THE CHEMICAL GENERATION OF CARBENE ANION RADICALS

by

KUO-WEI LIN

TAIPEI INSTITUTE OF TECHNOLOGY, 1971

A MASTER'S THESIS

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Chemistry

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1973

Approved by:

[Signature]
Major Professor
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>OBJECTIVES OF THIS INVESTIGATION</td>
<td>6</td>
</tr>
<tr>
<td>EXPERIMENTAL RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>DISCUSSION OF EXPERIMENTAL RESULTS</td>
<td>16</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>28</td>
</tr>
<tr>
<td>EXPERIMENTAL SECTION</td>
<td>31</td>
</tr>
<tr>
<td>Benzophenone Hydrazone</td>
<td>31</td>
</tr>
<tr>
<td>Diphenyldiazomethane</td>
<td>31</td>
</tr>
<tr>
<td>Tetraphenylethylene</td>
<td>31</td>
</tr>
<tr>
<td>Tetraphenylethane</td>
<td>32</td>
</tr>
<tr>
<td>Benzophenone Azine</td>
<td>32</td>
</tr>
<tr>
<td>Benzhydrylamine</td>
<td>32</td>
</tr>
<tr>
<td>Diphenylmethane</td>
<td>32</td>
</tr>
<tr>
<td>Fluorenone Hydrazone</td>
<td>32</td>
</tr>
<tr>
<td>9-Diazofluorene</td>
<td>32</td>
</tr>
<tr>
<td>9,9'-Bifluorenylidene</td>
<td>33</td>
</tr>
<tr>
<td>9,9'-Bifluorenyl</td>
<td>33</td>
</tr>
<tr>
<td>Fluorene</td>
<td>34</td>
</tr>
<tr>
<td>9-Aminofluorene</td>
<td>34</td>
</tr>
<tr>
<td>Fluorenone Azine</td>
<td>34</td>
</tr>
<tr>
<td>Preparation of Sodium Naphthalene Solution</td>
<td>35</td>
</tr>
<tr>
<td>Reaction of Diphenyldiazomethane with Sodium</td>
<td>35</td>
</tr>
<tr>
<td>Naphthalene Solution (Slow, Dropwise Addition)</td>
<td>35</td>
</tr>
<tr>
<td>Reaction of Diphenyldiazomethane with Sodium Naphthalene Solution (Fast, Syringe Injection)</td>
<td>37</td>
</tr>
</tbody>
</table>
Reaction of Benzophenone Azine with Sodium Naphthalene Solution... 37
Reaction of 9-Diazofluorene with Sodium Naphthalene Solution (Slow, Dropwise Addition) 37
Reaction of 9-Diazofluorene with Sodium Naphthalene Solution (Fast, Syringe Injection) 38
Reaction of Fluorenone Azine with Sodium Naphthalene Solution... 38
Reaction of 9-Diazofluorene with Sodium-Ammonia Solution.. 39
Reaction of 9-Fluorenyl Anion with 9-Diazofluorene... 40
Reaction of 9-Fluorenyl Anion with CF₃COCD-D₂O... 40
Reaction of Fluorene with Sodium Naphthalene... 41
Calculation of Percentage Compositions of Deuterated Fluorene by 1H and 13C NMR Spectroscopy... 42
REFERENCES AND NOTES.. 44
ACKNOWLEDGMENTS.. 48
VITA.. 49
INTRODUCTION

The reactions of diphenyldiazomethane \((\text{Ph}_2\text{CN}_2)\) and 9-diazo-fluorene \((\text{F}1\text{N}_2)\) with powdered sodium in ether under \(\text{N}_2\) atmosphere were reported by Kauffman and Hage.\(^1\) Hydrolysis of the deep-blue solution derived from \(\text{F}1\text{N}_2\) gave 9,9'-bifluorenyl \((\text{F}1\text{H}-\text{F}1\text{H})\) (32\%) and in the presence of oxygen 9,9'-bifluorenylidene \((\text{F}1=\text{F}1)\) (28\%) and fluorenone azine \((\text{F}1=\text{N})_2\) (34\%) were produced. The deep-blue reduction solution obtained from \(\text{Ph}_2\text{CN}_2\) and sodium in ether behaved similarly upon hydrolysis. The proposed reaction intermediates were diazo anion radical-sodium complexes, \(\text{F}1\text{N}_2^{-}\text{Na}^+\) and \(\text{Ph}_2\text{CN}_2^{-}\text{Na}^+\), respectively.

\[
\text{F}1\text{N}_2^{-}\text{Na}^+ \quad \text{Ph}_2\text{CN}_2^{-}\text{Na}^+
\]

Webster\(^2\) reported that sodium iodide or bromide reacted with diazotetracyanocyclopentadiene \((\text{DTCC})\) to give halotetra-cyanocyclopentadiene, while sodium chloride required copper as a catalyst. If methanol or ethanol was present, the only product isolated, even with sodium iodide, was tetracyanocyclopentadienide. The mechanisms of these substitution-reductions appeared to be free radical.
In the above reactions the tetracyanocyclopentadienylide anion radical (TCC⁻) was proposed as the intermediate and could be generated polarographically at 0.23 V vs. SCE in acetonitrile or by mild reducing agents, such as copper powder, cuprous ion, or zinc powder. The structure of TCC⁻ was considered to be a \(\pi \)-anion \(\delta \)-radical (\(\pi^2 \delta^1 \)).

The reduction of 1 M 2,2-dichloro-3,3-dimethylbutane with 1 M sodium naphthalene (\(\text{Na}^+ \text{C}_{10}\text{H}_8^- \)) in 1,2-dimethoxyethane (DME) at 25°C was reported by Sargent, et al.,\(^3\) to yield 1,1,2-trimethylcyclopropane (19%), 3,3-dimethyl-1-butene (38%) and 3,3-dimethylbutane (11.5%). It was proposed that tert-butylmethylcarbene was generated and was further reduced to the carbene anion radical at a rate competitive with that of intramolecular C-H insertion.
\[
\text{Na}^+ \text{C}_{10}\text{H}_{8}^- + \text{CH}_3\text{C(CH}_3)_2\text{Cl}_2\text{CH}_3 \xrightarrow{\text{DME}} \xrightarrow{25^\circ C} \text{CH}_3 \\
\triangle \text{CH}_3 + (\text{CH}_3)_2\text{CCH=CH}_2 + (\text{CH}_3)_3\text{COH}_2\text{CH}_3
\]

Additional evidence for the formation of carbene anion radicals came in the reductions of methylene dihalides. Sargent, et al.,\(^4\) reported that the reduction of \(\text{CH}_2\text{Cl}_2\) in 60:40 (v/v) cyclohexene-DME with excess sodium naphthalene (Na\(^+\text{C}_{10}\text{H}_{8}^-\)) yielded low molecular weight hydrocarbons, such as, \(\text{CH}_4\), \(\text{CH}_2\text{=CH}_2\), \(\text{CH}_3\text{CH}_3\), and \(\text{CH}_3\text{CH}_2\text{CH}_3\), as the principal products of the reaction (>70\%) and norcarane in yields of less than 1%. Akylated naphthalenes and dihydronaphthalenes were also found in less than 30\% yield.

\[
\text{CH}_2\text{X}_2 + \text{Na}^+ \text{C}_{10}\text{H}_{8}^- \xrightarrow{\text{cyclohexene-DME}} \xrightarrow{\text{DME}} \text{CH}_4, \text{CH}_2\text{=CH}_2 + \text{CH}_3\text{CH}_3, \text{CH}_3\text{CH}_2\text{CH}_3
\]

The low yield of norcarane from the above reaction led to the conclusion that the rate of formation of methylene anion radical (\(\text{CH}_2^-\)) must be greater than that of the formation of norcarane and that \(\text{CH}_2^-\) must not itself readily add to cyclohexene. This was in keeping with Sargent's previous suggestion that tert-butylmethylcarbene could be reduced to the corresponding carbene anion radical at a rate competitive with that of intramolecular C-H insertion by the carbene.\(^3\) The constant, relative yield of ethylene generated by the reaction of the three methylene halides (\(\text{CH}_2\text{X}_2\), \(X = \text{Cl}, \text{Br}, \text{or I}\)) with sodium naphthalene indicated that \(\text{CH}_2^-\) could dimerize to form ethylene.
dianion, followed by electron transfer with naphthalene, or that an \(\text{CH}_2^-\text{CH}_2\text{X}_2 \) encounter could lead to formation of ethylene.

Lineberger, et al.\(^5\) reported that \(\text{CH}_2^- \) was generated by electron attachment to \(\text{CH}_2\text{N}_2 \) in the gas phase. The experiment of interest consisted of crossing a mass-analyzed \(\text{CH}_2^- \) beam with an argon ion laser operating at 488 nm (2.540 eV) and measuring the kinetic energy of the electron photoejected. Coupled with ab initio calculations and a Franck-Condon factor analysis, the electronic structure of \(\text{CH}_2^- \) was in good agreement with the experimental results. The structure of \(\text{CH}_2^- \) \((^2\text{B}_1) \) was determined to be \(r_e \approx 1.1 \) Å and \(\theta_e \approx 100^\circ \), and the energy separation between \(\text{CH}_2 \left(^1\text{A}_1 \right) \) and \(\text{CH}_2 \left(^3\text{B}_1 \right) \) was found to be \(19.5 \pm 0.7 \) kcal/mol.

Recently, the electrochemical reduction of \(\text{Ph}_2\text{CN}_2 \) in 0.1 M DMSF-Et_4N^+ClO_4^- has been reported by McDonald, January, Borhani, and Hawley.\(^6\) The products were diphenylmethane (\(\text{Ph}_2\text{CH}_2 \)), benzophenone azine (\(\text{Ph}_2\text{C}=\text{N}^-\text{Ph}_2 \)) and benzophenone (\(\text{Ph}_2\text{C}=\text{O} \)); the ketone was mistakenly identified as diphenylmethylamine (\(\text{Ph}_2\text{CHNH}_2 \)) in the paper.\(^6\) Diphenylcarbene anion radical (\(\text{Ph}_2\text{C}^- \)) was generated at -1.68 V vs. SCE from the chemically irreversible reduction of \(\text{Ph}_2\text{CN}_2 \). The results were believed to be consistent with a radical chain process. \(\text{Ph}_2\text{C}^- \) was considered to behave primarily as a radical species in its reaction producing \(\text{Ph}_2\text{CH}_2 \). Dimerization of \(\text{Ph}_2\text{C}^- \) was ruled out as an important reaction channel since only trace amounts of tetraphenylethene (\(\text{Ph}_2\text{C}^-\text{CPh}_2 \)) and tetraphenylethane (\(\text{Ph}_2\text{CH}\text{CHPh}_2 \)) were detected by
chromatographic methods.

