A MUSICOLOGICAL RESEARCH TOOL:
AN EXPERT SYSTEM SOLUTION FOR SMALL PROJECTS

by

JEANNINE STAFFORD INGRAM

B.S., University of North Carolina-Greensboro, 1982

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1989

Approved by:

Elizabeth K. Unger
1. OVERVIEW

1.1 Introduction

The purpose of this project is to provide a research tool for musicologists and small music archives in need of cataloging assistance. Development of a tool to assist in this specialized task requires that two areas of musicological research be addressed: incipit matching and document handling.

Typically, musicologists must search through vast quantities of data attempting to gather sufficient information to reconstruct the scope of a collection of music, to ascertain the creative output of a particular composer or group of composers, or to seek all of a single compositional type dating from a specific period. For example, dissertations have been written which survey vocal compositions based exclusively on the "Salve regina" text dating between 1410 and 1550. Similarly, music archives routinely allocate years of staff time in an effort to determine the interconnections between manuscripts belonging to a collection of music developed during a fifty-year span, attempting to link written
documents with musical manuscripts and correctly identify the actual composers of the compositions within the collection. Much of the success of a musicological project is dependent upon the talent of the researchers who sort through this frequently incomplete and often misleading collection of data and, by virtue of their expertise in the area and their knowledge of peripheral data, ultimately reconstruct the most likely solution to the puzzle.

Music historians must deal with a variety of documents in order to complete a given project. Generally, these include letters, music manuscripts, published music, unpublished textual manuscripts, and books. While many documents can be referenced by conventional methods used by researchers in other disciplines, music manuscripts and pre-1900 printed music create problems in the area of erroneous ascriptions and rhythmic, melodic, or key variances introduced by different copyists or publishers. These discrepancies, along with the simple need to derive all known sources of a composition, provide the impetus for the primary thrust of this project -- incipit matching.
In addition to the benefits to be gained from an expert system capable of incipit matching, the process of musicological research can also derive obvious benefits from a database system. The database structure would provide storage and manipulation of data relating to a single project while also assisting in the analysis of this data via the incorporation of rules and inference provided by historical musicologists.

This paper seeks to document a project whose objective is to provide a research tool which will suffice for a variety of musicological projects. The primary emphasis of the system is to store the knowledge of a professional musicological expert in a high-level representation and then to use this information to assist, via incipit matching, in the attribution of compositions to probable composers.

The literature review which follows this section addresses expert systems, the relation of expert systems to musicological studies, and the role of database systems in this arena. The report then continues by describing the development of the musicological tool. Chapter 2 discusses the process of musicological research, describing a typical research project. Chapter
3 presents the requirements of the system being offered as a research tool. This is followed by a description of the design of the system in Chapter 4. Chapter 5 documents implementation and testing of the software. The report concludes with a presentation of conclusions and suggested future enhancements in Chapter 6.

1.2 Literary Review

Resources germane to this project fall into three general categories: (1) database design; (2) artificial intelligence and its application in expert systems; and (3) the integration of expert systems into the field of musicological research. Of these, both expert systems and the use of expert systems as a musicological research tool are relatively new areas of study: indeed, little or no work exists which harnesses the power of an expert system for the benefit of musicology. Database design, on the other hand, is a topic amply covered in computer science circles.

1.2.1 Database Design

A database system is described as a computerized record-keeping system -- that is, a system whose overall purpose is to maintain information and to make that information
available on demand. The sheer volume of data which must be stored, retrieved, manipulated, and referenced as part of any musicological research project makes such a structure essential to the success of the musicological research tool. C. J. Date, in his discussion of why one would choose to employ a database system, summarizes the usefulness of a database system over paper-based methods of record-keeping. He lists (1) compactness, (2) speed, (3) less drudgery, and (4) currency as the most obvious advantages [Da87]. Clearly, the attribute of compactness is welcome relief to the musicological researcher who not only must deal with vast quantities of data, but also must generate equally large quantities of intermediate-level data. The ability to store findings in an easily-retrievable, non-paper form would greatly reduce the workload of musicologists. The attributes of speed, less drudgery, and currency are equally desirable to the music historian whose task necessitates sifting through an untold numbers of documents in the course of even the smallest research project.

Organization of data within most database systems developed within recent years has been based on relational models. The distinguishing features of relational databases are: (1) the data is perceived by
the user as tables and (2) the operators at the user's disposal for data retrieval or manipulation are operators which generate new tables from old [Da87]. Such a relational model is an ideal storage method for the project currently being described: the whole intent of the system is to create new tables of probable matches or close approximations of incipits based on the use of AI technology.

1.2.2 Expert Systems

In some ways, expert systems seem to be especially suited to musicological research. Certainly, if one accepts Christopher F. Chabris's description of the essential characteristic of an expert system, this is true. Chabris states that expert systems are intended to solve problems in difficult, unstructured domains where knowledge and judgement rather than procedure guides the expert's reasoning [Ch87]. As noted earlier, historical musicology may be among the most unstructured domains since it is, in fact, an interdisciplinary field which requires in-depth knowledge in several areas of study and where many of a scholar's decisions are based on educated intuition rather than simple procedure.
Even clearer justification of the application of expert systems in the field of musicology comes with an examination of Richard Forsyth's description of what makes a suitable candidate for an expert system. [Fo86] states:

To decide whether a proposed application is likely to benefit from the knowledge-based approach to systems design, you should consider the following questions: (1) Is the problem diagnostic? (2) Is there no established theory? (3) Are the human experts rare? (4) Is the data "noisy" or uncertain.

Again, the field of musicological research can provide resoundingly positive responses to each of these questions.

The design intent of expert systems is to assist users with domain-specific problem-solving expertise by encoding the same problem-solving heuristics that are used by the human experts. Previously-developed successful systems have been employed in a wide spectrum of problem areas including chemical spectrogram analysis (Buchanan & Fergenbaum, 1978), medical diagnosis (Shortliffe, et al., 1979), mineral exploration (Duda, et al., 1979), genetic engineering (Steefile, 1980), and computer systems configuration (McDermott, 1980). Lehner and Barth [Le85] emphasize that it is clear from the
variety and success of these systems that implementing expert systems on microcomputers is a serious option for potential users of AI technology. Additionally, the use of microcomputers guarantees other factors such as low cost, availability, and transportability: all these features are essential in building a viable musicological research tool as well.

If one accepts the premise that an expert system can serve as a valid musicological research tool, one must address the concept of expert systems in general. Numerous overviews of the topic are available for study. Parker [Pa88] presents a concise overview of expert systems, citing five elements of an expert system:

1. facts in the form of rules
2. an inference engine (procedural knowledge)
3. an explanation generator
4. a knowledge acquisition engine
5. a natural language processor.

Other scholars vary slightly from this format. Forsyth [Fo86] cites four essential components of a fully-fledged expert system:

1. the knowledge base
2. the inference engine
3. the knowledge acquisition module
(4) the explanatory interface.
According to Forsyth, all four modules are critical. A knowledge-based system may lack one of them, but a truly expert system should not. More recently, Vesonder [Ve88] states that rule-based expert systems consist of three components:

(1) a database, more commonly referred to as the working memory
(2) a set of rules, the rule memory
(3) the interpreter, referred to as the inference mechanism.

1.2.3 Musicological Resources

Perhaps due to the "art" involved in musicological research, i.e., the drawing together of knowledge from so many disciplines which must occur in the research process, musicologists have not turned to computers as a true research tool. Robert Skinner, in a review of microcomputer use in music libraries, ascertains that the largest category of music software consists of programs providing computer-assisted instruction. The second largest category of software is that devoted to the
production of actual music: composition, music printing, and musical performance [Sk88].

Clearly, musicologists and music librarians recognize the potential of the computer as a storage medium. In fact, Skinner [Sk88] notes that "CD-Rom and its successors seem natural mediums for encoding composers' complete works so that they can be subjected to various sorts of software-implemented analysis, such as searching for all occurrences of a theme.... Although no music reference works have yet to be published in this format, these may become available in the not-too-distant future, enabling us to search, say, a digital Bach thematic catalog by melodic incipit."

Thus the thought is there, but is yet to be implemented. Instead, the world of music tends to use the computer to assist in teaching music theory or in generating music itself.

While an expert system capable of executing a search and compare mission among musical incipits is yet to be developed, the power of expert systems has been harnessed to invent musical incipits in the style of a particular composer. Ranada [Ra89] describes a newly-completed SUNY/Buffalo PH.D. dissertation by IBM researcher Kemal
Ebciogh, "Report on the CHORAL Project: An Expert System for Harmonizing Four-Part Chorales" which automates the harmonization of chorale melodies in the style of Johann Sebastian Bach. However, even this project deals more with the composition of music than with the historical interpretation of music.

The idea of using computers as a musicological research tool came about in the 1960's and 1970's. Recently, Walter Hewlett and Eleanor Selfridge-Field [He86] initiated a directory listing all known computer-assisted research in musicology in 1986 expressly "...for the purpose of determining what had become of efforts initiated in the 1960's and 1970's to use computers in the field of musicology." They, too, discovered that the use of computers was confined to:

(1) printing music
(2) computer-assisted instruction
(3) cataloging efforts.

Thus the integration of expert systems into the field of musicological research is, for the most part, an unexplored area.
The value of databases as a musicological research tool has been recognized for some time. Yet this, too, is an area besieged by problems. Many scholars point to the lack of standardization and consolidation which limits the usefulness of the research of their colleagues. Both Charnasse [Ch84] and Drummond [Dr84] address the problems encountered by researchers which relate to lack of formalization of database design, structure, and implementation. However, none who attack this problem can offer a clear solution since the use of databases in musicological research may involve diverse music notations, as well as diverse literary and historical references for which no clear-cut standard exists. Warren Hultberg [Hu84], documenting his study of relationships among Spanish music scores of the 16th and 17th centuries, most succinctly summarized both the need and dilemma when he wrote:

As the study progresses, the pressing need for the development of appropriate data bases becomes increasingly apparent. Generally accepted designations of stylistic features, theory as related to practice, and the basic conventions of the period as seen in the sources, tend to be overly simplified and based on limited material. The development and utilization of data bases designed for the study of the sources considered here, offer possibilities for a greatly enhanced understanding of not only relationships among the Spanish sources, but also their relationships to other literature and repertoires. Quantification of certain aspects of study contributes
to qualitative understanding of the repertoire and its underlying theories.... Appropriate software for comparative studies dealing with analytical problems, practical and theoretical positions, thematic derivation and indexing, is not readily available... for less expensive, micro systems.... Availability of moderately-priced micro systems enhances opportunities for information sharing among scholars in a manner heretofore hardly imaginable, but considerable software development and modification are required if meaningful project advancement is to be achieved.

1.3 Summary

The objective of this project is to produce an online, menu-driven system which will allow research musicologists to build and query a database of information pertinent to their current project. A research tool of this nature has the potential to significantly reduce research time for scholars and students working in musicological research. In an effort to build a more marketable product, implementation of the project is in a format readily available to the personal computer user-community. Ease of use is also a key factor in the development of the product, since the ultimate goal is to decrease the work load of the researcher via improved access to material and computerized decision-making.
2. THE PROCESS OF MUSICOLOGICAL RESEARCH

2.1 Musicology as a Discipline

Musicology, the scholarly study of music, was first introduced as a discipline by Friedrich Chrysander in 1863. Chrysander's intent was to encourage the same high standards of accuracy in the historical study of music as in other areas in the natural sciences and humanities [Ap72]. In the past 125 years, this discipline has become one of sound historical research techniques. Like all historical research, it requires that the professional have a broad knowledge base. A second requirement is that music historians be able to organize and assimilate vast quantities of data, all of which may play some part in the final research product.

Relatively speaking, musicology is a young discipline within the humanities: as such, it is frequently unknown or misunderstood by the masses. For this reason, the following description of typical musicological research projects is provided as a means of establishing the environment of the proposed musicological research tool.
2.2 The Typical Musicologist

Scholars in historical musicology are generally trained in languages, music theory and/or physics, history, and specialized topics in music history. Another area of musicology, that of ethnomusicology, requires additional training in non-Western music theory and culture. Within the arena of historical musicology, researchers frequently specialize in the music of a particular era, i.e., Medieval, Renaissance, Baroque, Classical, Romantic, and Modern, in much the same manner as the art historian. Further specialization will limit the musicologist's area of study to the works of a single composer or group of composers, musical compositions of one genre or style, or compositions from a specific geographic area. Thus, a research project can be devoted to vocal settings of the "Salve regina" text attributed to Franco-Flemish composers between 1425 and 1550. Or a multi-membered research project may deal with the reconstruction of the instrumental repertory of amateur collegii musica functioning in American communities between 1770 and 1830.
2.3 The Research Project

A review of the repertory reconstruction project cited in the previous paragraph provides considerable insight into the musicological research process. It also emphasizes the potential value of a mechanized research tool such as that proposed by this project. Between 1973 and 1982, the National Endowment for the Humanities funded a project which employed four full-time research musicologists, two typists, and supporting staff. All worked toward the reconstruction and documentation of the repertory of the Salem [NC] Collegium Musicum and the Bethlehem [PA] Philharmonic Society. Both communities were insular Moravian communities whose strong church ties guaranteed the preservation of a vast archive of letters, diaries, musical compositions, manuscripts, and printed documents which would allow an accurate reconstruction of the musical repertory of these performing groups during America's formative years.

The project was undertaken without computerized assistance, instead using card files and the skill of the researchers to recognize and relocate within those files
any matching incipits, paper watermarks, or references to performances. Since there was no centralized storage medium, problems of conflicting attributions and lack of proper identifications were actually compounded by multiple researchers dealing with a single topic. In short, the project could have been completed much sooner and in a far more thorough manner with the assistance of a mechanized research tool.

2.4 Research Procedures
A typical work day for a researcher assigned to this project included hours spent examining music manuscripts and copying pertinent information on index cards. These abbreviated references included:

1. Call number: a sequential number for subsequent referencing
2. Identification: the composer attribution, composer's dates, title(s)
3. Musical incipit
4. Material quoted from title pages, captions
5. Information about the composition: tempo, key, length
6. Inventory of parts or scoring
7. Miscellaneous comments
8. Cross-references.

Illustration 2.1 shows a page of the final index produced for the catalog of compositions belonging to the relatively small Lititz Congregation Collection [St81].

Illustration 2.1
In addition to cataloging, researchers spent hours conversing with colleagues who might have data in the form of other attributions or references which pertained to a special area of interest. Still more time was spent scouring written documents from the era which might contain references to composers, performances, or compositions: such references were, again, meticulously copied on index cards, indexed by date, and cross-referenced by topic.

2.5 Research Product and the Proposed Research Tool

Periodically, an individual researcher would feel confident enough about the data to produce a research paper or article. At that time, the musicologist would search the index file for information which might support a hypothesis evolved during the research process. At this point, as well as the initial information-gathering stage, a musicological research tool could have been of untold assistance. If available, the research tool could identify and locate any duplicate compositions by providing a mechanized search of incipits which would reveal conflicting attributions and multiple copies. A
topical search of written documents could organize literary references and assist in the actual structuring of the researcher's final document. All these are necessary steps in the preparation of an article and all were done without mechanized assistance for the project previously described.
3. REQUIREMENTS

3.1 Introduction

Research musicologists have recognized for quite some time that the computer should be a valuable tool; however, they somehow have failed to develop an integrated approach to the use of this powerful research assistant. Clearly, all who have worked for months amassing data for a research paper, attempting to document and match partially-attributed or incorrectly-attributed compositions or gathering all the necessary literary references for a project, would welcome mechanized relief. Among the many areas within the humanities, musicology perhaps would most benefit from a single, integrated system capable of assisting in the completion of a multi-faceted project.

This system should consist of a user interface capable of providing a straightforward method of accessing the system. As a rule, musicologists are not particularly familiar with automated systems, thus requiring that the proposed system provide a clear set of instructions. In addition to the user interface, the system should include a minimum of four additional features:
an expert system for incipit matching

(2) a graphics capability for entry of these incipits into the system as well as for subsequent displays to the user

(3) a file-handling interface to link the graphics frontend to the database management system

(4) a database management system.

The objective of this project does not include the graphics interface. This will be the design effort of another Kansas State University master's project [Ha89]. Nevertheless, the two designs are closely integrated into a complete system as shown by Illustration 3.1.
A description of each of these elements, as well as general requirements of the research tool follows.

3.2 General Requirements

The general research requirements of the musicological research tool are three-fold. It should be economical.
Musicologists, like other scholars working in the humanities, are not highly-paid despite the fact that their training must be extensive and broad in scope. For reasons of economy and convenience, the system must run on a personal computer. In addition, personal computers are more familiar to the proposed user since they are frequently employed as word processors by this group of scholars.

A second general requirement of the system is that it should employ non-technical (with regard to computers) language in dealing with the user. When developing the system, the design intent is to never lose sight of the user's needs: musicologists, while they deal in logical relations and decisions which utilize deductive reasoning, are not mathematicians. Often, they are not skilled in technical matters.

A third general requirement of the system is that it should provide the user with extensive storage capacities. Large research projects frequently reference hundreds of documents and music manuscripts. It is essential that the musicologist have a method of storing references to information which might be cited in the
final research product. To do this, the user of the system must be able to add, delete, update, or query the information stored.

