 88 98 D0 EA EA EA EA EA EA	AND-IMM BEQ LDA-ABS NOP NOP DEY TYA BNE NOP NOP NOP NOP NOP NOP	ISOLATE TIMER 1 FLAG BRANCH TO 229A IF FLAG NOT SET LOAD A WITH TIC-L TO CLEAR FLAG DECREMENT LOOP COUNTER TRANSFER Y TO A BRANCH TO 229A IF LOOP COUNTER NOT ZERO
22B0	38	SEC	SET CARRY FLAG
22B1	A9 FF	LDA-IMM	LOAD A WITH INITIAL T2L-L VALUE
22B3	ED 88 05	SBC-ABS	SUBTRACT PRESENT T2C-L FROM INITIAL T2L-L
2286	8D 10 00	STA-ABS	STORE RESULT IN B
2289	A9 FF	LDA - LMM	LOAD A WITH INITIAL T2C-H VALUE
ZZBB	ED 89 05	SBC-ABS	SUBTRACT PRESENT TZC-H FROM INITIAL TZC-H
22.55	80 II 00	STA-ABS	STORE RESULT IN C
2261	00	RID	RETURN FROM SUBROUTINE
			***A/D SUBROUTINE*** LOW FOUR BITS OF INPUT CHANNEL ADDRESS IN X A/D RESULT IN A AND 0400
22E0	8A.	TXA	TRANSFER INPUT CHANNEL ADDRESS FROM X TO A
22E1	18	CLC	CLEAR CARRY FLAG
22E2	69 10	ADC-IMM	ADD A/D CONTROL BIT TO INPUT CHANNEL ADDRESS
2284	8D 80 05	STA-ABS	STORE A IN ORB TO ACTIVATE INPUT CHANNEL AND CLEAR A/D CONVERTER
2257	EA	NOP	
2220	EA	NOP	
2254	EA.	NOP	
22EB	EA	NOP	
22EC	EA	NOP	
22ED	EA	NOP	
22.EF	EA	NOP	
22F0	EA	NOP	
22F1	EA	NOP	
22F2	EA	NOP	
2253	EA	NOP	
22F4	EA	NOP	
22F5	EA	NOP	
22F6	EA	NOP	
22F7	EA	NOP	
22F3	EA	NOP	
2219	LA	NOP	
22FA	EA	NOP	
645 D	E.n.	NUP	

22FC 22FD 22FE 2300 2303 2306 2308 2308 230A 230D	EA EA EA 8E 80 05 AD 8D 05 29 10 F0 F9 AD 00 04 60	NOP NOP STX-ABS LDA-ABS AND-IMM BEQ LDA-ABS RTS	STORE X IN ORB TO INITIATE CONVERSION LOAD A WITH IFR ISOLATE A/D CONVERSION COMPLETION FLAG BRANCH TO 2303 IF FLAG NOT SET LOAD A WITH A/D RESULT RETURN FROM SUBROUTINE
2310 2311 2313 2314 2315	AA 29 OF A8 8A 60	TAX AND-IMM TAY TXA RTS	***LOW FOUR BITS SUBROUTINE*** INCOMING DATA IN A OUTGOING DATA IN Y ORIGINAL INCOMING DATA RESTORED IN A TRANSFER DATA TO X FOR STORAGE MASK HIGH FOUR BITS TRANSFER RESULT TO Y TRANSFER ORIGINAL DATA BACK TO A RETURN FROM SUBROUTINE
2320 2321 2322 2323 2324 2325 2326 2326 2327	AA 4A 4A 4A A8 8A 60	TAX LSR LSR LSR LSR TAY TXA RTS	***HICH FOUR BITS SUBROUTINE*** INCOMING DATA IN A CUTGOING DATA IN Y ORIGINAL INCOMING DATA RESTORED IN A TRANSFER DATA TO X FOR STORAGE SHIFT DATA RICHT ONE BIT SHIFT DATA RICHT ONE BIT SHIFT DATA RICHT ONE BIT SHIFT DATA RICHT ONE BIT TRANSFER RESULT TO Y TRANSFER ORIGINAL DATA BACK TO A RETURN FROM SUBROUTINE
2330 2333 2336 2338 2338 2338	B9 00 00 9D 00 06 A0 08 20 50 23 60	LDA-ABS,Y STA-ABS,X LDX-IMM JSR RTS	***DISPLAY SUBROUTINE*** LOW EYTE OF DISPLAY ADDRESS IN X DIGIT TO BE DISPLAYED IN Y LOAD A WITH 7-SEGMENT CODE FOR Y STORE A IN SELECTED DISPLAY ADDRESS LOAD Y WITH DELAY TIME JUMP TO DELAY SUBROUTINE RETURN FROM SUBROUTINE
2350 2352 2353	A2 8F CA 8A	LDX —IMM DEX TXA	***DELAY SUBROUTINE*** MILLISECONDS DELAY IN Y LOAD X WITH INITIAL INNER LOOP COUNTER VALUE DECREMENT INNER LOOP COUNTER TRANSFER INNER LOOP COUNTER TO A

2354 2356 2357 2358 2358	DO FC 88 98 DO F6 60	ene Dey Tya BNE RTS	BRANCH TO 2352 IF INNER LOOP COUNT NOT ZERO DECREMENT OUTER LOOP COUNTER TRANSFER OUTER LOOP COUNTER TO A BRANCH TO 2350 IF OUTER LOOP COUNT NOT ZERO RETURN FROM SUBROUTINE
2370 2372 2374 2375 2378 2378 237B 237D	A9 00 A0 0C 88 99 00 06 99 40 06 D0 F7 60	LDA - IMM LDY - IMM DEY STA - ABS,Y STA - ABS,Y BNE RTS	***BLANK DISPLAY SUBROUTINE*** LOAD A WITH 7-SEGMENT CODE FOR BLANK DISPLAY LOAD LOOP COUNTER DECREMENT LOOF COUNTER STORE BLANK DISPLAY CODE IN DISPLAY ADDRESSES STORE BLANK DISPLAY CODE IN DISPLAY ADDRESSES BRANCH TO 2374 IF LOOP COUNT NOT ZERO RETURN FROM SUBROUTINE
			***7-SEGMENT DISPLAY CODE SUBROUTINE***
2390	A9 3F	LDA -IMM	LOAD A WITH 7-SEGMENT CODE FOR O
2392 230h	49.06	T.DA _TMM	LOAD A WITH 2-SECMENT CODE FOR 1
2396	85 01	STA-Z. PAGE	STORE A IN 0001
2398	A9 5B	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR 2
239A	85 02	STA-Z, PAGE	STORE A IN 0002
2390	A9 4F	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR 3
239E	85 03	STA-Z, PAGE	STORE A IN 0003
23A0	A9 66	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR 4
23A2	85 04	STA-Z, PAGE	STORE A IN 0004
23A4	A9 6D	LDA -IMM	LOAD A WITH 7-SEGMENT COLE FOR 5
2240		TDA _TMM	TOAD & HITTH D. SWOMENIN CODE FOR 6
2744	85 06	STA -Z PACE	STORE A IN 0006
23AC	A9 07	LDA -IMM	LOAD A WITH 7-SEGMENT CODE FOR 7
23AE	85 07	STA-Z, PAGE	STORE A IN 0007
23B0	A9 7F	LDA -IMM	LOAD A WITH 7-SEGMENT CODE FOR 8
23B2	85 08	STA-Z, PAGE	STORE A IN 0008
23B4	A9 6F	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR 9
2336	85 09	STA-Z, PAGE	STORE A IN 0009
2388	A9 77	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR A
2 280	05 UA	JIA→Z, PAGE	TOAD & UTTU O_SPONENT COTE FOR P
23BE	85 08	STA-Z. PAGE	STORE & IN COOR
2300	A9 39	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR C
2302	85 0C	STA-Z.PAGE	STORE A IN COOC
2304	A9 5E	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR D
2306	85 OD	STA-Z, PAGE	STORE A IN COOD
2308	A9 79	LDA-IMM	LOAD A WITH 7-SEGMENT CODE FOR E
23CA	85 OE	STA-Z, PAGE	STORE A IN OOOE
2300	A9 71	LDA -IMM	LOAD A WITH 7-SEGMENT CODE FOR F
23CE	85 OF	STA-Z, FAGE	STORE A IN COOF
2310	60	mrs	RETURN FROM SUBROUTINE

			***TEMPERATURE CONTROL SUBROUTINE***
2400	A2 0C	LDX-IMM	SELECT INLET TEMPERATURE INPUT CHANNEL
2402	20 EO 22	JSR	JUMP TO A/D SUBROUTINE
2405	8D 10 00	STA -ABS	STORE INLET TEMPERATURE IN B
2408	EA	NOP	
2409	E:A	NOP	
2404	EA	NOP	
2008	A2 0D	T DY _T MM	SET DOW OTHER DEMONSTRATE THE THE OTHER DEMONSTRA
2400	20 FO 22	TCD CDI	UND TO A D CUDDOUTTUD
2/10	70 50 22	JJA OT D	JURF TO A/D SUBROUTINE
2011	19	CLD	OTEAR DECIMAL MODE
2411 2542	4D 10 00		ADD THERE AND OUTFING TOWNED ATTACK
2412	00 10 00	ADC-ABS	ADD INLET AND OUTLET TEMPERATURES
2413	24	HOL-A	RUTATE SUM ONE BIT LEFT
2410	24	HUL-A	ROTATE SUM ONE BIT LEFT
2417	ZA	ROL-A	ROTATE SUM ONE BIT LEFT
2418	ZA	ROL-A	ROTATE SUM ONE BIT LEFT
2419	2A	ROL-A	ROTATE SUM ONE BIT LEFT
24 <b>1</b> A	2A	ROL-A	ROTATE SUM ONE BIT LEFT
24 <b>1</b> B	2A	ROL-A	ROTATE SUM ONE BIT LEFT
241C	2A	ROL-A	ROTATE SUM ONE BIT LEFT
241D	C9 85	CMP-IMM	COMPARE AVERAGE TEMPERATURE TO HIGH LIMI
241F	10 OF	BPL	BRANCH TO 2430 IF AVERAGE TEMPERATURE IS
			ABOVE HIGH LIMIT
2421	EA	NOP	
2422	EA	NOP	
2423	EA	NOP	
2424	EA	NOP	
2425	EA	NOP	
2426	C9 83	CMP-TMM	COMPARE AVERAGE TEMPERATURE TO LOW LIMIT
2428	30 OF	BMT	BRANCH TO 2430 TE AVERAGE TEMPERATURE IS
	<u> </u>		BELOW LOW LIMIT
242A	EA	NOP	
242B	40 38 24	IMP_ABS	קראב אין
2421	EA EA	NOP	50hr 10 24ju
2425	EA	NOP	
2/130	AQ FO	T DA _TMM	LOAD & TOP DOD TO HOLD ODD HITCH
21.32	SD SC OF	CTA ADC	STOPE A TH DOD TO THEN ON COOLING HATTID
21125		THD ADD	STORE A IN PCA TO TURN UN COULING WATER
2122	EN 10 24	NOP	JUNE 10 2435
2/120	40 00	T DA TIM	TOLD & WOD DOD TO HOLD ODD TOH
2457	A9 00	CON ADO	LUAD A FOR PCR TO HOLD CE2 LOW
2430		STA-AES	STURE A IN PCR TO TURN OFF COCLING WATER
نظر 4 ک	00	n15	RETURN FROM SUBROUTINE

