HEAT TRANSFER TO A MHD FLUID IN
A FLAT DUCT WITH CONSTANT HEAT FLUX AT THE WALLS

by

PHILIP J. KNIEPER
B.S., Tulane University, 1963

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

Liang-tung Fan
Major Professor
TABLE OF CONTENTS

INTRODUCTION

| Part 1 - EFFECTS OF VISCous DISSIPATION ON HEAT TRANSFER PARAMETERS FOR FLOW BETWEEN PARALLEL PLATES |
|--------|-----------------|
| SUMMARY | 10 |
| NOMENCLATURE | 11 |
| INTRODUCTION | 13 |
| BASIC EQUATIONS | 15 |
| SOLUTION OF THE ENERGY EQUATION | 18 |
| HEAT TRANSFER PARAMETERS | 23 |
| RESULTS AND DISCUSSION | 26 |
| REFERENCES | 35 |

| Part 2 - AN INVESTIGATION OF HEAT TRANSFER FOR MHD FLOW IN THE THERMAL ENTRANCE REGION OF A FLAT DUCT |
|--------|-----------------|
| SUMMARY | 37 |
| NOMENCLATURE | 38 |
| INTRODUCTION | 39 |
| BASIC EQUATIONS | 42 |
| SOLUTION OF THE ENERGY EQUATION | 44 |
| HEAT TRANSFER PARAMETERS | 47 |
| RESULTS AND DISCUSSION | 51 |
| REFERENCES | 52 |

| Part 3 - AN INVESTIGATION OF HEAT TRANSFER FOR MHD FLOW IN THE ENTRANCE REGION OF A FLAT DUCT |
|--------|-----------------|
| SUMMARY | 84 |
| NOMENCLATURE | 85 |
| INTRODUCTION | 86 |
BASIC EQUATIONS
SOLUTION OF EQUATIONS
HEAT TRANSFER PARAMETERS
RESULTS AND DISCUSSION
REFERENCES
OUTLINE OF FUTURE RESEARCH WORK
APPENDIX
COMPUTER PROGRAMS
DISCUSSION OF THE PHYSICAL SIGNIFICANCE OF THE CURVES WHICH DESCRIBE THE DEVELOPING TEMPERATURE PROFILES
RELATIONSHIP BETWEEN RESULTS OF PERLMUTTER AND SIEGEL AND THOSE PRESENTED IN THIS THESIS
ACKNOWLEDGEMENTS
INTRODUCTION
Electromagnetic phenomena in rigid conductors have been studied ever since the time of Faraday. Until recently the study of the interaction of electromagnetic fields and electrically conducting fluids has not attracted much attention. Probably the recent incentive to study these phenomena came from the field of astrophysics. It has long been suspected that most of the matter in the universe is in the plasma or highly ionized gaseous state. Much of the basic knowledge in the area of electromagnetic field dynamics evolved from these studies [1].

The field of plasma physics has now grown from these scholarly beginnings to include problems in such widely diverse areas as geophysics and controlled nuclear fusion. As a branch of plasma physics the field of magnetohydrodynamics (MHD) consists of the study of a continuous, electrically conducting fluid under the influence of electromagnetic fields. MHD originally included only the study of strictly incompressible fluids, but today the terminology is applied to studies of partially ionized gases as well. The essential requirement for problems to be analyzed under the laws of MHD is that the continuum approach be applicable.

With the advent of hypersonic flight the field of MHD as defined above, which has previously been associated largely with liquid-metal pumping and flow control and measurement, attracted the interest of the aerodynamicists. As a result many of the classical problems of fluid mechanics were reinvestigated.

The study of channel-flow heat transfer has applications in the fields of propulsion and power-generation in such devices as a MHD power generator and pump. For obtaining a high thermal efficiency in the generation of power, the MHD generator is ideal. However, the extremely high temperature at which
a MHD generator must operate has been a major problem in developing such a
generator, and this problem can only be solved with a delicate blend of
physics and engineering [2]. Therefore, the study of heat transfer associated
with MHD channel flow is of considerable importance.

For the study of heat transfer in MHD flow, the published literature
on the subject is limited [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
All of these papers with the exception of the last three [3, 4, 5, 6, 7, 8,
9, 10, 11, 12] deal only with the cases for the fully developed velocity
profile [16]. Three references, [13, 14, 15] are the only ones, to the
authors knowledge, that treat the entrance effects in a MHD channel. That
is the simultaneous development of the velocity and temperature profiles
in the entrance region of some chosen channel geometry. Reference [13]
considers only the case of constant wall temperature for a flat duct.
Reference [14] investigated the same geometric configuration for insulated
walls. Reference [15] investigated the entrance region of an annular
channel for the case of insulated walls.

In this thesis the author investigates the simultaneous development
of the velocity and temperature profiles in the entrance region of a flat
duct for electrically conducting fluid flow in the presence of a transverse
magnetic field considering the case of constant heat flux at the wall. The
fluid properties are assumed to be constant, and the velocity and temperature
profiles are both uniform at the entrance of the duct. The flat duct is formed
by semi-infinite parallel plates, and the magnetic field is applied perpen-
dicular to the plates. There can be a net electrical current flowing parallel
to the walls and perpendicular to the flow direction with a variable external
resistance connecting the two end plates which are displaced at infinity.
The basic governing equations are the Maxwell equations for the interaction of current flow and magnetic field, the continuity and momentum equations for the conservation of mass and momentum, and the energy equation for the conservation of energy.

Part 1 of the thesis is concerned with the effects of viscous dissipation on the temperature profile in the thermal entrance region between parallel plates. The flow is laminar and the velocity profile is fully developed. The heat flux at the walls is considered constant. This study made it possible to ascertain under what conditions the viscous dissipation effects may be considered negligible in non-MHD flow. Also the results for certain cases considered could be compared with others to provide a basis for checking the numerical method used to solve the desired equations.

Part 2 of the thesis presents the results for the investigation of heat transfer in an electrically conducting fluid flowing through a magnetic field within a flat duct for the case of a fully developed velocity profile (Hartmann profile) and constant heat flux at the wall. This study was prepared so that a comparison could be made between the results obtained in this study and other reported results to check the method of solution of the derived equations.

Part 3 of the thesis is the investigation of the simultaneous development of temperature and velocity profiles in the entrance region of a flat duct under the conditions previously described.

The three parts of this thesis may be considered as a demonstration of the use of a powerful mathematical method in combination with high speed digital computers for the solution of transport equations.

A finite difference analysis technique is employed throughout this thesis. A mesh network is superimposed on the flow field and the backward
finite difference method [17, 18] is used to produce n linear simultaneous equations in n unknowns. The equations are solved by using the method of Thomas [17]. Because of computer capacity limitations and a desire to minimize computing time, the selection of the proper mesh sizes of the coordinates in order to achieve convergence to the true solution of the differential equations is one of the most important factors for solving this type of problem. A semi-theoretical and semi-empirical method was employed in the determination of the mesh size ratio for the solution of the energy equation [19].
REFERENCES

Part 1

EFFECTS OF VISCOS DISSIPATION ON HEAT TRANSFER
PARAMETERS FOR FLOW BETWEEN PARALLEL PLATES
SUMMARY

The effects of viscous dissipation on temperature profiles and heat transfer parameters in the thermal entrance region are investigated numerically for flow between two parallel plates. The flow is considered laminar and fully developed, and the heat flux at the walls is considered constant. The heat generation parameter is introduced. The relation between this parameter and the Eckert number and the Brinkman number is discussed. The developing temperature profiles as well as the local Nusselt number are presented graphically for heat generation parameters of -1.0, -0.5, 0, 0.5, and 1.0.
NOMENCLATURE

A surface area through which heat is transferred

a one-half of the duct height

Br \(\frac{\mu u^2}{k(t_b - t_0)} \), Brinkman number

Cₚ specific heat

Cₙ constant reported by Cess and Shaffer

Dₑ equivalent diameter of the duct, 4a

Eₑ \(\frac{u^2}{C_p(t_b - t_0)} \), Eckert number

h heat transfer coefficient

k thermal conductivity

L duct length

Nuₓ \(\frac{hD_e}{k} \)

Pr \(\frac{\mu C_p}{k} \), Prandtl number

q rate of heat transfer

q″ - \(\frac{\dot{Q}}{A} \), negative rate of heat transfer per unit area

q* \(\frac{\dot{Q}}{A} \), rate of heat transfer per unit area

Reₐ \(\frac{\rho u_o a}{\mu} \), Reynolds number

t temperature

u velocity in x-direction

U \(\frac{u}{u_0} \), dimensionless velocity in x-direction
x variable distance along length of duct

$X = \frac{\mu x}{\rho a u_0 F_r}$, dimensionless variable distance along length of duct

$Y = \frac{y}{a}$, dimensionless variable distance across height of duct

$Y_n(1)$ constant reported by Cess and Shaffer

y variable distance across height of duct

z variable distance along width of duct

β_n Eigenvalue reported by Cess and Shaffer

$\eta = \frac{u_0^2}{\rho a q n}$, heat generation parameter

ρ density

μ viscosity

$\theta = \frac{t-t_0}{a q W}$, dimensionless temperature

$\Psi = \frac{h}{\Delta \theta}$, pseudo-local Nusselt number

Subscripts

b bulk

j at jth position along x axis

k at kth position across y axis

w at the walls or plates

x local

0 at initial position along x axis
INTRODUCTION

The effects of viscous dissipation are often assumed to be small and thus they are often neglected in heat transfer computations. There are many applications where this assumption is questionable. Some of these are high speed flow through small conduits, extrusion of viscous materials at high speeds, flow through very small ducts (capillary flow), and flow at high speeds. Recognizing the conditions under which the viscous dissipation effects can be neglected is of practical significance.

Brinkman [1] obtained the temperature distribution in a capillary due to the energy dissipation of viscous flow for the cases of constant wall temperature and insulated walls. The dependence of kinematic viscosity upon temperature was assumed to have only a small effect on the temperature distribution and was neglected. A further simplification was introduced by neglecting the heat conduction in the axial direction which is small compared to the convection in the radial direction.

Gerrard, Appeldorn and Philippoff [2] experimentally verified Brinkman's results for capillary heating due to viscous dissipation. The experiments also proved that the flow in a capillary is essentially adiabatic which was in contradiction to the widespread belief that the "isothermal wall" condition existed.

Bird [3] extended Brinkman's work to describe the heat effects for the flow of non-newtonian fluids which obey a power-law relation between the coefficient of viscosity and the shear stress. Results are presented for the power law corresponding to the flow of a general purpose polyethylene melt for two cases: (1) the capillary walls are maintained at the temperature of the feed, and (2) the capillary walls are thermally insulated.
Novotny and Eckert [4] experimentally studied heat transfer in free convective flow of a heat-generating fluid in a vertical parallel-plate channel through the use of an interferometer. The study includes the range of time from an initial state of uniform temperature in the whole system (no flow) to a quasi-steady state when a step change in heat generation is applied to the fluid initially between the walls of the channel. The results obtained are for neither the constant wall temperature boundary condition nor the constant heat flux at the wall boundary condition, but rather describe a condition between the two cases.

In this investigation the effects of viscous dissipation on the temperature profile in the thermal entrance region between parallel plates are presented. The flow is laminar and the velocity profile is fully developed. The heat flux at the walls is considered constant.

The heat generation parameter is introduced and its relation to the Eckert and Brinkman numbers is discussed.

The derivation of the boundary condition that the constant of the heat flux at the wall is equivalent to unity in dimensionless form, is presented in detail because such an expression has never been presented in the literature.

The finite difference analysis and numerical method are presented in detail to show the application of Thomas' method to the solution of the linear simultaneous equations derived from the energy equation. This presentation will be referred to in latter parts of the thesis. An advantage of Thomas' method as compared with the usual matrix inversion method of Gaussian elimination method is the significant reduction in computer storage requirement and computing time.

The developing temperature profiles and the local Nusselt numbers for
the heat generation parameters, -1.0, -0.5, 0, 0.5, and 1.0 are presented.

BASIC EQUATIONS

The geometry under consideration, illustrated in Figure 1, consists of two semi-infinite parallel plates extending in the x and z directions. The fully developed laminar velocity profile, a parabolic profile in the x-direction, used in this work is expressed as \[5\].

\[u = \frac{(\Delta P) a^2}{2 \mu L} \left[1 - \left(\frac{Y}{a} \right)^2 \right], \]

(1)

where \(\Delta P\) is the average pressure drop over the length, L, of the duct. The average velocity between the two plates is

\[u_0 = \frac{1}{2} \left(\frac{\Delta P}{\mu L} \right) a^2. \]

(2)

Then, the dimensionless velocity profile is

\[\frac{u}{u_0} = U = \frac{3}{2} \left[1 - \left(\frac{Y}{a} \right)^2 \right]. \]

(3)

The general form of the energy equation for unidirectional steady flow of an incompressible fluid with constant properties and with negligible heat conduction in the fluid flow direction can be simplified to \[5\]

\[u \frac{\partial T}{\partial x} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{\mu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2. \]

(4)

Introducing the dimensionless parameters

\[Pr = \frac{\mu c_p}{k}, \] Prandtl number

\[X = \frac{kx}{\rho a^2 u_0 c_p} = \frac{x/a}{Re \cdot Pr} \]

\[Y = y/a \]
Fig. 1. Parallel plate channel with imposed uniform wall heat flux.
\[\theta = \frac{t - t_0}{\frac{aq''}{k}} \]

\[\eta = \frac{u_0^2 \mu}{aq''}, \text{ heat generation parameter} \]

Equation (4) becomes

\[u \frac{\partial \theta}{\partial X} = \frac{\partial^2 \theta}{\partial Y^2} + \eta \left(\frac{\partial \theta}{\partial Y} \right)^2. \] (5)

The boundary conditions are

1. \(\theta = 0 \) at \(X = 0 \) and \(0 \leq Y \leq 1 \),
2. \(\frac{\partial \theta}{\partial Y} = 0 \) at \(Y = 0 \) and \(0 \leq X \),
3. \(\frac{\partial \theta}{\partial Y} = 1 \) at \(Y = 1 \) and \(0 < X \).

The third boundary condition can be developed from the assumption of constant heat flux at the walls. As stated by Kays [6], the slope of the temperature profile at the wall is maintained constant along the duct when the heat flux is constant. Although the constant slope in Kays' solution was specified as 1, the definition of dimensionless temperature was of the form \(t/t_0 \) in this paper; hence, it limited the solution to the special case in which the entrance fluid temperature is \(t_0 = \frac{q''a}{k} \). In the present work the dimensionless temperature is redefined so that the conditions, \((\partial \theta/\partial Y)_{Y=1} = 1 \), holds universally when the heat flux is constant as shown below:

According to Fourier's law, one has

\[q = -kA \frac{\partial t}{\partial Y}. \] (7)

Equation (7) can be rewritten, for constant heat flux at the walls, as

\[\frac{\partial t}{\partial Y} \bigg|_{Y=a} = \frac{-a}{kA} = \frac{q''}{k} = \text{constant}, \]
where $q^n = -q/A$. Therefore, one obtains

$$\frac{q^n}{k} \left. \frac{\partial\left(\frac{t}{a_0^n/k}\right)}{\partial (\frac{Y}{a})} \right|_{Y=a} = \frac{q^n}{k}, \quad q^n \neq 0$$

or

$$\left. \frac{\partial\left(\frac{t}{a_0^n/k}\right)}{\partial Y} \right|_{Y=1} = 1.$$

Since

$$\frac{t_0}{a_0^n/k}$$

is constant, it can be seen that

$$\left. \frac{\partial\left(\frac{t}{a_0^n/k} - \frac{t_0}{a_0^n/k}\right)}{\partial Y} \right|_{Y=1} = 1.$$

Defining the dimensionless temperature as

$$\theta = \frac{t-t_0}{a_0^n/k},$$

one obtains

$$\left. \frac{\partial \theta}{\partial Y} \right|_{Y=1} = 1$$

Therefore, the results presented in this work hold for all cases of constant heat flux and are not limited to any specific application except for the case in which $q = 0$. This investigation will not be applicable to this case.