3.3 Specific Requirements

This section addresses three requirements of the musicological tool: the user interface is addressed in section 3.3.1; the expert system in section 3.3.2; and the database management system in section 3.3.3.

3.3.1 User Interface

The user interface must be capable of providing the user with simple, easy-to-use menus, interpreting the commands entered by the user, and interfacing with the files provided by the graphics portion of the package. It must respond to user queries with appropriate responses, error messages, or additional user options. It must offer a simple, straightforward set of user instructions, requiring a minimal number of responses from the user.

3.3.2 Expert System

The expert system portion of the system must store high-level representations of the rules that professional
musicologists unconsciously use to interpret their materials. This knowledge will be customized for use by an individual researcher or musicological project to contain specific information for a particular research domain.

The musicological knowledge will be stored in a simple rule-based system. This knowledge base and its use as a research tool will be activated whenever an incipit is added to the data store or modified in any way.

While the basic tenets of the expert system are predefined by the research tool, additional rules may be added to the knowledge base in order to allow customization of the system. This feature is essential since the style considerations of the era which the musicological project is investigating may seriously alter the nature of the rules.

Furthermore, the expert system will allow user interaction: that is, the musicologist may contribute to the final decision of the expert system at break points in the decision process. In addition, the expert system will also communicate with the database system which serves as storage for the knowledge base and incipits.
3.3.3 Database Management System

The relational database management portion of the system must provide storage for the knowledge base of the expert system which consists of the complete set of rules constituting the general knowledge of the expert system. It must also store the domain-specific knowledge of the individual user's application. Activation of the database management system will be initiated via three methods:

(1) a direct request by the user for retrieval, storage, or updating of information
(2) interaction with the graphical interface
(3) interaction with the expert system.

The database portion of the product must also allow the user to query or update information related to the composers and sources. Stored information will include such data as general information related to sources, probable composer, date of composition, location of manuscript or publication, and the musical incipits themselves.

27
4. DESIGN

4.1 Introduction

The primary issue addressed by the design chapter is that of integrating the expert system and database technology. This effort, combined with the research efforts of another Kansas State University project [Ha89] which addresses the integration of this design with a graphical interface, produces the research musicological tool. The design chapter concentrates on the incorporation of intelligence into the database processing environment so that the musicological data provided by the user can be intelligently and correctly stored in the musicological database. A second objective of this intelligence incorporation is that decision options can be offered to the user which assist in their research process. Section 4.2 provides a general discussion of the research musicological tool and presents the structural elements of the design effort. Section 4.3 addresses the specific design of the expert system. Section 4.4 addresses the design of the database of musicological information: incipits, composer information, manuscript and literary
references which may be utilized by the expert system. Section 4.5 discusses the interaction of the graphics interface with the expert system and the musicological database. This is followed by a brief summary of the system in section 4.6.

4.2 The Research Musicological Tool - An Overview

The purpose of the research musicological tool is to meet the needs of the independent research musicologist and the small music archives. The needs of this group include:

(1) a clear, concise, easy to use interface
(2) a means to store and manipulate textual data relating to composers and compositions
(3) a facility to enter, store, retrieve, and update musical incipits
(4) assistance in analyzing the data related to their project.

The research musicological tool addresses these needs by providing the following components: a menu-driven user interface which provides access to the musicological project database and the expert system; the musicological
database itself; the graphical interface; and the expert system with all its related maintenance facilities.

Section 4.2.1 discusses the basic structure of the tool. The structure of the music database facility is presented in Section 4.2.2. Finally, the structural division of the expert system maintenance subsystem is discussed in Section 4.2.3.

4.2.1 A Structural Overview

The user interface is the primary method whereby the user communicates with the system. It is, in essence, a scheduler for the system. Communication is maintained via simple-to-use menus and sub-menus. The initial menu offers the user access to the musicological database as well as the expert system maintenance facility.

The system is divided into three layers: (1) the high level menus; (2) the music database facility; and (3) the expert system maintenance facility. The first layer is represented in Illustration 4.1 which identifies the three primary menus.
MAIN contains the primary menu. It is the user's first introduction to the system, offering two options: DBFAC, which is the music database facility, and ESMAIN, the expert system maintenance facilities.

DBFAC is a secondary menu which provides the user with add, update, delete, and inquiry functions for the database of musical information.

ESMAIN serves as a secondary menu providing access to the rules employed in the expert system. The user is allowed to add rules, to activate or de-activate rules within the expert system, and to reorganize those rules within the
system as a means of customizing the system to meet the needs of the individual researcher.

4.2.2 DBFAC: The Music Database Facility

The music database facility is scheduled by the user interface whenever a user specifically requests to add, update, delete, or query entries in their file of musicological information. All incipit data is keyed by a system-assigned unique call number for simple retrieval. Source data is keyed by source title. Composer data is keyed by last name, first name, middle initial. Within DBFAC, both the graphics portion of the project and the expert system are key factors. If the intent of the user is to alter only textual data, neither the expert system utility nor the graphics portion of the project is invoked. Textual updates are the sole domain of the database facility. If, however, the user wishes to add, insert, update, or query an incipit, the graphics portion of the system is invoked in order to interface with the user. The add and update functions require that the expert system utility also be invoked as a means of checking for duplicate musical incipits. Thus, a researcher's direct request for a database function could
involve the graphics segment of the system, the expert system segment of the system, and the actual database facility as well.

The music database facility function includes four subdivisions: DBDEL, a delete function; DBADD, which provides an add function; DBUPD, an update function; and DBQUERY, the inquiry function. This relationship is shown in Illustration 4.2.

4.2.2.1 DBADD

DBADD is a sub-menu which provides access to three separate functions: ADDINC allows the user to add an
incipit and its associated source and composer information; ADDCOMP allows the addition of an individual composer; and ADDSRC provides for the separate addition of information relating to sources. Illustration 4.3 represents this substructure.

Illustration 4.3

Within this group, ADDINC is the heart of the system. The researcher's request to add an incipit schedules ADDINC. This function then schedules the graphics interface to allow entry of an incipit. Upon scheduling the interface, ADDINC builds an initial file to be used by the interface. This file consists of a function indicator ("A" for add); the proposed next system—
generated call number which will be assigned to the incipit if all expert system checks are successfully passed; space for the time signature; key signature; a major-minor indicator; and ten occurrences of associated notes, pitches, and accidentals.

Upon completion of the execution of the graphics interface module, the ADDINC module analyzes the incipit data via INFER, the inference engine. INFER itself schedules six additional modules to assist in the process:

(1) CHGNOTES changes all pitches to a common pattern, converting sharps or flats by adding or subtracting numeric values from the original numeric value of the pitch.

(2) RHYTHM looks for rhythmic differences between the proposed incipit and all other incipits in the database, storing the result in a memory variable for later comparisons.

(3) NOTES looks for actual pitch differences, storing this data in a memory variable for later comparisons.

(4) TIME compares the time signature of the proposed addition to those of other incipits in the
database, storing the result in a memory variable
(5) TRANSP employs CHGNOTES, translating each of the
incipits in the music database into a common form
prior to examining them for possible
transpositions
(6) Finally, RCHECK processes each of the rules
stored in the knowledge base, allowing the
researcher the ultimate decision concerning
whether or not the incipit should be added to
the database.
An analysis which produces no other similar incipits in
the database allows the researcher to store this incipit.
When similar incipits are found, the user is allowed to
scroll through these incipits prior to making a decision
to add the current incipit. At that point, both source
and composer segments may be added to the database via
the INCSADD and INCCADD segments. The flow of data
through the total ADDINC process is shown in
Illustration 4.4.
Illustration 4.4
ADDSRC and ADDCOMP add source and composer segments to the music database independent of the ADDINC all-inclusive model.

4.2.2.2 DBUPD

DBUPD, like DBADD, is a sub-menu program. Here the user is offered the opportunity to perform updates of incipit data, source data, or composer data. The structure of the database update function is shown in Illustration 4.5.

Illustration 4.5

Again, the incipit-processing module UPDINC interfaces with both the graphics program and the inference engine,
screening any changes which might result in a match on an existing incipit within the system.

4.2.2.3 DBDEL

DBDEL is also a sub-menu. All delete processing within the music database is done within this group. Similar in nature to DBUPD, this module allows delete processing for incipits, source records, and composer records. Unlike both ADDINC and UPDINC, DELINC schedules the graphics interface in retrieval mode as opposed to entry mode. During the delete process, the graphics interface allows the researcher to verify the incipit prior to deletion. As seen in Illustration 4.6, DBDEL provides access to the deletion of incipits and their associated sources and composers (DELINC), as well as the separate deletion of source segments (DELSRC) and composer segments (DELCOMP).
4.2.2.4 DBQUERY

The final function within the music database facility is that of DBQUERY, a module which returns all the sources and composers associated with a given call number within the system.

4.2.3 ESMAIN: Expert System Maintenance

While both the database subsystem and the integrated expert system utility access the graphical interface, the second subsystem, that of expert system maintenance, has no ties to the graphical interface. Nor does it have strong ties to the musical incipit/composer database.
Rather, this subsystem controls its own database of musicological facts and rules. These form the heart of the decision process for the expert system. The basic rules of musicological research are predetermined by the knowledge engineering which must be accomplished prior to the implementation of the project; however, additional rules and fine tuning of the system are at the discretion of the user. In this way, the basic musicological tool can successfully be used by researchers working in a variety of musical eras. Without the ability to alter, add, delete, and restructure the importance of the various rules, the system would be inflexible and, consequently, less useful.

4.2.3.1 ESMAIN Components

Dynamic knowledge engineering must be part of a successful musicological tool: this is the role of ESMAIN, the expert system maintenance portion of the project. ESMAIN is essentially a subsystem which allows the user access to the knowledge base via five methods:

1. ESADD provides the user with the capability to add rule types to the existing knowledge base
2. ESRADD allows the addition of individual rules
within these rule types

(3) ESACT allows the user to activate or de-activate the various rule types -- a method of virtual insertion or deletion of the existing rules

(4) ESRACT allows this same activation/de-activation function to be performed on the rules within rule types

(5) ESREORG provides a sub-menu to rule reorganization functions.

This relationship is shown in Illustration 4.7.

\[\text{Illustration 4.7}\]

4.2.3.2 ESREORG

ESREORG, represented in Illustration 4.8, is the only sub-menu within this group. It provides access to two
reorganizational features within the expert system: PRERULE1, which allows the researcher to designate the ordering of rule types within the knowledge base, and PRERULE2, which provides this same function for the rules within rule types.

![Diagram](image)

Illustration 4.8

4.3 The Expert System Structure

William R. Arnold and John S. Bowie, in their discussion of artificial intelligence, point out that while AI systems are diverse in their areas of expertise, all have (1) a knowledge base generally made up of rules, (2) an inference engine which performs the tasks that give the system intelligence, and (3) a maintenance engine which
is a program to update the knowledge base or inference engine or both [Ar86]. ESMAIN and its associated functions provide the maintenance engine for the research musicological tool. INFER and its related functions provide the inference engine. The knowledge base itself is provided by a database of rules.

4.3.1 Design of the Knowledge Base

The expert system database stores the knowledge base of musicological rules and musical facts gleaned from a close examination of the process whereby musicologists make intelligent decisions about the materials with which they work. These basic rules and facts may be supplemented by the individual musicologist using the system via the use of the expert system maintenance menus. The database is simple in design, reflecting the method employed by musicologists during the research process. Basically, the database consists of rules organized within rule types, each rule being tagged with the following attributes:

(1) an active-inactive tag which specifies whether the user wishes this rule type to be used in the decision process
(2) a sequence number tag which establishes priorities among the different types of rules
(3) a type indicator tag which indicates the basic category of rule
(4) a second active-inactive tag which allows individual rules within a type to be used
(5) a second sequence number tag which establishes the position of rules within each category
(6) the rule itself.

The combination of rule type, rule type sequence number, and rule sequence number allows each record to be unique. It also allows the researcher to specify that the same general rule be examined multiple times within the decision process, simply by allowing it to exist in multiple type categories. Suppose, for example, that a rule of type NOTES specified the range of note differences allowable between compositions before a match might be identified. This same rule might also exist within the type structure of COPY FAULTS and thus be reconsidered at the time that rule type was scheduled for examination.

Categories of rules might include:

(1) melodic configuration
(2) rhythmic configuration
(3) key considerations
(4) accidentals
(5) manuscript/print data
(6) composer data
(7) probable musical era data.

Obviously, the ideal system should allow new categories to be added by the user to customize the application.

Multiple rules exist in each area, all ordered according to their importance. The user has the option of accepting the standard knowledge base provided by the system. Optionally, the individual user may reorder the rules to suit his own application, insert additional rules, delete rules from the system, or build a new expert based on (1) his own rules, (2) a new ordering of existing rules, or (3) a mixture of existing and new rules. The goal is to provide the musicologist with total flexibility so that the tool can be tailored for each individual application.
4.3.2 Design of the Inference Engine

There are three general designs which typify expert system inference engines: (1) the forward-chaining, or data-driven, method in which a forward-chaining inference engine starts with some information and then tries to find an object that fits the information; (2) the backward-chaining, or object-driven, method whereby a backward-chaining inference engine starts with a hypothesis (an object) and requests information to confirm or deny it; and (3) the rule-value method in which a rule-value inference engine requests as its next piece of information the one which will remove the most uncertainty from the system [Sc87].

Vesonder, discussing rule-based programming in the UNIX system, states that today, most expert systems are built using a rule-based approach [Ve88]. A rule-based methodology, such as that chosen as the basis of the research musicological tool inference engine, is useful for two reasons:

(1) it allows the representation of units of knowledge in the form of rules
(2) because the chunks of knowledge are independent, they can be easily changed without altering the rest of the system. Vesonder continues his discussion of the rule-based approach by saying that many expert systems have been built using rule-based tools because expertise stated in the form - "If this is the situation, then take this action" - is readily coded into the IF-THEN format of rules.

This format seems especially suited to the design of the research musicological tool. The inference engine designed for this project employs consecutive IF-THEN rule formats, grouping the rules in large chunks of knowledge which may actually be totally bypassed in the logic flow if that is the desire of the user.

4.4 The Database of Musicological Information

The database of musicological information, like that of the expert system rules, is simple in design. It consists of a incipit segment keyed by a system-generated numeric call number linked to one or more composer segments keyed by composer name. The incipit
segments are also linked to one or more source segments which are uniquely keyed by a source title. An example of the source segment key might be Munich Bayerische Staatsbibliothek 5130. All three segments are linked to one another by the combination of call number, source title and composer name. Illustration 4.9 depicts the entity-relation structure of the musicological information database.
4.5 The Graphical Interface and Expert System

The graphical interface provides the data which feeds the expert system. Whenever multiple similar versions of an incipit exist, the expert system presents these to the researcher via the graphical interface. The graphical interface also allows the user to enter new musical
incipits as part of the musicological database add and update capabilities of the system. The expert system then allows the user to pick and choose which incipits should remain in the working set when break points occur in the expert system logic and user interaction is required. Basically, the graphical interface accepts input from the user and converts this input into a record format which can be transferred to the expert system portion of the design. Once within the realm of the expert system utility, this same data is examined and tested for compliance with the criteria established by the knowledge base database. The graphical interface is never directly called by the user, yet it is an integral part of the total design.

4.6 System Summary

The research musicological tool consists of three primary elements, each of which could become a project in its own right: (1) the expert system; (2) the musical information database; and (3) the graphical interface. Soon after beginning the project, the enormity of the complete system became apparent. For this reason, the system is implemented with a "bare bones" approach. All
facets of the design are addressed; however, the expert system may not possess all the possible rules and rule combinations. Finally, the interaction between the graphical interface and the remainder of the system is addressed in a complete, yet abbreviated fashion. It is the intent of this project to offer the research musicologist a working model of what can be a useful addition to the world of musicological research.
5. IMPLEMENTATION

5.1 Introduction

This chapter addresses the implementation of the research musicological tool. It does not include references to the implementation of the graphical interface segment of the system: the design of this portion of the musicological tool was addressed in detail in another Kansas State University master's project [Ha89]. Those segments of the research musicological tool addressed in this chapter include: (1) the music information database; (2) the expert system with its associated inference engine, maintenance engine, and knowledge base; and (3) the interface between the graphical segment of the project and the database subsystem.

A brief overview of the implementation is given in Section 5.2. Section 5.3 addresses the implementation issues associated with the various databases employed in the research musicological tool. Section 5.4 provides a brief description of the implementation of the expert system itself. Section 5.5 addresses the interface to
the graphical segment of the project. Finally, Section 5.6 discusses the extent of the implementation.

5.2 Implementation Overview

One of the original requirements of the research musicological tool was that the system be implemented on a personal computer. In accordance with this requirement, the project was implemented on a AT&T 6300 personal computer using dBASE III+ Version 1.0. The graphical interface segment of the project [Ha89] used Turbo Pascal Version 5.0. Implementation of the project required two files (an input file and an output file) to pass data between the graphical interface and the database subsystem, a total of eight dBASE files, thirty-five dBASE III+ programs consisting of approximately 1880 lines of code and a Turbo Pascal program [Ha89].