APPENDIX D

RAW DATA AT FULL DISPLACEMENT

Np no load	Np	Tp	Dp	Ps	tin	Nm	Ta	Dm	Pc	tout	tavg
2400	2127	11 <i>5</i> 2	4.26	1600	47.3	1191	1454	7.24	183	56.6	52.0
2400	2133	1145	4.26	1600	47.3	1193	1440	7.24	183	56.3	51.8
2400	2135	1145	4.26	1600	48.0	1194	1447	7.24	182	57.4	52.7
2400	2172	1015	4.26	1400	48.0	1219	1210	7.24	180	58.2	53.1
2400	2172	1022	4.26	1400	48.0	1219	1217	7.24	180	58.2	53.1
2400	2171	1022	4.26	1400	48.0	1220	1217	7.24	180	58.2	53.1
2400	2201	878	4.26	1200	48.4	1239	979	7.24	181	58.2	53.3
2400	2201	878	4.26	1200	48.0	1240	979	7.24	180	58.2	53.1
2400	2201	878	4.26	1200	48.4	1239	972	7.24	180	58.2	53.3
2400	2227	742	4.26	1000	48.0	12 <i>5</i> 9	742	7.24	180	58.2	53.1
2400	2230	742	4.26	1000	48.0	1260	742	7.24	181	58.2	53.1
2400	2228	742	4.26	1000	48.0	1260	742	7.24	181	58.2	53.1
2400	2268	598	4.26	800	48.0	1286	504	7.24	181	58.2	53.1
2400	2269	598	4.26	800	48.0	1287	504	7.24	181	58.2	53.1
2400	2270	598	4.26	800	48.4	1288	504	7.24	181	58.2	53.3
2400	2309	461	4.26	600	48.0	1314	274	7.24	181	58.2	53.1
2400	2308	461	4.26	600	48.4	1314	274	7.24	181	58.2	53.3
2400	2311	461	4.26	600	48.4	1313	274	7.24	181	58.6	53.5
2200	1959	11 <i>5</i> 2	4.26	1600	47.7	1096	1454	7.24	176	55.9	51.8
2200	1955	1145	4.26	1600	48.8	1095	1462	7.24	176	56.6	52.7
2200	1959	1145	4.26	1600	47.7	1096	1454	7.24	176	56.6	52.1
2200	1989	1015	4.26	1400	48.4	1118	1231	7.24	178	57.0	52.7
2200	1992	1008	4.26	1400	47.3	1120	1224	7.24	178	57.0	52.1
2200	1991	1015	4.26	1400	46.9	1118	1224	7.24	178	56.6	51.8
2200	2020	878	4.26	1200	46.9	1138	994	7.24	179	57.0	52.0
2200	2017	878	4.26	1200	46.9	1138	994	7.24	178	56.6	51.8
2200	2018	878	4.26	1200	48.8	1137	994	7.24	177	57.0	52.9
2200	2052	742	4.26	1000	46.9	1161	756	7.24	177	56.6	51.8
2200	2053	742	4.26	1000	48.0	1162	763	7.24	177	57.0	52.5
2200	2052	742	4.26	1000	48.0	1160	763	7.24	177	57.0	52.5
2200	2080	598	4.26	800	47.3	1179	526	7.24	178	55.1	51.2
2200	2076	598	4.26	800	47.3	1179	533	7.24	178	56.6	52.0
2200	2078	598	4.26	800	47.7	1179	533	7.24	178	57.0	52.3
2200	2107	468	4.26	600	47.3	1200	302	7.24	179	56.3	51.8
2200	2106	461	4.26	600	47.7	1198	302	7.24	179	56.6	52.1
2200	2107	461	4.26	600	48.8	1200	302	7.24	179	57.0	52.9

Np no load	Np	Тр	Dp	Ps	tin	Nm	Tm	Dm	Pc	taut	taua
2000	477414	44.00	1. 0(	4/00			41.60			out	vavg
2000	1714	1130	4.26	1600	47.7	960	1462	7.24	173	55.1	51.4
2000	1714	1130	4.26	1600	48.8	961	1469	7.24	172	55.9	52.3
2000	1754	1001	4.26	1400	48.4	986	1238	7.24	173	55.9	52.1
2000	1756	1001	4.26	1400	47.3	987	1238	7.24	173	55.9	51.6
2000	1754	1008	4.26	1400	48.0	987	1246	7.24	173	56.3	52.1
2000	1795	871	4.26	1200	48.4	1013	1001	7.24	174	56.3	52.3
2000	1795	871	4.26	1200	48.4	1011	1001	7.24	174	56.6	52.5
2000	1/94	071	4.20	1200	44,1	1013	1001	7.24	174	56.3	50.2
2000	1846	734	4.26	1000	47.7	1046	763	7.24	175	56.3	52.0
2000	1845	734	4.26	1000	47.3	1044	763	7.24	175	56.3	51.8
				1000		10+)		( •24	104	50.0	74.0(
2000	1874	598	4.26	800	48.4	1065	533	7.24	174	56.3	52.3
2000	1872	598	4.26	800	47.3	1064	540	7.24	176	56.3	52.5
2000	180/1	heh	11 24	600	40.4	1090	24.0	0.01			
2000	1894	454	4.26	600	47.3	1080	310	7.24	176	50.0	52.5
2000	1895	461	4.26	600	46.9	1080	310	7.24	176	56.3	51.6
1900	11.00	4400	1. 00	4/00		200					
1800	1485	1123	4.20	1600	48.4	829	1490	7.24	166	55.1	52.5
1800	1484	1123	4.26	1600	46.5	831	1490	7.24	166	53.9	50.2
1800	1527	09/1	4.26	1400	48.0	850	1267	7 24	160	ee e	F4 0
1800	1529	986	4.26	1400	46.9	859	1246	7.24	169	22•2 55•1	51.0
1800	1527	994	4.26	1400	48.4	858	1253	7.24	167	56.3	52.3
1800	1563	850	4.26	1200	47.7	880	1022	7.24	168	55.1	51.4
1800	1563	857	4.26	1200	49.2	881	1022	7.24	167	56.3	52.7
1000	1562	357	4.20	1200	48.0	881	1022	7.24	168	56.3	52.1
1800	1617	720	4.26	1000	48.8	916	785	7.24	169	56.6	52.7
1800	1617	720	4.26	1000	47.7	915	792	7.24	169	56.3	52.0
		720	+	1000	40.9	917	(05	( .24	170	55+1	51.0
1800	1660	583	4.26	800	47.7	942	554	7.24	171	55.9	51.8
1800	1660	576	4.26	800	49.2	943	554	7.24	171	55.1	51.0
1900	101 -	h.h.c	1		10.0				110	J., J.	10.01
1800	1715	446	4.26	600	48.0 49.2	977	324	7.24	172	55.1	51.6
1800	1716	439	4.26	600	47.3	979	324	7.24	172	55.5	51.4

Np no load	Np	Tp	Dp	Ps	tin	Nm	Tm	Dm	Pc	tout	tave
1600	1301	1116	4.26	1600	45.7	728	1498	7.24	162	53.9	49.8
1600	1302	1123	4.26	1600	46.9	729	1498	7.24	163	54.3	50.6
1600	1302	1116	4.26	1600	48.4	730	1498	7.24	163	55.1	51.8
1600	1352	979	4.26	1400	47.7	758	1260	7.24	165	55.1	51.4
1600	1349	979	4.26	1400	49.2	756	1260	7.24	163	56.3	52.7
1600	1350	986	4.26	1400	43.0	758	1260	7.24	165	56.3	52.1
1600	1384	842	4.26	1200	48.8	780	1022	7.24	165	56.3	52.5
1600	1383	842	4.26	1200	47.3	778	1022	7.24	166	55.1	51.2
1600	1380	850	4.26	1200	46.1	779	1022	7.24	165	55.1	50.6
1600	1427	706	4.26	1000	47.3	80 <i>5</i>	785	7.24	167	55.1	51.2
1600	1425	706	4.26	1000	47.7	806	785	7.24	168	55.1	51.4
1600	1422	698	4.26	1000	49.2	802	785	7.24	168	56.3	52.7
1600	1451	569	4.26	800	49.2	824	554	7.24	169	56.3	52.7
1600	1452	569	4.26	800	48.8	823	562	7.24	170	56.3	52.5
1600	1450	569	4.26	800	46.5	826	554	7.24	171	55.1	50.8
1600	1494	432	4.26	600	48.4	847	324	7.24	168	55 <b>.1</b>	51.8
1600	1490	432	4.26	600	46.9	85 <b>1</b>	324	7.24	169	55 <b>.1</b>	51.0
1600	1496	425	4.26	600	46.1	8 <i>5</i> 2	324	7.24	169	54 <b>.3</b>	50.2
1400	1160	1102	4.26	1600	46.1	647	1483	7.24	166	53.9	50.0
1400	1162	1109	4.26	1600	48.0	649	1490	7.24	166	54.3	51.2
1400	11 <i>5</i> 9	1109	4.26	1600	49.2	650	1490	7.24	166	55.1	52.1
1400	1201	979	4.26	1400	44.9	674	1260	7.24	167	53.9	49.4
1400	1201	979	4.26	1400	46.9	673	1260	7.24	167	54.3	50.6
1400	1201	979	4.26	1400	48.8	673	1260	7.24	167	55.1	52.0
1400	1226	842	4.26	1200	46.5	692	1030	7.24	169	54.3	50.4
1400	1231	842	4.26	1200	48.0	691	1022	7.24	168	55.1	51.6
1400	1227	842	4.26	1200	49.2	690	1030	7.24	168	55.1	52.1
1400	1267	706	4.26	1000	48.0	716	792	7.24	169	55 <b>.1</b>	51.6
1400	1268	706	4.26	1000	49.2	718	799	7.24	169	55 <b>.5</b>	52.3
1400	1268	706	4.26	1000	47.3	71 <i>5</i>	799	7.24	169	55 <b>.1</b>	51.2
1400	1302	569	4.26	800	48.8	740	569	7.24	169	55 <b>.1</b>	52.0
1400	1303	569	4.26	800	48.8	739	569	7.24	169	55 <b>.1</b>	52.0
1400	1301	569	4.26	800	46.9	739	569	7.24	170	54 <b>.</b> 3	50.6
1400	1330	425	4.26	600	48.8	7 <i>5</i> 9	346	7.24	170	55.1	52.0
1400	1331	432	4.26	600	46.9	7 <i>5</i> 8	346	7.24	170	54.3	50.6
1400	1331	432	4.26	600	46.9	7 <i>5</i> 8	346	7.24	171	54.3	50.6