These results were quite different from those reported by Elofson, et al.,\(^7\) for the electrochemical reduction of \(\text{Ph}_2\text{CN}_2\) in sulfolane. In this case the products were \(\text{Ph}_2\text{CH}_2\) (40%), \(\text{Ph}_2\text{CHNH}_2\) (20%), and nitrogen. However, the decomposition of \(\text{Ph}_2\text{CN}_2^-\) was suggested to occur by protonation to give \(\text{Ph}_2\text{CHN}_2^+\), which then either loses nitrogen to give benzhydryl radical and ultimately \(\text{Ph}_2\text{CH}_2\), or couples with benzhydryl radical to give azodiphenylmethane. Reduction of this azo compound was postulated to give \(\text{Ph}_2\text{CHNH}_2\).

Electrochemical reduction of \(\text{FlN}_2\) in \(\text{DMF}-(\text{n-Bu})_4\text{N}^+\text{ClO}_4^-\) afforded the azine, \((\text{Fl}=\text{N})_2\), in high yield (91±7%).\(^8\) Fluorenone (\(\text{Fl}=0\)) was observed as a minor product when electrolysis was effected in the presence of adventitious amounts of oxygen. Neither fluorene nor any dimeric product was detected by gas chromatography in other than trace amount (<0.5%). It was proposed that fluorenylidene anion radical (\(\text{Fl}^+\)) was generated by reduction of \(\text{FlN}_2\) at -1.35 V vs. SCE from fast, unimolecular, irreversible decomposition of \(\text{FlN}_2^-\). The increased production of the corresponding azine and concomitant decrease in the amount of hydrocarbon product from \(\text{Fl}^+\) compared to \(\text{Ph}_2\text{C}^+\) under similar electrochemical conditions was believed due to the dual relative reactivities of the two carbene anion radicals. Significantly, a reversible redox couple attributed to \(\text{Fl}^+/\text{Fl}^+\) was observed in this study.
OBJECTIVES OF THIS INVESTIGATION

The objectives of this investigation were:

1. To explore certain chemical reductions of diazo compounds (R₂CN₂) to yield the corresponding carbene anion radicals.

2. To study solvent effects on radical vs anion reactivities of these carbene anion radicals.

3. To investigate the possibility that 9-fluorenyl anion would react with F₁N₂.
EXPERIMENTAL RESULTS

Using the procedure of Miller, \(\text{Ph}_2\text{CN}_2 \) was synthesized as dark red crystals, mp 29-30°C, after recrystallization from petroleum ether (bp 35-60°C). Using double the volume of absolute ethanol saturated with potassium hydroxide, the yield of \(\text{Ph}_2\text{CN}_2 \) could be increased to 92% compared to 89% in the old method. The ir and nmr spectra are consistent with the structure of \(\text{Ph}_2\text{CN}_2 \). To prevent decomposition, \(\text{Ph}_2\text{CN}_2 \) was stored in a freezer. Since \(\text{Ph}_2\text{C}=\text{N}^+ \) was a major product in the electrochemical reduction of \(\text{Ph}_2\text{CN}_2 \), \(^6\) the azine was prepared by reaction of \(\text{Ph}_2\text{CN}_2 \) with \(\text{BF}_3\cdot\text{Et}_2\text{O} \) in ether at 0°C, \(^10\) and was obtained as pale yellow rods, mp 162-163°C, in 70% yield. The second expected product from reduction of \(\text{Ph}_2\text{CN}_2 \), \(\text{Ph}_2\text{CH}_2 \), was prepared by Wolff-Kishner reduction of benzophenone. \(^11\) Other possible products, \(\text{Ph}_2\text{CH}-\text{CHPh}_2 \) (Columbia Organic), \(\text{Ph}_2\text{C}=\text{CPh}_2 \) (Aldrich), and \(\text{Ph}_2\text{CHNH}_2 \) (Aldrich), were purchased from commercial sources and their purities checked by mp, and ir and nmr spectroscopy.

The dark-green \(\text{Na}^+\text{C}_{10}\text{H}_8^- \) solution was prepared from a mixture of sodium and excess naphthalene in THF at -12°C under an argon atmosphere according to the procedure of Vora and Holy. \(^12\) The mixture was stirred under an argon atmosphere for over 24 hr before two 5-ml aliquots were removed, quenched in 50-ml portions of water, and titrated for total base with standardized hydrochloric acid solution to a phenolphthalein
The first experiment was to add crystals of Ph$_2$CN$_2$ to the Na$^+$_C$_{10}$H$_8$ solution in THF cooled to -12°C. After the solvent was removed, isolation of the products gave both (Ph$_2$C=N)$_2$ and Ph$_2$CHNH$_2$ along with unknown residues.

The reduction of (Ph$_2$C=N)$_2$ with excess Na$^+$C$_{10}$H$_8$ solution at -12°C under an argon atmosphere was carried out to yield Ph$_2$CHNH$_2$ in 98% yield after correcting for known loss of amine in the work-up procedure. The correction factor, 1.19 (100/-83.8), for recovered yield of amine was determined by following the same extraction procedure with a weighed amount of Ph$_2$CHNH$_2$.

A solution of Ph$_2$CN$_2$ in dry THF in a pressure-equalized addition funnel was added dropwise to an excess of Na$^+$C$_{10}$H$_8$ in THF, cooled to -12°C, over a period of 0.5 hr (runs 1-3, Table I). After distilled water was added, the color of the mixture changed from dark to light brown. The THF was evaporated and ether was added. The two-phase mixture was separated and the ether layer extracted with 10% HCl solution. The aqueous acidic solution was basified to pH ~13 with 10% NaOH solution and extracted with ether. The ether extracts were washed with distilled water, saturated NaCl solution, and dried. After solvent removal, Ph$_2$CHNH$_2$ was obtained and identified by use of ir and nmr spectroscopy, and mp of an amine derivative in comparison to those of authentic Ph$_2$CHNH$_2$. Correcting the isolated yield of Ph$_2$CHNH$_2$ for known losses during work-up gave 83±2% yield of the amine.
Table I. Product Analysis for the Reaction of Ph\textsubscript{2}CN\textsubscript{2} with Sodium Naphthalene Solution in THF at -12°C.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Method of Addition</th>
<th>Ph\textsubscript{2}CN\textsubscript{2} mM</th>
<th>Na+C\textsubscript{10}H\textsubscript{8}- mM</th>
<th>Product, % Yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slowd</td>
<td>15.7</td>
<td>62.8</td>
<td>Ph\textsubscript{2}CH\textsubscript{2} b 13, Ph\textsubscript{2}CHNH\textsubscript{2} c 84</td>
</tr>
<tr>
<td>2</td>
<td>Slowd</td>
<td>19.9</td>
<td>79.6</td>
<td>10, 82</td>
</tr>
<tr>
<td>3</td>
<td>Slowe</td>
<td>15.8</td>
<td>159.0</td>
<td>17, 85</td>
</tr>
<tr>
<td>4</td>
<td>Fastf</td>
<td>10.4</td>
<td>52.2</td>
<td>4, 91</td>
</tr>
<tr>
<td>5</td>
<td>Fastf</td>
<td>10.3</td>
<td>51.6</td>
<td>5, 93</td>
</tr>
</tbody>
</table>

aTetraphenylethane and benzophenone azine were detected only in trace amounts by gas chromatography. bThese were obtained from calculation of ratio of aromatic hydrogens on nmr. cThese were corrected by multiplying the isolated yield by the recovery factor (1.19). dDropwise addition of Ph\textsubscript{2}CN\textsubscript{2} in 150 ml of THF to Na+C\textsubscript{10}H\textsubscript{8}- in 400 ml of THF over a period of one hr. eDropwise addition of Ph\textsubscript{2}CN\textsubscript{2} in 100 ml of THF to Na+C\textsubscript{10}H\textsubscript{8}- in 400 ml of THF over a period of 0.5 hr. fSyringe injection of Ph\textsubscript{2}CN\textsubscript{2} in 10 ml of THF to Na+C\textsubscript{10}H\textsubscript{8}- in 200 ml of THF over a period of 5 sec.
The neutral products of the reaction were obtained. These products were separated by sublimation at 35°C and 0.2 torr. The nmr spectrum of the sublimate showed only the presence of naphthalene, 1,4-dihydronaphthalene, and \(\text{Ph}_2\text{CH}_2 \). Since the nmr absorption of these three components are cleanly separated from one another, the amount of \(\text{Ph}_2\text{CH}_2 \) was determined to be 11±2% for runs 1 and 2, Table I. In run 3, Table I, the \([\text{Na}^+\text{C}_10\text{H}_8^-]/[\text{Ph}_2\text{CN}_2]\) mole ratio was increased from 4 to 10 with an increase in the amount of \(\text{Ph}_2\text{CH}_2 \) (17%) produced. The residue remaining in the sublimation tube was checked by mass spectrometry and appeared to be polymeric dihydronaphthalene. Only trace amounts of \(\text{Ph}_2\text{CH}-\text{CHPh}_2 \) and \((\text{Ph}_2\text{C}=\text{N})^- \) were found in this residue by gas chromatography.

A solution of \(\text{Ph}_2\text{CN}_2 \) in dry THF was syringe injected into a solution of \(\text{Na}^+\text{C}_10\text{H}_8^- \) in THF, cooled to -12°C, over a period of 5 sec (runs 4 and 5, Table I). Isolation and identification of the products as described above in the slow additions resulted in \(\text{Ph}_2\text{CHNH}_2 \) (92±1%) and \(\text{Ph}_2\text{CH}_2 \) (5±1%).