5.3 Database Solutions

Databases were required for three separate parts of the total design effort: (1) the storage of information related to the musical incipits, sources, and composers; (2) the storage of the rules which form the knowledge
base for the expert system; and (3) the intermediate storage of data passed as a file between the graphical interface and the database portion of the project.

The storage of information related to music incipits, sources, and composers required six files. Three of these were used for actual storage of information input by the researcher using the tool. An additional three were used to establish linkage between the data provided by the user. The tool established six separate database work areas with files active in each. Implementation of the research tool did not address null values in the key fields. The files employed for the implementation of the database of musical information are listed in Table 5.1.

<table>
<thead>
<tr>
<th>Database</th>
<th>Field Name</th>
<th>Type</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC</td>
<td>Call_num</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Key</td>
<td>Character</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Character</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Time1</td>
<td>Numeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Time2</td>
<td>Numeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inc_d1</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Inc_p1</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inc_al</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inc_d2</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Inc_p2</td>
<td>Numeric</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 5.1

MUSICAL INFORMATION DATABASE: STRUCTURES
<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_a2</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d3</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p3</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a3</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d4</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p4</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a4</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d5</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p5</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a5</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d6</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p6</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a6</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d8</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p8</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a8</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d9</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p9</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a9</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>Inc_d10</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Inc_p10</td>
<td>Numeric</td>
<td>2</td>
</tr>
<tr>
<td>Inc_a10</td>
<td>Character</td>
<td>1</td>
</tr>
</tbody>
</table>

COMPOSER

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp_bdate</td>
<td>Character</td>
<td>4</td>
</tr>
<tr>
<td>Comp_ddate</td>
<td>Character</td>
<td>4</td>
</tr>
<tr>
<td>Comp_loc</td>
<td>Character</td>
<td>40</td>
</tr>
<tr>
<td>Comp_lname</td>
<td>Character</td>
<td>20</td>
</tr>
<tr>
<td>Comp_fname</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Comp_init</td>
<td>Character</td>
<td>1</td>
</tr>
</tbody>
</table>

SOURCE

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src_type</td>
<td>Character</td>
<td>40</td>
</tr>
<tr>
<td>Src_title</td>
<td>Character</td>
<td>40</td>
</tr>
<tr>
<td>Src_date</td>
<td>Character</td>
<td>4</td>
</tr>
</tbody>
</table>

WRITTEN

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_num</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Comp_lname</td>
<td>Character</td>
<td>20</td>
</tr>
<tr>
<td>Comp_fname</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Comp_init</td>
<td>Character</td>
<td>1</td>
</tr>
</tbody>
</table>

REFER_IN

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_num</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Comp_lname</td>
<td>Character</td>
<td>20</td>
</tr>
<tr>
<td>Comp_fname</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Comp_init</td>
<td>Character</td>
<td>1</td>
</tr>
</tbody>
</table>

LINK

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_num</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td>Comp_lname</td>
<td>Character</td>
<td>20</td>
</tr>
<tr>
<td>Comp_fname</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Comp_init</td>
<td>Character</td>
<td>1</td>
</tr>
</tbody>
</table>
The index structures associated with the database are listed in Table 5.2.

TABLE 5.2

MUSICAL INFORMATION DATABASE: INDEX STRUCTURES

<table>
<thead>
<tr>
<th>Database</th>
<th>Index Name</th>
<th>Database Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC</td>
<td>Call_num</td>
<td>Call_num</td>
</tr>
<tr>
<td>SOURCE</td>
<td>Sources</td>
<td>Src-title</td>
</tr>
<tr>
<td>COMPOSER</td>
<td>C_Lname</td>
<td>Comp_lname + Comp_fname + Comp_init</td>
</tr>
<tr>
<td>WRITTEN</td>
<td>Callw</td>
<td>Call_num</td>
</tr>
<tr>
<td></td>
<td>Cnamew</td>
<td>Comp_lname + Comp_fname + Comp_init</td>
</tr>
<tr>
<td>REFER-IN</td>
<td>Callr</td>
<td>Call_num</td>
</tr>
<tr>
<td></td>
<td>Srcr</td>
<td>Src_title</td>
</tr>
<tr>
<td>LINK</td>
<td>Calll</td>
<td>Call_num</td>
</tr>
<tr>
<td></td>
<td>Cnamel</td>
<td>Comp_lname + Comp_fname + Comp_init</td>
</tr>
<tr>
<td></td>
<td>Srcl</td>
<td>Src_title</td>
</tr>
</tbody>
</table>

The expert system required a single database. The structure of this database and the index associated with it are shown in Table 5.3.
TABLE 5.3

EXPERT SYSTEM DATABASE AND INDEX: STRUCTURES

<table>
<thead>
<tr>
<th>Database</th>
<th>Field Name</th>
<th>Type</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULE</td>
<td>Type</td>
<td>Character</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Seq_num1</td>
<td>Numeric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Seq_num2</td>
<td>Numeric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Act_flag1</td>
<td>Logical</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Act_flag2</td>
<td>Logical</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Field1</td>
<td>Character</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Oper</td>
<td>Character</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Field</td>
<td>Character</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database</th>
<th>Index Name</th>
<th>Database fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULE</td>
<td>Num1</td>
<td>Seq_num1</td>
</tr>
<tr>
<td></td>
<td>Num2</td>
<td>Seq_num2</td>
</tr>
<tr>
<td></td>
<td>Types</td>
<td>type</td>
</tr>
</tbody>
</table>

Finally, the temporary database which was required by dBASE III+ as a means of communicating with a file is shown in Table 5.4 with its associated index structure.

TABLE 5.4

TEMPORARY DATABASE AND INDEX: STRUCTURES

<table>
<thead>
<tr>
<th>Database</th>
<th>Field Name</th>
<th>Type</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPHF</td>
<td>Act</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Call</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Key</td>
<td>Character</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Time1</td>
<td>Numeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Time2</td>
<td>Numeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inc_d1</td>
<td>Numeric</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Inc_p1</td>
<td>Numeric</td>
<td>2</td>
</tr>
</tbody>
</table>
A study of the tables of database structures reveals one of the problems inherent in dBASE III+: there are no arrays. This, coupled with the 254-characters-per-line restriction imposed by dBASE III+, proved to be a true impediment since it was necessary to pass long lists of note duration and pitch parameters between programs. In addition to the lack of array structures, dBASE III+ has
a restriction regarding the number of files which can be open at one time. Since each program and database structure or index structure is considered to be a file, this was a particular problem. In order to circumvent the files issue, all the programs were placed within one large procedure. Thus, the restriction that only one procedure be active required all parameter passing to occur program to program rather than via the use of additional procedures.

5.4 Expert System Solutions

A large part of any design involving an expert system is knowledge engineering. In order to devise a system which can do the work of the expert, care must be taken to thoroughly understand the steps taken by a musicologist during the research process. Several years experience spent by the author working on a National Endowment for the Humanities research project simplified this process.

One of the more interesting problems associated with the project was that of devising a method whereby the researcher could actually influence the structure of the expert system, dynamically altering the rules within the
knowledge base. Within dBASE III+, a feature exists which allows field names to be used as macros. This instigated the division of the rule itself into three segments: field1, operator, and field2. These were then treated as macros. By limiting the user to selected field names and operators, the system actually provides the user with the capability to set acceptable limits of pitch variations, rhythmic differences, and time signature variations.

5.5 Graphical Interface Solutions

At the outset of the project, the problem of communicating between the database subsystem and the graphical interface seemed insurmountable. However, the ultimate solution was surprisingly simple: it involved employing two files and a temporary dBASE database which was required to match the structure of these two files exactly and the execution of a DOS command within a dBASE program. Whenever an add or update of an incipit is requested by the user, the database subsystem builds a temporary GRAPHF database record with information from the permanent MUSIC database. This database record is used to generate a file. At that point, a DOS command is
issued within a dBASE program to execute the Pascal-based graphical interface. Upon completion of execution, the dBASE program regains control, reading the second file which is generated by the graphical interface and storing it in the temporary GRAPHF database for comparison to existing incipits stored in the MUSIC database.

5.6 Extent

The intent of the implementation was to provide a working tool for the researcher in musicology. In order to do this, all features of the project were implemented with two exceptions:

1. The TRANSP module within the expert system was not implemented. The logic necessary for this was also used as the basis for the NOTES module. This, implementation of TRANSP was deemed non-essential.

2. The SCROLL capability within the ADDINC module was not implemented. This feature is useful, but not essential. The design intent of SCROLL was to allow the user to view multiple similar versions of incipits residing on the database prior to choosing to override the expert's decision to not add another similar incipit.
6. Conclusions and Extensions

6.1 Introduction

The motivation of this project was to provide an automated research tool for musicologists and small music archives and to explore the usefulness of expert systems as a potential research tool for music historians.

6.2 Project Conclusions

In the course of completing this project, the following results were achieved:

* Analyzed the problem of providing a research tool for the computer-novice professional musicologist.

* Designed a simple-to-use interactive system employing expert system functions to assist in incipit matching and a database management system to store musicological research information.
* Implemented the research musicological tool for the personal computer using dBASE III+ and a rule-based inference engine.

* Achieved a successful integration of dBASE III+, expert system functions, and a graphical interface to produce a useful tool for scholars in the field of historical musicology.

6.3 Future Enhancements

The research musicological tool can be viewed as a beginning point -- a first step toward mechanized aids for musicologists. In light of that, there are several topics within the scope of the project which would benefit from additional research. The following are recommended areas for further research and development:

* The addition of free form notes to the database subsystem would be particularly beneficial to researchers in any historical discipline.

* The porting of the system to FoxBASE+ or dBASE IV would provide flexibility for the
development of a more functionally-rich product, allowing the features of dBASE without restrictions on array processing and files.

* The design of the current project did not include report capabilities, yet this is an important tool for the research musicologist. Printed lists of incipits and associated composers/sources would be especially helpful during the preparation of articles and papers based on data stored in the research musicological tool.

* A help function which would allow the user to enter an incipit, then view all similar incipits within the system should be implemented to increase the usefulness of the tool.
REFERENCES

LIST OF ILLUSTRATIONS

Illustration 2.1 Examples of Musicological Project........18
Illustration 3.1 System Design...............................23
Illustration 4.1 High Level Menus............................31
Illustration 4.2 Database Facility Structure.................33
Illustration 4.3 DBADD Subsystem.........................34
Illustration 4.4 Expert System Data Flow.......................37
Illustration 4.5 DBUPD Subsystem.........................38
Illustration 4.6 DBDEL Subsystem.........................40
Illustration 4.7 Expert System Maintenance Structure........42
Illustration 4.8 ESREORG Subsystem.........................43
Illustration 4.9 E-R Structure of Musical Information..50

LIST OF TABLES

Table 5.1 Musical Information Database Structures.......55
Table 5.2 Musical Information Database Index
 Structures..57
Table 5.3 Expert System Database and Index:
 Structures..58
Table 5.4 Temporary Database and Index: Structure.......58
RELATIONAL SCHEMAS MUSIC DATABASE

Incipit (Key, Call_num, Title, MM, Timel, Time2, Inc_d1, Inc_d2, Inc_d3, Inc_d4, Inc_d5, Inc_d6, Inc_d7, Inc_d8, Inc_d9, Inc_d10, Inc_p1, Inc_p2, Inc_p3, Inc_p4, Inc_p5, Inc_p6, Inc_p7, Inc_p8, Inc_p9, Inc_p10, Inc_a1, Inc_a2, Inc_a3, Inc_a4, Inc_a5, Inc_a6, Inc_a7, Inc_a8, Inc_a9, Inc_a10)
key: Call_num

Source (Src_type, Src_title, Src_date)
key: Src_title

Composer (Comp_bdate, Comp_ddate, Comp_loc, Comp_lname, Comp_fname, Comp_init)
key: (Comp_lname, Comp_fname, Comp_init)

Written_by (Call_num, Comp_lname, Comp_fname, Comp_init)
key: (Call_num, Comp_lname, Comp_fname, Comp_init)
Refer in (Call_num, Src_title)
 key: (Call_num, Src_title)

Link (Call_num, Src_title, Comp_lname, Comp_fname, Comp_Init)
 key: (Call_num, Src_title, Comp_lname, Comp_fname, Comp_init)

DATA DICTIONARY

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>10000 = whole note 07500 = dotted half note 05000 = half note 03750 = dotted quarter note 02500 = quarter note 01875 = dotted eighth note 01250 = eighth note 00625 = sixteenth note</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>10000 = whole note 07500 = dotted half note 05000 = half note 03750 = dotted quarter note 02500 = quarter note</td>
</tr>
</tbody>
</table>

ii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
</tbody>
</table>
| Range | 10000 = whole note
| | 07500 = dotted half note
| | 05000 = half note
| | 03750 = dotted quarter note
| | 02500 = quarter note
| | 01875 = dotted eighth note
| | 01250 = eighth note
| | 00625 = sixteenth note |

Originally received from graphical interface

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
</tbody>
</table>
| Range | 10000 = whole note
| | 07500 = dotted half note
| | 05000 = half note
| | 03750 = dotted quarter note
| | 02500 = quarter note
| | 01875 = dotted eighth note |

Originally received from graphical interface

iii
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_d5</td>
<td>None</td>
<td>Numeric</td>
<td>5 numerics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10000 = whole note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07500 = dotted half note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>05000 = half note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03750 = dotted quarter note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02500 = quarter note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01875 = dotted eighth note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01250 = eighth note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00625 = sixteenth note</td>
<td></td>
</tr>
</tbody>
</table>

```
01250 = eighth note
00625 = sixteenth note
```