- 11

Np no load	Np	Тр	Dp	Ps	tin	Nm	Tm	Dm	Pc	tout	tavg
1200	961	1116	4.26	1600	46.9	537	1505	7.24	161	54.3	50.6
1200	962	1116	4.26	1600	48.0	537	1505	7.24	160	54.3	51.2
1200	963	1109	4.26	1600	49.2	538	1505	7.24	160	55.1	52.1
1200	1004	979	4.26	1400	46.1	561	1274	7.24	163	53.9	50.0
1200	1003	979	4.26	1400	47.3	561	1274	7.24	163	54.3	50.8
1200	1003	979	4.26	1400	48.4	562	1274	7.24	163	55.1	51.8
1200	1044	842	4.26	1200	45.7	586	1044	7.24	164	53.9	49.8
1200	1040	850	4.26	1200	45.7	587	1051	7.24	165	53.1	49.4
1200	1041	850	4.26	1200	46.9	586	1051	7.24	164	53.9	50.4
1200	1075	713	4.26	1000	50.0	608	828	7.24	165	55.1	52.5
1200	1078	706	4.26	1000	46.5	608	814	7.24	166	54.3	50.4
1200	1077	713	4.26	1000	45.3	608	821	7.24	166	53.1	49.2
1200	1109	576	4.26	800	48.8	631	590	7.24	166	54.3	51.6
1200	1110	569	4.26	800	50.0	628	590	7.24	166	55.1	52.5
1200	1113	569	4.26	800	49.2	631	598	7.24	166	55.1	52.1
1200	1143	432	4.26	600	46.5	653	360	7.24	166	53.1	49.8
1200	1144	432	4.26	600	48.0	653	360	7.24	166	54.3	51.2
1200	1144	432	4.26	600	49.2	651	360	7.24	166	55.1	52.1
1000	883	691	4.26	1000	48.4	498	821	7.24	1 <i>5</i> 9	54.3	51.4
1000	885	684	4.26	1000	49.6	499	821	7.24	160	54.3	52.0
1000	883	684	4.26	1000	46.9	498	828	7.24	160	53.9	50.4
1000	907	554	4.26	800	47.3	514	590	7.24	161	53.1	50.2
1000	909	554	4.26	800	48.0	516	590	7.24	161	53.9	51.0
1000	906	547	4.26	800	49.2	514	590	7.24	161	53.9	51.6
1000	931	418	4.26	600	45.7	531	367	7.24	162	53.1	49.4
1000	929	425	4.26	600	44.9	528	367	7.24	162	52.0	48.4
1000	931	425	4.26	600	45.7	528	360	7.24	162	52.3	49.0

APPENDIX E

AVERAGED AND REDUCED DATA AT FULL DISPLACEMENT

Np no load	Np	Тр	Dp	Ps	Nm	Tm	Dm	Pc	ΔP	к/µ	L
2400 2400 2400 2400 2400 2400 2400	2132 2172 2201 2228 2269 2309	1147 1020 878 742 598 461	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	1193 1219 1239 1260 1287 1314	1447 1215 977 742 504 274	7.24 7.24 7.24 7.24 7.24 7.24 7.24	183 180 180 181 181 181	1417 1220 1020 819 619 419	1.973 2.200 2.500 2.830 3.533 4.843	445.0 427.2 405.9 368.9 348.1 323.0
2200 2200 2200 2200 2200 2200 2200	1958 1991 2018 2052 2078 2107	1147 1013 878 742 598 463	4.26 4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	1096 1119 1138 1161 1179 1199	14 <i>5</i> 7 1226 994 761 531 302	7.24 7.24 7.24 7.24 7.24 7.24 7.24	176 178 178 177 178 179	1424 1222 1022 823 622 421	1.792 1.954 2.198 2.564 3.195 4.404	406.0 380.1 357.6 335.9 316.3 295.1
2000 2000 2000 2000 2000 2000	1714 1755 1795 1846 1873 1894	1133 1003 871 734 598 456	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	960 987 1012 1045 1064 1080	1464 1241 1001 763 538 310	7.24 7.24 7.24 7.24 7.24 7.24 7.24	172 173 174 175 175 176	1428 1227 1026 825 625 424	1.545 1.692 1.959 2.271 2.771 3.693	351.2 330.4 319.8 298.2 275.6 249.2
1800 1800 1800 1800 1800 1800	1484 1528 1563 1617 1659 1716	1123 991 855 720 581 441	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	830 859 881 916 943 978	1490 1255 1022 787 554 324	7.24 7.24 7.24 7.24 7.24 7.24 7.24	166 168 168 169 171 172	1434 1232 1032 831 629 428	1.370 1.480 1.704 1.940 2.398 3.368	312.6 290.1 279.9 256.6 240.0 229.4
1600 1600 1600 1600 1600 1600	1302 1350 1382 1425 1451 1493	1118 981 845 703 569 430	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	729 757 779 804 824 850	1498 1260 1022 785 557 324	7.24 7.24 7.24 7.24 7.24 7.24 7.24	163 164 165 168 170 169	1437 1236 1035 832 630 431	1.174 1.374 1.502 1.885 2.107 3.006	268.6 270.3 247.4 249.5 211.2 206.2
1400 1400 1400 1400 1400 1400	1160 1201 1228 1268 1302 1331	1107 979 842 706 569 430	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	649 673 691 716 739 758	1488 1260 1027 797 569 346	7.24 7.24 7.24 7.24 7.24 7.24 7.24	166 167 168 169 169 170	1434 1233 1032 831 631 430	1.064 1.242 1.391 1.647 1.953 2.661	242.8 243.7 228.4 217.8 196.2 182.1
1200 1200 1200 1200 1200 1200	962 1003 1042 1077 1111 1144	1114 979 847 711 571 432	4.26 4.26 4.26 4.26 4.26 4.26	1600 1400 1200 1000 800 600	537 561 586 608 630 652	1505 1274 1049 821 593 360	7.24 7.24 7.24 7.24 7.24 7.24 7.24	160 163 164 166 166 166	1440 1237 1036 834 634 434	0.917 1.072 1.190 1.402 1.701 2.214	210.2 211.1 196.3 186.1 171.7 153.0
1000 1000 1000	884 907 930	686 552 423	4.26 4.26 4.26	1000 800 600	498 515 529	823 590 365	7.24 7.24 7.24	160 161 162	840 639 438	1.199 1.330 1.891	160.3 135.2 131.8

# APPENDIX F

SPEED AND TORQUE DATA AT FULL DISPLACEMENT ADJUSTED FOR CONSTANT CHARGE PRESSURE

ΔP	Np	Тр	Nm	Tm
1430	2132	1158	1193	1460
1430	1958	1152	1096	1463
1430	1714	1135	960	1466
1430	1484	1120	830	1486
1430	1302	1113	729	1491
1430	1160	1104	649	1484
1430	962	1106	537	1495
1230	2172	1028	1219	1225
1230	1991	1020	1119	1234
1230	1755	1005	987	1244
1230	1528	989	859	1253
1230	1350	976	757	1254
1230	1201	977	673	1257
1230	1003	973	561	1267
1030	2201	887	1239	987
1030	2018	885	1138	1002
1030	1795	874	1012	1005
1030	1563	853	881	1020
1030	1382	841	779	1017
1030	1228	840	691	1025
1030	1042	842	586	1043
830 830 830 830 830 830 830 830 830	2228 2052 1846 1617 1425 1268 1077 884	752 748 738 719 701 705 708 678	1260 1161 1045 916 804 716 608 498	752 767 768 786 783 796 817 813
630	2269	609	1287	513
630	2078	606	1179	538
630	1873	603	1064	542
630	1659	582	943	555
630	1451	569	824	557
630	1302	568	739	568
630	1111	567	630	589
630	907	544	515	582
430	2309	473	1314	281
430	2107	473	1199	308
430	1894	462	1080	314
430	1716	443	978	326
430	1493	429	850	323
430	1331	430	758	346
430	1144	428	652	357
430	930	415	529	358

## APPENDIX G

# COMPARISON OF MODEL A AND MEASURED VALUES AT FULL DISPLACEMENT

∆НРр еаз	00000000000000000000000000000000000000	8.00.00 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	8.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000 2.00000 2.00000 2.00000000	
∆Tp c - m	+++++++++++++++++++++++++++++++++++++++	++ 1 1 200004	++++	+++11 ++6 + 1
ANp cal	÷355-1-2	-253	+ 7 + 7 + 7 - 166	±+++++++++++++++++++++++++++++++++++++
HPp/HPp sured	1.0196 1.0030 0.9925 0.9848 0.9801 0.9724	1.0190 1.0095 0.9990 0.9880 0.9880 0.9744	1.0286 1.0196 0.9981 0.9823 0.9732 0.9732	1.0473 1.0316 1.0180 1.0051 0.9958 0.9945
Tp/Tp ated/mea	1.0148 1.0039 0.9989 0.9946 0.9950 0.9913	1.0087 1.0049 1.0000 0.9933 1.0000 0.9914	1.0097 1.0070 0.9943 0.9850 0.9816 0.9816	1.0178 1.0111 1.0070 1.0014 1.0000 1.0068
Np/Np calcul	1.0047 0.9991 0.9936 0.9850 0.9850	1.0102 1.0045 0.9990 0.9880 0.9880 0.9829	1.0187 1.0125 1.0039 0.9973 0.9915 0.9863	1.0290 1.0203 1.0109 1.0037 0.9958 0.9878
HPp calc	39.56 35.26 30.43 20.43 25.83 21.10 16.42	36.31 28.08 28.08 23.84 19.48 15.08	31.69 28.48 24.76 21.12 17.30 13.31	27.69 21.58 11.94
Tp calc	1164 1024 877 738 595 457	1157 1018 878 737 598 459	1144 1010 866 723 587 587 587	1143 1002 861 721 581 444
Np calc	2142 2170 2187 2187 2187 2285 2235 2235	1978 2000 2016 2039 2053 2053	1746 1777 1802 1802 1857 1857 1857	1527 1559 1580 1623 1652 1652
Tm	1447 972 972 504 2742 274	1457 994 531 302	1464 1241 1001 763 310	1490 1255 1022 787 787 787 324
Nm meas	1193 1219 1239 1280 1287 1314	11196 11138 11138 11138 11138 11139	960 987 987 1012 1045 1064 1080	830 859 916 978 978
HPp meas	38.80 35.15 30.66 30.66 26.23 21.53 16.89	35.63 32.00 28.11 24.16 19.72 15.48	30.81 27.93 24.81 21.50 17.77 13.70	26.44 24.03 21.20 18.47 15.29 12.01
Tp meas	1147 1020 878 878 742 598 598	1147 878 878 742 598 598	1133 871 871 871 871 871	1123 991 855 720 581 581
Np meas	2132 2172 2201 2228 2228 22269 22269	1958 1991 2018 2052 2078 2078 2107	1714 1755 1795 1873 1873 1873	1484 1563 1563 1617 1617 1716