SOLUTION OF THE ENERGY EQUATION

In order to solve the energy equation, the velocity profile is first determined from equation (3) and the energy equation is solved by employing
a finite difference analysis. The approximate finite difference equations are (see Figure 2 for the mesh network)

\[U = U_{j,k} \]
\[\frac{\partial \theta}{\partial Y} = \frac{\theta_{j,k+1} - \theta_{j,k-1}}{2\Delta Y}, \]
\[\frac{\partial \theta}{\partial X} = \frac{\theta_{j+1,k} - \theta_{j,k}}{\Delta X}, \]
\[\frac{\partial^2 \theta}{\partial Y^2} = \frac{\theta_{j+1,k+1} - 2\theta_{j+1,k} + \theta_{j+1,k-1}}{2(\Delta Y)^2} + \frac{\theta_{j,k+1} - 2\theta_{j,k} + \theta_{j,k-1}}{2(\Delta Y)^2}, \]
\[\frac{\partial U}{\partial Y} = \frac{(U_{j+1,k+1} - U_{j+1,k-1})}{2\Delta Y}. \]

The boundary conditions in finite difference form become

1. \(\theta_{0,k} = 0 \) at \(X = 0 \) and \(0 \leq Y \leq 1 \),
2. \(\theta_{j+1,2} = \theta_{j+1,0} \) at \(X > 0 \) and \(Y = 0 \),
3. \(\theta_{j+1,n+1} = \theta_{j+1,n} + \Delta Y \) at \(X > 0 \) and \(Y = 1 \).

Substituting the difference equations, equation (8), into the energy equation, equation (5), one can obtain the following equation in which the \(\theta \)'s with \(j+1 \) subscript are the unknowns and the \(\theta \)'s with \(j \) subscript are the known variables.

\[\begin{bmatrix} C_k \end{bmatrix} \theta_{j+1,k+1} + \begin{bmatrix} A_k \end{bmatrix} \theta_{j+1,k} + \begin{bmatrix} B_k \end{bmatrix} \theta_{j+1,k-1} = \begin{bmatrix} D_k \end{bmatrix}, \]

where

\[\begin{bmatrix} C_k \end{bmatrix} = \begin{bmatrix} B_k \end{bmatrix} = -\frac{1}{2(\Delta Y)^2}, \]
\[\begin{bmatrix} A_k \end{bmatrix} = \frac{U_{j+1,k}}{\Delta X} + \frac{1}{(\Delta Y)^2}, \]
Fig. 2. Mesh network for difference representations.
\[
\left[D_k \right] = - \left[C_k \right] \theta_{j,k+1} - \frac{1}{(\Delta x)^2} \theta_{j,k} - \left[C_k \right] \theta_{j,k-1} + \frac{U_{j,k}}{\Delta x} \theta_{j,k}
\]

\[+ \frac{n}{4(\Delta y)^2} (U_{j+1,k+1} - U_{j+1,k-1})^2.\]

Substituting \(k = 1, 2, \ldots, n \) into equation (10) with the boundary conditions given by equation (9), \(n \) unknowns and \(n \) simultaneous equations are obtained. Such equations are given in matrix form as

\[
\begin{bmatrix}
A_1 & C_1 & B_1 & 0 & 0 & \cdots & 0 \\
C_2 & A_2 & B_2 & 0 & 0 & \cdots & 0 \\
0 & C_3 & A_3 & B_3 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & C_{n-1} & A_{n-1} & B_{n-1} & \cdots & 0 \\
0 & 0 & 0 & \cdots & \cdots & \cdots & C_n
\end{bmatrix}
\begin{bmatrix}
\theta_{j+1,1} \\
\theta_{j+1,2} \\
\theta_{j+1,3} \\
\vdots \\
\theta_{j+1,n-1} \\
\theta_{j+1,n}
\end{bmatrix}
= \begin{bmatrix}
D_1' \\
D_2' \\
D_3' \\
\vdots \\
D_{n-1}' \\
D_n'
\end{bmatrix}
\tag{11}
\]

where

\[
D_1' = -2 \left[C_1 \right] \theta_{j,2} + \left(\frac{U_{j,1}}{\Delta x} + 2 \left[C_1 \right] \right) \theta_{j,1}.
\tag{12}
\]

The last equation of equation (11), \(k = n \), is

\[
\left[C_n \right] \theta_{j+1,n-1} + \left[A_n \right] \theta_{j+1,n} + \left[C_n \right] \theta_{j+1,n+1} = \left[D_n \right].
\tag{13}
\]

Since the third boundary condition is \(\theta_{j+1,n+1} = \theta_{j+1,n} + \Delta y \) at the wall, one has

\[
\left[A_n \right] = \left[A_n \right] + \left[C_n \right],
\]

\[
\left[B_n \right] = \left[D_n \right] - \Delta y \left[C_n \right].
\]

Equation (11) is solved using Thomas' method \([7]\). Advantages of Thomas' method are the reduction in computer storage required and computing time.
The unknowns are eliminated starting from the top by letting

\[W_1 = A_1, \]
\[W_r = A_r - (C_r) Q_{r-1}, \quad r = 2, 3, \ldots, n \] \hspace{1cm} (14)
\[Q_{r-1} = \frac{B_{r-1}}{W_{r-1}}, \]

and

\[G_1 = \frac{D_1}{W_1}, \]
\[G_r = \frac{D_r - C_r G_{r-1}}{W_r}, \quad r = 2, 3, \ldots, n. \]

These transform equation (11) into

\[\theta_{j+1, n} = G_n, \]
\[\theta_{j+1, r} = G_r - C_r \theta_{j+1, r+1}, \quad r = 1, 2, \ldots, n-1 \] \hspace{1cm} (15)

By calculating \(W, Q, \) and \(G \) in the order of increasing \(r \), equation (15) can be used to calculate \(\theta_{j+1, r} \) in the order of decreasing \(r \), that is, \(\theta_{j+1, n}, \theta_{j+1, n-1}, \ldots, \theta_{j+1, 2}, \theta_{j+1, 1} \). The actual numerical computations were carried out on computers. See the Appendix for the computer program and sample results.

It is important to achieve convergence to the true solution of the differential equations within the available computer storage capacity. If the values of \(\Delta X \) and \(\Delta Y \) are chosen so that the value of \(U(\Delta Y)^2/12(\Delta X) \) is of an order smaller than \(\frac{1}{2} \), the truncation error becomes \[\mathcal{O}(\Delta X)^2 + \mathcal{O}(\Delta Y)^4 \]

In order to obtain the truncation errors of the above order, the value of \(U(\Delta Y)^2/12(\Delta X) \) is kept less than 0.05. Although the velocity \(U \) is in the
range of \(0 \leq U \leq 1.5 \), it is taken as 1.0 in calculating the value of \(U(\Delta Y)^2 / 12(\Delta X) \). The mesh sizes employed in the calculation are shown in Table 1.

HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean temperature) is evaluated after the temperature profiles have been determined. The defining equation

\[
\theta_{b,x} = \frac{\int_0^1 U(Y) \theta(X,Y) \, dY}{\int_0^1 U(Y) \, dY},
\]

(16)

for the bulk temperature in finite difference form at \(X = (j+1) \Delta X \) becomes

\[
\theta_{b,x} = \frac{\sum_{k=1}^{n} \theta_{j+1,k} U_{j+1,k} \Delta Y}{\sum_{k=1}^{n} U_{j+1,k} \Delta Y}.
\]

(17)

Since

\[
\sum_{k=1}^{n} U_{j+1,k} \Delta Y = 1
\]

equation (16) becomes

\[
\theta_{b,x} = \sum_{k=1}^{n} \theta_{j+1,k} U_{j+1,k} \Delta Y
\]

(18)

In evaluating the wall temperature, the gradient of the temperature profiles at the walls in the finite difference scheme is approximated as follows [10]:

\[
\begin{align*}
\frac{\partial \theta}{\partial Y} \bigg|_{Y=1} &= \frac{\theta_{j+1,n-1} - \theta_{j+1,n}}{2\Delta Y} + \frac{3\theta_{j+1,n+1}}{2(\Delta Y)} + O(\Delta Y^2)
\end{align*}
\]
<table>
<thead>
<tr>
<th>X</th>
<th>ΔX</th>
<th>ΔY</th>
<th>N</th>
<th>(\frac{U(ΔY)^2}{12ΔX})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0005</td>
<td>0.00625</td>
<td>160</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>0.0125</td>
<td>80</td>
<td>0.013</td>
</tr>
<tr>
<td>0.01</td>
<td>0.005</td>
<td>0.025</td>
<td>40</td>
<td>0.01</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
<td>0.05</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Substituting the boundary condition, \(\frac{\partial \theta}{\partial Y} |_{Y=1} = 1 \), in the above equation and solving for the wall temperature, \(\theta_{j+1,n+1} \), one obtains

\[
\theta_w(x) = \theta_{j+1,n+1} = \frac{4\theta_{j+1,n} - \theta_{j+1,n-1} + 2\Delta Y}{3}
\]

The mean Nusselt number, \(N_{ul} \), for the case of constant heat flux at the wall is of secondary importance, and the local Nusselt number, \(N_{u_x} \), is desired. The local Nusselt number may be used to evaluate the wall temperature at any position along the duct; whereas, the primary usefulness of the mean Nusselt number is in evaluating the temperature of the fluid leaving the system. The local Nusselt number is defined as

\[
N_{u_x} = \frac{h_x D}{k}.
\]

Since the local heat transfer coefficient, \(h_x \), is given by

\[
h_x = \left| \frac{q_x}{A(\Delta t)} \right| = \left| \frac{q_x}{(1)(\Delta X)(\Delta t)} \right|
\]

and \(q_x \) is given by

\[
q_x = -k \left(\frac{\partial T}{\partial Y} \right) |_{Y=a} (\Delta x)
\]

the local Nusselt number, \(N_{u_x} \), in dimensionless variables can be written as

\[
N_{u_x} = \left| \frac{h}{\Delta \theta} \right| = \left| \frac{\frac{h}{\Delta \theta}}{\left(\frac{\partial \theta}{\partial Y} \right) |_{Y=1}} \right|
\]

The constant heat flux is equivalent to maintaining \(\left(\frac{\partial \theta}{\partial Y} \right) |_{Y=1} = 1.0 \), as given in the last boundary condition of equation (7). Therefore, the local Nusselt number is

\[
N_{u_x} = \left| \frac{-h}{\Delta \theta} \right|
\]

where \(\Delta \theta \) is defined as

\[
(\Delta \theta)_x = \theta_{w,x} - \theta_{b,x}
\]
RESULTS AND DISCUSSION

The temperature distributions between the parallel plates at various positions in the thermal entrance region are presented in Figures 3a and 3b. The shape of these curves are similar to those presented by Brinkman \[1\] for flow in a capillary with insulated walls \((q = 0)\), which is a special case of constant heat flux at the wall, and by Novotny and Eckert \[4\] for the quasi-steady conditions of free convective flow of a heat-generating fluid in a vertical parallel plate channel. Novotny and Eckert \[4\] considered a case which was neither constant wall temperature nor constant heat flux at the wall, thus, the results presented vary between these extreme cases.

When the distance between plates is small the quasi-steady state curves presented have a shape which looks similar to the results in Figures 3a and 3b. As the channel width increases the curves presented by Novotny and Eckert take on a shape similar to those reported by Brinkman \[1\] for the constant wall temperature case.

The heat generation parameter, \(\gamma\), is defined as \(u_0^2 \mu/q''a\), where \(q''\) is \(-q/A\) and \(q\) is \(-kA \frac{\partial T}{\partial y}\) (equation 7). When \(q''\) is positive \(\gamma\) is positive, and the heat flux is into the system through the walls. When \(q''\) is negative so is \(\gamma\) and heat is transferred away from the fluid through the walls. Since the dimensionless temperature, \(\theta\), is defined as \(k(t-t_0)/aq''\), the slope of the temperature profile at the wall is given as unity. For the case in which \(q''\) is greater than zero, it can be clearly shown that \(\theta_{n+1} > \theta_n\), where \(\theta_{n+1}\) is the dimensionless wall temperature, hence \(t_{n+1} > t_n\) as would be expected when heat is being added to the system through the wall. If \(q''\) is less than zero \(\theta_{n+1} > \theta_n\), but the dimensional wall temperature is less than the temperature of the fluid by the wall, that is \(t_{n+1} < t_n\). This
Fig. 3a. Development of temperature profiles in the thermal entrance region, heat generation parameter and dimensionless distance as parameters.
Fig. 3b. Development of temperature profiles in the thermal entrance region, heat generation parameter and dimensionless distance as parameters.
would be expected since heat is being transferred away from the fluid through the walls. Also the temperature increase as the walls are approached is in part due to the higher rate of shear near the walls. When \(\eta \) is greater than zero the dimensionless fluid temperature increases as the flow distance increases and vice versa for the cases in which \(\eta \) is negative. A more detailed derivation of the physical significance of these curves is presented in the Appendix.

The two dimensionless numbers, the Eckert and Brinkman numbers, which are the criteria of negligibility of viscous dissipation, are related as follows:

Since the Brinkman number is defined as [5]

\[
Br = \frac{u_0^2}{k(t_b - t_0)}
\]

and the Eckert number as [11]

\[
Ec = \frac{u^2}{C_p(t_b - t_0)}
\]

one can see that

\[
Br = \left[\frac{u^2}{C_p(t_b - t_0)} \right] \left(\frac{\mu C_p}{k} \right) = EcPr
\]

The heat generation parameter, \(\eta \), defined in this work is

\[
\eta = \frac{u_0^2 \mu}{a q''}
\]

Since \(q'' \) is dimensionally equivalent to \(h(t_b - t_0) \) and \(k/a \) to \(h \), \(q''a \) can be considered equivalent to \((t_b - t_0)k \). Thus, there is a similarity between the Brinkman number and the heat generation parameter.
In Figure 4 variations of wall and bulk temperatures along the parallel plates are shown for various heat transfer parameters. The results shown in Figures 3a, 3b and 4 indicate the fact that the heat generation parameter can be considered as a criterion for the negligibility of viscous dissipation.

In Figure 5 the results of the variation of the local Nusselt number with dimensionless distance is presented for various values of the heat generation parameter, \(\eta \). Actually, instead of \(Nu_X \), the pseudo-local Nusselt number defined as

\[
\psi = \frac{\frac{4}{\theta} \psi}{\theta_{w,X} - \theta_{b,X}}
\]

is plotted. This quantity is identical to \(Nu_X \) except that it changes in sign depending upon the relative magnitudes of \(\theta_{w,X} \) and \(\theta_{b,X} \), and thus the use of \(\psi \) reveals the behavior of the system better than use of \(Nu_X \). Referring to Figure 4 for the case of \(\eta = -1.0 \), the wall temperature, \(\theta_{w,X} \), becomes more negative than the bulk temperature at the position \(X/l_6 \approx 9 \times 10^{-4} \). Before this point is reached from the inlet of the duct, the temperature difference \(\Delta \theta_X = \theta_{w,X} - \theta_{b,X} \) approaches zero positively. One can see that the pseudo-local Nusselt number, \(\psi \), should approach infinity positively. Then at the position where the wall temperature becomes greater than the bulk temperature, the sign of the pseudo-local Nusselt number is reversed and becomes negative.

A comparison of the results of the present work on the local Nusselt number along the parallel plates with the results obtained by Siegel and Sparrow [12], Michiyoshi and Matsumoto [13], and Cess and Shaffer [14] for the case in which the viscous dissipation is neglected (\(\eta = 0 \)) is presented
in Figure 6. The results of Cess and Shaffer [14] were obtained by a numerical calculation of the following equation

$$\mathrm{Nu}_x = \frac{4}{\frac{17}{35} + \sum_{n=1}^{\infty} c_n y_n(1) \exp \left(- \frac{2}{3} \beta_n^2 x \right)} .$$

(22)

The constants c_n and $y_n(1)$ as well as the eigenvalues, β_n, were reported for the first three values, and asymptotic expressions were given which would augment the initial values presented. The series in the denominator of equation (22) was truncated at $n = 20$. The present work is in excellent agreement with the results of Cess and Shaffer in the range where $X/16 > 3 \times 10^{-4}$. When $X/16 < 3 \times 10^{-4}$ the results of Cess and Shaffer are lower than those of the present work. This deviation is due to the truncation error incurred in limiting the series in equation (22) to $n = 20$. If only the first three terms of the series are considered, the results obtained approximate those presented by Siegel and Sparrow [12] in the range $X/16 > 4 \times 10^{-4}$. Since Siegel and Sparrow [12] and Michiyoshi and Matsumoto [13] used approximation methods their results are not necessarily completely reliable.