iv
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>10000 = whole note, 07500 = dotted half note, 05000 = half note, 03750 = dotted quarter note, 02500 = quarter note, 01875 = dotted eighth note, 01250 = eighth note, 00625 = sixteenth note</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>10000 = whole note, 07500 = dotted half note, 05000 = half note, 03750 = dotted quarter note, 02500 = quarter note, 01875 = dotted eighth note</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Security</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Data Name</td>
<td>Inc_d9</td>
</tr>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Originally received from graphical interface
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90' = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
02500' = quarter note
01875' = dotted eighth note
01250 = eighth note
00625 = sixteenth note
```

vii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility

- Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility

- Originally received from graphical interface via temporary database

viii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest</td>
</tr>
<tr>
<td></td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td></td>
<td>99 = bar</td>
</tr>
<tr>
<td></td>
<td>02 – 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility

Security

Availability

Frequency

Dependencies

Comments

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest</td>
</tr>
<tr>
<td></td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td></td>
<td>99 = bar</td>
</tr>
<tr>
<td></td>
<td>02 – 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility

Security

Availability

Frequency

Dependencies

Comments

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest</td>
</tr>
<tr>
<td></td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td></td>
<td>99 = bar</td>
</tr>
</tbody>
</table>

ix
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar</td>
</tr>
<tr>
<td>02 - 22 = notes, in even increments</td>
<td></td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar</td>
</tr>
<tr>
<td>02 - 22 = notes, in even increments</td>
<td></td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

x
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>Data type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Character</td>
<td>1 character</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_a3</td>
<td>None</td>
<td>Character</td>
<td>1 character</td>
<td>+ = sharp, - = flat, 0 = natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_a4</td>
<td>None</td>
<td>Character</td>
<td>1 character</td>
<td>+ = sharp, - = flat, 0 = natural</td>
<td></td>
<td></td>
<td></td>
<td>xii</td>
</tr>
</tbody>
</table>

xii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Dependencies</td>
</tr>
<tr>
<td>Comments</td>
</tr>
</tbody>
</table>

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Dependencies</td>
</tr>
<tr>
<td>Comments</td>
</tr>
</tbody>
</table>

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a7</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>Data Name</td>
<td>Inc_a8</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Security</td>
</tr>
<tr>
<td>Data Name</td>
<td>Inc_a9</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Security</td>
</tr>
</tbody>
</table>

xiv
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_al0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
</tbody>
</table>
| Range | + = sharp
 | - = flat |
| | 0 = natural |
| Responsibility | Originally received from graphical interface via temporary database |
| Security | |
| Availability | |
| Frequency | |
| Dependencies | |
| Comments | |

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>2 characters</td>
</tr>
</tbody>
</table>
| Range | First character: A - G
 | Second character: #, b, blank |
| Responsibility | |
| Security | |
| Availability | |
| Frequency | |
| Dependencies | |
| Comments | |

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Call_num</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Range</td>
<td>00000 through 99999</td>
</tr>
<tr>
<td>Responsibility</td>
<td>System-generated</td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>Generated by the system for means of having unique number system</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Time1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>1 digit</td>
</tr>
<tr>
<td>Range</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Created by graphical interface</td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Denotes the first number in a time signature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>1 digit</td>
</tr>
<tr>
<td>Range</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Created by graphical interface</td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Denotes the second number in a time signature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>xvi</td>
</tr>
<tr>
<td>Data Name</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>Character</td>
</tr>
<tr>
<td>Range</td>
<td>80 characters</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

Title of the composition

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Src_type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>40 characters</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

Indicates type of source, whether a manuscript (copied by hand) or printed version of the music

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Src_title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>Data Name</td>
<td>Aliases</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>** Src_date**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>** Comp_bdate**</td>
<td></td>
</tr>
</tbody>
</table>

Title of the manuscript or print

Year of manuscript or print origin

Birth year of composer
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Comp_ddate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>Character</td>
</tr>
<tr>
<td>Data type</td>
<td>yyyy</td>
</tr>
<tr>
<td>Format</td>
<td>comp_bdate <= yyyy <= (current year)</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Death year of composer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Comp_loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>Character</td>
</tr>
<tr>
<td>Data type</td>
<td>40 characters</td>
</tr>
<tr>
<td>Format</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Geographical location of composer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Comp_lname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>Character</td>
</tr>
<tr>
<td>Data type</td>
<td>20 characters</td>
</tr>
<tr>
<td>Format</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Combination of last name, first name, and initial must be unique</td>
</tr>
</tbody>
</table>

xix
Comments
key
Composer's last name

Data Name
Comp_fname
Aliases
Character
Format
10 characters
Range

Responsibility
Security
Availability
Frequency
Dependencies
Combination of last name, first name, and initial must be unique key
Comments
First name of composer

Data Name
Comp_init
Aliases
Character
Format
1 character
Range

Responsibility
Security
Availability
Frequency
Dependencies
Combination of last name, first name, and initial must be unique key
Comments
Middle initial of composer
Rule (Act_flag1, Act_flag2, Seq_num1, Seq_num2, Type, Field1, Oper, Field2)
key: (Type, Seq_num1, Seq_num2)

DATA DICTIONARY

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Act_flag1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Logical</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>"Y" for active, "N" for inactive</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Designates whether the entire family of rules of that "type" is active (that is, to be used in the decision process) or not</td>
</tr>
</tbody>
</table>

xxi
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Act_flag2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>Logical</td>
</tr>
<tr>
<td>Data type</td>
<td>1 character</td>
</tr>
<tr>
<td>Format</td>
<td>"Y" for active, "N" for inactive</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>this</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designates whether a rule of specific type is active or active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Seq_num1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>Numeric</td>
</tr>
<tr>
<td>Data type</td>
<td>3 digits</td>
</tr>
<tr>
<td>Format</td>
<td>001 through 999</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order of importance for the rule types. All rules with a sequence number of 3 would be examined prior to rules with a sequence number of 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Seq_num2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>numeric</td>
</tr>
<tr>
<td>Data type</td>
<td>3 digits</td>
</tr>
<tr>
<td>Format</td>
<td>001 through 999</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order of importance of rules within a single rule type</td>
</tr>
</tbody>
</table>

xxii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>20 characters</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Subject matter with which each rule deals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Field1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>39 characters</td>
</tr>
<tr>
<td>Range</td>
<td>TYPEDIF, NOTEDIF, TIME, RHYDIF, all numbers</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Must be used as first macro in group of three: Field1 Oper Field2</td>
</tr>
<tr>
<td></td>
<td>These will be converted to macros in DBase III+, then used in IF-THEN statements (IF Macro1 Macro2 Macro3 THEN format)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>02 characters</td>
</tr>
<tr>
<td>Range</td>
<td><, >, =, <=, >=</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Must be used as second macro in xxiii</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>These will be converted to macros in DBase III+, then used in IF-THEN statements (IF Macro1 Macro2 Macro3 THEN format)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character</td>
<td>39 characters</td>
</tr>
<tr>
<td></td>
<td>TYPEDIF, NOTEDIF, TIME, RHYDIF, all numbers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be used as third macro in a group of three: Field1 Oper Field3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>These will be converted to macros in DBase III+, then used in IF-THEN statements (IF Macro1 Macro2 Macro3 THEN format)</td>
</tr>
</tbody>
</table>

xxiv
Temp (Act, Key, Call, MM, Time1, Time2, Inc_d1, Inc_p1, Inc_a1, Inc_d2, Inc_p2, Inc_a2, Inc_d3, Inc_p3, Inc_a3, Inc_d4, Inc_p4, Inc_a4, Inc_d5, Inc_p5, Inc_a5, Inc_d6, Inc_p6, Inc_a6, Inc_d7, Inc_p7, Inc_a7, Inc_d8, Inc_p8, Inc_a8, Inc_d9, Inc_p9, Inc_a9, Inc_d10, Inc_p10, Inc_a10)
key: Call

DATA DICTIONARY

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_d1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
</tbody>
</table>
| Range | 10000 = whole note
 | 07500 = dotted half note
 | 05000 = half note
 | 03750 = dotted quarter note
 | 02500 = quarter note
 | 01875 = dotted eighth note
 | 01250 = eighth note

xxv
Data Name: Inc_d2
- **Aliases**: None
- **Data type**: Numeric
- **Format**: 5 numerics
- **Range**: 10000 = whole note, 07500 = dotted half note, 05000 = half note, 03750 = dotted quarter note, 02500 = quarter note, 01875 = dotted eighth note, 01250 = eighth note, 00625 = sixteenth note

Data Name: Inc_d3
- **Aliases**: None
- **Data type**: Numeric
- **Format**: 5 numerics
- **Range**: 10000 = whole note, 07500 = dotted half note, 05000 = half note, 03750 = dotted quarter note, 02500 = quarter note, 01875 = dotted eighth note, 01250 = eighth note, 00625 = sixteenth note

"00625 = sixteenth note"

"Originally received from graphical interface"

"xxvi"
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_d4
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_d5
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility
Security

xxvii
<table>
<thead>
<tr>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_d6</td>
<td>None</td>
<td>Numeric</td>
<td>5 numerics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10000 = whole note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07500 = dotted half note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>05000 = half note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03750 = dotted quarter note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02500 = quarter note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01875 = dotted eighth note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01250 = eighth note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00625 = sixteenth note</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xxviii</td>
</tr>
</tbody>
</table>
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface

Data Name
Aliases
Data type
Format
Range

Inc_d8
None
Numeric
5 numerics
10000 = whole note
07500 = dotted half note
05000 = half note
03750 = dotted quarter note
02500 = quarter note
01875 = dotted eighth note
01250 = eighth note
00625 = sixteenth note

Responsibility

xxix
<table>
<thead>
<tr>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc dl0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>5 numerics</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000 = whole note</td>
</tr>
<tr>
<td></td>
<td>07500 = dotted half note</td>
</tr>
<tr>
<td></td>
<td>05000 = half note</td>
</tr>
<tr>
<td></td>
<td>03750 = dotted quarter note</td>
</tr>
<tr>
<td></td>
<td>02500 = quarter note</td>
</tr>
<tr>
<td></td>
<td>01875 = dotted eighth note</td>
</tr>
<tr>
<td></td>
<td>01250 = eighth note</td>
</tr>
<tr>
<td></td>
<td>00625 = sixteenth note</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 = rest</td>
</tr>
<tr>
<td></td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td></td>
<td>99 = bar</td>
</tr>
<tr>
<td></td>
<td>02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>Availability</td>
<td>Frequency</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_p2</td>
<td>None</td>
<td>Numeric</td>
<td>2 numerics</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Format</th>
<th>Range</th>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc_p3</td>
<td>None</td>
<td>Numeric</td>
<td>2 numerics</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |
| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Security</th>
<th>Availability</th>
<th>Frequency</th>
<th>Dependencies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar</td>
</tr>
</tbody>
</table>

<p>| xxxxii |</p>
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p7</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest</td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Security</td>
<td>Availability</td>
</tr>
<tr>
<td>Frequency</td>
<td>Dependencies</td>
<td>Comments</td>
</tr>
<tr>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
<td>02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p8</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest</td>
<td>90 = blank pitch</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Security</td>
<td>Availability</td>
</tr>
<tr>
<td>Frequency</td>
<td>Dependencies</td>
<td>Comments</td>
</tr>
<tr>
<td></td>
<td>Originally received from graphical interface via temporary database</td>
<td>02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility	Security	Availability
Frequency	Dependencies	Comments
	Originally received from xxxiii	
graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>2 numerics</td>
</tr>
<tr>
<td>Range</td>
<td>00 = rest, 90 = blank pitch, 99 = bar, 02 - 22 = notes, in even increments</td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>xxxiv</td>
</tr>
<tr>
<td>Data Name</td>
<td>Inc_a2</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Originally received from graphical interface via temporary database</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
<tr>
<td>Responsibility</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

```
xxxv
```
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

Originally received from graphical interface via temporary database

xxxvi
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp</td>
</tr>
<tr>
<td></td>
<td>- = flat</td>
</tr>
<tr>
<td></td>
<td>0 = natural</td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

- Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp</td>
</tr>
<tr>
<td></td>
<td>- = flat</td>
</tr>
<tr>
<td></td>
<td>0 = natural</td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability
Frequency
Dependencies
Comments

- Originally received from graphical interface via temporary database

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp</td>
</tr>
<tr>
<td></td>
<td>- = flat</td>
</tr>
<tr>
<td></td>
<td>0 = natural</td>
</tr>
</tbody>
</table>

Responsibility
Security
Availability

xxxvii
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Inc_a10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>None</td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>1 character</td>
</tr>
<tr>
<td>Range</td>
<td>+ = sharp, - = flat, 0 = natural</td>
</tr>
</tbody>
</table>

The data was originally received from a graphical interface via a temporary database.
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_num</td>
<td></td>
</tr>
<tr>
<td>Timel</td>
<td></td>
</tr>
</tbody>
</table>

Call_num
- **Data Name**: Call_num
- **Aliases**:
- **Data type**: Numeric
- **Format**: 5 numerics
- **Range**: 00000 through 99999
- **Responsibility**: System-generated
- **Security**: Generated by the system for means of having unique number system
- **Availability**:
- **Frequency**:
- **Dependencies**:
- **Comments**:

Timel
- **Data Name**: Timel
- **Aliases**:
- **Data type**: Numeric
- **Format**: 1 digit
- **Range**: 1 - 9
- **Responsibility**: Created by graphical interface
- **Security**:
- **Availability**:
- **Frequency**:
- **Dependencies**:
- **Comments**: Denotes the first number in a time signature