14 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		+1.17 +0.71 +0.38 +0.10 -0.16	+0.36 +0.10 -0.16
470018 1770018	+++++++++++++++++++++++++++++++++++++++	800740	€‡2 15 1 +
+53 +36 +24 +24 -16 -16	+++58 ++158 9.056	+50 +50 +37 +23 +10 - 2	+29 +18 + 3
1.0565 1.0382 1.0210 1.0092 0.9976 0.9847	1.0604 1.0371 1.0204 1.0061 0.9935 0.9935	1.0686 1.0456 1.0270 1.0084 0.9798	1.0373 1.0125 0.9748
1.0152 1.0112 1.0036 1.0043 0.9982 0.9953	1.0099 1.0020 0.9976 0.9943 0.9912 0.9912	1.0000 0.9959 0.9873 0.9873 0.9895 0.9815	1.0044 0.9928 0.9716
1.0407 1.0267 1.0174 1.0049 0.9993 0.9893	1.0500 1.0350 1.0228 1.0118 1.0023 0.9932	1.0686 1.0499 1.0355 1.0355 1.0214 1.0090 0.9983	1.0328 1.0198 1.0032
24.40 21.82 18.92 16.04 13.07 10.03	21.61 19.35 16.74 16.74 14.29 11.68 9.00	18.17 16.29 14.38 12.25 12.25 12.05 7.68	9.98 8.04 6.08
1135 992 848 706 568 428	11118 981 840 702 429 429	11114 975 840 702 702 424	689 548 411
1355 1386 1406 1477 1477	1218 1243 1256 1283 1305 1322	1028 1053 1079 1100 1121 1142	913 925 933
1498 1260 1022 785 557 324	1488 1260 797 346	1505 11274 1049 821 360 360	823 365
729 779 804 824 850	649 673 673 739 738 738	53 53 53 53 53 53 53 53 53 53 53 53 53 5	498 515 529
23.10 21.01 15.89 15.89 13.10	20.37 18.66 16.41 14.20 11.75 9.08	17.00 15.58 14.00 12.15 7.84	9.62 7.94 6.24
1118 981 703 703 703 703 703 703	1107 979 979 979 979 979 979	979 979 847 711 571 472	88 87 87 87 87 87 87 87 87 87 87 87 87 8
1302 1350 1382 1451 1451 1493	1160 1228 1228 1302 1302	962 1003 1042 11111 1111	884 907 930
	1302 1118 23.10 729 1498 1355 1135 24.40 1.0407 1.0152 1.0565 +53 +17 +1.30   1350 981 21.01 779 1260 1386 992 21.82 1.0267 1.0112 1.0382 +36 +11 +0.81   1382 845 18.53 779 1022 1406 848 18.92 1.0174 1.0036 1.0210 +24 +3 +0.39   1425 703 15.89 804 785 1432 706 16.04 1.0049 1.0043 1.0092 +7 +3 +0.39   1451 569 13.40 0.9993 0.9992 0.9976 -1 -1 -0.03   1451 569 13.07 0.9993 0.9993 0.9992 0.9976 -1 -1 -0.03   1493 430 10.19 850 324 1477 428 10.03 0.9993 0.99477 -16 -2 -0.16	1302 1118 23.10 729 1498 1355 1135 21.40 1.0407 1.0152 1.0565 +53 +17 +1.30   1382 981 21.01 757 1260 1386 992 21.02 1.00152 1.00382 +53 +11 +0.31   14425 703 15.69 804 787 1422 706 1.0015 1.0122 1.0382 +53 +17 +1 +3 +0.39   14425 703 15.99 804 787 1442 706 10.049 1.0015 1.0032 +7 +3 +0.39   14451 569 13.10 824 1477 428 13.07 0.9993 0.99976 -1 -1 -1 -0.03   14451 569 10.19 824 1477 428 10.013 0.99976 -1 -1 -1 -0.06 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

# APPENDIX H

COMPARISON OF MODEL B AND MEASURED VALUES AT FULL DISPLACEMENT

AHPp	000000 00000 00000 00000 00000 00000 0000	-0.33 -0.28 -0.28 -0.28	0.00 0.033 0.01 0.01 0.01	+0.30 +0.13 +0.13 +0.15 +0.16
ΔTp c - m	1 1 1 + + + + 1 1 + +	+ I I I + + 448WNN	++111+	+++++ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ANp cal	-53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -53-53 -5		111111	≈≠≈∞∞≈ + + + + + +
HPp/HPp sured	0.9933 0.9857 0.9873 0.9870 0.9936 1.0021	0.9906 0.9900 0.9898 0.9887 1.0011	0.9977 0.9976 0.9875 0.9840 0.9873 1.0006	1.0112 1.0077 1.0060 1.0060 1.0104
Tp/Tp ated/mea	1.0070 0.9990 1.0000 0.9973 1.0033 1.0108	1.0009 0.9990 0.9977 0.9960 1.0084 1.0108	1.0018 1.0010 0.9920 0.9877 0.9900 1.0022	1.0098 1.0050 1.0042 1.0042 1.0086
Np/Np calcul	0.9864 0.9866 0.9873 0.9897 0.9903 0.9913	0.9898 0.9910 0.9921 0.9927 0.9928 0.9928	0.9959 0.9966 0.9955 0.9973 0.9973 0.9973	1.0013 1.0026 1.0013 1.0019 1.0018
HPp calc	38.54 38.55 33.55 25.89 25.89 16.92 16.92	35.30 31.68 27.83 23.88 23.88 15.74	30.74 27.86 24.50 21.15 17.55 13.71	26.74 24.21 21.33 18.58 15.45 12.35
Tp calc	1155 1019 878 878 878 600 600 466	1148 876 876 603 468	1135 864 725 592 457	1134 996 723 723 1536
Np calc	2103 2143 2173 2205 2205 2247 2289	1938 1973 2002 2037 2063 2063 2093	1707 1749 1787 1878 1868 1868	1486 1532 1565 1565 1620 1718
Tm neas	1447 1215 977 742 504 274	1457 994 531 302 302	1464 1241 1001 763 310	1490 1255 787 324 324
Nm meas	1193 1219 1239 1260 1260 1314	1096 11138 11138 11179 1179	960 987 1012 1045 1064 1080	830 859 916 978 978
HPp meas	38.80 35.15 30.66 26.23 26.23 26.23 16.89	35.63 32.00 28.11 24.16 19.72 15.48	30.81 27.93 24.81 21.50 17.77 13.70	26.44 24.03 21.20 18.47 15.29 12.01
Tp meas	1147 1020 878 742 598 461	1147 1013 878 878 742 598 463	1133 1003 158 158 158 155 1003	1123 991 720 720 720
Np meas	2132 2172 2201 2228 2228 22269 2309	1958 1991 2018 2052 2078 2078 2107	1714 1755 1795 1846 1873 1873	1484 1528 1563 1617 1617 1659

∆нРр еав	+0.39 +0.14 +0.15 +0.15	0.13 0.13 0.13 0.13 0.13 0.13 0.13	+0.32 +0.15 +0.15 +0.15	+0.36 +0.26 +0.12
∆Tp c - m	04440 +++++	8000 t t 1 1 +	0000000	++ 1 v+ u
∆ Np cal	+++++ wa ener	1347144 1347444 1347444	+26 +22 +22 +20 +20 +20	+26 +28 +25
HPp/HPp sured	1.0172 1.0111 1.0077 1.0092 1.0133 1.0187	1.0174 1.0075 1.0066 1.0052 1.0108 1.0286	1.0187 1.0115 1.0103 1.0071 1.0144	1.0369 1.0327 1.0196
Tp/Tp ated/mea	1.0072 1.0051 1.0012 1.0057 1.0070 1.0140	1.0018 0.9959 0.9958 0.9958 1.0000 1.0186	0.9919 0.9898 0.9894 0.9887 0.9887 0.9965	1.0073 1.0018 0.9929
Np/Np calcul	1.0100 1.0059 1.0065 1.0035 1.0062 1.0047	1.0155 1.0117 1.0114 1.0095 1.0098 1.0098	$\begin{array}{c} 1.0270\\ 1.0219\\ 1.0211\\ 1.0186\\ 1.0180\\ 1.0175\end{array}$	1.0294 1.0309 1.0269
HPp calc	23.49 21.25 21.25 18.67 16.04 13.27 10.38	20.73 18.80 16.51 14.28 11.88 9.34	17.32 15.76 14.15 12.24 10.21 7.98	9.98 8.20 6.36
Tp calc	1126 986 846 707 573 470	1109 975 838 838 703 703 438	1105 969 838 838 703 452	691 553 420
Np calc	1315 1358 1358 1450 1460 1500	1178 1215 1242 1346 1346	988 1025 1064 1131 1131	910 935 955
Tm meas	1498 1260 1260 785 557 557 557 557 557 557 557	1488 1260 797 797 346	1505 1049 821 360 360	365 823 367 823
Nm meas	729 757 804 824 850	649 162 162 162 162 162 162 162 162 162 162	530 530 530 530 530 530 530 530 530 530	515 529
HPp meas	23.10 21.01 18.53 15.89 13.10	20.37 18.66 16.41 14.20 11.75 9.08	17.00 15.58 14.00 12.15 7.84	9.62 7.94 6.24
Tp meas	1118 981 845 703 703 703 703	979 979 979 979 979 979 979 979 979	979 979 847 711 721	686 123 123
Np meas	1302 1350 1382 1425 1493	1160 1201 1201 1228 1268 1302 1331	962 1003 1042 1111 1111	884 907 930