The preparation of \(\text{FlN}_2 \) was similar to the method described above for the synthesis of \(\text{Ph}_2\text{CN}_2 \). Recrystallization from petroleum ether (bp 35-60°C) gave orange-red needles, \(\text{mp} 94-95°C \); the ir and nmr spectra agreed with this structure. To avoid decomposition, \(\text{FlN}_2 \) was stored in a freezer. Since

\[
\begin{align*}
\text{Fl}=0 & \xrightarrow{\text{Na}_2\text{H}_4, \text{EtOH}} \text{Fl}=\text{NNH}_2 & \xrightarrow{\text{HgC}, \text{Et}_2\text{O}} \text{FlN}_2 \\
(52\%) & \xrightarrow{\text{Na}_2\text{SO}_4, \text{KOH}-\text{EtOH}} (80\%)
\end{align*}
\]
the electrochemical reduction of F1N2 yielded (Fl=N→2 in high
gen, it was prepared from a mixture of Fl=0, N2H4 (95%),
and KOH-EtOH in ethanol. Recrystallization from xylene gave
violet needles of (Fl=N→2, mp 268-269°C, in 80% yield. Another
possible product from reduction of F1N2, 9,9'-bifluorenyl (FlH-
FlH) was prepared in 15% yield by the reaction of (Fl=N→2 with
N2H4 (95%) in the presence of KOH in diethylene glycol. F1H-
FlH was obtained as white needles, mp 244-245°C, after recryst-
allization from benzene-ethanol (1:2). A third possible pro-
duct, 9,9'-bifluorenylidene (Fl=Fl), was prepared in 91% yield
from coupling of Fl=0 with McMurray's reagent (4TiCl3-
LiAlH4). After recrystallization from CHCl3-EtOH (1:1),
Fl=Fl was obtained as orange needles, mp 194-195°C. The other
expected product, fluorene (FlH2) (Eastman), Fl=0 (Eastman),
and 9-aminofluorene (FlHNH2) obtained from 9-aminofluorene
hydrochloride (Aldrich), were purchased from commercial sources
and their purities checked by mp, and ir and nmr spectroscopy.
FlHNH2 was obtained from neutralization of 9-aminofluorene
hydrochloride with 10% NaOH solution. Recrystallization of
the amine from n-hexane yielded white needles, mp 64-65°C.
The reduction of (Fl=N→2 with excess Na+ C10H8− solution
was carried out to yield FlHNH2 in 100% yield, after correct-
ing for known losses of amine in the work-up procedure. The
correction factor, 1.19 (100/83.8), was determined by follow-
ing the same extraction procedure with a weighed amount of
FlHNH2.
The reductions of F1N2 with excess Na+ C10H8− followed the
same procedures described above in the slow and fast additions of Ph₂CN₂ in dry THF to a THF solution of Na⁺C₁₀H₈⁻, and the results are listed in Table II. The same procedures for separation of the reaction products were applied to give FlHNH₂ which was identified by comparison to the mp, and ir and nmr spectra of an authentic sample. Naphthalene and 1,4-dihyronaphthalene were removed by sublimation and the yellow residue contained FlH₂ (identified by nmr spectroscopy and glpc). The yield of FlH₂ was determined by adding 1,3,5-trinitrobenzene as an internal standard and integrating the nmr spectrum of this mixture. Fl=Fl and FlH-FlH were detected in trace amounts by glpc of this same residue. From the slow addition of FlN₂, 40±2% of FlH₂ and 53±3% of FlHNH₂ (runs 1 and 2, Table II) were obtained. Fast addition of FlN₂ led to a reduced amount of FlH₂ (12%) with a concomitant increase in the quantity of FlHNH₂ (88%) (run 4, Table II). Run 3 is included in Table II to illustrate the dependence of the amount of the hydrocarbon FlH₂ produced on the amount of reducing agent present.

To investigate the effects of solvent on the nature of the reduction products, sodium in liquid ammonia (Na/NH₃) was examined as the reducing media with FlN₂. The reaction between (Fl=N>₂ and excess Na in liquid NH₃ failed to give FlHNH₂, but did lead to extensive ring reductions (Birch reduction). Thus, it was decided to run the reaction with a 1:1 FlN₂/Na mole ratio. The reaction of FlN₂ with Na/NH₃ solution under an argon atmosphere at -34°C was carried out to yield Fl=Fl (3±1%), FlH-FlH (4±1%), (Fl=N>₂ (79±0%), and Fl=0 (6±1%) as listed in
Table II. Product Analysis for the Reaction of FlN₂ with Sodium Naphthalene Solution in THF at -12°C.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Method of Addition</th>
<th>FlN₂ (mM)</th>
<th>Na⁺C₁₀H₈⁻ (mM)</th>
<th>Product, % Yielda</th>
<th>FlH₂b</th>
<th>FlHNH₂c (Fl=N)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slowd</td>
<td>15.6</td>
<td>156.5</td>
<td>42</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Slowd</td>
<td>15.1</td>
<td>151.0</td>
<td>39</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Faste</td>
<td>9.7</td>
<td>38.8</td>
<td>7</td>
<td>77</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Faste</td>
<td>11.3</td>
<td>112.3</td>
<td>12</td>
<td>88</td>
<td>-</td>
</tr>
</tbody>
</table>

a9,9'-Bifluorenylidene and 9,9'-bifluorenyl were found in trace amounts by gas chromatography. bEmploying 1,3,5-trinitrobenzene as an internal standard in the nmr determination. cCorrected for recovery factor (1.19). dDropwise addition of FlN₂ in 100 ml of THF to Na⁺C₁₀H₈⁻ in 400 ml of THF over a period of 0.5 hr. eSyringe injection of FlN₂ in 10 ml of THF to Na⁺C₁₀H₈⁻ in 200 ml of THF over a period of 5 sec.
Table III. Product Analysis for the Reaction of FlN$_2$ with Na/NH$_3$ Solution at -34°C by Fast Syringe Injection Method.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Na/NH$_3$ a (mM)</th>
<th>FlN$_2$ b (mM)</th>
<th>Product, % Yield c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>F1=0</td>
</tr>
<tr>
<td>1</td>
<td>10.2</td>
<td>10.2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10.2</td>
<td>10.4</td>
<td>7</td>
</tr>
</tbody>
</table>

aAssumed the reaction of Na with 100 ml of NH$_3$ was 100%. bIn 10 ml of THF. cSeparation of these components was achieved by silica gel column chromatography.

Table IV. Product Analysis for the Reaction of FlN$_2$ with 9-Fluorenyl Anion in 100 ml of THF at -12°C.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>FlN$_2$ (mM)</th>
<th>FlH$_2$ (mM)</th>
<th>PhLi (mM)</th>
<th>Product, mM a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F1H$_2$</td>
</tr>
<tr>
<td>1</td>
<td>11.0</td>
<td>15.1</td>
<td>10.8</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.8)</td>
<td></td>
<td>(7.4)</td>
</tr>
<tr>
<td>2</td>
<td>10.9</td>
<td>12.5</td>
<td>10.9</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.9)</td>
<td></td>
<td>(5.6)</td>
</tr>
</tbody>
</table>

aThe two major components were separated by column chromatography; a trace amount of F1=F1 was found by glpc of the original mixture. bThese values represent those corrected for the excess FlH$_2$ originally employed.
Table III. The products were separated by silica gel column chromatography.

To determine if 9-fluorenyl anion (F1H⁻) would react with F1N₂, F1H⁻ was prepared (F1H₂ + PhLi in THF) and allowed to react with F1N₂ in THF under an argon atmosphere at -12°C. The products were F1H₂, (F1=N)₂, and F1H-F1H as listed in Table IV. The products were separated by silica gel column chromatography.
DISCUSSION OF EXPERIMENTAL RESULTS

The results of the electrochemical reduction of Ph_2CN_2 were consistent with the radical chain process shown in Scheme I. Propagation of the chain involved coupling of Ph_2C^- with Ph_2CN_2.

Scheme I

Initiation

$$\text{Ph}_2\text{CN}_2 + e^- \rightarrow \text{Ph}_2\text{CN}_2^- \xrightarrow{\text{fast}} \text{Ph}_2\text{C}^- + \text{N}_2 \quad (1)$$

Propagation

$$\text{Ph}_2\text{CN}_2 + \text{Ph}_2\text{C}^- \rightarrow \text{Ph}_2\text{C}=\text{N}=\text{CPH}_2^- \quad (2)$$

$$\text{Ph}_2\text{C}=\text{N}=\text{CPH}_2^- + \text{Ph}_2\text{CN}_2 \rightarrow (\text{Ph}_2\text{C}=\text{N})_2 + \text{Ph}_2\text{CN}_2^- \quad (3)$$

$$\text{Ph}_2\text{CN}_2^- \xrightarrow{\text{fast}} \text{Ph}_2\text{C}^- + \text{N}_2 \quad (4)$$

Termination

$$\text{Ph}_2\text{C}^- + \text{SH} \rightarrow \text{Ph}_2\text{CH} + \text{S}^- \quad (5)$$

$$\text{Ph}_2\text{CH}^- + \text{SH} \rightarrow \text{Ph}_2\text{CH}_3 + \text{S}_2^- \quad (6)$$

Ph_2CN_2 to give $(\text{Ph}_2\text{C}=\text{N})_2^-$ (reaction (2)), followed by electron transfer between Ph_2CN_2 and $(\text{Ph}_2\text{C}=\text{N})_2^-$ to produce azine and Ph_2CN_2^- (reaction (3)). Loss of nitrogen from the latter species regenerated Ph_2C^-, the chain carrying species. Termination of the chain occurred by reactions (5) and (6) in that sequence.

In addition, the present study involves the further reduction of $(\text{Ph}_2\text{C}=\text{N})_2^-$ to Ph_2CHNH_2. This reduction is believed to be similar to that reported by Lund for the reduction of the closely related benzalazine. The reduction of $(\text{Ph}_2\text{C}=\text{N})_2^-$ by excess sodium or potassium produced an adduct containing 2-5 atoms of alkali metal per mole of azine. After hydrolysis,
this gave N-benzhydryl benzophenone hydrazone in 54% yield. however, lithium was shown to be capable of reducing (Ph₂C=N⁺/₂ to Ph₂CHNH₂ (76%) and Ph₂C=O (20%) after work-up. The ketone was believed to result from hydrolysis of Ph₂C=N-Li and the amine from a "polylithio species", e.g. Ph₂CLi-NLi₂. This suggests that the overall stoichiometry in the azine to amine reduction is given by the equation,

\[(\text{Ph}_2\text{C}=\text{N}^+\text{H}_2 + 6 \text{e}^- + 6 \text{H}^+ \rightarrow 2 \text{Ph}_2\text{CHNH}_2\]

The reductions of Ph₂CN₂ by Na⁺C₃O⁻H₃⁻ in THF were carried out by adding a solution of diazo compound to the reducing agent. As shown in Table I, the variation of the mole ratio of reducing agent to Ph₂CN₂ from 4 to 10 in the slow, dropwise addition method did not have a major effect in the yields of the products, although a small increase in the yield of Ph₂CN₂ was observed. However, the different methods of addition did show a significant change in the product yields. As we can see, the yield of Ph₂CHNH₂ increases from 83±2% to 92±1% and that of Ph₂CH₂ decreases from 13±4% to 5±1% on changing from slow to fast addition. These results could be explained as due to the increased concentration of Ph₂CN₂ in which Ph₂C⁻ finds itself in the fast, syringe injection method. Thus, coupling to give azine anion radical becomes even more important. Since Ph₂CH⁻ may also react with Ph₂CN₂ to yield azine (as will be discussed with the reaction of FlH⁻ with FlN₂), the yield of Ph₂CH₂ may be a minimum value.