```
xxxix
```
<table>
<thead>
<tr>
<th>Data Name</th>
<th>Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Numeric</td>
</tr>
<tr>
<td>Format</td>
<td>1 digit</td>
</tr>
<tr>
<td>Range</td>
<td>1 - 9</td>
</tr>
</tbody>
</table>

Responsibility

Security

Availability

Frequency

Dependencies

Comments

Created by graphical interface

Denotes the second number in a time signature

<table>
<thead>
<tr>
<th>Data Name</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>Character</td>
</tr>
<tr>
<td>Format</td>
<td>2 characters</td>
</tr>
<tr>
<td>Range</td>
<td>blank = major</td>
</tr>
<tr>
<td></td>
<td>m = minor</td>
</tr>
</tbody>
</table>

Responsibility

Security

Availability

Frequency

Dependencies

Comments

Indicates major or minor key
SOURCE CODE

**
**
* AAA
*
**
**
set procedure to main
do menu

**
**
* ADDCOMP
*
**
**
PROCEDURE ADDCOMP
**
**** composer add subsystem**
**
more = .t.
do while more
clear
************ Init memory variables
************ present composer add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD COMPOSER INFORMATION"
m_compf = space(10)
m_compi = space(1)
m_compl = space(20)
m_cloc = space(40)
m_bdate = space(4)
m_ddate = space(4)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,01 say "Last name:" get m_compl picture "@!"
@ 11,01 say "First name:" get m_compf picture "@!"
@ 12,01 say "Initial:" get m_compi picture "@!"
read
error = .f.
if m_compl = space(20)

xli
error = .t.
endif (m_compl = space(20))
if .not. error
****before you do this must have opened the database,
****look for entered composer
select 3
use composer index c_lname
seek m_compl
if found()
 if comp_init = m_compi .and. comp_fname = m_compf
 @ 22,1 say "This composer already exists on database"
 m_ans = .t.
 @ 23,1 say "Do you want to try again?(Y/N)" get m_ans
 ;
 picture "Y"
read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (comp_init = m_compi .and. comp_fname = m_compf)
endif (found())
if .not. found()
 @ 13,1 say "Birth year:"
 @ 13,15 get m_bdate
 @ 14,1 say "Death year:"
 @ 14,15 get m_ddate
 @ 15,1 say "Birthplace:"
 @ 15,15 get m_cloc picture "@!
read
 error = .f.
 if val(m_bdate) > 1989
 error = .t.
 endif (val(m_bdate) > 1989)
 if (val(m_ddate) < val(m_bdate) .or. val(m_ddate) > 1989)
 .and. m_ddate <> space(4)
 error = .t.
 endif (m_ddate checks)
 if .not. error
 append blank
 replace comp_fname with m_compf
 replace comp_init with m_compi
 replace comp_lname with m_compl
 replace comp_bdate with m_bdate
 replace comp_ddate with m_ddate
 replace comp_loc with m_cloc
xlii
answer = .t.
@ 23,1 say "Do you want to add another composer?" ;
 get answer picture "y"
read
if .not. answer
 more = .f.
endif (.not. answer)
else
 @ 22,1 say "Error in date entry."
 m_ans = .t.
 @ 23,1 say "Do you want to try again? (Y/N)" get m_ans
 ;
 picture "y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. error)
else
 if comp_init <> m_compi .or. comp_fname <> m_compf
 @ 13,1 say "Birth year:"
 @ 13,15 get m_bdate
 @ 14,1 say "Death year:"
 @ 14,15 get m_ddate
 @ 15,1 say "Birthplace:"
 @ 15,15 get m_cloc picture "@!"
 read
 error = .f.
 if val(m_bdate) > 1989
 error = .t.
 endif (bdate checks)
 if (val(m_ddate) < val(m_bdate) .or. val(m_ddate) > 1989)
 .and. m_ddate <> space(4)
 error = .t.
 endif (ddate checks)
 if .not. error
 append blank
 replace comp_fname with m_compf
 replace comp_init with m_compi
 replace comp_lname with m_compl
 replace comp_bdate with m_bdate
 replace comp_ddate with m_ddate
 replace comp_loc with m_cloc
 answer = .t.
 @ 23,1 say "Do you want to add another composer?" ;
 get answer picture "y"
 read
 xliii
if .not. answer
 more = .f.
endif (.not. answer)
else
 @ 22,1 say "Error in date entry."
 m_ans = .t.
 @ 23,1 say "Do you want to try again?(Y/N)" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. error)

endif (comp_init = m_compi .and. comp_fname = m_compf)
endif (.not. found())
else
 @ 22,1 say "Composer's last name must be greater than spaces."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. error)
enddo (do while more)
return
PROCEDURE ADDINC

******** database add subsystem*****
more = .t.
do while more
clear
m_key = space(2)
************* present database add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC RECORD"
m_d1 = 0
m_p1 = 0
m_a1 = " "
m_d2 = 0
m_p2 = 0
m_a2 = " "
m_d3 = 0
m_p3 = 0
m_a3 = " "
m_d4 = 0
m_p4 = 0
m_a4 = " "
m_d5 = 0
m_p5 = 0
m_a5 = " "
m_d6 = 0
m_p6 = 0
m_a6 = " "
m_d7 = 0
m_p7 = 0
m_a7 = " "
m_d8 = 0
m_p8 = 0
m_a8 = " "
m_d9 = 0
m_p9 = 0
m_a9 = " "
m_d10 = 0
m_p10 = 0
m_a10 = " "
temp_num = 00000
new_num = 00000
old_call = 00000
m_compl = space(20)
m_compf = space(10)
m_compi = space(1)
m_stitle = space(40)
c_link = .f.
s_link = .f.
select 1
use music index call_num

do while .not. EOF()
 skip
endo (.not. EOF())
if .not. BOF()
 skip -1
store call_num to temp_num
endif (.not. BOF())
temp_num = temp_num + 1
new_num = temp_num + 10000
@ 09, l say "Please wait to input incipit for call #"
@ 09, 4l say temp_num
erase \tp\gfilel.doc
*erase \project\gfilel.doc

select 2
use graphf index callg
append blank
replace act with "A"
replace call with new_num
*--------send file to graphics interface----------
copy to \tp\gfilel.doc sdf
*copy to \project\gfilel.doc sdf

*-----------delete record from graph database so won't clutter
zap
*----------run executable version of graphics program
run cd \tp
run grapintf
run cd \demo
*--------retrieve file ------------------------
title = " DATABASE SYSTEM: ADD MUSIC RECORD"
do titles with title
xlvi
select 2
use graphf index callg
append from \tp\gifile.dat sdf
*append from \project\gifile2.doc sdf

temp_call = call - 10000
store temp_call to m_call
store mm to m_mm
store time1 to m_time1
store time2 to m_time2
store key to m_key
store act to ret_act
do stnotes with m_d1, m_p1, m_a1, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10
if ret_act = "A"
 okflag = .t.
 store 0 to difcter
 do infer with m_d1, m_p1, m_a1, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10,
okflag, m_call, difcter, m_time1, m_time2
if okflag
 m_title = space(80)
 @20, 1 say "Enter title of composition:" get m_title;
 picture "@!"
read
select 1
use music index call_num
append blank
replace call_num with m_call
store call_num to old_call
replace key with m_key

xlvi
replace title with m_title
replace time1 with m_time1
replace time2 with m_time2
do rnotes with m_d1, m_p1, m_a1, ;
m_d2, m_p2, m_a2, ;
m_d3, m_p3, m_a3, ;
m_d4, m_p4, m_a4, ;
m_d5, m_p5, m_a5, ;
m_d6, m_p6, m_a6, ;
m_d7, m_p7, m_a7, ;
m_d8, m_p8, m_a8, ;
m_d9, m_p9, m_a9, ;
m_d10, m_p10, m_a10
endif (okflag)
close databases
@ 22,1 clear
@ 23,1 clear
store .t. to m_ans
@ 22,1 say "Do you wish to add a composer now?" get
m_ans ;
picture "y"
read
if m_ans
 if old_call = 00000
 @ 23,1 say "What call number do you wish to use?" ;
 get old_call picture '99999'
 read
 endif (old_call = 00000)
do inccadd with old_call, m_compl, m_compf, m_compi, c_link
close databases
endif (m_ans)
store .t. to m_ans
@ 22,1 clear
@ 22,1 say "Do you wish to add a source now?" get
m_ans ;
picture "y"
read
if m_ans
 if old_call = 00000
 @ 23,1 say "What call number do you wish to use?" ;
 get old_call picture '99999'
 read
 endif (old_call = 00000)
do incsadd with old_call, m_stitle, s_link
close databases
endif (m_ans)
if c_link .and. s_link
 select 8
 use link index call1, cnamel, srcl
 append blank
 replace call_num with old_call
 replace comp_lname with m_compl
 replace comp_fname with m_compf
 replace comp_init with m_compi
 replace src_title with m_stitle
 endif (c_link .and. s_link)
else
 @ 20,1 say "Add is not indicated by graphics interface"
 endif (ret_act = "A")
 answer = .t.
 @ 22,1 clear
 @ 22,1 say "Do you want to add another incipit?" ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (.not. answer)
 select 2
 use graphf index call1g
 zap
 enddo (more)
 close databases
return

xlix

ADDSRC

PROCEDURE ADDSRC
********** source add subsystem***

more = .t.
do while more
clear
----------Init memory variables
********** present rule type add subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC SOURCE"
select 5
use source index sources
m_stitle = space(40)
m_stype = space(40)
m_sdate = space(4)
@ 08,1 say "SOURCE INFORMATION"
@ 10,1 say "Enter source:" get m_stitle picture "@!"
read
error = .f.
if m_stitle = space(40)
 error = .t.
endif (m_stitle = space())
if .not. error
****before you do this must have opened the database,
****look for entered source
seek m_stitle
if found()
 @ 22,1 say "This source already exists"
m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
picture "y"
read
if .not. m_ans
 more = .f.
endif (.not. m_ans)
endif (found())
if .not. found()
 @ 11,1 say "Source type:"
 @ 11,15 get m_stype picture "@!"
 @ 12,1 say "Source date:"
 @ 12,15 get m_sdate
 read
 error = .f.
 if .not. (val(m_sdate) <= 1989)
 error = .t.
 endif (date checks)
 if .not. error
 append blank
 replace src_type with m_stype
 replace src_title with m_stitle
 replace src_date with m_sdate
 answer = .t.
 @ 23,1 say "Do you want to add another source?" ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (.not. answer)
 else
 @ 22,1 say "Error in date entry."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. error)
 endif (.not. found())
else
 @ 22,1 say "Source title cannot be spaces."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. error)
endo (do while more)
return
PROCEDURE CHGNOTE2
parameters inc_p1, inc_a1, inc_p2, inc_a2, inc_p3,
inc_a3, ;
inc_p4, inc_a4, inc_p5, inc_a5, inc_p6, inc_a6, inc_p7, ;
inc_a7, inc_p8, inc_a8, inc_p9, inc_a9, inc_p10, ;
inc_a10, x_p1, x_p2, x_p3, x_p4, x_p5, x_p6, x_p7, x_p8,
x_p9, ;
x_p10

x_p1 = inc_p1
if inc_a1 = "+
 x_p1 = x_p1 + 1
endif (+)
if inc_a1 = "-
 x_p1 = x_p1 - 1
endif (-)

x_p2 = inc_p2
if inc_a2 = "+
 x_p2 = x_p2 + 1
endif (+)
if inc_a2 = "-
 x_p2 = x_p2 - 1
endif (-)

x_p3 = inc_p3
if inc_a3 = "+
 x_p3 = x_p3 + 1
endif (+)
if inc_a3 = "-
 x_p3 = x_p3 - 1
endif (-)

x_p4 = inc_p4
if inc_a4 = "+
 x_p4 = x_p4 + 1
endif (+)
if inc_a4 = "-
 x_p4 = x_p4 - 1
endif (-)
\begin{verbatim}
x_p5 = inc_p5
if inc_a5 = "+
 x_p5 = x_p5 + 1
endif (+)
if inc_a5 = "-
 x_p5 = x_p5 - 1
endif (-)

x_p6 = inc_p6
if inc_a6 = "+
 x_p6 = x_p6 + 1
endif (+)
if inc_a6 = "-
 x_p6 = x_p6 - 1
endif (-)

x_p7 = inc_p7
if inc_a7 = "+
 x_p7 = x_p7 + 1
endif (+)
if inc_a7 = "-
 x_p7 = x_p7 - 1
endif (-)

x_p8 = inc_p8
if inc_a8 = "+
 x_p8 = x_p8 + 1
endif (+)
if inc_a8 = "-
 x_p8 = x_p8 - 1
endif (-)

x_p9 = inc_p9
if inc_a9 = "+
 x_p9 = x_p9 + 1
endif (+)
if inc_a9 = "-
 x_p9 = x_p9 - 1
endif (-)

x_p10 = inc_p10
if inc_a10 = "+
 x_p10 = x_p10 + 1
endif (+)
if inc_a10 = "-
 x_p10 = x_p10 - 1
endif (-)
return
\end{verbatim}
PROCEDURE CHGNOTES
parameters m_pl, m_al, m_p2, m_a2, m_p3, m_a3, m_p4, m_a4, m_p5, m_a5, m_p6, m_a6, m_p7, m_a7, m_p8, m_a8, m_p9, m_a9, m_p10, m_a10, c_pl, c_p2, c_p3, c_p4, c_p5, c_p6, c_p7, c_p8, c_p9, c_p10

c_pl = m_pl
if m_al = "+
 c_pl = c_pl + 1
endif (+)
if m_al = "-
 c_pl = c_pl - 1
endif (-)

c_p2 = m_p2
if m_a2 = "+
 c_p2 = c_p2 + 1
endif (+)
if m_a2 = "-
 c_p2 = c_p2 - 1
endif (-)

c_p3 = m_p3
if m_a3 = "+
 c_p3 = c_p3 + 1
endif (+)
if m_a3 = "-
 c_p3 = c_p3 - 1
endif (-)

c_p4 = m_p4
if m_a4 = "+
 c_p4 = c_p4 + 1
endif (+)
if m_a4 = "-
 c_p4 = c_p4 - 1
endif (-)
c_p5 = m_p5
if m_a5 = "+
 c_p5 = c_p5 + 1
endif (+)
if m_a5 = "-
 c_p5 = c_p5 - 1
endif (-)

c_p6 = m_p6
if m_a6 = "+
 c_p6 = c_p6 + 1
endif (+)
if m_a6 = "-
 c_p6 = c_p6 - 1
endif (-)

c_p7 = m_p7
if m_a7 = "+
 c_p7 = c_p7 + 1
endif (+)
if m_a7 = "-
 c_p7 = c_p7 - 1
endif (-)

c_p8 = m_p8
if m_a8 = "+
 c_p8 = c_p8 + 1
endif (+)
if m_a8 = "-
 c_p8 = c_p8 - 1
endif (-)

c_p9 = m_p9
if m_a9 = "+
 c_p9 = c_p9 + 1
endif (+)
if m_a9 = "-
 c_p9 = c_p9 - 1
endif (-)

c_p10 = m_p10
if m_a10 = "+
 c_p10 = c_p10 + 1
endif (+)
if m_a10 = "-
 c_p10 = c_p10 - 1
endif (-)
return

* DBADD
*

PROCEDURE DBADD

************* dbadd menu*************

************* present add menu and get user's choice.
choice = 0
do while choice # 4
 clear
 @ 2,1 say "RESEARCH MUSICOCLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
 ?
text

DATABASE ADD MENU

Available selections include:

1. Add An Incipit/Schedule Expert
2. Add A Source Record
3. Add A Composer Record
4. Return To Previous Screen

dotext
 @ 20,1 say "Enter choice " get choice;
 picture "9" range 1,4
 read

**branch to appropriate program.
 if choice < 1 .or. choice > 4
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
 read
 else
 do case
 case choice = 1
 do addinc
 case choice = 2

lvi
do addsrc
 case choice = 3
 do addcomp
 endcase
 endif (choice < 1 .or. choice > 4)
endo (while choice # 4)
close databases
return

* DBDEL
*

PROCEDURE DBDEL

*********** dbdelete menu***********

------------------------Create underline variable, uline.
*********** present delete menu and get user's choice.*
choice = 0
do while choice # 4
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
 ?
text

DATABASE DELETE MENU

Available selections include:

1. Delete An Incipit/Schedule Expert
2. Delete A Source Record
3. Delete A Composer Record
4. Return To Previous Screen
endo
@ 20,1 say "Enter choice " get choice;
picture "9" range 1,4
read
*-----------------------------branch to appropriate program.

lvii
if choice < 1 .or. choice > 4
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
else
 do case
 case choice = 1
 do delinc
 endcase
 case choice = 2
 do delsrc
 endcase
 case choice = 3
 do delcomp
 endcase
 endif (choice < 1 .or. choice > 4)
endo (while choice # 4)
close databases
return

 DBFAC

PROCEDURE DBFAC

******* database facility menu*****

--------------Create underline variable, uline.
************** present database submenu and get
user's choice.
choice = 0
do while choice # 5
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
text

DATABASE FACILITY

Available database functions include:

1. Add a new record
2. Update an existing record

lviii
3. Delete an existing record
4. Query
5. Exit to previous screen

endtext

@ 20,1 say "Enter choice (1-5) " get choice;
picture "9" range 1,5
read
*-----------------------------branch to
appropriate program.
if choice < 1 .or. choice > 5
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-5"
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
 read
else
 do case
 case choice = 1
 do dbadd
 case choice = 2
 do dbupd
 case choice = 3
 do dbdel
 case choice = 4
 do dbquery
 endcase
endif (choice < 1 .or. choice > 5)
enddo (while choice # 5)
close databases
return

lix
PROCEDURE DBQUERY

*************** database query subsystem

** initialize temp_num to 0

@ 22,1 say "Enter call number for inquiry:" get temp_num1

@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"

@ 2,60 say dtoc(date()) + " " + time()

@ 3,0 to 3,79

@ 5,10 say " DATABASE SYSTEM: QUERY EXISTING RECORD"

* initialize temp_num to 0

select 1

use music index call_num

seek temp_num

if .not. found()

 if .not. first

 @ 22,1 say "This call number is not found"

 m_ans = .t.

 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans

 picture "Y"

 read

 if .not. m_ans

 more = .f.

 endif (.not. m_ans)

 endif (.not. first)

endif (.not. found())

if found()

 @ 08,1 say "COMPOSITION INFORMATION"

 @ 09,1 say "Call number:" get call_num

 @ 09,15 say call_num

 @ 09,30 say "Key signature:" get key

 @ 09,45 say key

 lx
@ 10,1 say "Title:"
@ 10,15 say title
answer = .t.
store call_num to m_call_num
@ 22,1 say "Do you wish to see sources (Y/N)?" get answer ;
 picture "Y"
read
if answer
 select 6
 use refer_in index callr, srcr
 seek m_call_num
 if found()
 @ 12,1 say "SOURCE INFORMATION"
 list while call_num = m_call_num
 else
 @ 24,1 say "No sources have been added for this composition"
 endif (found())
 endif (answer)
 answer = .t.
@ 22,1 say "Do you wish to see composers (Y/N)?" get answer ;
 picture "Y"
read
if answer
 select 4
 use written index callw, cnamew
 seek m_call_num
 if found()
 @ 12,1 say "COMPOSER INFORMATION"
 list while call_num = m_call_num
 else
 @ 24,1 say "No composers have added for this composition"
 endif (found())
 endif (answer)
endif (found())
m_ans = .t.
if .not. first
 @ 22,1 say "Do you wish to inquire again?" get m_ans
 picture "Y"
 read
else
 first = .f.
endif (.not. first)
if m_ans
 @ 22,1 clear

1xi
@ 22,1 say "Enter next call number for inquiry:" get temp_num
read
else
 more = .f.
endif (m_ans)
enddo (more)
return

* DBUPD
*

PROCEDURE DBUPD

*** dbupdate menu***********

**************-
Create underline variable, uline.
************** present update menu and get user's choice.
choice = 0
do while choice # 4
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
 ?
text

DATABASE UPDATE MENU

Available selections include:

 1. Update An Incipit/Schedule Expert
 2. Update A Source Record
 3. Update A Composer Record
 4. Return To Previous Screen
endtext
@ 20,1 say "Enter choice " get choice;
picture "9" range 1,4
read
*-----------------------------branch to appropriate program.
 if choice < 1 .or. choice > 4

lxii
@ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-4 "
@ 24,1 say "PRESS ANY KEY TO CONTINUE"
read
else
do case
case choice = 1
do updinc
case choice = 2
do updsrc
case choice = 3
do updcomp
endcase
endif (choice < 1 .or. choice > 4)
enddo (while choice # 4)
close databases
return

DELCOMP

PROCEDURE DELCOMP
**
****** composer delete subsystem**
**
more = .t.
do while more
clear
**************Init memory variables
************** present composer delete subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: DELETE COMPOSER INFORMATION"
 m_compf = space(10)
 m_compi = .space(1)
 m_compl = space(20)
@ 08,1 say "COMPOSER INFORMATION"
@ 10,1 say "Last name:" get m_compl picture "@!"
@ 11,1 say "First name:" get m_compf picture "@!"
@ 12,1 say "Initial:" get m_compi picture "@!"
read
lxiii
select 3
use composer index c_lname
seek m_compl
if .not. found()
 @ 22,1 say "This composer does not exist on database"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. found())
if found()
 if comp_init = m_compi .and. comp_fname = m_compf
 store comp_bdate to m_bdate
 store comp_ddate to m_ddate
 store comp_loc to m_cloc
 @ 13,1 say "Birth date:"
 @ 13,15 say m_bdate
 @ 14,1 say "Death date:"
 @ 14,15 say m_ddate
 @ 15,1 say "Birthplace:"
 @ 15,15 say m_cloc
 store .f. to m_ans
 endif (.not. m_ans)
 @ 19,1 say "Delete this composer?" get m_ans picture "Y"
 read
 if m_ans
 recnumb = recno()
 delete record recnumb
 pack
 endif (m_ans)
endif (m_ans)

lxiv
answer = .t.
@ 23,1 say "Do you want to delete another composer?"
;
 get answer picture "Y"
read
 if .not. answer
 more = .f.
 endif (.not. answer)
else
 @ 22,1 say "This composer does not exist on database."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get
 m_ans;
 picture "y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (comp_init = m_compi .and. comp_fname = m_compf)
endif (found())
enddo (do while more)
close databases
return
PROCEDURE DELINC

**********database incipit delete****

more = .t.
do while more

clear
 ************ in order to delete a music record---
********-1 schedule graphics interface with call #
******** and activity indicator - "D" for delete
********-2 graphics interface displays incipit
********-3 if want to delete this one
********---delete the record
********---else
********---try another call number???

-------------------------Init memory variables

m_call = 00000
new_num = 00000

************ present incipit delete subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: DELETE MUSIC RECORD"

m_d1 = 0
m_p1 = 0
m_a1 = "

m_d2 = 0
m_p2 = 0
m_a2 = "

m_d3 = 0
m_p3 = 0
m_a3 = "

m_d4 = 0
m_p4 = 0
m_a4 = "

m_d5 = 0
m_p5 = 0
m_a5 = "

m_d6 = 0

lxvi
m_p6 = 0
m_a6 = " "
m_d7 = 0
m_p7 = 0
m_a7 = " "
m_d8 = 0
m_p8 = 0
m_a8 = " "
m_d9 = 0
m_p9 = 0
m_a9 = " "
m_d10 = 0
m_p10 = 0
m_a10 = " "
select 1
use music index call_num
@ 10,1 say "Enter the call number you wish to delete:" ;
 get m_call picture '99999'
read
seek m_call
if .not. found()
 @ 22,1 say "This call number does not exist"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. found())
if found()
 store title to m_title
 store time1 to m_time1
 store time2 to m_time2
 store key to m_key
 store mm to m_mm
 do stnotes with m_d1, m_p1, m_a1, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10
 @ 22,1 say "Please wait to verify incipit"
lxvii
select 2
use graphf index callg
append blank
replace act with "D"
new_num = m_call + 10000
replace call with new_num
replace key with m_key
replace mm with m_mm
replace timel with m_timel
replace time2 with m_time2
do rnotes with m_d1, m_p1, m_a1, ;
m_d2, m_p2, m_a2, ;
m_d3, m_p3, m_a3, ;
m_d4, m_p4, m_a4, ;
m_d5, m_p5, m_a5, ;
m_d6, m_p6, m_a6, ;
m_d7, m_p7, m_a7, ;
m_d8, m_p8, m_a8, ;
m_d9, m_p9, m_a9, ;
m_d10, m_p10, m_a10
*-----send file to graphic interface-----
* erase \project\gfile1.doc
 erase \tp\gfile1.doc
* copy to gfile1.doc sdf
 copy to \tp\gfile1.doc sdf
*-----SIMULATE GRAPHICS INTERFACE HERE
run cd \tp
un grapintf
run cd \demo
title = " DATABASE SYSTEM: DELETE MUSIC RECORD"
do titles with title
close databases
store .t. to m_ans
@ 22,1 clear
@ 22,1 say "Is this the incipit you wanted to delete?" ;
get m_ans picture "Y"
read
if m_ans
 select 1
 use' music index call_num
 seek m_call
 delete for call_num = m_call
 pack
 close databases
*----now delete any written or refer_in segments for call
#
select 4
use written index callw, cnamew

lxviii
seek m_call
delete for call_num = m_call
pack
close databases
select 6
use refer in index callr, srcr
seek m_call
delete for call_num = m_call
pack
close databases
select 8
use link index calll, cnamel, srcl
seek m_call
delete for call_num = m_call
pack
close databases
endif (m_ans)
answer = .t.
@ 22,1 clear
@ 22,1 say "Do you want to delete another incipit?" ;
get answer picture "Y"
read
if .not. answer
 more = .f.
endif (.not. answer)
endif (found())
select 2
use graphf index callg
zap
enddo (more)
close databases
return
************ PROCEDURE DELSRC

************ source delete subsystem

more = .t.
do while more clear

Init memory variables

present source delete subsystem.

say "RESEARCH MUSICOLICAL TOOL"
say dtoc(date()) + " " + time()
say " DATABASE SYSTEM: DELETE MUSIC SOURCE"
m_stitle = space(40)
select 1
use source index sources
say "SOURCE INFORMATION"
say "Enter source:" get m_stitle picture "@!
read

before you do this must have opened the database,
look for entered source
seek m_stitle

if .not. found()
 say "This source does not exist"
m_ans = .t.
 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. found())

if found()
 store src_type to m_stype
 store src_date to m_sdate
 store src_title to m_stitle
 say "Source type:"
 say m_stype
 say "Source date:

1xx
@ 12,15 say m_sdate
store .f. to m_ans
@ 22,1 say "Delete this source?" get m_ans picture "Y"
read
if m_ans
 delete for src_title = m_stitle
 pack
*---how delete all refer_in records with this source-----
 select 6
 use refer_in index srcr, callr
 delete all for src_title = m_stitle
 pack
 select 8
 use link index srcl, calll, cnamel
 delete all for src_title = m_stitle
 pack
 endif (m_ans)
answer = .t.
@ 22,1 say "Do you want to delete another source?" get answer;
 picture "Y"
 read
 if .not. answer
 more = .f.
 endif (.not. answer)
endif (.not. found())
enddo (do while more)
close databases
return
PROCEDURE ESACT