# APPENDIX I

RAW DATA AT APPROXIMATELY THREE-FOURTHS DISPLACEMENT

Np no load	Np	Тъ	Dro	Ps	tin	Nm	Tm	Dm	Pc	tout	tave
		-1			- 111					·out	-448
2200	1968	1087	3.19	1990	47.7	1100	1390	5.44	176	56.6	52.1
2200	1972	1094	3.19	1980	48.8	1102	1375	5.40	175	57.0	52.9
2200	1909	1080	3.19	1900	40.5	1008	1268	5.37	175	57.0	51.0
2200	1975	1080	3 10	2000	40.0	1101	1368	5 37	176	56 6	52 1
2200	1976	1080	3.19	1980	46.9	1102	1375	5.37	175	56.3	51.6
~~~~~	-770	2000		1,00	40.7		1)	1.1	-10	ر. در	2.0
2200	2023	907	3.19	1610	47.7	1143	1051	5.47	177	56.6	52.1
2200	2025	893	3.19	1630	47.3	1135	1037	5.37	177	56.3	51.8
2200	2020	907	3.19	1620	46.9	1142	1044	5.37	177	56.3	51.6
2200	2023	914	3.19	1610	47.3	1137	1044	5.37	177	56.6	52.0
2200	2019	907	3.19	1610	48.8	1135	1051	5.40	177	57.0	52.9
2200	2023	907	3.19	1600	48.8	1139	1051	5.44	177	57.0	52.9
2200	2071	677	3.19	1210	48.0	1176	691	5.40	178	56.3	52.1
2200	2067	684	3.19	1200	48.0	1186	698	5.40	179	56.6	52.3
2200	2071	691	3.19	1200	47.3	1181	706	5.40	179	56.3	51.8
2200	2069	691	3.19	1210	46.9	1169	691	5.40	179	56.3	51.6
2200	2068	684	3.19	1220	46.9	1181	691	5.40	179	56.3	51.6
2200	2065	698	3.19	1200	48.4	1176	698	5.40	178	56.3	52.3
2200	2115	490	3.19	820	47.3	1200	353	5.40	179	56.3	51.8
2200	2110	490	3.19	820	48.4	1194	360	5.40	179	56.3	52.3
2200	2116	497	3.19	800	48.4	1216	360	5.40	179	56.3	52.3
2200	2111	482	3.19	820	48.4	1213	374	5.40	179	56.3	52.3
2200	2112	475	3.19	830	47.7	1209	360	5.40	179	56.3	52.0
2200	2113	490	3.19	820	46.9	1215	367	5.44	179	56.3	51.6
1800	1489	1080	3.19	2000	48.8	824	1426	5.50	163	56.3	52.5
1800	1483	1073	3.19	1990	49.2	828	1411	5.47	163	56.3	52.7
1800	1490	1066	3.17	2000	48.4	827	1411	5.24	163	56.3	52.3
1800	1489	1066	3.19	2000	47.3	829	1411	5.37	164	55.9	51.6
1800	1489	1066	3.19	1990	46.5	832	1404	5.37	166	55.1	50.8
1800	1493	1073	3.19	1980	46.1	831	1397	5.50	165	55.1	50.0
1800	1582	871	3.17	1620	48.4	888	1066	5.53	168	56.3	52.3
1800	1577	878	3.19	1610	47.3	888	1080	5.50	169	55.9	51.6
1800	1586	878	3.19	1620	46.1	883	1073	5.50	169	55.1	50.6
1500	1578	878	3.19	1610	46.1	890	1080	5.44	168	55.1	50.6
1800	1585	878	3.19	1630	46.9	886	1066	5.50	169	55.1	51.0
1 290103	(580)	AAA	4 10	1610	in a n	AX4	1020	5 5 3	168	6/1 7	61 2

Np no load	Np	Tp	Dp	Ps	tin	Nm	Tm	Dm	Pc	tout	tavg
1800 1800 1800 1800 1800 1800	1660 1653 1656 1661 1661 1652	662 670 677 662 670 677	3.19 3.19 3.19 3.19 3.19 3.17 3.19	1210 1220 1210 1220 1230 1230	46.5 46.5 47.3 48.4 49.2 48.8	946 935 944 939 935 938	727 720 727 720 720 720 734	5.37 5.47 5.47 5.50 5.50 5.34	171 171 171 171 171 170 170	55.1 55.1 55.9 56.6 56.3	50.8 50.8 51.2 52.2 52.9 52.5
1800 1800 1800 1800 1800 1800	1719 1720 1719 1721 1715 1714	468 454 461 461 468 475	3.19 3.19 3.19 3.19 3.19 3.19 3.19	820 800 820 820 820 820 810	48.0 49.2 49.2 48.0 46.9 45.7	985 984 976 986 980 982	382 389 382 382 382 382 396	5.40 5.44 5.40 5.40 5.40 5.40	172 171 172 172 172 173	55.1 56.3 56.3 55.9 55.1 54.3	51.6 52.7 52.7 52.0 51.0 50.0
1400 1400 1400 1400 1400 1400	1140 1145 1143 1145 1145 1146	1066 1066 1058 1058 1058	3.17 3.25 3.17 3.21 3.26 3.25	2020 2010 2000 2000 2000 1980	50.0 49.2 47.7 46.5 45.7 45.3	633 636 636 639 638 640	1433 1426 1418 1418 1411 1411	5.31 5.50 5.47 5.50 5.31 5.44	160 162 161 162 163 162	55.1 55.1 55.1 55.1 53.9 53.9	52.5 52.1 51.4 50.8 49.8 49.6
1400 1400 1400 1400 1400 1400	1202 1203 1198 1204 1198 1202	864 864 857 857 864 871	3.23 3.17 3.23 3.23 3.15 3.17	1610 1610 1610 1610 1610 1610	48.8 49.6 49.6 48.4 47.3 46.1	676 677 678 677 678 679	1080 1073 1080 1080 1087 1080	5.37 5.40 5.47 5.34 5.34 5.40	164 164 164 164 165 165	55.1 55.1 55.1 55.1 54.7 53.9	52.0 52.3 51.8 51.0 50.0
1400 1400 1400 1400 1400 1400	1263 1265 1263 1268 1261 1258	655 655 655 655 655 655	3.19 3.19 3.19 3.19 3.19 3.19 3.19	1210 1200 1210 1210 1210 1210 1200	47.3 48.4 48.8 50.0 50.0 48.8	720 718 719 719 719 718 720	734 734 734 734 734 734 734	5.40 5.44 5.37 5.40 5.40 5.40	167 167 167 167 167 167	53.9 54.3 55.1 55.1 55.1 55.1	50.6 51.4 52.0 52.5 52.5 52.0
1400 1400 1400 1400 1400 1400	1317 1318 1321 1316 1321 1320	439 454 454 439 446 446	3.19 3.19 3.19 3.19 3.19 3.19 3.19	790 800 800 800 790 810	46.9 48.0 48.8 49.6 50.0 49.2	759 758 757 754 759 755	403 403 403 396 403 410	5.44 5.37 5.37 5.40 5.40	168 168 168 168 168 168	53.9 54.3 54.7 55.1 55.1	50.4 51.2 51.8 52.3 52.5 52.1

APPENDIX J

AVERAGED DATA AT APPROXIMATELY THREE-FOURTHS DISPLACEMENT

Np no load	Np	Τ'n	Dn	Ps	Nm	Tm	Dm	Pc	٨P
		- P	- P						
2200	1972	1084	3.19	1987	1101	1374	5.39	175	1812
2200	2022	906	3.19	1613	11 39	1046	5.40	177	1436
2200	2069	688	3.19	1207	1178	696	5.40	179	1028
2200	2113	487	3.19	818	1208	362	5.41	179	639
1800	1489	1071	3.19	1993	829	1410	5.42	164	1829
1800	1581	878	3.19	1617	887	1074	5.50	169	1448
1800	1657	670	3.19	1215	940	725	5.44	171	1044
1800	1718	465	3.19	815	982	386	5.41	172	643
1400	11.11.	1062	3.22	2002	637	1420	5 42	162	1840
1400	1201	863	3 20	1610	678	1080	5 30	164	1446
1400	1263	655	3.10	1207	710	734	5.40	167	1040
1400	1310	كس	3 10	708	757	103	5 40	168	630
			1047	179	1.11			100	0.0

APPENDIX K

RAW DATA AT APPROXIMATELY ONE-HALF DISPLACEMENT

Np no load	Np	Тр	Dp	Ps	tin	Nm	Tm	Dm	Pc	tout	tavg
2200 2200 2200 2200 2200 2200 2200	2031 2029 2034 2036 2031 2035	778 778 770 778 778 778 770	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	2000 2010 2000 2010 2010 2010	47.3 46.5 46.9 48.0 49.6 49.6	1092 1095 1094 1093 1101 1104	871 878 878 878 878 871 871	3.70 3.73 3.70 3.57 3.70 3.63	178 177 177 176 177 176	55.1 55.1 55.9 56.6 57.0	51.2 50.8 51.0 52.0 53.1 53.3
2200 2200 2200 2200 2200 2200 2200	2064 2071 2066 2063 2062 2066	641 634 641 648 641 655	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	1620 1630 1640 1630 1630 1640	48.8 48.8 48.0 47.3 46.9	1131 1131 1135 1133 1144 1132	655 648 655 648 655 648	3.60 3.60 3.63 3.63 3.60 3.63	177 177 178 177 178 177	55.9 56.6 56.3 55.9 55.9	52.3 52.7 52.7 52.1 51.6 51.4
2200 2200 2200 2200 2200 2200 2200	2100 2096 2097 2097 2100 2096	504 518 511 518 511 511	2.14 2.14 2.14 2.14 2.12 2.12 2.12	1230 1230 1220 1240 1230 1220	47.7 46.9 46.5 47.7 49.2 49.6	1190 1173 1175 1171 1184 1165	425 418 418 418 425 418	3.60 3.60 3.63 3.63 3.60 3.63	179 178 179 179 178 178	55.9 55.9 55.1 55.9 56.3 57.0	51.8 51.4 50.8 51.8 52.7 53.3
2200 2200 2200 2200 2200 2200	2128 2128 2126 2126 2127 2126	360 367 374 382 374 374	2.12 2.12 2.14 2.14 2.14 2.12 2.14	810 820 810 830 850 830	48.0 47.7 47.3 47.3 48.0 49.2	1217 1221 1214 1188 1221 1202	202 202 202 202 209 209	3.63 3.60 3.63 3.60 3.60 3.60	178 178 177 178 178 178	56.3 54.3 55.1 55.1 55.9 56.3	52.1 51.0 51.2 51.2 52.0 52.7
1800 1800 1800 1800 1800 1800	1647 1646 1645 1646 1643 1648	756 756 756 756 756 756	2.12 2.12 2.12 2.12 2.12 2.12 2.12	1990 1990 1990 1990 2000 2000	49.6 48.8 47.7 46.9 46.5 46.9	914 916 917 918 917 918	850 850 850 850 842 850	3.41 3.70 3.63 3.41 3.44 3.44	169 168 169 169 168 169	56.3 55.9 55.1 55.1 55.1	52.9 52.6 51.8 51.0 50.8 51.0
1800 1800 1800 1800 1800 1800	1685 1690 1688 1693 1690 1692	626 634 619 626 634 626	2.12 2.12 2.12 2.12 2.12 2.12 2.12	1620 1620 1620 1620 1630 1610	47.7 46.9 46.5 47.3 48.4 49.6	949 958 955 950 947 956	641 641 634 648 641 641	3.60 3.47 3.60 3.44 3.63 3.47	169 169 170 169 169	55.9 55.1 55.1 55.1 55.9 56.3	51.8 51.0 50.8 51.2 52.1 52.9

Np no load	Np	Тр	Dp	Ps	tin	Nm	Tm	Dm	Pc	tout	tavg
1800 1800 1800 1800 1800 1800	1733 1734 1730 1731 1729 1731	482 490 497 482 497 490	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	1230 1230 1210 1230 1220 1230	46.9 47.7 49.2 50.0 48.8 47.3	998 996 985 988 996 999	425 425 418 418 432 432	3.50 3.57 3.54 3.47 3.47 3.60	172 171 171 171 171 170 171	55.1 55.1 56.3 56.3 56.3 55.1	51.0 51.4 52.7 53.1 52.5 51.2