Although Ph₂CH⁻ has been produced in THF as a reactive intermediate to give excellent yields of products from its bi-
molecular reaction with other substrates, the lifetime of this basic species \((pK_a (\text{Ph}_2\text{CH}_2) = 33)\) in THF under the present conditions has not been established. In the case of the slow addition method, the required lifetime may be several seconds to minutes as subsequent drops of \(\text{Ph}_2\text{CN}_2\) in THF are added, and \(\text{Na}^+\text{C}_{10}\text{H}_8^-\) and \(\text{Ph}_2\text{CH}^-\text{Na}^+\) would then compete for the diazo compound.

The results appear to be consistent with those obtained by electrochemical reduction of \(\text{Ph}_2\text{CN}_2\). However, certain differences in the way the chemical and electrochemical experiments were carried out deserve comment at this point. The radical chain process depicted in Scheme I for the electrochemical reduction of \(\text{Ph}_2\text{CN}_2\) may, in fact, not apply to the chemical reductions of this substrate especially in the slow, dropwise addition method. In this case, very small amounts of \(\text{Ph}_2\text{CN}_2 (E_p,c = -1.68 \text{ V, DMF-}(\text{n-Bu})_4\text{N}^+\text{ClO}_4^- \text{ vs. SCE})\) are added to a large excess of the powerful reducing agent \(\text{Na}^+\text{C}_{10}\text{H}_8^-\) \((E_p,c = -2.46 \text{ V, DMF-Et}_4\text{N}^+\text{Br}^- \text{ vs. SCE})\). Further, \((\text{Ph}_2\text{C=N})_2^-\) and \((\text{Ph}_2\text{C=NN})_2^-\) which serve as electron transfer-reducing agents in the electrochemical reduction (Scheme I) of \(\text{Ph}_2\text{CN}_2\) are removed at unknown rates of reduction processes to finally yield \(\text{Ph}_2\text{CHNH}_2\). It is not known if the intermediates in this azine \(\rightarrow\) amine reduction can serve in electron transfer steps to \(\text{Ph}_2\text{CN}_2\). Also, the solvent in these chemical reductions, THF, is known to be a better hydrogen atom donor than DMF used in the electrochemical reductions. For these reasons, the chain length of the free radical chain reaction in
the chemical reductions must be considerably attenuated compared to that in the electrochemical reductions or the chain process may be nonexistent. This could mean that a principle source of azine (then to amine), especially in the slow drop-wise addition method, might be the following sequence.

$$\text{Ph}_2\text{C}^- \xrightarrow{\text{THF}} \text{Ph}_2\text{CH}^- \xrightarrow{\text{Ph}_2\text{CN}_2} \text{Ph}_2\text{CH-N=N-CPh}_2^- \rightarrow \text{Ph}_2\text{CHNH}_2$$

This suggested pathway will be considered in the following discussion on the related reductions of F1N$_2$.

The electronic structure of H$_2$C$^-$ has been examined by ab initio5,22 and MINDO/323a,24 calculations and is in excellent agreement with the estimated experimental structure derived from its photoelectron spectrum.5 The electronic configuration of H$_2$C$^-$ is $\delta^2\pi^1$ (a δ-anion π-radical) with the H-C-H angle of about 100° which is structurally similar to the singlet of :CH$_2$. At this point, it is assumed that this is also approximately the structure of Ph$_2$C$^-$ with both phenyl rings twisted about their C$_1$-C$^-$ bonds to relieve nonbonded repulsions.

MINDO/3 calculations on cyclopentadienylidene anion radical (C$_5$H$_4$·) show the ground state doublet to have a $\delta^1\pi^2$ electronic configuration.23a,25 It was assumed that this electronic configuration would also be that expected for the fluorenylidene anion radical (Fl$^-$), where fusion of the benzene rings onto C$_5$H$_4$· would be expected to further separate the energies!
of the δ- and π-orbitals of $C_5H_4^\text{-}$. Thus, the chemical reduction of FLN_2 was investigated to determine if the change in electronic configuration between $\text{Ph}_2C^\text{-}$ and $\text{Fl}^\text{-}$ would result in observable chemical differences.

The reductions of FLN_2 by $\text{Na}^+\text{C}_{10}H_8^\text{-}$ in THF were carried out using the slow, dropwise and fast, syringe injection methods previously described for the reductions of Ph_2CN_2. However, in the experiments to be considered here (runs 1, 2, and 4 in Table II), the $[\text{Na}^+\text{C}_{10}H_8^\text{-}]/[\text{FLN}_2]$ ratio of 10 was employed. With the slow addition method, FlH_2 (41±2%) and FlHNN_2 (53±3%) were obtained. Use of the fast, syringe injection method led to a reduced amount of FlH_2 (12%) and an increase in the yield of FlHNN_2 (88%). Run 3 illustrates the effect on the product distribution in the fast injection method when the ratio $[\text{Na}^+\text{C}_{10}H_8^\text{-}]/[\text{FLN}_2]$ was reduced to 4. The result was a decrease in the yield of FlH_2 (7%) and isolation of a small amount of azine (6%).

To demonstrate that the reaction

$$R_2C^\text{-} + R_2\text{CN}_2 \rightarrow R_2\text{C=N-N=CR}_2^\text{-}$$

is not the only potential source of azine (and, therefore, of amine), 9-fluorenyl anion ($\text{FlH}^\text{-}$) was prepared in THF and allowed to react with one molar equivalent of FLN_2 (Table IV). The results are interpreted mechanistically in Scheme II. The initial concentration of $\text{FlH}^\text{-}$ was consumed in its reaction with FLN_2 to form the conjugate acid of azine dianion followed by deprotonation (reaction (7)). The remaining FLN_2 (0.5 of original $[\text{FLN}_2]$) was then reduced by ($\text{FlN}_2\text{H}^\text{2-}$ (reaction (8)),

and \(\text{Fl}^- \) then went on to yield the "extra" amounts of azine and \(\text{FlH}_2 \) (reactions (10) and (11)). The azine anion radical is oxidized to azine in the work-up.

In an attempt to determine the extent to which each reaction potentially produced azine, the reduction of \(\text{FlN}_2 \) was carried out and quenched with \(\text{D}_2\text{O} \) followed by acidification with 6 M hydrochloric acid. The isolated fluorene was found to contain an excess of deuterium compared to that expected for simple neutralization of \(\text{FlH}^- \) (Table V). Since it was possible that H-D exchange might have occurred during the \(\text{D}_2\text{O} \) quench and \(\text{H}^+ \) acidification of the reduction mixture, the reduction was rerun and quenched by syringe injection of excess \(\text{CF}_3\text{CCOD}-\text{D}_2\text{O} \). The \(^1\text{H} \) and \(^13\text{C} \) nmr analysis of the resultant fluorene showed an increase in the amount of excess deuterium (\(\text{FlD}_2 \)) compared to that observed in the \(\text{D}_2\text{O} \)-quenched reaction (Table V).

To determine the efficiency of the \(\text{CF}_3\text{CCOD}-\text{D}_2\text{O} \) quench method, \(\text{FlH}_2 \) was allowed to react with 6 equivalents of \(\text{Na}^+\text{C}_{10}\text{H}_8^- \) in THF under similar concentration conditions used in the \(\text{Na}^+\text{C}_{10}\text{H}_8^- \) reduction of \(\text{FlN}_2 \). This reaction mixture, which should produce \(\text{FlH}^- \), was quenched with excess \(\text{CF}_3\text{CCOD}-\text{THF} \).
Table V. Calculation of Percentage Compositions of Deuterated Fluorene by 1H and 13C NMR Spectroscopy.

<table>
<thead>
<tr>
<th>Sample Origin</th>
<th>NMR</th>
<th>Total Aryl*</th>
<th>Integral</th>
<th>13C Ref.</th>
<th>13C Conversion Factord</th>
<th>EPR Calculated No. of H's at C9</th>
<th>% Compositione</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FlH}_2)</td>
<td>1H</td>
<td>52.5</td>
<td>12.0a</td>
<td>4171</td>
<td>7098</td>
<td>6820</td>
<td>(2.0)</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>1.0</td>
<td></td>
<td>13C Ref.</td>
<td>13C Conversion Factord</td>
<td>EPR Calculated No. of H's at C9</td>
<td>% Compositione</td>
</tr>
<tr>
<td>(\text{FlH}_2)</td>
<td>1H</td>
<td>46.3</td>
<td>6.5a</td>
<td>1749</td>
<td>13177a</td>
<td>13661b</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>50.0</td>
<td></td>
<td>13C Ref.</td>
<td>13C Conversion Factord</td>
<td>EPR Calculated No. of H's at C9</td>
<td>% Compositione</td>
</tr>
<tr>
<td>(\text{FlH}_2)</td>
<td>1H</td>
<td>55.0</td>
<td>2.8a</td>
<td>148</td>
<td>5022a</td>
<td>5407b</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>40.0</td>
<td></td>
<td>13C Ref.</td>
<td>13C Conversion Factord</td>
<td>EPR Calculated No. of H's at C9</td>
<td>% Compositione</td>
</tr>
<tr>
<td>(\text{FlH}_2)</td>
<td>1H</td>
<td>50.0</td>
<td>2.0a</td>
<td>1105</td>
<td>7906a</td>
<td>1933</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>40.0</td>
<td></td>
<td>13C Ref.</td>
<td>13C Conversion Factord</td>
<td>EPR Calculated No. of H's at C9</td>
<td>% Compositione</td>
</tr>
<tr>
<td>(\text{FlH}_2)</td>
<td>1H</td>
<td>60.0</td>
<td>6.0a</td>
<td>1268</td>
<td>25745a</td>
<td>2253</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>60.0</td>
<td></td>
<td>13C Ref.</td>
<td>13C Conversion Factord</td>
<td>EPR Calculated No. of H's at C9</td>
<td>% Compositione</td>
</tr>
</tbody>
</table>

*Fluorene signal at 124.5 ppm. bFluorene signal at 119.5 ppm. cIntegral of upfield peak of the \(\text{C}_{9}-\text{D}(X) \) triplet in proton-decoupled 13C nmr spectrum. dRatio of \([\text{C}_9-\text{D}(X)/^{13}\text{C} \text{arphil}] \) corrected from 77% and 79% to 100% FlHD. eCalculated by \([\text{C}_9]/(\text{total aryl}) \times 3.75$. fCalculated from the 13C nmr data using \([\text{C}_9]/(\text{total aryl})/(\text{conversion factor for FlH}_2 \times \% \text{FlH}_2 \text{)} \times (\text{conversion factor for FlHD \% FlH}_2 \text{)}$. gF1H was calculated by difference. hUnit = ppm. iRing = Na13C$_1$H$_3$. jPercent compositions from 1H nmr use the value of FlH$_2$ determined for this species by 13C nmr using relative integrals of two different aryl C's and $\text{C}_9-\text{D}(X) \) of authentic FlH$_2$. In the 13C nmr analysis known relative integrals of these aryl C's to the triplet of authentic FlHD were used to determine the % of this species. The amount of FlH$_2$ was by difference.
The isolated fluorene was found to contain considerably less FlD$_2$ (40-50%) than was observed in the similar reduction of FlN$_2$.