```
more = .t.
do while more
clear

------------------Init memory variables
************ present rule type active/inactive*****
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3, 79
@ 5,10 say " EXPERT SYSTEM UTILITY: ACTIVATE RULE TYPE"
m_type = space(20)
m_act_flagl = .t.
select 7
use rule index types, num1, num2
@ 8,1 say "The following rules exist as active/inactive:"
@ 9,1 say "Rule"
@ 9,20 say "Act/Inact"
@ 9,30 say "Rule"
@ 9,50 say "Act/Inact"
prcter = 11
testtype = space(20)
do while prcter < 18 .and. .not. EOF()
  if type <> testtype
    @ prcter,1 say type
    @ prcter, 20 say act_flagl picture "Y"
    store type to testtype
    do while type = testtype .and. .not. EOF()
      skip
    enddo (type = testtype .and. .not. EOF())
  else (type <> testtype)
    @ prcter,30 say type
    @ prcter,50 say act_flagl picture "Y"
    store type to testtype
  endif (.not. EOF())
  prcter = prcter + 1
endif (type <> testtype)
```
if .not. EOF()
 skip
endif (.not. EOF())
enddo (prcter < 18 .and. .not. EOF())
@ 20,1 say "Enter rule type:"
@ 20,20 get m_type picture "@!"
read

***before you do this must open the database,
***look for entered rule
select 7
reindex
seek m_type
if .not. found()
 m_ans = .t.
 @ 22,1 say "This rule does not exist"
 @ 23,1 say "Do you wish to try again(Y/N)?" get m_ans
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (m_ans)
else
 store act_flagl to m_act_flagl
 @ 21,1 say "Activate this rule type (Y/N)?:"
 @ 21,35 get m_act_flagl picture "Y"
 read
 store .f. to m_ans
 @ 22,1 say "Make these changes?" get m_ans picture "Y"
 read
 if m_ans
 Replace act_flagl with m_act_flagl for type = m_type
 endif (m_ans)
 answer = .t.
 @ 23,1 say "Do you want to activate another rule type?"
 ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (answer)
endif (.not. found())
enddo (do while more)
close databases
return

lxxiii

* ESADD
*

PROCEDURE ESADD
**
************ rule type add subsystem***
**

more = .t.
do while more
 clear
 *********************** Init memory variables
 *************** present rule type add subsystem.
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 @ 5,10 say " EXPERT SYSTEM UTILITY: ADD RULE TYPE"
 m_type = space(20)
 m_act_flag1 = .t.
 select 7
 use rule index types, num1, num2
 @ 8,1 say "The following rule types already exist:
 prcter = 9

 testtype = space(20)
do while prcter < 18 .and. .not. EOF()
 if type <> testtype
 @ prcter,1 say type
 store type to testtype
 do while type = testtype .and. .not. EOF()
 skip
 enddo (type = testtype .and. .not. EOF())
 if .not. EOF()
 @ prcter,40 say type
 store type to testtype
 endif (.not. EOF())
 prcter = prcter + 1
 endif (type <> testtype)
if .not. EOF()
 skip
endif (.not. EOF())
endo do (prcter < 18 .and. .not. EOF())
m_ans = .t.
@ 18,1 say "Do you want to add another rule type(Y/N)" ;
get m_ans picture "Y"
read
if m_ans
 @ 19,1 say "Enter rule type to add:" get m_type
 picture "@!"
 read
 error = .f.
 if m_type = space(20)
 error = .t.
 endif (m_type = space(20)
 if .not. error
 ****before you do this must open the database,
 ****look for entered rule
 reindex
 seek m_type
 if found()
 @ 22,1 say "This rule already exists"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get
 m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 else
 @ 20,1 say "Activate this rule type (Y/N)?:" ;
 get m_act_flag1 picture "Y"
 read
 store .t. to m_act_flag2
 set order to 2
 go bottom
 if EOF()
 store 0 to last_seq
 else
 store seq_num1 to last_seq
 endif (EOF())
 next_seq = last_seq + 1
 store next_seq to m_seq_num1
 store 000 to m_seq_num2
 @ 21,1 say "Sequence of rule will default to last."
 append blank
 replace act_flag1 with m_act_flag1
 replace act_flag2 with m_act_flag2
 replace seq_num1 with m_seq_num1
 replace seq_num2 with m_seq_num2
 replace type with m_type
 answer = .t.

1xxv
@ 22,1 say "Do you want to add another rule type?" ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (answer)
 endif (found())
 else
 @ 22,1 say "Rule type must be greater than spaces."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans
 ;
 picture "y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. error)
 else
 more = .f.
 endif (m_ans)
enddo (do while more)
close databases
return
PROCEDURE ESMAIN

************** expert system maintenance subsystem******

************** Create underline variable, uline.

************** present expert system maintenance submenu.

choice = 0
do while choice ≠ 6
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 text

 EXPERT SYSTEM MAINTENANCE

 Available expert system functions

 1. Add a new rule type
 2. Add a new rule within an existing type
 3. Activate/Inactivate existing rule type
 4. Activate/Inactivate existing rules within a type
 5. Reorganize existing rules
 6. Exit to previous screen

endtext
 @ 20,1 say "Enter choice (1-6) " get choice;
 picture "9" range 1,6
 read

 -------------------------------branch to appropriate program.
 if choice < 1 .or. choice > 6
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-6"
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
 read
 else
 do case

lxxvii
case choice = 1
do esadd
case choice = 2
do esradd
case choice = 3
do esexact
case choice = 4
do esexact
case choice = 5
do esreorg
de-case
dendif (choice < 1 or, choice > 6)
enddo (while choice # 6)
close databases
return

**

** ESRACT
*
**

PROCEDURE ESRACT
**
************* rule activate subsystem***
**
more = .t.
do while more
clear
*************** Init memory variables
*************** present rule activate subsystem.
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: ACTIVATE RULES WITHIN TYPE"
m_type = space(20)
m_act_flag2 = .t.
@ 08,1 say "Enter rule type:"
@ 08,20 get m_type picture "@!"
read
***before you do this must open the database,
****look for entered rule
select 7
use rule index types, num1, num2

lxxviii
reindex
seek m_type
if .not. found()
 m_ans = .t.
 @ 22,1 say "This rule does not exist"
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
else
 do while .not. EOF() .and. type = m_type
 if seq_num2 = 0
 skip
 else
 store act_flag2 to m_act_flag
 store field1 to m_field1
 store oper to m_oper
 store field2 to m_field2
 @ 12,1 say "Rule field 1:"
 @ 12,17 say m_field1
 @ 13,1 say "Rule operator:"
 @ 13,17 say m_oper
 @ 14,1 say "Rule field 2:"
 @ 14,17 say m_field2
 @ 16,1 say "Activate this rule (Y/N)?:" get m_act_flag2 picture "Y"
 read
 store .f. to m_ans
 @ 22,1 say "Make these changes?" get m_ans picture "Y"
 read
 if m_ans
 replace act_flag2 with m_act_flag2
 endif (m_ans)
 skip
 endif (seq_num = 0)
endo (type = m_type .and. .not. EOF())
answer = .t.
@ 22,1 say "Do you want to activate rules within another; type?"
read
if .not. answer
 more = .f.
endif (answer)
endif (found())
endo (do while more)
close databases
return

**

* ESRADD
*
**

PROCEDURE ESRADD
**
****** rule add subsystem***
**
more = .t.
do while more
clear
 ********** Init memory variables
 present rule add subsystem.
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 @ 5,10 say " EXPERT SYSTEM UTILITY: ADD RULE WITHIN TYPE"
m_type = space(20)
m_act_flag2 = .t.
select 7
use rule index types, num1, num2
 @ 8,1 say "The following rule types exist:"
prcter = 9
testtype = space(20)
do while prcter < 18 .and. .not. EOF()
 if type <> testtype
 @ prcter,1 say type
 store type to testtype
 do while type = testtype .and. .not. EOF()
 skip
 enddo (type = testtype .and. .not. EOF())
 endif (.not. EOF())
 prcter = prcter + 1
 endif (type <> testtype)
if .not. EOF()
 skip
endif (.not. EOF())

1xxx
enddo (prcter < 18 .and. .not. EOF())
m_ans = .t.
@ 18,1 say "Enter rule type:"
@ 18,20 get m_type picture "@!"
read
****before you do this must open the database,
****look for entered rule
reindex
seek m_type
if .not. found()
 @ 22,1 say "This rule does not exist"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
else
 clrcter = 7
 do while clrcter < 22
 @ clrcter,0 clear
 clrcter = clrcter + 1
 enddo (clrcter < 22)
 store act_flagl to m_act_flagl
 store seq_numl to m_seq_numl
 m_fieldl = space(39)
 m_oper = space(2)
 m_field2 = space(39)
 @ 11,1 to 11,50
 @ 12,1 say "Valid entries for rule fields are:");
 @ 13,1 say "'rhydif 'notedif' 'timedif' any number"
 @ 14,1 say "Valid entries for rule operator are:");
 @ 15,1 say "<> = <= >= "
 @ 16,1 say "A sample entry would be"
 @ 17,1 say "Field 1: notedif"
 @ 18,1 say "Operator: >="
 @ 19,1 say "Field 2: 5"
 @ 20,1 say "which prevents adding an incipit matching by ;
more than 5 notes."
 error = .f.
 @ 07,1 say "Rule type = "
 @ 07,14 say m_type
 @ 08,1 say "Enter desired rule field 1:"
 get m_fieldl picture "@!!"
 lxxx
@ 09,1 say "Enter desired rule operator:" ;
 get m_oper picture "@!"
@ 10,1 say "Enter desired rule field 2:" ;
 get m_field2 picture "@!"
read
must be sure rule hasn't already been entered
error = .f.
do while type = m_type .and. .not. EOF()
 if field1 = m_field1 .and. oper = m_oper ;
 .and. field2 = m_field2 .and. seq_num2 > 0
 exist = seq_num2
 error = .t.
 endif (checks for duplicates)
 skip
enddo (type = m_type .and. .not. EOF())
if .not. error

 if .not. (m_field1 = "RHYDIF" .or. m_field1 = "NOTEDIF" ;
 .or. m_field1 = "TIMEDIF" .or. (m_field1 >= "0" ;
 .and. m_field1 <= "9999999999")
 error = .t.
 endif (m_field1 checks)
 if .not. (m_field2 = "RHYDIF" .or. m_field2 = "NOTEDIF"
 .or. m_field2 = "TIMEDIF" .or. (m_field2 >= "0" ;
 .and. m_field2 <= "9999999999")
 error = .t.
 endif (m_field2 checks)
 if .not. (m_oper = "=" .or. m_oper = "<=" .or. ;
 m_oper = ">=" .or. m_oper = "><" .or. m_oper = ">" .or.
 m_oper = ">")
 error = .t.
 endif (m_oper checks)
 if .not. error
 clrcter = 11
 do while clrcter < 24
 @ clrcter,0 clear
 clrcter = clrcter + 1
 enddo (clrcter < 24)
 @ 11,1 say "Activate this rule type (Y/N)?:" get
 m_act_flag2 ;
 picture "Y"
 read
do while type = m_type .and. .not. EOF()
 skip
endo (type = m_type .and. .not. EOF())
skip -1
next_seq = seq_num2 + 1
store next_seq to m_seq_num2
@ 12,01 say "Sequence of rule will default to last."
append blank
replace act_flag1 with m_act_flag1
replace act_flag2 with m_act_flag2
replace seq_num1 with m_seq_num1
replace seq_num2 with m_seq_num2
replace type with m_type
replace field1 with m_field1
replace oper with m_oper
replace field2 with m_field2
answer = .t.
@ 22,1 say "Do you want to add another rule?:" get answer ;
 picture "Y"
 read
 if .not. answer
 more = .f.
 endif (answer)
else
 @ 22,1 clear
 @ 23,1 clear
 @ 22,1 say "Error in specifying fields."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. error)
else
 @ 21,1 clear
 ? " This rule already exists as rule #", exist
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. error)
endif (found())
endo (more)
close databases
return

1xxxiii
ESREORG

ESREORG

expert
system

reorganization

subsystem

present
expert
system
reorg
submenu.

Choice = do while choice # 3
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
 text

 EXPERT SYSTEM RULES REORGANIZATION

 Available reorganization features

 include:

 1. Set precedence of rule types
 2. Set precedence of rule within rule
 3. Exit to previous screen

 endtext
 @ 22,1 say "Enter choice (1 - 3) " get choice;
 picture "9" range 1,7
 read

 *-----------------------------branch to appropriate

 program.
 if choice < 1 .or. choice > 3
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3"
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
 read
 else
 do case
 case choice = 1
 do prerule1
 case choice = 2
 do prerule2
 endcase

lxxxiv
endif (choice < 1 .or. choice > 3)
enddo (while choice # 3)
return

* ESUTIL
*

PROCEDURE ESUTIL

************* expert system utilities subsystem******

*************Create underline variable, uline.
************* present expert system maintenance submenu.
choice = 0
do while choice # 3
clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
? text
EXPERT SYSTEM UTILITIES

include:

 1. Match an incipit
 2. Query all similar incipits
 3. Exit to previous screen
endtext
 @ 20,1 say "Enter choice (1-3) " get choice;
picture "9" range 1,3
read

*-----------------------------branch to appropriate program.
if choice < 1 .or. choice > 3
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3"
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"
read
else
do case
case choice = 1

lxxxv
do esmatch
case choice = 2
 do esquery
 endcase
endcase
endif (choice < 1 .or. choice > 3)
enddo (while choice # 3)
close databases
return

INCCADD

PROCEDURE INCCADD

parameters old_call, m_compl, m_compf, m_compi, c_link

*********** incipit/composer add***********

clear