The excellent agreement of the results of this work with those of Cess and Shaffer gives a considerable measure of confidence in the numerical method employed in this work. It is worth noting that the method employed in this work was also used to obtain the correct results for the case of constant wall temperature [8], and for forced convection heat transfer in the entrance region of a duct where both the velocity and temperature profiles are developing simultaneously under the condition of negligible viscous dissipation [9].
Fig. 6. Comparison of local Nusselt number for the case of negligible viscous dissipation.
REFERENCES

Part 2

AN INVESTIGATION OF HEAT TRANSFER FOR MHD FLOW IN THE THERMAL ENTRANCE REGION OF A FLAT DUCT
SUMMARY

Heat transfer to an MHD fluid in the thermal entrance region of a flat duct is investigated numerically. The flow is considered to be laminar, the velocity profile is considered to be fully developed, and the heat flux at the wall is considered to be constant. The developing temperature profiles as well as the local Nusselt number are presented graphically for the heat transfer parameters of -1.0, -0.5, 0, 0.5, and 1.0; for Hartmann numbers of 4 and 10; and for electrical field factors 0.5, 0.8, and 1.0. The results presented are applicable for the cases with any Prandtl number. Comparisons are presented for certain cases with previous work.
NOMENCLATURE

A surface area of channel walls through which heat is being transferred

a one-half of duct height

\(A_k, B_k, C_k, D_k \) constants defined by equation (19)

\(B_0 \) magnetic field induction

\(C_p \) specific heat

\(D_e \) equivalent diameter of the duct, \(4a \)

\(E \) electric field strength

\(\epsilon = \frac{E}{u_0 B_0} \), electric field magnitude factor

\(H \) magnetic field intensity

\(H_0 \) magnetic field imposed perpendicular to bounding walls

\(h \) heat transfer coefficient

\(J \) electric current density

\(k \) thermal conductivity

\(M = \mu_e H_0 a \sqrt{\frac{\sigma_e}{\mu}} \), Hartmann number

\(\frac{h_x D_e}{k} \), local Nusselt number

\(p \) fluid pressure

\(\frac{\mu C_p}{k} \), Prandtl number

\(q \) rate of heat transfer

\(q'' = -q/a \), negative rate of heat transfer per unit area

\(\frac{\rho u_0 a}{\mu} \), Reynolds number
Temperature

t

temperature

t_{0}

temperature of fluid at entrance of channel

U

\frac{u}{u_{0}}, \ \text{dimensionless velocity}

u

velocity in x-direction

u_{0}

average fluid velocity

V

fluid velocity vector

x

\frac{\frac{kx}{2}u_{0}c_{p}}{Re Pr a}, \ \text{dimensionless variable distance along length of duct}

x

variable distance along length of duct

Y

\frac{Y}{a}, \ \text{dimensionless variable distance across height of duct}

y

variable distance across height of duct

z

variable distance along width of duct

\eta

\frac{u_{0}^{2} \mu }{aq''}, \ \text{heat generation parameter}

\rho

density

\mu

viscosity

\mu_{e}

electric conductivity

\tau

time

\theta

\frac{t-t_{0}}{aq''/k}, \ \text{dimensionless temperature}

\psi

\frac{\psi}{\Delta \theta}, \ \text{pseudo-local Nusselt number}

Subscripts

b

bulk property or mean fluid property

j

at jth position along X axis

k

at kth position along Y axis
\(w \quad \text{at walls or plates} \)

\(x \quad \text{local property at position } x \)
INTRODUCTION

The study of heat transfer in a electrically conducting fluid flowing within a magnetic field has, within the last few years, become quite important. These efforts have been due to the development of such devices as magnetohydrodynamic accelerators, generators, and pumps. A flat duct is considered in this work because it has applications in such devices.

The general literature on magnetohydrodynamic heat transfer before 1962 is summarized by Romig [1]. Siegel [2] investigated heat transfer to the region where the temperature distribution is fully developed and the heat flux at the wall is uniform. Alpher [3], Yen [4], and Snyder [5] investigated the same problem, but assumed that the duct walls were electrically conducting. Regirer [6] and Gershuni and Zhukovskii [7] neglected the Joule heating in the fluid.

The case considering constant wall temperature with viscous and electrical dissipation in the thermal entrance region was investigated by Nigam and Singh [8]. However, the Joule's heating term in this investigation was incorrectly represented [9], rendering the results invalid. Erickson, et. al., [10] using a finite difference analysis, presented the results for this case. Jain and Srinivasan [11] extended this problem to include the effects of electrically conducting walls.

Michiyoshi and Matsumoto [12] studied both the case of constant wall temperature and the case of uniform heat flux at the wall, but neglected the heat produced by viscous dissipation. These authors considered only the open circuit case, i.e., e = 1.0.

The problem investigated in this part is the study of heat transfer for MHD flow in the thermal entrance region of a flat duct with constant heat flux
at the wall. Neither the viscous dissipation nor the Joule heating are neglected, and there can be a net electric current flow parallel to the walls and perpendicular to the flow direction. This same problem has been studied by Perlmutter and Siegel [9]. These authors separated the problem into two parts: the first deals with a specified uniform heat flux at the walls, but no internal heat generation in the fluid, and the second considers internal heat generation within the fluid, but no heat transfer at the channel walls. By the superposition of these two solutions, a general solution was obtained. The solution for each part of the problem was presented in graphical form for certain cases and in general the solution was presented by equations containing infinite series. It is rather tedious and difficult to complete the superposition and obtain a temperature distribution at any position for any desired case. Also, the overall effects are not obvious in this type of presentation.

The purpose of this part of the thesis is to present the results obtained in the investigation of this problem in an easily interpretable manner such that the effects of the various parameters can be easily verified. Also, the results presented by Siegel and Perlmutter give an excellent opportunity to check the finite difference method used in the thesis for a case in which the differential equations are not reduced by various assumptions to a simple form.

The developing temperature profiles and the local Nusselt numbers for heat generation parameters of -1.0, -0.5, 0, 0.5, and 1.0 are presented for Hartmann numbers of 4 and 10. Three cases; open circuit, maximum power generation, and maximum efficiency are considered.
BASIC EQUATIONS

The geometry under consideration, which is illustrated in Figure 1, consists of two semi-infinite parallel plates extending in the x and z directions. The fluid flows in the x direction; the magnetic field is imposed in the y direction; and the electric current flows in the z direction. Furthermore, the following assumptions are made:

1. The flow is laminar
2. All the fluid properties, \(\rho, C_p, k \) and \(\mu \) are constant
3. The magnetic permeability, \(\mu_e \), and the electrical conductivity, \(\sigma_e \), are constant scalar quantities
4. Rapid oscillations do not exist; therefore, the displacement current is negligible
5. The gravitational force is negligible.

Under the assumptions, the basic equations of magnetohydrodynamics in MKS units may be written as follows [13]

\[
\begin{align*}
\text{curl } \mathbf{H} &= \mathbf{J}, \quad (1) \\
\text{curl } \mathbf{E} &= - \mu_e \frac{\partial \mathbf{H}}{\partial t}, \quad (2) \\
\text{div } \mathbf{J} &= 0, \quad (3) \\
\text{div } \mathbf{H} &= 0. \quad (4)
\end{align*}
\]

Ohm's law for a moving fluid is

\[
\mathbf{J} = \sigma_e \left(\mathbf{E} + \mathbf{V} \times \mu_e \mathbf{H} \right). \quad (5)
\]

The continuity equation is

\[
\text{div } \mathbf{V} = 0. \quad (6)
\]

The modified Navier-Stokes equation is

\[
\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \text{grad}) \mathbf{V} = - \frac{1}{\rho} \text{grad} p + \frac{\mu}{\rho} \mathbf{V}^2 \mathbf{V} + \frac{1}{\rho} (\mathbf{J} \times \mu_e \mathbf{H}). \quad (7)
\]
Fig. 1. Parallel plate channel with imposed uniform wall heat flux and transverse magnetic field.
The fully developed velocity profile used in this work was originally obtained by Hartmann [14]. Cowling [13] gives the Hartmann velocity profile as follows:

\[u = \frac{pM}{\sigma e^2} \left(\frac{\cosh M - \cosh \frac{Y}{a}}{\sinh M} \right) \]

with the boundary conditions

1) \(u = 0 \) at \(y = \pm a \)
2) \(\frac{\partial u}{\partial y} = 0 \) at \(y = 0 \)

The average value of \(u \) between \(y = \pm a \) is

\[u_0 = \frac{\int_a^a u dy}{\int_{-a}^a dy} = \frac{p}{\sigma e^2} \left[M \cosh M - 1 \right] . \]

Then the dimensionless velocity profile is

\[\frac{u}{u_0} = U = M \left[\frac{\cosh M - \cosh \frac{Y}{a}}{\sinh M - \sinh \frac{Y}{a}} \right] \]

The general form of the energy equation for unidirectional steady flow of an incompressible fluid with constant properties and with negligible heat conduction in the fluid flow direction can be simplified to [10].

\[u \frac{\partial \theta}{\partial x} = \frac{k}{\rho c_p} \frac{\partial^2 \theta}{\partial y^2} + \frac{\mu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{J^2}{\rho c_p \sigma_e} . \]

It can be shown [10] that equation (5) simplifies to

\[J = u_0 \sigma e B_0 \left[-\theta + \frac{u}{u_0} \right] . \]

With this value for \(J \), the energy equation becomes

\[u \frac{\partial \theta}{\partial x} = \frac{k}{\rho c_p} \frac{\partial^2 \theta}{\partial y^2} + \frac{\mu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{u_0^2 \sigma e B_0^2}{\rho c_p} \left(-\theta + \frac{u}{u_0} \right)^2 \]
Introducing the dimensionless parameters

\[\text{Pr} = \frac{\mu C_p}{k}, \text{ Prandtl number}, \]
\[X = \frac{kx}{\rho a^2 u_0 C_p} = \frac{x/a}{Re Pr}, \]
\[Y = \frac{y}{a}, \]
\[\theta = \frac{t-t_0}{\alpha a/k}, \]
\[\eta = \frac{u_0^2}{q''a}, \text{ heat generation parameter}; \]

equation (14) becomes

\[U \frac{\partial \theta}{\partial X} = \frac{\partial^2 \theta}{\partial Y^2} + \eta \left(\frac{\partial U}{\partial Y} \right)^2 + \eta^2 U(e-U)^2. \]

(15)

The boundary conditions are

1. \(\theta = 0 \) at \(X = 0 \) and \(0 \leq Y \leq 1 \)
2. \(\frac{\partial \theta}{\partial Y} = 0 \) at \(Y = 0 \) and \(0 \leq X \)
3. \(\frac{\partial \theta}{\partial Y} = 1 \) at \(Y = 1 \) and \(0 < X \)

(16)

The third boundary condition can be developed from the assumption of constant heat flux at the walls. (See same section in Part 1 of the thesis)

SOLUTIONS OF THE ENERGY EQUATION

In order to solve the energy equation, the velocity profile is first determined from equation (11) and the energy equation is solved by employing a finite difference analysis. The approximate finite difference equations are (see Figure 2 for the mesh network)
Fig. 2. Mesh network for difference representations.
\[U = U_{j,k} \]
\[\frac{\partial \theta}{\partial y} = \frac{\theta_{j,k+1} - \theta_{j,k-1}}{2\Delta y}, \]
\[\frac{\partial \theta}{\partial x} = \frac{\theta_{j+1,k} - \theta_{j,k-1}}{\Delta x}, \]
\[\frac{\partial^2 \theta}{\partial y^2} = \frac{(\theta_{j+1,k+1} - 2\theta_{j+1,k} + \theta_{j+1,k-1})}{2(\Delta y)^2} \]
\[+ \frac{(\theta_{j,k+1} - 2\theta_{j,k} + \theta_{j,k-1})}{2(\Delta y)^2}, \]
\[\frac{\partial U}{\partial y} = \frac{(U_{j+1,k+1} - U_{j+1,k-1})}{2\Delta y}. \]

The boundary conditions in finite difference form become

1) \[\theta_{0,k} = 0 \] at \(X = 0 \) and \(0 \leq Y \leq 1 \)
2) \[\theta_{j+1,2} = \theta_{j+1,0} \] at \(X \geq 0 \) and \(Y = 0 \)
3) \[\theta_{j+1,n+1} = \theta_{j+1,n} + \Delta Y \] at \(X > 0 \) and \(Y = 1 \)

Substituting the difference equations into the energy equation, equation (5), the following equation in which the \(\theta \)'s with the \(j+1 \) subscript are the unknown variables and the \(\theta \)'s with the \(j \) subscript are the known variables is obtained.

\[\left[C_k \right] \theta_{j+1,k+1} + \left[A_k \right] \theta_{j+1,k} + \left[B_k \right] \theta_{j+1,k-1} = \left[D_k \right]; \]

where

\[\left[C_k \right] = \left[B_k \right] = -\frac{1}{2(\Delta y)^2}, \]
\[\left[A_k \right] = \frac{U_{j+1,k}}{\Delta x} + \frac{1}{(\Delta y)^2}, \]
\[
\begin{align*}
\eta_k &= - \left[C_i \right] \theta_{j,k+1} - \frac{1}{(\Delta Y)^2} \theta_{j,k} - \left[C_k \right] \theta_{j,k-1} + \frac{U_{j,k}}{\Delta X} \theta_{j,k} \\
&+ \frac{\eta}{4(\Delta Y)^2} (U_{j+1,k+1} - U_{j+1,k-1})^2 + \kappa^2 \eta (\epsilon - U_{j,k})^2.
\end{align*}
\]

Substituting \(k = 1, 2, \ldots, n \) into equation (19) with the boundary conditions given by equation (18), \(n \) unknowns and \(n \) simultaneous equations are obtained. These equations are solved by Thomas' method \([15]\) as shown in Part 1 of the thesis. It is important to achieve convergence to the true solution of the differential equations within the available computer storage capacity. In order to obtain sufficiently small truncation errors, the value of \(\frac{U (\Delta Y)^2}{12 (\Delta X)} \) is kept less than 0.05 \([10, 16]\) (Refer to first part of the Thesis).

Although the velocity, \(U \), is in the range, \(0 \leq U \leq 1.5 \), it is taken as 1.0 in calculating the values of \(\frac{U (\Delta Y)^2}{12 (\Delta X)} \). The mesh sizes employed are shown in Table 1. It was necessary to keep \(N \) as large as shown in order to insure stable results and to prevent discontinuities which at times appeared in the local Nusselt number, \(\text{Nu}_{\text{x}} \), due to a change in \(\Delta Y \). These discontinuities were not evident in the computations for Part 1 of the thesis.

Table 1

<table>
<thead>
<tr>
<th>X</th>
<th>(\Delta X)</th>
<th>(\Delta Y)</th>
<th>N</th>
<th>(\frac{U (\Delta Y)^2}{12 (\Delta X)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0005</td>
<td>0.00625</td>
<td>160</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>0.0125</td>
<td>80</td>
<td>0.013</td>
</tr>
<tr>
<td>0.01</td>
<td>0.005</td>
<td>0.0125</td>
<td>80</td>
<td>0.0026</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
<td>0.0125</td>
<td>80</td>
<td>0.0013</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mesh Sizes for Finite Difference Solution of the Energy Equation.
HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean temperature) is evaluated after the temperature profiles have been determined by the following finite difference equation at \(X = (j+1)\Delta X \)

\[
\theta_{b,X} = \frac{1}{N} \sum_{k=1}^{N} \theta_{j+1,k} U_{j+1,k} \Delta Y .
\]

(21)

The wall temperature is approximated in finite difference form as follows:

\[
\theta_{w,X} = \theta_{j+1,n+1} = \frac{\theta_{j+1,n} - \theta_{j+1,n-1} + 2\Delta Y}{3}.
\]

(22)

The mean Nusselt number, \(Nu_m \), for the case of constant heat flux at the wall, is of secondary importance, and the local Nusselt number, \(Nu_x \), is desired. The local Nusselt number may be used to evaluate the wall temperature at any position along the duct; whereas, the primary usefulness of the mean Nusselt number is in evaluating the temperature of the fluid leaving the system. The local Nusselt number is defined as

\[
Nu_x = \frac{h_x D}{k} .
\]

(23)

For the case of constant heat flux at the wall, the local Nusselt number reduces to

\[
Nu_x = \left| \frac{h_x}{\Delta \theta} \right| ,
\]

(24)

where \(\Delta \theta \) is defined as

\[
(\Delta \theta)_X = \theta_{w,X} - \theta_{b,X} .
\]

For a more detailed discussion of the heat transfer parameters refer to the same section in Part 1 of the Thesis.
RESULTS AND DISCUSSION

The results are presented for the following parameters: Hartmann numbers of 4 and 10; electrical field factors of 0.5, 0.8, and 1.0; and heat generation parameters of -1.0, -0.5, 0, 0.5, and 1.0. The results presented are applicable for any Prandtl number.