While the amount of FlH$_2$ in these samples of fluorene could be readily determined from the integral ratios of the C$_9$(H$_2$) vs. certain aryl carbons in their proton decoupled 13C nmr spectra, an authentic sample of FlHD was required. This compound was obtained from the reaction of FlH$_2$ and 10% mole excess of commercial PhLi (dissolved in 70:30 benzene-ether) in THF. The reaction mixture was quenched by syringe injection of excess CF$_3$COOD-D$_2$O. Surprisingly, the isolated fluorene was found to be a mixture of 24% FlH$_2$ and 76% FlHD by 1H nmr (Table V). The 13C nmr spectrum of this sample agreed quite well with this composition. That a significant amount of FlH$_2$ was observed in this product may indicate either a measuring error, or that the commercial PhLi contains bases other than PhLi. These bases would be titrated in the total base standardization of the solution, but they may not deprotonate FlH$_2$ in THF.

However, this sample was still useful in determining the amount of FlHD in the fluorene products from the above reactions by correcting the integral of the upfield line of the C$_9$-D triplet to 100% FlHD. This is corporated into 13C conversion factor for this compound in Table V.

As mentioned above, the 40-50% excess FlD$_2$ found in the reductions of FlN$_2$ must now be considered. Since a dibasic intermediate containing the fluorene skeleton is required, it is proposed that this intermediate is the fluorenylidene dianion
(Fl$^{2-}$), a carbene dianion. Generation of Fl$^{2-}$ can be rationalized by the reduction of the carbene anion radical, Fl$^-$, according to

$$\text{Fln}_2 + e^- \rightarrow [\text{Fln}_2^-] \rightarrow \text{Fl}^- + \text{N}_2 \quad (12)$$

$$\text{Fl}^- + e^- \rightarrow \text{Fl}^{2-} \quad (13)$$

$$\text{Fl}^{2-} + 2\text{D}_2\text{O} \rightarrow \text{FlD}_2 + 2\text{OD}^- \quad (14)$$

The possible involvement of Fl$^{2-}$ in this scheme of the reduction of Fln$_2$ by excess Na$^+\text{C}_{10}\text{H}_8^-\text{Br}$ in THF deserves some further comments. The apparent absence of Fl$^{2-}$ in reactions of FlH$_2$ with strong bases is of no consequence in the present instance. We would be entering the energy surface containing Fl$^{2-}$ from a completely different direction by a one-electron reduction of Fl$^-$. If the ground state electronic configuration of Fl$^-$ is that as suggested from MINDO/3 calculations for cyclopentadienylidene anion radical, $\delta^1\pi^2$, reduction would add an electron to the singly occupied δ-orbital of Fl$^-$ to yield Fl$^{2-}$. This reductive reaction is electron transfer from Na$^+\text{C}_{10}\text{H}_8^-\text{Br}$ and thus involves no covalent bond either made or broken. It requires that Fl$^-$ be reduced up to a potential not much more negative than that of naphthalene in THF ($E_{p,c} = -2.46 \text{ V, DMF-Et}_4\text{N}^+\text{Br}^- \text{ vs. SCE}$).20 Otherwise the equilibrium,

$$\text{Fl}^-\text{Na}^+ + \text{Na}^+\text{C}_{10}\text{H}_8^- \rightarrow \text{Fl}^{2-}\text{Na}^+ + \text{C}_{10}\text{H}_8$$

would not be favorable to give the observed results.

Further, the reduction of Fl$^-\text{Na}^+$ must be competitive with hydrogen atom abstraction by Fl$^-\text{Na}^+$ from THF. This, of course, requires a reasonable lifetime for Fl$^-\text{Na}^+$ in this medium. This
conclusion is in agreement with that from the electrochemical generation of Fl\(^{-}\) where it was proposed that the reversible red-ox couple Fl\(^{-}\)/Fl\(^{+}\) was observed in DMF-(n-Eu)\(_4\)N\(^+\)ClO\(_4\)^-.\(^8\)

In the electrochemical reduction of Ph\(_2\)CN\(_2\),\(^6\) it was suggested that the sequence from Ph\(_2\)Cl\(^{-}\) to Ph\(_2\)CH\(_2\) involved first hydrogen atom abstraction followed by protonation. This proposal was based on a low value of \(n\), and the absence of the resulting radical dimer, Ph\(_2\)CH-CHPh\(_2\), if the reverse sequence had occurred. To test this proposed mechanistic sequence, the reduction of FlN\(_2\) was examined in sodium in liquid ammonia. Ammonia was chosen as solvent because of its large N-H bond dissociation energy (\(D_H^0 = 110\) or \(103\) kcal/mole),\(^26,27\) and thus should be a poor hydrogen atom donor. The \(pK_a\) of ammonia (33)\(^28\) should also make it a rather poor proton donor.

The first experiment was to examine the reduction of (Fl=N\(^-\)\(_2\)) with an excess of solvated electrons in liquid ammonia. While no amine was produced, extensive Birch-type reduction of the fluorene ring system was evident from the nmr spectrum of the complex reaction mixture.

The reduction of FlN\(_2\) was accomplished using one mole equivalent of sodium in liquid ammonia. The FlN\(_2\) dissolved in a small amount (10 ml) of THF was rapidly syringe injected into the reducing medium (100 ml of liquid NH\(_3\)) to minimize Birch-type reduction. The products of this reduction (Table III) were (Fl=N\(^-\)\(_2\) (79%), Fl=O (7\(\pm\)1%), Fl=Fl (4\(\pm\)1%), and Fl-HFl (5\(\pm\)1%). The pathways by which these products are believed to be produced are given in Scheme III.
Several of these results are interesting in the general understanding of the chemistry of the carbene anion radical F1⁻. The first is that F1H₂ is not produced under these reaction conditions. However, we cannot exclude the possibility that some hydrogen atom abstraction by F1⁻ did occur from the THF used to dissolve and introduce the F1N₂ to the Na/NH₃ reducing medium. Since most common solvents which are stable to Na/NH₃ behave similarly as hydrogen atom donors to phenyl radical, the only such semi-quantitative study reported, experiments involving a change from THF to another solvent were not considered at this point. Further, the 10 ml of THF was essentially the minimum quantity needed to dissolve the F1N₂.

Although we might expect F1H₂ to be produced if F1H⁻ was so generated and react with F1N₂ by the reactions (7) and (11) in Scheme II, it is possible that the hydrocarbon is further reduced by e⁻(solv.) to F1H⁻ by the reaction.
\[\text{FlH}_2 + e^- (\text{solv.}) \rightarrow \text{FlH}_2^2^- \rightarrow \text{FlH}^- + \text{H}^- \]

This reaction sequence is known electrochemically.\(^{29}\) Alternatively, any strong bases, e.g. NaNH\(_2\) or Fl=Fl\(^2^-\), present in the reduction process could abstract a proton from FlH\(_2\). If FlH\(^-\) was present in this reduction mixture it could also account for the formation of ketone\(^{30}\) if oxygen was introduced during addition of the solid ammonium chloride as quench (reaction (19)). The ketone may also have been formed by \(\text{C}_2\) oxidation of (Fl=N)\(_2^-\) when the solid \(\text{NH}_4\text{Cl}\) was introduced into the reduction mixture.\(^{23b}\)

The major feature of the results in liquid ammonia is the isolation of significant quantities of the olefin, 9,9'-bi-fluorenylidene (Fl=Fl), and its reduction product, 9,9'-bi-fluorenyl (FlH-HFl). While one or sometimes both of these compound have been observed previously in the reductions of FlN\(_2\), they have only been seen in trace quantities by glpc of reaction mixtures. Here, there appears to be no reasonable alternative but to propose dimerization of the carbene anion radical Fl\(^-\) (reaction (17)). Since the first and second reduction potentials of Fl=Fl are essentially the same as those of the (Fl=N)\(_2^-\), reaction (18) is included in Scheme III. The equal amounts of Fl=Fl and FlH-HFl could be produced by reaction (20)-(22) shown in Scheme III. Although we cannot extrapolate the present results with Fl\(^-\) to those of the proposed intermediacy of \(\text{H}_2\text{C}^-\), the observation of dimers adds credence to Sargent's proposal that \(\text{H}_2\text{C}^-\) could dimerize in THF to produce ethylene and ethane.
SUMMARY

Investigations of the chemical generation of diphenylcarbene anion radical (Ph₂C⁻) were carried out by reducing diphenyldiazomethane (Ph₂CN₂) with excess Na⁺C₁₀H₈⁻ in THF under an argon atmosphere at -12°C. From the slow, dropwise addition of a THF solution of Ph₂CN₂ to a solution of Na⁺C₁₀H₈⁻ in THF (1:5 mole ratio), product analysis showed the presence of diphenylmethane (11±2%; Ph₂CH₂) and benzhydrylamine (83±1%; Ph₂CHNH₂) along with trace amounts of tetraphenylethane (Ph₂CH-CHPh₂) and benzophenone azine ((Ph₂C=N=N) detected by glpc.

Using a 10:1 ratio of Ph₂CN₂ and Na⁺C₁₀H₈⁻ gave Ph₂CH₂ (17%) and Ph₂CHNH₂ (85%). Fast, syringe injection of the THF solution of Ph₂CN₂ into the Na⁺C₁₀H₈⁻ solution (mole ratio 1:5) led to a decrease in the amount of Ph₂CH₂ (5±1%) while the yield of Ph₂CHNH₂ (92±1%) increased. The amine Ph₂CHNH₂ was shown to arise by Na⁺C₁₀H₈⁻ reduction of (Ph₂C=N)=N. These results are compared and contrasted with those reported from the electrochemical reduction of Ph₂CN₂ in DMF-(n-Bu)₄N⁺ClO₄⁻ where a chain reaction was shown to be involved.