1800 1800 1800 1800 1800 1800	1763 1762 1765 1759 1758 1760	346 353 346 353 346 353	2.12 2.12 2.12 2.14 2.14 2.12 2.14	820 820 810 820 800	49.6 48.8 47.3 46.9 47.3 48.0	1021 1015 1034 1016 1033 1014	194 202 209 209 209 209	3.50 3.54 3.50 3.54 3.50 3.50	171 171 171 170 170 170	56.3 56.3 55.1 55.1 55.1 55.1	52.9 52.5 51.2 51.0 51.2 51.6
1400 1400 1400 1400 1400 1400	1227 1226 1226 1223 1224 1227	734 727 734 727 727 727 727	2.08 2.05 2.10 2.10 2.07 2.07	1990 1990 1980 1980 1980 1990	46.9 47.3 48.0 48.8 49.2 48.8	671 668 669 670 669 671	871 871 864 864 864 864	3.50 3.47 3.50 3.47 3.50 3.47	162 162 162 162 162 162	54.3 55.1 55.1 55.1 55.9 55.1	50.6 51.2 51.6 52.0 52.5 52.0
1400 1400 1400 1400 1400 1400	1257 1258 1258 1255 1255 1255	605 605 605 598 598 598	2.08 2.10 2.07 2.07 2.07 2.08	1610 1600 1610 1610 1600 1600	46.9 47.7 48.4 49.2 49.6 48.8	696 692 695 694 692 693	655 655 655 655 648 655	3.50 3.47 3.50 3.54 3.47 3.57	165 165 164 164 164 165	53.9 53.9 55.1 55.1 55.1 55.1	50.4 50.8 51.8 52.1 52.3 52.0
1400 1400 1400 1400 1400 1400	1300 1302 1300 1301 1299 1304	468 461 461 461 461 468	2.10 2.08 2.08 2.07 2.07 2.07 2.08	1210 1210 1210 1200 1200 1220	47.3 48.0 48.8 49.6 50.0 48.8	722 725 723 722 721 721	432 432 432 432 432 432 439	3.54 3.47 3.54 3.54 3.54 3.54	166 166 165 166 166	53.9 53.9 55.1 55.1 55.1 55.1	50.6 51.0 52.0 52.3 52.5 52.0
1400 1400 1400 1400 1400 1400	1332 1328 1329 1330 1328 1333	331 331 331 338 331 331	2.08 2.08 2.08 2.08 2.08 2.08 2.08	810 820 820 830 820 810	46.5 46.9 47.7 48.0 49.2 50.0	746 754 761 747 730 746	223 223 230 223 216 223	3.54 3.54 3.50 3.54 3.54	167 167 166 166 166	53.1 52.0 53.9 53.9 55.1	49.8 49.4 50.8 51.0 52.1 52.5

APPENDIX L

AVERACED DATA AT APPROXIMATELY ONE-HALF DISPLACEMENT

Np no load	Np	Tp	Dp	Ps	Nm	Tn	Dm	Pc	ΔP
2200	2033	775	2.12	2007	1097	875	3.67	177	1830
2200	2065	643	2.12	1632	1134	652	3.62	177	1455
2200	2098	512	2.13	1228	1176	420	3.61	179	1049
2200	2127	372	2.13	825	1211	204	3.61	178	647
1800 1800 1800 1800	1646 1690 1731 1761	756 628 490 350	2.12 2.12 2.12 2.12 2.13	1993 1620 1225 815	917 953 994 1022	849 641 425 205	3.50 3.54 3.53 3.51	169 169 171 171	1824 1451 1054 644
1400	1226	728	2.08	1985	670	866	3.49	162	1823
1400	1256	602	2.08	1605	694	654	3.51	165	1440
1400	1301	465	2.08	1208	722	433	3.53	166	1042
1400	1330	332	2.08	818	747	223	3.53	166	652

APPENDIX M

COMPARISON OF MODEL B AND MEASURED VALUES AT APPROXIMATELY THREE-FOURTHS DISPLACEMENT

AHPp eas	+0.86 +0.42 +0.82 +0.82	+1.08 +0.95 +0.99 +1.01	+1.03 +0.91 +0.82 +0.96
ATP a - m	+28 +10 +22 +22	+23 +10 +22 +22	+++ +++ +++ ++++ +++++++++++++++++++++
∆Np cal	+ + + + + + + + + + + + + + + + + + +	52 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+ + + + + + + + + + + + + + + + + + +
HPp/HPp tsured	1.0253 1.0145 1.0365 1.0531	1.0427 1.0427 1.0559 1.0797	1.0536 1.0554 1.0625 1.1021
Tp/Tp ated/mea	1.0258 1.0110 1.0291 1.0452	1.0215 1.0114 1.0328 1.0328	1.0198 1.0197 1.0260 1.0673
Np/Np calcul	0.9995 1.0035 1.0072 1.0076	1.0208 1.0310 1.0223 1.0163	1.0332 1.0350 1.0356 1.0356
HPp calc	34.78 29.49 23.41 17.19	26.38 22.97 18.60 13.69	20.31 17.36 13.95 10.29
Tp calc	1112 916 708 509	1094 888 692 494	1083 880 672 476
Np calc	1971 2029 2084 2129	1520 1630 1694 1746	1182 1243 1308 1362
Dm	5.39 5.40 5.41	2.2.2.2 3.2.2.2 4.1.1	5.42 5.40 5.40 5.40 5.40 5.40
Tu meas	1374 1046 696 362	1410 1074 725 386	1420 1080 734 403
Nn meas	1101 1139 1178 1208	829 940 982 982	637 678 719 757
HPp meas	33.92 29.07 22.59 16.33	25.30 22.02 17.61 12.68	19.28 16.45 13.13 9.33
ත්	3.19 3.19 3.19	3.19 3.19 3.19	3.22 3.19 3.19
Tp meas	1084 906 688 487	1071 878 670 465	1062 863 655 446
Np meas	1972 2022 2069 2113	1489 1581 1657 1718	1144 1201 1263 1319

APPENDIX N

COMPARISON OF MODEL B AND MEASURED VALUES AT APPROXIMATELY ONE-HALF DISPLACEMENT

ΔHPp eas	+++ + + + + + + + + + + + + + + + + +	+++ ++ 65 55 55 55	+++ + 16 16 16 16 16
ATP c - m	±435 ±535	+33 +33 +55 +53 +55	+ 1 32 + 32 8 + 3 8 + 3 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8
ANp cal	÷\$\$\$\$	\$ \$ \$\$\$	+22 +52 +62 +62
HPp/HPp sured	1.0569 1.0730 1.0847 1.1512	1.0719 1.0862 1.1246 1.1246	1.1079 1.1092 1.1214 1.1564
Tp/Tp ated/mea	1.0400 1.0607 1.0684 1.1263	1.0489 1.0525 1.0857 1.1400	1.0481 1.0498 1.0688 1.1145
Np/Np calcul	1.0162 1.0116 1.0153 1.0221	1.0219 1.0320 1.0358 1.0256	1.0571 1.0565 1.0492 1.0466
HPp calc	26.42 22.61 18.49 14.45	21.16 18.29 15.13 11.43	15.69 13.31 10.76 8.17
Tp calc	806 682 547 419	793 532 399	763 632 797 370
Np calc	2066 2089 2130 2174	1682 1744 1793 1806	1296 1327 1365 1365
Dm	3.67 3.62 3.61 3.61	5555 2555	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Tm meas	875 652 420 204	849 641 425 205 205	866 654 1,33 223
Nm meas	1097 1134 1176 1211	917 953 994 1022	670 694 722 747
HPp meas	25.00 21.07 17.04 12.55	19.74 16.84 13.46 9.78	14.16 12.00 9.60 7.01
đđ	2.12 2.13 2.13 2.13	2.12 2.12 2.12 2.13 2.13	2.08 2.08 2.08 2.08
Tp meas	775 643 512 372	756 628 490 350	728 602 1465 332
Np meas	2033 2065 2065 2098 2127	1646 1690 1731 1761	1226 1256 1301 1330

APPENDIX O

COMPARISON OF MODEL C AND MEASURED VALUES AT APPRCXIMATELY THREE-FOURTHS DISPLACEMENT
AHPp eas	+0.26 -0.19 +0.23	40.58 40.58 40.58	40.81 40.67 40.56
ATp 2 - m	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++ <u>+</u> 2222
ANP cale	- + + + + + + + + + + + + + + + + + + +	£2222	±±±53 ±±53
HPp/HPp sured	1.0078 0.9935 1.0102 1.0154	1.0284 1.0251 1.0324 1.0463	1.0420 1.0410 1.0427 1.0743
Tp/Tp ated/mea	1.0083 0.9901 1.0029 1.0082	1.0075 0.9943 1.0104 1.0301	1.0085 1.0058 1.0076 1.0404
Np/Np calcul	0.9995 1.0035 1.0072 1.0072	1.0208 1.0310 1.0217 1.0157	1.0332 1.0350 1.0348 1.0326
HPp calc	34.18 28.88 22.82 16.58	26.02 22.58 18.19 13.26	20.09 17.12 13.69 10.03
Tp calc	1093 897 690 491	1079 873 677 479	1071 868 660 464
Np calc	1971 2029 2084 2128	1520 1630 1693 1745	1182 1243 1307 1362
Da	5.40 40 41 40	2844 2844	7.7.7.7 5.63.3 6.53
Tm meas	1374 1046 696 362	1410 1074 725 386	1420 1080 734 403
Nm meas	1101 1139 1178 1208	829 940 982 982	637 678 719 757
HFp meas	33.92 29.07 22.59 16.33	25.30 22.02 17.61 12.68	19.28 16.45 13.13 9.33
Dp	3.19 3.19 3.19 3.19	3.19 3.19 3.19 3.19	3.22 3.20 3.19 3.19
Tp meas	1084 906 688 487	1071 878 670 465	1062 863 655 1446
Np meas	1972 2022 2069 2113	1489 1581 1657 1718	1144 1201 1263 1319

APPENDIX P

COMPARISON OF MODEL C AND MEASURED VALUES AT APPROXIMATELY ONE-HALF DISPLACEMENT

AHPp eas	+0.29 +0.40 +0.31	40.64 40.84 40.84	+1.04 +0.81 +0.66 +0.66
ATP c - m	1+++ 6926	+ + + + + + + + + + + + + + + + + + +	+12 + 7 +16
∆Np cal	\$\$\$\$\$	££24‡	+69 +70 +63 +61
HPp/HPp sured	1.0118 1.0190 1.0183 1.0573	1.0321 1.0379 1.0627 1.0865	1.0737 1.0680 1.0687 1.0687 1.0963
'Tp/Tp ated/mea	0.9961 1.0078 1.0039 1.0349	1.0106 1.0064 1.0265 1.0600	1.0165 1.0116 1.0194 1.0482
Np/Np calcul	1.0157 1.0111 1.0143 1.0143 1.0216	1.0213 1.0314 1.0352 1.0250	1.0563 1.0557 1.0484 1.0459
HPp calc	25.29 21.47 17.35 13.27	20.38 17.48 14.30 10.63	15.20 12.81 10.26 7.68
Tp calc	772 648 514 385	764 503 371	740 609 348
Np calc	2065 2088 2128 2173	1681 1743 1792 1805	1295 1326 1364 1391
Dm	3.67 3.62 3.61 3.61	8.4.6.4 8.4.6.4	8.5.5.5 8.5.5.5 8.5.5.5 8.5.5 5.5 5.5 5.
Tm meas	875 652 120 204	849 641 425 205	866 654 1433 223
Nm meas	1097 1134 1176 1211	917 953 994 1022	670 694 722 747
HPp meas	25.00 21.07 17.04 12.55	19.74 16.84 13.46 9.78	14.16 12.00 9.60 7.01
ដឹ	2.12 2.13 2.13 2.13	2.12 2.12 2.13 2.13	2.08 2.08 2.08
Tp meas	775 643 372 372	756 628 490 350	728 602 1465 332