The electric field factor, e, is equivalent to the efficiency of an MHD generator and may be defined as the ratio of the electrical power developed to the power necessary to produce the flow of the fluid. The value of e for the maximum power generation is 0.5. The generally accepted value of e, for the compromise which must be made between the conflicting requirement for maximum power and maximum efficiency in MHD generators, is 0.8 [17]. The open circuit case, or no net electrical current flow in the channel, occurs when the electrical field factor is 1.0.

The heat generation parameter, η, is similar to the Brinkman number, which is a criterion for the negligibility of viscous dissipation. When η is positive heat is transferred into the system through the walls. If η is negative, heat is transferred from the fluid through the walls to the surroundings [see Results and Discussion, Part 1].

The dimensionless temperature distributions between the parallel plates at various positions in the thermal entrance region are presented in Figures 3a, 3b, 3c and 4a, 4b, 4c. In Figures 5a, 5b, 5c and 6a, 6b, 6c the variations of dimensionless wall temperature, θ_w, and bulk temperature, θ_b, with distance along the flow direction are presented. The pseudo local Nusselt number, ψ, defined as

$$\psi = \frac{h}{\theta_w, x - \theta_b, x},$$
Fig. 3a. Development of temperature profiles in the thermal entrance region $M=4, e=0.5$.
Development of temperature profiles in the thermal entrance region, $M=4, e=0.8$.

Fig. 3b.
Fig. 3c. Development of temperature profiles in the thermal entrance region, $M=4, e=10$.
Fig. 4a. Development of temperature profiles in the thermal entrance region $M=10^7$, $c=0.5$.

\[Y \]
Fig. 4b. Development of temperature profiles in the thermal entrance region.
Fig. 4c. Development of temperature profiles in the thermal entrance region, $M=10$, $e=10$.
Fig. 5c. Variations of wall and bulk temperatures, \(M = 4 \) e=1.0.
Fig. 6a. Variations of wall and bulk temperatures, $M=0$, $e=0.5$.

Variations of X_1 with different values of T.

- Solid line: $T=0$
- Dashed line: $T=0.5$
- Dotted line: $T=-0.5$
Fig. 6b. Variations of wall and bulk temperatures, $M=10$, $\epsilon=0.8$.
Fig. 8c. Variations of wall and bulk temperatures, $M=10$, $c=10$.
is plotted in Figures 7a, 7b, 7c and 8a, 8b, 8c. The quantity $\dot{\psi}$ is identical to the local Nusselt number except it changes sign depending upon the relative magnitudes of $\theta_{w,x}$ and $\theta_{b,x}$; thus, the use of $\dot{\psi}$ reveals the behavior of the system better than the use of Nu_x.

The shape of the dimensionless temperature distribution presented in Figures 3a, 3b, 3c and 4a, 4b, 4c for positive values of the heat generation parameter, η, is similar to those presented by Brinkman [18] for flow in a capillary with insulated walls ($q=0$) which is a special case of constant heat flux at the wall. The shape of these curves as well as those for η less than zero is also similar to those of Novotny and Eckert [19], for free convection flow between parallel plates with uniform heat sources in the fluid. Neither of the above two references considered flow in a KHD channel.

The dimensionless temperature is uniform and equal to zero at the entry ($X=0$). Two effects which would tend to increase the temperature as the flow distance increases are internal heat generation by both viscous dissipation and Joule's heating and external heat generation, heat transfer through the walls. Since η is greater than zero when heat is added to the fluid through the walls, the combined effect of both external and internal heating is to increase the temperature of the fluid. When η is less than zero heat is transferred away from the fluid through the walls, hence there is a competitive action between the internal heat generation and the external loss of heat. In this case the dimensionless temperature increasing negatively is equivalent to the dimensional temperature increasing positively due to the definitions of the dimensionless temperature, θ, and the heat generation parameter, η. For a more detailed discussion on the physical significance of the shape of the curves which describe the developing temperature profiles
Fig. 7a. Pseudo-local Nusselt numbers, M = 4, e = 0.5.
Fig. 7b. Pseudo-local Nusselt numbers, M=4, c=0.8.
Fig. 8a. Pseudo-local Nusselt numbers, $M = 10$ $e = 0.5$.
Fig. 8b. Pseudo-local Nusselt numbers, $M=10$, $e=0.8$.
Fig. 8c. Pseudo-local Nusselt numbers, \(M=10 \) \(e=1.0 \).
see the Appendix.

An increase in the electric field factor is equivalent to a decrease of electric current flow through the field, and is also proportional to a decrease of Joule's heating in the fluid. Comparison among Figures 3a, 3b, and 3c for a Hartmann number of 4 and among Figures 4a, 4b, and 4c for a Hartmann number of 10 shows that the rate of increase of temperature is reduced by increasing e. However, the temperature difference between the centerline temperature and the wall temperature increases as e increases. This phenomena is due to the increasing significance of the viscous dissipation, which is higher near the walls, as the Joule heat effect becomes smaller.

The effects of the electric field factor, e, can also be noticed when a comparison is made among Figures 5a, 5b, and 5c and among Figures 6a, 6b, and 6c. Again the reduction of wall and bulk temperature with increasing e can be observed, for there is a reduction in the Joule heating. Because of the increase in the difference between wall and bulk temperature as e increases, there should be a decrease in the local Nusselt number, or the absolute value of the pseudo local Nusselt number, \(\eta \), should decrease as e increases. This occurs in Figures 7a, 7b, 7c and 8a, 8b, 8c.

Comparing Figures 3a with 4a, 3b with 4b, and 3c with 4c; the effects of changing the Hartmann number can readily be seen. The increase in the Hartmann number significantly increases the temperature. Similar effects can also be observed by comparing Figures 5a with 6a, 5b with 6b, and 5c with 6c.

The effects of heat generation parameter, \(\eta \), can be easily studied by examining Figures 5a, 5c, 5e and 6a, 6b, 6c. Increasing the heat generation
parameter when it is greater than zero causes an increase in the difference between wall and bulk temperature, therefore, a decrease in the pseudo local Nusselt number as shown in Figures 7a, 7b, 7c and 8a, 8b, 8c. A similar trend can be seen when \(\eta \) is negative.

Referring to Figure 5a for the case of \(\eta = -0.5 \), the wall temperature, \(\theta_w \), becomes more negative than the bulk temperature, \(\theta_b \), at the position \(x/16 \approx 9.8 \times 10^{-2} \). Before this point is reached from the inlet of the duct, the temperature difference, \(\Delta \theta = \theta_w - \theta_b \), approaches zero positively. Thus, the pseudo local Nusselt number, \(\psi \), should approach infinity positively. Then at the position where the wall temperature becomes more negative than the bulk temperature, the sign of \(\psi \) is reversed and becomes negative (see Figure 7a). A similar trend can be observed for the case in which \(M = 4 \), \(e = 0.8 \), \(\eta = -0.5 \) in Figures 5b and 7b.

Figure 9 presents a comparison of the pseudo-local Nusselt number, \(\psi \), for various Hartmann numbers, \(M \). The dimensionless bulk temperature increases more rapidly than the dimensionless wall temperature as the Hartmann number increases. Therefore, for the cases in which \(\eta \geq 0 \), \(\theta_w > \theta_b \), and the difference between wall and bulk temperature, \(\theta_w - \theta_b \), decreases; hence, the pseudo local Nusselt number, \(\psi \), will increase (see equation (15)) as the Hartmann number increases. For the cases in which \(\eta < 0 \) and \(\theta_w < \theta_b \), an increase in the Hartmann number causes a corresponding increase in \(\theta_w - \theta_b \); thus, the magnitude of the pseudo local Nusselt number, \(\psi \) or \(Nu_x \), will decrease.

Figure 10 shows the variation of temperature with position along the duct. The distance from the centerline is the parameter. Only one case is presented to exemplify the trend which occurs in all cases.
Fig. 9. Comparison of Pseudo-local Nusselt numbers for various Hartmann numbers and $\eta = 0, -1.0$.
Fig. 10. Variation of temperature with position along the duct, $M=10$, $c=0.8$, and $\gamma = 10, -10$.
Figures 11a and 11b show the comparison of the present work to that of Michiyoshi and Matsumoto [12]. These authors assumed the viscous dissipation term to be negligible, thus, for the case of \(\eta = 0 \), for both Hartmann numbers of 4 and 8, the results reported by Michiyoshi and Matsumoto and those evaluated in this thesis should be identical. The fact that the former set of results are lower than those of the present work for small \(X \) is expected (Refer to the Results and Discussion Section and Figure 6 in Part 1 of this Thesis). For the cases in which \(\eta \neq 0 \), the results of Michiyoshi and Matsumoto differ greatly from those reported in this work. This difference is not surprising for the viscous dissipation was assumed to be negligible in the former presentation. As the Hartmann number increases the viscous term becomes less crucial and the results presented by Michiyoshi and Matsumoto approach those reported in this work which can be seen in Figure 11b. The comparison of results given in these figures offers an excellent opportunity to observe the effects of viscous dissipation. The comparison of results was made for the open circuit case (\(e = 1.0 \)) because this was the only case investigated by Michiyoshi and Matsumoto.

Perlmutter and Siegel [9] studied the same problem that is investigated in this work, and reported the results in the form of equations containing infinite series and for certain special cases graphical solutions are presented. In Table 2 a comparison of the local Nusselt number for the case in which \(X \) approaches infinity and no internal heat generation in the fluid, \(\eta = 0 \), is presented for Hartmann numbers of 4 and 10. Figure 12 shows a comparison of the local Nusselt number calculated from Perlmutter and Siegel's presented results with the results of the present work throughout the thermal entrance region for the case \(\eta = 0.09 \), \(e = 1.0 \), and \(M = 10.0 \). The method
Fig. 11a. Comparison of Nusselt number for the case, \(M = 4 \), \(c = 0 \).
Fig. 11(b). Comparison of Pseudo-local Nusselt number for the case, $M=8$ $e=1.0$.
Fig. 12. Comparison of local Nusselt number for the case $M=10$, $e=1.0$, $\gamma=-0.09$.
used to calculate the local Nusselt number from the results reported by Perlmutter and Siegel is presented in the Appendix. The present work is in fair agreement with the results of Perlmutter and Siegel if X is greater than 0.3. The deviation in the results for X is less than 0.3 perhaps due to the truncation error incurred when limiting the infinite series found in Perlmutter and Siegel's results. These authors reported eigenvalues for only seven terms in the infinite series; therefore, the series were probably truncated after the seventh term. (A similar problem was encountered in the earlier part of this Thesis in which the present work gives the exact solution, whereas, the eigenvalue solution is not exact because the infinite series is truncated too early. Refer to Figure 6 and the Result and Discussion Section in Part 1.)

From this previous discussion it was shown that even truncating an infinite series after the twentieth term, caused a slight deviation. For $M = 0$ and $\gamma = 0$, Poiseville flow, Perlmutter and Siegel's results reduce to those presented by Cess and Shaffer [20], hence the truncation effect would be quite similar.

Table 2.

Local Nusselt number at $X \rightarrow \infty$

<table>
<thead>
<tr>
<th>Hartmann Number</th>
<th>Local Nusselt Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perlmutter and Siegel</td>
</tr>
<tr>
<td></td>
<td>[9]</td>
</tr>
<tr>
<td>4</td>
<td>9.1013</td>
</tr>
<tr>
<td>10</td>
<td>10.2585</td>
</tr>
</tbody>
</table>
REFERENCES

Part 3

An Investigation of Heat Transfer for Mid Flow in the Entrance Region of a Flat Duct
SUMMARY

The heat transfer to a MHD fluid in the entrance region of a flat duct is investigated numerically. The velocity profile is initially flat and is considered to be developing simultaneously with the initially flat temperature profile. The cases considered are for constant heat flux at the wall with a Prandtl number of unity. The developing temperature profiles as well as the local Nusselt number are presented graphically for viscous criterion factors of -1.0, -0.5, 0, 0.5, and 1.0; for Hartmann numbers of 0, 4, and 10; and for the electrical field factors of 0.5, 0.8, and 1.0.
NOMENCLATURE

A surface area of channel walls through which heat is being transferred
a one-half of duct height

\(A_k, B_k, C_k, R_k \) constants defined by equation (26)

\(B_0 \) magnetic field induction

\(Br = \frac{\mu u^2}{k (t_b - t_0)} \), Brinkman number

\(C_p \) specific heat

\(D_e \) equivalent diameter of the duct, \(4a \)

\(E \) electric field strength

\(e = \frac{E}{u_0 B_0} \), electric field magnitude factor

\(Ec = \frac{u^2}{C_p (t_b - t_0)} \), Eckert number

\(H \) magnetic field intensity

\(H_0 \) magnetic field imposed perpendicular to bounding walls

\(h \) heat transfer coefficient

\(J \) electric current density

\(k \) thermal conductivity

\(M = \mu e H_0 a \sqrt{\sigma_e / \mu} \), Hartmann number

\(Nu_x = \frac{h D_e}{k} \), local Nusselt number

\(P = \frac{p - p_0}{\rho u_0^2} \), dimensionless fluid pressure

\(p \) fluid pressure
\(Pr \) \(\frac{\mu c_p}{k} \), Prandtl number

\(q \) rate of heat transfer

\(q'' \) \(\frac{-q}{A} \), negative rate of heat transfer per unit area

\(Re_a \) \(\frac{\rho u_0 a}{\mu} \), Reynolds number

\(t \) temperature

\(t_0 \) temperature of fluid at entrance of channel

\(U \) \(\frac{u}{u_0} \), dimensionless velocity in x-direction

\(u \) velocity in x-direction

\(u_0 \) average fluid velocity

\(V \) \(\frac{\alpha v_0}{\mu} \), dimensionless velocity in y-direction

\(v \) velocity in y-direction

\(X \) \(\frac{\mu x}{2 \rho a u_0} \), dimensionless variable distance along length of duct

\(x \) variable distance along length of duct

\(Y \) \(\frac{Y}{a} \), dimensionless variable distance across height of duct

\(y \) variable distance across height of duct

\(z \) variable distance along width of duct

\(\beta \) \(\frac{u_0^2 k}{ap} \), viscous criterion factor

\(\eta \) \(\frac{u_0^2 \mu}{aq''} \), heat generation parameter

\(\rho \) density
μ \hspace{1cm} viscosity

μ_0 \hspace{1cm} electrical conductivity

σ_0 \hspace{1cm} magnetic permeability

τ \hspace{1cm} time

θ \hspace{1cm} $\frac{t-t_0}{aq^2/k}$, dimensionless temperature

ψ \hspace{1cm} $\left| \frac{J}{\Delta \theta} \right|$, pseudo-local Nusselt number

Subscripts

b \hspace{1cm} bulk

j \hspace{1cm} at jth position along x axis

k \hspace{1cm} at kth position along y axis

w \hspace{1cm} at walls or plates

x \hspace{1cm} local property at position x
INTRODUCTION

The study of heat transfer in an electrically conducting fluid within a magnetic field is quite important in the design of magnetohydrodynamic accelerators, generators, pumps, and flow control and measurement equipment. The flat duct is especially important in the first three devices mentioned.

The literature on the study of the simultaneous development of velocity and temperature profiles in the entrance region of a given geometry for non-MHD flow is well summarized by Hwang and Fan [1]. In this reference, the cases of constant heat flux and constant wall temperature were investigated for non-MHD flow. A finite difference analysis was used to obtain the results and a comparison of these results with those obtained by several approximate methods is presented.

Shohet, Osterle, and Young [2] studied the simultaneous development of velocity and temperature profiles for MHD flow in a plane channel assuming constant wall temperature. A finite difference technique was used to obtain the results. The same type of numerical method was used by Shohet [3] to obtain the velocity and temperature profiles for laminar MHD flow in the entrance region of an annular channel. The assumption of constant wall temperature was used again to provide the third necessary boundary condition.

Hwang [4] also investigated the simultaneous development of velocity and temperature in the entrance region of a flat rectangular duct for MHD fluid flow with the assumption of constant wall temperature. The results were obtained by using a finite difference technique similar to the one employed in the previous reference [1]. Dhanak [5] also investigated this identical problem using a procedure based on the Karman-Pohlhausen method and the associated iterative procedures.
Each of the above five references assume that the velocity and temperature profiles are uniform at the duct entry.

In Part 2 of this Thesis heat transfer in a MHD fluid with a fully developed velocity profile (Hartmann flow) in the thermal entrance region of a flat duct is investigated for the case of constant heat flux at the wall. In the following part, the above investigation is repeated for the case where both the temperature and velocity profiles are developing simultaneously; that is, the effects of laminar forced convection heat transfer to an electrically conducting fluid in the entrance region of a flat duct with a transverse magnetic field are studied for the case where the heat flux at the wall is considered to be constant in the entrance region of the duct and where both the temperature and velocity profiles are developing simultaneously. The governing energy equation is expressed in finite difference form and solved numerically using an IBM 1410 digital computer with a mesh network superimposed on the flow field. The numerical method used is modeled after that used by Hwang and Fan [1].