Analogous reductions of 9-diazofluorene (FlN₂) by Na⁺- C₁₀H₈⁻ (1:10 mole ratio) in THF were also examined. The slow addition method gave fluorene (40±2%; FlH₂) and 9-aminofluorene (53±3%; FlHNH₂), while the fast, syringe injection method produced the same two components in 12% and 88% yields, respectively. As in the reductions of Ph₂CN₂, the yield of hydrocarbon, FlH₂, decreased substantially when the mole ratio of
The amine F1HNH2 was shown to be produced quantitatively in the reduction of azine (F1=N=2 by Na+C\textsubscript{10}H\textsubscript{8}- in THF.

9-Fluorenyl anion (F1H-) was prepared and allowed to react with F1N\textsubscript{2} in THF. The products were (F1=N=2 and F1H\textsubscript{2}), and were believed formed by nucleophilic addition of F1H- to the terminal nitrogen of F1N\textsubscript{2} in the primary reaction sequence,

\[
\text{F1N}_2 + \text{F1H}^- \rightarrow \text{F1H-N=N-F1}^- \rightarrow (\text{F1=N=2})^- + \text{F1H}_2
\]

The azine dianion would then be expected to reduce excess F1N\textsubscript{2} by electron transfer to yield F1- and its further reaction products, F1H\textsubscript{2} and azine.

This result suggested two possible pathways for azine formation in the reduction of F1N\textsubscript{2}, one by reaction (1) and the second by direct coupling of F1- and F1N\textsubscript{2} to yield (F1=N=2). To test for the involvement of these two pathways, the slow addition method for reduction of F1N\textsubscript{2} with Na+C\textsubscript{10}H\textsubscript{8}- in THF was run with D\textsubscript{2}O in one case and CF\textsubscript{3}COOD-D\textsubscript{2}O in a second experiment added to quench the reaction. The results showed the presence of fluorene containing 60% and 70%, respectively, of excess deuterium as F1D\textsubscript{2}. To see if some H-D exchanges at C\textsubscript{9} of fluorene might have occurred in the CF\textsubscript{3}COOD-D\textsubscript{2}O quench, the reaction of F1H\textsubscript{2} with Na+C\textsubscript{10}H\textsubscript{8}- (1:6 mole ratio) in THF as in the slow addition method followed by the quench of CF\textsubscript{3}COOD-D\textsubscript{2}O was carried out to give fluorene containing 20% of excess F1D\textsubscript{2}. After correction for H-D exchanges, the large excess of 40% and 50%, respectively, of excess F1D\textsubscript{2} indicated the for-
mation of the carbene dianion, F_1^{2-}. Generation of F_1^{2-} can be rationalized by the further reduction of F_1^-.

Reduction of F_1N_2 in Na/NH$_3$ gave ($F_1=\text{N}^+\text{H}_2$ (79%), fluorenone (6±1%), 9,9'-bifluorenyl (4±1%; $F_1\text{H}-\text{HF}_1$) and 9,9'-bifluorenylidene (3±1%; $F_1=\text{F}_1$). Since ammonia should not serve as a hydrogen atom donor, the dimeric products, $F_1\text{H}-\text{HF}_1$ and $F_1=\text{F}_1$, are believed to be produced by radical dimerization of F_1^-.
EXPERIMENTAL SECTION

Benzophenone Hydrazone. The procedure of Smith and Howard32 was followed to afford 37.5 g (87%), mp 97-98°C (lit.33 97-98°C); ir (KBr): 3350 cm\(^{-1}\) (doublet, NH\(_2\)); nmr: \(\delta\)CDCl\(_3\) 7.0-7.5 (m, aromatic H's, 10), 5.0-5.5 (s, NH\(_2\), 2).

Diphenyldiazomethane. This compound was prepared from a mixture of 13 g (66 mmol) of benzophenone hydrazone, 15 g of anhydrous sodium sulfate, 200 ml of anhydrous ether, 10 ml of absolute ethanol saturated with potassium hydroxide, and 35 g (0.160 mol) of yellow mercuric oxide (new Fisher brand) according to the procedure of Miller9 except using double the volume of absolute ethanol saturated with potassium hydroxide. The mixture was shaken for 75 min. in a parr shaker. The reaction mixture was filtered and the solvent removed from the filtrate under reduced pressure at about 30°C. The dark red oil obtained was dissolved in petroleum ether (bp 35-60°C) and again filtered. Removal of the solvent from the filtrate under reduced pressure at about 30°C gave an oil. Freezing this in a stopped flask with Dry Ice and then allowing the flask to warm spontaneously to room temperature gave dark red crystals in an average yield of 12.2 g (92%), mp 29-30°C (lit.34 mp 29-30°C); ir (KBr): characteristic absorption at 2050 cm\(^{-1}\) (=N\(^+=\)=N\(^-\)); nmr: \(\delta\)TMS 7.3 (s, aromatic H's).

Tetraphenylethylene. This compound was obtained from Aldrich Chemical Company, mp 222-224°C (lit.35 mp 220°C); ir (KBr): 1575 cm\(^{-1}\) (C=C); nmr: \(\delta\)CDCl\(_3\) 7.1 (s, aromatic H's).
Tetraphenylethane. The compound was obtained from Columbia Chemical Company and recrystallized from CHCl₃-EtOH (1:1) with mp 210.5-211.5°C (lit.³⁶ mp 209-211°C); ir (KBr): 3000 cm⁻¹ and 2900 cm⁻¹ (C-H); nmr: 6^CDCl₃ TMS 6.9-7.3 (m, aromatic H's, 20), 4.8 (s, CH₂, 2).

Benzophenone Azine. The preparation of this azine was carried out according to the procedure of Whitlock.¹⁰ The pale yellow rods, mp 162-163°C (lit.³⁷ mp 164°C), were obtained in a 90% yield after recrystallization from ethyl acetate; ir (KBr): 1600 cm⁻¹ (C=N); nmr: 6^CCl₄ TMS 7.2-7.4 (m, aromatic H's).

Benzhydrylamine. This compound was obtained from Aldrich Chemical Company, mp 12°C, in 96% purity; ir (thin film): 3300 cm⁻¹ (doublet, NH₂); nmr: 6^CDCl₃ TMS 7.1-7.4 (m, aromatic H's, 10), 5.1 (s, CH, 1), 1.7 (s, NH₂, 2).

Diphenylmethane. This compound was prepared from a mixture of 18.2 g of Ph₂C=C, 7 g of NaOH, 100 ml of triethylene glycol and 10 ml of 85% hydrazine hydrate. Distillation over sodium gave 14.0 g (83%) of pure hydrocarbon, bp 73.5°C/0.6mm. (lit.³⁸ 154-155°C/33mm).

Fluorenone Hydrazine. The procedure of Smith and Howard³² was followed to afford 22.4 g (52%), mp 148-150°C (lit.³⁹ 149-150°C); ir (KBr): 3350 cm⁻¹ (doublet, NH₂); nmr: 6^CDCl₃ TMS 7.2-7.9 (m, aromatic H's, 8), 6.2-6.6 (s, NH₂, 2).

9-Diazofluorene. This procedure of Miller⁹ was followed to give orange-red needles, mp 94-95°C (lit.³⁹ mp 94-95°C) in 85% yield after recrystallization from petroleum ether (bp 35-60°C).
9,9'-Bifluorenylidene. This compound was prepared from coupling of fluorenone with McMurray's reagent (4TiCl_3-LiAlH_4 from Alfa).^{14,15} To 100 ml of THF was slowly added 3.3 g of McMurray's reagent under an argon atmosphere. The solution was allowed to stir magnetically with formation of a dark black suspension. To this suspension 3.6 g (20 mmol) of fluorenone in 50 ml of THF was added in small portions. After the addition was complete, the mixture was heated under reflux and a positive pressure of argon for 6 hr. The cooled mixture was poured into 1.5 liters of distilled water and extracted with CCl_4. After the solvent was removed, the residue was eluted through a column of alumina (100 g) with n-hexane to give 4.0 g of crude product. Recrystallization from CHCl_3-EtOH (1:1) gave 3.0 g (91%) of 9,9'-bifluorenylidene, mp 194-195°C (lit. 40 mp 194°C); ir (KBr): 1600 cm\(^{-1}\) (C=C); nmr: \(\delta_{CDCl_3}\) 7.0-7.7 (m, aromatic H's, 13.5), 8.2-8.4 (m, aromatic H's, 2.5).

9,9'-Bifluorenyl. To 2.14 g (6 mmol) of (Fl=N\(\rightarrow\)2 in 3 ml of distilled diethylene glycol was added 0.1 g (3 mmol) of hydrazine (95%) and a solution of 1.2 g (3 pellets) of potassium hydroxide in 5 ml of diethylene glycol (prepared by brief warming in a test tube). The mixture was kept on the steam-bath for 10 min., then gently heated on a hot-plate for 3 hrs under a reflux condenser. The color changed from red-brown to dark-green. At the end of reduction period, the material in the condenser was rinsed into the flask with 5 ml of ethanol, and the mixture heated under reflux for 15 min. The mixture was allowed to cool and was acidified with 8 ml of 12 N HCl,
diluted with 50 ml of distilled water, and cooled in an ice bath. The deep-brown crude product was filtered and recrystal-
lized three times from benzene-ethanol (1:2) to give 0.3 g (15%) of white needles of 9,9'-bifluorenyl, mp 244-245°C (lit.\(^41\) mp 246°C); ir KBr: 3000 cm\(^{-1}\) (C-H); nmr: \(\delta_{\text{TMS}}^{\text{CDCl}_3} 6.8-7.4\) (m, aromatic H's, 13), 7.4-7.7 (m, aromatic H's, 4), 4.8 (s, CH, 2).

Fluorene. This compound was obtained from Eastman Organic Chemicals, mp 115-117°C. Recrystallization from ethanol afford-
ed white needles, mp 115-117°C; ir (KBr): 2950 cm\(^{-1}\); nmr:

\(\delta_{\text{TMS}}^{\text{CDCl}_3} 7.2-7.9\) (m, aromatic H's, 8.75), 3.9 (s, CH, 2).

9-Aminofluorene. 9-Aminofluorene hydrochloride (obtained from Aldrich), 99%, in ether solution was basified to pH ~13, and then extracted with ether. The ether solution was washed with distilled water, saturated sodium chloride solution, and dried (MgSO\(_4\)). Separation from solvent afforded white crude product. Recrystallization from hexane yielded 9-aminofluorene, mp 64-65°C (lit.\(^42\) mp 64-65°C); ir (KBr): 3350 cm\(^{-1}\); nmr:

\(\delta_{\text{TMS}}^{\text{CDCl}_3} 7.1\) 7.7 (m, aromatic H's, 9), 4.2 (s, CH, 1), 1.7 (s, NH\(_2\), 2).