*************-Init memory variables
************* present composer add subsystem.
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 @ 5,10 say " DATABASE SYSTEM: ADD COMPOSER INFORMATION"
 m_cloc = space(40)
 m_bdate = space(4)
 m_ddate = space(4)
 @ 08,1 say "COMPOSER INFORMATION"
 @ 10,01 say "Last name:" get m_compl picture "@!"
 @ 11,01 say "First name:" get m_compf picture "@!"
 @ 12,01 say "Initial:" get m_compi picture "@!"
 read
 error = .f.
 if m_compl = space(40)
 error = .t.
 endif (m_compl = space(40)
 if .not. error
 ***before you do this must have opened the database,
 ***look for entered composer

lxxxvi
select 3
use composer index c_lname
seek m_compl
if found()
 if comp_init = m_compi :and. comp_fname = m_compf
 @ 20,1 clear
 @ 21,1 clear
 @ 20,1 say "This composer already exists on database"
 store .t. to m_ans
 @ 21,1 say "Do you wish to associate him/her with this composition?"
 get m_ans picture "Y"
 read
 if m_ans
 select 4
 use written index callw, cnamew
 append blank
 replace call_num with old_call
 replace comp lname with m_compl
 replace comp fname with m_compf
 replace comp init with m_compi
 c_link = .t.
 select 3
 endif (m_ans)
 endif (comp_init = m_compi .and. comp fname = m_compf)
 endif (found())
select 3
if .not. found()
 @ 13,1 say "Birth year:"
 @ 13,15 get m_bdate
 @ 14,1 say "Death year:"
 @ 14,15 get m_ddate
 @ 15,1 say "Birthplace:"
 @ 15,15 get m_cloc picture "@!"
 error = .f.
 if val(m_bdate) > 1989
 error = .t.
 endif (bdate checks)
 if (val(m_ddate) > val(m_bdate) .or. val(m_ddate) > 1989)
 .and. m_ddate <> space(4)
 error = .t.
 endif (ddate checks)
if .not. error
 read
 append blank
 replace comp fname with m_compf
 replace comp init with m_compi

lxxxvii
replace comp_lname with m_compl
replace comp_bdate with m_bdate
replace comp_ddate with m_ddate
replace comp_loc with m_cloc
select 4
use written index callw, cnamew
append blank
replace call_num with old_call
replace comp_lname with m_compl
replace comp_fname with m_compf
replace comp_init with m_compi
c_link = .t.
select 3
else
 @ 22,1 say "Error in date entry."
m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans
 picture "Y"
 read
 if .not. m_ans
 error = .t.
 endif (.not. m_ans)
 endif (.not. error)
 else
 if comp_init <> m_compi .or. comp_fname <> m_compf
 @ 13,1 say "Birth year:"
 @ 13,15 get m_bdate
 @ 14,1 say "Death year:"
 @ 14,15 get m_ddate
 @ 15,1 say "Birthplace:"
 @ 15,15 get m_cloc picture "@!"
 read
 error = .f.
 if val(m_bdate) > 1989
 error = .t.
 endif (bdate checks)
 if (val(m_ddate) < val(m_bdate) .or. val(m_ddate) > 1989)
 .and. m_ddate <> spaces
 error = .t.
 endif (ddate checks)
 if .not. error
 append blank
 replace comp_fname with m_compf
 replace comp_init with m_compi
 replace comp_lname with m_compl
 replace comp_bdate with m_bdate

 lxxxviii
replace comp_ddate with m_ddate
replace comp_loc with m_cloc
select 4
use written index callw, cnamew
replace call_num with old_call
replace comp_lname with m_compl
replace comp_fname with m_compf
replace comp_init with m_compi
c_link = .t.
select 3
else
 @ 22,1 say "Error in date entry."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
 picture "Y"
read
 if .not. m_ans
 error = .t.
 endif (.not. m_ans)
 endif (.not. error)
 endif (comp_init = m_compi .and. comp_fname = m_compf)
endif (.not. found())
endif (.not. error)
return
*--

1xxxix
PROCEDURE INCSADD

parameters old_call, m_stitle, s_link

incipit/source add

parameters old_call, m_stitle, s_link

****** incipit/source add****

clear

************-Init memory variables

****** present rule type add subsystem.

@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " DATABASE SYSTEM: ADD MUSIC SOURCE"

select 5

use source index sources

m_stype = space(40)

m_sdate = space(4)

@ 08,1 say "SOURCE INFORMATION"

@ 10,1 say "Enter source:" get m_stitle picture "@!"

read

error = .f.

if m_stitle = space(40)

 error = .t.
endif (m_stitle = space(40)

if .not. error

before you do this must have opened the database,

look for entered source

seek m_stitle

if found()

 store src_title to m_stitle

 @ 20,1 clear

 @ 21,1 clear

 @ 20,1 say "This source already exists"

 store .t. to m_ans

 @ 21,1 say "Do you wish to link it to this composition?"

 get m_ans picture "y"

 read

 if m_ans

 xc
select 6
use refer_in index callr, srcr
append blank
replace call_num with old_call
replace src_title with m_stitle
s_link = .t.
select 5
endif (m_ans)
endif (found())
select 5
if .not. found()
 @ 11,1 say "Source type:"
 @ 11,15 get m_stype picture "@!"
 @ 12,1 say "Source date:"
 @ 12,15 get m_sdate
read
error = .f.
if .not. (val(m_sdate) <= 1989)
 error = .t.
endif (m_sdate check)
if .not. _error
append blank
replace src_type with m_stype
replace src_title with m_stitle
replace src_date with m_sdate
select 6
use refer_in index callr, srcr
append blank
replace call_num with old_call
replace src_title with m_stitle
s_link = .t.
select 5
else
 @ 22,1 say "Error in date entry."
 m_ans = .t.
 @ 23,1 say "Do you wish to try again(Y/N)?" get m_ans
 picture "Y"
read
if .not. m_ans
 error = .f.
endif (.not. m_ans)
endif (.not. _error)
endif (.not. found())
endif (.not. _error)
return

xci
PROCEDURE INFER
parameters m_d1, m_p1, m_a1, ;
m_d2, m_p2, m_a2, ;
m_d3, m_p3, m_a3, ;
m_d4, m_p4, m_a4, ;
m_d5, m_p5, m_a5, ;
m_d6, m_p6, m_a6, ;
m_d7, m_p7, m_a7, ;
m_d8, m_p8, m_a8, ;
m_d9, m_p9, m_a9, ;
m_d10, m_p10, m_a10, ;
okflag, m_call, difcter, m_time1, m_time2
newdif = 0

********** checks for inference engine **********

select 1
use music index call_num
reindex
if .not. BOF()
go top
 @ 18,1 say "Please wait while the expert checks the following:"
do while .not. EOF()
 **** init all variables---
 newdif = 0
 *** how many differences in notes?
 notedif = 0
 *** for check to see if time sig is multiple of itself
 *** possibilities: "S" = same, "M" = multiple, "D" = different
 toptime = "S"
 lowtime = "S"
 timedif = 0
 *** how many differences in rhythm
 rhydif = 0
 *** check for transposition??
 store .f. to trans
 store .f. to sameflag
 c_pl = m_pl

xcii
c_p2 = m_p2
c_p3 = m_p3
c_p4 = m_p4
c_p5 = m_p5
c_p6 = m_p6
c_p7 = m_p7
c_p8 = m_p8
c_p9 = m_p9
c_p10 = m_p10
 do chgnotes with m_p1, m_a1, m_p2, m_a2, m_p3, m_a3,
 m_p4, m_a4, m_p5, m_a5, m_p6, m_a6, m_p7, m_a7, m_p8,
 m_a8, m_p9, ;
 m_a9, m_p10, m_a10, c_p1, c_p2, c_p3, ;
 c_p4, c_p5, c_p6, c_p7, c_p8, c_p9, c_p10

******************* checks *******************

 do notes with c_p1, c_p2, c_p3, c_p4, c_p5, ;
 c_p6, c_p7, c_p8, c_p9, c_p10, notedef
 do rhythm with m_d1, m_d2, m_d3, m_d4, m_d5, ;
 m_d6, m_d7, m_d8, m_d9, m_d10, rhydif
 do time with m_time1, m_time2, toptime, lowtime,
 timedif
 do transp with m_d1, c_p1, m_d2, c_p2, m_d3, c_p3, ;
 *m_d4, c_p4, m_d5, c_p5, m_d6, c_p6, m_d7, c_p7, m_d8, ;
 *c_p8, m_d9, c_p9, m_d10, c_p10, trans
 * if notedif = 0 .and. rhydif = 0
 * if timedif = 0
 * else
 * if trans
 * if timedif = 0
 * sameflag = .t.
 * endif (timedif = 0)
 * endif (trans)
 * endif (timedif = 0)
 * endif (notedef = 0 .and. rhydif = 0)
 * if sameflag
 * okflag = .f.
 * else
 * do rcheck with notedef, rhydif, lowtime,
 * toptime, newdif
 * select 1
 * if newdif > difcter
 * store newdif to difcter
 * endif (newdif > difcter)
 * endif (sameflag)
 xciii
if .not. EOF()
 skip
endif (.not. EOF())
endo (.not. EOF())
endif (.not. BOF())
m_ans = .t.
if difcter > 5
 okflag = .f.
endif (difcter > 5)
if .not. okflag
 clrcter = 18
 do while clrcter < 24
 clrcter,0 clear
 clrcter = clrcter + 1
 enddo (clrcter < 24)
 21,1 say "Based on an evaluation of the rules, the expert"
 22,1 say "recommends that you NOT add this incipit."
 23,1 say "Do you want to override this recommendation(Y/N)?" ;
 get m_ans picture "Y"
 read
 if m_ans
 okflag = .t.
 endif (m_ans)
endif (.not. okflag)
clrcter = 18
 do while clrcter < 24
 clrcter,0 clear
 clrcter = clrcter + 1
 enddo (clrcter < 24)
return
PROCEDURE MENU
**
************ user frontend menu************
**
set help off
set talk off
set status off
set score off
set safety off
set bell off
set exact on

*************-Create underline variable, uline.

*************** present user frontend menu and get user's choice.

choice = 0
do while choice # 3
 clear
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 ?
 ?
text

PRIMARY MENU

Available selections include:

1. Database Facility
2. Expert System Maintenance
3. Exit Research Musicological Tool

endtext
@ 20,1 say "Enter choice " get choice;
picture "9" range 1,3
read

*-----------------------------branch to appropriate program.

 if choice < 1 .or. choice > 3
 @ 23,1 say "CHOICE MUST BE WITHIN RANGE OF 1-3 "
 @ 24,1 say "PRESS ANY KEY TO CONTINUE"

xcv
read
else
 do case
 case choice = 1
 do dbfac
 case choice = 2
 do esmain
 endcase
endif (choice < 1 .or. choice > 3)
endo (while choice # 3)
close databases
clear
*quit

NOTES

PROCEDURE NOTES
parameters c_p1, c_p2, c_p3, c_p4, ;
c_p5, c_p6, c_p7, c_p8, c_p9, ;
c_p10, notedif
 x_p1 = inc_p1
 x_p2 = inc_p2
 x_p3 = inc_p3
 x_p4 = inc_p4
 x_p5 = inc_p5
 x_p6 = inc_p6
 x_p7 = inc_p7
 x_p8 = inc_p8
 x_p9 = inc_p9
 x_p10 = inc_p10
 do chgnote2 with inc_p1, inc_a1, inc_p2, inc_a2, inc_p3, ;
 inc_a3, inc_p4, inc_a4, inc_p5, inc_a5, inc_p6, inc_a6, ;
 inc_p7, inc_a7, inc_p8, inc_a8, inc_p9, inc_a9, inc_p10,
 ;
 inc_a10, x_p1, x_p2, x_p3, x_p4, x_p5, x_p6, x_p7, x_p8,
 ;
 x_p9, x_p10
if x_p1 <> c_p1
 notedif = notedif + 1
endif (x_p1 <> c_p1)
if x_p2 <> c_p2
 xcv1
notedif = notedif + 1
endif (x_p2 <> c_p2)
if x_p3 <> c_p3
 notedif = notedif + 1
endif (x_p3 <> c_p3)
if x_p4 <> c_p4
 notedif = notedif + 1
endif (x_p4 <> c_p4)
if x_p5 <> c_p5
 notedif = notedif + 1
endif (x_p5 <> c_p5)
if x_p6 <> c_p6
 notedif = notedif + 1
endif (x_p6 <> c_p6)
if x_p7 <> c_p7
 notedif = notedif + 1
endif (x_p7 <> c_p7)
if x_p8 <> c_p8
 notedif = notedif + 1
endif (x_p8 <> c_p8)
if x_p9 <> c_p9
 notedif = notedif + 1
endif (x_p9 <> c_p9)
if x_p10 <> c_p10
 notedif = notedif + 1
endif (x_p10 <> c_p10)
@ 20,1 clear
@ 21,1 clear
@ 20,1 say "NOTES"
? "Difference in notes is ", notedif
return
PRERULE1

PROCEDURE PRERULE1

more = .t.
do while .not. .t.
clear

****** present rule type reorder subsystem

@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: REORDER RULE TYPE"
m_type = space(20)
m_seq_numl = 000
@ 08,1 say "Enter rule type you wish to reorder:";
 get m_type picture "@!" read

before you do this must open the database,
look for entered rule
select 7
use rule index types, num1, num2
reindex
seek m_type
if found()
 @ 09,1 say "This rule type is currently ordered as number "
 @ 09,48 say seq_num
 store seq_numl to o_seq_num
 @ 10,1 say "Change this order to:" get m_seq_num1 read
 error = .f.

need to know last seq_numl

do while .not. EOF()
 skip
endo(.not. EOF())
if BOF()
 store 0 to last_one
else

xcviii
skip -1
store seq_num1 to last_one
endif (BOF())
if m_seq_num1 > last_one
 error = .t.
endif (m_seq_num1 > last_one)
if .not. error
 store .f. to m_ans
 @ 19,1 say "Make this change?" get m_ans picture "Y"
 read
 if m_ans
 if m_seq_num1 < o_seq_num
 replace seq_num1 with m_seq_num1 for type = m_type
 replace seq_num1 with seq_num1 + 1 for ;
 .not. (type = m_type .or. seq_num1 < m_seq_num1 ;
 .or. seq_num1 > o_seq_num)
 else
 if m_seq_num1 > o_seq_num
 replace seq_num1 with m_seq_num1 for type =
 m_type
 replace seq_num1 with seq_num1 - 1 for ;
 .not. (type = m_type .or. seq_num1 > m_seq_num1
 ;
 .or. seq_num1 < o_seq_num)
 endif (m_seq_num1 > o_seq_num)
 endif (m_ans)
 answer = .t.
 @ 22,1 say "Do you want to reorder another rule type?"
 ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (answer)
 else
 @ 21,1 clear
 ? "New sequence number cannot exceed " ,last_one
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. error)
 else
 m_ans = .t.

xcix
@ 22,1 say "This rule does not exist."
@ 23,1 say "Do you want to try another (Y/N)?:" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (found())
enddo (do while more)
close databases
return

*** PRERULE2

PROCEDURE PRERULE2

************** rule reorder subsystem***

more = .t.
do while more
clear
-------------Init memory variables
************** present rule within type reorder subsystem***
@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@ 2,60 say dtoc(date()) + " " + time()
@ 3,0 to 3,79
@ 5,10 say " EXPERT SYSTEM UTILITY: REORDER RULES WITHIN TYPES"
 m_type = space(20)
 m_seq_num2 = 000
 m_field1 = space(39)
 m_oper = space(2)
 m_field2 = space(39)
@ 08,1 say "Enter rule type you wish to reorder:");
 get m_type picture "@!
 read
****before you do this must open the database,
****look for entered rule
select 7
use rule index types, num1, num2