The developing velocity profile has previously been evaluated by Hwang and Fan [6], and these results were used in obtaining the solution of the energy equation for the above boundary conditions. Results are presented for Hartmann numbers of 0, 4, and 10 with the viscous criterion factor and the electrical field factor as parameters.

BASIC EQUATIONS

The development of the basic equations closely parallels that of Hwang [4]. The geometry under consideration is illustrated in Figure 1. The flow of the fluid is in the x-direction; the magnetic field is in the y-
Fig. 1. Parallel plate channel with imposed uniform wall heat flux and transverse magnetic field.
direction; and the electric current flow is in the z-direction.

Consider the flow of a conducting fluid in a magnetic field with the following assumptions:

a) flow is laminar
b) all fluid properties; \(\rho, C_p, k, \mu \); are constant
c) magnetic permeability, \(\mu_e \), and electrical conductivity, \(\sigma_e \), are constant scalar quantities
d) rapid oscillations do not exist, therefore, the displacement current is negligible
e) the effect of gravitational force is negligible.

The basic equations may be written as follows \[7]\:

Maxwell's equations in MKS units are

\[
\text{Curl } \mathbf{H} = \mathbf{j} \quad (1)
\]

\[
\text{Curl } \mathbf{E} = -\mu_e \frac{\partial \mathbf{H}}{\partial t} \quad (2)
\]

\[
\text{div } \mathbf{J} = 0 \quad (3)
\]

\[
\text{div } \mathbf{H} = 0 \quad (4)
\]

Ohm's law for a moving fluid is

\[
\mathbf{J} = \sigma_e (\mathbf{E} + \mathbf{V} \times \mu_e \mathbf{H}) \quad (5)
\]

The continuity equation is

\[
\text{div } \mathbf{V} = 0 \quad (6)
\]

The modified Navier-Stokes equation is

\[
\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \text{grad})\mathbf{V} = -\frac{1}{\rho} \text{grad } P + \frac{k}{\rho} \mathbf{V}^2 + \frac{1}{\rho} (\mathbf{J} \times \mu_e \mathbf{H}) \quad (7)
\]

The developing velocity profile used in this work was obtained by Hwang and Fan \[6\]. For steady two dimensional flow considering the usual Prandtl boundary layer assumptions, with the additional assumptions:
a) Variations in the z-direction are assumed to be zero

b) The electrical field term, E_y, measured across the electrically (but not thermally) insulated duct walls is zero, but small local values may exist in the midstream region; however, these will be considered negligible, and E_y is taken as zero. This implies J_y is also zero.

c) The magnetic field induced by J_z is negligible in comparison with the applied field, B_0, in the y-direction.

These assumptions reduce the number of equations to two

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{8}
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial y^2} - \frac{\sigma_e B_0}{\rho} (E_0 + uB_0). \tag{9}
\]

The greatest limiting value for E_0 is obtained by assuming that the duct sides are open-circuited. This permits maximum build-up of the electric field and is equivalent to no net current in the z-direction, or

\[
\int_{-a}^{a} J_z dy = 0. \tag{10}
\]

Since the current density is

\[
J_z = \sigma_e (E_0 + uB_0). \tag{11}
\]

Equation (1) becomes

\[
\int_{-a}^{a} \sigma_e (E_0 + uB_0) dy = \sigma_e E_0 2a + \sigma_e B_0 \int_{-a}^{a} ud y = 0. \tag{12}
\]

Since the flow is steady the continuity equation can be written as

\[
\int_{-a}^{a} ud y = 2nu_0 a. \tag{13}
\]

The combination of equations (12) and (13) results in
\[E_0(\text{max}) = -u_0 B_0 \quad \text{(14)} \]

In this Thesis, \(E_0 \) is taken as \(-u_0 B_0\), where \(e \) is the electric field factor which varies between zero and one, with the external resistance varying from zero to infinity. Equation (9) becomes

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{dp}{dx} + v \frac{\partial^2 u}{\partial y^2} + \frac{e B_0^2}{\rho} (e_0 - u) \quad \text{(15)} \]

Introducing the following dimensionless parameters:

\[X = \frac{ux}{\rho a^2 u_0} = \frac{x/a}{Re_a} , \]

\[Y = y/a , \]

\[U = u/u_0 , \]

\[V = \frac{\sigma v_0}{\mu} , \]

\[P = \frac{\rho - \rho_0}{\rho u_0} , \]

\[M = u_e H_0 a \sqrt{\sigma/e} , \text{ Hartmann number}. \]

Equations (15), (8), and (13) become, respectively

\[u \frac{\partial u}{\partial X} + v \frac{\partial u}{\partial Y} = -\frac{1}{\rho} \frac{dp}{dx} + \frac{\partial^2 u}{\partial Y^2} + k^2 (e-U) \quad \text{(16)} \]

\[\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0 \quad \text{(17)} \]

\[l = \int_0^1 UdY \quad \text{(18)} \]

The boundary conditions for the momentum and continuity equations (16), (17), and (18) are as follows:

1) \(X = 0 \) and \(0 < Y < 1 \) : \(U = 1, \quad V = 0, \quad P = P_0 = 0 \)

2) \(X > 0 \) and \(Y = 0 \) : \(\frac{\partial U}{\partial X} = 0, \quad V = 0 \quad \text{(19)} \)
3) \(X \geq 0\) and \(Y = 1\) : \(U = 0, V = 0\) \hspace{1cm} (19)

The general form of the magnetohydrodynamic energy equation was derived by Pai \([8]\). For the case of two-dimensional steady-state flow of an incompressible, constant property fluid with negligible heat conduction in the fluid flow direction, the energy equation can be simplified to

\[
u \frac{\partial U}{\partial X} + v \frac{\partial U}{\partial Y} = \frac{k}{\rho C_p} \frac{\partial^2 U}{\partial Y^2} + \frac{\mu}{\rho C_p} \left(\frac{\partial U}{\partial Y} \right)^2 + \frac{V^2}{\rho C_p} \sigma_e. \tag{20}\]

The current density, \(J_z\), as given by equation (11) is

\[
J_z = \sigma_e (E_0 + uB_0) \]

and \(E_0\) is presented as \(E_0 = -eB_0u_0\), therefore, the current density becomes

\[
J = u_0 \sigma_e B_0 \left[-e + \frac{u}{u_0} \right].
\]

With this equation for \(J\), the energy equation, equation (20), becomes

\[
u \frac{\partial U}{\partial X} + v \frac{\partial U}{\partial Y} = \frac{k}{\rho C_p} \frac{\partial^2 U}{\partial Y^2} + \frac{\mu}{\rho C_p} \left(\frac{\partial U}{\partial Y} \right)^2 + \frac{u_0^2 B_0^2}{\rho C_p} \sigma_e \left(-e + \frac{u}{u_0} \right)^2. \tag{21}\]

Introducing the additional dimensionless parameters:

\[
Pr = \frac{\mu C_p}{k}, \text{ Prandtl number}
\]

\[
\theta = \frac{t-t_0}{aq^u/k},
\]

\[
\beta = \frac{u_0^2}{aq^u/k C_p}, \text{ viscous criterion factor.}
\]

Equation (21) becomes, in dimensionless form, as follows:

\[
U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} = \frac{1}{Pr} \frac{\partial^2 \theta}{\partial Y^2} + \beta \left(\frac{\partial U}{\partial Y} \right)^2 + \nu^2 \beta (-e + u)^2. \tag{22}\]

The boundary conditions are:

1. \(\theta = 0\) at \(X = 0\) and \(0 \leq Y \leq 1\). \hspace{1cm} (23)
2. \(\frac{\partial \theta}{\partial Y} = 0 \) at \(Y = 0 \) and \(0 \leq X \).

3. \(\frac{\partial \theta}{\partial Y} = 1 \) at \(Y = 1 \) and \(0 < X \).

The third boundary condition can be developed from the assumption of constant heat flux at the wall. A detailed derivation is presented in Part 1 of the Thesis.

SOLUTION OF EQUATIONS

The two-dimensional velocity components were obtained from equations (16), (17), and (18) with the boundary conditions (19) by Hwang and Fan [6]. These results are then substituted into the energy equation (22) in order to solve for the temperature profile. The finite difference analysis of equations (16), (17), and (18) is presented in detail by Hwang and Fan [6].

The energy equation (22) is used to obtain the temperature profiles, and this equation is approximated by the following finite difference equations (see the mesh network in Figure 2):

\[
\begin{align*}
U &= \frac{U_{j,k} + U_{j+1,k}}{2} \\
V &= \frac{V_{j,k} + V_{j+1,k}}{2} \\
\frac{\partial \theta}{\partial Y} &= \frac{\theta_{j,k+1} - \theta_{j,k-1}}{2\Delta Y} \\
\frac{\partial \theta}{\partial X} &= \frac{\theta_{j+1,k} - \theta_{j,k}}{\Delta X} \\
\frac{\partial^2 \theta}{\partial Y^2} &= \frac{(\theta_{j+1,k+1} - 2\theta_{j+1,k} + \theta_{j+1,k-1}) + (\theta_{j,k+1} - 2\theta_{j,k} + \theta_{j,k-1})}{2(\Delta Y)^2} \\
\frac{\partial U}{\partial Y} &= \frac{(U_{j+1,k+1} - U_{j+1,k-1}) + (U_{j,k+1} - U_{j,k-1})}{4(\Delta Y)}
\end{align*}
\]
Fig. 2. Mesh network for difference representations.
The boundary conditions (23) in finite difference form become

1) \(\theta_{0,j} = 0 \) at \(X = 0 \) and \(0 \leq Y \leq 1 \)

2) \(\theta_{j+1,2} = \theta_{j+1,0} \) at \(X \geq 0 \) and \(Y = 0 \) (25)

3) \(\theta_{j+1,n+1} = \frac{4\theta_{j+1,n} - \theta_{j+1,n-1} + 2\Delta Y}{3} \) at \(X > 0 \) and \(Y = 1 \)

Substituting the difference equations (24) into the energy equation (22) the following equation in which the \(\theta \)'s with the \(j+1 \) subscript are the unknowns and the \(\theta \)'s with the \(j \) subscript are known variables is obtained.

\[
\begin{bmatrix}
C_k
\end{bmatrix} \theta_{j+1,k+1} + \begin{bmatrix}
A_k
\end{bmatrix} \theta_{j+1,k} + \begin{bmatrix}
B_k
\end{bmatrix} \theta_{j+1,k-1} = \begin{bmatrix}
D_k
\end{bmatrix}
\]

where

\[
\begin{bmatrix}
B_k
\end{bmatrix} = \begin{bmatrix}
C_k
\end{bmatrix} = \left[-\frac{1}{Pr} \frac{1}{2(\Delta Y)^2}\right]
\]

\[
\begin{bmatrix}
A_k
\end{bmatrix} = \left[\frac{U_{j,k} + U_{j+1,k}}{2\Delta X} + \frac{1}{Pr(\Delta Y)^2}\right]
\]

\[
\begin{bmatrix}
D_k
\end{bmatrix} = \left[\left(-\frac{U_{j,k} + U_{j+1,k}}{2\Delta X}\right) \theta_{j,k} - \frac{V_{j,k} + V_{j+1,k}}{2} \left(\frac{\theta_{j,k+1} - \theta_{j,k-1}}{2\Delta Y}\right)\right]
\]

\[
+ \frac{1}{Pr} \left(\frac{\theta_{j,k+1} - 2\theta_{j,k} + \theta_{j,k-1}}{2(\Delta Y)^2}\right) + \nu_\beta \left(-\frac{U_{j+1,k} + U_{j,k}}{2}\right)^2
\]

\[
+ \beta \left(-\frac{U_{j+1,k+1} - U_{j+1,k-1} + U_{j,k+1} - U_{j,k-1}}{4\Delta Y}\right)^2
\]

Substituting \(k = 1, 2, \ldots, n \) into equation (26) with the boundary conditions given by equation (25), \(n \) unknowns and \(n \) simultaneous equations are obtained. These equations are solved by Thomas' Method as shown in Part 1 of the Thesis.

The mesh sizes employed are shown in Table 1. These resulted from an
evaluation of the time and computer storage capacity available. A detailed presentation of this evaluation may be found in Part 1 of the Thesis.

Table 1

Mesh Sizes for Finite Difference Solution of the Energy Equation

<table>
<thead>
<tr>
<th>X</th>
<th>ΔX</th>
<th>ΔY</th>
<th>N</th>
<th>PrU(ΔY)²</th>
<th>12(ΔX)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001</td>
<td>0.0005</td>
<td>0.00625</td>
<td>160</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.0125</td>
<td>80</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.005</td>
<td>0.025</td>
<td>40</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.01</td>
<td>0.025</td>
<td>40</td>
<td>0.0052</td>
<td></td>
</tr>
</tbody>
</table>

HEAT TRANSFER PARAMETERS

The bulk temperature is evaluated after the temperature profiles have been determined, and is given in finite difference form by the following equation at \(X = (j+1) \Delta X \).

\[
\theta_{b,X} = \sum_{k=1}^{n} \theta_{j+1,k} U_{j+1} \Delta Y
\] (27)

The wall temperature is approximated by the following finite difference equation (Refer to the first part of the Thesis).

\[
\theta_{w,X} = \theta_{j+1,n+1} = \frac{4\theta_{j+1,n} - \theta_{j+1,n-1} + 2\Delta Y}{3}
\] (28)

The local Nusselt number is defined as
For the case of constant heat flux at the wall, the local Nusselt number reduces to

\[\text{Nu}_x = \frac{h_x D_e}{k} \]

(29)

where \(\Delta \theta \) is defined as

\[(\Delta \theta)_x = \theta_w, x - \theta_b, x \]

For more detailed discussion of the heat transfer parameters see the same section in Part 1.

RESULTS AND DISCUSSION

The results presented are for the case with a unit Prandtl number. This is the case for most fluids [9] especially gases. However, it is worth emphasizing that the equations presented and the method used in the computation of the results are applicable to cases with any Prandtl number. The cases considered are: Hartmann numbers of 0, 4, and 10; electrical field factors of 0.5, 0.8, and 1.0; and viscous criterion factors of -1.0, -0.5, 0, 0.5, and 1.0.

The viscous criterion factor, \(\beta \), is similar to the Eckert number which is a criterion for the negligibility of viscous dissipation. These numbers are related as follows:

The Eckert number is defined as [9]

\[Ec = \frac{u^2}{c_p(T_0-t_0)} . \]

The viscous criterion factor, \(\beta \), defined in this part of the Thesis is

\[\beta = \frac{u_0^2}{c_p \, q''/k} . \]
Since both terms contain a velocity squared and a specific heat, the only terms remaining are the \((t_b - t_0)\) and \(aq''/k\). These terms are related, or at least have equivalent dimensions, since \(q''\) is dimensionally equivalent to \(h(t_b - t_0)\) and \(k/a\) to \(h\). Thus, \(aq''/k\) can be considered dimensionally equivalent to \((t_b - t_0)\). Also, the same type of relationship exists between the heat generation parameter, \(\eta\), and viscous criterion factor, \(\beta\), as was shown to exist between the Eckert number, \(Ec\), and the Brinkman number, \(Br\), (refer to Results and Discussion Section, Part 1 of the Thesis). That is

\[
\eta = \beta Pr \quad \text{as} \quad Br = Ec Pr.
\]

The viscous criterion factor behaves in the same manner as the heat generation factor. That is, when \(\beta\) is positive heat is transferred into the system through the walls. If \(\beta\) is less than zero, heat is transferred from the fluid through the walls to the surroundings.

The electric field factor is described along with the reasons for choosing the values used in the study in detail in the Results and Discussion Section of Part 2 of the Thesis. An increase in the electric field factor, \(e\), is equivalent to a decrease of electric current flow through the field, and is proportional to a decrease of Joule's heating in the fluid.

The dimensionless temperature profiles between the parallel plates at various positions in the thermal entrance region are presented in Figures 3; 4a, 4b, 4c; and 5a, 5b, 5c. In Figures 6; 7a, 7b, 7c; and 8a, 8b, 8c the variations of dimensionless wall temperature, \(\theta_w\), and bulk temperature, \(\theta_b\), with distance along the flow direction are presented. The pseudo local Nusselt number, \(\psi\), defined as

\[
\psi = \frac{4}{\theta_w X - \theta_b X},
\]

is plotted in Figures 9; 10a, 10b, 10c; and 11a, 11b, 11c.
Fig. 3. Development of temperature profiles in the entrance region, $M=4$, $e=0.5$.
Fig. 4.1. Development of temperature profiles in the entrance region. £=1.0, e=0.3.
Fig. 4c. Development of temperature profiles in the entrance region, $M=4$ $a=10$.
Fig. 5a. Development of temperature profiles in the entrance region, $n = 0.5$.