Fluorenone Azine.\(^{13}\) A solution of 17.0 g of KOH in 60 ml of ethanol was added to a magnetically stirred hot mixture of 16.3 g (45 mmol) of fluorenone, 21 ml of hydrazine (95%), and 225 ml of ethanol. The whole mixture immediately turned deep-
red. Formation of the azine was completely by heating under reflux for 15 min. Upon cooling, 15.5 g (96%) of violet needles were removed by filtration. Recrystallization from xylenes
yielded 13.0 g (81%) of fluorenone azine, mp 268-269°C (lit. 43
mp 265°C); ir (KBr): 1600 cm⁻¹; nmr: δCDCl₃ 7.1-7.7 (m, aromatic H's, 12), 7.8-8.2 (m, aromatic H's, 4).

Preparation of Sodium Naphthalene Solution. Into a 1-l.,
four-necked, round-bottomed flask, 400 ml of THF (distilled
from LiAlH₄ under an argon atmosphere) was distilled under
argon. After addition of 12.8 g (0.10 mol) of naphthalene and
2.0 g (0.087 mol) of sodium (freshly-cut under a layer of xylene
and rinsed with petroleum ether before use) the deep-green
mixture was cooled to -12°C and magnetically stirred for over
24 hr under argon to insure complete reaction. Two 5-ml ali-
quots were removed, and each was quenched in 50 ml of water,
and titrated for total base with standardized hydrochloric acid
to a phenolphthalein end-point to obtain a solution approx-
imately 62.8 mmol in Na⁺C₁₀H₈⁻.

Reaction of Diphenyldiazomethane with Sodium Naphthalene.
(a). Slow, Dropwise Addition. To a 62.8 mmol Na⁺C₁₀H₈⁻ solution,
a solution of 3.06 g (15.7 mmol) of Ph₂CN₂ in 150 ml of
THF was added dropwise over a period of one hr. After 10 min.,
50 ml of water was added and the mixture turned light yellow.
The solvent was removed (rotavaporator) and the residue dis-
solved in ether. The ether solution was separated from the
aqueous layer, and the ether layer was extracted with three
100-ml portions of 10% HCl solution. The aqueous acidic solu-
tion was basified to pH ~ 13 with 10% NaOH solution, and the
alkaline solution extracted with three 100-ml portions of ether.
The combined ether extracts were washed with 150 ml of dis-
tilled water followed by 150 ml of saturated NaCl solution and
dried (MgSO₄). After solvent removal, 2.00 g (70%) of benzhy-
drylamine was obtained and identified by comparison of its nmr
and ir spectra with those of an authentic sample. After cor-
rection for the preestablished recovery of this amine (83.8%),
an 84% yield of benzhydrylamine was obtained. The benzamide
derivative was prepared as white crystals, mp 170-171.5°C
(lit.45 172°C).

The original ether solution was washed with 150 ml of dis-
tilled water, 150 ml of saturated NaCl solution, and dried
(MgSO₄). After removal of the solvent, the residue was separa-
ted by sublimation at 35°C/0.2 mm. The nmr spectrum of this
sublimate showed only the presence of naphthalene, 1,4-dihydro-
naphthalene, and Ph₂CH₂. Since the nmr absorptions of these
three components are cleanly separated from one another, the
amount of Ph₂CH₂ could be determined from the relative peak
areas multiplied by the total weight of the sublimate. In order
to get satisfactory results for Ph₂CH₂, the sublimate was dis-
solved in CH₂Cl₂ and about 10 ml of this homogeneous solution
removed for the nmr spectral determination. After solvent re-
moval, the white solid was dissolved in CDCl₃ and the nmr spec-
trum and integrals recorded yielding 0.33 g (13%) of Ph₂CH₂
(run 1, Table I).

The experiment was repeated following the same procedures
described above to give Ph₂CH₂ (10%) and Ph₂CHNH₂ (82%) (run 2,
Table I). Another experiment was carried out following the
same procedures as described above to give Ph₂CH₂ (17%) and
Ph$_2$CHNH$_2$ (85%) except that 3.08 g (15.8 mmol) of Ph$_2$CN$_2$ in 100 ml of THF was added dropwise to Na$^+$_C$_{10}$H$_8$$^-$ (159 mmol) in 400 ml of THF over a period of 0.5 hr. (run 3, Table I).

(b). Fast, Syringe Injection. To Na$^+$_C$_{10}$H$_8$$^-$ (52.2 mmol) in 200 ml of THF a solution of 2.01 g (10.4 mmol) of Ph$_2$CN$_2$ in 10 ml of THF was injection via a syringe over a period of 5 sec. Isolation of the products as described in the slow addition method gave 0.07 g (4%) of Ph$_2$CH$_2$ and 1.74 g (91%) of Ph$_2$CHNH$_2$ (run 4, Table I).

This experiment was repeated following the same procedures to give Ph$_2$CH$_2$ (5%) and Ph$_2$CHNH$_2$ (93%) (run 5, Table I).

Reaction of Benzophenone Azine with Sodium Naphthalene. Benzophenone azine (1.04 g, 2.91 mmol) in 100 ml of THF was treated in the same manner as the slow, dropwise addition of Ph$_2$CN$_2$ with Na$^+$_C$_{10}$H$_8$$^-$ (34.9 mmol). Benzhydrylamine (0.87 g, 82%) was obtained. After correction with the recovery factor for this amine, a 98% yield for benzhydrylamine was obtained.

Reaction of 9-Diazofluorene with Sodium Naphthalene. (a). Slow, Dropwise Addition. To Na$^+$_C$_{10}$H$_8$$^-$ (156.5 mmol) in 400 ml of THF, a solution of 3.00g (15.6 mmol) of FlN$_2$ in 100 ml of THF was added dropwise over a period of 0.5 hr. After 10 min, 50 ml of water was added which decolorized the reaction mixture. The procedures of separation as those in the reduction of Ph$_2$CN$_2$ with Na$^+$_C$_{10}$H$_8$$^-$ were followed to give 1.18 g (42%) of FlHNH$_2$ (run 1, Table II). After correction for its recovery factor (83.8%), this gave a 50% yield of FlHNH$_2$. Naphthalene and 1,4-dihydronaphthalene were removed by sub-
limation and fluorene remained in the sublimation tube. Using 1,3,5-trinitrobenzene as an internal standard and integrating the nmr spectrum, 1.08 g (42%) of fluorene in the mixture was determined.

The experiment was repeated using a 151 mmol Na\(\text{C}_{10}\text{H}_{8}\)^+ solution in 400 ml of THF and 2.90 g (15.1 mmol) of F1N\(_2\) in 100 ml of THF and gave F1\(\text{H}_2\) (39%) and F1\(\text{HNH}_2\) (55%) (run 2, Table II).

(b). Fast, Syringe Injection. To a solution of 38.3 mmol of Na\(\text{C}_{10}\text{H}_{8}\)^+ in 200 ml of THF, a solution of 1.36 g (9.7 mmol) of F1N\(_2\) in 10 ml of THF was injected via a syringe over a period of 5 sec. Isolation of the products as described above in (a) gave 1.35 g (77%) of F1\(\text{HNH}_2\) (run 3, Table II). Naphthalene and 1,4-dihydronaphthalene were removed by sublimation and the residue was eluted through a silica gel column (100 g) with n-hexane to give 0.31 g of a mixture of compounds. Using 1,3,5-trinitrobenzene as an internal standard, the nmr spectrum of this mixture showed it to contain 0.10 g (7%) of F1\(\text{H}_2\). Benzene-CHCl\(_3\) (50:50, v/v) eluted 0.10 g (6%) of (F1=\(\text{N}^+\))\(_2\) checked by TLC and glpc.

Another experiment was carried out by syringe injection of a solution of 2.16 g (11.3 mmol) of F1N\(_2\) in 10 ml of THF into a solution of 112.3 mmol of Na\(\text{C}_{10}\text{H}_{8}\)^+ in 200 ml of THF over a period of 5 sec. Separation of the products as described above in the slow additions of F1N\(_2\) gave F1\(\text{H}_2\) (12%) and F1\(\text{HNH}_2\) (88%) (run 4, Table II).

Reaction of Fluorenone Azine with Sodium Naphthalene.
A solution of 1.00 g (2.80 mmol) of (F1=N-)2 in 100 ml of THF was treated by the same procedure as those in the reaction of F1N2 with 33.70 mmol of Na+Cr10H3- in 400 ml of THF, yielding 0.85 g (84%) of F1HNNH2. After correction for its recovery factor, this gave 100% yield for F1HNNH2.

Reaction of 9-Diazofluorenone with Sodium-Ammonia. Into a 500-ml, three-necked, round-bottomed flask, 100 ml of anhydrous NH3 (distilled from Na) was condensed under an argon atmosphere and 0.24 g (10.4 mmol) of freshly-cut Na was added. The Na-NH3 solution was allowed to stir magnetically for 30 min. Then 1.96 g (10.2 mmol) of F1N2 in 9.5 ml of THF was syringe injected into the reducing solution over a period of 5 sec. The whole solution turned red-blue with a precipitate of black solids. The mixture was allowed to stir for additional 3 min and quenched with solid NH4Cl. After evaporating the NH3 with an argon gas, 200 ml of ether was added to the flask. The mixture turned purple with a black-blue precipitate. The mixture was extracted with 800 ml of hexane and then 50 ml of CCl4-CHCl3 to give deep-red solids and a orange-red solution. The deep-red solids gave 1.40 g of (F1=N-)2 identified by TLC and glpc. Evaporation of solvent from the orange-red solution resulted in 0.31 g of an orange solid. This orange solid was eluted through a column of silica gel (50 g) with hexane to give 0.06 g (6%) of Fl=F1, with hexane-CCl4 (1:1, v/v) to give 0.07 g (4%) of F1H-F1, with benzene to give 0.04 g of (F1=N-)2, and with benzene-CH2Cl2 (1:1, v/v) to give 0.11 g (6%) of F1=0 checked by TLC and glpc. The combined yield of (F1=N-)2 was
1.44 g (79%) (run 1, Table III).

The experiment was repeated and resulted in the isolation of F1=F1 (3%), F1H-HF1 (5%), (F1=N2) (79%), and F1=0 (7%). (run 2, Table III).