Np meas	2033 2065 2065 2098 2127	1646 1690 1731 1761	1226 1256 1301 1330

APPENDIX Q

COMPARISON OF SUNDSTRAND PUMP DATA AND MODEL C

Δ Ρ	Np	HPmp Sund	HPep Sund	HPp Sund	HFp calc	HPp/HPp <u>calc</u> Sund	∆HPp calc - Sund
3000	500	16.80	0.19	16.99	17.00	1.0006	+0.01
3000	750	25.55	0.33	25.88	25.54	0.9869	-0.34
3000	1000	34.30	0.48	34.78	34.12	0.9810	-0.66
3000	1250	43.05	0.63	43.68	42.72	0.9780	-0.96
3000	1500	51.80	0.78	52.58	51.35	0.9766	-1.23
3000	•1750	60.55	0.96	61.51	60.02	0.9758	-1.49
3000	2000	69.30	1.13	70.43	68.71	0.9756	-1.72
3000	2250	78.05	1.31	79.36	77.43	0.9757	-1.93
3000	2500	86.80	1.49	88.29	86.18	0.9761	-2.11
3000	2750	95.55	1.70	97.25	94.96	0.9765	-2.29
5000	500	27.50	0.19	27.69	27.92	1.0083	+0.23
5000	750	41.70	0.33	42.03	41.93	0.9976	-0.10
5000	1000	55.90	0.48	56.38	55.96	0.9926	-0.42
5000	1250	70.10	0.63	70.73	70.03	0.9901	-0.70
5000	1500	84.30	0.78	85.08	84.12	0.9887	-0.96
5000	1750	98.50	0.96	99.46	98.25	0.9878	-1.21
5000	2000	112.70	1.13	113.83	112.40	0.9874	-1.43
5000	2250	126.90	1.31	128.21	126.58	0.9873	-1.63
5000	2500	141.10	1.49	142.59	140.79	0.9874	-1.80
5000	2750	155.30	1.70	157.00	155.03	0.9875	-1.97

APPENDIX R

COMPARISON OF SUNDSTRAND MOTOR DATA AND MODEL C

Δ₽	Nm	Tm Sund	Tm calc	Tm/Tm <u>calc</u> Sund	∆Tm calc - Sund
3000	250	3190	3339	1.0467	+149
3000	500	3260	3333	1.0224	+ 73
3000	750	3300	3328	1.0085	+ 28
3000	1000	3280	3322	1.0128	+ 42
3000	1250	3260	3316	1.0172	+ 56
3000	1500	3240	3310	1.0216	+ 70
3000	1750	3220	3305	1.0264	+ 85
3000	2000	3200	3299	1.0309	+ 99
3000	2250	3180	3293	1.0355	+113
5000	250	5410	5635	1.0416	+225
5000	500	5500	5629	1.0235	+129
5000	750	5520	5624	1.0188	+104
5000	1000	5510	5618	1.0196	+108
5000	1250	5500	5612	1.0204	+112
5000	1500	5490	5607	1.0213	+117
5000	1750	5480	5601	1.0221	+121
5000	2000	5460	5595	1.0247	+135
5000	2250	5440	5589	1.0274	+149

APPENDIX S

SUNDSTRAND EFFICIENCY DATA

ΔΡ	Np	η νp	ηp	Nm	n vm	ηm	η ν	η
3000	500	0.938	0.886	252	0.912	0.850	0.855	0.753
3000	750	0.949	0.900	395	0.943	0.888	0.895	0.799
3000	1000	0.954	0.906	535	0.953	0.903	0.909	0.818
3000	1250	0.957	0.907	674	0.958	0.908	0.917	0.824
3000	1500	0.958	0.907	813	0.962	0.911	0.922	0.826
3000	1750	0.959	0.906	954	0.966	0.913	0.926	0.827
3000	2000	0.959	0.904	1092	0.968	0.915	0.928	0.827
3000	2250	0.960	0.901	1233	0.970	0.915	0.931	0.824
3000	2500	0.961	0.896	1373	0.971	0.914	0.933	0.819
3000	2750	0.962	0.891	1513	0.972	0.912	0.935	0.813
5000	500	0.875	0.838	213	0.827	0.780	0.724	0.654
5000	750	0.897	0.860	347	0.877	0.832	0.787	0.716
5000	1000	0.909	0.872	483	0.903	0.861	0.821	0.751
5000	12 <i>5</i> 0	0.916	0.878	616	0.914	0.874	0.837	0.767
5000	1500	0.919	0.882	749	0.923	0.883	0.848	0.779
5000	1750	0.921	0.883	882	0.930	0.891	0.857	0.787
5000	2000	0.922	0.883	1013	0.934	0.896	0.861	0.791
5000	2250	0.924	0.882	1147	0.938	0.899	0.867	0.793
5000	2500	0.925	0.881	1280	0.941	0.901	0.870	0.794
5000	2750	0.927	0.877	1414	0.943	0.902	0.874	0.791

APPENDIX T

MODEL C EFFICIENCY DATA

ΔP	Np	Tp	Nm	Tm	ην	η
3000	500	2143	87	3343	0.296	0.271
3000	750	2147	235	3340	0.533	0.487
3000	1000	2150	382	3335	0.649	0.593
3000	1250	2154	529	3333	0.719	0.655
3000	1500	2158	676	3330	0.766	0.695
3000	1750	2161	823	3325	0.799	0.724
3000	2000	2165	970	3322	0.824	0.744
3000	2250	2169	1117	3319	0.844	0.760
3000	2500	2173	1264	3316	0.859	0.772
3000	2750	2176	1411	3312	0.872	0.781
5000	500	3520	11	5641	0.037	0.035
5000	750	3523	158	5636	0.358	0.337
5000	1000	3527	305	5634	0.518	0.487
5000	1250	3531	452	5631	0.615	0.577
5000	1500	3535	599	5628	0.679	0.636
5000	1750	3538	746	5623	0.724	0.678
5000	2000	3542	893	5620	0.759	0.708
5000	2250	3546	1040	5617	0.786	0.732
5000	2500	3549	1188	5613	0.808	0.752
5000	2750	3553	1335	5610	0.825	0.767

APPENDIX U

COMPARISON OF SUNDSTRAND EFFICIENCY DATA AND MODEL C

∆n lculated	-0.482 -0.312 -0.225 -0.169	-0.103 -0.083 -0.064 -0.047	-0.619 -0.379 -0.264 -0.190	-0.109 -0.083 -0.061 -0.042
∆n¦t and - ca	+0.035 +0.021 +0.014 +0.012 +0.011	+0.013 +0.012 +0.015 +0.021	+0.043 +0.031 +0.025 +0.022 +0.018	+0.018 +0.014 +0.016 +0.018
∆nv Sundstr	-0.559 -0.362 -0.260 -0.198 -0.156	-0.127 -0.104 -0.087 -0.074 -0.063	-0.687 -0.429 -0.303 -0.222	-0.133 -0.081 -0.062 -0.062
n/n culated	0.360 0.610 0.725 0.725 0.841	0.875 0.900 0.922 0.943 0.943	0.054 0.471 0.648 0.752 0.816	0.861 0.895 0.923 0.947 0.970
nt/nt and/cal	1.040 1.024 1.016 1.013 1.013	1.015 1.013 1.017 1.024 1.024	1.024 1.034 1.027 1.027 1.024	1.020 1.015 1.017 1.020
դv/դv Sundstr	0.346 0.596 0.714 0.784	0.863 0.888 0.907 0.921 0.933	0.051 0.455 0.631 0.735 0.801	0.845 0.882 0.907 0.929 0.929
n calc	0.271 0.487 0.593 0.655 0.655	0.724 0.760 0.772 0.772 0.781	0.035 0.337 0.487 0.577 0.636	0.678 0.708 0.732 0.752 0.757
ηt calc	0.916 0.914 0.914 0.911 0.911	0.906 0.903 0.899 0.899 0.899	0.946 0.941 0.940 0.938 0.938	0.936 0.933 0.931 0.931 0.930
ην calc	0.296 0.533 0.649 0.719 0.766	0.799 0.824 0.844 0.859 0.872	0.037 0.358 0.518 0.615 0.679	0.724 0.759 0.786 0.808 0.825
ր Sund	0.753 0.799 0.818 0.824 0.826	0.827 0.827 0.824 0.819 0.813	0.654 0.716 0.751 0.767 0.767	0.787 0.791 0.793 0.794 0.794
nt Sund	0.881 0.893 0.900 0.899 0.899	0.893 0.891 0.885 0.878 0.878	0.903 0.915 0.915 0.916 0.916	0.918 0.919 0.915 0.913 0.905
ην Sund	0.855 0.895 0.909 0.917 0.922	0.926 0.928 0.933 0.933	0.724 0.787 0.821 0.837 0.837	0.857 0.861 0.867 0.870 0.870
Np	500 750 1000 1250 1500	1750 2000 2250 2750 2750	500 750 1250 1500	1750 2000 2250 2750
ΔP	3000 000 3000 000 3000 000	000000 000000 000000	5000 5000 5000 5000 5000 5000 5000 500	5000 5000 5000 5000 5000 5000

APPENDIX V

COMPARISON OF SUNDSTRAND PUMP DATA AND MODEL C WITHOUT VISCOSITY ALLOWANCE

ΔP	Np	HPmp Sund	HPep Sund	HPp Sund	HPp calc	HPp/HPp <u>calc</u> Sund	∆HPp calc - Sund
3000	500	16.80	0.19	16.99	17.14	1.0088	+0.15
3000	750	25.55	0.33	25.88	25.85	0.9988	-0.03
3000	1000	34.30	0.48	34.78	34.66	0.9965	-0.12
3000	1250	43.05	0.63	43.68	43.57	0.9975	-0.11
3000	1500	51.80	0.78	52.58	52.57	0.9998	-0.01
3000	1750	60.55	0.96	61.51	61.68	1.0028	+0.17
3000	2000	69.30	1.13	70.43	70.88	1.0064	+0.45
3000	2250	78.05	1.31	79.36	80.17	1.0102	+0.81
3000	2500	86.80	1.49	88.29	89.57	1.0145	+1.28
3000	2750	95.55	1.70	97.25	99.06	1.0186	+1.81
5000	500	27.50	0.19	27.69	28.06	1.0134	+0.37
5000	750	41.70	0.33	42.03	42.23	1.0048	+0.20
5000	1000	55.90	0.48	56.38	56.51	1.0023	+0.13
5000	1250	70.10	0.63	70.73	70.88	1.0021	+0.15
5000	1500	84.30	0.78	85.08	85.34	1.0031	+0.26
5000	1750	98.50	0.96	99.46	99.91	1.0045	+0.45
5000	2000	112.70	1.13	113.83	114.57	1.0065	+0.74
5000	2250	126.90	1.31	128.21	129.33	1.0087	+1.12
5000	2500	141.10	1.49	142.59	144.18	1.0112	+1.59
5000	2750	155.30	1.70	157.00	159.13	1.0136	+2.13

APPENDIX W

COMPARISON OF SUNDSTRAND MOTOR DATA AND MODEL C WITHOUT VISCOSITY ALLOWANCE

ΔP	Nm	Tm Sund	Tm calc	Tm/Tm <u>calc</u> Sund	∆Tm calc - Sund
3000	250	3190	3326	1.0426	+136
3000	500	3260	3307	1.0144	+ 47
3000	750	3300	3288	0.9964	- 12
3000	1000	3280	3269	0.9966	- 11
3000	1250	3260	3250	0.9969	- 10
3000	1500	3240	3232	0.9975	- 8
3000	1750	3220	3213	0.9978	- 7
3000	2000	3200	3194	0.9981	- 6
3000	2250	3180	3175	0.9984	- 5
5000	250	5410	5622	1.0392	+212
5000	500	5500	5603	1.0187	+103
5000	750	5520	5584	1.0116	+ 64
5000	1000	5510	5565	1.0100	+ 55
5000	1250	5500	5546	1.0084	+ 46
5000	1500	5490	5528	1.0069	+ 38
5000	1750	5480	5509	1.0053	+ 29
5000	2000	5460	5490	1.0018	+ 30
5000	2250	5440	5471	1.00 <i>5</i> 7	+ 31

APPENDIX X

MODEL C WITHOUT VISCOSITY ALLOWANCE EFFICIENCY DATA

ΔP	Np	Tp	Nm	Tm	η ν	η
3000	500	2160	232	3327	0.789	0.715
3000	750	2172	379	3316	0.859	0.771
3000	1000	2185	526	3306	0.894	0.796
