Main Goals

1. How will climate impact society and environment

What will be the local temporal and spatial expression of temperature and precipitation change? How will these changes impact local water resources?

How will the combined impacts of changes in temperature and precipitation impact agricultural systems and thus the economy of Kansas and the Great Plains?

2. How will society affect climate

How might extensive biofuel production impact climate change and water resources availability in Kansas and the central Great Plains?
Background on Kansas Climate

Background on Kansas Climate

Precipitation (in.)

- 0
- <4
- 4–8
- 8–12
- 12–16
- 16–20
- 20–24
- 24–28
- 28–32
- 32–36
- 36–40
- 40–50
- 50–60
- 60–70
- 70–80
- 80–100
- 100–120
- 120–140
- 140–160
- 160+

Copyright (c) 2006, PRISM Group, Oregon State University
http://www.prismclimate.org – Map created Jun 16 2006
IPCC based climate projections for Kansas

Source: IPCC 2007
Timing and distribution

Source: IPCC 2007
What next for Kansas Climate change

IPCC models are great to look at the global picture but:

- Do not include potential local climate impacts
 - Irrigation

- To crude to get at specific weather related phenomena e.g.:
 - Local moisture changes and their impacts on:
 - cloud cover
 - local precipitation
 - storm intensity
 - Local temperature regimes
Irrigation as part of the equation
Surface Energy Balance:

\[168 = 390 - 324 + 24 + 78 \]

Top of Atmosphere Energy Balance:

\[342 - 107 = 235 \]

Atmosphere Energy Balance:

\[67 + 350 + 24 + 78 = 324 + 165 + 30 \]
Dry Land Average Energy Balance

Surface Energy Balance: \[168 = 390 - 324 + 24 + 78\]

Top of Atmosphere Energy Balance: \[342 - 107 = 235\]

Atmosphere Energy Balance: \[67 + 350 + 24 + 78 = 324 + 165 + 30\]
Impact of climate change and irrigation on daily temperatures

Temperature

Time of Day

Midnight

Midnight

Normal

Irrigation effect

Global warming effect

Combined impact
Implementation of climate analyses

1. Statistical analysis
 • Develop time series of historical information (observed data)
 • Use extreme events statistical analysis
 o historical
 o present day

2. Mesoscale modeling
 • Low resolution (50 km) datasets
 o Present day control (NARCCAP: 1971-2000)
 o Future scenarios (NARCCAP: 2041-2070)
 • High resolution (4km) – specific short time intervals
 o Create WRF Present day (NCEP-1979-2004/NARR)
 o Create WRF historical experiment (NCEP)
 o Downscaling of GCM data
 ➢ Present day CCSM (land cover)
 ➢ Historical comparison (20th Century runs; ensemble sensitivity)
 ➢ Future scenario runs (SRES/RCP and ensemble issues)
Mesoscale Downscaling Approach

Input 1: Atmospheric Boundary conditions
1. NCEP/NARR reanalysis data 1972-2005
2. CCSM Climate scenario data
 - Historical/present day (20th Century Runs)
 - Change scenarios (SRES A1B/A2 or RCP 6.5/8.0)

Downscaling with WRF
Specific time frames and conditions
 - e.g. Summer/crop period conditions
Select irrigation scenarios to assess impact
On soil moisture and regional moisture gradients

Provide data information for:
Crop model parameters
Statistical analysis of extreme events
Analysis of soil moisture conditions
Impact of regional dynamics
Solar/Wind/Energy variables

Post processing
Daily data
 - Temperature
 - Precipitation
 - Other
Hydrologic variables

Input 2: Surface Boundary Conditions
1. Present day US land cover
2. Kansas present day land cover (Egbert et al.)
3. Future land cover (modified Egbert et al.)
4. IPCC scenario land cover

Develop story line scenarios for interviews
Characterize modified temperature and precipitation regimes for specific regions/counties of Kansas
Indigenous links
Objective 1:
Develop relevant climate change scenarios for KS and the central Great Plains by assessing the joint variability and feedback mechanisms that exist between soil moisture, vegetation and regional precipitation.
– Model validation and comparison with observations
– Statistical analyses of historical, present day and future scenarios
– Emphasis on extreme events analysis
– Create data for crop models
– Create data for solar/wind conditions for Nano-technology/Energy component
– Create scenario descriptions for Kansas

Objective 2:
Specific research questions for the climate group that will use high resolution simulations:
– Is there a soil moisture and/or vegetation feedback on regional precipitation?
– How will seasonal rainfall and its timing differ under various climate change scenarios?
– How will the spatial distribution of precipitation, vegetation, and soil moisture evolve as climate changes?
– What are the implications for regional water and C cycling?