Reaction of 9-Fluorenyl Anion with 9-Diazofluorene. Into a 500-ml, three-necked, round-bottomed flask, 200 ml of THF (distilled from LiAlH4) was distilled under an argon atmosphere. To this was added 2.03 g (12.5 mmol) of FlH2 followed by 6 ml (10.3 mmol) of phenyllithium (1.79 M, in 70:30 benzene/ether) by syringe injection. The orange solution was allowed to stir magnetically for 15 min under an argon atmosphere at -12°C. Then, 2.10 g (10.9 mmol) of FlN2 in 10 ml of THF was injected with syringe. The whole solution turned deep-red. After stirring for 30 min, the reaction was quenched with 20 ml of distilled water. Rotavaporation of solvent afforded deep-red solids as crude product. The mixture was eluted through a column of silica gel (150 g) with hexane to give 1.20 g (7.23 mmol) of FlH2, with hexane-CCl4 (1:1, v/v) to give 0.10 g (0.3 mmol) of FlH-HF1, and with benzene to give 2.35 g (6.60 mmol) of (F1=N2) (checked by TLC and glpc). Only trace amount of F1=F1 was detected by glpc (run 2, Table IV).

The experiment was repeated with 2.12 g (11.0 mmol) of FlN2 in 10 ml of THF to give 1.94 g (11.7 mmol) of FlH2 and 2.31 g (6.5 mmol) of (F1=N2); FlH-HF1 or F1=F1 were not detected (run 1, Table IV).

Reaction of 9-Fluorenyl Anion with CF3COOD-D2O. To 100 ml of dry, deoxygenated THF in a 500-ml, three-necked, round-
bottomed flask under an argon atmosphere at -12°C was added 2.00 g (12.0 mmol) of FLH₂ followed by syringe injection of 7.4 ml (13.3 mmol) of phenyllithium solution (1.79 M, in 70:30 benzene/ether). The orange solution was allowed to stir magnetically for 15 min under an argon atmosphere at -12°C. To this was injected a solution of (CF₃CO)₂O (1.96 g, 9.33 mmol) and D₂O (1.99 g, 100 mmol). The orange solution immediately turned light-yellow. After removal of the solvent, the residue was dissolved in 100 ml of ether. The ether solution was washed with two 150-ml portions of distilled water, 150 ml of saturated NaCl solution, and dried (MgSO₄). Evaporation of the solvent gave 2.10 g of white solids. Recrystallization from ethanol gave 1.90 g of white needles in a 95% yield. This compound was identified as a mixture of 22% FLH₂ and 78% FLHD by ¹³C nmr spectrum, and 24% FLH₂ and 76% FLHD by ¹H nmr spectrum (Table V).

Reaction of Fluorene with Sodium Naphthalene. To a 44.0 mmol of Na⁺C₁₀H₈²⁻ in 400 ml of THF was added, dropwise, a solution of 1.20 g (7.2 mmol) of FLH₂ in 100 ml of THF over a period of 15 min at -12°C under an argon atmosphere. After 30 min, a mixture of (CF₃CO)₂O (10.6 g, 50.5 mmol) and D₂O (7.0 g, 350 mmol) was syringe injected to the deep-green solution over a period of 10 sec. The solution turned white after addition of the acidic quench. After 15 min, the solvent was removed by rotovaporation, and the residue was dissolved in 100 ml of ether. The ether solution was washed with two 150-ml portions of distilled water and dried (MgSO₄). Evaporation of
the solvent gave a white solid. Naphthalene and 1,4-dihydro- and -deuterionaphthalene were removed by sublimation at 30°C/-0.2 torr and light yellow solids remained in the sublimation tube. The bath temperature was raised up to 60°C and fluorene sublimed, which was recrystallized from ethanol (1.10 g) and identified as a mixture of 8% FlH₂, 72% FlHD, and 20% FlD₂ by ¹³C nmr spectrum; 8% FlH₂, 72% FlHD, and 20% FlD₂ by ¹H nmr spectrum (Table V).

Calculation of Percentage Compositions of Deuterated Fluorene by ¹H and ¹³C NMR Spectroscopy. From multiple integration of the ¹H nmr spectrum of authentic FlH₂, the total aryl-H's/ C₉-H₂ ratio was determined to be 8.75/2 (see Table V). The number of protons at C₉ of a sample of C₉-deuterated fluorene were determined from its integral ratio, (C₉/total aryl), multiplied by 8.75. Using the amount of FlH₂ found in the sample by ¹³C nmr, the %'s FlHD and FlD₂ were then calculated in the sample.

In the proton decoupled ¹³C nmr spectrum of authentic FlH₂, integrals of the C₉ and two of the aryl carbon absorptions, C_a (124.5 ppm) and C_b (119.5 ppm), were used to give C₉/C_a = 0.588 and C₉/C_b = 0.612 ratios (conversion factors, Table V). The ratios of these integrals for the deuterated fluorene were then divided by these correction factors to obtain the percent FlH₂ in this sample.

To determine the percent FlHD in the sample, the mixture of 24% FlH₂ and 76% FlHD (by ¹H nmr) was used. The ratio of the integrated upfield absorption line of the C₉-D(H) triplet to
C_a or C_b, corrected to 100% F1HD, gave the conversion factors 0.153 and 0.152, respectively (Table V). The ratio of these integrated absorptions for the deuterated fluorene samples divided by these conversion factors gave the percent of F1HD in the sample. The percent F1D$_2$ was then taken as the difference, 100 - % F1H$_2$ - % F1HD.
REFERENCES AND NOTES

22. R. B. Davidson and M. L. Hudak, J. Am. Chem. Soc., 99, 3918 (1977): $\theta_{HCH} = 99^\circ$, $r_{CH} = 1.145^\circ$A.
23. (a) R. N. McDonald, unpublished results; $\theta_{HCH} = 99.9^\circ$, $r_{CH} = 1.144^\circ$A, $\Delta H_f = 100.6$ kcal/mole for CH$_2^\cdot$. (b) R. N. McDonald, K. J. Borhani, and M. D. Hawley, unpublished results.
25. An excited state doublet ($\pi^1 6^2$) of cyclopentadienylidene anion radical was also identified on the MINDO/3 surface being 12 kcal/mole less stable than the $\pi^2 6^1$ ground state.
29. J. R. Jezorek, A. Lagu, T. M. Seigel, and H. B. Mark,

31. All melting points were taken on a Kofler hot stage and uncorrected. Spectra were determined on commercial instruments (ir, Perkin-Elmer 137; nmr, Varian T-60 and XL-100; glpc, Hewlett-Packard 5750).

44. In all reactions where Na\(^+\)C\(_{10}\)H\(_{3}\)\(^{-}\) in THF was used as the reducing medium, this solution was magnetically stirred under an argon atmosphere at -12\(^\circ\)C. The solution containing the compound to be reduced was then added to this reducing solution.

ACKNOWLEDGMENTS

The author would like to acknowledge the guidance and support of his major professor, Dr. Richard N. McDonald. He has given the author confidence and help in the course of directing this research. The author would also like to acknowledge the helpful suggestions, encouragement, and assistance by other members of the faculty members and his laboratory colleagues.

The author would like to thank his wife, Virginia and his parents for their encouragement and confidence.

The author would also like to express his appreciation to the National Science Foundation (CHE-76-01410) for support of this research, and to the Department of Chemistry, Kansas State University, for a teaching assistantship in the early stages of this research.
VITA

Kuo-Wei Lin was born in Lo-Tung, Taiwan, on March 8, 1951. He was reared in Lo-Tung, where he lived until graduation from Taipei Institute of Technology in 1971.

In the summer of 1971, he entered the navy and was discharged from military service in June, 1973. He then entered Nan Ya Plastics Corporation in Taipei. In December, 1974, he married the former Virginia Su-0 of Taipei, Taiwan.

In January, 1975, he entered the Graduate School at Kansas State University. His research program in organic chemistry for the M.S. degree was directed by Dr. Richard N. McDonald.

Kuo-Wei and Virginia have one son, Christopher, born in June of 1977.
THE CHEMICAL GENERATION OF CARBENE ANION RADICALS

by

KUO-WEI LIN
TAIPEI INSTITUTE OF TECHNOLOGY, 1971

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE

Department of Chemistry

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978
The chemical generation of diphenylcarbene anion radical (Ph₂C⁻) and fluorenylidene anion radical (Fl⁻) was investigated. Slow, dropwise addition of a THF solution of diphenyl-diazomethane (Ph₂CN₂) to excess sodium naphthalene in THF at -12°C under an argon atmosphere gave diphenylmethane (Ph₂CH₂) (11±2%) and benzhydrylamine (Ph₂CHNH₂) (83±1%) along with trace amounts of tetraphenylethane and benzophenone azine. Fast, syringe injection of the Ph₂CN₂ solution into the reducing agent produced 5±1% Ph₂CH₂ and 92±1% Ph₂CHNH₂.

Analogous slow, dropwise addition of 9-diazofluorene (FlN₂) in THF to excess sodium naphthalene in THF gave fluorene (FlH₂) (40±2%) and 9-aminofluorene (FlHNH₂) (53±3%), while fast, syringe injection gave the same components in 12% and 88% yields, respectively. The amines, Ph₂CHNH₂ and FlHNH₂, were shown to be the further reduction products of the corresponding azines, (Ph₂C=N⁻₂ and (Fl=N⁻₂. Fast, syringe injection of FlN₂ dissolved in a small amount of THF into sodium in liquid ammonia gave 79±0% (Fl=N⁻₂, 6±1% fluorenone, 4±1% 9,9'-bifluorenyl, and 4±1% 9,9'-bifluorenylidene.

These results are rationalized in terms of the intermediacy of the two carbene anion radicals, Ph₂C⁻ and Fl⁻. The formation of the arenes, Ph₂CH₂ and FlH₂, is established as the sequence H⁺ followed by H⁺ abstraction. Isolation of the two dimers, Fl=Fl and FlH-HFl, from the Na/NH₃ reduction of FlN₂ demonstrates that Fl⁻ can dimerize if certain other reactions of the carbene anion radical are surpressed.
Addition of D$_2$O or CF$_3$COOD-D$_2$O to the reduction mixture from slow addition of F1N$_2$ to sodium naphthalene in THF gave fluorene containing 40% and 50%, respectively, of excess deuterium as F1D$_2$. This excess deuterium content has been corrected for some H-D exchanges of C$_9$ of fluorene occurring in the CF$_3$COOD-D$_2$O quench of related reaction mixtures. To account for the excess deuterium, it was proposed that F1$^-$ was reduced by sodium naphthalene to the carbene dianion, F1$^{2-}$.

Reaction of 9-fluorenyl anion (F1H$^-$) with F1N$_2$ in THF gave F1H$_2$ and (F1=N)$_2$. The results suggested two possible pathways for azine formation, one by reaction of F1H$^-$ with F1N$_2$ and the second by direct coupling of F1$^-$ and F1N$_2$.