- $\beta = 10$
- $\alpha = 0.1$
- $\alpha = 0.5$
- $\alpha = 1.0$
Fig. 5c. Development of temperature profiles in the entrance region, M=10 and.
Fig. 6 Variations of wall and bulk temperatures, M=0.
Fig. 7a Variations of wall and bulk temperatures, $M=3$ $\alpha=C$.
Fig. 75. Variations of wall and bulk temperatures, $M=4$, $e=0.3$.
Fig. 3a. Variations of wall and bulk temperatures, $M=10$ $\varepsilon=0.05$.
Fig. 11a. Pseudo-local Nusselt number, \(M=10 \) \(\epsilon=0.5 \).
Fig. 11c. Pseudo-local friction number, $\beta=0$, $\alpha=0$.

\[\text{Diagram showing friction number distribution for different } \beta \text{ values.} \]
The dimensionless temperature is uniform and equal to zero at the entry. Two effects which would tend to increase the temperature as the flow distance is increased are the internal heat generation by both viscous dissipation and Joule's heating and external heat generation, heat transfer through the walls. Since β must be greater than zero when heat is added to the fluid through the walls, the combined effect of both external and internal heating is to increase the temperature of the fluid. When β is negative heat is transferred away from the fluid, hence there is a competitive action between internal heat generation and external heat loss. Due to the definition of β and 6, the decrease of the dimensionless temperature to large negative values actually corresponds to an increase in the dimensional temperature, t. For a discussion on the significance of the shape of the temperature profiles refer to the Appendix.

A comparison among Figures 4a, 4b, and 4c for a Hartmann number of 4 and among Figures 5a, 5b, and 5c for a Hartmann number of 10 shows, as expected, that the rate of increase of temperature is reduced by increasing e. However, the temperature difference (as in Part 2) between the centerline temperature and the wall temperature increases as e increases due to the increasing significance of the viscous dissipation effects which are especially great near the walls. These effects can also be noted when comparing Figures 7a, 7b, and 7c or Figures 8a, 8b, and 8c. Again the reduction of wall and bulk temperature can be observed. Because of the increase in the difference between wall and centerline temperature, a corresponding increase in wall and bulk temperature occurs. Therefore, there should also be a decrease in the local Nusselt number, or in the magnitude of the pseudo local Nusselt number. This latter effect can be observed in Figures 10a, 10b, 10c or 11a, 11b, 11c.
A comparison among Figures 3, 4a, and 5a; 4b and 5b; and 4c and 5c will present the effects of changing the Hartmann number. Similar effects can also be observed by comparing Figures 6, 7a, and 8a; 7b with 8b; and 7c with 8c.

The effects of the viscous criterion factor, β, can be noted by examining Figures 6; 7a, 7b, 7c; and 8a, 8b, 8c. Increasing β when it is positive causes an increase in the difference between wall and bulk temperature, thus, a decrease in the pseudo local Nusselt number as shown in Figures 9; 10a, 10b, 10c; and 11a, 11b, 11c. A similar trend can be seen when β is negative.

Notice in Figure 10a that the curve for $\beta = -0.5$ is not presented, yet the curves for $\beta = -0.4$ and -0.6 are. The curves are shown in this manner because the case in which $\beta = -0.5$ is not stable, i.e., the pseudo local Nusselt number oscillates from large negative to large positive numbers as X increases. This is due to the exceptionally small difference between the bulk and wall temperature, $T_w - T_b$ (Figure 7a).

As the Hartmann number increases the entire dimensionless profile increases if all other parameters describing the system are constant. We can observe this result by again comparing the temperature profiles for $M = 0$, 4, and 10. Figure 12 presents a comparison of the pseudo local Nusselt number for various Hartmann numbers. Although this figure contains only two cases, it represents the trend for all the other cases. The pseudo local Nusselt number increases as M increases, for the bulk temperature increases more rapidly than the wall temperature. (Refer to the discussion of Figure 9 in Part 2 of the Thesis).

In Figure 13 the results obtained by Siegel and Sparrow [10] and Hwang and Fan [1] are compared with those evaluated in this study. Hwang and Fan present a comparison of the velocity profile used in their investigation
and that used in Siegel and Sparrow's with the velocity profile presented by Schlichting [11]. It was noted that the velocity profile used by Siegel and Sparrow did not approximate that of Schlichting or Hwang and Fan very well. In fact, the results of Siegel and Sparrow were not asymptotic to the fully developed velocity, $\frac{u}{u_0} = 1.5$.

The result obtained in the present work differ from those presented by Hwang and Fan due to the finite difference scheme used to evaluate the wall temperature. Hwang and Fan used a linear equation, that is

$$\theta_w = \theta_{n+1} = \theta_n + \Delta Y$$

while the author used equation (26).
REFERENCES

OUTLINE OF FUTURE RESEARCH WORK
In the previous work of the thesis, treatment was confined to laminar flow, constant fluid properties, uniform profiles on entry, and a fixed flat duct geometry. In this chapter some other problems of considerable importance which should be investigated are summarized.

1. Consideration of a Parabolic Approach to the Entrance of the Geometric Channel. Since the assumption of laminar flow is used to describe the flow within the MHD entrance region it would be advantageous to consider, instead of uniform velocity and temperature profiles, a parabolic velocity profile and a corresponding temperature profile at the entry. It would be quite interesting to have the fully developed temperature profile for Poiseuille flow develop simultaneously with the velocity profile upon entry into a magnetic field for both the cases of constant heat flux at the wall and constant wall temperature.

2. Consideration of Other Types of Fluids. In most of the work considered the only type of flow studied is that of Newtonian fluids. One of the major applications for the study of heat transfer in an electrically conducting fluid flowing within a magnetic field, is in the measurement and flow of melted metals. This type of flow is certainly not Newtonian. Bird [1] investigated the case of a non-Newtonian fluid flowing in a capillary with constant wall temperature and the case considering insulated walls. It would be interesting to extend the investigation of non-Newtonian flow to flow within magnetic fields for various cases.

3. Consideration of Turbulent Flows. Although hydromagnetic channel flows are usually turbulent rather than laminar, little is known about the structure of turbulent flows in which hydromagnetic effects are significant.
Therefore, it is suggested that perhaps semi-empirical techniques of fluid mechanics could be used to represent the internal structure of turbulent flow and thus apply such representation to problems such as those solved in this thesis. Most of the work done to date in KHD turbulent flow has been confined to the studies of skin-friction drag and the transition from laminar to turbulent flow in insulated channels. As a result, the heat transfer portion of the theory remains a relatively virgin field [3].

4. Consideration of Compressible Flow. Most research effort has been directed toward one-dimensional incompressible laminar flows with transverse magnetic and normal electric fields. The popularity of this model is due primarily to its mathematical simplicity, since in actual operation the flow will most likely be turbulent, two dimensional, and, if the working fluid is a gas, compressible [3]. Since most of the work will be accomplished using a gas as the flow medium, it would be interesting to consider the investigation of heat transfer to compressible flow. A finite difference technique similar to the one used in the thesis could be used to study such a system. Obtaining the velocity profile for compressible flow would be the first major problem. It may also be worthwhile to study the effects of varying other physical parameters, such as viscosity, with temperature.

5. A more Realistic Geometry. A more realistic geometry which may be investigated using the finite difference approach and perhaps a larger and faster computer, is a rectangular duct. This problem would certainly be interesting and it would present quite a challenge. The finite difference mesh would be a rectangular consideration (two dimensional) for each given position X along the duct. Thus, many interesting stability problems must be encountered and at least empirically solved for such a finite difference scheme.
REFERENCES

COMPUTER PROGRAMS

List of the Variable Names for the Computer Program Used in Parts 1 and 2 of the Thesis.

$A(I), C(I), D(I)$ the constants defined in the finite difference form of the energy equation, (10) in Part 1 and (19) in Part 2. In the latter part of the program these variables are redefined as the variables introduced in the discussion of the Thomas Method by equation (14) in Part 1.

Br the heat generation parameter, η

$DX, \Delta X$ $DY, \Delta Y$ EE the electrical field factor, e

N the Hartmann number, M

$L1L, L1L$ integer counters used to change certain operating conditions

M the number of divisions along the duct in the X direction that the program will calculate before changing operating conditions or mesh size

N the number of divisions across the duct in the Y direction; determines mesh size

Pr Prandtl number

PT the frequency at which the program prints the results

$T(I,J)$ the dimensionless temperature, θ, at the Ith position along the duct and the Jth position across the duct

$TSULK$ the bulk temperature, θ_b, x

TT the wall temperature evaluated by a slightly different finite difference scheme
$U(I,J)$ the dimensionless velocity in the X direction at the Ith position along the duct and the Jth position across the duct.

X the dimensionless distance along the duct and it differs from the X defined in Parts 1 and 2; $X = \frac{\mu x}{\rho a^2 u_0}$

X_{NUS} the pseudo local Nusselt number, ψ

X_{ZERO} the initial value of X for a phase of the computer program

X_2 the pseudo local Nusselt number evaluated using TT
Flow Diagram for Computer Program Used in Parts 1 and 2 of the Thesis

1. READ PR, BR, H, EE
2. WRITE PR, BR, H, EE
3. EVALUATE OPERATING CONDITIONS DX, DY, M, N, NZERO
4. CALCULATE TEMPERATURE PROFILE AT X=[X] T(1,J)
5. IF H = 0
6. CALCULATE U(1,J) POISEUILLE FLOW
7. CALCULATE CONSTANS A(J), C(J), B(J)
8. IF (X-2.50) < 0
 THEN
9. END
10. WRITE HEAT TRANSFER PARAMETERS, 1, N, LK
11. CALCULATE HEAT TRANSFER PARAMETERS
12. T(1,J) = T(2,J)
13. WRITE X T(2,J)
14. APPLY THOMAS METHOD
15. CALCULATE T(2,J)
PROGRAM FOUR

DIMENSION A(160),C(160),T(2,162)

READ(1,953) PR,H,EE

FORMAT(3,5E11.5)

EX2=1./EX1
HCOSH=.5*(EX1+EX2)
HSINH=.5*(EX1-EX2)
HO=H/(HCOSH-HSINH)

WRITE (3,3)

DO 13 K=1,N
13 T(1,K)=0.0
 T(1,N1)=0.0

DO 125 K=1,N
 E=K-1
 WW=E*DY
 EX3=EXP(WW)
 EX4=1./EX3
 U(1,X)=HO*(HCOSH-(EX3+EX4)/2.)
 U(1,N1)=0.

UTOTA=0.
67 DO 68 K=1,N
68 UTOTA=UTOTA+CY*(U(1,K)+4.0*U(1,K+1)+U(1,K+2))/3.0
 ALPHA=1.0/(2.0*PR*DY*DY)
 RDX=1.0/DX
 RDY=1.0/(DY*2.0)
210 DO 320 L=1,N
320 C(1)=ALPHA

DO 32 K=2,N
32 C(K)=ALPHA

DO 34 K=1,N
34 A(K)=2.0*ALPHA+U(1,N)*ACX
35 C(1)=2.0*ALPHA
39 D(1)=U(1,1)+T(1,1)+DX+2.0*ALPHA*(T(1,2)-T(1,1))
 D(1)=D(1)+BETA*(-EE+U(1,1))*U(1,1)-EE)
 D(2)=2.0*X
 D(K)=U(1,K)*T(1,K)*DX
 D(K)=D(K)+ALPHA*(T(1,K+1)-2.0*T(1,K)+T(1,K-1))
 D(K)=D(K)+BETA*(-EE+U(1,K))*(-EE+U(1,K))
.41 \(D(K) = C(K) + 5R \times ALPHA \times (U(1,K+1) - U(1,K-1)) - (U(1,K+1) - U(1,K-1)) / 2.0 \)

\(D(N) = D(N) - DY \times C(N) \)

\(A(N) = A(N) + C(N) \)

52 DO 54 K=2,N

\(SUB = C(K) \)

\(C(K+1) = C(K+1) / A(K) \)

\(A(K+1) = A(K+1) \times C(K+1) \)

56 \(T(1,N) = T(1,N) / A(1) \)

54 \(D(K) = (D(K) - SUB \times D(K-1)) / A(K) \)

59 \(T(2,N) = D(N) \)

60 DO 60 K=1,NM1

\(J = N-K+1 \)

61 \(X = XZERO + UL \times DX \)

DO 626 K=1,N1

626 \(T(1,K) = T(2,K) \)

63 IF \((X = XPRIN) \) \(\leq 100, 64, 100 \)

64 WRITE \((3,1) \) X

DU 65 \(= 1, 2, X, N, NDI06 \)

65 \(= 1, 2, X, N, NDI06 \)

66 WRITE \((3,3) \) \(T(2,1), T(2,1), T(2,2), T(2,3), T(2,4) \)

71 \(T(2) = C \)

72 DO 72 K=1,N2

\(T(2,K) = T(2,K) + (U(1,K) \times T(2,K)) + 4 \times U(1,K+1) \times T(2,K+1) + U(1,K+2) \times T(2,K+2) \)

73 \(TBULK = TB / TOTA, \)

74 \(XNUS = 4 / (T(2,N1) - TBULK) \)

77 \(XX = X/16.0 \)

79 \(GRAET = 16.0 \times PX / X \)

78 WRITE \((3,3) \) \(T(1,N1), TBULK, XNUS, GRAET, XX, M \)

100 CONTINUE

82 DU 83 K=1,10

83 WRITE \((3,3) \) \(T(2,K), T(2,K+2), T(2,K+4), T(2,K+6), T(2,K+8) \)

84 WRITE \((3,1) \) \(T(2,N1) \)

90 \(= 2, X, N, NDI06 \)

91 \(= 2, X, N, NDI06 \)

92 \(= 2, X, N, NDI06 \)
DY = .0125
M = 90
N = 80
XZEROD = 0.1
PT = 10.
GO TO 98
98 N1 = N + 1
IF (X-1.0) 99, 900, 900
900 DD 910 K = 1, N, 5
910 WRITE (3, 3)
WRITE (3, 1)
194 GO TO 6
END
MONS3 EXEC LINKLOAD
MONS3 EXEC FOUR, MJB

T(2, K), T(2, K+1), T(2, K+2), T(2, K+3), T(2, K+4)
T(1, N1)
Results

The following results represent the typical output of the proceeding program. The case presented is for a Hartmann number of 10, electrical field factor of 0.5 and a heat generation parameter of 0. The program was intentionally written so that the Prandtl number could be varied. It was later decided that the Prandtl number could be included in the dimensionless distance along the duct, thus making the results more general. These results are only presented as far as \(X = 0.8 \) because this adequately shows the calculation procedure of the program.
List of the Variable Names for the Computer Programs

Used in Part 3 of the Thesis

Two programs were used, part of the output from the first program being used as input to the second program. The first program was used when \(N = 160 \). This program calculates none of the heat transfer parameters such as the pseudo local Nusselt number, for with such a large \(N \) computer space was lacking.