```plaintext
reindex
seek m_type
if found()
    @ 09,1 say "Change the order of what rule?"
    @ 10,1 say "Enter Rule Field1 :" get m_field1 picture
    "@!"
    @ 11,1 say "Rule Operator:" get m_oper picture
    "@!"
    @ 12,1 say "Rule Field2 :" get m_field2 picture
    "@!"
read
ds_rule = 0

do while type = m_type .and. .not. EOF()
    if field1 = m_field1 .and. oper = m_oper .and.
        field2
            = m_field2
            store seq_num2 to ds_rule
            store seq_num2 to o_seq_num2
        endif (matches the rule parameters)
skip
endo
done
store seq_num2 to last_one
rule_fd = .t.
if ds_rule = 0
    ****must act like not found****
    rule_fd = .f.
endif (ds_rule = 0)
if rule_fd
    @ 14,1 clear
    ? " This is currently rule ", ds_rule
    ? " Rules of this type total", last_one
    m_ans = .t.
    @ 17,1 say "Do you wish to change the order of this
        rule?"
    get m_ans picture "Y"
read
if m_ans
    @ 18,1 say "New order of this rule is: " get
    m_seq_num2
read
error = .f.
if m_seq_num2 > last_one .or. m_seq_num2 < 1
    error = .t.
endif (m_seq_num2 > last_one .or. m_seq_num2 < 1)
if .not. error
    if m_seq_num2 < o_seq_num2
```
use rule index num2, num1, types
 seek o_seq_num2
 replace all seq_num2 with m_seq_num2 for type = m_type;
 .and. seq_num2 = o_seq_num2
 use rule index types, num1, num2
 replace all seq_num2 with seq_num2 + 1 for type = m_type;
 .and. (seq_num2 > m_seq_num2 .or. (seq_num2 = m_seq_num2
 .and. (field1 <> m_field1
 .or. oper <> m_oper .or. field2 <> m_field2)))) .and. ;
 (seq_num2 = o_seq_num2 .or. seq_num2 < o_seq_num2)
 else
 if m_seq_num2 > o_seq_num2
 use rule index num2, num1, types
 seek o_seq_num2
 replace all seq_num2 with m_seq_num2 for type = m_type;
 .and. seq_num2 = o_seq_num2
 use rule index types, num1, num2
 replace all seq_num2 with seq_num2 - 1 for type = m_type;
 .and. (seq_num2 < m_seq_num2 .or. (seq_num2 = m_seq_num2
 .and. (field1 <> m_field1
 .or. oper <> m_oper .or. field2 <> m_field2))
 .and. ;
 (seq_num2 >= o_seq_num2) .and. ;
 seq_num2 <> 0
 endif (m_seq_num2 < o_seq_num2)
 endif (m_seq_num2 > o_seq_num2)

answer = .t.
@ 22,1 say "Do you want to reorder another rule type?" ;
 get answer picture "Y"
read
if .not.answer
 more = .f.
endif (.not. answer)
else
 @ 21,1 clear
 ? " New sequence number must be > 1 and < ", last_one
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
read
if .not. m_ans
 more = .f.
endif (.not. m_ans)
endif (.not. error)
endif (m_ans)
else
 @ 22,1 say "This rule does not exist."
 m_ans = .t.
 @ 23,1 say "Do you want to try again (Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (m_ans)
endif (rule_fd)
else
 @ 22,1 say "This rule type does not exist."
 m_ans = .t.
 @ 23,1 say "Do you want to try again (Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (m_ans)
endif (.not. found)
 enddo (.not. found)
```
macfld1 = field1
macfld2 = oper
macfld3 = field2
@ 22,0 clear
@ 22,1 say macfld1
@ 22,15 say macfld2
@ 22, 20 say macfld3
if .not. (&macfld1 &macfld2 &macfld3)
    if seq_num2 = 1
        newdif = newdif + 5
    else
        newdif = newdif + 1
    endif (seq_num2 = 1)
    @ 22,40 say "STATUS = FAILED"
else
    @ 22,40 say "STATUS = PASSED"
endif (&macfld1 &macfld2 &macfld3)
act_flag1 .and. act_flag2)
    if .not. EOF()
        skip
    endif (.not. EOF())
    enddo (.not. EOF())
endif (.not. BOF())
return

******************************************************************************
***
**                      RHYTHM
**
******************************************************************************

PROCEDURE RHYTHM
parameters m_d1, m_d2, m_d3, m_d4, ;
  m_d5, m_d6, m_d7, m_d8, m_d9, ;
  m_d10, rhydif
if inc_d1 <> m_d1
    rhydif = rhydif + 1
endif (inc_d1 <> m_d1)
if inc_d2 <> m_d2
    rhydif = rhydif + 1
endif (inc_d2 <> m_d2)
if inc_d3 <> m_d3
    rhydif = rhydif + 1
endif (inc_d3 <> m_d3)
if inc_d4 <> m_d4
```
rhydif = rhydif + 1
endif (inc_d4 <> m_d4)
if inc_d5 <> m_d5
 rhydif = rhydif + 1
endif (inc_d5 <> m_d5)
if inc_d6 <> m_d6
 rhydif = rhydif + 1
endif (inc_d6 <> m_d6)
if inc_d7 <> m_d7
 rhydif = rhydif + 1
endif (inc_d7 <> m_d7)
if inc_d8 <> m_d8
 rhydif = rhydif + 1
endif (inc_d8 <> m_d8)
if inc_d9 <> m_d9
 rhydif = rhydif + 1
endif (inc_d9 <> m_d9)
if inc_d10 <> m_d10
 rhydif = rhydif + 1
endif (inc_d10 <> m_d10)
@ 20,1 clear
@ 21,1 clear
@ 20,1 say "RHYTHM"
? "Difference in rhythm is ", rhydif
return

**

* RPNOTES
*
**

PROCEDURE RPNOTES
**

parameters m_d1, m_p1, m_a1, ;
m_d2, m_p2, m_a2, ;
m_d3, m_p3, m_a3, ;
m_d4, m_p4, m_a4, ;
m_d5, m_p5, m_a5, ;
m_d6, m_p6, m_a6, ;
m_d7, m_p7, m_a7, ;
m_d8, m_p8, m_a8, ;
m_d9, m_p9, m_a9, ;
m_d10, m_p10, m_a10

sv
*-------this replaces fields in the music database with those --
*-------in the temporary graphf database----------------------
*---
*---
*-------used by addinc program-----------------------------
*---

replace inc_p1 with m_p1
replace inc_d1 with m_d1
replace inc_a1 with m_a1
replace inc_d2 with m_d2
replace inc_p2 with m_p2
replace inc_a2 with m_a2
replace inc_d3 with m_d3
replace inc_p3 with m_p3
replace inc_a3 with m_a3
replace inc_d4 with m_d4
replace inc_p4 with m_p4
replace inc_a4 with m_a4
replace inc_d5 with m_d5
replace inc_p5 with m_p5
replace inc_a5 with m_a5
replace inc_d6 with m_d6
replace inc_p6 with m_p6
replace inc_a6 with m_a6
replace inc_d7 with m_d7
replace inc_p7 with m_p7
replace inc_a7 with m_a7
replace inc_d8 with m_d8
replace inc_p8 with m_p8
replace inc_a8 with m_a8
replace inc_d9 with m_d9
replace inc_p9 with m_p9
replace inc_a9 with m_a9
replace inc_d10 with m_d10
replace inc_p10 with m_p10
replace inc_a10 with m_a10
return
*------------end of storage routine-------------------------

cvi
PROCEDURE STNOTES
**
** This reads from the graphf database and store to memory ---
** *----used by addinc program----------------------------------
**
parameters m_d1, m_p1, m_a1, ;
m_d2, m_p2, m_a2, ;
m_d3, m_p3, m_a3, ;
m_d4, m_p4, m_a4, ;
m_d5, m_p5, m_a5, ;
m_d6, m_p6, m_a6, ;
m_d7, m_p7, m_a7, ;
m_d8, m_p8, m_a8, ;
m_d9, m_p9, m_a9, ;
m_d10, m_p10, m_a10
**
store inc_a7 to m_a7
store inc_d8 to m_d8
store inc_p8 to m_p8
store inc_a8 to m_a8
store inc_d9 to m_d9
store inc_p9 to m_p9
store inc_a9 to m_a9
store inc_d10 to m_d10
store inc_p10 to m_p10
store inc_a10 to m_a10
return

*---------end of storage routine-----------------------

TIME

PROCEDURE TIME
parameters m_timel, m_time2, toptime, lowtime, timedif
if timel = m_timel
 toptime = "S"
else
 if mod(timel, m_timel) = 0
 toptime = "M"
 else
 toptime = "D"
 endif (mod(timel, m_timel) = 0)
endif (timel = m_timel)
if time2 = m_time2
 lowtime = "S"
else
 if mod(time2, m_time2) = 0
 lowtime = "M"
 else
 lowtime = "D"
 endif (mod(time2, m_time2) = 0)
endif (time2 = m_time2)
if toptime = "S" .and. lowtime = "S"
 timedif = 0
else
 if toptime = "M" .and. lowtime = "M"
 timedif = 0
 else
 timedif = 1

cviii
endif (toptime = "M" .and. lowtime = "M")
endif (toptime = "S" .and. lowtime = "S")

@$20,1 clear
@$21,1 clear
@$20,1 say "TIME"
? "Difference in time is ", timedif
return

* TITLES
* ***

PROCEDURE TITLES
parameters title
@$2,1 say "RESEARCH MUSICOLOGICAL TOOL"
@$2,60 say dtoc(date()) + " " + time()
@$3,0 to 3,79
@$5,10 say title
return

* TRANS P
* ***

PROCEDURE TRANS P
parameters m_d1, c_p1, m_d2, c_p2, m_d3, c_p3, m_d4,
c_p4, ;
m_d5, c_p5, m_d6, c_p6, m_d7, c_p7, m_d8, c_p8, m_d9,
c_p9, ;
m_d10, c_p10, trans
@$20,1 clear
@$20,1 say "TRANSPOSITION"
@$21,0 clear
@$22,0 clear
return
PROCEDURE UPDCOMP

************** composer update subsystem**

more = .t.
do while more
 clear
 ************* Init memory variables
 present composer update subsystem.
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 @ 5,10 say "DATABASE SYSTEM: UPDATE COMPOSER INFORMATION"
 m_compf = space(10)
 m_compi = space(1)
 m_compl = space(20)
 @ 08,1 say "COMPOSER INFORMATION"
 @ 10,1 say "Last name:" get m_compl picture "@!"
 @ 11,1 say "First name:" get m_compf picture "@!"
 @ 12,1 say "Initial:" get m_compi picture "@!"
 read
 use composer index c_lname
 seek m_compl
 if .not. found()
 @ 22,1 say "This composer does not exist on database"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (.not. found())
 if found()
 if comp_init = m_compi .and. comp_fname = m_compf
 store comp_bdate to m_bdate
 store comp_ddate to m_ddate
 endif
 endif

enddo

end
store comp_loc to m_loc
@ 13,1 say "Birth date:")
@ 13,15 get m_bdate
@ 14,1 say "Death date:")
@ 14,15 get m_ddate
@ 15,1 say "Birthplace:")
@ 15,15 get m_loc picture "@!"
read
error = .f.
if val(m_bdate) > 1989
 error = .t.
endif (bdate checks)
if (val(m_ddate) < val(m_bdate) .or. val(m_ddate) > 1989)
 .and. m_ddate <> space(4)
 error = .t.
endif (ddate checks)
if .not. error
 store .f. to m_ans
 @ 19,1 say "Make these changes?" get m_ans picture "Y"
 read
 if m_ans
 replace comp_bdate with m_bdate
 replace comp_ddate with m_ddate
 replace comp_loc with m_loc
 endif (m_ans)
 answer = .t.
 @ 23,1 say "Do you want to update another composer?"
 ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (.not. answer)
else
 @ 22,1 clear
 @ 22,1 say "Invalid date entry"
 m_ans = .t.
 @ 23,1 clear
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans
 ;
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. error)

cxi
else
 @ 22,1 say "This composer does not exist on database."
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
 endif (comp_init = m_compi .and. comp_fname = m_compf)
 endif (found())
enddo (do while more)
return
* *

*************** UPDINC

**

*************** UPDINC

PROCEDURE UPDINC

********** database incipit update****

more = .t.
do while more

clear

************ Init memory variables

--------1 schedule graphics interface with call #

-------- and activity indicator - "U" for update

--------2 graphics interface update incipit

--------3 double check that they want this update

--------4 if update to incipit is desired and ok return

-------- from graphics interface

--------5 schedule inference engine

--------else

--------try another call number???

m_call = 00000
new_num = 00000

************ present incipit update subsystem.

@ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"

@ 2,60 say dtoc(date()) + " " + time()

@ 3,0 to 3,79

@ 5,10 say " DATABASE SYSTEM: UPDATE MUSIC RECORD"

m_d1 = 0
m_p1 = 0
m_a1 = "

m_d2 = 0
m_p2 = 0
m_a2 = "

m_d3 = 0
m_p3 = 0
m_a3 = "

m_d4 = 0
m_p4 = 0
m_a4 = "

m_d5 = 0
m_p5 = 0
m_a5 = "

 cxiii
m_d6 = 0
m_p6 = 0
m_a6 = " p "
m_d7 = 0
m_p7 = 0
m_a7 = " p "
m_d8 = 0
m_p8 = 0
m_a8 = " p "
m_d9 = 0
m_p9 = 0
m_a9 = " p "
m_d10 = 0
m_p10 = 0
m_a10 = " p "
select 1
use music index call_num
@ 10,1 say "Enter the call number you wish to update:" ;
get m_call picture '99999'
read
seek m_call
if .not. found()
 @ 22,1 say "This call number does not exist"
 m_ans = .t.
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans ;
 picture "Y"
 read
 if .not. m_ans
 more = .f.
 endif (.not. m_ans)
endif (.not. found())
if found()
 * erase \project\gfile1.doc
 erase \tp\gfile1.doc
 store title to m_title
 store timel to m_timel
 store time2 to m_time2
 store key to m_key
 store mm to m mm
 do stnotes with m_d1, m_p1, m_a1, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 cxiv
m_d9, m_p9, m_a9,
@ 22,1 say "Please wait to update incipit"
use graphf index callg
append blank
replace act with "U"
new_num = m_call + 10000
replace call with new_num
replace key with m_key
replace mm with m_mm
replace timel with m_time1
replace time2 with m_time2
do rpnotes with m_dl, m_pl, m_al;
@ 22,1 say "Make these updates?"
get m_ans picture "Y"
read
if m_ans
 select 2
 use graphf index callg
* append from gfile2.doc sdf
* append from \tp\gifile.dat sdf
new_num = 10000 - call
store new_num to m_call
store mm to m_mm
store m_timel to m_time1
store m_time2 to m_time2

@ 22,1 say "Please wait to update incipit"
store key to m_key
 do stnotes with m_d1, m_pl, m_al, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10
if act = "U"
 okupd = .t.
 store 0 to difcter
 do infer with m_d1, m_pl, m_al, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10, ;
okupd, m_call, difcter, m_time1, m_time2
if okupd
 select 1
 use music_index call_num
 seek m_call
 if found()
 replace key with m_key
 replace title with m_title
 replace time1 with m_time1
 replace time2 with m_time2
 do rpnotes with m_d1, m_pl, m_al, ;
 m_d2, m_p2, m_a2, ;
 m_d3, m_p3, m_a3, ;
 m_d4, m_p4, m_a4, ;
 m_d5, m_p5, m_a5, ;
 m_d6, m_p6, m_a6, ;
 m_d7, m_p7, m_a7, ;
 m_d8, m_p8, m_a8, ;
 m_d9, m_p9, m_a9, ;
 m_d10, m_p10, m_a10
 endif (found())
else
 @ 22,1 say "Update is not indicated by graphics interface"

cxvi
endif (okupd)
endif (act = "U")
endif (m_ans)

answer = .t.
@ 22,1 say "Do you want to update another incipit?" ;
get answer picture "Y"
read
if .not. answer
 more = .f.
endif (.not. answer)
endif (found())
select 2
use graphf index callg
zap
endo (more)
close databases
return

*** UPDSRC

PROCEDURE UPDSRC

******** source update subsystem***

more = .t.
do while more
 clear
 ******** Init memory variables
 ******** present source update subsystem.
 @ 2,1 say "RESEARCH MUSICOLOGICAL TOOL"
 @ 2,60 say dtoc(date()) + " " + time()
 @ 3,0 to 3,79
 @ 5,10 say " DATABASE SYSTEM: UPDATE MUSIC SOURCE"
 use source index sources
 m_stitle = space(40)
 @ 08,1 say "SOURCE INFORMATION"
 @ 10,1 say "Enter source:" get m_stitle picture "@!"
 read
 ****before you do this must have opened the database,
 ****look for entered source
 seek m_stitle
 if .not. found()
@ 22,1 say "This source does not exist"
m_ans = .t.
@ 23,1 say "Do you want to try again(Y/N)?" get m_ans

; picture "Y"
read
if .not. m_ans
 more = .f.
endif (.not. m_ans)
endif (.not. found())
if found()
 store src_type to m_stype
 store src_date to m_sdate
 store src_title to m_stitle
 @ 11,1 say "Source type:"
 @ 11,15 get m_stype picture "@!"
 @ 12,1 say "Source date:"
 @ 12,15 get m_sdate
 read
 error = .f.
 if val(m_sdate) > 1989
 error = .t.
 endif (date check)
 if .not. error
 store .f. to m_ans
 @ 19,1 say "Make these changes?" get m_ans picture "Y"
 read
 if m_ans
 replace src_type with m_stype
 replace src_date with m_sdate
 endif (m_ans)
 answer = .t.
 @ 23,1 say "Do you want to change another source?" ;
 get answer picture "Y"
 read
 if .not. answer
 more = .f.
 endif (.not. answer)
else
 m_ans = .t.
 @ 22,1 say "Invalid date entry."
 @ 23,1 say "Do you want to try again(Y/N)?" get m_ans

; picture "Y"
read
if .not. m_ans
 more = .f.
endif (.not. m_ans)
endif (.not. error)
endif (.not. found())
enddo (more)
return
A MUSICOLOGICAL RESEARCH TOOL:
AN EXPERT SYSTEM SOLUTION FOR SMALL PROJECTS

by

JEANNINE STAFFORD INGRAM

B.S., University of North Carolina-Greensboro, 1982

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989
Abstract

Musicology, the scholarly study of music, was first introduced as a discipline by Friedrich Chrysander in 1863. In the past 125 years, this discipline has become one of sound historical research techniques. It requires that the professional musicologist have a broad knowledge base and be able to organize and assimilate vast quantities of data, all of which may play some part in the final research product. Among the many areas within the humanities, musicology perhaps would most benefit from a single, integrated system capable of assisting in the completion of a multi-faceted project.

The primary motivation of this project was to provide a PC-based automated research tool for musicologists and small music archives and to explore the usefulness of expert systems as a potential research tool for music historians.

The project will establish the need for a research musicological tool, develop an expert system capable of incipit matching and decision processing within the environment of standard musicological research techniques, and develop a database management system suitable for the special needs of small projects in musicology.