3000	1250	2197	673	3294	0.915	0.807
3000	1500	2209	820	3283	0.929	0.812
3000	1750	2221	967	3271	0.939	0.814
3000	2000	2234	1114	3261	0.947	0.813
3000	2250	2246	1261	3250	0.952	0.811
3000	2500	2258	1408	3238	0.957	0.808
3000	2750	2270	1555	3227	0.961	0.804
5000	500	3537	208	5625	0.707	0.662
5000	750	3549	355	5614	0.804	0.749
5000	1000	3561	503	5602	0.855	0.791
5000	1250	3574	650	5593	0.884	0.814
5000	1500	3586	797	5581	0.903	0.827
5000	1750	3598	944	5569	0.917	0.835
5000	2000	3610	1091	5558	0.927	0.840
5000	2250	3623	1238	5548	0.935	0.843
5000	2500	3635	1385	5537	0.942	0.844
5000	2750	3647	1532	5525	0.947	0.844

APPENDIX Y

COMPARISON OF SUNDSTRAND EFFICIENCY DATA AND MODEL C WITHOUT VISCOSITY ALLOWANCE

∆n lculated	-0.038 -0.028 -0.022 -0.017 -0.017	-0.013 -0.014 -0.011 -0.001	+0.008 +0.033 +0.040 +0.047 +0.048	+0.048 +0.049 +0.050 +0.050 +0.053
∆nt and - ca	+0.025 +0.005 -0.010 -0.017 -0.022	-0.032 -0.033 -0.034 -0.034	+0.033 +0.022 +0.010 +0.005 -0.003	-0.007 -0.013 -0.013 -0.017
∆nv Sundstr	-0.066 -0.036 -0.015 +0.002	+0.013 +0.019 +0.021 +0.024 +0.026	-0.017 +0.017 +0.034 +0.047	+0.060 +0.068 +0.068 +0.072 +0.073
n/n culated	0.950 0.965 0.973 0.973 0.983	0.984 0.983 0.984 0.987 0.987 0.987	1.012 1.046 1.053 1.061 1.062	1.061 1.062 1.063 1.063 1.063
ηt/ηt and/cal	1.028 1.006 0.989 0.981 0.975	0.971 0.964 0.963 0.963 0.962	1.037 1.024 1.011 1.005 0.997	0.992 0.986 0.986 0.981 0.985
ην/ην Sundstr	0.923 0.960 0.983 0.998 1.008	1.014 1.020 1.023 1.028 1.028	0.977 1.022 1.041 1.056 1.065	1.070 1.077 1.078 1.083 1.084
n calc	0.715 0.771 0.796 0.807 0.812	0.814 0.813 0.811 0.808 0.804 0.804	0.662 0.749 0.791 0.814 0.827	0.835 0.840 0.843 0.844 0.844
ηt calc	0.906 0.898 0.890 0.882 0.882 0.874	0.867 0.859 0.852 0.852 0.837	0.936 0.932 0.925 0.921 0.916	0.911 0.906 0.902 0.896 0.891
ην calc	0.789 0.859 0.894 0.915 0.929	0.939 0.947 0.952 0.957 0.957	0.707 0.804 0.855 0.884 0.903	0.917 0.927 0.935 0.942 0.947
ր Sund	0.753 0.799 0.818 0.824 0.824	0.827 0.827 0.824 0.819 0.819 0.813	0.654 0.7516 0.751 0.767 0.767	0.787 0.791 0.793 0.794 0.794
դt Sund	0.881 0.893 0.900 0.899 0.896	0.893 0.891 0.885 0.878 0.878 0.870	0.903 0.915 0.916 0.916 0.919	0.918 0.915 0.915 0.913 0.913
hu	0.855 0.895 0.909 0.917 0.922	0.926 0.928 0.931 0.933 0.935	0.724 0.787 0.821 0.837 0.837 0.848	0.857 0.861 0.867 0.870 0.870
dN	500 750 1250 1500	1750 2000 2250 2750 2750	500 750 1250 1500	1750 22000 2250 2500 2750
d∆	9000 9000 9000 9000 9000 9000 9000 900	9000 9000 9000 9000 9000	5000 5000 5000 5000	5000 5000 5000 5000

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Ralph O. Turnquist for serving as my major advisor during the course of my graduate study. His guidance and assistance helped to bring this work to a successful conclusion. I would also like to thank Dr. J. Garth Thompson and Dr. Stanley J. Clark for serving on my graduate committee.

I am also very thankful for the support and encouragement received from my family and friends, especially my wife, Carol.

VITA

David A. Pacey

Candidate for the Degree of

Master of Science

Thesis: DETERMINATION OF A COEFFICIENT MODEL FOR A HYDROSTATIC TRANSMISSION

Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Concordia, Kansas, September 1, 1952, the son of Franklin and Aurelia Pacey.
- Education: Attended grade school in Miltonvale, Kansas; graduated from Miltonvale High School in 1970, received the Bachelor of Science degree from Kansas State University, with a major in Agricultural Engineering, in May, 1974; completed requirements for the Master of Science degree in May, 1979.
- Professional Experience: Product Engineer at John Deere Waterloo Tractor Works, Waterloo, Iowa, from June, 1974 to August, 1977; Graduate Teaching Assistant in Mechanical Engineering Department at Kansas State University from August, 1977 to July, 1978; Instructor in Agricultural Engineering Department at Kansas State University from August, 1978 to present.
- Honorary and Professional Organizations: Member of American Society of Agricultural Engineers; Steel Ring, Kansas State University engineering honorary; Knight of St. Patrick, Kansas State University; Tau Beta Pi, engineering honorary.

DETERMINATION OF A COEFFICIENT MODEL FOR A HYDROSTATIC TRANSMISSION

Ъy

DAVID ANTHONY PACEY

B. S., Kansas State University, 1974

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

The application of automatic controls requires an understanding of the controlled process. Previous research through computer analysis had shown that cost of operation of a vehicle equipped with a hydrostatic transmission could be minimized with the use of automatic controls. The objective of this thesis was to determine and evaluate a model for a hydrostatic transmission to be used for determining the requirements of the automatic controller. Wilson's Model was chosen for initial evaluation. It is a coefficient model based on a simplified analytic development with experimentally determined coefficients.

A hydrostatic transmission with full instrumentation on a laboratory test stand provided the experimental test set-up. Speed, torque, and pressure data were taken at full displacement with constant oil temperature to determine the coefficients of the basic model.

The basic model, Model A, was evaluated at full displacement by comparing pump speed and torque valves calculated with the model to actual measured data. The model calculated speed 9.0 rpm high on the average with a standard deviation of 26.2 rpm. Torque was calculated 0.6 in.1b high on the average with a standard deviation of 7.6 in.1b.

Modifications were made to the flow equations of the basic model to provide better speed predictions. A change in the method of determination of the coefficients was also made to provide better torque predictions. Evaluation of this model, Model B, at full displacement showed speed and torque predictions to be much improved as especially evident in the lower values of standard deviation. Speed was calculated 1.7 rpm high on the average with a standard deviation of 16.7 rpm. Torque was calculated 0.7 in.1b high on the average with a standard deviation of 5.4 in.1b.

Model B was evaluated at partial displacements of the transmission by comparison to actual data. This evaluation revealed that torque losses needed to be represented as a function of transmission displacement. The model was further modified to Model C to make the viscous drag and dry friction torque losses functions of displacement. This change did not alter the model at full displacement from Model B. Evaluation of Model C showed much improved partial displacement calculations when compared to Model B. At one-half displacement, pump speed was calculated 48.9 rpm high on the average with a standard deviation of 16.2 rpm. Pump torque was calculated 8.9 in.lb high with a standard deviation of 6.6 in.lb.

Model C was then compared to the manufacturer's performance data at full displacement which were recorded with much less viscous oil. The model did have viscosity included in the viscous drag and leakage terms and should have accounted for the viscosity change; however, the only way that the model would give a good comparison was to use the viscosity value used in this research and not the manufacturer's test viscosity.

It was concluded that Model C provided a good transmission model at full and partial displacements but only if used with the same viscosity oil as used in this research. Further research and possible model modifications will be necessary to account for changing oil viscosity.