- \(A(I), C(I), D(I) \) the constants defined in the finite difference form of the energy equation. In the latter part of the program these variables are redefined as the variables used by the Thomas Method.
- \(Br \) the heat transfer parameter times the Prandtl number, \(\beta \text{Pr} \)
- \(DX \) \(\Delta X \)
- \(DY \) \(\Delta Y \)
- \(EE \) the electric field factor, \(e \)
- \(H \) the Hartmann number, \(M \)
- \(ILL, III \) integer counters used to change certain operation conditions
- \(M \) the number of divisions along the duct in the \(X \) direction that the program will evaluate before changing operating conditions or mesh size
- \(N \) the number of divisions across the duct in the \(Y \) direction; determines the mesh size
- \(\text{Pr} \) Prandtl number
- \(PT \) the frequency at which the programs print the results
- \(T(I,J) \) the dimensionless temperature, \(\theta \), at the \(I \)th position along the duct and the \(J \)th position across the duct
- \(\text{TBULK} \) the bulk temperature, \(\theta_{b,X} \)
U(I,J) the dimensionless velocity in the X direction
V(I,J) the dimensionless velocity in the Y direction
X the dimensionless distance along the duct
XNUS the pseudo local Nusselt number, \(\Psi \)
XZERO the initial value of X for a phase of the computer program
Flow Diagram for Computer Program Used in Part 3 of the Thesis

1. READ
 PR, PR, H, EE

2. WRITE
 PR, PR, H, EE

3. EVALUATE OPERATING CONDITIONS
 D, D, H, K, M, H

4. CALCULATE INITIAL
 U(1,K), U(1,K)
 V(1,K)

5. READ
 U(2,K)
 V(2,K)

6. INTERPOLATE
 U(2,K), V(2,K)
 TO FIND
 HIGH SIDE

7. DC 100
 L = 1, H

8. CALCULATE
 COEFFICIENTS
 A(H), B(H), C(H)

9. APPLY THOMAS ALGEBRA
 CALCULATE
 T(2,K)
ENCRYPTION EQUATION CONSTANT HEAT FLUX DEVELOPING VELOCITY PROFILE

\[X = 0.0 \quad TL X = 0.001 \quad \beta = 2 \]

MHD PROJECT 2353 2/23/65 PJK
DIMENSION A(160), C(160), D(160)
DIMENSION U(2,162), V(2,162), T(2,162)

953 FORMAT(15E14.8)
960 FORMAT(10X,5F14.6)
961 FORMAT(10X,2I3)

READ PR, BR, H, EE, T(J,K)
WRITE(2,85) PR, BR, H, EE

DX = .0005
DY = .00625
AL = 1.732 * PR * DY * CY
BE = H * SR / PR
WRITE(2, 85) AN
DO 100 1 = 1, 17

READ U(2,K), P, V(2,K) AND INTERPOLATE

C
430 \text{DIMENSION A(160), C(160), D(160)}
410 \text{DIMENSION U(2,162), V(2,162), T(2,162)}

DO 411 K = 1, N

411 READ(1,960) U(2,K), V(2,K), T(K,1), U(2,K+12), U(2,K+16)

DO 412 K = 1, N

412 READ(1,960) U(2,K), V(2,K), T(K,1), U(2,K+12), U(2,K+16)

WRITE(2,85) N

C
722 WRITE(2, 3) U(2,K), U(2,K+4), U(2,K+8), U(2,K+12), U(2,K+16)

722 WRITE(2, 3) U(2,K), U(2,K+4), U(2,K+8), U(2,K+12), U(2,K+16)

C
32 \text{DIMENSION A(160), C(160), D(160)}
34 \text{DIMENSION U(2,162), V(2,162), T(2,162)}

WRITE(2, 3) U(2,K), U(2,K+4), U(2,K+8), U(2,K+12), U(2,K+16)

C
341 \text{DIMENSION A(160), C(160), D(160)}
33 \text{DIMENSION A(160), C(160), D(160)}
39 \text{DIMENSION A(160), C(160), D(160)}
31 \text{DIMENSION A(160), C(160), D(160)}

WRITE(2, 3) U(2,K), U(2,K+4), U(2,K+8), U(2,K+12), U(2,K+16)

C
41 \text{DIMENSION A(160), C(160), D(160)}
341 \text{DIMENSION A(160), C(160), D(160)}
33 \text{DIMENSION A(160), C(160), D(160)}
39 \text{DIMENSION A(160), C(160), D(160)}
31 \text{DIMENSION A(160), C(160), D(160)}

WRITE(2, 3) U(2,K), U(2,K+4), U(2,K+8), U(2,K+12), U(2,K+16)
C

52 DO 5 K=2,N
SUB=C(K)
C(K-1)=C(K-1)/A(K-1)
A(K)=A(K)-C(K-1)
54 D(K)=D(1)/A(1)
56 DO 54 K=2,N
58 T(2,N)=C(N)
DO 50 K=1,NM1
J=K-K
J1=N-K+1
60 T(2,J)=D(J)-C(J)*T(2,J1)
T(2,N1)=T(2,N)-T(2,NM1)+2.*DY)/3.
UL=L
61 X=XZERO+UL*DX
DC 628 K=1,N1
U(1,K)=U(2,K)
V(1,K)=V(2,K)
626 T(1,K)=T(2,K)
64 WRITE(2,1)X
DO 82 K=1,N,10
82 WRITE(2,960)T(2,K),T(2,K+2),T(2,K+4),T(2,K+6),T(2,K+8)
WRITE(2,9531)T(2,N1)
100 CONTINUE
GETEO
END
MON$ EXER LINLOAD
CAL$ SEVEN
MON$ EXER SEVEN, NG
Results

The following results represent the typical output of the proceeding program. The case presented is for a Hartmann number of 10, electrical field factor of 1.0, and a heat transfer parameter of 1.0. These results (last 17 lines) compose the initial temperature profile at $X = 0.001$ used in the following program. The last line is the wall temperature.
Flow Diagram for Computer Program Used in Part 3 of the Thesis

READ PR, EP, L, ED, T(1,K)

WRITE PR, EP, L, ED

EVALUATE OPERATING CONDITIONS DX, Dy, K, N, M, MAX

READ U(1,K), V(1,K)

INTERPOLATE U(1,K), V(1,K) TO FIT MESH SIZE

IF

THEN

END

IF

THEN

WRITE X, U(2,K)

APPLY THOMAS ALGORITHM

CALCULATE T(2,K)

CALCULATE CONSTANTS A(2,K), C(K), D(K)

DO 100 L=1, M

100 WRITE VAR, X, T(2,K)

CALCULATE VELOCITY PROFILE U(2,K)

INTERPOLATE U(2,K), V(2,K) TO FIT MESH SIZE

NO

NO

CHOOS OPERATING CONDITIONS DX, Dy, K, N, M, MAX

WRITE VAR, TRANSFER PARAMETERS, X, K, MAX, M

WRITE IN TRANSFER PARAMETERS

WRITE IN TRANSFER PARAMETERS
MON*$$ JOB MHO CONST HEAT FLUX DEVELOPING VEL PRO
MON*$$ COMT 90,09,PAGES, ,KIEPER CHEM ENGR
MON*$$ ASGN MJR,12
MON*$$ ASGN MGO,16
MON*$$ MODE 60,TEST
MON*$$ EXEC FORTRAN**, 07,03, ,SIX
C
C ENERGY EQUATION CONSTANT HEAT FLUX DEVELOPING VELOCITY PROFILE
C
C MHO PROJECT 2353 2/23/65 PJK
C
DIMENSION U(2,82),V(2,82), T(2,82)
DIMENSION A(80), C(80), D(80)

85 FORMAT(10X,213)
953 FORMAT(14.8)
 1 FORMAT(10X,E11.5)
 3 FORMAT(10X,5E11.5)
 5 FORMAT(10X,213)
555 FORMAT(10X,5E11.5)
961 FORMAT(213)

C
C READPR,BR,H,EE, T(J,K)
C WRITE(3,3)PR,BR,H,EE
LL1=1
LLL=1
OX=.001
OY=.0125
M=9
N=80
XZERO=.001

PT=1.0
00710 K=1,N,5
710 READ(1,960)T(1,K), T(1,K+1), T(1,K+2), T(1,K+3), T(1,K+4)
READ(1,953)T(1,N+1)
READ(1,961)NN
NM1=N-1
NM3=N-3

C READ U AND V (2)
U(1,N1)=0.0
U(2,N1)=0.0
V(1,N1)=0.0
V(2,N1)=0.0
IF(NN-2)/400,400,401
 400 QQ 15 K=1,N,10
15 READ(1,960)U(1,K), U(1,K+2), U(1,K+4), U(1,K+6), U(1,K+8)
READ(1,953) P
00 16 K=1,N,10
16 READ(1,960)U(1,K), U(1,K+2), U(1,K+4), U(1,K+6), U(1,K+8)

C INTERPOLATION OF U AND V (2)
 402 QQ 403 K=1,NM1,2
403 U(1,K+1)=(U(1,K)+U(1,K+2))/2.0
WRITE(3,85)NN
GO TO 407

C READ U AND V (4)
 401 QQ 404 K=1,N,20
404 READ(1,960)U(1,K), U(1,K+4), U(1,K+8), U(1,K+12), U(1,K+16)
READ(1,953) P
00 405 K=1,N,20
405 READ(1,960)U(1,K), U(1,K+4), U(1,K+8), U(1,K+12), U(1,K+16)

C INTERPOLATION OF U AND V (4)
 406 QQ 407 K=1,NM3,4
407 U(1,K+2)=(U(1,K)+U(1,K+4))/2.0
WRITE(3,85)NN
GO TO 402

C READ U AND V (4)
C
C WRITE(3,85)LLL,LL1
ND10=ND10/10
ND10S=ND10/10
ND104=ND10/4
ND103=ND10/3
ND102=ND10/2
XPRINT=XZERO+PT*OX
N1=N+1
NM3=N-3
NM1=N-1
RUX = 1./DX
AL = 1./12. * PR * DY * DY)
8E = H * H * 8R / PR
WRITE(3, 85) NN
DO 100 L = 1., M
WRITE(3, 555) T(1, N+1)
WRITE(3, 555) U(1, N+1)
WRITE(3, 555) U(1, N+1)
READ U(2, K), P, V(2, K) AND INTERPOLATE
V(2, N+1) = 0.0
U(2, N+1) = 0.0
READ(1, 961) NN
IF(NN = 2) 400, 400, 400
400 DO 410 K = 1, N, 20
410 READ(1, 960) U(2, K), V(2, K), U(2, K+4), U(2, K+8), U(2, K+12), U(2, K+16)
READ(1, 953) P
DO 411 K = 1, N, 20
411 READ(1, 960) V(2, K), V(2, K+4), V(2, K+8), V(2, K+12), V(2, K+16)
DO 412 K = 1, NM, 4
412 V(2, K+2) = (U(2, K) + U(2, K+4))/2.0
DO 413 K = 1, NM, 2
413 V(2, K+4) = (U(2, K) + U(2, K+2))/2.0
WRITE(3, 85) N
GO TO 410
408 DO 415 K = 1, N, 10
415 READ(1, 960) U(2, K), U(2, K+2), U(2, K+4), U(2, K+6), U(2, K+8)
READ(1, 953) P
DO 416 K = 1, N, 10
416 READ(1, 960) V(2, K), V(2, K+2), V(2, K+4), V(2, K+6), V(2, K+8)
GO TO 410
31 DO 722 K = 1, N, 20
722 WRITE(3, 3) U(2, K), U(2, K+4), U(2, K+8), U(2, K+12), U(2, K+16)
FORMATION OF MATRIX
DO 32 K = 2, N
32 C(K) = -AL / C(N)
C(N) = 2.0 * C(N) / 3.0
DO 34 K = 1, N
34 A(K) = -2.0 * AL * (U(1, K) + U(2, K)) / (2.0 * DX)
GO TO 341
313 EX = EXP(H)
EX = 1. / EX
HCOSH = 5.0 * (EX1 + EX2)
HSINH = 5.0 * (EX1 - EX2)
H = H / (HCOSH + HSINH)
IF(H = 1.22) 300, 300, 300
300 DO 325 K = 1, N
E = K
Y = E * DY
U(2, K) = 1.5 * (1. - Y * Y)
325 V(2, K) = 0.0
GO TO 326
122 DO 125 K = 1, N
E = K
WW = H * E * DY
EX3 = EXP(WW)
EX4 = 1. / EX3
U(2, K) = HQ * (HCOSH - (EX3 + EX4)/2.)
125 V(2, K) = 0.0
326 U(2, N+1) = 0.0
V(2, N+1) = 0.0
GO TO 31
341 A(N) = A(N) - 4.0 * AL / 3.0
35 C(1) = -2.0 * AL
39 D(1) = 2.0 * AL * T(1, 2) + T(1, 1) * (U(1, 1) + U(2, 1))/ (2.0 * DX) - 2.0 * AL
D(1) = D(1) + 8E * (-EE + (U(2, 1) + U(1, 1))/2.0) * (-EE + (U(2, 1) + U(1, 1))/2.0)
DO 41 K = 2, N
D(K) = T(1, 1) * ((U(1, K) + U(2, K))/ (2.0 * DX) - 2.0 * AL)
D(K) = D(K) + T(1, K-1) * (-EE + (U(2, 1) + V(2, K))/ (4.0 * DX) + AL)
D(K) = D(K) + T(1, K+1) * (-EE + (U(2, 1) + V(2, K))/ (4.0 * DX) + AL)
D(K) = D(K) + 1.0 * BR/PR * (U(2, K+1) - U(2, K-1) + U(1, K+1) - U(1, K-1)).
1 (U(2,K+1)+U(2,K)+U(1,K+1)+U(1,K))/10.0*DY*DY)
41 O(K)=D(K)+BE*[0-10*U(2,K)+U(1,K)]*0.1*U(2,K)+U(1,K))/2.
D(N)=D(N)+2.0*DY*AL/3.0

THOMAS METHOD APPLIED
52 00 54 K=2,N
SUB=C(K)
C(K-1)=C(K-1)/A(K-1)
A(K)=C(K-1)/C(K-1)
56 D(1)=0(1)/A(1)
54 O(K)=(O(K)-SUB*A(K))/A(K)
59 T(2,N)=D(N)
DO 60 K=1,NM1
J=N-K
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
60 T(2,J)=O(J)-C(J)*T(2,J1)
T(2,N1)=(4.*T(2,N)-T(2,NM1)+2.*DY)/3.
UL=L
61 X=XZERD+UL*DX
DO 65 K=1,N1
U(1,K)=U(2,K)
V(1,K)=V(2,K)
63 IF(X*XPRIN)100,66,100
64 WRITE(3,1)X
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
CALCULATE BULK TEMP. AND LOCAL NUSSELT NO.
UTOTA=0.0
00 68 K=1,N1
68 UTOTA=UTOTA+DY*(U(2,K)+4.0*U(2,K)+U(2,K+1))/3.0
71 TB=0.0
D7ZK=1,N2
TB=TB+DY*(U(2,K)+T(2,K)+4.0*U(2,K)+T(2,K+1))/3.0
72 TB=TB+DY*(U(2,K)+T(2,K)+T(2,K+2))/3.0
TBULK=TB/UDTDA
XNUS=4.0/T(2,N1)-TBULK)
772 XX=K/1.0.
WRITE(3,3)T(2,N1),TBULK,XNUS,TBULK,XX,M
78 XPRIN=XPRIN+PT*DX
100 CONTINUE
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
CALCULATE BULK TEMP. AND LOCAL NUSSELT NO.
UTOTA=0.0
00 68 K=1,N1
68 UTOTA=UTOTA+DY*(U(2,K)+4.0*U(2,K)+U(2,K+1))/3.0
71 TB=0.0
D7ZK=1,N2
TB=TB+DY*(U(2,K)+T(2,K)+4.0*U(2,K)+T(2,K+1))/3.0
72 TB=TB+DY*(U(2,K)+T(2,K)+T(2,K+2))/3.0
TBULK=TB/UDTDA
XNUS=4.0/T(2,N1)-TBULK)
772 XX=K/1.0.
WRITE(3,3)T(2,N1),TBULK,XNUS,TBULK,XX,M
78 XPRIN=XPRIN+PT*DX
100 CONTINUE
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
CALCULATE BULK TEMP. AND LOCAL NUSSELT NO.
UTOTA=0.0
00 68 K=1,N1
68 UTOTA=UTOTA+DY*(U(2,K)+4.0*U(2,K)+U(2,K+1))/3.0
71 TB=0.0
D7ZK=1,N2
TB=TB+DY*(U(2,K)+T(2,K)+4.0*U(2,K)+T(2,K+1))/3.0
72 TB=TB+DY*(U(2,K)+T(2,K)+T(2,K+2))/3.0
TBULK=TB/UDTDA
XNUS=4.0/T(2,N1)-TBULK)
772 XX=K/1.0.
WRITE(3,3)T(2,N1),TBULK,XNUS,TBULK,XX,M
78 XPRIN=XPRIN+PT*DX
100 CONTINUE
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
CALCULATE BULK TEMP. AND LOCAL NUSSELT NO.
UTOTA=0.0
00 68 K=1,N1
68 UTOTA=UTOTA+DY*(U(2,K)+4.0*U(2,K)+U(2,K+1))/3.0
71 TB=0.0
D7ZK=1,N2
TB=TB+DY*(U(2,K)+T(2,K)+4.0*U(2,K)+T(2,K+1))/3.0
72 TB=TB+DY*(U(2,K)+T(2,K)+T(2,K+2))/3.0
TBULK=TB/UDTDA
XNUS=4.0/T(2,N1)-TBULK)
772 XX=K/1.0.
WRITE(3,3)T(2,N1),TBULK,XNUS,TBULK,XX,M
78 XPRIN=XPRIN+PT*DX
100 CONTINUE
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
CALCULATE BULK TEMP. AND LOCAL NUSSELT NO.
UTOTA=0.0
00 68 K=1,N1
68 UTOTA=UTOTA+DY*(U(2,K)+4.0*U(2,K)+U(2,K+1))/3.0
71 TB=0.0
D7ZK=1,N2
TB=TB+DY*(U(2,K)+T(2,K)+4.0*U(2,K)+T(2,K+1))/3.0
72 TB=TB+DY*(U(2,K)+T(2,K)+T(2,K+2))/3.0
TBULK=TB/UDTDA
XNUS=4.0/T(2,N1)-TBULK)
772 XX=K/1.0.
WRITE(3,3)T(2,N1),TBULK,XNUS,TBULK,XX,M
78 XPRIN=XPRIN+PT*DX
100 CONTINUE
DO 65 I=1,N1 ND105
J1=I+ND10
J2=I+ND102
J3=I+ND103
J4=I+ND104
66 WRITE(3,3)T(2,1),T(2,2),T(2,2),T(2,2),T(2,2)
XZERO=.001
PT=1.0
GO TO 98
91 DX=.005
DY=.025
M=18
N=40
GO TO 98
92 DX=.01
DY=.025
M=140
N=40
GO TO 98
98 N1=N+1
IF (X-.5) 99, 900, 900
900 DO 910 K=1, N, 5
910 WRITE(3,3) T(2,K), T(2,K+1), T(2,K+2), T(2,K+3), T(2,K+4)
WRITE(3,1) T(2,N1)
GO TO 6
END
MON$$ EXEC LINKLCAO
MON$$ EXEC SIX,MJB
Results

The following results represent the typical output of the proceeding program. The case presented is for a Hartmann number of 10, electrical field factor of 1.0, and a heat transfer parameter of 1.0. These results are only presented till $X = 0.4$ because this adequately presented the calculation procedure of the program.
40	11107E 01	11106E 01	11105E 01	11104E 01	11103E 01	11102E 01	11101E 01	11100E 01	11083E 01	68725E-00
40	1103E 01	10887E 01	10502E 01	94975E-00	68725E-00					
3000E-01	22367E-01	26316E-01	27931E-01	32985E-01	50283E-01					
10253E-00	23703E 00	52980E 00	10648E 01	18483E 01						
24505E-01	34794E-00	19443E-00	34794E-00	18750E-02	18					
00000E-99	00000E-99									
40	11110E 01	11110E 01	11110E 01	11109E 01	11102E 01	11102E 01	11082E 01	68721E-00		
11028E 01	10883E 01	10500E 01	94974E-00	68721E-00						
26121E 01	00000E-99	00000E-99								
40	11112E 01	11112E 01	11109E 01	11102E 01	11102E 01	11108E 01	11082E 01	68712E-00		
11027E 01	10882E 01	10499E 01	94963E-00	68712E-00						
40000E-01	32164E-01	38660E-01	44286E-01	59682E-01	10020E-00					
19594E 00	39642E 00	76792E 00	13725E 01	21938E 01						
27602E 01	46749E-00	17446E-00	46749E-00	25000E-02	18					
00000E-99										
40	11113E 01	11113E 01	11110E 01	11103E 01	11103E 01	11103E 01	11103E 01			
11027E 01	10881E 01	10498E 01	94956E-00	68709E-00						
29338E 01	00000E-99	00000E-99								
40	11114E 01	11114E 01	11111E 01	11110E 01	11103E 01	11103E 01	11108E 01	68708E-00		
11026E 01	10880E 01	10497E 01	94953E-00	68708E-00						
50000E-01	43920E-01	54255E-01	67165E-01	98031E-01	16666E 00					
30606E 00	56361E 00	99582E 00	16497E 01	24966E 01						
30693E 01	58711E-00	16114E 00	58711E-00	31250E-02	18					
00000E-99										
40	11115E 01	11114E 01	11111E 01	11110E 01	11103E 01	11103E 01	11102E 01	68707E-00		
11026E 01	10880E 01	10497E 01	94951E-00	68707E-00						
32227E 01	00000E-99	00000E-99								
40	11115E 01	11114E 01	11111E 01	11110E 01	11103E 01	11102E 01	11102E 01			
11026E 01	10880E 01	10497E 01	94951E-00	68707E-00						
60000E-01	59159E-01	74809E-01	97669E-01	14719E-00	24551E 00					
42597E 00	73224E 00	12125E 01	19036E 01	27693E 01						
33467E 01	70670E-00	19151E 01	70670E-00	37500E-02	18					
00000E-99										
40	11115E 01	11114E 01	11111E 01	11110E 01	11103E 01	11102E 01	11102E 01			
11026E 01	10880E 01	10497E 01	94950E-00	68706E-00						
34903E 01	00000E-99	00000E-99								
40	11115E 01	11114E 01	11111E 01	11110E 01	11103E 01	11102E 01	11102E 01			
11026E 01	10880E 01	10497E 01	94950E-00	68706E-00						
70000E-01	79075E-01	10146E-00	13595E-00	20562E 00	33336E 00					
55142E 00	89945E 00	14190E 01	21393E 01	30195E 01						
36005E 01	82622E-00	14417E 01	82622E-00	43750E-02	18					
00000E-99	00000E-99									
DISCUSSION OF THE PHYSICAL SIGNIFICANCE OF THE CURVES WHICH DESCRIBE THE DEVELOPING TEMPERATURE PROFILES

The dimensionless temperature is defined as

\[\theta = \frac{t - t_0}{a q''/k} = - \frac{t - t_0}{a q/k A} \tag{1} \]

where \(q'' = - q/A \). The slope of the temperature profile at the wall is derived as

\[\frac{\partial \theta}{\partial y} \bigg|_{y=1} = 1. \tag{2} \]

The wall temperature in finite difference form is

\[\theta_w = \theta_{n+1} = \frac{4\theta_n - \theta_{n-1} + 2\Delta y}{3}. \tag{3} \]

Substituting equation (1) into equation (3) gives

\[t_{n+1} - t_0 = \frac{4(t_n - t_0) - (t_{n-1} - t_0) - 2\Delta y(aq/kA)}{3}. \tag{4} \]

Rearranging terms in equation (4) such that

\[3t_{n+1} - 4t_n + t_{n-1} = -2\Delta y(aq/kA). \tag{5} \]

The heat transfer parameter, \(\eta \), is defined as

\[\eta = \frac{u^2}{a q''} = - \frac{u^2}{a q/k A}. \tag{6} \]

When the heat transfer, \(q \), is less than zero, heat is transferred into the channel. This case is represented by the curves for which \(\eta \) is greater than zero. Equation (5) can be rewritten as the inequality

\[3t_{n+1} - 4t_n + t_{n-1} > 0 \tag{7} \]

or

\[3t_{n+1} > 4t_n - t_{n-1}. \tag{8} \]
If $t_n > t_{n-1}$, then equation (8) reduces to

$$t_{n+1} > t_n.$$

(9)

Since θ is defined as the variable temperature, t, minus a constant, and that difference divided by a positive constant the inequality presented by equation (9) will also hold for dimensionless temperature. Hence,

$$\theta_{n+1} > \theta_n,$$

(10)

this can be seen in all cases where $\eta > 0$. Since there is internal heat generation and heat transfer into the channel at the wall, it was expected that the temperature near the wall would be greater than the temperature nearer the center. This also is evident for the cases in which $\eta > 0$.

Instead of using a backward finite difference scheme using three terms, a simpler scheme using only two terms to evaluate the wall temperature will be used. This latter scheme will give equivalent results if the ΔY distance is small, and it will more clearly confirm the results obtained above.

$$\theta_w = \theta_{n+1} = \theta_n + \Delta Y.$$

(11)

Substituting equation (1) into (11) and rearranging gives

$$t_{n+1} = t_n - \Delta Y(aq/kA).$$

(12)

If $q < 0$, then

$$t_{n+1} > t_n$$

(13)

or

$$\theta_{n+1} > \theta_n.$$

This result is equivalent to that shown in equation (10).

If $q > 0$, then equation (12) can be reduced to the following inequality:

$$t_{n+1} < t_n.$$

(14)

This would be the expected result, since heat is being transferred away from
the channel. Yet, the dimensionless temperature profiles will show the result

\[\theta_{n+1} > \theta_n \]

(15)

which can easily be derived from equation (11).

This result can be verified using the three point finite difference scheme represented by equation (4). When \(q > 0 \), \(\bar{n} > 0 \) and equation (5) can be represented by the inequality

\[3t_{n+1} - 4t_n + t_{n-1} < 0 \]

or

\[3t_{n+1} < 4t_n - t_{n-1} \]

(16)

If \(t_n < t_{n-1} \) then equation (16) can be rewritten as

\[t_{n+1} < t_n \]

(17)

which is equivalent to equation (14). The results for the case, \(q \) greater than zero, are represented by the curves for which \(\bar{n} \) is less than zero.
RELATIONSHIP BETWEEN RESULTS OF PERLMUTTER AND SIEGEL AND THOSE PRESENTED IN THIS THESIS

Perlmutter and Siegel [Reference 7 of Part 2] define the dimensionless mean current flow in the z-direction as

$$J = \frac{3a}{u_n (\sigma \mu)^{\frac{1}{2}}} \tag{1}$$

where \bar{J} is the mean current flow in the z-direction. Substituting

$$M = \frac{\mu e H_0 a \sqrt{\sigma / \mu}}{\mu e H_0 a} \tag{2}$$

$$H_0 = \frac{M}{\mu e a \sqrt{\sigma / \mu}} \tag{3}$$

into (1) gives

$$J = M \left[\frac{E}{\mu e H_0 a u_n} + 1 \right] \tag{4}$$

where E is the electrical field in the z-direction. Defining the electrical field factor as

$$e = - \frac{E}{\mu e H_0 a u_n} \tag{5}$$

and substituting into (4)

$$J = M \left[- e + 1 \right] \tag{6}$$

Perlmutter and Siegel consider the temperature in two parts. One where there is a specified uniform wall heat flux, q, at the channel walls, but no internal heat generation in the fluid; for these conditions the fluid temperature is called t_q. For the second, there is internal heat generation Q within the fluid, but no heat transfer at the channel walls. The fluid temperature for this part is called t_q. By superposition the temperature is given by
\[t = t_q + t_{q'} \] \hspace{1cm} (7)

The difference between the wall temperature and bulk temperature is reported as

\[t_w - t_b = \left(\frac{t_{q,w} - t_{q,b}}{(t_{q,w} - t_{q,b})_d} \right) (t_{q,w} - t_{q,b})_d + \]

\[\left(\frac{t_{q,w} - t_{q,b}}{(t_{q,w} - t_{q,b})_d} \right) (t_{q,w} - t_{q,b})_d, \]

where the subscripts \(w \) and \(b \) represent wall and bulk respectively and \(d \) represents the fully developed value, that is as \(X \to \infty \). Since we define the local Nusselt number as,

\[\text{Nu} = \left| -\frac{\dot{q}}{\left(\theta_w - \theta_b \right)} \right| \]

it would be advantageous to be able to calculate the value of \(\theta_w - \theta_b \) from equation (8). Therefore,

\[\theta_w - \theta_b = \frac{t_w - t_b}{\varepsilon q''/k} = \left(\frac{t_{q,w} - t_{q,b}}{(t_{q,w} - t_{q,b})_d} \right) \frac{(t_{q,w} - t_{q,b})_d}{aq''/k} + \]

\[\left(\frac{t_{q,w} - t_{q,b}}{(t_{q,w} - t_{q,b})_d} \right) \frac{(t_{q,w} - t_{q,b})_d}{aq''/k}. \]

Graphical results are presented for \(\left| t_{q,w} - t_{q,b} / (t_{q,w} - t_{q,b})_d \right| \), \(\left| t_{q,w} - t_{q,b} / (t_{q,w} - t_{q,b})_d \right| \), and \((t_{q,w} - t_{q,b})_d / (aq''/k) \) with parameters of Hartmann numbers and dimensionless mean current flow. The remaining term of the right hand side of equation (10) is not presented in exactly the precise form necessary, but is presented in graphical form as

\[\frac{(t_{q,w} - t_{q,b})_d}{\left(\frac{\varepsilon^2 + \frac{H}{A}}{k} \right) (j^2 + \frac{H \sinh H}{A})}, \]

where \(A = \cosh M - \left| (\sinh M)/k \right| \). It is necessary to have the denominator of
(11) equivalent to aq^*/k if those results are to be used in comparing with those of the present work, therefore,

$$\frac{u_m^{2}}{k} \left(J^2 + \frac{M \sinh N}{A} \right) = \frac{aq^*}{k} = -\frac{aq''}{k} . \quad (12)$$

Dividing (12) by aq''/k gives

$$\eta_{Pr} \left(J^2 + \frac{M \sinh N}{A} \right) = -1 \quad (13)$$

For a Hartmann number of 10, dimensionless mean current flow of 0, and Prandtl number of unity equations (4) and (10) give the following results respectively

$$e = 1.0$$

$$\eta = -0.09$$

Thus, the results obtained in the present work under the previously described conditions can be compared with the values obtained by Perlmutter and Siegel.

The case of the Hartmann number equal to 10 was the only case for which general results were reported by Perlmutter and Siegel. Results for other values of the Hartmann number were reported, but only for the special cases $J = 0$ and $J \rightarrow \infty$.
ACKNOWLEDGEMENTS

The author expresses his sincere gratitude to Dr. L. T. Fan, for his constant advice and enthusiasm; Dr. C. L. Hwang, for his numerous consultations and many timely corrections; Dr. Wm. H. Honstead, Head of the Department of Chemical Engineering for his help and encouragement; Dr. R. L. Yates, Associate Professor in the Department of Mathematics, for reading the manuscript; Dr. H. Bates for reading the manuscript; and Dr. L. E. Erickson for reading the manuscript and giving valuable comments; and the K.S.U. Engineering Experiment Station and the Air Force Office of Scientific Research Grant AF-AFOSR-463-64 for supporting this work.

The author also expresses his gratitude to the K.S.U. Computer Center for the use of the I.B.M. 1410 computer and especially to Mr. D. L. Myers for his assistance in correcting the computer programs.

The author also expresses his thanks to his "office-mates", Y. C. Chen, W. S. Hwang, and C. B. Wang for their help in spelling and choosing the correct wording, and a special thanks to Mr. S. J. Chen for his painstaking checking of the derivations, Mr. E. A. Travnichek for his untiring help in "debugging" the computer programs, and Mr. Y. K. Ahn for his proof-reading the manuscript and advice on the correct form.

The author also thanks his parents and younger brother, L. H. Knieper, for their encouragement especially welcomed in times of depression.
HEAT TRANSFER TO A MHD FLUID IN A FLAT DUCT WITH CONSTANT HEAT FLUX AT THE WALLS

by

PHILIP J. KNIEPER

B.S., Tulane University, 1963

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965
The principal purpose of this work was to study heat transfer to a fluid flowing between parallel plates with constant heat flux at the wall and a transverse magnetic field. The equations were solved numerically using a finite difference analysis and an IBM 1410 digital computer.

In the first part of the thesis the effects of viscous dissipation on the heat transfer parameters and temperature profiles are investigated numerically. The flow is considered laminar and fully developed. The heat generation parameter is introduced. The relation between this parameter and the Eckert and the Brinkman numbers is discussed. The developing temperature profiles as well as the local Nusselt number are presented graphically for heat generation parameters of -1.0, -0.5, 0, 0.5, and 1.0.

In the second part of the thesis heat transfer to a MHD fluid in the thermal entrance region of a flat duct is studied. The flow is considered laminar and fully developed. The results are again presented graphically in the form of developing temperature profiles and local Nusselt numbers for heat transfer parameters of -1.0, -0.5, 0, 0.5, and 1.0; Hartmann numbers of 4 and 10; and electrical field factors 0.5, 0.8, and 1.0. Comparisons are presented for certain cases with the work of others.

The third part of the thesis is again concerned with heat transfer to a MHD fluid in the entrance region of a flat duct. However, in this part of the study the velocity profile is initially flat and is considered to be developing simultaneously with the initially uniform temperature profile. The viscous criterion factor is introduced. The cases considered are for viscous criterion factors of -1.0, -0.5, 0, 0.5, and 1.0; Hartmann numbers of 0, 4, and 10; and electrical field factors 0.5, 0.8, and 1.0. The results are presented in the same manner as those for the earlier two parts of the thesis and are limited
to the case of a Prandtl number equal to unity. Although this is true for the results, there is no such limitation on the equations expressed or the computation method presented.